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Abstract In this paper, we weaken the conditions for the existence of adjoint clo-
sure operators, going beyond the standard requirement of additivity/co-additivity. We
consider the notion of join-uniform (lower) closure operators, introduced in computer
science, in order to model perfect lossless compression in transformations acting on
complete lattices. Starting from Janowitz’s characterization of residuated closure op-
erators, we show that join-uniformity perfectly weakens additivity in the construc-
tion of adjoint closures, and this is indeed the weakest property for this to hold. We
conclude by characterizing the set of all join-uniform lower closure operators as fix-
points of a function defined on the set of all lower closures of a complete lattice.

Keywords Residuated closures, uniformity, adjoint functions

1 Introduction

In this paper, we weaken the notion of residuated closure operator. We consider clo-
sure operators on complete lattices [15] and Janowitz’s notion of residuated closures
as introduced in [1,11]. Residuated closures are defined on lattices and they become
complete join-morphisms on complete lattices. We aim at studying what is preserved
of the adjoint relation when residuation, namely additivity, fails and it is replaced by
the weaker notion of join-uniformity.

Uniformity has been introduced in [10] in the context of static program analy-
sis for providing a lattice-theoretic characterization of abstract domain compressors
in abstract interpretation [3,5]. In abstract interpretation a domain is uniquely deter-
mined by an upper closure operator. This models precisely the loss of precision in
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analyzing undecidable program properties, such as the extensional semantic proper-
ties Π of programs [14]. If the objects of a complete lattice denote properties (viz.,
sets) of computed program states in S, then, by extensivity, it means that approxi-
mation produces larger sets (i.e., less tight properties), idempotence means that ap-
proximation is made all at once, and monotonicity specifies that approximation keeps
the relative order of precision of properties. In this context, we are able to associate
with each program P and (possibly undecidable) property to verify Π , a (decidable)
over-approximation ρ(P,Π) of Π (i.e., Π ⊆ ρ(P,Π)) [3]. ρ(P,Π) can specify, for
instance, the absence of specific run-time errors, such as run-time overflows of inte-
ger and floating point variables (see [6]). Of course, when P ∈ ρ(P,Π), nothing can
be concluded about P and Π , but when P 6∈ ρ(P,Π) surely we have P 6∈ Π . The
function λX.ρ(P,X) is, in this context, an upper closure operator [5] on the lattice of
all program properties, where the most precise approximation is the identity function,
which is the bottom element in the lattice of all upper closures, and the less precise
approximation is the function mapping any property to the whole set of all possible
values S. Refining approximations, i.e., upper closures, corresponds therefore pre-
cisely to act as a lower closure on abstract domains, i.e., any lower closure operator
on the lattice of all upper closure operators is a refinement.

The notion of abstraction refinement is extensively studied in computer science,
notably in automatic program analysis, system verification, and abstract model check-
ing for removing false alarms and spurious behaviors when approximating undecid-
able properties of computer programs and systems [5,13,2]. In this context, an ab-
straction refinement is compressible if it is join-uniform, namely if the least upper
bound of all abstract domains having the same refinement, still has the same refine-
ment. This unique domain is the least one that, by refinement, gives back a given do-
main. A function f defined on a complete lattice C is join-uniform whenever for any
Y ⊆ C such that f is constant on Y with value f(y), f(

∨
Y ) = f(y). When f is join-

uniform its inverse f−(x) =
∨{

y
∣∣ f(y) = f(x)

}
is such that f(f−(x)) = f(x)

and f−(x) is the maximal element for which this happens. Examples include f as
the function mapping any subset S of a complete boolean algebra C into the corre-
sponding sub-boolean algebra f(S) of C and f− as the reduction of S into the sets of
its join-irreducible elements [9]. This notion of reduction along a given partial order,
e.g., file size, is shared by a number of algorithms for lossless compression, e.g., see
the ZIP file format and the GNU tool gzip, as well as the PNG and GIF file formats.
The lossless compression is perfectly captured by uniformity.

