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Abstract

The Kolmogorov-Sinai entropy is a fairly exotic meainatical concept which
has recently aroused some interest on the phil@ssppart. The most salient
trait of this concept is its working as a junctioetween such diverse ambits as
statistical mechanics, information theory and atpar theory. In this paper |
argue that, in order to understand this very spde&ture of the Kolmogorov-
Sinai entropy, is essential to reconstruct its giogy. Somewhat surprisingly,
this story takes us as far back as the beginningebéstial mechanics and
through some of the most exciting developments athematical physics of the
19th century.

1. Introduction

Names tell many things. In the case | am goingxfdage in this paper, for
example, the name Kolmogorov-Sinai entropy (KSE)dwaight away the
character of my investigation. For it contains fepy”, which immediately
makes us think about thermodynamics, statisticathaeics, and gaseous
disorder. But it also refers to Andrei N. Kolmogerca name tightly
connected with the axiomatization of probabilitydawith research on
algorithms complexity. Finally, it alludes to Yako®. Sinai, a
mathematician lesser known to philosophers, whowaked extensively
on dynamical systems theory and the notion of aoifgd

This composite name labels a concept that liehatconfluence of
various research traditions. And it is preciselis thistorical feature that
makes possible the feature | allude to in the tfie¢his paper. It has been
claimed that the KSE plays the role of a bridgeeemt between dynamical
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system theory, statistical mechanics, and commtiaicatheory (Frigg
2004). My goal in this paper is to show that thaldjies of this polymorphic
concept are rooted in its convolute history, itesibecause it has such a
history that it has such characteristics. | wilergfore unfold the several
threads that make it up and | will tell, alas cuitgp a long-term story
covering approximately the period 1750-1960.

Obviously, | will be sketchy and | will focus onlypon the turning
points of this story. KSE emerges from two distivetiines of research. On
the one side the research on stability of the thly system developed in
celestial mechanics. This line, from its origindPoincare, is covered in the
second section. On the other side, there is thielgmoof ergodic motion in
statistical mechanics. This problem forms the sutbg section 3. In the
1930s, George D. Birkhoff showed surprising conioest between these
lines (section 4) and to his results Kolmogorov &fthnnon added the
dimension of information and algorithm complexitge¢tion 5). Finally,
before concluding | will show how these traditioc@me together to form
the multifaceted KSE.

2. Celestial Mechanics

The introduction of the universal law of gravitatidbrought about new
opportunities as well as new puzzles. In the preddeian world the
perfection of the heavenly motions was, so to baijt in the system itself.
Planetary motions depended on their pre-conceivegectories only.
Newton introduced the idea that the complicatedionst of the heavenly
bodies were the effect of mutual interactions ofliee themselves. As a
consequence, these interactions could even orgioatastrophic events.
For the first time in history, the intrinsic statyl of the universe was no
longer a given.

Newton was the first one to raise the problem ef skability of the
solar system: Is it possible to show analyticallyatt gravitational
interactions between the planets will never prodacellision, an expulsion
or anything of the kind? However, only with the dBpment of advanced
methods of differential calculus it became posstblelefine the issue in a
mathematically tractable way. To fix ideas, mathicrens focused upon
the somewhat artificial, but well-defined, threediggoroblem. In its most
popular version, this problem consisted in caléotathe behavior of two
massive bodies in interaction with each other anith & third body of
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negligible mass. Physically, the situation corresfsoroughly to systems
such as the sun, the earth, and the moon.

In the early 1770s, Joseph Louis Lagrange managedite down the
reduced equations of motion of three bodies byiahting the degrees of
freedom corresponding to the known mechanical mtegconservation of
energy, of linear and angular momentum). This tesak further improved
in mid-1800 by Carl Gustav Jacobi, who added timieation of the nodes.
In addition, between late 1770s and late 1780sirdPi8imon Laplace
proved a series of results, which suggested tldiggaat least within some
approximations, of the three bodies. In spite gfeat display of ingenuity,
mathematicians were not able to proceed any furtRer the practical
purposes of astronomy, approximate solutions imfaf trigonometric
series were developed, but the closed form solutibrthe three-body
problem remained out of reach

Arguably, this state of affairs spoke more for ithiginsic limitations of
the analytical tools hitherto used (transformatiaf coordinates,
trigonometric series, Hamilton-Jacobi theory to tiemonly a few) than for
the definite insolubility of the question. Henri iRcare (1854-1912)
explored at length the issue and introduced twagiatiurning points in the
history of the stability of the three-body systems.

The first turning point concerned the use of newedul mathematical
techniques borrowed mainly from topology, geometapd set theory.
Poincare’s decisive intuition was that, to solve 8tability problem, one
does not need to provide a full-fledged, closedmfosolution of the
equations of motion. We do not need to know thefigaration of the
system in each and any instant. we only want towkmehether it will
remain in the vicinity of a periodic motion. In ethwords, stability is
largely a qualitative property of the system (arf m mathematical jargon,
a topological one) and can be better investigateanbans of qualitative
methods. Among the many new methods developed mc&we, likely the
most impressive and deployed is the so-called esesson method, also
known as Poincare’s map.

