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Abstract

Background

The pathophysiologic processes underlying the regulation of glucose homeostasis are con-

siderably complex at both cellular and systemic level. A comprehensive and structured

specification for the several layers of abstraction of glucose metabolism is often elusive, an

issue currently solvable with the hierarchical description provided by multi-level models. In

this study we propose a multi-level closed-loop model of whole-body glucose homeostasis,

coupled with the molecular specifications of the insulin signaling cascade in adipocytes,

under the experimental conditions of normal glucose regulation and type 2 diabetes.

Methodology/Principal findings

The ordinary differential equations of the model, describing the dynamics of glucose and

key regulatory hormones and their reciprocal interactions among gut, liver, muscle and adi-

pose tissue, were designed for being embedded in a modular, hierarchical structure. The

closed-loop model structure allowed self-sustained simulations to represent an ideal in silico

subject that adjusts its own metabolism to the fasting and feeding states, depending on the

hormonal context and invariant to circadian fluctuations. The cellular level of the model pro-

vided a seamless dynamic description of the molecular mechanisms downstream the insulin

receptor in the adipocytes by accounting for variations in the surrounding metabolic context.

Conclusions/Significance

The combination of a multi-level and closed-loop modeling approach provided a fair dynamic

description of the core determinants of glucose homeostasis at both cellular and systemic

scales. This model architecture is intrinsically open to incorporate supplementary layers of

specifications describing further individual components influencing glucose metabolism.
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Introduction

The maintenance of glucose homeostasis within a narrow physiological range is an essential

component of human metabolism and it is finely regulated by complex mechanisms control-

ling insulin secretion and action. A disruption in the governance of the glucose-insulin system

can lead to variable degrees of altered glucose regulation, which may ultimately result in overt

diabetes mellitus. According to the most recent estimates, diabetes mellitus affects over 415

millions individuals worldwide [1], is characterized by severe cardiovascular complications

leading to early death [2], and its prospective incidence trends highlight it as a global burden

of pandemic proportion. Most diabetes cases are classified as type 2 diabetes mellitus (T2DM),

which shows progressive loss of insulin secretion on the background of insulin resistance [3].

After decades of investigations, it is becoming clear that diabetes is a complex and highly het-

erogeneous disease [4], which still hampers a comprehensive understanding of the etiologic

processes at the level of individual organs or tissues, and involving subcellular derangements

ultimately affecting the whole body metabolism.

In this context, a number of mathematical models of glucose and insulin dynamics have

been developed to allow the description and interpretation of such processes, which are often

not accessible to direct measurement in vivo [5]. These models usually apply ordinary differen-

tial equations (ODEs) or delay differential equations (DDEs) to describe the physiology of the

glucose-insulin system in different experimental conditions and with varying degrees of detail

[6–14]. Originally built upon the parsimony principle in order to soften the complexity of

experimental protocols and computational efforts, the first modeling milestone is represented

by the so called “minimal model” [8], which was originally applied to estimate insulin sensitiv-

ity by inspecting the time courses of insulin and glucose after an intravenous glucose tolerance

test (IVGTT).

Minimal models of glucose homeostasis have then been extended and applied to more

physiological experimental conditions, and integrating a broader range of variables, including

several hormones and regulatory elements such as ghrelin [9], glucagon [10] and incretins

[9,11,15]. However, at present, there is not a comprehensive and structured model, which

summarizes the dynamics of glucose absorption according to the regulation performed by

insulin and other hormones at the subcellular level. This is possibly due to the constraints

inherent to the reductionist modeling approach applied so far. The hierarchical descriptions

provided by multi-level models may be a valid option to overcome these limits. This approach,

also referred to as hierarchical modeling, is a recent advancement and a promising trend in the

mathematical modeling of biological mechanisms, because it allows a given biological phe-

nomenon to be described by simultaneously accounting for several (hierarchical) levels of

abstraction [16].

Recent applications of multi-level models have been proposed to describe the pathophysiol-

ogy of beta-cells in the endocrine pancreas [17], and the whole body effects of the altered insu-

lin signaling cascade in adipocytes [18], while other applications described the effects of

inflammation on the onset of T2DM and its complications [19]. The holistic approach of hier-

archical modeling identifies subcellular processes, specific cell subtypes and tissues, organs

and the whole body as strictly interconnected layers, where physiological variations occurring

at any level would affect the dynamics elsewhere in the stacked constitutive elements.

A comprehensive, hierarchical description may be reasonably applied to T2DM, because

the phenotypic hallmark of hyperglycaemia is the consequence of alterations involving com-

plex hormonal and signaling networks, individual tissues and cell subtypes. Recently, Chew

et al. [20] proposed a model of the glucose regulatory system combined with the insulin signal-

ing model of Sedaghat et al. [21], while Nyman et al. [18] combined the organ level model of
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Dalla Man et al. [22] with three different detailed versions of insulin signaling in the adipo-

cytes. The most detailed version includes the model from Kiselyov et al. for the description of

insulin binding to its receptor [23].

In this study, we moved one step forward, as we applied a multi-level modeling approach to

build a closed-loop whole-body model of glucose homeostasis. The closed-loop structure was

designed to allow self-sustained simulations, fostering the investigation of the biological sys-

tem in its components, while providing a way to test regulative phenomena that work at differ-

ent time scales and possibly have a delayed effect on the overall system dynamics. The model

was tested in silico in both the conditions of normal glucose regulation (NGR) and T2DM.

Since insulin resistance constitutes one of the key pathophysiologic determinants of T2DM,

and given the increasing relevance of the adipose tissue as an endocrine organ influencing sys-

temic energy balance and glucose homeostasis [24,25], we chose the adipose tissue (abstracted

as adipocyte) as the compartment linking the cellular layer and the whole-body level of the

model. The proposed whole-body model was therefore integrated with the most recent insulin

signaling model proposed by Nyman et al. [26], that provides a detailed specification of the

intracellular signaling cascade in the adipocytes.

Although exploratory in nature, the presented hierarchical architecture of glucose homeo-

stasis is amenable to further extensions, such as the molecular descriptions of other organs and

tissues that are here considered only at the whole-body level.