We show that uniformity plays a central role in weakening additivity and co-
additivity in the existence of adjoint closures. In particular, we prove that residua-
tion, which is additivity on complete lattices, can be weakened by join-uniformity yet
keeping the possibility of having an adjoint on a modified partial order. We introduce
the notion of pseudo-adjoint of a function which corresponds to the adjoint when the
function is additive. Then, by weakening additivity, pseudo-adjoint still keeps some
of the properties of the adjoint case. In particular, in the case of lower closures, as
specified in domain refinement, join-uniformity is the only possible weakening of
additivity, yet keeping the adjoint relation on a modified partially ordered set. Fi-
nally, we characterize the set of all join-uniform lower closure operators as the set of
fix-points of a function defined on the set of all lower closures of a complete lattice.
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2 Closures and residuated closures

Closures and notations. In the following, 〈C,≤,>,⊥,∨,∧〉 is a generic complete
lattice, denoted C≤ for underlining the considered order on C. A monotone function
f on a complete lattice C is denoted f : C m−→C, the set of all monotone functions
on C is denoted

Fmono
C

def=
{
f : C −→ C

∣∣ f monotone
}

1

A reductive [extensive] function f on C is such that ∀x ∈ C. f(x) ≤ x [f(x) ≥ x]
and it is denoted f : C red−→C [f : C ext−→C]. The set of all reductive [extensive]
functions is

Fred
C

def=
{
f : C −→ C

∣∣ f reductive
}

[Fext
C

def=
{
f : C −→ C

∣∣ f extensive
}

].

Finally, an idempotent function f on C is such that ∀x ∈ C. f(f(x)) = f(x) and it
is denoted f : C idem−→C. The set of all idempotent functions is

Fidem
C

def=
{
f : C −→ C

∣∣ f idempotent
}
.

Let f, g be two functions on a complete lattice C, we define the point-wise order as
f≤̇g if and only if ∀x ∈ C. f(x) ≤C g(x). Let f : C → D be a monotone function,
for each X ∈ ℘(D) we define its inverse image set as the image of the function
f−1 : ℘(D)→ ℘(C) defined as f−1(X) =

{
y
∣∣ f(y) ∈ X

}
.

Two monotone functions between the complete lattices C≤C and A≤A α : C m−→A
and γ : A m−→C form an adjunction if for any x ∈ C and y ∈ A: α(x) ≤A y ⇔
x ≤C γ(y). In this case, α [resp. γ] is the left [right]adjoint of γ [α] and it is additive
[co-additive], i.e., it preserves lub’s [glb] of all subsets of the domain (empty set
included). Let us define the following function transformations:

f+(x) def=
∨{

y
∣∣ f(y) ≤ x

}
=
∨
f−1(↓ x) and

f−(x) def=
∧{

y
∣∣x ≤ f(y)

}
=
∧
f−1(↑ x)

In the following, we call f+ right pseudo-adjoint of f , and f− left pseudo-adjoint of
f . When f is an additive [co-additive] map then the right [left] adjoint exists and it is
precisely f+ [f−] (see [1] for notation). In this case, we say that 〈f, f+〉 and 〈f−, f〉
are adjoint operators.

An upper [lower] closure operator ρ : C−→C is monotone, idempotent, and
extensive [reductive], i.e., f ∈ Fmono

C ∩ Fidem
C ∩ Fext

C [f ∈ Fmono
C ∩ Fidem

C ∩ Fred
C ]. The set of

all upper [lower] closure operators on C is denoted by uco(C) [lco(C)]. Recall that
if C is a complete lattice, then 〈uco(C),v,t,u, λx.>, id〉 is a complete lattice [15,
7,12], where for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C) and x ∈ C:

– ρ v η if and only if ∀y ∈ C. ρ(y) ≤ η(y) if and only if η(C) ⊆ ρ(C).
– (ui∈Iρi)(x) = ∧i∈Iρi(x);
– (ti∈Iρi)(x) = x ⇔ ∀i ∈ I. ρi(x) = x;
– λx.> is the top element, whereas id def= λx.x is the bottom element.

1 In the following, we omit the pedex C when clear from the context.
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Upper closures are uniquely determined by their fix-points ρ(C). X ⊆ C is the set of
fix-points of an upper closure if it is a Moore family, i.e., X = M(X) def= {

∧
S | S ⊆

X}. It is known that upper closures can be made additive. This transformation is
called the disjunctive completion of δ and it is defined as:

b
(δ) def=

⊔{
ρ ∈ uco(C)

∣∣ρ v δ, ρ additive
}
,

which is an upper closure closed by concrete least upper bound, i.e., it is such that
ρ ◦∨ ◦ρ = ∨ ◦ρ [8]2.

Residuated closures. Janowitz, characterized the order theoretic structure and prop-
erties of residuated closure operators [1,11]. Let us first recall the notion of quasi-
residuated and residuated map.

Definition 1 [11] Let f : C −→ D be a monotone map. f is quasi-residuated if
∃h : D −→ C. f ◦ h≤̇id if and only if ∀x ∈ D.