The cross-section method is a nice illustrationtloé idea behind
topological techniques. Since the very beginninglestial mechanics
focused upon closed periodic trajectories. Peribdiavas not only
mathematically simple, it was also an observab&uie of the planetary

! Despite the old age, one of the best introductioribe history of the three-body problems
is still Marcolongo (1919). On the notion of stitlyiland its bearings on chaos see Diacu
and Holmes (1996).
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motion. Now, in general a mechanical trajectory sisidied in a 3-
dimensional space. This space may be the usualejegoail one (in which
case we knowvherethe body isat each instantor the more abstract phase
space (in which case we knavhat momenturthe body haat each point
To give an answer to the issue of stability, one twaperturb a periodic
trajectory by a small quantity and see whether ghsuing motions stay
indefinitely close to original one or they diverdg®incare realized that this
investigation could be simplified. If a surface pat transversally to the
periodic trajectory, this trajectory will intersettte surface in one and only
one point because of its periodicity. In this way @roblem concerning the
stability of trajectories in a 3-dimensional spae@& be reduced to problems
of equilibrium point (EP) on a 2-dimensional sudad-or, the neighbor
trajectories will draw on the surface curves thah @pproach the EP or
diverge from it and their behavior can be invesadawith the techniques
used for the equilibrium around a point.

Important and consequential though they were, tbpological
techniques were only one of Poincare’s crucial vations. Another one
was an entirely new notion of stability. The foumglifathers of celestial
mechanics had been working with an intuitive notadrstability and then
had tried to cast it in proper mathematical langudthe intuitive notion is
that the solar system is stable because it “stagether”, the relative
configurations of the planets always repeat thewesednd no catastrophic
event takes place. True, there are anomalies @e@mawnticipations in the
passage of planets), but they arepaliiodicin the sense that they depend on
the mutual positions of the planets and they anggrésent themselves again
after a certain number of years. Central to thigiiive notion of stability is
the priority of theperiodic motion Everything happening in the sky must
eventually be reduced to some sort of—possibly eemyplicate—form of
periodicity.

Mathematically, this idea was implemented by tlelhtégue of solving
differential equations by means of trigonometriciese As said, it was
impossible to find a complete solution of the egureg of motion for three
bodies, i.e. an explicit function of the orbit paeters. Alternatively,
mathematicians tried (1) to cast the problem imgeof small perturbations
of a already solved question (e.g. the restricteteetbody problem
mentioned above, which is a perturbation of a dub/&eplerian two-body
problem) and (2) to express the solving functioraifrapidly convergent)
series of trigonometric functions. Now, time must/iously appear in the
solution, because one is looking for orbits, tlsadequence of places passed
through over time. As long as time appears as riipgnaent of trigonometric
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functions, stability is assured. These functions bounded (they never
assume too large, positive or negative, values)hadhree bodies will stay
close to one another. But if time appears as aifaat a trigonometric
function, then one is in trouble. Such a configorais called asecular term
and, being the product between a bounded quantiiyaam ever growing
one, it is doomed to diverge. Thus, the mathemlagixaression of stability
regularly used in celestial mechanics was the Wotlig: no secular terms
appear in the trigonometric series approximating golution of the
equations of motion.

Poincare extended importantly this conception. ik dtudies on the
solution of differential equations, he introducedfudly new notion of
stability with the following words:

It happens then that the trajectory cannot be sed@urve; but, nevertheless, it
keeps a certain stability: one can even say thiatat periodicity of a particular
nature. In fact, leM be a point in the trajectory that the moving paiotupies in
an instant. We trace a circle around the poMtwith an arbitrarily small radius
r. The moving point starting & will obviously go beyond the circle, but it will
crosséagain this small circle an infinite numbetiofes, no matter how small
can bé.

In other words, the trajectory is stable accordinghis definition if
(and only if) it returns arbitrarily close to theitial conditionM no matter
how complicate and long is the in-between pathsTiation of stability—
which Poincare ascribes to Poisson with a condidier@mount of historical
inaccuracy—is lengthily discussed in the third woéu of the Methodes
Nouvelles(Poincare, 1899) and expresses the propertyeafirrence of
some trajectories. This is the first case in whatability is not studied in the
context of strictly periodic motion only. Recurremtotion will become
extremely important later in our story.

But the most spectacular of Poincare’s discovestilsto come. Since
the early 1880s, Poincare devoted his best effortise three-body problem.
In 1889 a prize was offered in celebration of Kidgcar Il of Sweden’s
birthday to a mathematician able to show whethehéu integrals could be
found to reduce the number of degrees of freedonthefequations of
motion. Poincare won the prize although his origim&moir contained a
serious mistake that was discovered only during phmeof reading.

2 Poincare (1885, 92).
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Howgver, the details of this story interest us Hess than the results of his
work®.

