
ARTICLE IN PRESS

Please cite this article in press as: A. Marigonda, M. Quincampoix, Mayer control problem with probabilistic

uncertainty on initial positions, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.11.014

JID:YJDEQ AID:9093 /FLA [m1+; v1.272; Prn:22/11/2017; 14:03] P.1 (1-41)

Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations ••• (••••) •••–•••

www.elsevier.com/locate/jde

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Mayer control problem with probabilistic uncertainty

on initial positions

Antonio Marigonda a, Marc Quincampoix b

a Department of Computer Science, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy
b Laboratoire de Mathématiques de Bretagne Atlantique, CNRS-UMR 6205, Université de Brest, 6, avenue Victor

Le Gorgeu, CS 93837, 29238 Brest cedex 3, France

Received 26 September 2017; revised 10 November 2017

Abstract

In this paper we introduce and study an optimal control problem in the Mayer’s form in the space of prob-

ability measures on R
n endowed with the Wasserstein distance. Our aim is to study optimality conditions

when the knowledge of the initial state and velocity is subject to some uncertainty, which are modeled by

a probability measure on R
d and by a vector-valued measure on R

d , respectively. We provide a characteri-

zation of the value function of such a problem as unique solution of an Hamilton–Jacobi–Bellman equation

in the space of measures in a suitable viscosity sense. Some applications to a pursuit-evasion game with

uncertainty in the state space is also discussed, proving the existence of a value for the game.

 2017 Published by Elsevier Inc.

MSC: 49N70; 49L15
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1. Introduction

We consider the following controlled differential equation

ẋ(t)= f (x(t), u(t)), u(t) ∈U, t ∈ [0, T ], (1)
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where f :Rd ×U → R
d is a Lipschitz continuous function, the control set U is a compact subset

of some finite dimensional vector space, and the control function u(·) is a Borel measurable

function u : [0, T ] 7→U .

The main features of the optimal control system we will investigate in the paper are the fol-

lowing:

• The initial position x0 is not exactly known by the controller, but only a probabilistic de-

scription is available. More precisely, the initial state is described by a measure µ0 with the

following property: given any Borel set A ⊆ R
d , the quantity µ0(A) gives the probability

that the initial position lies in the set A.

• Because of the uncertain initial position, to every point of the support of µ0 there may

correspond a possibly different choice of the control – hence a different possible veloc-

ity. Moreover we allow the “division of mass”, i.e., even if the initial condition x0 is known

(namely µ0 = δx0
), it can be split into different trajectories by several possible velocities in

f (x0,U) but of course the total weight of these trajectories must remain equal to one.

So the natural state space of our control problem is the space P(Rd) of Borel probability mea-

sures on R
d . The conservation of mass along the corresponding trajectory µ = {µt }t∈[0,T ] (seen

as a time-dependent probability measure), and the controlled dynamics, can be summarized in

the following dynamical system











∂tµt + div(vtµt )= 0,

µ|t=0 = µ0,

vt (x) ∈ F(x) := f (x,U), for µt -almost every x ∈R
d , a.e. t ∈ [0, T ],

(2)

where the first equation of the above system should be understood in the sense of distributions in

[0, T ] ×R
d .

Observe that when vt (·) is sufficiently regular (i.e., Lipschitz continuous), then the unique

solution µt of (2) is the pushforward of the measure µ0 by the flow at time t of the differen-

tial equation ẋ(t) = vt (x(t)). We also note that the trajectories depend only on F and not on

the specific parametrization F(x) := f (x,U) and, consequently, we will mainly consider the

differential inclusion ẋ(t) ∈ F(x(t)) whose trajectories are the same as those of (1).

We stress the fact that the measures µT that can be reached at time T from an initial measure

µ by mean of an admissible trajectory in the sense of (2) are not simply the ones which are

pushforward of the initial measure µ0 by any Borel selection φ of the reachable set for the

finite-dimensional underlying system. An example of this situation is provided by Example 2.10.

The controller aims to minimize the cost function depending on the value of trajectory at the

terminal time T

J (µ) := G (µT ) (3)

where, G : P(Rd)→ R is Lipschitz continuous with respect to the Wasserstein distance. A par-

ticular case of such a cost function is Gg(µ) :=

∫

Rd

g(x)dµ(x) where g : Rd → R is Lipschitz

continuous and bounded. In this case, Gg turns out to be a Lipschitz map with respect to the

Wasserstein distance on probability measures, and the final cost Gg(µT ) represents the expecta-

tion of the final cost g with respect to the probability measure µT . But such a cost is of moderate
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interest because the optimal value is nothing else that

∫

Rd

V (0, x) dµ0(x) where V is the value

function of the Mayer problem associated with (1) and the terminal cost g(x(T )).

In this paper we will consider a general Lipschitz function G from the set P(Rd) of proba-

bility measures on R
d to R, thus allowing terminal costs more general than those defined by the

expectation of a function g. For instance, we can minimize the variance of the terminal proba-

bility distribution µT , or minimize the Wasserstein distance between µT and a given measure µ̄.

Thinking of µT is a distribution of individuals, this means that we want to arrange these individ-

uals into a preset formation.

The conservation law (2) has been extensively studied in the literature, we refer to [2] for

a general overview, and [15,16,25] for the controlled case. The described framework has been

studied in many papers (see [14], [16], [17]), mainly concerning time-optimal control problems,

where, for instance, a large population of agents is macroscopically described by an equation

such as (2), and the aim is to steer them to a sort of safe target region in the smallest possible

amount of time, under different assumptions on the target region, on the way to compute the

running cost, and on the possibility or not to remove the agents from the system as soon as

they arrive. All these papers provide a Hamilton–Jacobi–Bellman equation which is solved by

the value function. Nevertheless, the lack of a regularity theory for it (this aspect is partially

addressed in [14]), does not allow one to prove a suitable comparison principle for the equation,

thus preventing a full characterization of the value function. We refer the reader to [12] for a

notion of viscosity solution on the Wasserstein space with a comparison principle, but in [12],

the dynamics is much less general than 2 (cf. also [1,24]).

Strictly related to this class of problem, there is the so-called confinement problem, where

it is studied the evolution of a time-depending set whose points follows the trajectory of a

suitable differential inclusion in order to minimize a certain cost functional. For the applica-

tions, the initial set may be a flock of animals, crowd of pedestrians, or the frontline of a

fire. We refer the reader to [8–10,19–21] to have a survey on the most recent results about

this widely studied problem. We can link the set-dependent point of view with our approach

by thinking to the evolving set to be the support of a measure which describes the initial

state. Of course, a measure-evolving approach offers much more information on the initial state

(since in general we are allowed to take measure that are not uniformly distributed), and this

could provide on a more accurate description of the evolution in the model cases (see, e.g.,

[11]).

The first main goal of the present paper is to study the regularity of the value function as-

sociated with the dynamics (2) and the cost (3) and to provide a characterization of this value

in terms of the unique solution of a suitable Hamilton–Jacobi–Bellman equation in the space of

probability measures. This will require the introduction and investigation of a suitable notion of

solution for such kinds of equations.

The second main goal consists in investigating the following game theory problem, where the

first player acts on the system

∂tµt + div(vtµt )= 0, vt (x) ∈ F(x), for µt a.e. x ∈R
d t ∈ [0, T ],

while the second player controls the system

∂tνt + div(θtνt )= 0, θt (x) ∈G(x), for νt a.e. x ∈R
d t ∈ [0, T ].
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Associated to both the above dynamics, the following cost function is defined

J := G (µT , νT ),

that the first and the second player wish to minimize and maximize, respectively.

This problem could be viewed as a zero-sum differential game in the space of probability

measures. Our aim is to obtain the existence of a value for this game: namely to show that the

upper value and the lower value coincide. We accomplish this task by proving that the lower

value and the upper value are both solutions of a Hamilton–Jacobi–Bellman equation and by

showing that the Hamilton–Jacobi–Bellman equation has a unique solution. We refer the reader

to [12,13,24] for other differentials games problems in the space of measures.

The paper is structured as follows: in Section 2 we formulate the Mayer problem in the

space of probability measures, proving also some relevant properties of the set of admissible

trajectories (see Subsection 2.1) and of the value function (see Subsection 2.2). In Section 3 we

introduce a notion of viscosity solution for general first-order Hamilton–Jacobi–Bellman equa-

tions in Wasserstein space, proving a uniqueness result in this setting. In Section 4 we use the

results of the previous sections to characterize the value function of the Mayer problem. Section 5

introduces and discusses a pursuit-evasion game in the Wasserstein space, proving the existence

of a value for the game. In Appendix A, we provide the basic definitions and notations used in

the paper, while Appendix B is devoted to the comparison between the notion of generalized

gradients that we used and other notions available in the literature.

We will use the following notation, referring to Appendix A for the definitions.

C0
b(X;Y) the set of continuous bounded function from a Banach space X to Y , endowed

with ‖f ‖∞ = sup
x∈X

|f (x)| (if Y = R, Y will be omitted);

C0
c (X;Y) the set of compactly supported functions of C0

b(X;Y), with the topology induced

by C0
b(X;Y);

P(X) the set of Borel probability measures on a Banach space X, endowed with the

weak∗ topology induced by C0
b(X);

M (Rd ;Rd) the set of vector-valued Borel measures on R
d with values in R

d , endowed with

the weak∗ topology induced by C0
c (R

d ;Rd);

m2(µ) the second moment of a probability measure µ ∈ P(x);

r♯µ the push-forward of the measure µ by the Borel map r;

µ⊗ ηx the product measure of µ ∈ P(X) with the Borel family of measures {ηx}x∈X;

πi the i-th projection map from R
d to R yielding the i-th component;

πij the projection map from R
d to R

2 yielding the i-th and j -th components;

5(µ,ν) the set of admissible transport plans from µ to ν;

5o(µ, ν) the set of optimal transport plans from µ to ν;

W2(µ, ν) the 2-Wasserstein distance between µ and ν;

P2(X) the subset of the elements P(X) with finite p-moment, endowed with the

2-Wasserstein distance;

Bari(γ ) the i-th barycentric projection of γ ;
ν

µ
the Radon–Nikodym derivative of the measure ν w.r.t. the measure µ;

Lip(f ) the Lipschitz constant of a function f .
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2. A Mayer problem in the Wasserstein space

To maintain the flow of the paper we postpone to Appendix A several known results and

definitions.

In this section we will introduce the Mayer problem in finite horizon. Given a cost function

G : P(Rd)→R and a time horizon T > 0, we will consider the problem of minimizing the cost

over all the endpoints of the trajectories in the space of measures that can be represented as a

superposition of trajectories defined in [0, T ] of a given differential inclusions ẋ(t) ∈ F(x(t)),
weighted by a probability measure µ on the initial state.

Throughout this section, we will made the following standing assumptions, referring the

reader to [3] for an introduction to differential inclusions in finite-dimensional spaces:

(F ) F : Rd ⇒ R
d is a Lipschitz continuous set-valued map with nonempty compact convex

values;

(G ) G : P2(R
d)→ R is bounded and Lipschitz continuous w.r.t. W2 metric.

Given a, b ∈ R, a < b, we will denote by Ŵ[a,b] = C0([a, b];Rd) the space of continuous

curves from [a, b] to R
d endowed with the uniform convergence norm, and for all t ∈ [a, b] we

define the evaluation operator et : R
d × Ŵ[a,b] → R

d by setting et (x, γ )= γ (t). When [a, b] =
[0, T ] we will write ŴT in place of Ŵ[0,T ]. We have that et is continuous.

2.1. Admissible trajectories and their properties

Given N ∈ N, consider a smooth function ϕ, and nN agents initially at the points xNi ∈ R
d

and moving along the corresponding trajectory of the control system γ̇Ni (t)= f (γNi (t), u
N
i (t))

satisfying γNi (0)= xNi . If the i-th agent has weight λNi ∈ [0,1] with
∑

λNi = 1, we have

d

dt

nN
∑

i=1

λNi ϕ(γ
N
i (t))=

nN
∑

i=1

λNi ∇ϕ(γNi (t))f (γ
N
i (t), u

N
i (t)).

By defining µNt =

nN
∑

i=1

λNi δγNi (t)
, EνNt =

nN
∑

i=1

λNi f (·, u
N
i (t))δγNi (t)

, we have

d

dt

∫

Rd

ϕ(x)dµNt (x)=

∫

Rd

∇ϕ(x)dEνNt (x).

Clearly we have that EνNt is absolutely continuous w.r.t. µNt , and so we can write EνNt = vNt µ
N
t

for a map vNt ∈ L1

µNt
(Rd ;Rd). Recalling the convexity of F(x) we have also vNt (x) ∈ F(x) for

µNt -a.e. x ∈R
d . Nevertheless, we must be careful in considering a notion of convergence for the

family {vNt }N∈N, since even for fixed t they belong to Lp spaces of different measures. One of

the natural solution to this problem, see e.g. the discussion on [2] before Definition 5.4.3 p. 127,

is to consider directly the (time-depending) sequence of vector-valued measures {νNt }N∈N and

study its weak∗ limit points. With this notion of convergence, by taking a limit as N → +∞ of

the above equation, we are naturally led to the following definition.
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Definition 2.1 (Admissible trajectories). Let a, b ∈ R, a < b, µ ∈ P2(R
d), F : Rd ⇒ R

d be

satisfying (F ). We say that µ = {µt }t∈[a,b] ⊆ P2(R
d) is an admissible trajectory starting from

µ defined on [a, b] if there exists a family of time-dependent Borel vector-valued measures

Eν = {Eνt }t∈[a,b] ⊆ M (Rd ;Rd) such that

• ∂tµt + div Eνt = 0 in the sense of distributions, and µa = µ,

• |Eνt | ≪ µt for a.e. t ∈ [a, b], i.e., the total variation |Eνt | of the vector-valued measure Eνt is

absolutely continuous w.r.t. µt for a.e. t ∈ [a, b];

•
Eνt

µt
(x) ∈ F(x) for a.e. t ∈ [a, b] and µt -a.e. x ∈ R

d .

In this case, we will say that µ is driven by Eν. We will denote by A F
[a,b](µ) the set of all admissible

trajectories starting from µ and defined on [a, b], and we set A F
[a,b] =

⋃

µ∈P2(R
d )

A F
[a,b](µ). When

a = 0, we will denote A F
[0,b](µ) by A F

b (µ) and A F
[a,b] by A F

b .

Remark 2.2. If we take F(x)= −∂Z(x), where Z : Rd → ]−∞,+∞] is a λ-convex l.s.c. (in the

sense of (10.4.10) of [2]) function whose domain has nonempty interior, the admissible curves

according to the previous definition reduces to the gradient flow of the potential energy func-

tional F (µ)=

∫

Rd

Z(x)dµ(x). We refer the reader to Chapter 10 and 11 in [2] for a complete

treatment of gradient flow equations in Wasserstein spaces.