{
y ∈ C

∣∣ f(y) ≤ x
}
6= ∅. f is

residuated if ∃h : D −→ C. f ◦ h≤̇id ∧ h ◦ f≥̇id.

In the following, this function h is the right adjoint of f (called residual in [11]).
The following theorem provides the Janovitz characterization of adjunction between
residuated closure operators.

Theorem 1 [11, Theorem 2.10]
Let f : C −→ C be residuated map, i.e., 〈f, f+〉3 is a pair of adjoint operators on
C, then

(1) f ∈ uco(C) ⇔ f+ ∈ lco(C) ⇔ f ◦f+ = f+ ⇔ f+ ◦f = f

and

(2) f ∈ lco(C) ⇔ f+ ∈ uco(C) ⇔ f ◦f+ = f ⇔ f+ ◦f = f+

Dually, we have that if f : C −→ C is a dual-residuated4 map and f− is its left-
adjoint (defined in the previous section), then

(3) f ∈ uco(C) ⇔ f− ∈ lco(C) ⇔ f ◦f− = f ⇔ f− ◦f = f−

and

(4) f ∈ lco(C) ⇔ f− ∈ uco(C) ⇔ f− ◦f = f ⇔ f ◦f− = f−

In the hypotheses of the theorem, f+ is trivially dual-residuated, and f− is residu-
ated.
We observe that, on a complete lattice, a residuated function is a monotone function
admitting right-adjoint [1,11], namely a residuated function on a complete lattice is
an additive function and viceversa. By this observation, when dealing with complete
lattices, we can use the notion of additivity and of residuated as synonymous. Dually,
co-additivity on complete lattices corresponds to dual-residuation.

2 Note that this fact always holds for η ∈ lco(C), hence for lower closures it does not corresponds to
additivity.

3 f+ is precisely the function defined in the previous section.
4 Defined by duality.
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Pseudo-adjoining closures. Let η ∈ lco(C) and δ ∈ uco(C), then we can define the
following functions:

η−(x) def=
∧
{η(y)|η(y) ≥ x} η+(x) def=

∨
{y|η(y) = η(x)} =

∨
η−1({η(x)})

δ+(x) def=
∨
{δ(y)|δ(y) ≤ x} δ−(x) def=

∧
{y|δ(x) = δ(y)} =

∧
δ−1({δ(x)})

The following results show the relation between the functions introduced above and
the pseudo-adjoints of an upper or lower closure operator.

Proposition 1 Let η ∈ lco(C) and δ ∈ uco(C). Then

(1) η− = η− δ+ = δ+ (2.1)

(2) η+ = η+ δ− = δ−
if η is additive and δ is co-additive. (2.2)

Proof 1. Let us first prove Equation 2.1 on η ∈ lco(C) (the proof for δ is dual). First
of all, note that η−(x) ≤ η−(x) since by idempotence of η

{
η(y)

∣∣ η(y) ≥ x
}
⊆{

y
∣∣ η(y) ≥ x

}
. On the other hand, by reductivity of η we have

η−(x) =
∧{

η(y)
∣∣ η(y) ≥ x

}
≤
∧{

y
∣∣ η(y) ≥ x

}
= η−(x)

Hence we have the equality.
2. Consider η ∈ lco(C) additive, let us prove Equation 2.2, for η (for δ is dual). First

of all η+(x) ≤ η+(x) since, by reductivity of η we have
{
y
∣∣ η(y) = η(x)

}
⊆{

y
∣∣ η(y) ≤ x

}
. On the other hand, by Theorem 1 we have that η(x) = η(η+(x)),

hence η+(x) ∈
{
y
∣∣ η(y) = η(x)

}
, and therefore η+(x) ≤ η+(x), implying the

equality.

These results tell us that the right pseudo-adjoint of an upper closure is always equal
to δ+, while the right pseudo-adjoint of a lower closure is equal to η+ if the closure
is additive, namely when we are computing precisely its right adjoint.

3 Weakening additivity by join-uniformity

A monotone function on a complete lattice C, f : C m−→C, is join-uniform if for all
Y ⊆ C, (∃x̄ ∈ Y. ∀y ∈ Y. f(y) = f(x̄)) ⇒ (∃x̄ ∈ Y. f(

∨
Y ) = f(x̄)) [10]. We

can rewrite this definition as follows: The function f is join-uniform if and only if,
for each x ∈ C

f(
∨{

y
∣∣ f(y) = f(x)

}
) = f(x), i.e., f(f−1({f(x)})) = f(x).