Poincare indeed showed that is was impossible nd fnalytical
integrals other than those already known. This artemlito a mathematical
proof that a closed form solution of the equatiofgnotion could not be
discovered. But the most intriguing result cameafuhe application of the
cross section method to the behavior of trajecsanehe neighborhood of a
periodic orbit. To understand the full extent ofirieare’s finding, we have
to introduce some more technical notions.

The equations of motion can be studied just asstesyof differential
equations, each solution of which corresponds tpossible trajectory.
(Poincare was actually the first to call “trajegfothe solution of a system
of differential equations). On a Poincare’s mappeaiodic solution is a
point. This EP is surrounded by trajectories thatt$rom far away and tend
to it and trajectories initially close that tend do away from it. We call
these trajectories “asymptotic” because they carbdih considered as
approaching the EP in the two temporal directighathematicians have a
very cavalier attitude towards time). For intuitiveasons, the set of
trajectories approaching the EP in the positivedaion of time is called
“stable manifold”, whereas those approaching the iEPthe negative
direction belong to the “unstable manifold”. In Hi#tonian integrable
systems these manifolds coincide, that is theraiBtin is reduced to the
temporal direction. Poincare’s initial mistake was suppose that this
situation holds without exceptions. Later he disred that the manifolds
can intersect transversally and their interseci®rcalled a “homoclinic
point” (HP). Around a HP a lot of weird things haop A subsequent
application of a Poincare’s map to a HP generatgsctories that tend to
equilibrium in both directions of timeln other words, the trajectory is
recurrent along an extremely complicate path. Feunttore, the manifolds
intersect infinitely many times, thus originatingfinitely many HP and an
intricate entanglement of trajectories. Poincarelescription of the
“homoclinic tangle” gives us a sense of the awavhs in:

When we try to represent the figure formed by these curves and their
infinitely many intersections, each correspondirgy & doubly asymptotic
solution, these intersections form a type of tseltissue or grid with infinitely
fine mesh. Neither of the two curves must everaoubss itself again, but it must
bend back upon itself in a very complex mannerraento cut across all of the

® This of course does not mean that they are unimaporA lively account of this
interesting story can be found in Barrow-Green {)99
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meshes in the grid in an infinite number of timéke complexity of this figure

is striking, and | shall not even try to draw itothing is more suitable for
providing us with an idea of the complex naturetaf three-body problem, and
of all the problems of dynamics in genéral

The homoclinic tangle is the first example of wiathe 2¢" century
will come to be called “deterministic chaos”. Vetyerse trajectories are so
closely packed that the slightest change in th@lrgéonditions will lead to
a different trajectory and, potentially, to a costply different behavior of
the system. Thus, the evolution is virtually unpctable, because the
requested precision in the description of theahitonditions is impossibly
high.

3. Statistical M echanics

As celestial mechanics was reaching its dramatioa with Poincare’s
work, another newly born branch of mechanics wasmgaphysicists and
mathematicians throughtarra incognita The origins of this development
lie in the attempts, about mid‘19century, to explain thermodynamic
phenomena by means of kinetic models. Roughly,idea behind these
models is that heat is due—and it is reducibleréorhechanical motion of
the microscopic constituents of matter. To subssmntthis idea it was
necessary to derive thermodynamic laws from thdyaisaof the motion
and collisions of the particles and, being the nends particles enormously
large, to resort to statistical techniques.

The Scottish physicist James Clerk Maxwell (18379)8was one of
the first and most successful to explore this tfenquire. He found, for
instance, that the stability of the state of thdrmquilibrium could be
mimicked by a distribution of velocities among therticles, which did not
change by mechanical collisions. However, there wagroblem that
Maxwell was not able to solve. It is a common eigere that thermal
systems go straight to their equilibrium state #rate they stay until some
external perturbation force them out of equilibriuithis state of affair is
customarily referred to as the second law of thelynamics. Now, it is
difficult to represent the one-directionality ofighbehavior through
mechanical motion, because the latter does notgreze any privileged
temporal direction. In other words, if the reachwigthermal equilibrium

* Poincare (1899, 1059).
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boils down to a mechanical process, then it is earchow it can also be
irreversible, since mechanical processes in genamal not. A possible
solution to this puzzle was offered by Ludwig Baliann (1844-1906) in
1872. Boltzmann derived an integro-differential @&ion able to represent
the time evolution of the distribution functidnFurther, he showed that a
functional H = [ dvflogf (integration is extended over all possible
velocitiesv) can be defined, which decreases monotonicallynas passes
by and it reaches the minimum whieis precisely Maxwell’s distribution of
equilibrium. Keep in mind the form &, it will crop up again later.

Boltzmann’s miraculous result is not a purely mecta one. He
added a great deal of probabilistic assumptions satistical arguments.
How did he manage to combine mechanics and protygbiWell, he
understood that this task demanded a step beyendstial periodic motion
and towards a new kind of mechanical trajectorye Titst trace of this line
of thought can be found in Boltzmann’s very firsippr. Let me summarize
briefly his argument.