Modeled physiology

To allow a better understanding of the model we report below a brief description of the repre-

sented physiology.

After oral glucose intake at time 0, glucose transits to the stomach and then to the intestine,

where it is absorbed to plasma (Fig 1). These events induce endogenous insulin secretion,

which is amplified by a concomitant increase in the circulating levels of the incretin hormones

[15]. The incretins potentiate the release and the de novo synthesis of insulin from pancreatic

beta cells, thus contributing to the proper glucose disposal in peripheral tissues and to main-

tain plasma glucose levels within the physiological range [9]. Therefore, insulin release is mod-

eled here as a consequence of direct effects exerted by the glucose and indirect effects mediated

by the incretins.

Glucose can be produced endogenously, from glycogen breakdown in the liver during fast-

ing conditions. This mechanism is stimulated by glucagon, a hormone secreted from the alpha

cells of the endocrine pancreas at low plasma glucose levels, and it is suppressed by hyperglyce-

mia and hyperinsulinemia [27–29]. Endogenous glucose production is suppressed by high lev-

els of both glucose and insulin [22,29,30]. Glucose tissue uptake happens when insulin binds

to its cell receptors, mainly in adipocytes and muscle cells, where glucose is stored as glycogen

[31]. Glucose uptake in adipocytes drives leptin release, which inhibits hunger and thus feed-

ing (i.e. oral glucose intake). Hunger is here defined as the amount of food needed by organism

[32]. The latter is also inhibited by high levels of plasma glucose and insulin. Ghrelin, which

counteracts leptin, is secreted from the empty stomach, stimulating oral glucose intake [33],

and it is inhibited by insulin [9,34].

In order to build a closed-loop model, oral glucose intake is represented as the amount of

glucose needed from the organism, and it is computed considering the current levels of leptin,

plasma glucose, insulin and ghrelin.

Plasma insulin and glucose are the variables linking the whole-body level to the cellular one

(Fig 2). The connection between the levels is designed to work through the interstitial fluid,

which has not been modeled as a separate compartment, but rather assuming that the
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interstitial concentrations of insulin and glucose (i.e. the amount surrounding the cell) would

proportionally correspond to those of insulin and glucose in the plasma. The input of the cellu-

lar model is interstitial insulin, which binds its receptor on the cell membrane and prompts

the auto-phosphorylation of the receptor and its endocytosis. The internalized phosphorylated

receptor starts a cascade of phosphorylation and activation events, according to the model

introduced by Nyman et al. [26], here simplified in some parts according to [35]. The model

takes into account key actors, such as insulin receptor substrate 1 (IRS1), feedback protein

X_P, PKB, mTORC1 and mTORC2 complexes, P70 ribosomal S6 kinase, ribosomal protein S6

and Akt substrate (AS160), which regulate the translocation of GLUT4 from the cytosol to the

plasma membrane. The output of the cellular model is connected with the whole-body model:

the amount of glucose uptake by the adipocyte (intra-adipocitary glucose) is regulated by the

amount of GLUT1 and GLUT4 on the plasma membrane [18,26].

Further details on the background physiology of whole-body glucose metabolism and the

insulin signaling cascade within the adipocytes could be retrieved in S1 File.

Fig 1. Graphical representation of the whole-body glucose metabolism as considered in our model, according to the notation introduced in [62].

Only the organs/tissues for which a variable has been explicitly included in the model are depicted in the figure (other key organs/tissues of glucose

metabolism, like pancreas and brain, are not displayed in the figure even if their effect has been indirectly taken into account in model equations, see

Results and S1 File for details). Adipose tissue is colored in yellow to highlight that it is the part for which a model at the cellular level is also provided

(see Fig 2). Green ovals (hormones) and orange rectangles represent model variables; arrows represent mass transfer (white head), stimulation (black

head) and inhibition (T head).

https://doi.org/10.1371/journal.pone.0190627.g001
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Results

In the present work, we introduce a closed-loop multi-level mathematical model describing

glucose homeostasis in NGR and T2DM conditions. The proposed model is composed of a set

of ODEs defining the dynamics of state variables in minutes.

Whole-body model equations

The whole-body model is described by Eqs (1) to (14), as follows. Eq (1) describes stomach glu-

cose dynamics (S):

dSðtÞ
dt
¼ b9HðtÞ � b8SðtÞ ð1Þ

The first term represents ingested glucose, which depends on glucose intake (H, Eq (12)) and

on rate b9. The second term models stomach emptying and depends on the amount of stomach

glucose and transfer rate b8, according to [9,15].

Fig 2. Graphical representation of the model describing the insulin signaling in adipocytes at the cellular level, according to the notation

introduced in [62]. Solid arrows represent state modification, while dashed arrows indicate reaction stimulation. Protein complexes are colored in

yellow, green ovals represent the active and inactive feedback protein, while the orange rectangles represent all the other components of the cellular

model. The plasma membrane of the adipose cell is represented in yellow and it separates the cytosol (light yellow horizontal lines) from the interstitial

fluid (blue and white vertical lines). The variables I and G indicate insulin and glucose concentration in plasma (compartment not represented), which

regulate the amount of interstitial insulin (INSA) and glucose (GtA), respectively. For the sake of simplicity, we highlighted the five variables linking the

cellular level to the whole body description (namely plasma insulin, interstitial insulin, plasma glucose, interstitial glucose and intra-adipocitary

glucose) by adding the corresponding names in parenthesis.

https://doi.org/10.1371/journal.pone.0190627.g002
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Eq (2) models intestine glucose transit, as described by Toghaw et al. [9]:

dLðtÞ
dt

¼ b8SðtÞ � b10LðtÞ ð2Þ

The first term represents the glucose entry from the stomach, which coincides with the amount

of glucose exiting the stomach in Eq (1). The second term accounts for glucose absorption into

the plasmatic compartment, which depends on the amount of glucose in the intestine (L) and

on rate b10.