It is worth noting that, if f ∈ lco(C) then f is join-uniform if and only if ∀x ∈
C. f(f+(x)) = f(x). We denote join-uniform functions as f : C ju−→C. Meet-
uniformity is dually defined, in particular we denote a meet-uniform function as
f : C mu−→C. It is obvious that join-uniformity is strictly weaker than additivity. It
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is known (cf. [10]) that a lifted partial order can be induced by join-uniform closures,
and defined as follows for a join-uniform closure η ∈ lco(C):

x ≤η y ⇔ η(x) ≤ η(y) ∧ (η(y) = η(x) ⇒ x ≤ y) (3.1)

In general≤ ⊆ ≤η and, whenC≤ is a complete lattice, then alsoC≤η is a complete
lattice. Moreover η is always additive on C≤η [10].

When adjoining an additive/co-additive closure we obtain two different results:
(1) the (right/left) adjoint is still a closure operator and (2) they satisfy the relations
in Theorem 1. In the following we will weaken additivity by join-uniformity and we
study the preserved relation between f and f+ both when f ∈ lco(C) and when
f ∈ uco(C).

3.1 Join uniformity of lower closures

Let us consider η ∈ lco(C). Next theorems analyze the results described in Theo-
rem 1 showing when residuation is sufficient, sufficient and necessary or not neces-
sary. In particular, without any hypothesis on η we show that the pseudo-adjoint fails
to be an uco but one equation between η and η+ in Theorem 1 hold anyway, while
the other corresponds to additivity.

Theorem 2 Let C be a complete lattice. Let η ∈ lco(C), the following facts hold

1. η+ ∈ Fmono ∩ Fext (it may lose idempotence);
2. η+ ◦η = η+ always holds.
3. η ◦η+ = η if and only if η additive;

Proof

1. Let us show that η+ is monotone and extensive. Let x ≤ z, then we have that{
y
∣∣x ≥ η(y)

}
⊆
{
y
∣∣ z ≥ η(y)

}
. But this implies that

∨{
y
∣∣x ≥ η(y)

}
≤∨{

y
∣∣ z ≥ η(y)

}
. Extensivity holds by reductivity of η. In fact x ≥ η(x), hence

x ∈
{
y
∣∣x ≥ η(y)

}
, which trivially implies that x ≤

∨{
y
∣∣x ≥ η(y)

}
=

η+(x). In Fig. 1 we show an example where the lack of additivity implies a lack
of idempotence of η+. On the left η, whose fix-points are represented by circled
points, is not additive, while, on the right, η+ (represented again by circled points)
is not idempotent on x.

2. If η(z) ≤ η(x) (for some z ∈ C), being η reductive we have η(z) ≤ x. On the
other hand, if η(z) ≤ x then by idempotence of η, η(z) ≤ η(x), hence we have
that

{
z
∣∣ η(z) ≤ x

}
=
{
z
∣∣ η(z) ≤ η(x)

}
, namely η+(x) = η+(η(x)).

3. If η is additive then the thesis holds by Theorem 1(2). Suppose that η ◦ η+ = η.
We observe also that, being η ∈ lco(C), it is closed by concrete least upper bound,
hence, for any X ⊆ C we have

∨
x∈X η(x) = η(

∨
x∈X η(x)). Let us prove that,

for any X we have η(
∨
X) =

∨
x∈X η(x). Note that

η(η+(
∨
x∈X

η(x))) = η(
∨
x∈X

η(x)) =
∨
x∈X

η(x)
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x x

Fig. 1 (left) η not additive, (right) η+, the dashed line is η+ ◦ η+(x).

by hypothesis and because η ∈ lco(C). Observe that ∀x ∈ X we have η(x) ≤∨
x∈X η(x), hence X ⊆

{
y
∣∣ η(y) ≤

∨
x∈X η(x)

}
namely∨

X ≤
∨{

y
∣∣ η(y) ≤

∨
x∈X η(x)

}
= η+(

∨
x∈X

η(x)).

By reductivity of η this implies that η(
∨
X) ≤ η+(

∨
x∈X η(x)), then by idem-

potence of η, this implies that

η(
∨
X) ≤ η(η+(

∨
x∈X

η(x))) =
∨
x∈X

η(x)).

On the other hand, x ≤
∨
X implies by monotonicity that η(x) ≤ η(

∨
X), hence∨

x∈X η(x) ≤ η(
∨
X), implying the equality and therefore additivity of η.

Consider η ∈ lco(C≤) is join-uniform, in [10], the authors observed that η+ is
not the right adjoint of η on C≤, while it is its right adjoint on ≤η , denoting the order
lifted by η as defined in Equation 3.1. The following result shows that this happens if
and only if η is join-uniform [10] and, in this case, η+ is precisely its right adjoint.