Boltzmann is trying to show that the second lavhefmodynamics can
be formally reduced to the principle of the leastian. The details of this
procedure do not interest us here. What is impoitathat Boltzmann has
to calculate the action integral over the parti¢tegectory. In general, this
integral depends on the initial and final condisiari the gas, conditions that
we cannot know because of the huge number of pesticBefore
Boltzmann, the usual technique was to assume tieaparticles motion is
periodic and closed, to integrate over the wholeogeso that initial and
final conditions are equal and cancel each otherBut Boltzmann moves a
step forward. He realizes that only closure is msalefor this argument,
while we do not need to assume a fixed period. s his assumption in
the following way:

We now assume that, after a certain time, each atitihcome back [...] in the
same position, with the same velocity and directémmotion, that is to say it
describes a closed curve and after that time &atgpits motioralbeit not exactly
in the same wayat least in a way such that the average kinetergy [on the
given temporal interval] might be considered asaherage kinetic energy on an
arbitrarily long interva.

® Quotations and references to Boltzmann's paperstaieen from théVissenschaftliche
Abandhlungen
® Boltzmann (1866, 24).
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The key passage has been italicized. Here Boltznmrathoming a
trajectory that is not strictly periodic, but netherless closes at some point.
In other words, a trajectory that does not passugin a fixed and
immutable sequence of points, but can be very coatpl provided that,
sooner or later, it will pass again through théahiconditions. He is clearly
groping for something new in mechanics, somethivag he will try to make
clearer in his following papers.

In the early 1870s, Boltzmann drew on this novelospt of trajectory
and introduced what is now known as thegodic hypothesisif a gas
evolves freely with no other constraint than thassyvation of energy (and
possibly momentum), then it will sooner or laterspathrough all the
physical states compatible with the constrains. Engodic hypothesis
became the key to merge mechanics and probabilitic a dynamical
assumption because it concerns the trajectory,itbcdan also be used to
support a probabilistic analysis of the long-teredvior of the system

4. Dynamical Systems

The two traditions | have been discussing so farcgeded almost
independently for the whole second part of thd' t@ntury. From the
physical viewpoint this is unsurprising. Celestiaechanics deals with
macroscopic deterministic systems consisting of @egrees of freedom (a
handful of planets, a little more satellites). Byntrast, statistical mechanics
tackles microscopic systems with a huge numberoasittuents. The two
contexts could not be more different. However, frampurely mathematical
point of view, and with a grain of hindsight, thasutual indifference is
bewildering. For a close analysis of these twadBebf research shows that
there was a great deal of common mathematics. Btlds were
characterized by the impossibility of finding a qaete solution to a
mechanical question, so techniques to circumvasthirdle popped up in
both camps, more often than not without stimulaéing further curiosity.

A striking and somewhat extreme example is the ephof integral
invariant. The integral invariant is a functiontbé phase coordinates whose
integral does not change during the motion. Boltamiatroduced it in his—

" On these issues see especially Badino (2009) aading® (2011). On the ergodic
hypothesis see also Von Plato (1991) and Von R1£84).
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rather spurious—attempt to prove Liouville’s thenfeand made it one of
the ingredients of his first probabilistic argumefdr irreversibility.
Subsequently, Poincare rediscovered, formalized, daployed it to prove
the recurrence theorem, which states that, provisieme very general
constraint, a Hamiltonian isolated system will cobsek, sooner or later,
infinitely close to the initial conditiorisNow, in 1896 Ernst Zermelo used
the recurrence theorem to argue against Boltzmagmokabilistic view of
irreversibility'’®. Thus, Zermelo used a result derived from the girate
invariant in celestial mechanics to argue againssalt derived from the
same integral invariant in statistical mechanicglltBnann saw how
hopelessly paradoxical the situation was when pkecakbitterly:

Although Herr Zermelo’s paper shows that my workséhnot been understood
at all, | have to rejoice in it anyway, for thattie proof that, in Germany, they
have been paid any attention to, at [Fast

Even the most prominent scientists, Poincare artzmann, did not
consider this commonality as worth further inquirinBut George D.
Birkhoff (1884-1944) thought differently. Birkho#’ first research paper
was published in 1912, the year of Poincare’s de#thd indeed,
Birkhoffs’s entire research program was inspiredhs work of the French
mathematician. His paper contains, in the first fewgs, the two keywords
of his grand proje¢f. First, he wanted to establish a new and morergéne
branch of mathematics concerned with the deep flosinacture underlying
the analysis of mechanical systems. Theory of dynamical systemg&s
born. Second, drawing on Poincare’s intuition, baegalized the notion of
periodicity into the idea afecurrent motionthat is a motion that, sooner or
later, comes back to the initial conditidhsSome years later, he would
explain the essence of this idea as follows:

In a very deep sense the periodic motions beasdhge kind of relation to the
totality of motions that repeating doubly infinisequences of integers 1 to 9

8 In effect, Boltzmann proves only a particular cadelLiouville’s theorem. The phase
volume is famously an example of integral invarjasft Boltzmann (1868) and Badino
(2009).