The dynamics of plasma glucose concentration (G) is described in Eq (3):

dGðtÞ
dt

¼ f
b10LðtÞ

v
þ f

b5CðtÞ
v
� b1GðtÞ � b3IðtÞGðtÞ ð3Þ

The first term represents plasma glucose appearance from the intestine, where b10 is the intes-

tine to plasma transfer rate, v is the glucose distribution volume and f is a fraction of absorp-

tion accounting for the part of glucose lost in the transfer [9]. The second term describes liver

glucose production, where glucose coming from the liver (C, Eq (7)) is multiplied by the trans-

fer rate b5 and by f/v, similarly to the first term. Terms 3 and 4 represent blood glucose elimi-

nation through insulin-independent and insulin-dependent mechanisms, respectively. The

third term models glucose uptake from the brain and other tissues such as blood cells, renal

medulla, splanchnic tissues, which is insulin independent and proportional to G [36]. The last

term models glucose uptake from adipose and muscle tissues, which depends on both G and

plasma insulin concentration (I, Eq (4)) [9,15].

Eq (4) represents the dynamics of plasma insulin concentration (I):

dIðtÞ
dt
¼ b4GðtÞ þ cWðtÞGðtÞ � b2IðtÞ ð4Þ

The first and second terms are simplifications of insulin dynamics described by Toghaw et al.
[9]. The first term describes glucose-dependent insulin secretion, where b4 is glucose depen-

dent insulin secretion rate. The second term represents incretin dependent insulin secretion,

which is proportional to plasma glucose and incretin concentration (W, see Eq (5)), c being

the incretin dependent insulin secretion rate. The last term represents insulin elimination,

which depends on insulin and on its disappearance rate constant (b2).

Eq (5) describes the variation of plasma incretin concentration (W) [9,34]:

dWðtÞ
dt

¼ b6LðtÞ � b7WðtÞ þ s ð5Þ

The first term accounts for incretin appearance due to glucose transit through the intestine

(L): it depends on L and on incretin secretion rate b6. The second term represents incretin

elimination, depending on W and their disappearance rate constant b7. The last term is the

constant incretin appearance rate (s).

In Eq (6) the dynamics of plasma glucagon (E) is described, according to Sulston et al. [29]:

dEðtÞ
dt

¼ c0 þ
c1

c2 þ IðtÞe
ðGe � GðtÞÞuðGe � GðtÞÞ � c3EðtÞ ð6Þ

The first term models the basal level of glucagon secretion, c0, which happens at normal fasting

glucose levels. The second term represents the dependency of glucagon secretion from plasma
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glucose and insulin concentrations, where u(Ge−G(t)) indicates the Heaviside step function:

uðGe � GðtÞÞ ¼
1; Ge � GðtÞ � 0

0; Ge � GðtÞ < 0:

(

When G is above the threshold Ge, this part of glucagon secretion is suppressed, resulting in

an equilibrium value of glucagon achieved when
dEðtÞ
dt ¼ 0, that is, when E ¼ c0

c3
. Otherwise, the

term represents glucagon secretion in the α cells of the pancreas, with the secretion increasing

at low glucose levels but being suppressed by high insulin levels, according to parameters c1

and c2. The parameter e models insulin effectiveness to represent the cell sensitivity to insulin

action, which is compromised in insulin resistance and in T2DM: this rate will be at its maxi-

mum in the NGR condition while it is lower in T2DM according to [29]. We refer to Table C

in S1 File for the values of e and Ge, employed in the model in the NGR and T2DM condition.

The last term describes plasma glucagon elimination, which depends on E and its degradation

rate c3 [29].

The variable C, described in Eq (7), represents glucose mass in the liver ready to be secreted,

which has been produced from glycogen breakdown:

dCðtÞ
dt

¼ b23 � b25IðtÞe � b22GðtÞ þ b21EðtÞ � b5CðtÞ ð7Þ

The equation is obtained by combining the works of Dalla Man et al. [22] and Sulston et al.
[29], where variable/parameter units have been converted in accordance to the model. The

first term describes the basal rate of liver glucose production, b23. The second and third term

represent the inhibiting effect of I and G on liver glucose production, according to the rate

constants b25 and b22 and insulin effectiveness (e). The fourth term accounts for plasma gluca-

gon (E) effect in stimulating glycogen breakdown, where b21 is the rate of liver glucose produc-

tion, which is glucagon dependent [29]. The last term represents glucose transfer from liver to

plasma according to the transfer rate b5 [9].

Eq (8) describes the dynamics of glucose mass in muscle tissue (M):

dMðtÞ
dt

¼ 0:1
v
f
b3GðtÞIðtÞe � b27MðtÞ ð8Þ

The first term represents glucose entry, which depends on plasma glucose and insulin concen-

trations, on insulin effectiveness (e) [29], and on the utilization rate b3. The scaling factors 0:1 v
f

have been introduced to convert plasma glucose concentration to a mass and to set muscle glu-

cose uptake to 10% of whole body glucose uptake [36]. The last term in the equation represents

muscle glucose elimination, which depends on M and on the elimination rate b27 [37].

Eq (9) represents the adipose tissue glucose mass (A):

dAðtÞ
dt

¼ k8GLUT4m tð Þ
GtAðtÞ

KmG4þ GtAðtÞ
þ GLUT1

GtAðtÞ
KmG1þ GtAðtÞ

� kglucAðtÞ ð9Þ

Eq (9) is one of the links between the whole body model and the cellular one and includes vari-

ables from both. The first two terms come from the model of Nyman et al. [18]. These terms

represent glucose entry in adipocytes mediated by glucose transporter 1 (GLUT1) and by

glucose transporter 4 at the adipocyte membrane (GLUT4m). GLUT1 and GLUT4m are vari-

ables of the cellular model. GLUT1 does not depend on time in Eq (9) because its amount is

assumed to be constant according to [18,26]. Both terms depend on interstitial glucose con-

centration (GtA, see Eq (14)), where KmG4 and KmG1 are two parameters modeling the satu-

ration of glucose internalization. The last term of the equation represents glucose elimination
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from the adipose tissue, which depends on the amount of internalized glucose and on the elim-

ination rate kgluc.

Eq (10) describes the dynamics of plasma leptin (Y):

dYðtÞ
dt

¼ b13AðtÞFat � b14YðtÞ ð10Þ

The first term represents leptin secretion, which depends on the amount of glucose in the adi-

pose tissue (A)[38,39], on leptin secretion rate b13 and on the Fat parameter (the average total

fat mass in humans [40]). The second term models leptin degradation, which depends on Y

and on the elimination rate b14 according to [40,41].

