
Abstract Code Injection
A Semantic Approach Based on Abstract Non-Interference

Samuele Buro and Isabella Mastroeni

Department of Computer Science, University of Verona
Strada le Grazie 15, 37134 Verona, Italy
{samuele.buro,isabella.mastroeni}@univr.it

Abstract. Code injection attacks have been the most critical security
risks for almost a decade. These attacks are due to an interference
between an untrusted input (potentially controlled by an attacker) and
the execution of a string-to-code statement, interpreting as code its
parameter. In this paper, we provide a semantic-based model for code
injection parametric on what the programmer considers safe behaviors.
In particular, we provide a general (abstract) non-interference-based
framework for abstract code injection policies, i.e., policies characterizing
safety against code injection w.r.t. a given specification of safe behaviors.
We expect the new semantic perspective on code injection to provide a
deeper knowledge on the nature itself of this security threat. Moreover,
we devise a mechanism for enforcing (abstract) code injection policies,
soundly detecting attacks, i.e., avoiding false negatives.

1 Introduction

Security is an enabling technology, hence security means power. The correct
functionality and coordination of large scale organizations, e-government, web
services, in general, relies on confidentiality and integrity of data exchanged
between different agents, and on the proper functioning of the applications. These
features, almost unavoidable, become real opportunities for the attackers seeking
to disclose and/or corrupt valuable information or, more widely, to break security.

According to OWASP (Open Web Application Security Project) [1], the most
critical security risks have been application level injections attacks for almost a
decade [21,22,23]. The reason of their success and their spread is twofold: An easy
exploitability of vulnerabilities and a severe impact of attacks. In other words,
code injection bugs allow attackers to cause extensive damage for minimum
effort. Despite this, organizations often underestimate their consequences, and
the inevitable result has been a recent history full of this kind of attacks [29].

Several approaches [3,10,11,18,19,24,28,30,31], have been studied for prevent-
ing code injection, but only few focus on the harder problem of defining it [3,24,28].
Indeed, the intuition of what can be classified as an injection attack is quite
straightforward, and it is clearly provided in the following informal definition [23]:

“Injection occurs when user-supplied data is sent to an interpreter as part of a
command or query. Attackers trick the interpreter into executing unintended

<?php

$id = $argv[0];

$query = "SELECT * FROM users WHERE id = $id;";

$result = pg_query($conn, $query);

?>

<html><body>

<%

String user =

request.getParameter("user");

%>

<h1>Welcome <%= user %></h1>

</body></html>

Fig. 1: Example SQLi in a PHP program and of XSS in a JSP page.

independently from the web application to analyze, potentially losing the accuracy
of the mechanism, when not even the completeness with respect to the definition
above.

The problem: Defining code injection. As introduced before, code injection
is a wide category of attacks on applications where an attacker exploits the
presence of an untrusted input (i.e., an application’s input whose source is
potentially not trusted and therefore controlled by an attacker) in order to inject
code (unintended commands) that will be executed by an interpreter, altering
the course of execution.

The main types of attacks in this category are undoubtedly the SQL injection
(SQLi) and the cross-site scripting (XSS) attacks, where the attacker attempts
to execute an arbitrary query on a database server or client-side code (e.g.,
JavaScript) in the user’s browser, respectively. Consider, for instance, the program
in Fig. ??: the attacker is able to extract the whole content of the users table
by injecting the value "3 OR 1 = 1" in the untrusted input argv[0], making the
query condition a tautology. Whereas, the program in Fig. 1 is vulnerable to XSS
attacks: by injecting, for example, the string "<script>alert(’message’)</script>",
an attacker can execute his own JavaScript code in the victim’s browser.

SQLi and XSS are not the only kind of code injection attacks: eval-injection,
command injection, XPath injection, remote file injection, etc., also play a central
role in this category; examples of some of them will be discussed in the course of
the paper.

Despite the multi-faceted nature of code injection, all these attacks present a
key common feature: a code executed by an interpreter which is closely related

<?php

$id = $argv[0];

$query = "SELECT * FROM users WHERE id = $id;";

$result = pg_query($conn, $query);

?>

<html><body>

<%

String user =

request.getParameter("user");

%>

<h1>Welcome <%= user %></h1>

</body></html>

Fig. 1: Example SQLi in a PHP program and of XSS in a JSP page.

independently from the web application to analyze, potentially losing the accuracy
of the mechanism, when not even the completeness with respect to the definition
above.

The problem: Defining code injection. As introduced before, code injection
is a wide category of attacks on applications where an attacker exploits the
presence of an untrusted input (i.e., an application’s input whose source is
potentially not trusted and therefore controlled by an attacker) in order to inject
code (unintended commands) that will be executed by an interpreter, altering
the course of execution.

The main types of attacks in this category are undoubtedly the SQL injection
(SQLi) and the cross-site scripting (XSS) attacks, where the attacker attempts
to execute an arbitrary query on a database server or client-side code (e.g.,
JavaScript) in the user’s browser, respectively. Consider, for instance, the program
in Fig. ??: the attacker is able to extract the whole content of the users table
by injecting the value "3 OR 1 = 1" in the untrusted input argv[0], making the
query condition a tautology. Whereas, the program in Fig. 1 is vulnerable to XSS
attacks: by injecting, for example, the string "<script>alert(’message’)</script>",
an attacker can execute his own JavaScript code in the victim’s browser.

SQLi and XSS are not the only kind of code injection attacks: eval-injection,
command injection, XPath injection, remote file injection, etc., also play a central
role in this category; examples of some of them will be discussed in the course of
the paper.

Despite the multi-faceted nature of code injection, all these attacks present a
key common feature: a code executed by an interpreter which is closely related

Fig. 1: Example of SQLi in a PHP program and of XSS in a JSP page.

commands via supplying specially crafted data. Injection flaws allow attackers
to create, read, update, or delete any arbitrary data available [. . .].”

Unfortunately, this intuitive definition does not help in formalizing a general
definition of code injection since there is a clear problem in formalizing the
concept of unintended commands. Moreover, this notion may depend on several
factors, e.g., the kind of application, the environment of execution, etc.

The essence of code injection. Code injection is a wide category of attacks
where an attacker exploits the presence of an untrusted input (i.e., an input
whose source is potentially untrusted) for injecting code (unintended commands)
that will affect the execution of a string-to-code statement (which interprets as
code its parameter), altering the output behavior of the application.

The main types of attacks in this category are undoubtedly SQL injection
(SQLi) and cross-site scripting (XSS) attacks. In SQLi the attacker attempts to
execute an arbitrary query on a database server. An example is given on the left
in Fig. 1 where the attacker is able to extract the whole content of the users table
by injecting the value "3 OR 1 = 1" in the untrusted input argv[0], making the
query condition a tautology. In XSS the attacker attempts to execute a client-side
code (e.g., JavaScript) in the user’s browser. In the program on the right in
Fig. 1, an attacker can execute his own JavaScript code in the victim’s browser
by injecting, for example, the string "<script>alert(‘message’)</script>". Other
kinds of code injection attacks such as command injection, eval-injection, XPath
injection, remote file injection, etc., also play a central role in this category.

Despite the multi-faceted nature of code injection, all these attacks present a
key common feature: A code executed by an interpreter which is dependent on the
value of an untrusted input, that alters the intended semantics of the application,
making the execution unsafe.

Up to date solutions for facing code injection. The prevention techniques
against code injection are a well-studied topic of applications security, and they can
be classified into two categories: The techniques that follow an industrial/technical
approach and those based on formal methods.