° In other words, the recurrence theorem formalthescondition for the Poisson stability
discussed above.

19 See Zermelo (1896).

! Boltzmann (1896, 773).

12 Cf. Birkhoff (1912).

'3 On the thread that leads from Poincare to Birkke#f Roque (2011).
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such as ... 2323... do to the totality of such sequenfe.] The recurrent
motions correspond to those double sequences mukaibove in which every
finite sequence, which is present at all occurgeast once in every set of
successive integers of the sequéhce

This research program led, in the early 1930s, garprising result. To
understand its importance, we have to come some Yeek. We said that
Boltzmann introduced the ergodic hypothesis indiaal mechanics. Albeit
problematic, this hypothesis was particular uséketause it consented to
prove, among other things, the uniqueness of théilegum distribution
function. More generally, from the ergodic hypoitees remarkable
property followed: the average value of a quaniiég. the energy)
calculated over the trajectory of the system duangry long time (the time
average of that quantity) is equal to the insteedas average calculated
over a large number of copies of the system inntlwst different initial
conditions (the phase average of that quantity).fokiunately, the
hypothesis turned out to be false. In 1913, ArtRasenthal and Michel
Plancherel proved, independently, that no mech#miectory could be
ergodic in the original, Boltzmannian sense. Tleisuit did not discourage
physicists, who continued to assume an intuitivieomoof ergodicity and to
believe in its consequences, such as the uniqueriesguilibrium. But it
certainly opened a breach in the formal structdisatdistical mechanics.

Birkhoff was not interested in statistical mechanibut his research,
eventually, repaired serendipitously that breach1928 he introduced a
new concept, that ahetric transitivity Birkhoff was studying the properties
of recurrent mechanical transformations (i.e. tfamsations from the phase
space onto itself with the properties of mechanitajectories) and he
defined metrically transitive a transformation tltainnot be contained in
any subset of the phase space with positive mea@yedefinition, a
transformation takes place on its phase spacetrooted from the general
constraint. Many transformations, however, occuply @ small portion of
this space. For instance, the motion of a planesgmthrough a sequence of
points that make up a subset of its phase spawengis energy and
momentum, the planet could theoretically performnyn@ather motions.
Now, if it is not possible to find out a subsetloé phase space with positive
volume containing completely the trajectory—oreaittively, if this set is
only the phase space itself-then the transformadiometrically transitive.

14 Birkhoff (1920, 54-55).
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In 1931, Birkhoff was able to prove that, if a sfosrmation is
metrically transitive, then the time average ofuarmfity calculated on that
transformation is equal to its phase average. herotvords, this result,
commonly known as the ergodic theorem, showed #hd¢ast some of—the
consequences of the ergodic hypothesis were oblainey a new
assumption, metric transitivity, not provably falsehis feat of Birkhoff
followed as a largely unintended outcome of Poiesaline of thought and
originated a new branch of mathematics nowadayswknas ergodic
theory®. This is where the part of our story related tochamics stops. A
complex tradition of studies on the abstract progerof mechanical
systems climaxed in a result that unified two app#ly unrelated fields of
research. Now the reader might wonder what happet®d the
“probabilistic” component of statistical mechani€obability is about to
appear again in the next section.

5. Probability, Information, Computability

Nearly contemporarily to Birkhoff's ergodic theoremwne ocean and
almost a continent far away, Andrei N. Kolmogord®@@3-1987) proposed
what is still today the accepted axiomatization pybbability theory.
Although in use since many years, probabilisticoemts had often been ill-
understood at best, badly misunderstood at wossa Aonsequence, both in
mathematics and in physics, the applications obgldity relied more on
the intuition than a rigorous mathematics. Boltzmato cite just an
example, deployed different implicit definitions gbrobability and
committed to none.

At the beginning of the 2D century Emile Borel and David Hilbert
surmised that measure theory, a new and powerftthenatical resource
introduced by Henri Lebesgue, could be particulagy to illuminate the
field. In 1928, these ideas were taken up by Kolonog, who at that time
was groping for a logically clearer systematizatiéiprobability theory able
«to distinguish those elements of probability (ttyg¢ahat will determine its
internal logical structure» (Kendall 1989, 884).eTiesults of these efforts
were published in 1933. Kolmogorov’'s axiomatic stae of probability
theory considers events from a set-theoreticaltpafiview and probability
from a measure-theoretical one. Let's assumeBhaitthe set of elementary
events and= a subset in it, whose members are saitlom eventsThe
following axioms are laid down:

1> On the ergodic theory see Sklar (1993), Badin®@§20
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1. Fis afield (that is, it is closed with regard teian, intersection, and
complement).