Theorem 3 Let η ∈ lco(C). Then the following facts are equivalent

1. η is join-uniform;
2. η is additive on ≤η;
3. 〈η, η+〉 are adjoints on ≤η .

Proof Let’s prove first that η is join-uniform on ≤ if and only if η is additive on ≤η .
When η is join-uniform on the standard order then η is additive on the lifted order by
duality from [10, Theorem 5.10]. Let us prove the other implication, and consider the
definition of lifted least upper bound [10] rewritten as:∨

η

Y =
{∨

Y if ∃x ∈ Y . ∀y ∈ Y. η(y) = η(x)∨{
η(y)

∣∣ y ∈ Y } otherwise

Let Y =
{
y
∣∣ η(y) = η(x)

}
: then∨

η

{
y
∣∣ η(y) = η(x)

}
=
∨{

y
∣∣ η(y) = η(x)

}
(∗)
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Hence we have

η(
∨{

y
∣∣ η(y) = η(x)

}
) = η(

∨
η

{
y
∣∣ η(y) = η(x)

}
)

=
∨
η

{
η(y)

∣∣ η(y) = η(x)
}

= η(x)

This is join-uniformity of η on the order ≤.
Finally, η is join-uniform if and only if 〈η, η+〉 are adjoints on ≤η is consequence of
the previous result (∗) and of Proposition 1.

We have just shown that η+ is the right adjoint of η on the lifted order ≤η if and
only if η is join-uniform. Next theorem shows how the relations in Theorem 1 change
for η+ on ≤ when η is only join-uniform.

Theorem 4 Let C be a complete lattice. η ∈ lco(C)

1. If η is join-uniform then η+ ∈ Fidem ∩ Fext (it may lose monotonicity);
2. η is join-uniform if and only if η ◦η+ = η;
3. η+ ◦η = η+ always holds.

Proof 1. Extensivity is trivial being x ∈
{
y
∣∣ η(y) = η(x)

}
. Idempotence comes

directly from join-uniformity.

η+(η+(x)) =
∨{

y
∣∣ η(y) = η(η+(x))

}
=
∨{

y
∣∣ η(y) = η(

∨{
y
∣∣ η(y) = η(x)

}
)
}

=
∨{

y
∣∣ η(y) = η(x)

}
(By join-uniformity)

= η+(x)

In Figure 2 we show that in general η+ is not monotone [10].

dcb

a

e

dcb

a

e

dc

b

a

e

Fig. 2 (left) η not additive, (center) η+ on ≤, (right) η+ on ≤η .

2. η is join-uniform if and only if η ◦η+ = η, by definition of join-uniformity.
3. η+ ◦η = η+ trivially holds by idempotence of η.
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3.2 Join-uniformity of upper closures

In the previous section, we proved that join-uniformity of lower closures, when it
holds, weakens additivity in the adjunction relation. In this section, we show that
join-uniformity of upper closures does not allow in general to weaken additivity of the
adjoint relation. First of all, let us recall that an uco is always join-uniform [8]. At this
point, while it is trivial to show that δ+ ◦ δ = δ always holds for any δ ∈ uco(C), we
prove that the key property which characterizes the right-adjoint of an upper closure,
δ ◦ δ+ = δ+, cannot be weakened.

Theorem 5 Let C a complete lattice. Let δ ∈ uco(C), the following facts hold

1. δ+ ∈ lco(C);
2. δ+ ◦ δ = δ;
3. δ ◦ δ+ = δ+ if and only if δ additive.

Proof 1. Let us prove that δ+ is monotone. Let x, y ∈ C such that x ≤ y: then{
z
∣∣ δ(z) ≤ x } ⊆ {

z
∣∣ δ(z) ≤ y }, which implies that

∨{
z
∣∣ δ(z) ≤ x } ≤∨{

z
∣∣ δ(z) ≤ y }, namely δ+(x) ≤ δ+(y).

Note that
{
y
∣∣ δ(y) ≤ x

}
⊆
{
y
∣∣ y ≤ x } hence

δ+(x) =
∨{

y
∣∣ δ(y) ≤ x

}
≤
∨{

y
∣∣ y ≤ x } = x.