In the former case, applications are made secure by validating inputs (escaping,
whitelists, blacklists, etc., of values), by parametrizing queries (i.e., by separating

the parameters binding from the code compilation — mainly used in the SQLi
context) and/or by using other ad hoc mechanisms. Even though they provide
some degree of security and robustness to programs, they suffer from well-known
flaws [2,10,13,18,30]. Moreover, they do not aid the programmers through the
process of securing applications.

In the latter case, there are several formal approaches claimed to be sound
and/or complete w.r.t. a given notion of code injection [28,31,10,24]. The majority
of them are mainly focused on the SQLi attacks than on the broader problem of
code injection, and they rely on dynamic taint analysis algorithms [11,19,24,31] or
parsing trees [4,28] in order to detect alterations of the syntactic queries structure
on the basis of fixed policies. To the best of our knowledge, the works that mainly
rely on the problem of defining code injection are [3,24,28]. All of them provide a
syntactic-based notion of code injection and the two most related to our approach
are [3,24]:

• In [3], the core idea is to dynamically mine the programmer-intended query
structure on any input, and to detect attacks by comparing them against the
intended query structure;

• In [24], an application’s output is considered a code injection attack if there
exists at least one tainted symbol which is code, i.e., it is not a fully evaluated
value.

It is worth noting that these definitions are indeed specific instances of the
informal definition given in the introduction. In particular, both fix a precise
notion of what a programmer could consider as unintended commands . This loss
of generality is clearly useful in practice, since it provides a decidable and easy
way to detect potential code injection attacks, but it may reduce flexibility, since
the programmer might need to weaken or strengthen the fixed notion, depending
of the environment of execution of developed applications.

Our solution: A semantic-based approach. In this paper, we propose to
shift these syntactic notions towards a semantic model of code injection — as
suggested in [24] — in order to broaden the generality of the definition.

The key point of the whole approach we propose is based on a simple observa-
tion: Each time an expression e is executed in a string-to-code statement (e.g., in
a query execution, in an eval statement, . . .), there is a set of states1 such that the
execution of e in one of these states leads the program to an unintended/unsafe
state. Since we are focusing on code injection, we can restrict this set only to those
states depending on at least one injected (untrusted) value. In other words, we
have injection whenever there is a program statement whose parameters depend
on an untrusted input and whose execution causes an unsafe output behavior ,
namely the attacker can lead the program execution to show unsafe behaviors.
For instance, in the code on the left of Fig. 1, the query execution statement
pg_query depends on the untrusted input argv[0].
1 Intuitively, think of a state as all the information concerning the program execution
at each step of computation.

This kind of data dependency is precisely what is called interference in
language-based security [9,26]. This means that, safety against code injection can
be seen as a non-interference policy. Being more precise, it is clear that we do
not care to model any possible interference, since any dynamic code is expected
to depend on the input in some way. There is a potential security breach only
when the dependency causes a variation between what is considered safe and
what is considered unsafe. In this sense, the right non-interference framework to
consider is abstract non-interference [8], where the interference between properties
of inputs and properties of outputs is studied. Hence, we define abstract code
injection policies parametric on what the programmer considers safe output
behaviors.

It is clear that, if we could provide a universal characterization of what is a
safe output behavior (holding for all programs, for all execution environments), we
could design a tool enforcing (abstract) code injection policies for any program.

Unfortunately, in real settings, different programs, or even the same program
in different execution contexts, may require different instances of the policy. Con-
sider a music streaming web application Pmusic with premium and free users. The
first ones have access to both copyright and copyright-free music, while the second
ones can only listen to copyright-free songs. In order to encourage free users to buy
premium subscriptions, the programmers allow them to add a copyrighted song in
their music library once per month, chosen from a list of top five hits. Suppose the
user chooses the first song and its code number (e.g., 83) is submitted to the web ap-
plication as a GET parameter: https://webappmusic.com/load_library.php?choice=83.
To load user’s library, the web application executes the following query where the
variable $free_codes_list contains the codes of all the copyright-free songs and
the variable $user_choice contains the code 832:

SELECT * FROM songs WHERE code IN ($free_codes_list, $user_choice)

�
SELECT * FROM songs WHERE code IN (5, 3, 2, 54, 32, 21, 12, ..., 83)

If the GET parameter choice is not validated, an evil user can inject an arbitrarily
long list of values, loading more than one song in his/her library, for instance

SELECT * FROM songs WHERE code IN (5, 3, 2, 54, 32, 21, 12, ..., 83, 43, 23, ...)

Consider now a web application Pdoc allowing users to download documents
from a list of pdf files. An user provides the documents’ codes he/she wishes
to download (e.g., 2, 23, 6) and an HTTP request is sent to the web applica-
tion: https://webappdoc.com/download.php?doc[]=2&doc[]=23&doc=6. Suppose the user’s
choice is stored in the PHP variable $doc_list and the following query is executed:

SELECT * FROM docs WHERE code IN ($doc_list)

�
SELECT * FROM docs WHERE code IN (2, 23, 6)

2 The highlighted code is the injected one.

In this case, a list of values has been injected but, contrarily to the Pmusic scenario,
it is not to be considered as an attack, since the programmer’s intention and the
context are different. It follows that every model fixing a notion of unintended
commands will provide a wrong answer to, at least, one of the two examples.
Even worse, let us change the first example by supposing that the programmers
decide to allow the user to choose two songs: A list of two songs now has not
to be considered an attack. These trivial examples show how, even in the same
context, the programmer’s intention, and therefore what is unintended, may vary.

It is worth noting that a common feature in these examples is that, for
controlling code injection we have to partition inputs into two subsets: The set
of inputs producing safe output behaviors after the query execution, and all
the others, generating unsafe behaviors. With these considerations in mind, the
model we propose is based on the following key points:

1. Abstract code injection policies can be defined in terms of an output character-
ization of safe output behaviors, potentially determined by the programmer;

2. If the program does not satisfy this policy, it means that there are values
of untrusted inputs able to change the output (observable) behavior of the
program, making it unsafe. We call safe inputs those always leading to safe
output behaviors;

3. The abstract non-interference framework [8] allows us to characterize the
partition of inputs leading to different (safe/unsafe) output behaviors. This
suggests us what should be verified on the input of the application.

At this point, in order to control code injection vulnerabilities we propose to
go through two phases: First, we characterize the abstract code injection policy to
enforce, for instance by asking the programmer to specify safe inputs and/or safe
output behaviors; Second, we enforce the chosen policy. The latter phase could
be tackled both statically, by manually patching the program (but in this case
we lose flexibility), or by monitoring the program, i.e., by dynamically checking
whether the executed inputs are safe, w.r.t. some decidable characterization.

Hence, we propose a static analysis for aiding the programmer to understand
when a safe input specification is necessary, and consequently asking the pro-
grammer to annotate the program with information characterizing the abstract
injection policy to enforce. Then we propose the design of a dynamic analysis, i.e.,
a monitor checking whether the execution violate the abstract injection policy.

2 Background

The core language WhileFun. In order to show our approach, we define
the core language WhileFun that encloses all the important features from the
code injection point of view. WhileFun is dynamically typed, based on a classic
While language augmented with functions. A valid WhileFun program (denoted
by P ∈WhileFun) consists in a main function (the entry point, non-callable by
the code) and eventual user-defined functions. We assume that only a subset of
the parameters of the main function may be untrusted inputs. Furthermore, we
introduce the syntactic category str2code of string-to-code statements:

str2code ::= exec(exp) SQL query execution (SQL injection)

| eval(exp) Code execution (eval-injection)

| system(exp) Command/Shell execution (Command injection)

| show(exp) Webpage displaying (XSS)

All these commands send the evaluated expression exp (a string of code) to the
corresponding interpreter. For the sake of simplicity, we assume that str2code
commands are only allowed in the main function. The language syntax and the
semantics of the other commands are standard.