The dynamics of ghrelin concentration in plasma (Q) is described in Eq (11):

dQðtÞ
dt

¼ b12exp
� lSðtÞexp� mIðtÞ � b11QðtÞ ð11Þ

The first term represents ghrelin secretion, which is modeled as being exponentially inhibited

by both S and I. The term also depends on the parameters l (the S dependent decay rate), b12

(ghrelin secretion rate) and m (the I dependent decay rate) [9,34]. The last term of the equa-

tion accounts for ghrelin linear elimination, which depends on the rate b11 [9,34].

Eq (12) describes glucose intake (H):

dHðtÞ
dt

¼
b17QðtÞ

b18YðtÞ þ 1
exp� rIðtÞ � b19GðtÞHðtÞ � b9HðtÞ ð12Þ

H represents the amount of glucose needed from the body. In order to build a closed-loop

model, glucose intake has been modeled equal to this amount, which can be thought of as the

hunger signal. The latter has been initially introduced in the rat model of Jacquier et al. [32]

and the corresponding equation has been here adapted to model human physiology. The first

term represents the effect of plasma insulin (I), leptin (Y) and ghrelin (Q) on hunger. I and Y

inhibit food intake while Q increases it. The effect of leptin and ghrelin is mediated by parame-

ters b18 and b17, respectively, according to [32,42]. Insulin exponentially inhibits H through

the r parameter, modeling the negative effect on appetite that arises when I is high [43,44]. The

second term describes glucose intake reduction that depends on plasma glucose and on H itself

[45]. The last term accounts for glucose absorption to the stomach, which depends on the

amount of ingested glucose and on glucose transfer rate b9.

Eqs (13) and (14) link the whole body model with the cellular one, by describing interstitial

insulin (INSA) and interstitial glucose (GtA) surrounding the adipocytes:

dINSAðtÞ
dt

¼ � p2UINSAðtÞ þ p2UðIðtÞ � IbÞ ð13Þ

dGtAðtÞ
dt

¼ � q1GtAðtÞ þ q2 GðtÞ � Gbð Þ ð14Þ

Eq (13) is derived from Dalla Man et al. [22] and Eq (14) has been written following the same

modeling approach. The first term in both equations models degradation, according to param-

eters p2U and q1 for insulin and glucose, respectively. The second term describes the amount

of plasma insulin (I) and plasma glucose (G) that moves to the interstitial compartment. In

both cases, we consider only the amount exceeding the basal level, where Ib and Gb are the

basal levels of plasma insulin and glucose, respectively, and p2U and q2 are the transfer rates.
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Cellular (adipocyte) level model equations

The cellular level of the model, represented by the molecular specifications of the insulin sig-

naling cascade in adipocytes, is described by Eqs (15) to (41), which were derived from Nyman

et al. [26] and Brannmark et al. [35]. This part of the model represents the insulin signaling

cascade in adipocytes, starting from the binding of interstitial insulin INSA with the free insu-

lin receptor on the adipocyte membrane (IR) and ending with the translocation of GLUT4

from the cytosol to the plasma membrane. Eqs from (15) to (39) are derived from Nyman et al.
[26], while Eqs (40) and (41) are from Brannmark et al. [35]. The cellular model reconnects

with the whole body model through Eq (9), where the increase of glucose mass in adipose tis-

sue is modeled according to the amount of GLUT4 and GLUT1 [18,26].

The last five equations of the Nyman’s model introduced in [26] were not included here, as

they describe regulative phenomena related to S6 and S6K which are not relevant for the scope

of the present work. Therefore, Eqs (40) and (41), which model the dynamics of S6 and S6k,

were taken from Brannmark et al. 2013 [35].

All the cellular equations are modeled through mass action kinetics as from [26] and [35].

The description and the value of all the parameters are provided in Table C in S1 File. Here we

reported the list of model equations with a short description of the variables. We refer to the

next section Model simulations for the description of the cellular dynamics and to [26] and

[35] for any additional insight.

Eq (15) describes the dynamics of the free insulin receptor (IR) on the adipocyte mem-

brane:

dIRðtÞ
dt

¼ � k1aIRðtÞINSAðtÞ � k1basalIRðtÞ þ k1gIRYPðtÞ þ k1rIRiðtÞ ð15Þ

Eq (16) describes the dynamics of the phosphorylated insulin receptor (IR_YP). Phosphory-

lation can be insulin independent (parameter k1basal) and dependent (parameter k1c):

dIR YPðtÞ
dt

¼ k1basalIRðtÞ þ k1cIRinsðtÞ � k1dIR YPðtÞ � k1gIR YP tð Þ ð16Þ

Eq (17) represents the dynamics of the insulin receptor that is bound to insulin but not

already phosphorylated (IRins):

dIRinsðtÞ
dt

¼ k1aIRðtÞINSA tð Þ � k1cIRinsðtÞ ð17Þ

Eq (18) represents the phosphorylated insulin receptor that has been endocytosed from the

adipocyte (IRi_YP):

dIRi YPðtÞ
dt

¼ k1dIR YPðtÞ � k1f IRi YPðtÞX P tð Þ ð18Þ

Eq (19) represents the dynamics of the free internalized insulin receptor (IRi):

dIRiðtÞ
dt

¼ k1f IRi YPðtÞX P tð Þ � k1rIRiðtÞ ð19Þ

Eqs from (20) to (23) describe the insulin receptor substrate 1 (IRS1) in its four phosphory-

lation forms. IRS1 is not phosphorylated, IRS1_YP is phosphorylated at the tyrosine site,