Therefore δ+ is a lower operator. Finally, we have just proved that δ+δ+(x) ≤
δ+(x). Let w ∈ C such that δ(w) ≤ x: then δ(w) ∈

{
z
∣∣ δ(z) ≤ x }. Hence,

δ+(x) =
∨{

z
∣∣ δ(z) ≤ x } ≥ δ(w), i.e., w ∈

{
z
∣∣ δ(z) ≤ δ+(x)

}
. We, there-

fore, proved that
{
z
∣∣ δ(z) ≤ x } ⊆ { y ∣∣ δ(y) ≤ δ+(x)

}
. But then

δ+(x) =
∨{

z
∣∣ δ(z) ≤ x } ≤∨{

y
∣∣ δ(y) ≤ δ+(x)

}
= δ+δ+(x).

2. δ+(δ(x)) = δ+(δ(x)) =
∨{

δ(z)
∣∣ δ(z) ≤ δ(x)

}
= δ(x).

3. First of all, by Equation 2.1 (Theorem 1) δ+(x) = δ+(x) =
∨{

δ(y)
∣∣ δ(y) ≤ x

}
.

If δ is additive then

δ(
∨{

δ(y)
∣∣ δ(y) ≤ x

}
) =

∨{
δδ(y)

∣∣ δ(y) ≤ x
}

(by idempotence of δ)
=
∨{

δ(y)
∣∣ δ(y) ≤ x

}
Suppose that the equality holds. Recall that, δ ∈ uco is additive if and only if for
allZ ⊆ δ(C) we have δ(

∨
Z) =

∨
Z. Note that

∨
Z ≥

∨{
δ(y)

∣∣ δ(y) ≤
∨
Z
}

and that

δ(y) ∈ Z ⇒ δ(y) ≤
∨
Z ⇒ δ(y) ∈

{
δ(y)

∣∣ δ(y) ≤
∨
Z
}

Namely, Z ⊆
{
δ(y)

∣∣ δ(y) ≤
∨
Z
}

and
∨
Z ≤

∨{
δ(y)

∣∣ δ(y) ≤
∨
Z
}

. So
we have the equality. Therefore we can conclude that

δ(
∨
Z) = δ(

∨{
δ(y)

∣∣ δ(y) ≤
∨
Z
}

) =
∨{

δ(y)
∣∣ δ(y) ≤

∨
Z
}

=
∨
Z

where the second equality holds by hypothesis and because δ+ = δ+.
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Let Fix(δ) def=
{
x ∈ C

∣∣ δ(x) = x
}

, we observe that Fix(δ) ⊆ Fix(δ+) if and
only if δ+ ◦ δ = δ. Analogously, Fix(δ) ⊇ Fix(δ+) if and only if δ ◦ δ+ = δ+. This
implies that, if δ+ is the right adjoint of δ, when δ is additive, then Fix(δ) = Fix(δ+).
We proved in Theorem 5 that, if δ is not additive, namely only join-uniform by con-
struction, δ ◦ δ+ = δ+ does not hold, namely Fix(δ) ( Fix(δ+). We are interested
in characterizing the points that are in Fix(δ+) r Fix(δ), namely the points added by
δ+. In particular, we observe that these points are precisely those elements making
δ not additive. This provides a further characterization of disjunctive completion as
pseudo-adjoint of an upper closure operator.

Lemma 1 Let δ ∈ uco(C): then δ+ = (
b

(δ))+.

Proof We have to prove that x ∈ Fix(δ+) if and only if x ∈ Fix((
b

(δ))+). Since
g-closed upper closures are trivially additive, then

b
(δ) admits right adjoint and by

Theorem 1-(1) we have that Fix(
b

(δ)) = Fix((
b

(δ))+). Moreover, we observed
above that Fix(δ) ⊆ Fix(δ+) , then

x ∈ Fix(δ+) iff x ∈ Fix(δ) ∨ ∃y. x =
∨{

δ(z)
∣∣ δ(z) ≤ y }

iff x ∈ Fix(δ) ∨ ∃Y ⊆ Fix(δ). x =
∨
Y

iff x ∈ Fix(
b

(δ)) = Fix((
b

(δ))+)

Proposition 2 Let δ ∈ uco(C), let us define δ̃ ∈ uco(C) by the set of fix-point
Fix(δ̃) def= Fix(δ+), then δ̃ =

b
(δ).

Example 1 Consider the small lattice in the picture on the left. The circled points are
the fix-points of an upper closure δ. On the right, the circled points are the fix-points
of δ+ = δ+ which, as we can observe, adds the points of disjunctive completion,
making the closure additive.

Let’s collect all the results (and their duals) concerning pseudo-adjoints of closure
operators in Table 1 and Table 2.