Program semantics. Vars denotes the set of program and environment vari-
ables3, and Val the set of values. L denotes the set of line numbers (program
points). Let l ∈ L, and Stm(l) be the statement at program line l. For a given
program P , we denote by LP ⊆ L the set of all and only the line numbers
corresponding to statements of the program P , i.e., LP =

{
l ∈ L

∣∣Stm(l) ∈ P
}
.

A program state σ ∈ S is a pair 〈nk, µ〉 where n is the executed program
point, k is the number of times the statement Stm(n) has been reached so far (in
the following we will call nk execution point), µ is the memory [17]. A memory
µ ∈Mem is a map µ : Vars→ Val mapping variables to values such that µ(x) is
the value of x in µ, while µ[x← v] is the memory µ′ such that ∀y 6= x.µ′(y) = µ(y),
while µ(x) = v. For simplicity, we denote by Valx the set of values over which x
can range, i.e., the domain of x. Furthermore, we define the equivalence relation
=x between two memories µ and µ′: µ =x µ

′ ⇐⇒ ∀y 6= x. µ(y) = µ′(y).
A state trajectory τ ∈ T = S∗ ∪ Sω is a sequence of program states through

which a program goes during the execution. Any initial state has nk = 11, i.e., the
set of initial states is Sι =

{
〈11, µ〉

∣∣µ ∈Mem
}
. The state trajectory obtained

by executing program P from the input memory µ is denoted by 〈|P |〉(〈11, µ〉) and
〈|P |〉nk

(〈11, µ〉) is the prefix of 〈|P |〉(〈11, µ〉) whose last state has execution point
nk. The denotational semantics of P ∈WhileFun is the function JP K : S → S

providing the I/O characterization of program semantics. Let 〈11, µι〉 ∈ Sι, the
denotational semantics is defined as JP K(〈11, µι〉) = σa where σa is the last state
of 〈|P |〉(〈11, µι〉) if it is finite, ⊥ otherwise [6]. We similarly define JP Kn

k

(〈11, µι〉),
the denotational semantics w.r.t. to the execution point nk.

Static Single Assignment (SSA) SSA [7] is a well known code representation
where the def-use chains are made explicit. This is an intermediate non-executable
representation of code, used by compilers for simplifying some static analyses. In
the SSA form, each assignment generates a new unique name (usually denoted
by a numerical subscript) for the defined variable, and all the uses reached by
that definition are renamed. An example is shown in Fig. 2a where the program
on the left is rewritten in the one on the right. If different definitions reach the
3 Without loss of generality, we assume that the state of the str2code interpreter (for
instance, the state of the database when the interpreter is the database server) is
modeled in the set of variables Vars. This means that the memory µ contains all the
observable information concerning both the program and environment.

V := 4 V1 := 4
Z := V + 5 Z1 := V1 + 5
V := 6 V2 := 6
W := V + 7 W1 := V2 + 7

(a) Linear SSA transformation.

if (P) if (P)
then { V := 4 } then { V1 := 4 }
else { V := 6 } else { V2 := 6 }

V3 := φ(V1, V2)

(b) SSA transformation with φ-function.

Fig. 2: Examples of SSA program representations [7].

same use of a given identifier, a special form of assignment, called φ-function,
is added: This is a special assignment identifying the join of several definitions
of the same identifier (an example is given in Fig. 2b). The presence of these
φ-functions makes the code not-executable but there exist standard techniques
for reconstructing executable programs from the SSA form: By replacing the
φ-functions with assignment operations, and by dropping subscripts [7].

Reaching definitions analysis (RD). Reaching definitions analysis (RD for
short), determines the definitions potentially reaching each use of an identifier.
In a control flow graph (CFG), a definition reaches a node if there is a path from
the definition to the node, along which the defined variable is never redefined.
On the SSA form this analysis becomes trivial since the reaching definition is
precisely the unique definition of the used identifier (see [20] for details).

3 Defining Abstract Code Injection

In this section, we define the notion of abstract code injection policy, which
consists in a code injection policy parametric on the programmer characterization
of safe/unsafe output behaviors. More specifically, a code injection vulnerability
is a potential interference between an untrusted input and the execution of
a string-to-code statement. We say that a program does not suffer of a code
injection vulnerability if it enforces a code injection policy, meaning that any
code injection vulnerability in the program is avoided.

First of all, let us define formally code injection policies in terms of non-
interference. In particular, we define a notion of non-interference between an input
and a program point, e.g., the program point of the string-to-code statement. We
recall that JP Kn

k

(see Sect. 2) computes the state at the execution point nk.

Definition 1 (NIxP(n)). Let P ∈WhileFun be a program, x be an input of P
and n ∈ LP . We say that x is non-interfering at the program point n of P iff

∀k ∈ N . NIxP(n, k)

where, for any k ∈ N, NIxP(n, k) (x non-interfering at the execution point nk in
P) holds iff

µ0 =x µ
′
0 =⇒ JP Kn

k

(〈11, µ0〉) = JP Kn
k

(〈11, µ′0〉)

1 f(s) { 3ret s };

2 g(s) { 4ret "1" };

4 main(s) {

5 1exec("SELECT * FROM t "

6 + "WHERE f = " + f(s));

7 2exec("SELECT * FROM t "

8 + "WHERE f = " + g(s))

9 }

(a) Program P source code.

b3 s0 := ? 1 b4 ret s0

b5 s0 := ? 1 b6 ret "1"

b0 s0 := ?

b1 exec("SELECT * FROM t "
+ "WHERE f = " + f(s0))

b2 exec("SELECT * FROM t "
+ "WHERE f = " + g(s0))

f

g

main

(b) CFG of the SSA form of P .

b1

f(s0)

b4

b3

b1

b0

b2

g(s0)

b6
(c) Trees
generated by
Paths.

b1

b4

b3

b0
(d)
Cleaned
trees.

Fig. 3: Steps of static analysis algorithms.

Intuitively, this notion states that, during the execution of P , whenever the
execution reaches the program point n, even if we change the initial value of x,
the observable behavior of P does not change. It is self-evident that an attacker
cannot perform a successfully injection attack on x if the above definition holds
for all the program points where a string-to-code statement is executed.

For instance, consider the string-to-code statement 1exec("SELECT * FROM t

WHERE f = " + f(s)) in Fig. 3a. There exist two values v1 = 1, v2 = 2 generating
two different queries (observable behaviors) after its execution. On the other hand,
if we consider the statement 2exec("SELECT * FROM t WHERE f = " + g(s)), then for
each v1, v2 ∈ Vals we have that JP K2

1

(〈11, { s→ v1 }〉) = JP K2
1

(〈11, { s→ v2 }〉)
since g(s) is a constant function.

Exactly as it happens in language-based security, this notion of non-interference
(and therefore of code injection policy) is in general too strong, since it does
not allow us to really distinguish between safe and potentially unsafe code. In
particular, this definition says that the only safe code is the one not depending on
untrusted inputs, which is in general not acceptable: String-to-code statements,
such as query executions, code evaluations, etc., have to be dependent on the
user’s input. For this reason, we need to formalize code injection parametrically
on what the programmer considers a safe (output) behavior and/or which are
the programmer (expected) safe inputs, leading only to safe outputs.

