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Abstract.

This paper analyses the 2D motion field on the image plane produced by the 3D motion of a plane
undergoing simple deformations. When the deformation can be represented by a planar linear vector
field, the projected vector field, i.e. the 2D motion field of the deformation, is at most quadratic. This
2D motion field has one singular point, with eigenvalues identical to those of the singular point describing
the deformation. As a consequence, the nature of the singular point of the deformation is a projective
invariant. When the plane moves and experiences a linear deformation at the same time, the associated 2D
motion field is at most quadratic with at most 3 singular points. In the case of a normal rototranslation,
i.e. when the angular velocity is normal to the plane, and of a linear deformation, the 2D motion field
has one singular point and substantial information on the rigid motion and on the deformation can be
recovered from it. Experiments with image sequences of planes moving and undergoing linear deformations
show that the proposed analysis can provide accurate results. In addition, experiments with deformable
objects, such as water, oil, textiles and rubber show that the proposed approach can provide information

on more general 3D deformations.

Introduction

The majority of available algorithms for the
analysis and recovery of 3D motion of moving ob-
Jects from image sequences, makes the assump-
tion of opacity and rigidity (Fennema & Thomp-
son, 1979; Hildreth, 1984; Longuet-Higgins, 1984;
Nagel, 1983; Francois & Bouthemy, 1990). As
these objects are seen by an imaging device, the
3D motion field of moving objects in the scene is
transformed into a 2D motion field in the image
plane (Gibson, 1950; Horn & Schunck, 1981). The
assumption of opacity implies that at any location
in the image plane, the 2D motion field is single
valued, that is the 2D motion field is uniquely de-
termined. In the case of transparent objects, the
2D motion field is not single valued and two differ-
ent velocities can be assigned to the same location
in the image plane. In the case of opaque objects,

the 2D motion field is a planar vector field, which

can be analysed with the tools of dynamical sys-
tems theory (Hirsch & Smale, 1974).

The assumption of rigidity is usually made in
order to simplify the problem and, by using prop-
erties of singular points, useful information on
the 3D motion can be recovered (Verri, Girosi &
Torre, 1989).
has already been considered: Ullman (1984) in-
troduced an incremental approach to recover the
structure from motion, even in the case of non-
rigid bodies, and Jasinschi & Yuille (1989) have re-
cently used the same approach with more sophisti-
cated mathematical tools. Bergholm and Carlsson

The problem of non-rigid motion

(1991) used the flow of ”visual directions” to re-
cover information about complex motions. Penna
(1992) considered the problem of shape from mo-
tion for objects undergoing non-rigid isometric
motions. Yakamoto, Boulanger, Beraldin & Ri-
oux (1993) introduced a deformable net model to
find the constraints for a direct estimation of 3D
motion. Other approaches to the non-rigid motion
have been proposed by Koenderink & Van Doorn
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(1986), Shulman and Aloimonos (1988), Subbarao
(1989).

In this paper we relax the hypothesis of rigid-
ity and we analyse a special case of moving and
deformable objects, that is of deformations of a
plane undergoing a normal rototranslation. De-
formations on the plane are modelled by a linear
vector field, allowing to introduce the three ele-
mentary deformations: expansions, rotations and
shears (Helmholtz, 1858). The deformable plane is
also supposed to move in the 3D space. The justi-
fication for studying this specific case is threefold.
Firstly, given the 2D motion field, it is possible to
provide almost a complete solution to the problem
of the recovery of deformations and rigid motion

Secondly, the proposed approach is a good lo-
cal approximation of a generic deformation occur-
ring on the surface of an opaque object. Thirdly,
as shown in the experimental section, several de-
formations of real objects can be treated in first
approximation as linear planar deformations.