4 Making (lower) closures uniform

We aim at characterizing the set of all uniform lower closures. We will follow [4] and
we provide a characterization of uniform closures as images of suitable transformers
on lower closure operators.
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JOIN-UNIFORM ADDITIVE

δ ∈ uco(C)
δ+ ∈ lco(C) δ+ ◦δ = δ

δ+ = (
b

(δ))+
δ◦δ+ = δ+

(〈δ, δ+〉 GC)

η ∈ lco(C)
η+ ◦η = η+

η+ ◦η = η+

η◦η+ = η
η+ ∈ uco(C,≤η)
〈η, η+〉 GC on ≤η

η◦η+ = η
η+ ∈ uco(C)
(〈η, η+〉 GC)

Table 1 Properties of right pseudo-adjoints of closures

MEET-UNIFORM CO-ADDITTIVE

δ ∈ uco(C)
δ− ◦δ = δ−
δ− ◦δ = δ−

δ◦δ− = δ
δ− ∈ lco(C,≤δ)
〈δ−, δ〉 GC on ≤δ

δ◦δ− = δ
δ− ∈ lco(C)
(〈δ−, δ〉 GC)

η ∈ lco(C)
η− ∈ uco(C) η− ◦η = η

η− = M(η)−
η◦η− = η−

(〈η−, η〉 GC)

Table 2 Dual properties of left pseudo-adjoints of closures

In [10, Theorem 4.2] the authors proved that the subdomain of uco(C) of all the
meet-uniform closures is a Moore family of uco(C). This fact says that this domain
forms itself a closure operator on uco(C). Dually, on lower closures, this means that,
for any η ∈ lco(C), the best join-uniform lower approximation⊔{

δ ∈ lco(C)
∣∣ δ v η, δ is join-uniform

}
exists. At this point, we precisely focus on this transformer mapping any lower clo-
sure operator η into the greatest join-uniform lower closure operator smaller than η.
In the following, if η ∈ lco(C), we denote as η(Z) = const the fact ∃w ∈ η . ∀z ∈
Z . η(z) = w and as Z 6≥ x the fact ∀z ∈ Z . z 6≥ x.

Theorem 6 Let η ∈ lco(C): then η is join-uniform if and only if

∀x ∈ η . ∀Z ⊆ C .
(

(η(Z) = const ∧ Z 6≥ x)⇒
∨
Z 6≥ x

)
,

Proof

(⇒) We prove that if ∃x ∈ η . ∃Z ⊆ C . (η(Z) = const ∧ Z 6≥ x ∧
∨
Z ≥ x) then

η is not join-uniform. We know that Z is such that ∃w ∈ η . ∀z ∈ Z . η(z) = w,
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this means that ∀z ∈ Z . z ≥ w. Moreover the hypothesis
∨
Z ≥ x implies, by

monotonicity, that η(
∨
Z) ≥ x and if η(

∨
Z) = w then we would have w ≥ x

and this is absurd because otherwise we would have ∀z ∈ Z . z ≥ x, which
is avoided by the hypotheses on x and Z. Therefore η(

∨
Z) 6= w, namely the

closure η is not join-uniform.
(⇐) We prove that if η is not join-uniform then ∃x ∈ η . ∃Z ⊆ C . (η(Z) = const ∧

Z 6≥ x ∧
∨
Z ≥ x). Consider w ∈ η and Z =

{
z ∈ C

∣∣ η(z) = w
}

, then ∀z ∈
Z .z ≥ w and this implies that

∨
Z ≥ w. By monotonicity this implies η(

∨
Z) ≥

w. We supposed that η was not join-uniform, this means that η(
∨
Z) > w, i.e.

there isn’t the equality. Let x = η(
∨
Z), therefore

∨
Z ≥ η(

∨
Z) = x. Moreover

we have ∀z ∈ Z . z 6≥ x, otherwise if it exists z ∈ Z such that z ≥ x we would
have also η(z) = w < x = η(x) by definition of x, which is absurd for the
monotonicity of η. All these facts imply that Z is such that η(Z) = const, by
construction, and Z 6≥ x and

∨
Z ≥ x for what we have just proved.

This theorem implies that we can isolate a set of fix-points in η(C) which represent
the closest join-uniform closure with respect to η.

(η)M def=
{
x ∈ η

∣∣∀Z ⊆ C . ((η(Z) = const, Z 6≥ x)⇒
∨
Z 6≥ x)

}
Lemma 2 If η ∈ lco(C) then (η)M ∈ lco(C) and

(η)M =
⊔{

δ ∈ lco(C)
∣∣ δ v η, δ is join-uniform

}
.