2. FOE

3. To each seA of F, a numbeiP(A) is associated said the probability
of A.

4. P(E) = 1.

5. If AandB are disjoint sets, thedP(A [1 B) = P(A) + P(B).

According to these axioms, the probability functisfust a normalized
measure function of the set size. Kolmogorov's mdoallowed for a
consistent systematization of the known resultprabability theory and
were therefore broadly accepted by the mathematwatnmunity.
Furthermore, the connection between probability medsure opened up an
important network of relations with other brancleésnathematics relying
heavily on measure theory such as the theory oamhcal systems and
information theory. It's a feature of Kolmogorowgenius that he was able
to see crucial and deep conceptual similaritiesvdeh seemingly unrelated
fields. Like Birkhoff, who managed to unify a resgatradition on celestial
mechanics with the ergodic problem by unfolding deep-seated common
mathematical structure, Kolmogorov perceived that rigorously
axiomatized probability theory could provide a wersal language to handle
a whole spectrum of questions.

However, to understand Kolmogorov’s treatment adsth questions,
and the way in which they wound up in the KSE, wwgehto make a small
detour and come back to the United States. FamoW8lyrld War I
stimulated an awful lot of cutting-edge mathematwark. One example is
the work carried out by Claude Shannon (1916-20@f)the Bell
Laboratories. Driven by military purposes, Shannetaborated a
mathematical infrastructure to represent the génpracess of data
transmission and to derive information from therhisTwork was classified
during the war and published only in 18%8Shannon’s stroke of genius
was to define the information attached to a message“removed
uncertainty”. This idea is at once deep and easynierstantl. Let us
assume that | pick up the newspaper to find outkvihiorse won the race.
The information conveyed by this piece of news degeon how uncertain |
am about the result. If | think that there’s a végh probability that a

'6 Shannon’s work is today available both in its g form, Shannon (1948), and in a
more introductory arrangement, Shannon and Wed@9).
7 On information theory see the classical Cover hdmas (1991). For a discussion of
the philosophical meaning of information see Bad@@04).
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given horse won, | will give to the newspaper a esmat casual glance.
But if | think that the chances were more or les&ne among the
participants, | will be very eager to know the aum®. The uncertainty
removed by the information is higher and so itssvalue.

Shannon’s second step was to translate this ideaaimathematically
treatable quantity. To fix ideas, let's assume thatlanguage consists bf
symbolsxy, ..., Xn, Which may occur with different probabilitiéXx,), ...,
P(xy). By imposing some general and reasonable constr&hannon
concluded that the amount of information relateddoeive one of those
symbols is H=—YN,P(x;)logP(x;). The similarity between this
expression and Boltzmannts-function is patent. Consequently, Shannon
called the amount of information, i.e. of removextertainty entropy

We start now to see the path that leads to the KS8Estatistical
mechanics, entropy is the measure of the disorflex system. From a
kinetic point of view, the system is at thermal liqtium when it is spread
over the allowed phase space and its energy iguale divided among the
particles as possible. That is the case in whiclasemore uncertain about
where to find the particle and the correspondinfprination is more
valuable. Thus, there’s an intuitive relation bedwebeing in a disordered
state and the amount of information concerningsiheificities of this state.
Shannon’s surprising result was to show that thiigition could be pushed
to the extent of being captured by the same matheamh&unction.

The notion of information entropy can be easily gyatized from
individual symbols to messages considered as aritytiong sequences of
symbols. Shannon realized that sometimes the messag generated are
redundant, i.e. the same amount of information lmamrconveyed by means
of fewer symbols. For example, it is often the dés a sentence in English
is understandable even though the vowels are takénThis process of
reducing the length of the message is called “g@ydiWhen a message is
encoded its original appearance gets modified dougrto an algorithm.
The encoded message transports the same amoufbrmhation that can be
retrieved fully by decoding the outcome. Howevemight happen that the
transmission through a communication channel ceer #ie message. The
problem that Shannon tackled in his first paper:vsashere a way to code
the message such that it is always possible t@vetits original amount of
information despite the channel noise? The answas given by the
Shannon theorem: if the entropy of the message doegxceed another
quantity called the capacity of the channel, a mgdian always be found
that gets the error probability of decoding downz&yo. Of course, the
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higher the noise, the more complex the coding aradeover, the longer the
time required for coding and decoding.

Shannon’s information theory has brought to us av remncept:
algorithm. And with this new concept we get backtdmogorov. Since his
early papers, Kolmogorov was concerned with theonaif complexity. For
instance, when he was 19 years old, he investigagedtructure of Fourier
series to understand to what extend they couldoggpra random behavior.
From 1950 onwards, following the publication of Bhan’s work, he
increasingly focused upon the relation between dexiy and information.
Later, in 1987, he went as far as claiming that ukaal order that sees
probability theory as a fundamental starting postipuld be turned upside
down:

Information theory must precede probability theagd not be based on it. By
the very essence of this discipline, the foundatiohinformation theory have a
finite combinatorial character. The applicationspodbability theory can be put
on a uniform basis. It is always a matter of conseges of hypotheses about the
impossibility of reducing in one way or another twamplexity of the description
of the objects in question. Naturally, this appfosx the matter does not prevent
the development of probability theory as a brancmathematics being a special
case of general measure theory. The conceptsahiation theory as applied to
infinite sequences give rise to very interestingestigations, which, without
being indispensable as a basis of probability theoan acquire a certain value
in the investigation of the algorithmic side of imamatics as a whdfe