The following result provides some basic properties of the admissible trajectories.

Proposition 2.3 (Properties of the admissible trajectories). Let a, b, c ∈ R, a < b < c, F :
R
d
⇒ R

d be satisfying (F ). Recalling that the space X := C0([a, b];P2(R
d)) equipped with

the metric

dX(µ,ν)= sup
t∈[a,b]

W2(µt , νt ), for all µ = {µt }t∈[a,b], ν = {νt }t∈[a,b],

is a complete metric space, we have that

(1) (closedness) the set of admissible trajectories is closed in (X,dX);

(2) (compactness) if {µN }N∈N is a sequence of admissible trajectories satisfying

sup
N∈N

{m2(µ
N
0 )}<∞, then it admits a convergent subsequence in (X,dX).

(3) (concatenation) givenµ ∈ P2(R
d), µ = {µt }t∈[a,b] ∈ A F

[a,b](µ), ν = {νt }t∈[b,c] ∈ A F
[b,c](µb)

then, set

µ ⊙ ν := {ζt }t∈[a,c], with ζt =

{

µt , if a ≤ t ≤ b,

νt , if b < t ≤ c,

we have µ ⊙ ν ∈ A F
[a,c](µ).
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(4) (estimate) if µ = {µt }t∈[a,b] is an admissible trajectory, and η ∈ P(Rd × Ŵ[a,b]) satisfies

µt = et♯η for all t ∈ [a, b], then for s1, s2 ∈ [a, b] we have

‖es1 − es2‖L2
η
≤ Ce2(b−a)C

(

1 + min
i=1,2

m
1/2
2 (µsi )

)

|s1 − s2|,

where C = max
y∈F(0)

|y| + Lip(F ).

(5) (convergence) if µ = {µt }t∈[a,b] is an admissible trajectory, and η ∈ P(Rd×Ŵ[a,b]) satisfies

µt = et♯η for all t ∈ [a, b], given t̄ ∈ [a, b] and a sequence {ti}i∈N ⊆ [a, b] with ti → t̄ , every

limit for i → +∞ of a L2
η-weak converging sequence

eti − et̄

ti − t̄
belongs to the set

{v ◦ et̄ : v ∈ L2
µt̄
, v(x) ∈ F(x) for µt̄ -a.e. x ∈ R

d }.

Proof. Items (1) and (2) were proved in Proposition 3 and Theorem 3 of [16], respectively.

Item (3) follows from Lemma 4.4 in [23] and from the definition of admissible trajectory. We

prove now (4). By the Lipschitz continuity of F , for any x ∈ R
d and v ∈ F(x), we have |v| ≤

C(|x| + 1). If γ is a trajectory of the differential inclusion ẋ(t) ∈ F(x(t)) defined on [a, b], for

all s1, s2 ∈ [a, b] we have

|γ (s1)− γ (s2)| ≤

∣

∣

∣

∣

∣

∣

s2
∫

s1

|γ̇ (w)|dw

∣

∣

∣

∣

∣

∣

≤ C|s1 − s2| +C

∣

∣

∣

∣

∣

∣

s2
∫

s1

|γ (w)|dw

∣

∣

∣

∣

∣

∣

≤C(1 + |γ (si)|)|s1 − s2| +C

∣

∣

∣

∣

∣

∣

s2
∫

s1

|γ (w)− γ (si)|dw

∣

∣

∣

∣

∣

∣

Grönwall inequality yields

|γ (s1)− γ (s2)| ≤ C(1 + |γ (si)|)|s1 − s2|e
C|s1−s2| ≤ Ce2(b−a)C(1 + |γ (si)|)|s1 − s2|

Integrating this relation w.r.t. η, yields for i = 1,2,

‖es1 − es2‖L2
η
≤ Ce2(b−a)C |s1 − s2|







∫

Rd×Ŵ[a,b]

(1 + |γ (si)|)
2 dη







1/2

= Ce2(b−a)C |s1 − s2|







∫

Rd

(1 + |x|)2 dµsi







1/2

= Ce2(b−a)C(1 + m
1/2
2 (µsi ))|s1 − s2|,

and we conclude by taking the minimum on i = 1,2.

We prove (5). Given x ∈ R
d , let γx(·) be any trajectory of the differential inclusion satisfying

γx(t̄)= x. Fix now ε > 0, x̄ ∈ R
d . Then there exists δx̄ > 0 such that F(y)⊆ Fε(x̄) := F(x̄)+

εB(0,1) for all y ∈ B(x̄, δx̄). As in the proof of (4), we have
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|γx(s)− x| ≤ Ce2(b−a)C(1 + |x|)|s − t̄ |.

In particular, there exists τx̄ > 0 such that if |s − t̄ | ≤ τx̄ , then |γx(s) − x| ≤ δx̄ for all x ∈
B(x̄, δx̄/2), and so γ̇x(s) ∈ F(x̄)+ εB(0,1) for a.e. s ∈ [a, b] with |s − t̄ | ≤ τx̄ and for all x ∈

B(x̄, δx̄/2). Consider now a sequence {ti}i∈N such that
eti (x, γ )− et̄ (x, γ )

ti − t̄
⇀ w(x, γ ) in L2

η .

The vector-valued measure wη is absolutely continuous w.r.t. µt̄ by the disintegration theorem

(w.r.t. et̄ ), and so we have wη = vµt̄ for a certain v ∈ L1
µt̄
(Rd). For all ξ ∈ R

d , x̄ ∈ R
d density

point of µt̄ , and 0< δ < δx̄/2 we have

∫

B(x̄,δ)

〈ξ, v(x)〉dµt̄ = lim
i→+∞

∫

B(x̄,δ)×Ŵ[a,b]

〈ξ,
eti (x, γ )− et̄ (x, γ )

ti − t̄
〉dη(x, γ )

≤ sup
y∈Fε(x̄)

〈ξ, y〉µt̄ (B(x̄, δ)).

Dividing by µt̄ (B(x̄, δ)) and letting δ → 0+, this implies that 〈ξ, v(x̄)〉 ≤ sup
y∈Fε(x̄)

〈ξ, y〉 for all

ξ ∈ R
d , and density point x̄ ∈R

d of µt̄ . By convexity of Fε(x̄), we have v(x̄) ∈ Fε(x̄) for µt̄ -a.e.

x̄ ∈R
d . We conclude by letting ε→ 0+ and noticing that, since v(x) ∈ F(x) for µt̄ -a.e. x ∈ R

d ,

we have v ∈ L2
µt̄

since F has linear growth. ✷

We will prove now a result allowing to use some Gronwall-like estimates on the admissible

trajectories.

Proposition 2.4 (Gronwall-like estimate in W2). Assume that F satisfies (F ). Let a, b ∈ R with

a < b. Then there exists K > 0 such that given µ,ν ∈ P2(R
d), µ = {µt }t∈[a,b] ∈ A F

[a,b](µ) it is

possible to find ν = {νt }t∈[a,b] ∈ A F
[a,b](ν) satisfying

W2(µt , νt )≤K ·W2(µ, ν), for all t ∈ [a, b].

Proof. By the assumption on F(·), there exists a compact set U and a continuous function f ,

Lipschitz in the first variable uniformly w.r.t. the second, such that F(x) = {f (x,u) : u ∈ U}.
By the Superposition Principle (Theorem A.8), let η = µ⊗ ηx ∈ P(Rd × Ŵ[a,b]) be such that

µt = et♯η, for a suitable Borel family {ηx}x∈Rd ⊆ P(Ŵ[a,b]) uniquely defined for µ-a.e. x ∈ R
d .

Given an optimal transport plan π ∈5o(µ, ν), we define π = π ⊗ ηx ∈ P(Rd ×R
d × Ŵ[a,b]).

For any (x, γ ) ∈R
d × Ŵ[a,b] we consider

H(x,γ )=







u ∈ L1([a, b];U) : γ (t)− x −

t
∫

0

f (γ (s), u(s)) ds = 0 for all t ∈ [a, b]







.

By Theorem 8.2.9 p.315 in [5], we can find a Borel map (x, γ ) 7→ ux,γ such that

γ (t)= x +

t
∫

a

f (γ (s), ux,γ (s)) ds, for all t ∈ [a, b] and η − a.e. (x, γ ) ∈R
d × Ŵ[a,b].
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Define now a Borel map τ : Rd × Ŵ[a,b] → Ŵ[a,b] as follows:

• if ˙̂γ ∈ F(γ̂ (t)) for a.e. t ∈ [a, b], we set τ(ŷ, γ̂ ) ∈ Ŵ[a,b] to be the unique solution of

{

γ̇ (t)= f (γ (t), uγ̂ (a),γ̂ (t)), for a.e. t ∈ [a, b],

γ (a)= ŷ.

• if ˙̂γ /∈ F(γ̂ (t)) for a.e. t ∈ [a, b], we set τ(ŷ, γ̂ )= γ̂ .

Clearly, for all y ∈R
d , a.e. t ∈ [a, b], and η-a.e. (γ (a), γ ) ∈ R

d × Ŵ[a,b] we have

• τ(y, γ )(a)= y;

•
d

dt
τ (y, γ )(t)= f (τ(y, γ )(t), uγ (a),γ (t)) ∈ F(τ(y, γ )(t)),

• |τ(y, γ )(t)− γ (t)| ≤ |y − γ (a)| · eLip(f )(t−a),

where the last assertion follows from Grönwall inequality since

|τ(y, γ )(t)− γ (t)| ≤ |y − γ (a)| +

t
∫

a

|f (τ(y, γ )(s), uγ (a),γ (s))− f (γ (s), uγ (a),γ (s))|ds

≤|y − γ (a)| + Lip(f )

t
∫

a

|τ(y, γ )(s)− γ (s)|ds.

Define now ν = {νt }t∈[a,b] by setting

∫

Rd

ϕ(y)dνt (y)=

∫∫∫

Rd×Rd×Ŵ[a,b]

ϕ ◦ et (y, τ (y, γ )) dπ(x, y, γ ),

for every ϕ ∈ C1
c (R

d).

Evaluating the above expression for t = a we have

∫

Rd

ϕ(y)dνa(y)=

∫∫∫

Rd×Rd×Ŵ[a,b]

ϕ ◦ ea(y, τ (y, γ )) dπ(x, y, γ )

=

∫∫∫

Rd×Rd×Ŵ[a,b]

ϕ(y)dπ(x, y, γ )=

∫

Rd

ϕ(y)dν(y),

and so ν|t=a = ν. By deriving w.r.t. t , we obtain
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d

dt

∫

Rd

ϕ(y)dνt (y)=

=

∫∫∫

Rd×Rd×Ŵ[a,b]

〈∇ϕ ◦ et (y, τ (y, γ )), f (τ (y, γ )(t), uγ (a),γ (t))〉dπ(x, y, γ ).

Disintegrating π w.r.t. the map gt (x, y, γ ) := et (y, τ (y, γ )), and recalling that gt♯π = νt , we

have π = νt ⊗ πx,y,γ and

d

dt

∫

Rd

ϕ(y)dνt (y)=

∫

Rd

〈∇ϕ(ξ),

∫∫∫

g−1
t (ξ)

f (ξ,uγ (a),γ (t)) dπx,y,γ (x, y, γ )〉dνt (ξ).

Recalling the convexity of F , we have

vt (ξ) :=

∫∫∫

g−1
t (ξ)

f (ξ,uγ (a),γ (t)) dπx,y,γ (x, y, γ ) ∈ F(ξ), for a.e. t ∈ [a, b],

and so ν ∈ A F
[a,b](ν) is an admissible trajectory.

Finally, set π13(x, y, γ )= (x, γ ), we have (et ◦ π13, gt )♯π ∈5(µt , νt ), and so

W 2
2 (µt , νt )≤

∫

Rd×Rd×Ŵ[a,b]

|γ (t)− τ(y, γ )(t)|2 dπ(x, y, γ )

≤ e2Lip(f )(t−a)

∫

Rd×Rd×Ŵ[a,b]

|y − γ (a)|2 dπ(x, y, γ )

= e2Lip(f )(t−a)

∫

Rd×Rd

|y − x|2 dπ(x, y)= e2Lip(f )(t−a)W 2
2 (µ, ν),

and so we can choose K = e2Lip(f )(b−a). The proof is complete. ✷

The following proposition illustrate the fact that for an initial condition µ ∈ P2(R
d) any

selection v(·) ∈ F(·) with v ∈ L2
µ(R

d) can be the initial velocity of an admissible trajectory (this

is a well-known consequence of Filippov Theorem in the context of differential inclusions).

Proposition 2.5 (Initial velocity of smooth trajectories). Let a, b ∈ R, a < b, µ ∈ P2(R
d), F :

R
d
⇒ R

d be satisfying (F ), µ ∈ P2(R
d). Then for every va ∈ L2

µ(R
d) such that va(x) ∈ F(x)

for µ-a.e. x ∈R
d there exist η ∈ P(Rd × Ŵ[a,b]) such that µ = {et♯η}t∈[a,b] ∈ A F

[a,b](µ) and

lim
t→a+

∫

Rd×Ŵ[a,b]

〈ϕ ◦ ea(x, γ ),
et (x, γ )− ea(x, γ )

t − a
〉dη(x, γ )=

∫

Rd

〈ϕ(x), va(x)〉dµ(x).
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Proof. Without loss of generality, we assume that [a, b] = [0, T ]. According to the assumptions

on F , by Theorem 9.7.1 and Theorem 9.7.2 in [5], there exists f : Rd ×R
d →R

d such that 1















x 7→ f (x,u) is Lipschitz continuous with constant 5d Lip(F ),

|f (x,u)− f (x, v)| ≤ 5d · max{|y| : y ∈ F(x)} · |u− v|,

F (x)= {f (x,u) : u ∈ B(0,1)}.