Formally, let O ⊆Mem be the set of all the output states considered safe by
the programmer after the execution of an string-to-code statement (O is the set
of safe output behaviors). We can define the characteristic map of O as

ρO(〈nk, µ〉) =
{
true if µ ∈ O

false otherwise

At this point we can weaken Def. 1 defining abstract code injection policies,
parametric on the programmers characterization of safe outputs O as done for
abstract non-interference [8,14,15].

Definition 2 (ANIxP(O, n)). Let P ∈WhileFun be a program, x be an input
of P , n ∈ LP and O be the set of the safe output behaviors. We say that x is
non-interfering w.r.t. O at the program point n in P iff

∀k ∈ N . ANIxP(O, n, k)

where, for any k ∈ N, ANIxP(O, n, k) (x is (abstract) non-interfering w.r.t. O
with the execution point nk in P) iff

µ0 =x µ
′
0 =⇒ ρO(JP Kn

k

(〈11, µ0〉)) = ρO(JP Kn
k

(〈11, µ′0〉))
We say that a program enforces an abstract code injection policy, w.r.t. a safe
output behaviors characterization O, if does not exist any untrusted inputs x and
string-to-code statements in P (at the program line n) such that ¬ANIx

P(O, n).
The abstract non-interference framework [8,14,15] allows us to move further

and to characterize an enforcing strategy when an abstract code injection policy
is not satisfied. It should be clear that also ANIx

P(O, n) is a too strong property,
in the sense that most “raw” programs cannot satisfy it, unless they show,
independently from the input, always the same kind of behavior (safe or unsafe).4
For all the other programs, where attackers have the possibility of exploiting an
untrusted input for leading to unsafe output behaviors, namely those vulnerable to
code injection, the abstract non-interference framework allows us to characterize
which variation of inputs causes the safe/unsafe variation of output behaviors.
In other words, in this framework it is possible to determine the input binary
partition for every input x (defined by the characterization function φx : Valx →
{true, false}) making the following equation to hold for each v1, v2 ∈ Valx [8,16]:

φx(v1) = φx(v2) =⇒ ρO(JP Kn
k

(〈11, µ0[x � v1]〉) = ρO(JP Kn
k

(〈11, µ0[x � v2]〉))

Valx

Mem

φx

¬φx

ρO

¬ρO

JP Knk
(〈11, µ0[x � v]〉)

v1

v2
JP Knk

(〈11, µ0[x � v1]〉)

JP Knk
(〈11, µ0[x � v2]〉)

Fig. 4: The bipartions induced by O.

Namely, for each pair of values for
x, both in the same equivalence
class of φx (φx(v1) = φx(v2) =
true or φx(v1) = φx(v2) = false)
the output behavior is always re-
spectively safe or unsafe. In Fig. 4
we depict the situation. All and
only the values in Valx, satisfying
φx leads the execution of P in nk
to satisfy ρO.

We can formally characterize the partition φx enforcing an abstract code
injection policy ANIx

P(O, n) (simply denoted φxO), as follows [8]:

∀v ∈ Valx . (φxO(v) ⇐⇒ ρO(JP Kn
k

(〈11, µ0[x � v]〉))) (1)
4 Note that, programs showing always unsafe behaviors are of no interest since they
are unsafe by nature, the attacker cannot force unsafety.

It is worth noting that, the set IxO =
{
v ∈ Valx

∣∣φxO(v) = true
}
is precisely the

language of safe inputs w.r.t. O, i.e., those inputs leading to safe outputs.
Note that, we call φxO an enforcing strategy, since it characterizes what we

should check in order to avoid code injection w.r.t. O. Once we know which
are the safe inputs, we could check whether the received inputs, during com-
putation, are safe. The possibilities are two: The programmer could patch the
code implementing all the checks, but this reduces the approach flexibility (if
O changes then the code has to be partially rewritten); The programmer could
augment the code with input annotations that can be checked dynamically. In
the following section, we propose a monitor-based approach. The choice is driven
by the idea of having a flexible enforcing technique, allowing the programmer
to change O without changing the code, but only the input annotations. The
approach we propose, allows us a further degree of flexibility, allowing us to fix
input annotations depending also on the dynamic execution path.

4 Enforcing Abstract Code Injection

In this section, we propose a technique for enforcing code injection policies
w.r.t. the programmer characterization of safe output behaviors, namely able to
recognize and stop executions potentially under a code injection attack.

In the previous section, we showed that starting from a characterization of
safe output behaviors O, we can characterize the language of safe inputs w.r.t. O,
i.e., IxO for each input x. Unfortunately, even if O is decidable, the definition of
IxO does not guarantee in general its decidability, hence we propose a technique
where the programmer provides a decidable language Ix of acceptable inputs
consistent with O, namely such that it satisfies the following inclusion

∀v ∈ Valx . (v ∈ Ix ⇒ ρO(JP Kn
k

(〈11, µ0[x← v]〉))
meaning that Ix ⊆ IxO. This inclusion guarantees soundness, in the sense that it
avoids false negatives, while it can admit false positives/alarms, since there are
safe inputs that are not in the acceptable input language.

In general, it should be clear, that both soundness and completeness of the
model w.r.t. real potential attack situations depend on the choice of O and of Ix.
An over-approximation of Ix or O (meaning that there are inputs or behaviors
erroneously labeled as safe) may lead to false negatives, missing some attack
situations and therefore losing soundness w.r.t. real potential attacks. An under-
approximation of Ix or O (meaning that there are safe inputs or behaviors labeled
as unsafe) may allow false positives/alarms, hence losing precision/completeness
of the approach w.r.t. real potential attacks. In the following, we will always
talk of soundness and completeness of the enforcing technique w.r.t. the chosen
model, i.e., w.r.t. the choice of all Ix and/or O.

4.1 A contract-based approach for enforcing abstract code injection

The approach we propose is based on the idea of asking the programmer the
language Ix of acceptable input values for each untrusted input. In order to

avoid useless contracts for untrusted inputs not leading to the execution of a
string-to-code statement, we aid the programmer providing him/her both the
inputs and the paths potentially vulnerable to code injection, and therefore
requiring him/her to fix a corresponding language of safe inputs Ix, that we call
contract. Then we propose to annotate the code with these contracts in order to
dynamically monitor the program execution for checking contracts only when
necessary, namely when a string-to-code statement, depending on an untrusted
input, is executed. The approach we propose is composed by three phases:

• Static analysis: The code is statically analyzed in order to extract the vul-
nerable paths, where some untrusted inputs interfere with the execution
of a string-to-code statement, and therefore where the programmer should
establish some input restrictions.

• Contracts request: Then we ask the programmer the contracts for all the
vulnerable paths, i.e., those paths where an untrusted inputs reaches a string-
to-code statements. This phase could be made automatic by providing a
general/unique definition of restrictions, independently from the particular
untrusted input and/or executed path. The result of this phase is an annotated
program with contracts.

• Monitor: Finally, the monitor is able to kill all the executions of an annotated
program, when a vulnerable path is executed and the involved untrusted input
violates its contract. In other words, the result of this phase is a monitored
program, namely the monitor specialized on the annotated program [12].

Basic notations. In literature, there are many variants of the CFG construction [5]:
We choose to build a single block intraprocedural CFG, in which we consider the
parameters of the main function to be potentially untrusted inputs (depicted in
red in Fig. 3b), while the parameters of the other functions are considered formal
parameters (depicted with a numerical superscript in Fig. 3b). We define the
notion of sub-path of a path b0 . . . bm in a CFG as a sequence of blocks p0 . . . pn
such that p0 = b0, pn = bm, and for each 0 < i < n if pi−1 = bk then ∃bj , j > k
such that pi = bj , intuitively, it is a path of the CFG where some intermediate
blocks are missing. Given a CFG C, if there exists a path p in it such that p′ is a
sub-path of p, then we say that p′ is sub-path of C.