IRS1_YP_S307P is phosphorylated at both the tyrosine and serine sites, IRS1_S307P is
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phosphorylated only at the serine site:

dIRS1ðtÞ
dt

¼ k2bIRS1 YPðtÞþk2gIRS1 S307PðtÞþ

� k2aIRS1ðtÞIR YPðtÞ � k2basalIRS1ðtÞ
ð20Þ

dIRS1 YPðtÞ
dt

¼ k2aIRS1ðtÞIRi YPðtÞ þ k2dIRS1 YP S307PðtÞþ

� k2bIRS1 YPðtÞ � k2cIRS1 YPðtÞmTORC1aðtÞkfb

ð21Þ

dIRS1 YP S307PðtÞ
dt

¼ k2cIRS1 YPðtÞmTORC1aðtÞkfbþ

� k2dIRS1 YP S307PðtÞ � k2f IRS1 YP S307PðtÞ
ð22Þ

dIRS1 S307PðtÞ
dt

¼ k2basalIRS1ðtÞ þ k2f IRS1 YP S307PðtÞ � k2gIRS1 S307PðtÞ ð23Þ

Eqs (24) and (25) represent the dynamics of the feedback protein X that, in its active form

X_P, enhances the dephosphorilation of the internalized insulin receptor:

dXðtÞ
dt

¼ k3bX PðtÞ � k3aXðtÞIRS1 YP tð Þ ð24Þ

dX PðtÞ
dt

¼ k3aXðtÞIRS1 YPðtÞ � k3bX PðtÞ ð25Þ

Eqs from (26) to (29) describe the four different forms of the protein kinase b: not phos-

phorylated (PKB), phosphorylated only at the threonine site (PKB_T308P), only at the serine

site (PKB_S473P) and at both sites (PKB_T308P_S473P):

dPKBðtÞ
dt

¼ k4bPKB T308PðtÞ þ k4hPKB S473PðtÞ � k4aPKBðtÞIRS1 YPðtÞ ð26Þ

dPKB T308PðtÞ
dt

¼ k4aPKBðtÞIRS1 YPðtÞ � k4bPKB T308PðtÞþ

� k4cPKB T308PðtÞmTORC2aðtÞ
ð27Þ

dPKB S473PðtÞ
dt

¼ k4f PKB T308P S473PðtÞ � k4ePKB S473PðtÞIRS1 YP S307PðtÞþ

� k4hPKB S473PðtÞ
ð28Þ

dPKB T308P S473PðtÞ
dt

¼ k4cPKB T308PðtÞmTORC2aðtÞþ

þ k4ePKB S473PðtÞIRS1 YP S307PðtÞ � k4f PKB T308P S473PðtÞ
ð29Þ
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Eqs (30) and (31) describe the protein complex mTORC1 (mammalian target of rapamycin

mTOR in complex with raptor) in its inactive (mTORC1) and active (mTORC1a) forms:

dmTORC1aðtÞ
dt

¼ k5bmTORC1aðtÞ � mTORC1ðtÞðk5a1PKB T308P S473PðtÞþ

þk5a2PKB T308PðtÞÞ
ð30Þ

dmTORC1aðtÞ
dt

¼ mTORC1ðtÞðk5a1PKB T308P S473PðtÞ þ k5a2PKB T308PðtÞÞþ

� k5bmTORC1aðtÞ
ð31Þ

Eqs (32) and (33) represent the protein complex mTORC2 (mammalian target of rapamy-

cin mTOR in complex with rictor) in its inactive (mTORC2) and active (mTORC2a) forms:

dmTORC2ðtÞ
dt

¼ � k5cmTORC2 tð ÞIRi YP tð Þ þ k5dmTORC2a tð Þ ð32Þ

dmTORC2aðtÞ
dt

¼ k5cmTORC2 tð ÞIRi YP tð Þ � k5dmTORC2a tð Þ ð33Þ

Eqs (34) and (35) describe AS160, the substrate of PKB, and its phosphorylated form

AS160_T642P:

dAS160ðtÞ
dt

¼ k6bAS160 T642PðtÞ � AS160ðtÞðk6a1PKB T308P S473PðtÞþ

þk6a2PKB S473PðtÞÞ
ð34Þ

dAS160 T642PðtÞ
dt

¼ AS160ðtÞðk6a1PKB T308P S473PðtÞ þ k6a2PKB S473PðtÞÞþ

� k6bAS160 T642PðtÞ
ð35Þ

Eqs (36) and (37) represent glucose transporter 4 inside the adipocyte cytosol (GLUT4) and

on the cell membrane (GLUT4m):

dmGLUT4mðtÞ
dt

¼ k7aGLUT4 tð ÞAS160 T642P tð Þ � k7bGLUT4m tð Þ ð36Þ

dmGLUT4ðtÞ
dt

¼ � k7aGLUT4 tð ÞAS160 T642P tð Þ þ k7bGLUT4m tð Þ ð37Þ

Eqs (38) and (39) describe the dynamics of the S6 kinase (S6K) and its phosphorylated form

S6K_T389P:

dS6KðtÞ
dt

¼ k9bS6K T389P tð Þ tð Þ � k9aS6K tð ÞmTORC1a tð Þ ð38Þ

dS6K T389PðtÞ
dt

¼ k9aS6K tð ÞmTORC1a tð Þ � k9bS6K T389P tð Þ ð39Þ

Eqs (40) and (41) represent the ribosomal protein S6 and its phosphorylated form
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S6_S235_S236P.

dS6ðtÞ
dt

¼ k9b2S6 S235 S236P tð Þ � k9f2S6 tð ÞS6K T389P tð Þ ð40Þ

dS6 S235 S236PðtÞ
dt

¼ k9f2S6 tð ÞS6K T389P tð Þ � k9b2S6 S235 S236P tð Þ ð41Þ

Model simulations. The model has been simulated for 1000 minutes (three consecutive

meals) starting from an initial condition representing the fasting state (t = 0). The model initial

values and parameter estimates have been computed as introduced in Materials and Methods

and they are reported in Tables A and C in S1 File, respectively. Fig 3 shows the dynamics of

each model variable at the whole body level. The green and black lines represent the NGR and

T2DM conditions, respectively. The physiological upper and lower ranges for each variable are

shown in blue (higher line, HL) and red (lower line, LL) straight lines, according to the avail-

able estimates from the literature (see also Table B in S1 File). The model exhibited an oscil-

latory behavior in both the NGR and T2DM conditions through alternate parameter sets

Fig 3. Model dynamics at the whole body level. Each plot represents one variable dynamics. The normal glucose regulation (NGR) and T2DM

conditions are shown in green and black, respectively. The red and blue lines delimit the physiological lower and upper ranges of variables (see also

Table B in S1 File).

https://doi.org/10.1371/journal.pone.0190627.g003
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that accounted for the reciprocal interaction among the constituting variables in the two

conditions.