Information theory provided Kolmogorov with a coet® display of the
potentialities of probability and the generalitytbé concept of entropy, but
it was Alan Turing’s work that led him to a manageadefinition of
complexity. That was formulated in 1985Let's assume a message as a
sequence of symbols. Now, a Turing machine can fudaef it, i.e. the
machine can reproduce it fully when given a sudaptogram, called an
algorithm. Intuitively, the more uniform the sequen the shorter the
algorithm to be provided to the Turing machine fmmputation. For
example, a sequence like “11111...” is computableniaans of the simple
instruction “write a 1”. A slightly more complicate sequence like
“121212..." is reproduced by means of “write a 1 déimeh write a 2”. You
got the idea: as the sequence approaches a ggnuarelom one, the
complexity of the algorithm increases. In this yéfimlmogorov defines the
intrinsic complexity of a sequence as the lengtthefshortest program that

'8 Cover, Gacs and Gray (1989, 840-841).
19 See Kolmogorov (1965).
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would allow a Turing machine to compute the seqae@onsequently, a
sequence is truly random when the algorithm isoag) las the sequence
itself. In other words, the only way for a Turingaahine to do the job is to
feed it with the sequence itself.

This idea reminds us Shannon’s notion of coding @bding procedure
enables us to encapsulate the information of a agesmto a shorter list of
symbols in a way that the initial message can adwagen unequivocally
retrieved. If the message is just a random bundaywoibols, no rule can be
discerned and no coding is possible, other tharrivial one that codes the
message into itself. Kolmogorov was therefore a&blgingle out the essence
of Shannon’s idea and to translate it into a na&ldfitheory of complexity.
In addition, the common language of probabilityerms of measure theory
pointed to other territories. In the same years,Intgorov worked
extensively on dynamical systems and laid downfoli@dations of what is
today known as the KAM theorem (after Komolgorowoafirst formulated
the idea, the Soviet mathematician Vladimir Arnaddd the German
mathematician Jirgen Moser, who provided a prodf argeneralization).
The KAM theorem challenges the intuition that if vimve a stable
trajectory and we perturb it, the result will tetadergodicity. Kolmogorov,
Arnold and Moser showed that there is indeed ameedfass of trajectories
(called “invariant tori”), which remain substantialunchanged by (small
enough) perturbations. Thus, in Kolmogorov’s flégibmind, notions of
information, complexity, and dynamical system fodhaeconceptual cluster
in which he saw more the formal similarities thha differences. It was this
appreciation for the mathematical structures thederthe KSE possible.

6. Kolmogorov-Sinai Entropy

Looking back at the story | have been telling youfar, we can pinpoint
three distinct notions of randomness. Celestial hapics focused on
periodic motion and led progressively to chaos theGhaotic trajectories
are ultimately deterministic, but they appear rando the sense that they
are unstable, very sensitive to the initial comdis (small initial

perturbations originate hugely different final s&t and unpredictable.
Statistical mechanics, on the other hand, introduc@ew kind of motion,

the ergodic one, which was contort and “randomirfrithe start. In addition,
statistical mechanics uses probability and statiktiools to supplement
mechanics. Again, although deterministic in itsees®, this branch of
physics uses randomness in the sense of disorfl@hdoparticles) and
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equiprobability of the microscopic states. Finallyformation theory and
algorithmic theory also assume deterministic messaut recognize that
they can be random when it becomes impossiblenid i set of rules to
compute them.

The common assumption of an ultimately deterministvorld
notwithstanding, it would be too quick to cash themtions in terms of
epistemic randomness. For instance, several auttens highlighted that
coding and computation have an energy cost: to otenp “random”
chaotic trajectory or the exact motion of billiookparticles would exceed
the resources of the univefSeFrom this point of view, the impossibility of
predicting chaotic behavior is more a physical tharepistemic hindrance.
Put in other words: it's not that our intelligensetoo weak to comply with
the epistemic standards of computability, it's ttied latter are too high for
the universe we live in.

Moreover, from the story told in the previous seas, these different
notions of randomness appear to be several sidesnoiltifaceted idea or, if
you like a less essentialistic metaphor, componehts conceptual cluster,
tied together by deep mathematical relations. TB& Ks a way to capture
these relations and turn them into a workable nmagtieal tool. Introduced
by Kolmogorov in 1958 and, independently, by Simai959, the KSE has
been defined in very close analogy with Shannontsogy’. Let's consider
a point in the phase space. This point represaststate of the system at a
certain instant. The system evolves according tchaeical laws, which
can be represented by a transformation of the pspaee onto itself. We
can use this fact to refine progressively our kremge of the trajectory in
the following way.