In addition, we define the following domains: Blocks is the set of blocks in
the CFG, FunCalls is the set of all function calls (including arguments) in
the SSA form of the program, Fun is the set of the defined functions, Args is
the set of arguments of the function calls, and here Vars is the set of program
variables in the SSA form. We also use the following well known functions: Use
to compute the variables used and the function calls performed in a statement
or, by extension, in a block, Ret to compute the set of the returning points of a
given function, and Rd to compute the RD analysis. We call ground block any
block b such that Use(b) = ∅.

Trees is the set of trees whose nodes are either blocks, or calls, or ⊥k∈N values.
Let n be a tree node and T ⊆ Trees, the tree constructor is Tree(n,T) = 〈n : T〉
which, starting from a set of several trees T, builds one new tree with root n and

sub-trees those in T, i.e., it adds an edge (n,m) in 〈n : T〉 for each node m root
of a tree in T. 〈n〉 ≡ 〈n : ∅〉. On a tree T , we define the function Branches(T)
that returns the set of all the paths p, from the root to a leaf, in T , and the
function Reverse(p) that changes the direction of edges in the path p. We abuse
notation by calling Reverse also its additive lift to sets of paths.

4.2 Static phase and contract request

The purpose of the static phase is to detect where the information flows within
a program under analysis. In particular, we are interested in all the vulnerable
paths, i.e., those starting from an untrusted input and affecting a string-to-code
statement. We explain our approach and algorithms also by using as running
example the code in Fig. 3a.

CFG and SSA construction. Let P be the program under analysis. The first two
steps of the analysis consist in the construction of the program representation
that will be used for performing the analysis. First, we build the control flow
graph for each procedure f declared in the program (Cfg(f)) obtaining the
set C = {Cfg(f) | f procedure in P }. After that, in order to improve the
analysis (and, in particular, RD), we consider the SSA representation of each
CFG (see Sect. 2 for details), where each variable is defined only once. Let Ssa
be the function that computes the SSA form of a given CFG. We define the set
Cssa = {Ssa(C) | C ∈ C } representing the SSA form of the program P (for an
example, see Fig. 3b).

Trees construction. The trees construction is the core step of the static analysis:
For each block b containing a string-to-code statement, the function Paths
(Fig. 5) builds, backwards, the trees of potential execution paths, looking for the
vulnerable ones.

Paths is a function with two parameters: The first one is either a block
b ∈ Blocks, or a procedure call f(a) ∈ FunCalls, or a special value ⊥k (k ∈ N);
The second parameter is a history of function calls c = [c1, . . . , ck] (ε denotes the
empty history). A function call is a triple (b, f,a) consisting in the calling block b,
in the called function f , and in its sequence of actual parameters a = [a1, . . . , am].
Given a block b ∈ Blocks containing a string-to-code statement and an initial
empty sequence of calls c = ε, the function Paths tracks backward the potential
dependencies in order to identify which untrusted inputs may affect the string-
to-code statement in b. These chains of dependencies form a tree having b as
root and as leaves either a ground block, or bottom, or a block containing the
interfering untrusted input (the latter case identifies vulnerable paths).

In order to formally define the function Paths, we have first to define the
auxiliary function Rec, used for determining the arguments of recursive calls, i.e.,
whose aim is that of computing the parameters of the recursive step of Paths:

Rec : (Blocks× (Vars ∪FunCalls)× (Blocks×Fun ×Args)∗)→
(Blocks ∪FunCalls ∪ {⊥k}k∈N)× (Blocks×Fun ×Args)∗

Paths : (Blocks ∪FunCalls ∪ {⊥k}k∈N)× (Blocks×Fun ×Args)∗ → Trees

Paths(arg, c) =

Block(arg, c) if arg ∈ Blocks

Call(arg, c) if arg ∈ FunCalls

Bot(⊥k, c) otherwise

where c = [c1, . . . , cm] such that ∀1 ≤ i ≤ m. ci = (bi, fi,ai) and ai = [ai1, . . . , a
i
ni
]

Block : Blocks× (Blocks×Fun ×Args)∗ → Trees

Call : FunCalls× (Blocks×Fun ×Args)∗ → Trees

Bot : {⊥k}k∈N × (Blocks×Fun ×Args)∗ → Trees

(1) Block(b, c) = Tree(b, {Paths(Rec(b, u, c)) | u ∈ Use(b) }) if Use(b) 6= ∅
(2) Block(b, c) = Tree(b,∅) if Use(b) = ∅ and b does not define a formal parameter
(3) Block(b, c) = Tree(b, {Bot(⊥k, c) }) if Use(b) = ∅ and b defines the k-th formal parameter in cm
(4) Call(f(a), c) = Tree(f(a), {Paths(r, c) | r ∈ Ret(f) }) if ∀ci, cj(i 6= j) ∈ c . fi 6= fj
(5) Call(f(a), c) = Tree(f(a),∅) if ∃ci, cj(i 6= j) ∈ c . fi = fj
(6) Bot(⊥k, c) = Tree(⊥,∅) if Use(amk) = ∅
(7) Bot(⊥k, c) = Tree(bm, {Paths(Rec(bm, u, [c1, . . . , cm−1])) | u ∈ Use(amk) }) if Use(amk) 6= ∅

Fig. 5: Definition of the function Paths.

Rec(b, arg, c) =

{
(Rd(b, v), c) if arg = v ∈ Vars

(f(a), [c1, . . . , cm, (b, f,a)]) if arg = f(a) ∈ FunCalls

Intuitively, if arg is a variable, Rec computes the RD analysis of arg from the
block b looking for the variables which arg depends on, while if arg is a function
call, Rec updates the history of function calls c.

The tree computation algorithm starts calling Paths(b, ε) for each block b con-
taining a string-to-code statement. Let us explain the definition of Paths(arg, c)
given in Fig. 5 case by case:

arg = b ∈ Blocks: Paths(arg, c) = Block(b, c)

• Use(b) 6= ∅ (case (1)): If we reach a block b (not ground) containing one
or more uses u, we create a tree with b as root, and as children all the trees
resulting from calling Paths on all the recursive arguments (computed by
Rec(b, u, c), for each u ∈ Use(b)).

• Use(b) = ∅ (cases (2) and (3)): When we reach a ground block b we
have to distinguish two cases: When the block does not define any formal
parameter (of the function including it), the analysis terminates on the
current block b (case (2)); Otherwise, a subtree is created with root b and
children the trees resulting from the analysis of the corresponding actual
parameter by calling Bot(⊥k, c) (case (3)).

arg = f(a) ∈ FunCalls: Paths(arg, c) = Call(f(a), c)
When Paths is called on a function call f(a), and the call has been already
met before in c, then the analysis stops adding f(a) to the tree (case (5)).
Otherwise, a subtree is created with f(a) as root, and as children all the

trees resulting from calling Paths on all the return blocks (Ret(f)) of the
function f (case (4)). The idea beyond this strategy comes from the fact
that a function call can, in the worst case, only propagate, and not generate,
flows.

arg = ⊥k ∈ {⊥k}k∈N: Paths(arg, c) = Bot(⊥k, c)
We have ⊥k when we reach the definition of a formal parameter (as explained
in case (3)). If in the last performed call (m-th) the k-th formal parameter
contains some uses (Use(amk) 6= ∅) then we track back these uses calling
Paths similarly to case (1) (case (7)). On the contrary, if Use(amk) = ∅ the
analysis stops adding ⊥k to the tree (case (6)).