In the NGR condition, the system started at fasting by simulating an oral glucose intake

(Fig 3a) and, after a time lag accounting for the transit time among compartments, was fol-

lowed by subsequent transitions through the stomach (Fig 3b) to the intestine (Fig 3c). The

glucose absorption from the intestine to the bloodstream was characterized by a further time

lag (Fig 3d) and it triggered the increase in circulating insulin levels (Fig 3e). We modeled the

glucose transit through the intestine as a stimulus for the secretion of incretins (Fig 3f), which

ultimately resulted in an amplification of the endogenous insulin secretion. The secretion of

glucagon (Fig 3g) was modeled as being inhibited by high glucose and insulin concentrations,

and increased in case of markedly low plasma glucose levels, thus stimulating the endogenous

glucose output from the liver (Fig 3h). The glucose uptake by the muscle and adipose tissues

was favored in case of high insulin concentrations, thus resulting in a net increase of the glu-

cose mass in these tissues (Fig 3i and 3l).

The whole-body model has been linked to the adipocyte cellular level through the intersti-

tial fluid surrounding the individual cells. Here we assumed the interstitial fluid being in direct

communication with the plasma. Therefore, the two layers of abstraction (i.e. the whole-body

and the adipocyte levels) were bound through the interstitial insulin and glucose (INSA and

GtA, Fig 2) in a conceptual framework closely mirroring the physiology of insulin signaling.

The interstitial fluid, rather than the plasma, is surrounding the cells targeted by insulin, it

flows in our model from the plasma to the interstitial space with a time shift (Fig 4), and then

binds its membrane receptors, triggering the downstream cascade of signaling events. The

inactive and un-phosphorylated components of the cascade, such as the unbound insulin

receptor (IR) or the un-phosphorylated protein kinase B (PKB), proportionally decreased at

incremental concentrations of interstitial insulin (Fig 4c and 4g). The opposite occurred to the

active and phosphorylated components, such as the bound insulin receptor (IRins) or the

phosphorylated insulin receptor substrate 1 (IRS1_YP), which increased at higher levels of

interstitial insulin (Fig 4d and 4f), thus allowing the activation of the insulin signaling cascade

and eventually leading to the translocation of glucose transporter type 4 (GLUT4) to the cell

membrane. The output of the cellular layer was linked to the whole-body output through the

amount of GLUT4 on the adipocyte membrane, which directly affected the glucose uptake by

the adipose tissue (Fig 4m). This latter variable was in fact shared between the two layers

together with interstitial insulin and glucose.

In the T2DM condition, the initial value of several model variables, such as plasma glucose

and insulin, and some of the parameters, were modified, as described in Materials and Meth-

ods and reported in Tables A and C in S1 File, in order to simulate a T2DM condition of a

drug-naïve individual patient. It can be observed that, as compared to NGR, glucose dynamics

(Fig 3a to 3d) showed a broader range in the T2DM condition, as well as that of insulin, incre-

tin and glucagon (Fig 3e to 3g). The total mass and the output rate of hepatic glucose produc-

tion were reduced (Fig 3h), as well as glucose uptake by muscle and adipose tissues (Fig 3i and

3l). According to T2DM pathophysiology, insulin effectiveness was reduced in the T2DM con-

dition. Despite higher absolute insulin levels, the glucose uptake mechanism was impaired in

the muscles, adipocytes and liver. The impaired insulin signaling cascade affects glucose

uptake, resulting in decreased glucose uptake by the adipose tissue and leptin secretion. An

increased leptin concentration was observed in the T2DM experimental condition (Fig 3m), as

the individual fat mass was set to an increased level, according to Grasman et al. [40] (see

Table C in S1 File, Fat parameter).

The estimates of some model parameters, including the number of IRs and GLUT4, and

the positive feedback from mTORC1, have been modified, according to Nyman et al. [26], to
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simulate the T2DM condition at the cellular level (see Materials and methods and S1). The

diminished total number of IRs led to reduced IR binding and phosphorylation (Fig 4c, 4d

and 4f). Similarly, the reduced total concentration of GLUT4 affected the amount of GLUT4

eventually docking to the adipocyte membrane (Fig 4i). The reduced positive feedback from

mTORC1 had a more general regulatory effect on all the components of the insulin signaling

cascade starting from a lower level of IRS1_YP, where the protein complex mTORC1 acts

directly (Fig 4f). All changes applied in the previously described model parameters harmoni-

cally worked together to reduce the amount of GLUT4, eventually leading to reduced glucose

uptake by the adipocytes (Fig 4m).

In order to test the consistency of the model with physiology, we fitted the same experimen-

tal values employed by Nyman et al. [26] at the cellular level in both the NGR and T2DM con-

ditions, as shown in Figs 5 and 6, respectively (see also Materials and methods). According to

the physiology governing the reciprocal interactions among leptin, insulin and ghrelin, we

were also able to roughly reproduce the fluctuations of circulating ghrelin levels, which are typ-

ically characterized in humans by a marked reduction after meal ingestion and by a rebound

to baseline before the next meal [46,47]. Of note, although we were unable to capture, by

design, the circadian fluctuations of ghrelin (which usually increases after an overnight fast)

and other hormones, our model successfully reproduced the physiologic dynamics of ghrelin

by inversely paralleling those of insulin (Fig 3e and 3n). Conversely, in accordance with the

Fig 4. Model dynamics of the insulin signaling in adipocytes at the cellular level (only a subset of key variables is represented). The normal glucose

regulation (NGR) and T2DM conditions are shown in green and black, respectively.

https://doi.org/10.1371/journal.pone.0190627.g004
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role of leptin as prototypical regulator of energy homeostasis and its dependence from adipose

tissue mass, the dynamics of leptin returned by the model in both T2DM and NGR conditions

showed much dampened fluctuations, as compared to those of ghrelin and insulin (Fig 3m).