(4)

By Filippov’s Implicit Function Theorem (see e.g. Theorem 8.2.10 in [5]), there exists a measur-

able selection ux of F(·) such that v0(x)= f (x,ux) for µ-a.e. x ∈ R
d . For every x ∈ R

d define

γx to be the unique solution of γ̇x(t)= f (γx(t), ux), γx(0)= x. The map x 7→ γx is Borel, thus

we can define the product measure η = µ⊗ δγx . We notice that

|γx(t)− γx(0)− tf (γx(0), ux)| ≤

t
∫

0

|f (γx(s), ux)− f (γx(0), ux)|ds

≤ 5d Lip(F )

t
∫

0

|γx(s)− γx(0)− sf (γx(0), ux)|ds +
C

2
t2(|x| + 1),

where C > 0 is a constant satisfying |y| ≤ C(|x| + 1) for all y ∈ F(x), x ∈ R
d . Using Grönwall

inequality and dividing by t , we have

∣

∣

∣

∣

γx(t)− γx(0)

t
− f (γx(0), ux)

∣

∣

∣

∣

≤
CT

2
e5dT Lip(F )(|x| + 1),

which, squaring and integrating in x w.r.t. the measure µ, yields that the map gt (x) :=
γx(t)− γx(0)

t
has L2

µ norm bounded by e5dT Lip(F )(CT + 1)(m
1/2
2 (µ) + 1). For every ϕ ∈

L2
µ(R

d) we have

lim
t→0+

∫

Rd×Ŵ[a,b]

〈ϕ ◦ e0(x, γ ),
et (x, γ )− ea(x, γ )

t − a
〉dη(x, γ )= lim

t→0+

∫

Rd

〈ϕ(x), gt (x)〉dµ(x)

Since by Hölder inequality we have

‖〈ϕ,gt 〉‖L1
µ

≤ ‖ϕ‖L2
µ

· e5dT Lip(F )(CT + 1)(m
1/2
2 (µ)+ 1),

we can apply the Dominated Convergence Theorem to pass to the limit under the integral sign,

obtaining

lim
t→0+

∫

Rd

〈ϕ(x), gt (x)〉dµ(x)=

∫

Rd

〈ϕ(x), lim
t→0+

gt (x)〉dµ(x)=

∫

Rd

〈ϕ(x), va(x)〉dµ(x). ✷

1 Of course when F comes from the control system (1) we do not change the parametrization of the map F .
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2.2. The value function for the Mayer problem

Given s ∈ [0, T ], µ ∈ P2(R
d), we define the value function V : [0, T ] × P2(R

d)→ R by

setting

V (s,µ)= inf
{

G (µT ) : {µt }t∈[s,T ] ∈ A F
[s,T ](µ)

}

.

We say that {µt }t∈[s,T ] ∈ A F
[s,T ](µ) is an optimal trajectory forµ ∈ P2(R

d) if V (s,µ)= G (µT ).

Remark 2.6. From Proposition 2.3, since G (·) is l.s.c., we deduce immediately the existence of

optimal trajectories for every µ ∈ P2(R
d).

Proposition 2.7 (Dynamic Programming Principle for the Mayer problem). For all µ ∈ P2(R
d)

and τ ∈ [0, T ] we have

V (τ,µ)= inf
{

V (s,µs) : {µt }t∈[τ,T ] ∈ A F
[τ,T ](µ), s ∈ [τ, T ]

}

,

i.e., V (τ,µτ ) ≤ V (s,µs) for all τ ≤ s ≤ T and {µt }t∈[τ,T ] ∈ A F
[τ,T ](µ), and V (τ,µτ ) =

V (s,µs) for all τ ≤ s ≤ T if and only if {µt }t∈[τ,T ] is an optimal trajectory for µ.

Proof. By contradiction, assume that there exist µ ∈ P2(R
d), µ = {µt }t∈[τ,T ] ∈ A F

[τ,T ](µ), τ <

s ≤ T and ε > 0 with V (τ,µτ ) = V (s,µs) + ε. In particular, there exists µ̂ = {µ̂t }t∈[s,T ] ∈
A F

[s,T ](µs) such that V (s,µs) ≥ G (µ̂T )− ε/2, and so V (τ,µτ ) ≥ G (µ̂T )+ ε/2. We consider

the new trajectory µ̄ = {µ̄t }t∈[0,T ] ∈ A F
[0,T ] defined as µ̄ = µ ⊙ µ̂ (i.e. µ̄t = µt for t ∈ [0, s] and

µ̄t = µ̂t for t ∈ [s, T ]). Clearly we have µ̄τ = µτ , µ̄s = µ̂s = µs , µ̄T = µ̂T and {µ̄t }t∈[τ,T ] ∈
A F

[τ,T ](µτ ). By definition we must then have V (τ,µτ )≤ G (µ̄T ), leading to a contradiction with

V (τ,µτ )− ε/2 ≥ G (µ̂T )= G (µ̄T ).
Assume now to have the equality V (τ,µτ ) = V (s,µs) for all τ ≤ s ≤ T . In particular, we

have V (τ,µτ )= V (T ,µT )= G (µT )=, so {µt }t∈[τ,T ] is an optimal trajectory for µτ = µ. Con-

versely, assume that {µt }t∈[τ,T ] is an optimal trajectory for µ, and take s ∈ [τ, T ]. By definition,

we have V (s,µs) ≤ G (µT ) since the restriction {µt }t∈[s,T ] ∈ A F
[s,T ](µs), furthermore, by the

monotonicity property we have V (τ,µ) ≤ V (s,µs) ≤ G (µT ) but the first and the last term of

the inequality coincides by the optimality assumption, so we have V (τ,µ)= V (s,µs)= G (µT )
for all s ∈ [τ, T ]. ✷

Proposition 2.8 (Regularity of the value function). Let T > 0, F,G be satisfying (F ) and (G ),

respectively. Then V : [0, T ] × P2(R
d) → R is bounded and for every K ≥ 0, it is Lipschitz

continuous on the set {(t,µ) ∈ [0, T ] × K , m2(µ)≤K}.

Proof. The boundedness follows directly from the definition.

We prove first the Lipschitz continuity w.r.t. the second variable, so let s ∈ [0, T ] be

fixed. Fix ε > 0. Given µ(1),µ(2) ∈ P2(R
d), let {µ

(2)
t }t∈[s,T ] ∈ A F (µ(2)) be such that

V (s,µ(2)) ≥ G (µ(2)T ) − ε. By Proposition 2.4, there exists {µ
(1)
t }t∈[s,T ] ∈ A F (µ(1)) satisfying

W2(µ
(1)
T ,µ

(2)
T )≤KW2(µ

(1),µ(2)), where K = e5dLip(F )·(T−s) ≤ e5dLip(F )·T . We have
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V (s,µ(1))− V (s,µ(2))≤G (µ(1)T )− G (µ(2)T )+ ε ≤ ε+ Lip(G ) ·W2(µ
(1)
T ,µ

(2)
T )

≤ ε+ Lip(G )e5dLip(F )·T ·W2(µ
(1),µ(2)).

By letting ε→ 0+ and interchanging the roles of µ(1) and µ(2), we obtain

∣

∣

∣
V (s,µ(1))− V (s,µ(2))

∣

∣

∣
≤ Lip(G )e5dLip(F )·TW2(µ

(1),µ(2)).

We prove now the Lipschitz continuity w.r.t. the first variable, so let µ ∈ P2(R
d) be fixed,

s1, s2 ∈ [0, T ]. Fix ε > 0 and let {µ
(2)
t }t∈[s2,T ] ∈ A F

[s2,T ](µ), be such that V (s2,µ)≥ G (µ(2)T )−ε.

This yields for all t ∈ [s2, T ]

V (t,µ
(2)
t )− V (s2,µ

(2)
s2
)≤ V (t,µ

(2)
t )− G (µ(2)T )+ ε ≤ ε.

We distinguish now two cases:

• Assume that s1 ≤ s2. In this case, given any {µ
(1)
t }t∈[s1,T ] ∈ A F

[s1,T ](µ), and recalling the

monotonicity property provided by Proposition 2.7 and the fact that we have µ= µ
(i)
si , i =

1,2, we have

V (s1,µ)− V (s2,µ)≤V (s2,µ
(1)
s2
)− V (s2,µ)= V (s2,µ

(1)
s2
)− V (s2,µ

(1)
s1
)

≤Lip(G )e5dLip(F )·TW2(µ
(1)
s2
,µ(1)s1 )

≤Lip(G )e5dLip(F )·TW2(es1♯η1, es2♯η1)

≤Lip(G )e5dLip(F )·T ‖es1 − es2‖L2
η1
,

where we used the Lipschitz continuity of V (s2, ·).

• Assume that s2 ≤ s1, since µ= µ
(i)
si , i = 1,2, we have

V (s1,µ)− V (s2,µ)≤V (s1,µ
(2)
s2
)− V (s1,µ

(2)
s1
)+ V (s1,µ

(2)
s1
)− V (s2,µ

(2)
s2
)

≤V (s1,µ
(2)
s2
)− V (s1,µ

(2)
s1
)+ ε

≤ ε+ Lip(G )e5dLip(F )·TW2(µ
(2)
s2
,µ(2)s1 )

= ε+ Lip(G )e5dLip(F )·T ‖es1 − es2‖L2
η2
.

By Proposition 2.3 applied to η1 and η2, we have

‖es1 − es2‖L2
ηi

≤ (CT e2T C + 1)Ce2T C(1 + m
1/2
2 (µ))|s1 − s2|,

where C = max
y∈F(0)

|y| + Lip(F ). Having defined

K ′′ = 2K ′(CT e2T C + 1)Ce2T C sup
µ∈K

(1 + m
1/2
2 (µ)),
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we have

V (s1,µ)− V (s2,µ)≤ε+K ′′|s1 − s2|,

and we conclude by letting ε→ 0+ and interchanging the roles of s1 and s2. ✷

We will show now a feature that marks a significative difference between the classical case

and our framework.

Lemma 2.9. For each initial point x(0)= x0, consider the reachable set at time T .

R(T ;x0) := {x(T ) : ẋ(t) ∈ F(x(t)) for a.e. t ∈ [0, T ], x(0)= x0}.

Then, for all µ ∈ P2(R
d) we have

V (0,µ)≤ inf{G (φ♯µ) : φ is a Borel selection of R(T ; ·)},

and the inequality may be strict.

Proof. To prove the statement it is enough to show that given a Borel selection φ of R(T ; ·), we

can represent φ♯µ as terminal point of an admissible trajectory. For every x ∈ R
d , we consider

the set

R̃φ(T ;x) := {γ ∈ Ŵ : γ̇ (t) ∈ F(γ (t)) for a.e. t ∈ [0, T ], γ (0)= x, γ (T )= φ(x)}.

The set-valued map R̃φ(T ; ·) : Rd ⇒ Ŵ is Borel according to the properties of F(·), and so we

can find a Borel map φ̃ : Rd → Ŵ such that φ̃(x)(·) is an admissible trajectory of the finite-

dimensional differential inclusion joining x and φ(x). Set now ηφ = µ⊗ δφ̃(x) ∈ P(Rd × Ŵ).

Since for ηφ-a.e. (x, γ ) ∈ R
d ×Ŵ we have that γ (0)= x and γ is an admissible trajectory for F ,

we have that µ := {µt }t∈[0,T ] defined by µt = et♯ηφ is an admissible trajectory satisfyingµ0 = µ

and µT = φ♯µ, as desired. This trajectory is indeed driven by ν := {νt }t∈[0,T ], where νt = vtµt
and for µt -a.e. x ∈R

d

vt (x) :=

∫

e−1
t (y)

γ̇ (t) dηt,x(y, γ ) ∈ F(x),

where ηt,x is the disintegration of ηφ w.r.t. et , i.e. ηφ = et ⊗ ηt,x . We refer the reader to e.g. [18]

for the details. ✷

The example below shows that the inequality may be strict in general.

Example 2.10. In R, set F(x) = [−1,1] for all x ∈ R, T = 1. For every x0 ∈ R, we have

R(T ;x0)= [x0 − 1, x0 + 1]. Denoted by δa ∈ P(R) the Dirac delta with mass concentrated in

a ∈ R, we define the terminal cost G (µ) := min{2,W2(µ, θ)} where θ =
1

2
(δ−1 + δ1). The map
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G : P2(R)→ R is Lipschitz continuous w.r.t. W2. We notice that there are no maps φ : R → R

satisfying φ(x0) ∈R(T ;x0)= [x0 − 1, x0 + 1] and θ = φ♯δ0 = δφ(0), in fact

θ([−1,1] \ {φ(0)})≥ 1/2> φ♯δ0([−1,1] \ {φ(0)})= 0.

We compute now

W 2
2 (φ♯δ0, θ)= inf

π∈5(φ♯δ0,θ)

∫

R×R

|x − y|2 dπ(x, y).

Since φ♯δ0 = δφ(0), the set of admissible transport plans 5(φ♯δ0, θ) reduces to the unique ele-

ment π = δφ(0) ⊗ θ , and so

W 2
2 (φ♯δ0, θ)=

∫

R×R

|x − y|2 d(δφ(0) ⊗ θ)=
1

2
|φ(0)− 1|2 +

1

2
|φ(0)+ 1|2.

Since φ(0) ∈ [−1,1], we obtain W 2
2 (φ♯δ0, θ) ≥ 1. In particular, G (φ♯δ0) ≥ 1 for every map

φ : R → R such that φ(y) ∈R(T ;y).

Set now v : R → R to be v(x) = sign(x) for x 6= 0, v(0) = 0, and µt =
1

2
(δ−t + δt ), we

have that µ = {µt }t∈[0,1] solves ∂tµt + div(vµt ) = 0 according to the Superposition Principle

(Theorem 8.2.1 in [2]), moreover µ0 = δ0 and µ1 = θ and v(x) ∈ F(x) for all x ∈ R
d . Thus in

this case θ can be reached from δ0 at time 1, and then V (0, δ0)= G (θ)= 0.

3. Hamilton–Jacobi–Bellman equations in Wasserstein space

The aim of this section is to introduce the essential differential structure on P2(R
d) in order

to define suitable notions of sub/super-differentials and viscosity solution (cf. [22] for viscosity

solution of Hamilton Jacobi equations not stated in a finite dimensional space).

Lemma 3.1 (Representation of optimal plans). Let µ,ν ∈ P2(R
d), γ ∈5o(µ, ν). Then

• there exist unique functions p
µ
γ ∈ L2

µ(R
d) and qνγ ∈ L2

ν(R
d) such that for all Borel map

φ : Rd → R
d satisfying φ ∈ L2

µ(R
d)∩L2

ν(R
d) we have

∫

Rd×Rd

〈φ(x), x − y〉dγ (x, y)=

∫

Rd

〈φ(x),pµγ (x)〉dµ(x)=

∫

Rd

〈φ(y), qµγ (y)〉dν(y),

• we have p
µ
γ = IdRd −Bar1(γ ), q

ν
γ = IdRd −Bar1(γ

−1) where the barycenter Bar1 is defined

in Definition A.5.

Proof. The first statement has been proved in Lemma 4 of [12]. Indeed, to prove the existence

of p
µ
γ is enough to notice that
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φ 7→

∫

Rd×Rd

〈φ(x), x − y〉dγ (x, y),

is a linear and continuous operator from L2
µ(R

d) to R, and then to use Riesz representation

theorem. Similarly, we prove the existence of qνγ , by noticing that

φ 7→

∫

Rd×Rd

〈φ(x), x − y〉dγ (x, y)=

∫

Rd×Rd

〈φ(y), y − x〉dγ−1(x, y),

is a linear and continuous operator from L2
ν(R

d) to R.

The second statement follows from the disintegration theorem w.r.t. the first marginals of γ

and γ−1, respectively. Indeed, if γ = µ⊗ γx and γ−1 = ν ⊗ γ−1
y , we can identify {γx}x∈Rd and

{γy}y∈Rd with subsets of P2(R
d), obtaining for all φ ∈ L2

µ(R
d)∩L2

ν(R
d)

∫

Rd×Rd

〈φ(x), x − y〉dγ (x, y)=



























∫

Rd

〈φ(x), x −

∫

Rd

y dγx(y)〉dµ(x),

∫

Rd

〈φ(y), y −

∫

Rd

x dγ−1
y (x)〉dν(y).

✷

We introduce now a notion of viscosity sub/super-differentials that will be used in the rest

of the paper. The comparison between this notion of sub/super-differential and other notions

available in literature is discussed in Appendix B.

Definition 3.2 (Viscosity sub/super-differentials). Let w : [0, T ] × P2(R
d) → R be a map,

(t̄ , µ̄) ∈]0, T [×P2(R
d), δ > 0. We say that (pt̄ ,pµ̄) ∈ R × L2

µ̄(R
d) belongs to the viscosity

δ-superdifferential of w at (t̄ , µ̄) if

i.) there exists ν̄ and γ ∈ 5o(µ̄, ν̄) such that for all Borel map φ : Rd → R
d satisfying φ ∈

L2
µ(R

d)∩L2
ν(R

d) we have

∫

Rd×Rd

〈φ(x), x − y〉dγ (x, y)=

∫

Rd

〈φ(x),pµγ (x)〉dµ(x),

i.e., pµ̄ = p
µ̄
γ where p

µ̄
γ is defined as in Lemma 3.1.

ii.) for all µ ∈ P2(R
d) we have

w(t,µ)−w(t̄, µ̄)≤ pt (t − t̄ )+

∫

Rd×Rd×Rd

〈x2, x3 − x1〉dµ̃(x1, x2, x3)+

+ δ

√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ)+ o(|t − t̄ | +W2,µ̃(µ̄,µ)),

for all µ̃ ∈ P(Rd ×R
d ×R

d) satisfying π12♯µ̃= (IdRd ,pµ̄)♯µ̄ and π13♯µ̃ ∈5(µ̄,µ).
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We denote the set of the viscosity δ-superdifferentials of w at (t̄ , µ̄) by D+
δ w(t̄, µ̄). Simi-

larly, we define the set of the viscosity δ-subdifferentials D−
δ w(t̄, µ̄) of w at (t̄ , µ̄) by setting

−D−
δ w(t̄, µ̄)=D+

δ (−w)(t̄, µ̄).

We will use the following concept of viscosity solution (see [12]).

Definition 3.3 (Hamilton–Jacobi–Bellman Equation). We consider an equation in the form

∂tw(t,µ)+ H (µ,Dw(t,µ))= 0, (5)

where H (µ,p) is defined for any µ ∈ P2(R
d) and p ∈ L2

µ(R
d). We say that a function w :

[0, T ] × P2(R
d)→R is

• a subsolution of (5) if w is u.s.c. and there exists a constant C > 0 such that

pt + H (µ,pµ)≥ −Cδ,

for all (t,µ) ∈]0, T [×P2(R
d), (pt ,pµ) ∈D

+
δ w(t0,µ0), and δ > 0.

• a supersolution of (5) if w is l.s.c. and there exists a constant C > 0 such that

pt + H (µ,pµ)≤ Cδ,

for all (t,µ) ∈]0, T [×P2(R
d), (pt ,pµ) ∈D

−
δ w(t0,µ0), and δ > 0.

• a solution of (5) if w is both a supersolution and a subsolution.

We will prove now a comparison principle between sub- and supersolutions by using the

doubling of variable method.

Theorem 3.4 (Comparison principle). Consider the equation (5) for an Hamiltonian function

H satisfying the following properties

• positive homogeneity: for every λ ≥ 0, µ ∈ P2(R
d), p ∈ L2

µ(R
d) we have H (µ,λp) =

λH (µ,p);

• dissipativity: there exists k ≥ 0 such that for all µ,ν ∈ P2(R
d), γ ∈5o(µ, ν), defined p

µ
γ =

IdRd − Bar1(γ ), q
ν
γ = IdRd − Bar1(γ

−1), we have

HF (µ,pµ)− HF (ν, qν)≤ kW
2
2 (µ, ν).

Let w1 be a bounded and Lipschitz continuous subsolution and w2 be a bounded and Lipschitz

continuous supersolution to (5). Then

inf
(s,µ)∈[0,T ]×P2(R

d )
w2(s,µ)−w1(s,µ)= inf

µ∈P2(R
d )
w2(T ,µ)−w1(T ,µ).

In particular, equation (5) admits at most one Lipschitz continuous bounded solution.
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Proof. The proof will be in the same spirit of Theorem 1 of [12].

Without loss of generality, we may assume k ≥ Lip(wi), i = 1,2. Set

A := inf
µ∈P2(R

d )
w2(T ,µ)−w1(T ,µ),

and notice that since H does not involve w, w1 −A is still a subsolution. Thus, without loss of

generality, we can assume A= 0. We will prove the result by contradiction, so assume that

−ξ := inf
(s,µ)∈[0,T ]×P2(R

d )
w2(s,µ)−w1(s,µ) < 0,

and choose (t0,µ0) ∈ [0, T ] × P2(R
d) such that w2(t0,µ0)−w1(t0,µ0) <−ξ/2.

Consider now the space X = [0, T ] × P2(R
d) endowed with the metric

dX(ξ1, ξ2)=
√

(s1 − s2)2 +W 2
2 (µ1,µ2) where ξi = (si,µi), i = 1,2.

Clearly, (X,dX) is a complete metric space. We endow X×X with the metric dX×X defined by

dX×X (z1, z2)= dX((s1,µ1), (s2,µ2))+ dX((t1, ν1), (t2, ν2)),

for all zi = (si,µi, ti, νi) ∈X ×X, i = 1,2. Again, we have that (X ×X,dX×X) is a complete

metric space.

Given ε, η > 0, we define the functional 8εη :X×X→R by setting

8εη(s,µ, t, ν)= −w1(s,µ)+w2(t, ν)+
1

ε
d2
X((s,µ), (t, ν))− ηs.

Define z0 = (t0,µ0, t0,µ0) ∈X×X. Since8εη is continuous and bounded from below, and (X×
X,dX×X) is complete, by Ekeland Variational Principle (see e.g. Theorem 1 p.255 in [4]), for

any δ > 0 there exists zεηδ = (sεηδ,µεηδ, tεηδ, νεηδ) ∈X ×X such that for any z= (s,µ, t, ν) ∈
X×X we have







8εη(zεηδ)+ δdX×X(z0, zεηδ)≤8εη(z0),

8εη(zεηδ)≤8εη(z)+ δdX×X(z, zεηδ).
(6)

Furthermore, we set ρεηδ = dX((sεηδ,µεηδ), (tεηδ, νεηδ)).

By taking z= (sεηδ,µεηδ, sεηδ,µεηδ) in (6), we have

8εη(zεηδ)≤8εη(sεηδ,µεηδ, sεηδ,µεηδ)+ δρεηδ.

Recalling the definition of 8, this implies

−w1(sεηδ,µεηδ)+w2(tεηδ, νεηδ)+
1

ε
ρ2
εηδ − ηsεηδ ≤

≤ −w1(sεηδ,µεηδ)+w2(sεηδ,µεηδ)− ηsεηδ + δρεηδ,
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thus

w2(tεηδ, νεηδ)−w2(sεηδ,µεηδ)+
1

ε
ρ2
εηδ ≤ δρεηδ,

which implies ρεηδ ≤ ε(k + δ) recalling the smoothness assumptions on w2.

Claim 1: If sεηδ, tεηδ ∈]0, T [ then

(

2

ε
(sεηδ − tεηδ)− η,

2

ε
pεηδ

)

∈D+
δ w1(sεηδ,µεηδ), (7)

(

2

ε
(sεηδ − tεηδ),

2

ε
qεηδ

)

∈D−
δ w1(sεηδ,µεηδ), (8)

where pεηδ = IdRd − Bar1(γ ) ∈ L2
µεηδ

(Rd), qεηδ = IdRd − Bar1(γ
−1) ∈ L2

νεηδ
(Rd), and γ ∈

5o(µεηδ, νεηδ) is the unique solution of the minimization problem

min{‖IdRd − Bar1(γ
′)‖L2

µεηδ
: γ ′ ∈5o(µεηδ, νεηδ)}.

Proof (of Claim 1). By taking t = tεηδ and ν = νεηδ in (6), we have

8εη(zεηδ)≤8εη(s,µ, tεηδ, νεηδ)+ δdX((s,µ), (tεηδ, νεηδ)), for all (s,µ) ∈X,

which, recalling the definition of 8, yields

w1(s,µ)−w1(sεηδ,µεηδ)≤

≤
1

ε

[

W 2
2 (µ, νεηδ)−W 2

2 (µεηδ, νεηδ)+ (s − tεηδ)
2 − (sεηδ − tεηδ)

2
]

+ (9)

+ δ

√

W 2
2 (µ,µεηδ)+ |s − sεηδ|2 + η(sεηδ − s).

Recalling the choice of γ , the definition of pεηδ , and Theorem B.5(3), for every µ̃ ∈ P(Rd ×
R
d ×R

d) satisfying π3♯µ̃= µ and π12♯µ̃= (IdRd ,pεηδ)♯µεηδ we have

1

2
W 2

2 (µ, νεηδ)−
1

2
W 2

2 (µεηδ, νεηδ)≤

≤

∫

Rd×Rd×Rd

〈x2, x3 − x1〉dµ̃(x1, x2, x3)+ o(W 2
2,µ̃(µεηδ,µ)), (10)

=

∫

Rd×Rd×Rd

〈pεηδ(x1), x3 − x1〉d(π13♯µ̃)(x1, x3)+ o(W 2
2,µ̃(µεηδ,µ)),

In particular, the conditions on µ̃ imply also π13♯µ̃ ∈5(µεηδ,µ). By combining (10) and (9) we

obtain (7) recalling the definition of viscosity superdifferential. The proof of (7) is symmetric,

and this ends the proof of Claim 1. ⋄
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Claim 2: Assume that −2kε(k + δ)2 ≥ Cδ − η, then sεηδ, tεηδ /∈ ]0, T [.

Proof (of Claim 2). We argue by contradiction, assuming that sεηδ, tεηδ /∈ ]0, T [. By Claim 1,

since w1 and w2 are a sub- and super-solution, respectively, and recalling the positive homogene-

ity of the Hamiltonian, we have

−Cδ ≤
1

ε
(sεηδ − tεηδ)− η+ H

(

µεηδ,
2

ε
pεηδ

)

=
1

ε
(sεηδ − tεηδ)− η+

2

ε
H

(

µεηδ,pεηδ
)

Cδ ≥
1

ε
(sεηδ − tεηδ)+ H

(

νεηδ,
2

ε
qεηδ

)

=
1

ε
(sεηδ − tεηδ)+

2

ε
H

(

νεηδ, qεηδ
)

,

where C is the constant appearing in Definition 3.3. By combining the above relations, we have

H
(

νεηδ, qεηδ
)

− H
(

µεηδ,pεηδ
)

≤
ε

2
(Cδ − η).

By assumption, we have

H
(

νεηδ, qεηδ
)

− H
(

µεηδ,pεηδ
)

≥ −kρ2
εηδ,

and so, recalling that ρεηδ ≤ ε(k+ δ),

−k (ε(k + δ))2 ≤
ε

2
(Cδ − η),

leading to a contradiction with the choice of ε, δ, η. ⋄

Claim 3: Assume ξ > 2ηT − 2ε(k + δ)δ, then sεηδ 6= T and tεηδ 6= T .

Proof (of Claim 3). We notice that, by definition of ξ and recalling (6),

−
ξ

2
≥w2(t0,µ0)−w1(t0,µ0)− ηt0 =8εη(z0)≥8εη(zεηδ).

We prove the assertion by contradiction, assuming first sεηδ = T .

−
ξ

2
≥8εη(T ,µεηδ, tεηδ, νεηδ)= −w1(T ,µεηδ)+w2(tεηδ, νεηδ)+

1

ε
ρ2
εηδ − ηT

≥ −w1(T ,µεηδ)+w2(T ,µεηδ)+
1

ε
ρ2
εηδ − kρεηδ − ηT

Since we have assumed A= 0, we have 0 ≤ −w1(T ,µεηδ)+w2(T ,µεηδ), thus

−
ξ

2
≥ ε(k+ δ)δ − ηT ,

which leads to a contradiction with the choice of ε, δ, η. Thus sεηδ 6= T and the proof showing

tεηδ 6= T can be done in the same way.

We show now that sεηδ 6= 0. Since 8εη is continuous, there exists hεηδ > 0 such that

8εη(0,µεηδ, tεηδ, νεηδ)≥8εη(h,µεηδ, tεηδ, νεηδ)− ηT ,
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for all 0 ≤ h≤ hεηδ , so we have

−
ξ

2
≥8εη(0,µεηδ, tεηδ, νεηδ)≥8εη(h,µεηδ, tεηδ, νεηδ)− ηT

= −w1(h,µεηδ)+
(

w2(tεηδ, νεηδ)−w2(0,µεηδ)
)

+w2(0,µεηδ)+
1

ε
ρ2
εηδ − ηT

≥ −w1(h,µεηδ)+
(

w2(0,µεηδ)−w2(h,µεηδ)
)

+w2(h,µεηδ)+
1

ε
ρ2
εηδ − kρεηδ − ηT

≥ −w1(h,µεηδ)+w2(h,µεηδ)+
1

ε
ρ2
εηδ − k(h+ ρεηδ)− ηT .

Since we have assumed A= 0, we have 0 ≤ −w1(h,µεηδ)+w2(h, νεηδ), thus

−
ξ

2
≥ ε(k + δ)δ − ηT − kh,

which, by letting h→ 0+, leads again to a contradiction with the choice of ε, δ, η. Thus sεηδ 6= 0

and the proof showing tεηδ 6= 0 can be done in the same way. ⋄

By Claim 2 and Claim 3, if we choose ε, δ, η > 0 such that

ξ > 2ηT − 2ε(k + δ)2, −2kε(k+ δ)2 ≥ Cδ − η,

we have sεηδ, tεηδ /∈ [0, T ], against the definition of ξ . Thus we have ξ = 0 and the proof is

completed. ✷

4. Hamilton–Jacobi–Bellman equation for the Mayer’s problem

We will now characterize the value function of the Mayer’s problem as the unique Lipschitz

continuous viscosity solution of a suitable Hamilton–Jacobi–Bellman equation in the space of

probability measures.

Definition 4.1 (HJB equation for the Mayer’s problem). Given µ ∈ P2(R
d), pµ ∈ L2

µ(R
d ;Rd),

we set

HF (µ,pµ) := inf











∫

Rd

〈pµ(x), vµ(x)〉dµ(x) :
vµ : Rd →R

d Borel map

vµ(x) ∈ F(x) for µ-a.e. x ∈R
d











.

Remark 4.2. By Theorem 8.2.12 in [5], we have that the map

x 7→ h(x) := inf
v∈F(x)

〈pµ(x), v〉

is Borel, thus for every Borel selection v : Rd → R
d of F we have:
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∫

Rd

〈v(x),pµ(x)〉dµ(x)≥

∫

Rd

inf
v∈F(x)

〈pµ(x), v〉dµ(x),

and then by taking the infimum on v(·) we obtain

HF (µ,pµ)≥

∫

Rd

inf
v∈F(x)

〈pµ(x), v〉dµ(x).

Thanks to assumptions (F ), there exists C > 0 such that for all µ ∈ P2(R
d)

∫

Rd

inf
v∈F(x)

〈pµ(x), v〉dµ(x)

≥ −C

∫

|pµ(x)| · (|x| + 1) dµ(x)≥ −C‖pµ‖L2
µ
(m

1/2
2 (µ)+ 1) >−∞.

For every ε > 0, define the Borel set-valued map Gε : Rd ⇒ R by setting Gε(x) = [h(x) −
ε,h(x) + ε]. This map is Borel with closed images. Define the map g : Rd × R

d → R by

g(x, v)= 〈pµ(x), v〉. The map g is Carathéodory, i.e., for every v ∈ R
d we have that x 7→ g(x, v)

is Borel, and for every x ∈ R
d we have that v 7→ g(x, v) is continuous. Thus by Theorem

8.2.9 in [5] we have that for every ε > 0 there exists a measurable selection vε satisfying

〈pµ(x), vε(x)〉 ≤ inf
v∈F(x)

〈pµ(x), v〉 + ε, and so

H (µ,pµ)≤

∫

Rd

〈vε(x),pµ(x) dµ(x)≤ ε+

∫

Rd

inf
v∈F(x)

〈pµ(x), v〉dµ(x)+ ε.

By letting ε→ 0 we have the equality

H (µ,pµ)=

∫

Rd

inf
v∈F(x)

〈pµ(x), v〉dµ(x).

Proposition 4.3 (Smoothness of the Hamiltonian). Let F : Rd ⇒R
d be satisfying (F ). Then the

Hamiltonian HF defined in (4.1) satisfies

• for all µ ∈ P2(R
d), λ≥ 0, pµ ∈ L2

µ(R
d) we have HF (µ,λpµ)= λHF (µ,pµ);

• there exists k ≥ 0 such that for all µ,ν ∈ P2(R
d), γ ∈ 5o(µ, ν), defined pµ = IdRd −

Bar1(γ ), qν = IdRd − Bar1(γ
−1), we have

HF (µ,pµ)− HF (ν, qν)≤ kW
2
2 (µ, ν).

Proof. The first property is trivial. Let ε > 0 and wεν : Rd →R
d be a Borel map belonging to the

set of L2
ν -selections of F , and such that
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HF (ν, qν)+ ε ≥

∫

Rd

〈wεν(y), qν(y)〉dν.

For all vµ ∈ L2
µ such that vµ(x) ∈ F(x) for µ-a.e. x ∈ R

d we have

HF (µ,pµ)− HF (ν, qν)− ε ≤

∫

Rd×Rd

〈vµ(x)−wεν(y), x − y〉dγ (x, y).

Recalling that F is Lipschitz continuous, we have that there exists f : Rd → R
d such that

(4) holds true. By Filippov’s Implicit Function Theorem (see e.g. Theorem 8.2.10 in [5]),

there exists a Borel map y 7→ uεy ∈ B(0,1) satisfying wνε (y) = f (y,uεy). Since H (µ,pµ) =
∫

Rd

inf
v∈F(x)

〈pµ(x), v〉dµ(x) by Remark 4.2, we have

HF (µ,pµ)− HF (ν, qν)− ε ≤

∫

Rd

inf
v∈F(x)

〈v,pµ(x)〉dµ−

∫

Rd

〈wεν(y), qν(y)〉dν

≤

∫

Rd

〈f (x,uy)− f (y,uy), x − y〉dγ (x, y)

≤ 5dLip(F )

∫

Rd×Rd

|x − y|2 dγ (x, y)= 5dLip(F )W 2
2 (µ, ν),

recalling the optimality of γ . We conclude by letting ε→ 0+. ✷

Theorem 4.4 (Characterization of the value function). Let T > 0, F : Rd ⇒ R
d be a Lips-

chitz continuous set-valued map with nonempty compact convex values, G : P2(R
d) → R be

a bounded and Lipschitz continuous map. Then for any K ≥ 0, the value function V (·) is the

unique Lipschitz continuous solution of the equation

{

∂tw(t,µ)+ HF (µ,Dw(t,µ))= 0,

w(T ,µ)= G (µ),
(11)

stated on the set {(t,µ) ∈ [0, T ] × K , m2(µ)≤K }.

Proof. Recalling Proposition 4.3 and Theorem 3.4, it is enough to show that V (·) is a viscosity

solution of (11).

Claim 1: V is a subsolution of (11).

Proof (of Claim 1). Take (t̄ , µ̄) ∈]0, T [×P2(R
d), δ > 0, (pt ,pµ) ∈ D+

δ V (t̄, µ̄). Let vt̄ :
R
d → R

d be a Borel map such that vt̄ (x) ∈ F(x) for µ-a.e. x ∈ R
d By Proposition 2.5, it is

possible to find an admissible curve µ = {µt }t∈[t̄ ,T ] ∈ A F
[t̄ ,T ]

(µ̄) and η ∈ P(Rd × Ŵ[t̄ ,T ]) such

that µt = et♯η for all t ∈ [t̄ , T ] and
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lim
t→t̄

∫

Rd×Ŵ[t̄ ,T ]

〈pµ ◦ et̄ (x, γ ),
et (x, γ )− et̄ (x, γ )

t − t̄
〉dη(x, γ )=

∫

Rd

〈pµ(x), vt̄ (x)〉dµ̄(x).

According to the Dynamic Programming Principle in Proposition 2.7, we have V (t,µt ) −
V (t̄, µ̄)≤ 0, moreover, if we define µ̃= (et̄ ,pµ ◦ et̄ , et )♯η, we have π12♯µ̃= (IdRd ,pµ)♯µ̄ and

π13♯µ̃= (et̄ , et )♯η ∈5(µ̄,µt ). Moreover, we have W2,µ̃(µ̄,µt )= ‖et − et̄‖L2
η
, which tends to

0 as t → t̄+ due to the continuity of t 7→ et (see Proposition 2.3). By applying the definition of

viscosity superdifferential with µ̃= (et̄ ,pµ ◦ et̄ , et )♯η, we have that

0 ≤V (t,µt )− V (t̄, µ̄)

≤pt (t − t̄ )+

∫

Rd×Rd×Rd

〈x2, x3 − x1〉dµ̃(x1, x2, x3)+

+ δ

√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ)+ o(|t − t̄ | +W2,µ̃(µ̄,µt ))

=pt (t − t0)+

∫

Rd×Rd×Rd

〈pµ ◦ et̄ (x, γ ), et (x, γ )− et̄ (x, γ )〉dη(x, γ )+

+ δ

√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ)+ o(|t − t̄ | +W2,µ̃(µ̄,µt )).

Dividing by
√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ) and letting t → t̄+ yields

−δ ≤ lim
t→t̄+

pt ·
t − t̄

√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ)

+

+

∫

Rd×Rd×Rd

〈pµ ◦ et̄ (x, γ ),
et (x, γ )− et̄ (x, γ )

t − t̄ +W2,µ̃(µ̄,µt )
〉dη(x, γ )

≤pt + lim
t→t̄+

∫

Rd×Rd×Rd

〈pµ ◦ et̄ (x, γ ),
et (x, γ )− et̄ (x, γ )

t − t̄
〉dη(x, γ )

=pt +

∫

Rd

〈pµ(x), vt̄ (x)〉dµ̄(x).

By the arbitrariness of vt̄ among the L2
µ̄-selections of F , taking the infimum on vt̄ we have

pt + H (µ̄,pµ)≥ −δ,

which ends the proof of Claim 1. ⋄

Claim 2: V is a supersolution of (11).

Proof (of Claim 2). Take (t̄ , µ̄) ∈]0, T [×P2(R
d), δ > 0, (pt ,pµ) ∈ D−

δ V (t̄, µ̄). By Propo-

sition 2.3, there exists it is possible to find an optimal curve µ = {µt }t∈[t̄ ,T ] ∈ A F
[t̄ ,T ]

(µ̄) and
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η ∈ P(Rd×Ŵ[t̄ ,T ]) such thatµt = et♯η for all t ∈ [t̄ , T ] and V (t,µt )= V (t̄, µ̄) for all t ∈ [t̄ , T ].
By choosing as before µ̃= (et̄ ,pµ ◦ et̄ , et )♯η, we have W2,µ̃(µt̄ ,µt )= ‖et̄ − et‖L2

η
, and we ob-

tain

0 =V (t,µt )− V (t̄, µ̄)

≥pt (t − t̄ )+

∫

Rd×Rd×Rd

〈pµ ◦ et̄ (x, γ ), et (x, γ )− et̄ (x, γ )〉dη(x, γ )+

− δ

√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ)+ o(|t − t̄ | +W2,µ̃(µ̄,µt )).

Dividing by
√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ) yields

0 ≥
(t − t̄ )

√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ)






pt +

∫

Rd×Rd×Rd

〈pµ ◦ et̄ (x, γ ),
et (x, γ )− et̄ (x, γ )

t − t̄
〉dη(x, γ )






+

− δ +
o(|t − t̄ | +W2,µ̃(µ̄,µt ))
√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ)

.

We conclude by applying Proposition 2.3 to take the limit along a sequence ti → t̄ such that
et − et̄

t − t̄
weakly converges to vt̄ ◦ e0 in L2

η , for a suitable L2
µ̄-selection vt̄ of F . Indeed, we have

K ′δ ≥ pt +

∫

Rd×Rd×Rd

〈pµ, vt̄ (x)〉dµ̄(x)≥ pt + H (µ̄,pµ),

where K ′ = 1 +Ce2(b−a)C

(

1 + sup
µ∈K

m
1/2
2 (µt̄ )

)

and C = max
y∈F(0)

|y| + Lip(F ). ✷

5. A pursuit-evasion game

In this section we apply the result obtained to the study of a pursuit-evasion game in Wasser-

stein space. Our goal will be to show that this game admits a value, proving that the upper and the

lower values are sub- and supersolution of the same Hamilton–Jacobi equations. The comparison

principle will be used to conclude the existence of a value for this game. For an introduction to

differential games, we refer the reader to [7], and to [6] for a survey on the most recent develop-

ments.

5.1. Dynamics and strategies

We consider two set-valued map F,G : Rd ⇒ R
d satisfying (F ). Given µa ∈ P2(R

d), the

set of admissible trajectories starting from µa at time t = a defined on [a, b] for the first player

will be A F
[a,b](µa), and, similarly, given νa ∈ P2(R

d), the set of admissible trajectories starting

from νa at time t = a defined on [a, b] for the second player will be A G
[a,b](νa).
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Definition 5.1 (Nonanticipative strategies). A strategy for the first player defined on [t0, T ] will

be a map α : A G
[t0,T ] → A F

[t0,T ]. A strategy for the first player α defined on [t0, T ] will be called

nonanticipative with delay τ if there exists τ > 0 such that given t0 ≤ s ≤ T , νi = {νit }t∈[t0,T ] ∈
A G

[t0,T ], i = 1,2, satisfying ν1
t = ν2

t for all t ∈]t0, s[, and set α(νi) = {µit }t∈[t0,T ], i = 1,2, we

have µ1
t = µ2

t for all t0 ≤ t ≤ min{s + τ, T }.
Given µ0 ∈ P2(R

d), we define

Aτ (t0) :=
{

α : A G
[t0,T ] → A F

[t0,T ] : α is a nonanticipative strategy with delay τ
}

,

Aτ (t0,µ0) :=
{

α ∈Aτ (t0) : α(A
G
[t0,T ])⊆ A F

[t0,T ](µ0)
}

,

A(t0) :=
⋃

τ>0

Aτ (t0),

A(t0,µ0) :=
{

α ∈A(t0) : α(A
G
[t0,T ])⊆ A F

[t0,T ](µ0)
}

.

By switching the roles of F andG in the previous definitions, we obtain the corresponding defini-

tion of strategy and nonanticipative strategy defined on [t0, T ] with delay τ for the second player.

The corresponding defined sets are named by Bτ (t0), Bτ (t0, ν0), B(t0), B(t0, ν0), respectively,

for any given ν0 ∈ P2(R
d).

Lemma 5.2 (Normal form). Let t0 < τ < T . For any (α,β) ∈ Aτ (t0)× Bτ (t0) there is a unique

pair (µ,ν) ∈ A F
[t0,b]

× A G
[t0,b]

such that α(ν)= µ and β(µ)= ν.

Proof. The proof will follow the line of Lemma 1 in [12]. Let (α,β) ∈ (A(t0)× B(t0)). Clearly

we have Aτ1
(t0)⊆ Aτ2

(t0) and Bτ1
(t0)⊆ Bτ2

(t0) if τ1 ≥ τ2, thus, without loss of generality, we

may assume that there exists τ > 0 such that (α,β) ∈ (Aτ (t0)×Bτ (t0)). We consider a partition

of the interval [t0, T ] by defining Nτ = min{k ∈ N : t0 + kτ < T }, and set tk = t0 + kτ for

k = 0, . . . ,Nτ and tNτ+1 = T . We will proceed by induction, defining (µ,ν) on [t0, tk[.
Recalling Definition 5.1, the restriction of α(ν ′) to [t0, t1[ does not depend on the particular

choice of ν′ ∈ A G
[t0,T ]: indeed, if we have ν1,ν2 ∈ A G

[t0,T ], by taking s = t0, we have α(ν1) =

α(ν2) in [t0, t0 + τ [. We set then µ to be equal to α(ν′) in [t0, t1[ for any choice of ν′ ∈ A[t0,T ],

and moreover ν = β(µ) is uniquely defined in [t0, t1[ since β is nonanticipative. Suppose to have

defined (µ,ν) on [t0, tk[, where 0 ≤ k ≤ Nτ . For every ν ∈ A G
[t0,T ], the restriction of α(ν) to

[t0, tk+1[ depends uniquely to the restriction of ν on [t0, tk[, in particular µ = α(ν) is uniquely

defined on [t0, tk+1[, and so we can define ν in [tk, tk+1[ by taking the restriction of β(µ) to

[tk, tk+1[. By induction we conclude that µ,ν are well-defined in [0, T [, and we conclude by

noticing that indeed, α(ν) at time T is fully determined by the restriction of ν on [t0, T − ε] for

all 0 ≤ ε ≤ min{τ, T − t0}, thus µ = α(ν) is uniquely determined also at t = T , and the same for

ν = α(µ). ✷

5.2. Value functions and Dynamic Programming Principle

Definition 5.3 (Upper and lower value functions). We consider a payoff function G : P(Rd)×
P(Rd)→ R bounded and locally Lipschitz continuous, and we assume that F and G satisfy

(F ). Given t0 ∈ [0, T ], µ0, ν0 ∈ P2(R
d), (α,β) ∈A(µ0, t0)×B(ν0, t0) we define



ARTICLE IN PRESS

Please cite this article in press as: A. Marigonda, M. Quincampoix, Mayer control problem with probabilistic

uncertainty on initial positions, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.11.014

JID:YJDEQ AID:9093 /FLA [m1+; v1.272; Prn:22/11/2017; 14:03] P.27 (1-41)

A. Marigonda, M. Quincampoix / J. Differential Equations ••• (••••) •••–••• 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

J (t0,µ0, ν0, α,β)= G (µT , νT ) ,

where µ = {µt }t∈[0,T ] ∈ A F
[t0,T ](µ0), ν = {νt }t∈[0,T ] ∈ A G

[t0,T ](ν0), and (µ,ν) ∈ A F
[t0,T ](µ0) ×

A G
[t0,T ](ν0) is the unique element of A F

[t0,T ](µ0)× A G
[t0,T ](ν0), given by Lemma 5.2, satisfying

α(ν)= µ and β(ν)= µ.

The upper and lower value function V ± : [0, T ] × P2(R
d)× P2(R

d)→ R are defined by

setting

V +(t0,µ0, ν0)= inf
α∈A(t0,µ0)

sup
β∈B(t0,ν0)

J (t0,µ0, ν0, α,β),

V −(t0,µ0, ν0)= sup
β∈B(t0,ν0)

inf
α∈A(t0,µ0)

J (t0,µ0, ν0, α,β).

Remark 5.4. For the pursuit-evasion game, a relevant example of payoff in Definition 5.3 is

given by G(µ, ν)= g(W 2
2 (µ, ν)), where g : [0,+∞[ → [0,+∞[ is strictly increasing, bounded,

Lipschitz continuous and g(0)= 0 (e.g. g(r)= arctan(r)).

Definition 5.5 (Shifting strategies). Let T > 0, t0 ∈ [0, T ], µ̄ ∈ P2(R
d). A map ξ

F,µ̄
t0

: A F
[t0,T ] →

A F
[t0,T ](µ̄) will be called a shifting strategy in [t0, T ] for F if there exists K > 0 such that

given µ(i) = {µ
(i)
t }t∈[0,T ] ∈ A F

[t0,T ], i = 1,2, and set µ(3) = {µ
(3)
t }t∈[0,T ] = ξ

F,µ
t0

(µ(1)), µ(4) =

{µ
(4)
t }t∈[0,T ] = ξ

F,µ̄
t0

(µ(2)), the following hold

i.) W2(µ
(1)
t ,µ

(3)
t )≤KW2(µ

(1)
t0
,µ

(3)
t0
) for all t ∈ [t0, T ];

ii.) if there exists t0 < s < T such that µ
(2)
t = µ

(1)
t for all t ∈ [t0, s] then µ

(4)
t = µ

(3)
t for all

t ∈ [t0, s].

The same definition with F replaced by G will give the definition of shifting strategy for G.

We notice that, from the definition, we have µ
(3)
t0

= µ̄; moreover, given any strategy α ∈ Aτ (t0),

the composition ξ
F,µ̄
t0

◦ α : A G
[t0,T ] → A F

[t0,T ](µ̄) is a nonanticipative strategy with delay τ , thus

ξ
F,µ̄
t0

◦ α ∈ Aτ (t0, µ̄).

Lemma 5.6 (Existence and properties of shifting strategies). Assume that F satisfies (F ). Let

T > 0, t0 ∈ [0, T ], µ̄ ∈ P2(R
d). Then there exists at least one shifting strategy ξ

F,µ̄
t0

in [t0, T ]
for F .

Proof. We will consider the construction made in Proposition 2.4: given µ ∈ A[t0,T ], let

ξ
F,µ̄
t0

(µ) = µ̄ ∈ A[t0,T ](µ̄) constructed as in Proposition 2.4. Property (i) in Definition 5.5 is

satisfied, we prove now (ii). From the proof of Proposition 2.4, we have that if γ1, γ2 ∈ Ŵ[t0,T ]

are trajectories of the differential inclusion γ̇ (t) ∈ F(γ (t)) with γ1(t)= γ2(t) for all t ∈ [t0, s],
then τ(y, γ1)(t)= τ(y, γ2)(t) for all t ∈ [t0, s], in particular, the restriction of the curve τ(y, γ )

on [t0, s] depends only on the values of γ on [t0, s]. Let µ1 = {µ1
t }t∈[t0,T ],µ

2 = {µ2
t }t∈[t0,T ] ∈

A[t0,T ](µ), t0 < s ≤ T such that µ1
t = µ2

t for t ∈ [t0, s]. In particular, we have that

∂tµ
i
t + div(vitµ

i
t )= 0, for i = 1,2, with vt1 = vt2 in [t0, s].
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Recalling the proof of Superposition Principle Theorem 8.2.1 in [2], we take a family of strictly

positive convolution kernels {ρε}ε>0, define v
i,ε
t =

(vitµ
i
t ) ∗ ρε

µit ∗ ρε
, and so v

1,ε
t = v

2,ε
t for t ∈ [t0, s].

Denote by X
i,ε
t (x) the unique solution of

d

dt
X
i,ε
t (x)= v

i,ε
t (X

i,ε
t (x)) such that X

i,ε
t0
(x)= x. We

notice that X
1,ε
t (x)=X

2,ε
t (x) for (t, x) ∈ [t0, s] × R

d . We consider the map Xi,ε· : Rd → R
d ×

Ŵ[t0,T ] defined by

Xi,ε· (x)= (x, γ ), where γ (t)=X
i,ε
t (x),

and set ηi,ε =Xi,ε· ♯µ
i
0 ∗ρε . By taking any limit point for ε = 0, if we denote by R[t0,s] the restric-

tion operator on curves, we have (IdRd ,R[t0,s])♯η1 = (IdRd ,R[t0,s])♯η2, thus the construction of

2.4 yields ξ
F,µ̄
t0

(µ1)= ξ
F,µ̄
t0

(µ2) on [t0, s]. ✷

Lemma 5.7 (Regularity of upper and lower values). We have V −(t0,µ0, ν0) ≤ V +(t0,µ0, ν0)

for all (t0,µ0, ν0) ∈ [0, T ] × P2(R
d)× P2(R

d). Moreover, the functions V ±(·) are bounded

and locally Lipschitz continuous.

Proof. The first assertion follows directly from the definition of V ±(·). To simplify the notation,

given µ = {µt }t∈[t0,T ] and ν = {νt }t∈[t0,T ], we will write GT (µ,ν) instead of G(µT , νT ).

We will prove the second statement only for V +, being the corresponding proof for V − com-

pletely similar. Due to Lemma 5.2, we have

V +(t0,µ
i, νi)= inf

α∈A(t0,µi)
sup

νi∈A[t0,T ](ν
i)

GT (α(ν
i),νi), i = 0,1.

We prove first the Lipschitz continuity with respect to µ0. Fix ε > 0, t0 ∈ [0, T ], µi, νi ∈
P2(R

d), i = 0,1. There exist α1,ε ∈ Aτ (t0,µ
1) such that

sup
ν∈A[t0,T ](ν

1)

GT (α
1,ε(ν1),ν1)≤ V +(t0,µ

1, ν1)+ ε.

We take two shifting strategy ξ
F,µ0

t0
, ξ
G,ν1

t0
, and define

α0,ε = ξ
F,µ0

t0
◦ α1,ε ◦ ξG,ν

1

t0
: A G

[t0,T ](ν
0)→ A F

[t0,T ](µ
0).

Thus we have

V +(t0,µ
0, ν0)− V +(t0,µ

1, ν1)≤

≤ ε+ sup
ν0∈A[t0,T ](ν

0)

GT (α
0,ε(ν0),ν0)− sup

ν1∈A[t0,T ](ν
1)

GT (α
1,ε(ν1),ν1).

Choose now ν0,ε = {ν0,ε
t }t∈[t0,T ] ∈ A[t0,T ](ν

0) be such that

sup
ν0∈A[t0,T ](ν

0)

GT (α
0,ε(ν0),ν0)≤ ε+ GT (α

0,ε(ν0,ε)),ν0,ε).
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By choosing ν1 = ξ
G,ν1

t0
(ν0,ε), and recalling the definition of α0,ε , we have

V +(t0,µ
0, ν0)−V +(t0,µ

1, ν1)− 2ε ≤

≤GT (α
0,ε(ν0,ε),ν0,ε)− GT (α

1,ε(ξ
G,ν1

t0
(ν0,ε)), ξ

G,ν1

t0
(ν0,ε))

=GT (ξ
F,µ0
t0

◦ α1,ε(ξ
G,ν1

t0
(ν0,ε)),ν0,ε)− GT (α

1,ε(ξ
G,ν1

t0
(ν0,ε)), ξ

G,ν1

t0
(ν0,ε)).

Set now ξ
G,ν1

t0
(ν0,ε)= {ν1,ε

t }t∈[t0,T ],

µ1,ε = {µ1,ε
t }t∈[t0,T ] = α1,ε(ξ

G,ν1

t0
(ν0,ε)), ξ

F,µ0
t0

(µ1,ε)= {µ0,ε
t }t∈[t0,T ].

We have

V +(t0,µ
0, ν0)−V +(t0,µ

1, ν1)− 2ε ≤

≤GT (ξ
F,µ0
t0

(µ1,ε),ν0,ε)− GT (µ
1,ε, ξ

G,ν1

t0
(ν0,ε))

≤Lip(G) ·
[

W2(µ
0,ε
T ,µ

1,ε
T )+W2(ν

0,ε
T , ν

0,ε
T )

]

≤Lip(G) ·K ·
[

W2(µ
0,µ1)+W2(ν

0, ν1)
]

,

recalling the properties of shifting strategies. By letting ε→ 0+, and switching the roles of µ0, ν0

and µ1, ν1, this proves the Lipschitz continuity w.r.t. second and third variables.

We prove now the Lipschitz continuity with respect to the first variable. Fix ε > 0, µ,ν ∈
P2(R

d), t0, t1 ∈ [0, T ], t0 > t1, µ̄ = {µ̄t }t∈[t0,T ] ∈ A F
[t0,T ](µ). There exist α1,ε ∈ Aτ (t1,µ) such

that

sup
ν1∈A[t1,T ](ν

1)

GT (α
1,ε(ν1),ν1)≤ V +(t0,µ, ν)+ ε.

Define a nonanticipative strategy α0,ε by setting for all ν0 ∈ A G
[t0,T ](ν0)

α0,ε(ν)=







µ̄, on [t0, t1],

ξ
F,µ̄t1
τ,t1

◦ α1,ε ◦ ξG,ντ,t1
(ν0

|[t1,T ]), on [t1, T ],

where ν|[t1,T ] denotes the restriction of ν to [t1, T ]. This implies

V (t0,µ, ν)− V (t1,µ, ν)≤ ε+ sup
ν0∈A[t0,T ](ν)

GT (α
0,ε(ν0),ν0)+ sup

ν1∈A G
[t1,T ](ν)

GT (α
1,ε(ν1),ν1).

Select ν0,ε ∈ A G
[t1,T ](ν) such that

sup
ν0∈A[t0,T ](ν)

GT (α
0,ε(ν0),ν0)≤ GT (α

0,ε(ν0,ε),ν0,ε)+ ε.
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So we have

V (t0,µ, ν)− V (t1,µ, ν)− 2ε ≤

≤GT (α
0,ε(ν0,ε),ν0,ε)− GT (α

1,ε(ξ
G,ν
τ,t1

(ν
0,ε
|[t1,T ]))), ξ

G,ν
τ,t1

(ν
0,ε
|[t1,T ]))

=GT (ξ
F,µ̄t1
τ,t1

◦ α1,ε ◦ ξG,ντ,t1
(ν0,ε),ν0,ε)− GT (α

1,ε(ξ
G,ν
τ,t1

(ν
0,ε
|[t1,T ]))), ξ

G,ν
τ,t1

(ν
0,ε
|[t1,T ])).

Set ν1,ε = {ν1,ε
t }t∈[t1,T ] = ξ

G,ν
τ,t1

(ν
0,ε
|[t1,T ]), µ1,ε = {µ1,ε

t }t∈[t1,T ] = α1,ε(ξ
G,ν
τ,t1

(ν
0,ε
|[t1,T ]))), µ0,ε =

{µ0,ε
t }t∈[t0,T ] = ξ

F,µ̄t1
τ,t1

(µ1,ε), hence,

V (t0,µ, ν)− V (t1,µ, ν)− 2ε ≤G(µ
0,ε
T , ν

0,ε
T )− GT (µ

1,ε
T , ν

1,ε
T )

≤Lip(G)
[

W2(µ
0,ε
T ,µ

1,ε
T )+W2(ν

0,ε
T , ν

1,ε
T )

]

.

We notice that the endpoints of ν0,ε and of ν
0,ε
|[t1,T ] are the same, and so, recalling the properties

of the shifting strategies,

W2(ν
0,ε
T , ν

1,ε
T )≤KW2(ν

0,ε
t1
, ν

0,ε
t0
).

With a similar argument, we have

W2(µ
0,ε
T ,µ

1,ε
T )≤KW2(µ̄t1 ,µ).

By using (4) in Proposition 2.3, we have

V (t0,µ, ν)− V (t1,µ, ν)− 2ε ≤ Ce2T C (2 + m2(µ)+ m2(ν)) |t0 − t1|.

We conclude by letting ε→ 0+. The proof for the case t1 ≤ t0 is similar. ✷

Proposition 5.8 (Dynamic Programming Principle for the game). Let t0, t1 ∈ [0, T ] with t0 < t1,

µ0, ν0 ∈ P2(R
d). Then

V +(t0,µ
0, ν0)= inf

α∈A(t0,µ0)
sup

β∈B(t0,ν0)

{

V +(t1,µt1, νt1) :
µ = {µt }t∈[t0,T ] = α(ν)

ν = {νt }t∈[t0,T ] = β(µ)

}

,

V −(t0,µ
0, ν0)= sup

β∈B(t0,ν0)

inf
α∈A(t0,µ0)

{

V −(t1,µt1, νt1) :
µ = {µt }t∈[t0,T ] = α(ν)

ν = {νt }t∈[t0,T ] = β(µ)

}

.