We define the set T = {Paths(be, ε) | ∃Cssa ∈ Cssa . be ∈ Cssa ∧ be contains a
string-to-code statement }, i.e., the set of trees generated by the function Paths.

In the example in Fig. 3a, a code injection attack may be possible via
the input s, since it interferes with the first query execution (as explained in
Sect. 1), but not with second one. The tree generated by Paths(b1, ε) is depicted
in Fig. 3c on the left. In this case the only leaf is the block b0, in which an
untrusted input s is required. This means that the corresponding path is a
code injection vulnerable path. On the other hand, the resulting tree of the
second query execution Paths(b2, ε) is given in Fig. 3c on the right. In this
case, the path ends up in the block b6 which is not an untrusted input, and
therefore meaning that it is not a vulnerable path. Hence, in this example
T = {〈b1 : 〈f(s0) : 〈b4 : 〈b3 : 〈b1 : 〈b0〉〉〉〉〉〉, 〈b2 : 〈g(s0) : 〈b6〉〉〉}.

Once we have the set of trees T with all the paths leading from a string-to-code
statement to either (i) a ground, or (ii) a bottom block or (iii) an untrusted
input block, we discard all the safe paths, i.e., those not depending on untrusted
inputs (cases (ii, iii)). In addition, we also need to remove non-executable blocks,
i.e., those added during the algorithm computation and which do not correspond
to application/code statements. These blocks are the ones related to function
calls (added by Paths in cases (4) and (5)), which are part of the abstract syntax
of others blocks and those re-added after the analysis of a function call (see
case (7) in Paths). We define Tc as the set of all cleaned up trees in T. In
the running example, Tc = {〈b1 : 〈b4 : 〈b3 : 〈b0〉〉〉〉} (Fig. 3d). Finally, it is
possible to make some transformations that will make easier to dynamically
associate the executed path with the right contract. In particular, we reverse
the paths in order to have them in the execution direction and we define the set
P = {Reverse(p) | ∃T c ∈ Tc such that p ∈ Branches(T c) }. In the example,
P = {b0 b3 b4 b1}.

Contracts. At this point, the programmer, for each path in P leading to an
untrusted input x has to provide a contract , i.e., a decidable language Ix (e.g.,
regular, context free, etc.) of acceptable values for that path:

Contracts = { (Ix, p) | Ix ⊆ Valx decidable input language, p ∈ P }

Hence, a contract (Ix, p) means that the value of the untrusted input in the
first block of p, i.e., p0, has to be in the language Ix if all the blocks in p have

Algorithm 1 MonInt
1: procedure MonInt((C,Contracts)P , µ0)
2: V = ∅
3: µ = µ0

4: b = b0 . initial block of the program
5: while b 6= ⊥ do . ⊥ is the exit block
6: DBlocks = DBlocks ∪ {b}
7: if b 6= b0 then DEdge = DEdge ∪ {(bp, b)}
8: if b contains an untrusted input x then
9: V = V ∪ {(x, µ(x))}

10: end if
11: if b executes code then
12: Verify(V,Contracts, D, b)
13: end if
14: bp = b
15: (b, µ) = Interpreter(b, µ,C)
16: end while
17: end procedure

Algorithm 2 Verify
1: procedure Verify(V,Contracts, D, b)
2: for all c = (Ix, p0 · · · pn) ∈ Contracts do
3: if pn 6= b then continue
4: for i = 0 to n− 1 do
5: if not Reachability(D, pi, pi+1) then
6: continue to the next contract c
7: end if
8: end for
9: x = untrusted input variable in p0

10: if V (x) /∈ Ix then Throw Exception
11: end for
12: end procedure

Fig. 6: Monitor algorithm.

been executed. For instance, a contract Is for the reverse of path p of the tree in
Fig. 3d could be expressed by the regular expression 0 | [1-9][0-9]* to force the
untrusted input s to be an integer.

Finally, given a program P to analyze, the static phase provides in output
the pair (C,Contracts)P .

4.3 Dynamic phase

In this section, we explain how we intend to use the result of the static phase in
order to provide a monitor, i.e., a dynamic checker, of potential code injection
attacks. We observe that code injection is a safety property [27] since, once a
string-to-code statement depends on an untrusted input at the program point of
its execution, then a vulnerability definitively occurred, meaning that the only
possibility for enforcing the safety property is to stop computation.

The monitor algorithm. In the following, we develop a monitor, exploiting the
contracts verifier only when necessary. In particular, the idea is to design a
monitor which executes directly the language interpreter on all the statements,
except on string-to-code ones, for which the monitor has prior to check the
satisfiability of (potentially many) contracts.

The MonInt procedure (Algorithm 1 in Fig. 6) takes as input the result
(C,Contracts)P of the static analysis on the program P and an initial memory
µ0. In order to determine the right contracts to check, the algorithm keeps
up-to-date a dynamic structure D, in which the information of the path followed
by the execution is stored: Every time a new block b is reached, the set of blocks
is expanded by adding b into it (line 6), and a new edge from to previously
executed block bp to b is added to the set of edges (line 7); We will refer to

1 main(s) {
2 i := 0;
3 copy := "";
4 while (i <= length(s)) {
5 c := s[i];
6 if (c == "a") then { copy := copy + "a" }
7 else if (c == "b") then { copy := copy + "b" }
8 ...
9 else if (c == "z") then { copy := copy + "z" };

10 i := i + 1
11 };
12 eval(copy)
13 }

Fig. 7: Example of an implicit flow through a conditional copy.

D = (Dblock , Dedge) as the dynamic CFG. Then, if the current block is the
initialization of an untrusted input x, we have to store (in V) the initial value of
x, that will be potentially checked in future (lines 8–10). If the current block is a
string-to-code statement, the contracts verification procedure Verify (Algorithm 2
in Fig. 6) is called. It stops the execution if a contract is not satisfied, meaning
that the program is potentially under attack (lines 11–13). Finally, the previous
block bp is updated with the current block b, and the language interpreter
Interpreter executes the instruction associated to the block b and updates the
current block and memory (b, µ) (lines 14, 15).

The Verify procedure (Algorithm 2) is the contracts verifier. It is able to stop
the execution by throwing an exception if it finds an input not belonging to the
language specified in the contract. In particular, the verifier iterates over the set
of contracts (line 2) and picks only those contracts ending in the current block
b, i.e., (Ix, p0 . . . pm) ∈ Contracts such that pm = b (line 3). Then, it checks
whether the path p0 · · · pm is a sub-path of the dynamic CFG D: This is achieved
by m − 1 calls to Reachability algorithm, returning true iff there is a path
in D from pi to pi+1 (lines 4–8) for each 0 ≤ i < n. In this case, the procedure
checks whether the contract is satisfied by checking if the input value V (x) of the
untrusted variable in x, input in the block p0, is in the language Ix (lines 9, 10).

4.4 Handling the implicit information flows

In this section, we show how it is possible to extend the static analysis algorithm
in order to track not only the explicit information flows but also the implicit ones.
The explicit information flows are caused by a direct exchange of information
via copy operations, while the implicit information flows arise from the control
structure of the program [26]. For instance, consider the program in Fig. 7 which
performs a conditional copy [25] of the input and then evaluates it as code. Its
input/output semantic is identical to the program main(s) { eval(s) }, but it does
not directly copy any bit of the untrusted input into the string-to-code statement
(line 12). By only changing the Use function definition, we are able to detect
also this kind of attacks: We define the function Guard(b) which computes the

immediate guard to which the block b is subjected. For instance, in Fig. 7, if
we compute Guard(copy := copy + "a") it returns the set { c == "a" }. Hence,
we can define the extended function Ũse(b) = Use(b) ∪Use(Guard(b)) which
correctly detects also the implicit flow (this technique is based on the notion of
control dependences [7]).

4.5 Soundness

In Sect. 3, we have provided a model which precisely describes safety against
code injection attacks, parametrically on the expected inputs, by embedding the
programmer’s intention into the definition (i.e., the predicate φI). However, the
semantic aspects of the model and, in particular, the abstract non-interference
predicate, make it not suitable to a straightforward implementation. Nonetheless,
a semantic definition is fundamental in order to provide an accurate description
of the real world problem of code injection.

We now prove the soundness of the proposed approach, w.r.t. an abstract code
injection policy ANIx

P(O, n) we aim at enforcing in a program P . The proposed
static analysis will capture any vulnerable path by over-approximating them.

Theorem 1 (Soundness of static analysis w.r.t. ANIxP(O, n)). Let P ∈
WhileFun be a program, x be an untrusted input of P , n ∈ LP such that
Stm(n) ∈ str2code and ANIxP(O, n) an abstract code injection policy, then

¬ANIxP(O, n) =⇒ ∃p = bx · · · bn ∈ Reverse(Branches(Paths(bn, ε)))

where bx and bn denote the blocks containing the untrusted input x and the
string-to-code statement at program point n in the main procedure, respectively.

If an untrusted input x interferes with the execution of a string-to-code statement
at a program point n, the static analysis will generate a tree rooted in bn and
leading to the leaf bx, and the programmer will have to specify a contract for
the input x concerning the cleaned and reversed path bx · · · bn. In that light, the
static analysis produces the information used by the monitor to work properly.

We now prove the correctness of the dynamic phase, namely of the MonInt
algorithm. Its semantics is straightforward: Starting from the initial memory µ0,
it executes the program until a string-to-code statement is not reached. When
this happens, if all the contracts on the executed path are satisfied, the statement
is executed, otherwise, the execution is stopped throwing an exception.

Theorem 2. Let P ∈WhileFun be a program. For each initial memory µ0 ∈
Mem, τ = 〈|MonInt |〉(C,Contracts)P (〈11, µ0〉)5 implies that

• τ is prefix of τ ′ = 〈|P |〉(〈11, µ0〉);
• τ = 〈|P |〉(〈11, µ0〉) if and only if for each string-to-code statement executed in
τ all the contracts are satisfied.

5 Execution of the monitor specialized on the annotated program.

In other words, the monitor alters the semantics of the program (by blocking
the execution) if and only if at least one input contract, for an untrusted input
affecting an executed string-to-code statement, is not satisfied.

Finally, as a corollary to the Theorems 1 and 2, we can set out the following
result that justifies our mechanism. Let us define the function associating with
each trajectory the sequence of blocks executed in the CFG as bl(τ0 · · · τn) =
bl(τ0) · · · bl(τn), where bl(〈nk, µ〉) = b if b is the block containing Stm(n).

Corollary 1. Let P ∈ WhileFun be a program, n ∈ LP such that Stm(n) ∈
str2code, and (C,Contracts)P be the static analysis output. Let x be an in-
put of P such that ∃(Ix, p0 · · · pm) ∈ Contracts with p0 setting the input x and
pm containing Stm(n)6. Let v ∈ Valx, we define ρM as

ρM(JP Kn
k

(〈11, µ0[x← v]〉)) iff
∀(Ix, p) ∈ Contracts. p sub-trace of bl(〈|P |〉nk

(〈11, µ0[x← v]〉)) we have v ∈ Ix

Then, given φM is defined in terms of ρM as in Eq. 1, MonInt(C,Contracts)P (µ0)
enforces the abstract code injection policy: ∀x untrusted input,∀v1, v2 ∈ Val

φxM(v1) = φxM(v2) =⇒ ρM(JP Kn
k

(〈11, µ0[x � v1]〉) = ρM(JP Kn
k

(〈11, µ0[x � v2]〉))

Note that, our mechanism is not sound “as a matter of principle”. It is sound w.r.t.
the specification of contracts characterizing safe inputs and output behaviors.

4.6 Complexity considerations

The CFG model and the SSA form are well known code representations and can
be computed in polynomial time w.r.t. the abstract syntax tree of the program.
The bottleneck of the static phase is the taint analysis, computing Paths for
each string-to-code statement. Unfortunately, the number of these paths could
be exponentially large w.r.t. the size of the Cssa . This is due to the generality of
our approach, allowing the programmer to provide a contract for each possible
vulnerable path, i.e., for each triple (x, p, e) with x untrusted input, p path, and e
string-to-code statement. In practice, it is highly unlikely to have an exponential
number of ways in which an untrusted input can interfere with a single query
execution, therefore we believe that in the average case, this approach scales well.
However, the programmer can always reduce the complexity by either providing a
(different) contract for each pair (x, e) (reducing complexity to O(ne), n number
of the untrusted inputs and e number of string-to-code blocks), or providing a
different contract only for each input x (reducing complexity to O(n)).

Dynamic monitor worst case checking cost is divided into the cost for com-
puting Reachability between each pair of adjacent nodes (which is polynomial
w.r.t. the size of Cssa) for each contract c and checking whether an untrusted in-
put u satisfies the corresponding contract c (whose cost depends on the formalism
used to model it).
6 We consider only one variable for simplicity, but in general we may have more than one
untrusted input affecting Stm(n), in this case the generalization is straightforward.

5 Generality of Abstract Code Injection

In this section, we show also by means of two examples, that the definition of
abstract code injection that we provide is enough general to cope with the main
related works, defining specific notions of code injection [3,24] (a brief summary
of these works is given in Sec. 1).

The generality of our approach allows us to detect attacks that elude the
mechanisms proposed in the related works: The program given in Fig. 7 is not
detected by all the works based on a copy-based taint analysis (as [24]), since
that program is built on a pure semantic notion of interference. Furthermore,
the flexibility of our mechanism make it more suitable to different types of code
injection. For instance, consider the simple program main(s) { eval(s) }: all the
mechanisms based on the idea of automatically detect a manipulation of the
syntactic structure cannot infer nothing about the intended structure, since there
are no sufficient information to “guess” the programmer’s intention.

Defining code injection attacks (CIAO) [24]. From the definition of code injection
attacks given in [24], we can derive the considered set of safe output behaviors
O[24], i.e., all the states reached by a code execution that does not contain any
tainted (potentially untrusted) code symbol7. In their paper, they provide an
algorithm A(P, T, U)8 to precisely detect what is considered a potential attack,
w.r.t. their definition of safe behaviors O[24]. Being (T,U) the tuple of all (trusted
and untrusted) inputs, it corresponds to our memory µ0. We can model their
computation of safe behaviors as the characteristic function ρ[24]

O of O[24], defined
as: For each execution point nk (where a string-to-code statement is executed)

ρ[24]
O (JP Kn

k

(〈11,
i.e., (T, U)︷︸︸︷

µ0 〉)) ⇐⇒ A(P, µ0) does not detect an attack at the point nk

Hence, the algorithm proposed in [24] enforces the abstract code injection policy:
∀x ∈ U, v1, v2 ∈ Valx

φxO[24](v1) = φxO[24](v2) =⇒ ρ[24]
O (JP Kn

k

(〈11, µ0[x � v1]〉) = ρ[24]
O (JP Kn

k

(〈11, µ0[x � v2]〉))

where φxO[24] is defined in terms of ρ[24]
O as in Eq. 1. Hence, from the semantic

perspective of our approach, [24] only admits the (abstract) interference that
does not cause the execution of tainted code symbols. This is clearly an abstract
form of non-interference.

CANDID [3]. In this approach, we can still derive the implicitly used notion
of safe output behaviors O[3] as the set of all the states in which the syntactic
structures (i.e., the parsing trees) of each query9 executed by P on the inputs
i1, . . . , in, are equal to the ones produced by the execution of the program P on
the valid representation10 of the inputs i1, . . . , in, i.e., VR(i1), . . . ,VR(in). Let
7 In [24], a symbol is considered code if it is not a final value.
8 P is a program, and T and U are the set of trusted and untrusted inputs, respectively.
9 [3] is focused on the SQLi problem.

10 A valid representation of an input i is a value VR(i) which is manifestly benign and
non-attacking, and it dictates the same path of i in the application.

B(P, i1, . . . , in) be the function returning the syntactic structure of the query
executed at the execution point nk, we can define the characteristic function ρ[3]

O

of O[3] as

ρ[3]
O(JP K

nk

(〈11,
i.e., (i1, . . . , in)︷︸︸︷

µ0 〉)) ⇐⇒ B(P, µ0)

is isomorphic to︷︸︸︷
≈ B(P,VR(µ0))

Intuitively, in CANDID are safe all the query executions that performed on an
input i or on its valid representation V R(i) provide the same execution structure.
As before, we can characterize the abstract code injection policy enforced by
CANDID as: ∀x ∈ U, v1, v2 ∈ Valx

φxO[3](v1) = φxO[3](v2) =⇒ ρ[3]
O(JP K

nk

(〈11, µ0[x � v1]〉) = ρ[3]
O(JP K

nk

(〈11, µ0[x � v2]〉))

where, again as before, φxO[3] is defined in terms of ρ[3]
O. Here, the non-admitted

interference concerns the alteration of the structure of the parsing tree.

6 Conclusion

In this paper we propose both a general model for abstract code injection policies,
i.e., code injection policies parametric on what the programmer considers safe
in output, and an algorithmic approach for enforcing abstract code injection
policies, based on the combination of a static and a dynamic analysis phase. In
particular, the static analysis aids the programmer in finding what should be
controlled and when, i.e., which inputs and which execution paths, have to be
checked during execution. The contracts that the inputs should meet are asked
to the programmer and used to annotate the program. Then a monitor checking
the contracts when necessary, namely when a vulnerable path is executed, is
proposed. In particular, the application enforcing a given abstract code injection
policy consists in the monitor specialized on the annotated program. We finally
provide the intuition of the generality of abstract code injection, by showing the
abstract injection policies enforced by the main related works.

We tested the feasibility of the monitoring approach by implementing it on a
toy language for SQL injection11, but surely in the future we aim at implementing
this analysis approach on real languages. As far as the model is concerned, there
are several aspects that deserve further study. In this paper we consider only safe
output partitions in safe/unsafe behaviors, but abstract code injection policies
could be defined in terms of more precise partitions, providing the possibility of
modeling different safety degrees of output behaviors. Finally, in the approach we
propose to enforce the policy where the output characterization of safe bahaviors
is determined by the input contracts. It would be interesting to find a way for
approximating input decidable contracts automatically generated by the output
characterization of safe behaviors.

11 The source code is available for the use at https://gitlab.com/samuele/KArMA.git.

References

1. The Open Web Application Security Project (OWASP), https://www.owasp.org/
2. Anley, C.: Advanced sql injection in sql server applications (2002)
3. Bandhakavi, S., Bisht, P., Madhusudan, P., Venkatakrishnan, V.: Candid: preventing

sql injection attacks using dynamic candidate evaluations. In: Proceedings of the
14th ACM conference on Computer and communications security. pp. 12–24. ACM
(2007)

4. Buehrer, G., Weide, B.W., Sivilotti, P.A.: Using parse tree validation to prevent
sql injection attacks. In: Proceedings of the 5th international workshop on Software
engineering and middleware. pp. 106–113. ACM (2005)

5. Cooper, K., Torczon, L.: Engineering a compiler. Elsevier (2011)
6. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system

by abstract interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)
7. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently

computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems (TOPLAS) 13(4), 451–490
(1991)

8. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-
interference by abstract interpretation. ACM SIGPLAN Notices 39(1), 186–197
(2004)

9. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Security and
Privacy, 1982 IEEE Symposium on. pp. 11–11. IEEE (1982)

10. Halfond, W.G., Orso, A.: Amnesia: analysis and monitoring for neutralizing sql-
injection attacks. In: Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering. pp. 174–183. ACM (2005)

11. Halfond, W.G., Orso, A., Manolios, P.: Using positive tainting and syntax-aware
evaluation to counter sql injection attacks. In: Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software engineering. pp.
175–185. ACM (2006)

12. Jones, N., Sestoft, P., Søndergaard, H.: An experiment in partial evaluation: The
generation of a compiler generator. In: Proc. of the 1st Internat. Conf. on Rewriting
techniques and applications. vol. 202, pp. 124–140 (05 1985)

13. Maor, O., Shulman, A.: Sql injection signatures evasion. Imperva, Inc., Apr (2004)
14. Mastroeni, I.: On the rôle of abstract non-interference in language-based security.

In: Programming Languages and Systems, Third Asian Symposium, APLAS. pp.
418–433 (2005)

15. Mastroeni, I.: Abstract interpretation-based approaches to security - A survey
on abstract non-interference and its challenging applications. arXiv preprint
arXiv:1309.5131 (2013)

16. Mastroeni, I., Banerjee, A.: Modelling declassification policies using abstract domain
completeness. Mathematical Structures in Computer Science 21(6), 1253–1299
(2011)

17. Mastroeni, I., Zanardini, D.: Abstract program slicing: an abstract interpretation-
based approach to program slicing. ACM Transactions on Computational Logic
(TOCL) 18(1), 7 (2017)

18. McDonald, S.: Sql injection: Modes of attack, defense, and why it matters. White
paper, GovernmentSecurity. org (2002)

19. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically
hardening web applications using precise tainting. Security and Privacy in the Age
of Ubiquitous Computing pp. 295–307 (2005)

https://www.owasp.org/

20. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999)

21. OWASP: Top 10 2010. The Ten Most Critical Web Application Security Risks
(2010)

22. OWASP: Top 10 2013. The Ten Most Critical Web Application Security Risks
(2013)

23. OWASP: Top 10 2017 (release candidate 1). The Ten Most Critical Web Application
Security Risks (2017)

24. Ray, D., Ligatti, J.: Defining code-injection attacks. In: ACM SIGPLAN Notices.
vol. 47, pp. 179–190. ACM (2012)

25. Ruse, M.E., Basu, S.: Detecting cross-site scripting vulnerability using concolic test-
ing. In: Information Technology: New Generations (ITNG), 2013 Tenth International
Conference on. pp. 633–638. IEEE (2013)

26. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal
on selected areas in communications 21(1), 5–19 (2003)

27. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and System Security (TISSEC) 3(1), 30–50 (2000)

28. Su, Z., Wassermann, G.: The essence of command injection attacks in web applica-
tions. In: ACM SIGPLAN Notices. vol. 41, pp. 372–382. ACM (2006)

29. The Code Curmudgeon: Sql injection hall-of-shame. http://codecurmudgeon.com/
wp/sql-injection-hall-of-shame/

30. Wassermann, G., Su, Z.: An analysis framework for security in web applications. In:
Proceedings of the FSE Workshop on Specification and Verification of component-
Based Systems (SAVCBS 2004). pp. 70–78 (2004)

31. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks. In: USENIX Security Symposium. pp.
121–136 (2006)

http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/

	Abstract Code Injection