Discussion

The aim of this work was to introduce a closed-loop multi-level model of human glucose

homeostasis, describing, in a hierarchical multi-scale system architecture, the contribution of

its main determinants to the NGR and T2DM conditions, at both the whole-body and cellular

(adipocyte) levels. The modeling strategy merged two different physiological levels, the organ

and the cellular one, to ground the basis for the inclusion of the other main players in glucose

homeostasis (such as muscle, pancreatic and liver cells) as additional compartments of the cel-

lular level.

Fig 5. Model simulation and data fitting, normal glucose regulation (NGR) condition. Each plot represents the corresponding time courses for the

indicated insulin signaling intermediaries. The experimental data are taken from Nyman et al. [26] and are represented with circles and error bars (a.u.

indicates arbitrary units). The time course represents the model simulation.

https://doi.org/10.1371/journal.pone.0190627.g005
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The model was successfully tested in silico for NGR and T2DM conditions, which have

been described through alternate initial conditions and parameter estimates (see Materials and

methods and Tables A and C in S1 File). The output of the model (whole-body glucose needs)

coincided with the input (oral glucose intake) in a closed-loop fashion, which allowed to per-

petually simulate whole body dynamics, according to a self-feeding system. Whenever possible,

model equations have been directly derived from the literature and then adapted in order to

work together through the identification of suitable initial states and parameter estimates

(see Materials and methods and S1 for details). The shape of model equations has been left

unchanged in most instances for consistency with those introduced in the original works. This

approach provides the following advantages: (i) it allows to rely on very established model

equations, that have been extensively analyzed in the literature to describe the physiology of

interest; (ii) it does not require to estimate de novo several parameters (as it would be required

in case of equation reshaping), which can rather be derived directly from the literature; (iii) it

Fig 6. Model simulation and data fitting, T2DM condition. Each plot represents the corresponding time courses for the indicated insulin signaling

intermediaries. The experimental data are taken from Nyman et al. [26] and are represented with circles and error bars (a.u. indicates arbitrary units).

The time course represents the model simulation.

https://doi.org/10.1371/journal.pone.0190627.g006
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allows a fairer comparison of the results herein presented with those already discussed in the

literature. However, this modeling strategy has the disadvantage that some equations could

look different, even if they model similar processes. For example, saturation has been modeled

either by considering Michaelis-Menten terms as in Eq (9) or by relying on more abstracted

exponential terms as in Eq (11). We remark that this discrepancy does not affect the reliability

of model simulations because the set of ODEs has been parameterized to have all model vari-

ables within their physiological ranges during the simulations. Therefore, model equations are

computed in the same conditions considered in the papers where they have been originally

introduced.

The closed-loop system, which has the unique advantage to simulate experimental condi-

tions for long time windows without external intervention, was achieved through the inclusion

of the hunger signal, here intended as the amount of glucose needed from the body. Hunger

description was possible through leptin and ghrelin, which work as complementary molecules

to regulate food intake and energy balance in close concert to insulin [46,48]. Ghrelin is a fast-

acting hormone secreted when the stomach is empty [49] and it stimulates food intake. Leptin

concentration depends on fat mass [50] and acts on the long term, without major changes

within hours or days (Fig 3m), as a “satiety” signal to the brain [51,52]. Of note, although

T2DM individuals are often characterized by increased leptin concentrations due to increased

fat mass, a mechanism of leptin resistance occurs, thus making them relatively insensitive to

leptin [53].

The dual role of the liver as both glucose storage and production site is a novel feature of

our model, since the inclusion of both the regulative effects of insulin and glucagon has never

been considered in previous models [22,54]. Glucagon is a hormone secreted from pancreatic

alpha cells at low glycemic conditions, which signals the liver to release glucose from glycogen

storages, thus maintaining the euglycaemic state at fasting [55]. Sub-diabetic hyperglycemic

states and overt T2DM are often characterized by high fasting plasma glucose levels, due to an

excessive glucose output from the liver, as a consequence of liver insensitivity to insulin or

abnormally high glucagon [56].

Although a number of models have been previously developed by including the dynamics

of glucagon [10,29,54], incretins [9,11,34], leptin [57] and ghrelin [9], we have considered all

these factors together for the first time. The inclusion of these components, as well as the dis-

tinction of adipose and muscle glucose uptake, previously reported together [29], provided a

better description of the reciprocal connections existing between the whole-body and the cel-

lular levels and allowed us to physically “close the loop” among different layers of abstraction.

Of note, we have observed that, as compared to the NGR state, the T2DM condition in the

model displayed slower dynamics. Although the reciprocal changes in ghrelin (decrease) and

insulin (increase) would drive the need for increased glucose intake, the resulting emptying

rate of the stomach is slower, as well as the glucose uptake from adipose tissue and muscles,

thus leading to a delayed dynamics in the whole system. These dynamics may be interpreted in

light of the constituting principle regulating the model, which takes into account the supposed

individual energy requirements. Therefore, our model correctly reflects the physiological

response of the organism to maintain the glucose homeostasis within a physiological range in

case of an imbalance between energy requirements and energy intake (i.e. overfeeding) often

observed in patients with T2DM.

Our study has however a number of limitations that should be addressed. We do acknowl-

edge the peculiar use of the term “closed-loop” herein employed, which is usually linked, in

the dictionary of the diabetes community, to the so-called “artificial pancreas”, i.e. a system

that is able to automatically predict in silico the adjustments of external insulin delivery needed

to keep the circulating plasma glucose within a narrow range of physiologic fluctuations. In
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the context of the present study, we were not limiting the term “closed-loop” to a sort of “artifi-

cial beta cell”. We rather sought to describe the governance of glucose homeostasis by applying

a broader, holistic approach. It should however be pointed out that our modeling effort lacks

of a comprehensive description of the hormonal networks and molecular cascades occurring

at each organ and tissue involved in the regulation of glucose homeostasis. The rationale sur-

rounding our choice of focusing on the intracellular molecular cascade occurring within the

adipocytes was not solely dictated by the relevance of the adipose tissue as an “endocrine

organ” influencing systemic energy balance and glucose homeostasis [24,25], but also by the

availability of detailed mathematical specifications of the insulin signaling cascade recently

provided by the group of Nyman et al. [26].