If we apply the transformation back in time, theule will be a partition
of the space into subsets, one of which contaiagtiase point. We apply
the transformation another time and we get a partivf the partition and
the phase point at that time will be containedne of those sub-subsets. As
the procedure goes on, one can construct finefinadsubdivisions of the
phase space, which allow for a more and more spetgfscription of the
state of the system at that time. The intersecbetween all partitions
containing the images of the phase point gives pesentation of the
trajectory. The important aspect to grasp is thatremoved uncertainty in
determining where the point is placed changes el stéep. Let's assume
that the transformation divides the space in twssts at each step. At the

%0 See for instance Ruelle (1991) and Kellert (1993).
L There are many ways to introduce the KSE. Hea#ldW closely Dorfman (1999).
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first step the point is in one of two subsets,ha second in one of four, in
the third in one of eight and so on. A traject@yhe sequence of subsets in
which, step by step, we can find the point.

This sequence works as a message associated to chamcal
trajectory. Thus, we can ascribe to it an amouninfdfrmation. IfW is a
sequence, therH(W;) = —Y;u(W;) logu(W;), where g is a suitable
measure function. Since the procedure is discoatiauand goes through
several steps, we can define the amount of infoomatcquired at each step
in the following wayh = lim,,_,, H,(W;)/n. Finally, the KSE is defined as
the supremunt of this information for all possible sequencesngdlk
hxs = supy h.

The KSE is defined in a very curious and compdsishion. It deploys
techniques of statistical mechanics such as thitiparof the phase space
and measure function. At the same time, it pasalkeltrajectory and a
message, thus it also concerns the algorithm codtylerhis connection
has been rigorously proved by Brudno in 1978 witlineorem stating that
for almost all possible trajectories, KSE gives dtgorithmic complexity of
the corresponding sequence. On the other hantsoitralates to the theory
of dynamical systems and specifically to the probl& instability. One of
the many techniques to establish the instabilityaofrajectory is called
Lyapunov exponents. This method was already kn@nraplace, but it was
systematized and generalized by Alexander Lyapatdiae end of the 19
century. One introduces small variations in thetiahiconditions of a
periodic solution of the equations of motion anltulated the equations for
these variations. The solutions, in general, hdnee form of exponential
functions. Depending on the fact that these expisnare real or imaginary,
the perturbed trajectory will tend to get away frtime periodic one or to
stay close to it. In other words, the Lyapunov exgus are a measure of
the instability of the trajectory. In 1977 Pesimyed that the KSE could be
interpreted as the sum of the Lyapunov exponenttheftrajectory. This
result does not only spell out the connection wiitstability, but it also
reconfigures the KSE as a measure of chaos. Ictettee increase of the
KSE represents a transition of the trajectory thaotic behavior.

Lastly, a close relation between this concept afatimation theory can
also be defined. In 2004 Roman Frigg has arguedgatlois direction. He
claimed that, by partitioning the phase space @aly we could represent a
trajectory on the phase space as the sequencdiopassed through. Now,

2 The supremum of a set is the least element cfe¢h¢hat is greater than (or equal to) any
other element of the same set.
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the cells are tantamount to symbols of a previodgfned language and
therefore a trajectory is isomorphic to a mess&jethis message we can
calculate the Shannon entropy. In this way, the K&B be applied to
messages and give a measure of the “chaoticitythef message. Thus,
several notions of randomness get captured andinpota conceptual
network by the same formal tool.

7. Conclusions

Now, you see how the several strands that compasstory come together
in a new mathematical concept. As a conclusiorhisfgurvey, | would like
to stress some points. First, it should be clear ith order to appreciate the
conceptual content of the KSE, it is essentiabtiklat the intricate story to
which, albeit implicitly, the KSE refers. Mind, is not merely a matter of
contextualization. Instead, the unfolding of thetbiical threads packed in
the concept allows for a qualification and eveneaonfiguration of its
epistemological status. On the one side, the caimmscimplicit in the KSE
appear less surprising. On the other, when seemdhrits genealogy, the
concept looks still in flux. True, the formal retats and the methods
required are robust enough, but it would be tocckjuo claim that we
understand the concept. There is a tendency igdphy of science to see
scientific concepts as being born in a historiceduwum and being anchored
to nature only by mathematics. Their intrinsic rooti their potentiality,
their internal life, so to speak, gets lost moremfthan not. The historical
perspective adds, | think, a new epistemologicaletision, that it shows
how a scientific concept is a knot, a crossroada tomplex network of
traditions and, consequently, it has built-in sallersometimes even
mutually contradictory, potentialities. This palfifaexplains why we are
still far from understanding the connections betweéferent notions of
randomness and different branches of mathematetzdeto them.

A second point | wish to emphasize concerns concepstruction. As
we have seen, the concepts of randomness had atitiative appealing.
Random are things that change abruptly, withouesulwith all results
equally possible. The strategy pursued by physi@sd mathematicians to
understand these notions was essentially to enlegpghe intuition into a
web of mathematical techniques—in turn coming splecific traditions—in
order to convert a vague intuition into a set ofthmds that can be
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communicated, taught, disseminated, worked on, erpanded. This
composite origin of scientific concepts is alsadngally situated and must
be historically comprehended. Not for exhaustivehesbut for
epistemology’s sake.
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