Proof Consider a set Y of elements y such that y ∈ (η)M(C), we have to prove that∨
Y ∈ (η)M(C). The hypotheses imply that for each y ∈ Y we have that ∀Z ⊆

C . (η(Z) = w ∧ Z 6≥ y) ⇒
∨
Z 6≥ y. Consider Z ⊆ C such that η(Z) = const

then we prove that Z 6≥
∨
Y implies

∨
Z 6≥

∨
Y . Therefore suppose Z 6≥

∨
Y and

suppose
∨
Z ≥

∨
Y , this condition implies that ∀y ∈ Y .

∨
Z ≥ y. Consider now the

condition Z 6≥
∨
Y . This means that ∀z ∈ Z .z 6≥

∨
Y , i.e. ∀z ∈ Z .∃y ∈ Y .z 6≥ y.

If we prove that, with these hypotheses, ∃y ∈ Y . ∀z ∈ Z . z 6≥ y, i.e Z 6≥ y,
than we would have an absurd because we have

∨
Z ≥ y and that Z 6≥ y when the

hypothesis was that y ∈ (η)M(C). Suppose that ∀y ∈ Y . ∃z . z ≥ y. Then we know
that ∀z ∈ Z . z ≥ w and by monotonicity this implies that w = η(z) ≥ η(y) = y.
Therefore ∀y ∈ Y .w ≥ y and this implies that ∀z ∈ Z . z ≥ w ≥

∨
Y , by definition

of
∨

, that is absurd by the hypothesis made. This means that ∃y ∈ Y .∀z ∈ Z .z 6≥ y,
that for the absurd described above implies that

∨
Z 6≥

∨
Y . Indeed if Z 6≥

∨
Y then∨

Z 6≥
∨
Y , so

∨
Y ∈ (η)M(C).

Finally, we can prove that (η)M is the greatest closure join-uniform smaller than η.
Clearly, by construction and by Theorem 6, (η)M is join-uniform. Suppose that there
exists η′ v η join-uniform and (η)M v η′. This means that η′ has more fix-points than
(η)M, i.e., ∃x ∈ η′(C) ⊆ η(C) such that x′ /∈ (η)M. Now, since η′ is join-uniform,
by Theorem 6 x is such that ∀Z ⊆ C . ((η(Z) = const, Z 6≥ x)⇒

∨
Z 6≥ x), but

by construction all the elements in η(C) satisfying this property are in (η)M, hence
x ∈ (η)M, namely η′ = (η)M.

Theorem 7 η ∈ lco(C) is join-uniform if and only if (η)M = η.
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Proof Trivially, we have that if η is join-uniform then it is image of itself. Indeed, by
Theorem 6 all the elements of η satisfy the condition imposed by (η)M. Analogously
for each η ∈ lco(C) we have that (η)M is join-uniform, again by Theorem 6. More-
over, (η)M is the most concrete join-uniform closure contained in η. Indeed, if there
exists another join-uniform closure operator η′ contained in η such that η′ v (η)M,
then there exists at least one element x ∈ η′ such that x /∈ (η)M. By Theorem 6, this
means that x ∈ (η)M and consequently η′ cannot be join-uniform.

Join-uniformity can be characterized on join-irreducible elements. Recall that x is
join-irreducible if x 6= ⊥ and x = y ∨ z implies that either x = y or x = z.

Theorem 8 (η r (η)M) ∩ Jirr(η) = ∅ ⇔ η = (η)M.

Proof Consider η 6= (η)M, namely ∃x ∈ η such that Z 6≥ x and
∨
Z ≥ x. Consider

Y ⊆ Jirr(η) such that x =
∨
Y . We have to prove that there exists y ∈ Y such that

Z 6≥ y. Suppose that ∀y ∈ Y .Z ≥ y, namely ∀z ∈ Z.∀y ∈ Y .z ≥ y. Letw = η(Z),
we can note that z ≥ y implies, by monotonicity of η, that w = η(z) ≥ η(y) = y,
and this holds for each y ∈ Y . We supposed that x =

∨
Y , so by definition of

∨
we have that w ≥ x, but we know that for each z we have z ≥ w, this would mean
that ∀z ∈ Z . z ≥ x, which is avoided by the hypotheses on Z and x. Therefore
∃y ∈ Y . Z 6≥ y. Finally, if we consider this y then we have that

∨
Z ≥ x ≥ y, i.e.

we have the thesis.
On the other hand, if η = (η)M then ηr (η)M = ∅ and therefore the intersection is ∅.

Example 2 Consider the following lattice where the circled points, � and }, are the
points in the lower closure η. η is clearly not join-uniform due to y. y is precisely the
element to be removed to make η a join-uniform closure.
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