Furthermore, it could be argued that a whole-body description similar to the one herein

proposed can be defined without the addition of a cellular level. However, the integration of

the two levels of abstraction within a single model allows the detailed observation of the recip-

rocal effects of changes occurring between the constituents of the cellular and whole-body lev-

els. Thus, the hierarchical modeling strategy allows to simply zoom in on specific areas of

interest (in our case, the adipocytes) in order to investigate regulatory effects that may occur

between the two levels of abstraction. For instance, the action of a molecule on a receptor

could be easily included in the specifications of the cellular level, and its effects at the whole-

body level could be observed, thus allowing the identification of the changes in the organ vari-

ables caused by variations of the cellular ones. Therefore, the addition of a level in a hierarchi-

cal modeling structure does not imply that the rest of the model would not stand by itself, but

it is rather there to allow the consideration of other (e.g. molecular) effects within a wider

framework.

Nevertheless, despite its intrinsic limitations, our hierarchical modeling effort demon-

strated sufficient robustness to provide a fair description of the core determinants of glucose

homeostasis at both cellular and systemic scales. As such, given its unique modular architec-

ture, the multi-level model herein tested constitutes a promising backbone to annex further

layers of detail.

The model describes the normal glucose regulation and the diabetic states through alternate

parameter sets (see Table C in S1 File), where the constraints for those parameters have been

mostly derived from the available literature as detailed in Materials and Methods. This

approach is blind to distinguish between primary changes that drive disease progression and

secondary changes that are consequences or adaptations to the primary ones. Other indepen-

dent research groups, such as Topp et al. [58] and De Gaetano et al. [59], have addressed, at

variance with our approach, the argument of glucose homeostasis regulation from a pathogen-

esis modeling standpoint. Topp et al. [58] for instance, have specifically investigated the link

between beta-cell mass and beta-cell function by a set of nonlinear ODEs, where the glucose

and insulin dynamics are designed to be fast relative to beta-cell mass dynamics. On the con-

trary, when we compared with our model the estimates obtained in the T2DM condition to

those from the NGR state, it was impracticable to distinguish whether the reduction in the

secretory capacity (parameter b4, see Table C in S1 File) reflected reduced beta-cell mass or

function, or both. Of note, even in the absence of a pre-specified and detailed mathematical

description of the beta-cell function machinery, the value of this parameter was not imposed

in advance, but it rather represents a consequence of the steady state analysis applied to the

equation modeling insulin concentration in plasma (Eq (4)), according to what introduced by

Toghaw et al. [9]. As previously anticipated, and similarly to the case of other key determinants

of glucose homeostasis, this encouraging result may be considered as a rough indicator of the

goodness of the model, which leaves the beta-cell component open to further hierarchical

refinements.
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In conclusion, coupling the cellular level model with a closed-loop whole body model

allowed us to evaluate the behavior of adipocytes not only during one meal but in a perpetual

fashion. The simulation of the system over such a long time frame highlighted the reciprocal

reactions occurring between the two levels of abstraction, i.e. the organ and the cellular levels.

The model provided a seamless dynamic description of the molecular mechanisms down-

stream the insulin receptor in adipocytes, thus demonstrating the usefulness of a multi-level

approach to the modeling of glucose homeostasis at both cellular and systemic scales. As for

the potential applications, the herein proposed model architecture is intrinsically open to inte-

grate supplementary layers of specifications for individual components. As such, more detailed

and advanced versions of the present model could potentially be applied to investigate in silico
the effect of specific drugs pointing to one or more of the model constituents or to identify cur-

rently unmet molecular targets amenable to pharmacological intervention.

Materials and methods

Mathematical model and computational framework

The multi-level model has been defined as a set of ordinary differential equations (ODEs) [60]

implemented in Matlab 2015b. The model has been numerically simulated by means of the

state of the art ODE solver ode15s. A state of the art sensitivity analysis of estimated parameters

has been also computed to assess parameter identifiability (see S1 for details).

Initial values and parameter estimates

Initial values of all the model variables are listed in Table A in S1 File, for both NGR and

T2DM conditions. Simulations start by assuming a morning fasting state, the initial values of

model variables have been derived from the literature or obtained by nonlinear optimization

constrained to the variability of physiological ranges. Initial values have been selected to find

the best balance between human physiology and reliability of the model dynamics in order to

avoid discontinuities or states with unrealistic variable values, such as negative values or values

outside the physiological ranges listed in Table B in S1 File. For what concerns the cellular

model, the variability range of model variables used during the optimization has been inferred

in silico: Nyman’s model has been simulated according to [26] and the minimum and maxi-

mum values reached by each variable have been considered.

Parameter estimates have been determined following different methodologies. When a ref-

erence from the literature was available, parameter estimates were directly taken from the liter-

ature or derived by following the same procedure indicated in the reference paper. Parameters

b4, b5, b12, b13, b17, b27, c and c3 have been estimated through steady state analysis, that is, by

imposing a steady state condition at time 0 on the corresponding equations as indicated in the

literature. In the other cases, parameters have been estimated by nonlinear optimization con-

strained to obtain values within the physiological ranges discussed in the literature. The

remaining parameters b9, r, kgluc, q1 and q2 were derived by unconstrained optimization to

obtain a model dynamics consistent with physiology, that is, a dynamics without discontinui-

ties or unrealistic variable values (i.e., negative values or values outside physiological ranges).

For what concerns the cellular model, parameters are all taken from [26] and [35], except for

k1a, which has been re-estimated within the same optimization range of [26] in order to have

the minimum value of the IRins dynamics of Eq (17) consistent with that reported by Lodish

et al. [61] and to preserve the model fits introduced by Nyman et al. [26] and provided in Figs

5 and 6. We refer to Table C in S1 File for any further insight on the employed estimation pro-

cedures and for a complete list of all parameter estimates computed for the NGR and T2DM

conditions.
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Experimental data

In order to be consistent with previous results, the cellular level of the model describing the

insulin signaling in adipocytes has been fitted by considering the same experimental data used

in the paper of Nyman et al. [26] (Figs 5 and 6).
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