Planar deformations have already been studied
by several authors. Wohn and Waxman (1990)
analysed deformation components (up to the sec-
ond order) of the 2D motion field on the image
plane to study the 3D motion of rigid surfaces;
Rao and Jain (1992) proposed the representation
of flow patterns with linear differential equations;
Shu and Jain (1993) and Ford, Strickland and
Thomas (1994) proposed algorithms for the recov-
ery of the linear deformation components of flow
fields. This paper analyses the recovery of 3D lin-
ear planar deformations, given their projections
on the image plane, presents some new analytical
results and shows how to recover the 3D motion
and linear deformations in a simple case. In ad-
dition, an extensive experimentation on synthetic
and real images is presented.

The paper is organized as follows: Section 1
introduces linear planar deformations and proves
that for this class of deformations there are use-
ful perspective invariants. By using this property
the combined case of deformable and moving plane
can be treated almost completely. Section 2 shows
that in the case of a normal rototranslation (i.e.
when the angular velocity is perpendicular to the
plane) a simple recovery of the 3D motion and
of the linear deformation can be obtained. Ad-
ditional properties of the singular points are pre-

sented in Section 3. Section 4 presents several
experiments with synthetic and real images. Ex-
periments with image sequences of real deformable
objects ( liquid, textiles, rubber...) show that the
proposed procedure for recovering motion and de-
formation can also be used in the case of more
general deformations and more complex objects.

1. Properties of linear deformations over
a plane

In this section we introduce the problem under
investigation and we prove the existence of some
perspective invariants for planar linear deforma-
tions (see eqn. 17). A well known theorem of
Helmoltz (1858) (see also Sommerfeld 1950) has
shown that the most general motion of a suffi-
ciently small element of a deformable (i.e. not
rigid) body can be represented as the sum of a
translation, a rotation and an extension (or con-
traction) in three mutually orthogonal directions.
In the presence of opaque objects, the visible de-
formations are those occurring at the object sur-
face. These deformations can be assumed to oc-
cur locally on the plane tangent to the surface.
Following the approach of Sommerfeld (1950), let
X" be a point of an element of a plane 7 and
X5, X5 its coordinates in the reference system

(07, a, /é) where O is the center of reference and
d,B two orthogonal unit vectors. We want to
study the motion field in the plane around the
point pPr = (Po’f,Pﬁ”). In the case of a gen-
eral non-rigid motion both points X™ and P~
will experience changes in position, which we de-
note V© = (Vo' Vg) and ‘_/1)” = (Vo Vag) for X
and P~ respectively. If the element is sufficiently
small, it is possible to use a Taylor expansion up
to the first order, so that:

VHX™) = VF + L(X™ — PT) (1)

the term V' is the rigid translation, while the sec-
ond term, represented by the linear operator L is
caused by the rotation and the non rigid compo-
nent of the motion. In the system of reference
previously introduced, L can be expressed as:

<VJ>_<VOE>+<L11 L12><X§—P§>
vy Vi Loy Loy ) \ X5 — P]

(2)



It is evident therefore that the matrix L can
be used to characterize the rotation and non rigid
part of the motion of a sufficiently small element
of a plane or locally of a surface. Now we drop
the translational term and we consider the plane
m with a stationary point P™ and a 2D motion
field determined by the linear deformation V on
its surface, given by:

V5 = L(X™ - PT) (3)

where L is the matrix previously defined. Tt is
well known that the matrix L describing the de-
formation can be decomposed as:

- L11 L12 o 10
t- () =2 (o)

(G (3 ) s (1)

where
Lii+ Ly Lig — Loy
E= 2 YT Ty
(5)
Ly — Lo _ Lig+ Ly
51 = 2 2= 2

are the elementary deformation components:
expansion, rotation and shears respectively, repro-
duced in Fig. 2 A, C and E. From eqn. (5) it is
evident that the component of expansion F is sim-
ply equal to Trace L/2.

Now we suppose that the deforming plane is ly-
ing in the 3D space and is observed by an imaging
device with the optical center centered in the ori-
gin O of a reference system (O, é1, €2, €3) as shown
in Fig. 1.

[Fig. 1 near here]

X = (X1, X9, X3) indicates a point in the 3D
space and V its velocity. The optical axis of the
imaging device is assumed to coincide with the é3
axis and the image plane to have equation X3 = f
where f is the focal length of the imaging de-
vice. We want to analyse the relation between
the 2D vector field Vp describing the deformation
on the plane 7 and its perspective projection vp
on the image plane of the imaging device and we
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will show the existence of some useful perspec-
tive invariants (eqn.17). If 4 is the unit vector
perpendicular to the deforming plane and d is the
distance between the plane and the optical center,
the equation of the plane is:

y-X=d (6)

Let us now write the motion field (3) of the defor-
mation on 7 as a 3D vector field in the reference
system (O, éq,é2,é3). If we choose the origin of
the reference system on 7 so that the position of
O7 in the reference system (O, é1, é2, é3) is O such
that O is perpendicular to the plane m, we have
6~d:0,6-3:0,6~&:d. If X is on the
plane 7, and X7 is the position of the same point
in the reference system (O a,ﬁ) we have that
Xr = X -a and X5 = X ﬁ The motion field in
the reference system (0, é1,é19,€3) can be written
as:

0 otherwise

where P is the 3D position of the stationary point
of the deformation in the reference of the imaging
device. If we rewrite the 3D motion field (7) in
terms of its components we have:

V = L]l[

(X = P)lay + Loa[B - (X = P)1: +
+L12[ ( (

— P)la; + Laa[ar - (X — P)]B;

—

(X em) (8)

where ay = a-é;, B =6 (i=1,2,3).

Now we want to find the perspective projection
of Vp over the image plane (see Fig. 1). The well
known perspective projection formulas are:

F=-X 9)
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[Fig. 2 near here]

Because of eqn. (10) the vector field VD ()? € ) is
transformed into the 2D motion field on the image
plane ¥p as:

+
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Eq. (11) can be rewritten, using (9) as:
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(12)

and by introducing the elementary deformation
components (5) and rearranging the different
terms as shown in Appendix A, we obtain the sim-
ple expression:

vy = 111303% + aszri29 + (ass — a1q) fr+
—ag fry — 1131f2

Vg = a13%12T9 + 1123235 + (asz — az2) frat+
—1112f331 - 1132f2

with
€5 X € vz(ﬁxfy)
aZJ_E f‘d + ( Jf - fd J)+
o (P x B)i + B; (P x &);
+S51 2 - fdJ - A+
45, (P x a)}dJr Bi (P x B);

(14)

The motion field (??) has the same mathemat-
ical structure of the one caused by a rigid mo-
tion of a plane (Verri, Girosi & Torre, 1989), and
only the parameters a;; are different. As a con-
sequence, the motion field (13) and the motion
field of an arbitrary rigid motion of a plane have
some common properties. For instance both mo-
tion fields have at most three singular points and
cannot have limit cycles (Aicardi & Verri, 1990).

The 2D motion field (??) has a singular point §
(i.e. a point such that ¥p(F) = 0) that is the
perspective projection of the point P over the

image plane: p = fp%. In the case of a lin-

ear expansion, characterized by the coefficient E

(L11 = L22 = E, L12 = L21 = 0) eqn. (??) be—
i = Bl B+ (- 97— 205 (6. Pras

B ) = FU(6 - F)aa+ (597 +
+E(';d' Dia- Pas+ (5 P)Bs)7 (15)
Remembering that (&-#)a4(3-%) 5+ (5-%)5 =
and (& - Z)as+ (- Z)Ps + (¥ - ¥)ys = f we have
vh = EW(.Z'P;:, — 1P (16)

If we analyse, in the general case, the Jacobian
matrix M of the 2D motion field on the image
plane in its singular point p, by simple, but long
calculations (see Appendix A), we obtain the im-
portant result:

TraceL = TraceM

DetL DetM (17-)



where
avr vy
Lo | 9Xalgecpe X5 |5ecpn
avr avy
OX5 | gecpr OX5 | grcpn
8331 - . 6m1 .
—_ T=p r=
il I R
8332 R, 61‘2 .
.T—p E—p

(18)

Therefore, given a linear deformation, the cen-
ter of deformation is projected into a singular
point having eigenvalues equal to those of the cen-
ter of deformation on the plane =, that is the
eigenvalues of a linear deformation are perspective
invariants. Also the elementary components E, w
and the sum of the squared components of shear
(the components of shear depend on the choice of
the unit vectors) S7 + S7 are perspective invari-
ants. These invariant properties can also be seen
in Fig. 2, which illustrates the perspective pro-
jection of an expansion (B), a rotation (D) and a
shear (F). It is evident that the projected vector
field is no more a linear vector field, but has the
same kind of singular point.

2. The motion field of a moving plane with
linear deformations

In this section we will consider properties of the
2D motion field produced by a translating plane
undergoing a linear deformation of the kind dis-
cussed in the previous section.

In this section the plane 7 is assumed to move,
so that its distance d(t) from the optical center
varies with time and its equation is:

5. X = d(1) (19)

If m is rigid and moves by a pure translation
T = (Th,T»,Ts), the associated 2D motion field
on the image plane is:

.37

O = 2y (1 = 7T3) (20)
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which has the same structure of the 2D motion
field projected on the image plane by the linear
expansion (16). The two 2D motion fields (16)
and (20) become identical when:

E(t)P(t) = =T (21)

As a consequence the 2D motion field of the
plane 4 - X = d(t) translating with speed T is in-
stantaneously identical to the 2D motion field of
a linear expansion on a fixed plane lying in the
same position and centered in the point:

< AT -
Q= 7 (22)

which can be written in the reference system

(07, a, [;’) as:

= d(t) = = s
Q" =( Z;Qg)=%(T-a,T~ﬂ) (23)

The eigenvalue of the expansion is equal to:
Er(t) = ———~ (24)

As a consequence, the 2D motion field of a
plane undergoing the linear deformation 1% (sum
of expansion, rotation and shear) with center p
and the translation 7" is instantaneously equal to
the perspective projection of the linear deforma-
tion ‘75 + VT" occurring on the same plane with

the center of deformation in an appropriate point
P =(FPy, P§)

L v
Vp + Vg = < o > =
Vs
_ <L11 L12> (Xg—Pér)_i_
T\ Loy Lo Xg — Pg
X' _ Qn’ XT _ p*
s (G2 =v(HIE)
X5 — @5 X5 —Pg
The Jacobian of this linear deformation is :

L+ Er Ly

r_ _ p
L=L+Erl= < La1 Las + ET > (26)

The 2D motion field on the image plane is then
described by egs. (13) and (14) replacing P with



6 THE AUTHORS?%?

P* and E with E + E7. The trace and determi-
nant of the Jacobian M of the singular point of
the 2D motion field are:

DetM = DetL! = (27)
Li1Los — LiaLat + Er(Li1 + Lao) + EZ '

TrM = TrL' = L1+ Las + 2E7 (28)

Let us see how these results can be used to re-
cover some useful motion parameters. If we write
the reciprocal of Ep:

1L d(0)+ (3 T)t
Er 5T (29)

and we set, for simplicity, the time origin so as to
1

have d(0) = 0, we obtain Er = ;: the time vari-
able t can now be interpreted as the time which
has to elapse before collision between the moving
plane and the optical center of the imaging device,
quantity which we will call tzme to collision. 1t is
evident that the value of ¢ can be obtained by a
simple derivation of TrM/2 (i.e. the component

of expansion):

ot ot

a(TrM) 9 l_ 5T
(

The sign of ¢ can be recovered by a further
derivation of TrM/2 and the eigenvalues of the
real deformation can be obtained as :

TrL = L11 + L22 =TrM — QET (31)

DetL = DetM — EpTrM 4 2E2  (32)

In the same way we can recover the components
of the real deformation:

E=1TrL/2="TrM — 2E7 (33)

Lis— L My — M.
w = 122 21 _ 122 21 (34)

Siw =57 +53
(L1 + La1)

V)

+ (L11 — Laa)?
2

_ (Mg + M21)? -Zl- (M11 — Mss)? (35)

This result can be extended to the case of the
normal rototranslation, i.e. when a rigid rotation
w’ with axis perpendicular to the moving plane (so
that & || 4) is added. In this case the location of
the singular point on the image plane is different
but the motion field is still equivalent to a linear
one, and the only change in the matrix M is that
w has to be replaced by w + w’.

3. Evolution of singular points of the 2D
motion field of linear planar deforma-
tions

Singular points of the 2D motion field on the
image plane, i.e. those points p'such that ¥(7) = 0,
have been shown to capture many features of the
motion of rigid bodies (Verri et al., 1989). For
instance, from the time evolution of " on the im-
age plane and the analysis of its eigenvalues, it is
possible to recover substantial information on the
3D rigid motion. Therefore it is interesting to see
whether the analysis of the evolution of singular
points of the 2D motion field of deformable objects
may provide similar information. In this section
we will analyse the evolution of the singular point
of the 2D motion field originating from a plane
undergoing a linear deformation and a translation

First of all it is useful to notice that the sin-
gular point of the 2D motion field projected by
a linear planar deformation on the image plane
evolves in such a way that the components of ro-
tation and shear remain unchanged over time (see
eqs. 34-35). This property allows to distinguish
between the 2D motion field produced by a rigid
plane undergoing an arbitrary rototranslation and
the motion field of a deforming plane undergoing
a normal rototranslation. In the former case the
components of shear are expected to change with
time, while in the latter case they are expected to
remain unchanged.



The singular point ' will change its location on
the image plane with time and, as shown in Ap-
pendix B, its trajectory will be a conic in the gen-
eral case (see eqn. (B22)). When the time to
collision is very large (see eqn. (B15)) we have:

. _nh T
Jim (p1,p2) = (0 7)) (36)

as a consequence the location of the singular point
for large values of the time to collision is related to
the direction of the 3D translation and this prop-
erty can be used to recover the direction of trans-
lation.

[Fig. 3 near here]

When the plane is perpendicular to the optical
axis and the translation is parallel to the optical
axis, the trajectory of the singular point p has a
very simple shape, as shown in Fig. 3A. As shown
in Appendix B, the following cases can be found:
e in the case of a pure expansion the singular

point moves on a segment with equation (B26)

(solid line).

e in the case of a pure rotation the singular point
moves on a circle with equation (B30) (broken
line).

e in the case of a shear the singular point moves
on a hyperbola with equation (B32) (dotted
line).

Fig. 4 illustrates 2D motion fields obtained
from egs. (13) and (14) with 4 = (0,0,1) and
T= (0,0,—T) in the case of a pure expansion (A,
B), a pure rotation (D,E) and a pure shear (G,H).

[Fig. 4 near here]

In the first column the 2D motion fields are rep-
resented when the time to collision 1s very large
and in the second column the 2D motion field are
represented on the image plane just before the col-
lision. The last column reproduces the trajecto-
ries of the singular point on the image plane for
the three cases. The arrows point toward the col-
lisions.

Because of the rigid motion the singular point p
may change its qualitative nature during its evo-
lution on the image plane, that is it may vary the
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value of the trace and of the determinant. The
properties of the singular point can be described
by analysing the trajectory of the point in the
(TrM,DetM) plane (Verri, Girosi & Torre 1989)
as shown in Fig. 3B. This plane is divided into
several regions, according to the sign of TrM and
of DetM. When a point is above the parabola
DetM = (TrM/2)? (the dotted line in Fig. 3B),
the singular point is a spiral; below this parabola
the singular point is a node or a saddle point. Be-
low the DetM axis, the singular point is a saddle
point. For ¢ — oo, from eqn. (?7) we obtain that
Ep — 0 and the singular point on the image plane
has the same eigenvalues as those of the pure de-
formation. As a consequence when ¢ is very large,
the direction of translation can be recovered from
the location of the singular point on the image and
the deformation can be characterized by the eigen-
values of the singular point. For ¢ — 0 (collision)
we have

DetM — oo
TrM — oo (37)

and the eigenvalues of M become very close to
Er giving immediate information about the time
to collision.

It is easy to show that the singular point in the
(TrM, DetM) plane can never cross the above
parabola and the only possible trajectories are
shown as solid lines in Fig. 3B.

4. Experimental results

In order to verify the theoretical results pre-
sented in previous sections we have designed three
sets of experiments. The first set was intended to
test whether the invariant properties implied by
(??7) could be verified with image sequences of de-
forming planes. The second set aimed at verifying
to which extent the recovery of the true 3D mo-
tion and of the deformations, outlined in Section
2, could be obtained in practice. In the third set of
experiments we analysed image sequences of real
deformable objects, such as liquids, textiles and
rubber.

Deforming planes

[Fig. 5 near here]
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Fig. 5 A and B illustrate synthetic images of a
tiger undergoing a pure expansion, while Fig. 5 C
and D show images of the same tiger undergoing
a shear deformation. Under these conditions the
properties of the original deformation were exactly
known. A sequence of images of successive defor-
mations was used and the optical flow was com-
puted using the technique described in De Micheli
et al. (1993). The optical flow was obtained by
first convolving images with a symmetric Gaus-

22442
L exp” 202 with o = 1.5 pixels and

sian filter ——
by using the values of 0.4 and 0.3 for the con-
trol parameters dgr and cp respectively, which al-
low the selection of reliable displacements. In this
case a sparse optical flow is obtained. Fig. 6A and
Fig. 6B reproduce the optical flows obtained from
the sequence of the expanding and of the deform-
ing tiger respectively. From these sparse optical
flows, the best linear vector field through each op-
tical flow can be estimated (see Fig. 6 C and D
respectively). As a consequence, it is possible to
estimate the eigenvalues of the matrix M and to
recover the deformations of the tiger by using the
results presented in Section 2. Table 1 illustrates
a comparison between the recovered and the orig-

inal deformations of Fig. 5.

[Fig. 6 near here]

[Table 1 near here]

1 and

The true expansion was 1.98-10~2 frame~
the experimentally obtained value was correct
with an error not greater than 3%. A similar pre-
cision was also observed for the image sequences
reproducing the shear. Similar results were ob-
tained in other image sequences in which a pattern
was deformed under controlled conditions and the
angle © between the image plane (i.e. the viewing
camera) and the deforming plane was varied from
0 to 60 degrees. A comparison between recovered
and original deformations, shown in Table 2, indi-
cates a reasonable agreement between the recov-
ered and original deformations when © is below 45
degrees. It is evident that the accuracy of the esti-
mation deteriorates when © becomes larger than
45 degrees. In this case the second order term of
the 2D motion field is predominant and the esti-

mation of the linear term of the 2D motion field
becomes rather sensitive to noise. These results
suggest that the eigenvalues of linear planar de-
formations can be useful perspective invariants in
a variety of experimental conditions.

[Table 2 near here]

Moving and deforming planes

The same deformations were used in another set
of experiments, but in the presence of a known rel-
ative motion between the plane and the viewing
camera. We have also used synthetic images of
clouds deforming with a shear, a rotation and an
expansion while the viewing camera was moving
towards the deforming plane.

[Fig. 7 near here]

Fig. 7A illustrates a frame of an image sequence
of simulated deforming clouds translating toward
the camera. Fig. 7B and C illustrate a sparse
optical flow obtained from the sequence and its
best linear approximation . From this linear ap-
proximation it is possible to estimate the different
parameters describing the motion and the defor-
mation. The time to collision was estimated by us-
ing equation (?7?). The deformation components
were computed from eqns. (33-35). A compar-
ison between the estimated values and the real
time to collision and deformation parameters is il-
lustrated in Table 3. The three deformation com-
ponents were recovered with a precision of about
90%. The estimation of the time to collision ob-
tained with a differentiation (see eqn. (?7)) can
be rather noisy. In this case, the error can be effi-
ciently reduced with an appropriate filtering (see
figure caption). Fig. 7D shows a comparison be-
tween the filtered values (diamonds) and the true
values (solid line).

[Table 3 near here]

Deforming objects

In the third series of experiments image se-
quences of liquids and deforming objects were
analysed. In these experiments the real deforma-
tion could be measured in an indenpedent way and
a qualitative and quantitative test of the proposed
approach could be obtained.



[Fig. 8 near here]

Fig. 8A and B illustrate two frames of an im-
age sequence taken while a drop of a black liquid
was deforming in a jar filled with water. These
images were acquired at video rate and the two
images in A and B were the first and the 12th
in the sequence. In this case the deformation is
caused by convection and diffusion. Fig. 8 C and
D illustrate optical flows computed with the tech-
niques of De Micheli et al., 1993 and of Campani
& Verri, 1992 respectively. The optical flow in C is
not dense and is significant only at the edge of the
black spot, while the optical flow in D is dense, but
blurred. The average expansion around the edges
of the black spot computed with the two proce-
dures was 0.0142 and 0.0139 frame™? respectively
and corresponds fairly well to the real displace-
ment of the edge of the black liquid, as illustrated
in Fig 8E. The edge contours of the deforming
drop in the two images in A and B are repro-
duced with the superimposed optical flow. This
flow was magnified by 12 times corresponding to
the number of frames separating image A and B.
Fig 8 F illustrates the expansion coefficient com-
puted from five consecutive optical flows obtained

with the technique of De Micheli et al. (1993).
[Fig. 9 near here]

Fig 9 illustrates the case of a rotating magnet de-
forming a mixture of water and small dark parti-
cles. The angular velocity of the rotating magnet
was 0.125 rad/frame. Two images of this deform-
ing liquid are shown in Fig 9 A and B. The op-
tical flow obtained with a correlation technique
(described in the figure legend) is shown in Fig
9 C. Contrary to the case of a rigid object, the
instantaneous velocity does not increase linearly
with the distance from the singular point. How-
ever, the angular velocity computed very near the
singular point was close to the true angular ve-
locity of the stirring magnet. The decrease of the
angular velocity (see Fig. 9 D) at more distant
points is caused by the viscosity of the liquid.
Fig 10 illustrates the deformation of an eraser
rubber deformed by the pressure exerted by two
clamps. One clamp was fixed, while the other was

THE TITLE??? 9

moved by 1 mm. between each frame. The width
of the eraser was 25 mm.

[Fig. 10 near here]

Fig 10 A and B illustrate the first and fifth
frame of the sequence and the deformation of the
squeezed eraser is clearly evident. C and D re-
produce a sparse optical flow obtained from the
entire image and a dense optical flow around the
singular point respectively. The obtained optical
flow around the singular point was decomposed
in the four elementary components, providing the
estimates: —0.014 frame~!, —0.001 rad. frame™!,
0.019 frame™! and —0.001 frame™?! for F w,S;
and Sy respectively. Evidently, the major defor-
mations were E and S7. If we approximated the
real deformation with a linear one, shrinking the
rubber in the y direction by a factor 1.04 every
frame (i.e. 25/24), the deformation had the two
components: £ = —0.018 frame~! and S; = 0.018
frame~'. The values of E and S; obtained by the
proposed approach and those calculated assum-
ing a linear deformation were in reasonable agree-
ment.

The deformation of an elastic textile is illus-
trated in Fig 11. In this case two parallel sides
of the textile were kept fixed, while the other two
orthogonal sides were moved apart so as to have
an expansion in one direction by a factor 1.02 at

every frame, corresponding to an ideal linear de-

formation with £ = 0.01 frame~! and S; = —0.01

frame=1.

[Fig. 11 near here]

Fig 11 A and B illustrate the first and the fifth
frame of the sequence in which the textile is de-
formed. C and D reproduce a subsampled op-
tical flow obtained from the entire image and a
dense optical flow around the singular point re-
spectively. The obtained optical flow around the
singular point was decomposed in the four elemen-
tary components and had the values of £ = 0.010
frame™!, w = 0.002 rad. frame~!, S; = —0.014
frame=!, Sy = 0.002 frame™1.

These values agree with those corresponding to
the real linear deformation.
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5. Discussion

The aim of this paper is to begin an analysis of
image sequences of deforming objects. The major
contribution of the paper consists in the identifi-
cation of some perspective invariants of planar lin-
ear deformations (see eqn. (17)). The use of these
invariants allows the recovery of the 3D motion
and of the parameters describing the deformations
in the simple case of normal rototranslations (see
Section 2). In addition, the paper shows that it is
possible to obtain a meaningful optical flow also
in the case of deformable objects, such as liquids
and gases.

Optical flow and deformable objects

It is now well established that an almost cor-
rect optical flow can be computed from image se-
quences of moving rigid objects (Barron et al.,
1994, Otte and Nagel, 1994) and it is therefore
interesting to see whether a reasonable optical
flow can be obtained also in more general cases.
Our experimentation indicates that the optical
flow of fluids and deforming objects can be es-
timated whenever the underlying dynamics is not
too chaotic (Lichtenberg & Lieberman, 1992).
The analysis of deformations

This paper studies the simple case of a plane
moving by a normal rototranslation (a motion
during which the axis of rotation is perpendicu-
lar to the plane itself) and undergoing a linear
deformation. The results obtained in sections 1-3
show that the 2D motion field of a linearly deform-
ing and moving plane is at most quadratic. Tt is
also shown that the translation and the deforma-
tions occurring on the plane can be recovered by
looking at the properties of singular points, as pro-
posed in Verri et al.; 1989 for rigid moving objects.
The proposed approach can be used to analyse a
general deformation occurring at the surface of an
opaque object provided that the Taylor expansion
of eqn. (1) can be truncated up to the first order,
as in the case of a sufficiently small surface ele-
ment. As a consequence, it is adequate to analyse
deformations of opaque objects locally.

Our approach makes use of the computation of
optical flow and it is useful also to observe that its
estimation and the recovery of its first order prop-
erties are usually reliable whenever the 2D motion
field is essentially a linear or at most quadratic

vector field. Therefore the proposed approach will
fail when the approximation of eqn.(1) is valid over
a too small surface element and when the normal
vector to the surface becomes parallel to the im-
age plane (see Table 2). In this case second or-
der terms of the 2D optical flow will have to be
considered, with a considerably heavier computa-
tion. The deformations reproduced in Fig. (8-11)
could be satisfactorily analysed with the proposed
technique, thus indicating that the underlying as-
sumptions are verified in a variety of real cases.
Future work

The analysis of image sequences of deformable
objects is an important field with a wide range of
relevant applications. The analysis of the blood
flow and cardiac motion (Amartur & Vesselle,
1993), and the study of calcium waves in living
cells (Gallione et al., 1993) are two major appli-
cations to biology. The study of the convection
of clouds and of other meteorological phenomena
is another important field which may benefit from
techniques developed in computer vision. How-
ever it is important to observe that these problems
have specific constraints and peculiarities and the
theoretical results obtained in this paper can cer-
tainly be extended to more realistic cases.
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Appendix A
First order properties of the singular point

Eqn. (12) can be rewritten as a function of the
elementary deformation components. As Ly; =
E+51, Lys = E=51, Lis =w+53, Layy = Sy —w,
we have for vy:

+=o (6 B) (5 - P+

—(3-#)(@- P)l(a1f — zras) — [(B-F)(3 - P

~ (- B)(B P(Bf — x183)}+
f%ﬂ@-aw~ﬂ+

—(5-&)(B- P))(orf — w103) — [(a-F)(5 - P

~(5 )@ P)(Bf —x183)}+

+2IG D6 P+

(A1)

As ