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Abstract

The ability of whole body vibration (WBV) to increase energy expenditure (EE) has been

investigated to some extent in the past using short-term single exercises or sets of single

exercises. However, the current practice in WBV training for fitness is based on the execu-

tion of multiple exercises during a WBV training session for a period of at least 20 min; nev-

ertheless, very limited and inconsistent data are available on EE during long term WBV

training session. This crossover study was designed to demonstrate, in an adequately pow-

ered sample of participants, the ability of WBV to increase the metabolic cost of exercise vs.

no vibration over the time span of a typical WBV session for fitness (20 min). Twenty-two

physically active young males exercised on a vibration platform (three identical sets of six

different exercises) using an accelerometer-verified vibration stimulus in both the WBV and

no vibration condition. Oxygen consumption was measured with indirect calorimetry and

expressed as area under the curve (O2(AUC)). Results showed that, in the overall 20-min

training session, WBV increased both the O2(AUC) and the estimated EE vs. no vibration by

about 22% and 20%, respectively (P<0.001 for both, partial eta squared [η2]�0.35) as well

as the metabolic equivalent of task (+5.5%, P = 0.043; η2 = 0.02) and the rate of perceived

exertion (+13%, P<0.001; 2 = 0.16). Results demonstrated that vibration is able to signifi-

cantly increase the metabolic cost of exercise in a 20-min WBV training session.

Introduction

Whole-body vibration (WBV) was introduced in the late 1990s and, over the past decade,

WBV exercise has become an increasingly popular training modality especially in the fitness

field. A number of studies have been untaken in the last two decades, which have demon-

strated interesting results where acute and chronic WBV exercise has been used for improving

muscle performance [1–3], bone density [4], balance and proprioception [5] and where long-

term exposure to WBV has been shown to be associated with fat body reduction [6–8].
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During WBV, the subject stands or exercises on a platform, which vibrates at set frequen-

cies (typically between 15 and 70 Hz) and amplitudes (typically between 1 and 10 mm). WBV

is considered a light neuromuscular resistance training method based on automatic body

adaptations to repeated, rapid and short intermittent exposure to oscillations from a vibrating

platform (review in [9]). Its mechanism of action has been related to reflex muscle activation

[10] and muscle twitch potentiation [11] as shown by electromyography studies [12]. Aber-

cromby and colleagues [12], also argued that neuromuscular responses during WBV may be

modulated by leg muscle co-contraction as a postural control strategy and/or muscle tuning

by the central nervous system. Additionally, WBV may induce a muscle tuning response while

the subject attempts to dampen the transmission of vibration [13]. Furthermore, WBV is able

to facilitate muscle deoxygenation, thereby improving oxygen delivery to the muscle [14], and

to stimulate lipolysis via an acute elevation of lipolytic hormones [15] and growth hormones

[16–19]. It has also been shown that exercise-involving WBV is able to attain greater metabolic

stimulation and greater energy expenditure (EE) in comparison to the same exercise without

WBV [20,21]. Oxygen consumption has long been used to determine EE [22], the association

between oxygen consumption and EE being expressed in the well-known Weir equation [23].

A number of papers have reported on WBV-associated oxygen consumption measurements

and most previous research showed some ability of WBV to increase oxygen consumption vs.

control conditions for a variety of vibration stimuli. These also included various exercise pro-

tocols and many different age groups of both sexes. Rittweger et al. [21,24,25] showed that

WBV in the side-alt modality is able to acutely increase oxygen consumption of the subject

with additional loading and with only the subject’s bodyweight. Similar findings have since

been reported [21,26–28], and more specifically in young males [29], sedentary males [30],

young adult females [31], young adult males and females [32], and elderly participants [33].

Cochrane et al. [34] also reported increased oxygen consumption in both healthy young adults

and older people using synchronous vibrations with both static and dynamic movement exer-

cises. Subjects with health issues have also been studied and a WBV-associated increase in oxy-

gen consumption was shown in overweight and obese people [6], spinal cord injury patients

[35], and chronic stroke patients [36].

Most of the available literature related to the acute effects of WBV on oxygen consumption

focused on short-time WBV exposure sessions (i.e.,< 10 min) with single exercises or sets of

individual exercises. However, longer WBV exposure sessions (20–30 min of intermittent

exercise with a combination of different exercises) are currently preferred for WBV training in

fitness centers. This is in agreement with the guidelines established by the American College of

Sports Medicine (ACSM) [37] for the management of cardiorespiratory training.

Despite the wide interest elicited by WBV as an exercise modality in the fitness field, few

papers examined oxygen consumption during a typical WBV session for fitness [38,39] and

what is more, the above studies presented conflicting results, Hazell and Lemon [38] demon-

strating a significant increase in oxygen consumption while Gojanovic and Henchoz [39]

reporting no differences between synchronous WBV and no vibration.

When investigating the effects of WBV, a number of potentially confounding issues should

be addressed. Firstly the lack of characterization of the vibration stimulus by means of an

accelerometer, taking instead the settings of the machine as the actual vibration stimulus. It

has been shown that the frequency and amplitude generated by a device may vary from the

preset values or from the values provided by the manufacturer both across and within plat-

forms [40]. Accordingly, there is a need to evaluate the real parameters of the vibrations pro-

duced by a WBV device in a given study setting [41] to interpret the oxygen consumption

outcomes in a more correct perspective. Secondly, there is an issue concerning the statistical

power of the study, a small sample size challenging the significance of results. Actually, the
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study group in the work of Hazell and Lemon [38] was composed of only eight healthy males,

three of which were replaced during exercise data collection, as the original subjects could not

be rescheduled. Similarly, the study carried out by Gojanovic and Henchoz [39] has a limited

number of participants (n = 10). Thirdly, variability of covariates within the study groups

should be taken into account [38]. Such variability may be limited by adopting a crossover

study design.

Therefore, it is clear that the metabolic effects of a typical WBV training session for fitness

and the possible extent to which such an effect occurs on healthy and physically active individ-

uals remains matter of debate. It is evidently necessary to bridge this gap in our understanding

between the currently used conditions in fitness centers and the supporting research on WBV

under laboratory conditions. Considering the above issues, we designed a strictly controlled

experiment with a crossover design to extend previous findings by accurately assessing the

metabolic cost of a typical WBV training session for fitness in an adequate number of partici-

pants and with an accelerometer-measured vibration load. According to our own extensive

experience and in agreement with others [42] physically active men are the main users of

WBV devices in fitness centers, so the experiment was carried out in young fit men.

Materials and methods

Participants and study design

A total of 28 healthy male Kinesiology students were recruited for this study according to a pri-

ori sample size calculations (vide infra), assuming a ~20% drop out. Inclusion criteria were

active lifestyle [37] and no WBV experience. All participants passed the PAR-Q health survey

[43] before being enrolled in the study. Exclusion criteria were: cardiovascular, neuromuscu-

lar, or metabolic conditions that would prohibit exercise; lower-body surgery within the previ-

ous six months; use of medications for chronic cardiovascular or neuromuscular conditions;

contraindications to WBV according to the manufacturer’s criteria (i.e. diabetes, epilepsy, gall-

stones, kidney stones, acute inflammations, joint problems, cardiovascular diseases, joint

implants, recent thrombosis, back problems such as hernia, tumors, recent operative wounds,

or intense migraines). Participants gave their written informed consent. The protocol con-

formed to the Declaration of Helsinki (revised 2013). Ethical approval for the study was

obtained from the Institutional Review Board at the Department of Neurosciences, Biomedi-

cine and Movement Sciences. The crossover design of the study is summarized in the block

diagram of Fig 1A. The individual in Fig 2 gave written informed consent (as outlined in

PLOS consent form) to publish his image in the paper.

Characterization of the vibration stimulus

Some studies conducted on various vibrating platforms have highlighted the alterations in

vibration parameters when individuals with different body mass perform squatting exercises

[40,44–46]. Therefore, a preliminary study was conducted to assess the actual vibration pro-

duced by the commercial model of vibration platform (PhysioPlate Fit-Vibe Power, Globus,

Codognè, Italy) used in this work. This platform generates a synchronous vertical vibration

stimulus whereby the platform oscillates up and down. Using an “unloaded condition” (no

load on the platform) and ten different “loaded conditions” (load on the platform ranging up

to 112.6 kg) the actual vibration characteristics for each of the five nominal vibration frequen-

cies (i.e, 25, 30, 35, 50, 70 Hz) and two displacement modes (“low” and “high”) implemented

in the platform were assessed. Assessment was carried out with a stand-alone 3-axis accelerom-

eter (μ3D Pebble System, ZeroPoint Technology, Johannesburg, South Africa [approximate

range: ±100g on 3 perpendicular axes; data acquisition rate: 2000 samples/second/channel;
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approximate size: 42 x 39 x 12mm]). The accelerometer was solidly affixed to the vibrating

plate with double-sided sticky tape at the center of the platform. The accelerometer measure-

ments were stored automatically on a microSD chip inside the accelerometer. Acceleration

data were collected over a time span of 5 seconds for each condition. The actual oscillations

generated by the WBV device were found almost pure sine waveforms apart the tails due to

the start/stop of the platform motion. Oscillations were analyzed using a custom program writ-

ten in Matlab R2008a (MathWorks, Natick, MA). The frequency of the vibration was evaluated

on the basis of the accelerometer read-out i.e., by counting a given number of vibration cycles

and dividing that number by the time (in seconds) between the peaks. The resulting ratio was

the actual vibration frequency in Hz. The actual values of peak-to-peak displacement, ampli-

tude, peak-to-peak acceleration and peak acceleration were obtained directly from acceleration

data as reported by Rauch et al. [41]. Data on the actual vibration frequency, peak acceleration

and peak-to-peak displacement in both the “high” and “low” displacement mode in the

“unloaded condition” are shown in Table 1. Results highlighted that the actual frequencies in

both the “low” and “high” displacement mode were often at variance to the nominal ones.

Fig 1. A. block diagram of study design. WBV, whole body vibration. B, schema of the experimental protocol. EX, exercise time; R, between-exercise recovery time.

https://doi.org/10.1371/journal.pone.0192046.g001
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Moreover, data also showed variability in the vibration load according to the load on the plat-

form. For example, at the nominal vibration frequency of 70 Hz and in the “high” displace-

ment mode, the mean error for accelerometer-measured peak acceleration between the

unloaded condition and the ten loaded conditions was 5.1%±2.9%. Accordingly, the values of

peak acceleration measured in the loading conditions were used to create calibration curves of

the vibrational quantities as function of the mass values. By linear interpolation of the nearest

values, the vibration quantities were estimated for all the masses in the range 0–112.6 kg with a

Fig 2. Representative picture of the experimental set up. The participant is performing a squat exercise in the

condition currently adopted for healthy subjects in fitness centers.

https://doi.org/10.1371/journal.pone.0192046.g002
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0.1 kg step size. Thus, for each individual participant’s mass the vibrational quantities are easily

derived from the calibration curves.

Whole-body vibration training session

To date, the optimal combination of frequency and amplitude to be used in intermittent WBV

training protocols involving static and dynamic exercises for increasing oxygen consumption

has not been clearly determined. However, it has been reported that the increase in oxygen

consumption can be parametrically controlled by frequency, amplitude, and the external load

applied during WBV [25]. Recently, Kang and colleagues [47] investigated the metabolic

responses during WBV combined with body weight squats, pointing out that the greatest

increase in oxygen consumption was observed at the maximum frequency tested (50 Hz) and

at high amplitude. Accordingly, in order to maximize the potential for detecting differences in

oxygen consumption, the platform settings “High” and “70Hz” corresponding to an actual

peak-to-peak displacement of 1.9 mm and vibration frequency of 55.44 Hz (with a mass of 70

kg on the platform) were selected to deliver the vibration stimulus in this work.

This study adopted a randomized 2-sequence (AB | BA), 2-treatment (WBV vs. no vibra-

tion) crossover design. At the beginning of the study, the 28 study participants were randomly

assigned to one of the two sequences using the Wei’s urn design, a randomization technique

for balancing treatment assignments [48]. Participants randomized to the AB sequence per-

formed a training session with WBV and after a washout period of 48h, a training session with

no vibration. Participants randomized to the BA sequence performed a training session with

no vibration and after 48h a training session with WBV. A 48h washout period has been

shown to be enough for complete recovery from a period of moderate to heavy exercise from a

functional/metabolic point of view [49]. Similarly, de Hoyo et al. [50] reported that a washout

period of 48h after a six-minute bout of WBV is enough for plasma markers of muscle damage

to return to baseline in young, healthy, physically active participants.

Participants were asked to refrain from vigorous exercise for at least 12h before they arrived

at the laboratory. The testing protocol was explained to participants and they were given the

opportunity to familiarize themselves with the vibrating platform and with the correct rhythm

and technique of exercises before the sessions.

Each training session was organized into 3 identical sets (A, B, C) encompassing 6 dynamic

exercises each (vide infra). The order of exercises in each set was held constant in AB and BA

sequences. A total of 72 repeated measures were taken for each participant: (6 exercises + 6

between-exercise rests) x 3 sets x 2 treatments.

The WBV training session consisted of a 20-min exercise session on the vibration platform

with the vibration turned on, while the no-vibration training session was performed on the

same platform with the vibration turned off. Following a standardized warm-up, consisting of

Table 1. Unloaded configuration for actual vibration characteristics (frequency, peak-to-peak displacement and peak acceleration) measured by accelerometer.

Nominal f (Hz) Actual f (Hz) Actual D (mm) Actual aPeak (g)

Low High Low High Low High

25 Hz 25.0 23.0 1.3 2.5 1.6 2.7

30 Hz 26.3 29.9 1.3 1.8 1.8 3.2

35 Hz 32.3 30.0 1.0 1.8 2.1 3.3

50 Hz 45.5 43.5 0.9 1.8 3.7 6.8

70 Hz 54.1 58.8 1.0 1.6 5.9 11.1

f, frequency; D, peak-to-peak displacement; Low/High, low amplitude and high amplitude setting of the vibration platform; aPeak, peak acceleration.

https://doi.org/10.1371/journal.pone.0192046.t001
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static and dynamic exercises and stretches, participants completed three sets (A, B, C) of six

dynamic exercises (I-VI), involving the major muscle groups of both the upper and lower

body. The training session was comprised of (I) squats, (II) push-ups with the hands on the

platform, (III) isometric squats, (IV) plié squats, (V) lunges with the lead foot on the platform,

and (VI) squats on tiptoes; the protocol (type, duration, and sequence of exercises) was bor-

rowed from a previous work [39]; it represents an intermittent exercise protocol consisting of

a balanced mix of exercises closely matching the most currently used conditions of WBV exer-

cise in the fitness field. Blocks placed in front of the vibration platform were utilized for push-

ups and lunges so that the hands and feet that were off the platform remained at the same

height as the vibrating platform. During the sessions, participants wore cotton socks to avoid

any between-participant variance in damping [51]. The rhythm, the range of motion and the

body mechanics, that is, the position of the feet on the platform and the position of the spine,

arms, legs and head of each subject were continuously supervised by an operator and corrected

where necessary. The exercise to recovery ratio was 3:1 (i.e., 45s exercise: 15s recovery); at the

end of each set an additional 60s recovery time was allowed. Over the 20-min protocol, the

total exercise time was 13.5min and the total recovery time was 6.5min (Fig 1B). Each exercise

included 15 repetitions over 45s, each one consisting of a 1s eccentric contraction, a 1s isomet-

ric contraction and a 1s concentric contraction, paced by an auditory metronome. The isomet-

ric squats were performed over 45s. The heart rate was registered throughout. At the end of

each training session, participants were asked to report their rating of perceived exertion

(RPE) using the Borg 6–20 scale [52]. The study was completed in winter and spring (Decem-

ber-April).

Anthropometry and body composition analysis

Body mass (Tanita BWB-800 scale, MA, USA) and stature (Holtain stadiometer; Holtain Ltd.,

Crymych, Pembs, UK) were measured in all participants to the nearest 0.1kg and 0.01m

respectively, with the subject wearing underwear and no shoes. Body mass index (BMI) was

calculated as weight (kg)/stature2 (m).

Indirect calorimetry

All measurements were made using an online breath-by-breath analysis of oxygen consump-

tion and carbon dioxide production (Quark CPET; Cosmed, Rome, Italy). The system was cal-

ibrated before each test by means of a certified gas mixture (FO2: 16%; FCO2: 5%, N2 for

balance) and a 3L-calibrated syringe (Hans Rudolph, Kansas City, MI, USA) according to the

manufacturer’s recommendations. Before each exercise session (WBV, no vibration) partici-

pants were instrumented, and oxygen consumption was monitored for three minutes at rest in

a standing position (basal oxygen consumption) and thereafter along the entire training ses-

sion. A representative picture of the experimental setup is presented in Fig 2. Among others,

the Quark CPET output yields values of oxygen consumption, estimates of EE (Kcal) accord-

ing to the Weir equation [22] and the metabolic equivalent of task (MET). MET is a practical

procedure for expressing the energy cost of physical activities as a multiple of the resting meta-

bolic rate. Because of the intermittent nature of the exercise, no steady-state oxygen consump-

tion was achieved; in this condition, the overall oxygen uptake (mL) better represents the

body’s metabolic demand instead of relative oxygen consumption (mL/kg/min). Accordingly,

oxygen consumption was calculated as the area under the curve (O2(AUC)) using linear interpo-

lation with the composite trapezoid rule [53]. The mean value of O2(AUC), EE, and MET in the

participant group were calculated in the WBV and no vibration condition for the following

time intervals: whole session (20 min, including exercise and recovery phases), set A, B, and C

Metabolic effect of whole body vibration
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(6min each, including exercise and recovery phases), total exercise time (13.5min), and total

recovery time (6.5min).

Statistical analysis

Considering the crossover design of the present study, the required sample was estimated a

priori [54] using the formula: n ¼ ðza=2 þ zbÞ
2
s2
m=ð2�

2Þ, where � is the mean value of the differ-

ences between the levels of O2(AUC) for exercising subjects with and without WBV and σm

was the standard deviation of these differences. Preliminary investigation showed that σm was

approximately 2,300 mL in each experimental group. Setting the minimum relevant clinical

difference at 1000 mL (effect size = |�|/σm� 0.43), the type I error at α = 0.05, and the power

1-β at 0.80, the minimum required total sample size was 21 subjects.

Numerical variables were summarized using mean ± standard deviation (SD) and normal

distribution of the data was tested using the Shapiro-Wilk test. Differences between mean val-

ues of outcomes in the WBV and no vibration training sessions were analyzed using mixed

effects linear models [55], a class of statistical models suitable for analyzing data from studies

with longitudinal and crossover design and to model the correlation between the multiple

measurements within each individual [56]. The estimated differences in outcomes between

treatments (WBV vs. no vibration) were adjusted for individual peak acceleration and baseline

oxygen consumption, and exercise set (A vs. B vs. C) by adding these variables to the set of

covariates of the regression model. The presence of an effect associated to the order of inter-

vention was investigated when analyzing data with mixed-effects models: a binary “sequence”

variable (WBV/no vibration vs no vibration/WBV) was considered and its statistical signifi-

cance was calculated. The effect size of WBV was estimated using partial eta squared (η2, the

proportion of variance in the outcome explained by WBV). Following Cohen [57], we inter-

pret estimated η2 values as follows: 0.01 small, 0.06 medium, 0.14 large.

Two-tailed statistical tests were used throughout and tests were rejected when P� 0.05.

Sample size was calculated using G�Power ver.3.1.9.2 [58]. Statistical analysis was carried out

using STATA v.13.1 (Stata Corporation, College Station, TX) and R v.3.2.5 (R Foundation for

Statistical Computing, Vienna).

Results

The 20 min WBV training was well tolerated by all participants insofar none of them com-

plained for headache, nausea, vomit, vertigo, or dizziness during or immediately after complet-

ing the protocol. None of the participants reported any carryover effects that may have

resulted from the previous testing session that required postponement of testing. Six partici-

pants did not complete the evaluations and dropped out of the protocol. Four of them missed

the second training session for personal reasons; two participants got ill between the first and

second training session. Accordingly, a complete set of measurements was available for 22 sub-

jects (age, 26.1±6.11y; body mass, 75.1±8.11kg; stature, 177.6±6.10cm; BMI, 23.8±2.40kg/m2),

which made the study sufficiently powered. Mean basal heart rate was 72.1±7.34 bpm. The

mean characteristics of the vibration stimulus were as follows: peak-to-peak displacement 1.80

±0.19mm (amplitude 0.90±0.10mm) and vibration frequency 56.4±1.98Hz corresponding to

peak acceleration 11.4±0.49g. Mean heart rate was 146.9±11.73 and 150.3±13.05 bpm during

the training session in the no vibration and WBV condition, respectively; the two means were

not significantly different (P = 0.368). The time-course of O2(AUC) for the twenty-two partici-

pants over the entire WBV and no vibration training session is presented in Fig 3. No signifi-

cant carry over effect on the outcome mean levels was found in the WBV and no vibration

conditions as far as the order of treatment is concerned.
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Effect of WBV vs. exercise alone on the metabolic cost of the entire training

session

The values of O2(AUC), EE, MET, and RPE during the entire training session in the presence

and absence of WBV are reported in Table 2 together with the respective P value and η2. WBV

was able to significantly increase O2(AUC), EE, MET, and RPE by ~22%, ~20%, ~5%, and

~12%, respectively.

When O2(AUC) in the total exercise time (13.5min) of the training session was considered,

higher values were found during vibration vs. no vibration (WBV: 24476.6±2881.6mL, no

vibration: 19890.8±3026.1mL; P<0.001; η2 = 0.44. The order of intervention (WBV/no vibra-

tion vs. no vibration/WBV) showed no effect on oxygen consumption (O2(AUC) = 22043.3

±4153.5mL and 22386.6±3119.8mL, respectively; P = 0.763). During the total recovery time of

the training session (6.5min) O2(AUC) was higher during vibration (WBV:10224.7±1166.9mL,

no vibration: 9091.2±1447.4mL; P<0.001; η2 = 0.19) as well. Oxygen consumption was higher

during the exercise than recovery time in both WBV and no vibration (Fig 3); however, the

percentage decrease in O2(AUC) between the total exercise time (13.5 min) and the total recov-

ery period (6.5min) was significantly higher in the WBV vs. no vibration condition (-82.1

±3.9% vs. -74.6±4.6%; P<0.001; η2 = 0.46) (Fig 4).

Fig 3. Individual pattern of O2(AUC) in the 22 participants over the whole training session (Sets A-C) in the presence (open triangle) and absence (open circles) of

vibration (~56Hz, ~11g). Mean value is indicated by filled symbols. I-VI, sequential exercises (see text); R, between-exercise recovery time. R�, sum of between-exercise

and between-set recovery time. Data are adjusted by individual peak acceleration and order of treatment administration (WBV/no vibration vs. no vibration/WBV).

https://doi.org/10.1371/journal.pone.0192046.g003

Table 2. WBV-associated changes in several outcome measurements in a group (n = 22) of exercising male participants. Data are mean±SD.

Variable Training period No vibration WBV P value η2

O2(AUC) (mL) Entire training session 25453.8 ± 3890.5 30996.8 ± 3606.5 <0.001 0.42

Set A 8085.8 ± 1211.9 9824.7 ± 1064.5 <0.001 0.44

Set B 8554.0 ± 1357.3 10450.8 ± 1210.9 <0.001 0.42

Set C 8814.0 ± 1382.4 10721.3 ± 1424.3 <0.001 0.37

EE (Kcal) Entire training session 144.4 ± 21.8 173.9 ± 19.6 <0.001 0.35

MET Entire training session 5.4 ± 0.9 5.7 ± 0.9 0.043 0.02

RPE Entire training session 12.3 ± 2.03 13.9 ± 1.90 <0.001 0.16

O2(AUC), oxygen consumption (area under the curve); EE, energy expenditure; MET, metabolic equivalent of task; WBV, whole-body vibration; RPE, rate of perceived

exertion; η2, effect size.

https://doi.org/10.1371/journal.pone.0192046.t002
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Effect of WBV vs. exercise alone on the metabolic cost of individual set of

exercises in a training session

The values of O2(AUC) for each set of exercises (Set A, B, C) in the presence and absence of

WBV are reported in Table 2 together with the respective P value and η2. WBV was able to sig-

nificantly increase O2(AUC) by ~21%, ~22%, and ~22% in set A, B, and C, respectively.

Fig 4. Individual percent reduction (Δ) of O2 consumption in the 22 participants during total recovery time

(6.5min) along a 20-min training session in the presence (WBV) or absence (no vibration) of whole body

vibration. Δ was significantly higher in the presence of WBV. Data are adjusted by peak acceleration and order of

treatment administration (WBV/no vibration vs. no vibration/WBV).

https://doi.org/10.1371/journal.pone.0192046.g004
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When the Quark CPET output was expressed in mL/kg/min and the resulting values ana-

lysed the same way as O2(AUC) data, superimposable results were obtained.

Discussion

This crossover study was designed to test the hypothesis that WBV is able to impose additional

metabolic cost to exercise alone in a 20-min WBV training session for fitness. Twenty-two

young, physically active males exercised in a 20-min training session that comprised three sets

of six different exercises in the presence and absence of an accurately verified vibration stimu-

lus. Results showed that WBV significantly increases O2(AUC) and EE during the 20-min train-

ing session. It should be noted that in this work the addition of vibration to exercise was

associated with large η2 in O2(AUC) and EE changes, indicating that the experiment was able to

detect even small changes in the metabolic cost of exercise.

Energy expenditure increases during whole-body vibration training.

The main finding of this study was that WBV (~56Hz, ~11g) applied in a 20-min training ses-

sion elicits significantly greater (~22%, P<0.001) oxygen consumption in comparison with

exercising at no vibration (Table 2).

The vibration stimulus administered to participants was quantified in terms of frequency

and acceleration using an accelerometer taking into account the individual participant’s body

mass.

Due to its crossover design, this study minimized variance for the estimated treatment

mean difference. Accordingly, data obtained under our experimental conditions strongly sup-

port the concept that WBV per se is able to increase oxygen consumption in association with

exercise. Under the adopted experimental conditions, a significant increase in oxygen con-

sumption was found during the overall period of exercise (i.e., 13.5 min) as well as recovery

(i.e., 6.5 min), demonstrating that the WBV effect continues shortly after the completion of the

exercise. The finding of WBV-associated increase in oxygen consumption is supported by the

significantly higher (~12%, P<0.001) mean RPE reported by participants after WBV training

(“somewhat hard” on the Borg scale) vs. no vibration (“light”). The finding that a higher meta-

bolic cost results in an increased RPE is consistent with previous research [59,60] showing that

RPE correlates well with physiological measures of exercise intensity (e.g., hearth rate, oxygen

consumption, blood lactate concentration, and respiratory rate both within a person and

across workloads and work types. Interestingly, WBV did not associate with significant heart

rate changes vs. no vibration in our sample, which deserves further investigation.

Using an accelerometer-verified vibration stimulus for the duration of a typical WBV ses-

sion for fitness (20 min) our results confirm and expand on previous work on WBV-associated

increase in oxygen consumption using mostly uncontrolled vibration conditions and/or

shorter periods of exercise [6,24–35,39,61]. Our findings are indirectly supported by recent

work using accelerometer-validated vibration stimulus showing that WBV exposure is able to

increase oxygen consumption in the absence of associated voluntary exercise in both young

adults [62] and chronic stroke patients [36]. In the study from which the WBV training proto-

col was taken for this experiment [39], no significant difference in oxygen consumption was

found during a 20-min WBV session (synchronous vibration) vs. no vibration in association

with no significant difference in RPE. There is no obvious reason for such a discrepancy. Possi-

ble explanations are the higher vibration frequency adopted in our study compared to that

used by Gojanovic and Henchoz [39] (~56Hz vs. 35Hz) and the fact that participants were

physically fit instead than sedentary. In fact, it has been shown that metabolic response to

WBV may differs according to fitness level and vibration frequency [30].
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A statistically significant WBV-associated increase in total EE took place during a 20-min

WBV training session (~30 Kcal, ~20%; P<0.001) corresponding to a significant increase of

~0.3 METs (~5%, P = 0.042) (Table 2). These findings are comparable to that of Rittweger

et al. [24] and are consistent with data from others. For example, Cochrane et al. [34] showed

that a 4min WBV protocol produces an increase of about 0.3 METs versus a no vibration con-

dition. Using a 30-min WBV protocol (exercise:recovery ratio 1:1) oxygen consumption

increased by 10% vs. no vibration and by 25% vs. no-exercise on a daily basis [38]. It is interest-

ing to note that previous studies investigating the long-term effects of WBV showed that it is

able to induce fat loss in normal weight females [7] as well as overweight and obese people

both when used alone [8] or in combination with caloric restriction [6]. These data suggest

that the increase in EE associated with regular WBV training would assist weight management

given that a significant inverse cross-sectional relationship between activity EE and the percent

body fat has been demonstrated in males [63]. In our study, the amount of additional calories

burned in the 20-min WBV training session was relatively small and the source of these calo-

ries (fat, glycogen, etc.) was not determined; moreover, oxygen consumption was not mea-

sured following the training session, thereby missing any post-training effect of WBV.

Accordingly, more complete prospective studies are required to assess possible chronic effects

of our WBV training protocol on body composition.

In the current study, the WBV training session was split into three sets of consecutive, iden-

tical exercises. The WBV-associated increase in oxygen consumption was about ~21%, ~22%,

and ~22% in set A, B, and C, respectively, all these figures being statistically significant

(Table 2). This indicates that the ability of vibration to impose additional oxygen uptake dur-

ing exercise is maintained all along the training session suggesting that further set(s) could be

added to the protocol in order to enhance total EE, provided that they are well tolerated.

O2 (AUC) was significantly higher in WBV vs. no vibration during both exercise (~23%,

P<0.001) and recovery time (~16%, P<0.001). Interestingly, however, O2 requests during the

overall recovery time decreased to a significantly higher extent in the presence of WBV (~

82%) vs. no vibration (~74%) (Fig 4). It may be hypothesized that WBV facilitates the physio-

logical mechanisms involved in the rapid decrease in O2 consumption after stopping exercise,

in possible association with improved neuro-muscle activation and perfusion [29,64–66]. This

hypothesis is consistent with findings showing amelioration of muscle performance with

WBV [9,67,68] as well as the existence of a positive correlation between an increase in muscle

blood flow and performance recovery between bouts of high-intensity exercise [69]. Future

work measuring local muscle activation and oxygenation along a 20-min long WBV training

session will better characterize this effect of vibration.

Limitations

This study has some limitations that should be mentioned. Firstly, only one frequency and

amplitude were used in a single training paradigm; therefore, the results cannot be extrapo-

lated to different vibration stimuli and/or training paradigms. Previous findings in acute stud-

ies [20,34,47] showed a dose-response relationship between the vibration stimulus and oxygen

consumption in association with e.g. different degrees of muscle activation. Further study is

required to verify how modulation of the vibration stimulus affects the WBV-associated

increase in oxygen consumption during longer training. A further limitation is that the actual

dose of vibration delivered to participants was not measured by attaching accelerometers to

them. Finally, the current findings cannot be generalized to populations other than young,

physically fit males.
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Conclusion

This crossover study, carried out under accelerometer-verified vibration conditions, showed

that during a 20-min WBV training session vibration significantly increases the metabolic cost

of exercise. Due to its ease of administration indoor and outdoor and low cost WBV can be a

practical complement in physical activity programs in several settings.
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