Proof. To simplify the notation, given µ = {µt }t∈[t0,T ] and ν = {νt }t∈[t0,T ], we will write

GT (µ,ν) instead of G(µT , νT ).
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We will prove the result only for V −, since the proof for V + can be performed using a very

similar argument. Recalling that, thanks to Lemma 5.2, we have

V −(t0,µ
0, ν0)= sup

β∈B(t0,ν0)

inf
µ∈A F

[t0,T ](µ
0)

GT (µ, β(ν)),

we define

W(t0, t1,µ
0, ν0) := sup

β∈B(t0,ν0)

inf
µ∈A F

[t0,T ](µ
0)

{

V −(t1,µt1 , νt1) :
µ = {µt }t∈[t0,T ]

ν = {νt }t∈[t0,T ] = β(µ)

}

,

and we want to prove V −(t0,µ
0, ν0)=W(t0, t1,µ

0, ν0).

Indeed, we have

W(t0, t1,µ
0, ν0)= sup

β0∈B(t0,ν0)

inf
µ0∈A F

[t0,T ](µ
0)

sup
β1∈B(t0,ν

0
t1
)

β0(µ
0)=ν0

inf
µ1∈A F

[t1,T ](µ
0
t1
)

GT (µ
1, β1(µ

1))

≤ sup
β0∈B(t0,ν0)

inf
µ0∈A F

[t0,T ](µ
0)

sup
β1∈B(t0,ν

0
t1
)

β0(µ
0)=ν0

GT (µ
0
|[t1,T ], β1(µ

0
|[t1,T ]))

Fix β0 ∈ B(t0, ν
0), µ0 ∈ A[t0,T ](µ

0), set ν0 = {ν0
t }t∈[t0,T ] = β0(µ

0). For every β1 ∈ B(t1, ν
0
t1
) we

set β01 ∈ B(t0, ν
0) by β01(µ

0)= β0(µ
0) in [t0, t1[, and β01(µ

0)= β1(µ
0
|[t1,T ]) in [t1, T ].

W(t0, t1,µ
0, ν0)≤ sup

β0∈B(t0,ν0)

inf
µ0∈A F

[t0,T ](µ
0)

sup
β1∈B(t0,ν

0
t1
)

β0(µ
0)=ν0

GT (µ
0, β01(µ

0))

≤ sup
β0∈B(t0,ν0)

inf
µ0∈A F

[t0,T ](µ
0)

GT (µ
0, β0(µ

0))= V −(t0,µ
0, ν0).

We prove now the reverse inequality. Given β0 ∈ B(t0, ν
0) and µ0 ∈ A F

[t0,T ](µ
0), we define β

µ0

1 :

A F
[t1,T ](µ

0)→ A G
[t1,T ](µ

0
t1
) by setting β

µ0

1 (µ1)= (β0(µ
0))|[t1,T ] for all µ1. Then we have

W(t0, t1,µ
0, ν0)= sup

β0∈B(t0,ν0)

inf
µ0∈A F

[t0,T ](µ
0)

sup
β1∈B(t0,ν

0
t1
)

β0(µ
0)=ν0

inf
µ1∈A F

[t1,T ](µ
0
t1
)

GT (µ
1, β1(µ

1))

≥ sup
β0∈B(t0,ν0)

inf
µ0∈A F

[t0,T ](µ
0)

inf
µ1∈A F

[t1,T ](µ
0
t1
)

GT (µ
1, β

µ0

1 (µ1))

= sup
β0∈B(t0,ν0)

inf
µ0∈A F

[t0,T ](µ
0)

GT (µ
0, β0(µ

0))= V −(t0,µ
0, ν0),

which concludes the proof. ✷
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5.3. Existence and characterization of the value

Definition 5.9 (Hamiltonian function for the pursuit-evasion game). We consider F,G satisfying

(F ), and define the following Hamiltonian function for all µ,ν ∈ P2(R
d), pµ ∈ L2

µ(R
d), pν ∈

L2
µ(R

d)

HPE(µ, ν,pµ,pν)=

inf
v(·)∈L2

µ(R
d )

v(x)∈F(x) µ-a.e.x

∫

Rd

〈pµ(x), v(x)〉dµ(x)+ sup
w(·)∈L2

ν (R
d )

w(x)∈G(x) ν-a.e.x

∫

Rd

〈pν(x),w(x)〉dν(x). (12)

Lemma 5.10 (Smoothness of Hamiltonian function for the pursuit-evasion game). Consider F,G

satisfying (F ), then the Hamiltonian function HPE satisfy the following regularity assumptions

• for every λ≥ 0 we have HPE(µ, ν,λpµ, λpν)= λHPE(µ, ν,pµ,pν);

• there exists k ≥ 0 such that for all µ1, ν1,µ2, ν2 ∈ P2(R
d), γµ ∈ 5o(µ

1,µ2), γν ∈
5o(ν

1, ν2), defined pγµ = IdRd − Bar1(γµ), qγµ = IdRd − Bar1(γ
−1
µ ), pγ ν = IdRd −

Bar1(γν), qγ ν = IdRd − Bar1(γ
−1
ν ), we have

HPE(µ
1, ν1,pγµ ,pγµ)− HPE(µ

2, ν2, qγµ , qγµ)≤ k[W
2
2 (µ

1,µ2)+W 2
2 (ν

1, ν2)].

Proof. The first assertion is trivial. For the second one it is sufficient to apply Proposition 4.3 to

each term of the sum appearing in (12). ✷

Proposition 5.11. The upper and lower value functions V ±(·) are viscosity solutions of ∂tV +
HPE(µ, ν,DµV,DνV )= 0 on every set with uniformly bounded second moments.

Proof. The proof will follow the same idea of Theorem 4.4. We will prove only the results for

V −, since the corresponding arguments for V + are pretty similar.

Claim 1: V − is a subsolution of (12).

Proof (of Claim 1). Take (t̄ , µ̄, ν̄) ∈]0, T [×P2(R
d) × P2(R

d), δ > 0, (pt ,pµ,pν) ∈
D+
δ V

−(t̄ , µ̄, ν̄). Let vt̄ :R
d →R

d be a Borel map such that vt̄ (x) ∈ F(x) for µ-a.e. x ∈ R
d .

According to the Dynamic Programming Principle in Proposition 5.8, for every ε > 0 there

exists βε ∈ B(t̄ , ν̄) such that for all µ ∈ A[t0,T ](µ̄) with µ = {µt }t∈[t0,T ], set νε = {νεt }t∈[t0,T ] =
βε(µ) ∈ A G

[t0,T ](ν̄), we have

V −(t0, µ̄, ν̄)≤ V
−(t,µt , ν

ε
t )+ ε.

In particular, as in Theorem 4.4, this holds for a µ = {µt }t∈[t̄ ,T ] ∈ A F
[t̄ ,T ]

(µ̄) represented by

ηµ ∈ P(Rd × Ŵ[t̄ ,T ]) such that µt = et♯ηµ for all t ∈ [t̄ , T ] and

lim
t→t̄

∫

Rd×Ŵ[t̄ ,T ]

〈pµ ◦ et̄ (x, γ ),
et (x, γ )− et̄ (x, γ )

t − t̄
〉dηµ(x, γ )=

∫

Rd

〈pµ(x), vt̄ (x)〉dµ̄(x).
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By Proposition 2.3 (2), since the family {νε}ε>0 is a family of admissible curves satisfying νε0 = ν̄

for all ε > 0, every sequence {νεi }i∈N with εi → 0+ as i → +∞, admits a convergent subse-

quence. In particular, there exists an admissible trajectory ν = {νt }t∈[t0,T ] ∈ A G
[t0,T ](ν̄) such that

V −(t,µt , νt )− V −(t0, µ̄, ν̄)≥ 0.

As in Theorem 4.4, we define µ̃= (et̄ ,pµ ◦ et̄ , et )♯ηµ and ν̃ = (et̄ ,pν ◦ et̄ , et )♯ην , where ην ∈

P(Rd × Ŵ[t̄ ,T ]) satisfies νt = et♯ην for all t ∈ [t̄ , T ]. By applying the definition of viscosity

superdifferential, and defined µ̃, ν̃ as in Claim 1, we have that

0 ≤V −(t,µt , νt )− V −(t̄ , µ̄, ν̄)

≤pt (t − t̄ )+

∫

Rd×Rd×Rd

〈x2, x3 − x1〉dµ̃(x1, x2, x3)+

+

∫

Rd×Rd×Rd

〈y2, y3 − y1〉dν̃(y1, y2, y3)+

+ δ

√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µt )+W 2

2,ν̃
(ν̄, νt )+ o(|t − t̄ | +W2,µ̃(ν̄, νt )+W2,ν̃(ν̄, νt ))

=pt (t − t0)+

∫

Rd×Rd×Rd

〈pµ ◦ et̄ (x, γ ), et (x, γ )− et̄ (x, γ )〉dηµ(x, γ )+

+

∫

Rd×Rd×Rd

〈pν ◦ et̄ (x, γ ), et (x, γ )− et̄ (x, γ )〉dην(x, γ )+

+ δ

√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µ)+W 2

2,ν̃
(ν̄, νt )+ o(|t − t̄ | +W 2

2,µ̃(µ̄,µt )+W2,ν̃(ν̄, νt )).

Dividing by
√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µt )+W 2

2,ν̃
(ν̄, νt ) and letting t → t̄+ along any sequence such

that the limit exists yields as in Theorem 4.4

−δ ≤pt +

∫

Rd

〈pµ(x), vt̄ (x)〉dµ̄(x)+ lim
i→∞

∫

Rd

〈pν(x),
eti (x, γ )− et̄ (x, γ )

ti − t̄
〉dην(x).

By (5) in Proposition 2.3, there exists a Borel selection wt̄ of G such that

−δ ≤pt +

∫

Rd

〈pµ(x), vt̄ (x)〉dµ̄(x)+

∫

Rd

〈pν(x),wt̄ (x)〉dν̄(x).

By the arbitrariness of vt̄ among the L2
µ̄-selections of F , taking the infimum on vt̄ we have

pt + HPE(µ̄, ν̄,pµ,pν)≥ −δ,

which ends the proof of Claim 1. ⋄
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Claim 2: V − is a supersolution of (12).

Proof (of Claim 2). Take (t̄ , µ̄, ν̄) ∈]0, T [×P2(R
d) × P2(R

d), δ > 0, (pt ,pµ,pν) ∈
D−
δ V (t̄, µ̄, ν̄). Let wt̄ : R

d → R
d be a Borel map such that wt̄ (x) ∈ F(x) for µ-a.e. x ∈R

d .

We can find ν = {νt }t∈[t̄ ,T ] ∈ A F
[t̄ ,T ]

(ν̄) represented by ην ∈ P(Rd × Ŵ[t̄ ,T ]) such that νt =

et♯ην for all t ∈ [t̄ , T ] and

lim
t→t̄

∫

Rd×Ŵ[t̄ ,T ]

〈pν ◦ et̄ (x, γ ),
et (x, γ )− et̄ (x, γ )

t − t̄
〉dην(x, γ )=

∫

Rd

〈pν(x),wt̄ (x)〉dν̄(x).

Define the constant strategy β(µ)= ν, thus we have from Proposition 5.8

V −(t0, µ̄, ν̄)≥ inf
µ∈A F

[t0,T ](µ̄)

µ={µt }t∈[0,T ]

V −(t,µt , νt ).

As in Claim 1, for any ε > 0 we can find µε = {µεt }t∈[0,T ] ∈ A F
[t0,T ](µ̄), µ = {µt }t∈[0,T ] ∈

A F
[t0,T ](µ̄), and η ∈ P(Rd×Ŵ[t̄ ,T ]) such thatµt = et♯η for all t ∈ [t̄ , T ] such that V −(t0, µ̄, ν̄)≥

V −(t,µεt , νt )− ε and

V −(t,µt , νt )− V −(t0, µ̄, ν̄)≤ 0.

We proceed now by applying the definition of viscosity subdifferential, dividing by
√

(t − t̄ )2 +W 2
2,µ̃
(µ̄,µt )+W 2

2,µ̃
(ν̄, νt ) and letting t → t̄ along sequences where the limit ex-

ists, as done in Claim 1 and in Theorem 4.4. By the arbitrariness of wt̄ , we conclude

K ′δ ≥ pt + HPE(µ̄, ν̄,pµ,pν). ✷

Theorem 5.12 (Existence of a value and its characterization). Consider F,G satisfying (F ),

and a bounded Lipschitz continuous payoff function G. Then the game has a value, i.e., V + =
V − =: V and V is the unique viscosity solution of the Hamilton–Jacobi–Bellman equation ∂tV +
HPE(µ, ν,DµV,DνV )= 0, V (T ,µ, ν)= G(µ, ν).

Proof. The result follows from the comparison principle proved in Theorem 3.4, and from

Proposition 5.11, since both functions solve the same Hamilton–Jacobi–Bellman equation with

the same boundary data. ✷

Finally, we provide an example of possible applications.

Example 5.13 (Pillage). Assume that an invader army is sent to plunder a region after having

overwhelmed its defending forces. The plundering time is fixed T > 0. The target of the invaders

is to plunder as much as possible food and any other useful supplies, while the target of the civil

authorities of the invaded region is to direct the refugees’ flow carrying the supplies in order to

avoid that they fall in the hands of the enemy. We assume that:
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(P1) The civilian refugees are harmless for the invaders, no matter their concentration compared

with the invaders’ one.

(P2) The speed of the invaders are always greater or equal than the speed of the refugees.

We model the situation by defining two time-dependent measures on R
2:

• the pillage capacity µ = {µt }t∈[0,T ]: given a measurable A ⊆ R
2, µt (A) represents the

amount of resources that the invaders can plunder from the subregion A at time t : since the

spoils of war must be carried back, this quantity can be roughly assumed to be proportional

to the number of invader soldiers in the subregion A at time t ;

• the carrying capacity ν = {νt }t∈[0,T ]: given a measurable A ⊆ R
2, νt (A) represents the

amount of resources that the refugees in the subregion A at time t are carrying with them.

Given t ∈ [0, T ], we write νt =
νt

µt
µt + νst , where νst ⊥ µt and

νt

µt
is the Radon–Nikodym

derivative of νt w.r.t. µt . Thus the quantity

∫

Rd

min

{

1,
νt

µt
(x)

}

dµt (x)

represents the spoils of war captured by the invaders at time t , taking into account that the spoils

captured cannot exceed the pillage capacity. Given a subregion C ⊆ R
2, we can consider three

cases:

• if νst (C)= 0 and
νt

µt
(x)= 1 for µt -a.e. x ∈ C, then the invaders have completely plundered

the supplies in the subregion C, moreover there are no remaining soldiers in the region C

available to be sent to plunder other regions.

• if νst (C)= 0 and
νt

µt
(x) < 1 for µt -a.e. x ∈ C, then the invaders have completely plundered

the supplies in the subregion C, moreover the spoils carried by the refugees decreased by

νt (C) but there are still soldiers available who may be sent to plunder other subregions.

• if none of the above conditions is satisfied, there are still spoils of war in the region C that

have not been plundered yet by the invaders.

In the first two cases, the pillage capacity of the invaders and the carrying capacity of the refugees

decreases of νt (C).

It is crucial to notice that assumption (P2) allows us to postpone the computation of the spoils

captured at the final time t = T , since if for t < T we have 0 <
νt

µt
< 1 in a region C, we can

always imagine to split the invaders and the refugees into two populations:



















µt =
νt

µt
µt |C +

[(

1 −
νt

µt

)

µt |C +µt |R2\C

]

,

νt =
νt

µt
µt |C +

[

νst |C + νt |R2\C

]

.
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In this case, any admissible trajectory of the refugees starting from
νt

µt
µt |C , is also an admissible

trajectory for the invaders starting from the same measure, thus these subpopulation will occupy

the same position with the same density until the time t = T is reached, while the remaining two

subpopulation proceed in the game.

This remark transform the problem with mass loss, in a problem with total mass preserved

(both for pillagers and for refugees), and we can assume for both of them that the total mass is

normalized to 1. Moreover, the computation of the spoils captured can be made at the final time

T only. We model the admissible velocities of the invader soldiers and the refugees by using

set-valued maps F and G, respectively, and (P2) will translate into F(x)⊇G(x) for all x ∈ R
d .

The capture functional can be taken to be a variant of the W2-distance:

J (µ, ν)= min{W2(µ, ν),C},

where C > 0 is a suitable (large) constant, that can be taken to be, for instance, twice the diameter

of the invaded region. It is worth of noticing that the problem cannot be reduced to a problem of

optimizing the distance between the supports of the measures at the final time, because even if

µT and νT have the same support, we may have J (µT , νT ) > 0. From a model point of view,

for the invaders it is not convenient to spread the forces chasing people carrying a low quantity

of resources, and, symmetrically, for the refugees is dangerous to convoy supplies in locations

where the occupation forces are concentrated.
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Appendix A. Preliminaries and notation

In this section we give some preliminaries and fix the notation. Our main references for this

part are [2,26,27].

Definition A.1 (Space of probability measures). Given Banach spacesX,Y , we denote by P(X)

the set of Borel probability measures on X endowed with the weak∗ topology induced by the

duality with the Banach space C0
b(X) of the real-valued continuous bounded functions on X

with the uniform convergence norm. For any p ≥ 1, the second moment of µ ∈ P(X) is defined

by m2(µ)=

∫

X

‖x‖2
X dµ(x), and we set P2(X)= {µ ∈ P(X) : m2(R

d) <+∞}. For any Borel

map r : X → Y and µ ∈ P(X), we define the push forward measure r♯µ ∈ P(Y ) by setting

r♯µ(B)= µ(r−1(B)) for any Borel set B of Y .

The following result is Theorem 5.3.1 in [2].

Theorem A.2 (Disintegration). Given a measure µ ∈ P(X) and a Borel map r : X →X, there

exists a family of probability measures {µx}x∈X ⊆ P(X), uniquely defined for r♯µ-a.e. x ∈ X,
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such that µx(X \ r−1(x))= 0 for r♯µ-a.e. x ∈X, and for any Borel map ϕ :X× Y → [0,+∞]
we have

∫

X

ϕ(z) dµ(z)=

∫

X







∫

r−1(x)

ϕ(z) dµx(z)






d(r♯µ)(x).

We will write µ= (r♯µ)⊗µx . If X =X×Y and r−1(x)⊆ {x}×Y for all x ∈X, we can identify

each measure µx ∈ P(X× Y) with a measure on Y .

Definition A.3 (Projections). Given N ∈ N, N > 0 and a finite collection of nonempty sets

X1, . . . ,XN , we define the maps πi :X1 × · · · ×XN →Xi and πij :X1 × · · · ×XN →Xi ×Xj
by setting πi(x1, . . . , xN )= xi and πij (x1, . . . , xN )= (πi ×πj )(x1, . . . , xN )= (xi, xj ) for every

xh ∈Xh, h= 1, . . . ,N . When Xh, h= 1, . . . ,N are topological spaces, these maps are continu-

ous w.r.t. the product topology.

Definition A.4 (Transport plans and Wasserstein distance). Let X be a complete separable Ba-

nach space, µ1,µ2 ∈ P(X). We define the set of admissible transport plans between µ1 and µ2

by setting

5(µ1,µ2)= {γ ∈ P(X×X) : πi♯γ = µi, i = 1,2}.

The inverse γ−1 of a transport plan γ ∈ 5(µ,ν) is defined by γ−1 = i♯γ ∈ 5(ν,µ), where

i(x, y)= (y, x) for all x, y ∈X. The 2-Wasserstein distance between µ1 and µ2 is

W 2
2 (µ1,µ2)= inf

γ∈5(µ1,µ2)

∫

X×X

|x1 − x2|
2 dγ (x1, x2).

If µ1,µ2 ∈ P2(X) then the above infimum is actually a minimum, and we define

5o(µ1,µ2)=







γ ∈5(µ1,µ2) :W
2
2 (µ1,µ2)=

∫

X×X

|x1 − x2|
p dγ (x1, x2)







.

The space P2(X) endowed with the W2-Wasserstein distance is a complete separable metric

space, moreover for all µ ∈ P2(X) there exists a sequence {µN }N∈N ⊆ co{δx : x ∈ suppµ} such

that W2(µ
N ,µ)→ 0 as N → +∞.

Definition A.5 (Barycenter). Given γ ∈ 5(µ1,µ2) ∩ P2(R
d × R

d) with γ = µi ⊗ γxi , its

barycentric i-th projection Bari(γ ) ∈ L
2
µi
(Rd ;Rd), i = 1,2, is defined by

Bari(γ )(xi)=

∫

Rd

xj dγxi (xj ), for µi -a.e. xi ∈ R
d , i, j ∈ {1,2}, i 6= j.
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Definition A.6 (Transport multi-plans). Let γ ∈ P2(R
d ×R

d) be a transport plan, and let µ3 ∈
P2(R

d). We set µ1 = π1♯γ and

5(γ,µ3) :={µ̃ ∈ P2(R
d ×R

d ×R
d) : π12♯µ̃= γ, π3♯µ̃= µ3},

5o(γ,µ3) :={µ̃ ∈ P2(R
d ×R

d ×R
d) : π12♯µ̃= γ, π13♯µ̃ ∈5o(µ1,µ3)}.

Given µ̃ ∈ P2(R
d ×R

d ×R
d), i, j = 1,2,3, we set µi = πi♯µ̃ and

W 2
2,µ̃(µi,µj )=

∫

Rd×Rd×Rd

|xi − xj |
2 dµ̃(x1, x2, x3).

Clearly, W2,µ̃(µi,µj )≥W2(µi,µj ) for all i, j = 1,2,3.

The following is Lemma 5.3.2 p.122 in [2].

Lemma A.7 (Composition of transport plans). Let γ12, γ13 ∈ P(Rd×R
d) be such that π1♯γ12 =

π1♯γ13 = µ1 ∈ P(Rd). Then there exists µ̃ ∈ P(Rd × R
d × R

d) such that π12♯µ̃ = γ12 and

π13♯µ̃ = γ13. In particular, if γ12 = µ1 ⊗ γ
x1

12 , γ13 = µ1 ⊗ γ
x1

13 , and µ̃ = µ1 ⊗ µ̃x1
, we have

µ̃x1
∈5(γ x1

12 , γ
x1

13 ) for µ1-a.e. x1 ∈ R
d . The measure µ̃ is unique if γ12 or γ13 are induced by a

transport map.

Theorem A.8 (Superposition principle). Let µ = {µt }t∈[0,T ] be a solution of the continuity equa-

tion ∂tµt + div(vtµt )= 0 for a suitable Borel vector field v : [0, T ] ×R
d →R

d satisfying

T
∫

0

∫

Rd

|vt (x)|

1 + |x|
dµt (x) dt <+∞ .

Then there exists a probability measure η ∈ P(Rd × ŴT ), with ŴT = C0([0, T ];Rd) endowed

with the sup norm, such that

(i) η is concentrated on the pairs (x, γ ) ∈ R
d × ŴT such that γ is an absolutely continuous

solution of

{

γ̇ (t)= vt (γ (t)), for L 1-a.e t ∈ (0, T )

γ (0)= x,

(ii) µt = et♯η for all t ∈ [0, T ].

Conversely, given any η satisfying (i) above and defined µ = {µt }t∈[0,T ] as in (ii) above, we

have that ∂tµt + div(vtµt )= 0 and µ|t=0 = γ (0)♯η.

Proof. See Theorem 8.2.1 in [2]. ✷



ARTICLE IN PRESS

Please cite this article in press as: A. Marigonda, M. Quincampoix, Mayer control problem with probabilistic

uncertainty on initial positions, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.11.014

JID:YJDEQ AID:9093 /FLA [m1+; v1.272; Prn:22/11/2017; 14:03] P.39 (1-41)

A. Marigonda, M. Quincampoix / J. Differential Equations ••• (••••) •••–••• 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Appendix B. Comparison with other notion of generalized differentials

Remark B.1. If we require item ii.) of Definition 3.2 to hold only for measures µ ∈ P2(R
d)

induced by a transport map from µ̄, i.e. to measures µ= (Id + φ)♯µ̄, we have that there exists

only one µ̃ ∈ P2(R
d ×R

d ×R
d) such that π12♯µ̃= (Id,pµ̄)♯µ̄ and π13 = (Id, Id + φ)♯µ̄, due

to Lemma A.7, and we have µ̃= (Id,pµ̄, Id + φ)♯µ̄. In this case, W2,µ̃(µ̄,µ)= ‖φ‖L2
µ̄

, and we

recover essentially the same definition of δ-sub/superdifferential used in [12], in particular the

two definitions agrees when µ̄≪ L d .

Remark B.2. More generally, in item ii.) of Definition 3.2 we can consider an absolutely contin-

uous µ = {µs}s∈[0,t] curve joining µ̄ to µ, represented by η ∈ P(Rd ×Ŵt ) satisfying µs = es♯η,

we have that we can choose µ̃ ∈ P2(R
d×R

d×R
d) to be µ̃= (e0,pµ̄◦e0, et )♯η, thus recovering

the same definition of δ-sub/superdifferential used in [16].

We will now compare the definition given in Definition 3.2 with the following one, appeared

in Definition 10.3.1 p. 241 of [2].

Definition B.3 (Fréchet subdifferential). Let w : P2(R
d) → ]−∞,+∞] be proper and l.s.c.,

µ1 ∈ P2(R
d) such that w(µ1) ∈ R. A plan γ ∈ P2(R

d ×R
d) belongs to the Fréchet subdiffer-

ential ∂w(µ1) if

• π1♯γ = µ1;

• w(µ3)−w(µ1)≥ inf
µ̃∈5o(γ,µ3)

∫

Rd×Rd×Rd

〈x2, x3 − x1〉dµ̃+ o(W2(µ1,µ3))

We say that γ ∈ P2(R
d ×R

d) is a strong Fréchet subdifferential if for all µ̃ ∈5(γ,µ3) we have

w(µ3)−w(µ1)≥

∫

Rd×Rd×Rd

〈x2, x3 − x1〉dµ̃(x1, x2, x3)+ o(W2,µ̃(µ1,µ3)).

Similarly, we say that γ ∈ P2(R
d × R

d) is a strong Fréchet superdifferential if for all µ̃ ∈
5(γ,µ3) we have

w(µ3)−w(µ1)≤

∫

Rd×Rd×Rd

〈x2, x3 − x1〉dµ̃(x1, x2, x3)+ o(W2,µ̃(µ1,µ3)).

Remark B.4. From the definition, we have that if (pt ,pµ̄) ∈
⋂

δ>0

D+
δ v(t̄, µ̄) according to Defini-

tion 3.2, then (IdRd ,pµ̄)♯µ̄ is a strong Fréchet superdifferential of µ 7→w(t̄,µ) at µ̄. Conversely,

given a strong Fréchet superdifferential γ of µ 7→ w(t̄,µ) at µ̄, if there exists ν̄ such that

γ ∈5o(µ̄, ν̄), then, set pµ̄ := IdRd − Bar1(γ ), for all µ ∈ P2(R
d) and δ > 0 we have

w(t̄,µ)−w(t̄, µ̄)≤

∫

Rd×Rd×Rd

〈x2, x3 − x1〉dµ̃(x1, x2, x3)+ δ ·W2,µ̃(µ̄,µ)+ o(W2,µ̃(µ̄,µ)),

for all µ̃ ∈ P(Rd ×R
d ×R

d) satisfying π12♯µ̃= (IdRd ,pµ̄)♯µ̄ and π13♯µ̃ ∈5(µ̄,µ).
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We state here the following result, which is contained in Theorem 10.2.2 p. 236 and Theorem

10.4.12 p. 270 in [2],

Theorem B.5. Let µ2 ∈ P2(R
d). Define the map ψ : P2(R

d) → R by setting ψ(µ) =

−
1

2
W 2

2 (µ,µ2) and set

|∂ψ |(µ1)=
1

2
lim sup
µ3→µ1

W 2
2 (µ3,µ2)−W 2

2 (µ1,µ2)

W 2
2 (µ3,µ1)

,

i.e., |∂ψ |(µ1) is the metric slope of ψ at µ1. Then

(1) for every µ3 ∈ P2(R
d), γ ∈5o(µ1,µ2), µ̃ ∈5(γ,µ3) we have

1

2
W 2

2 (µ3,µ2)−
1

2
W 2

2 (µ1,µ2)≤

≤

∫

Rd×Rd×Rd

〈x1 − x2, x3 − x1〉dµ̃(x1, x2, x3)+ o(W2,µ̃(µ1,µ3)),

and we can choose o(W2,µ̃(µ1,µ3))=W 2
2,µ̃
(µ1,µ3);

(2) for all µ1 ∈ P2(R
d) we have

|∂ψ |(µ1)= inf

{

∥

∥Bar1(γ )− IdRd
∥

∥

L2
µ1

: γ ∈5o(µ1,µ2)

}

.

(3) the previous infimum is a minimum, and it is attained in a unique point γ12 ∈5o(µ1,µ2),

moreover (IdRd ,Bar1(γ12)− IdRd )♯µ1 is a strong Fréchet subdifferential of ψ at µ1.
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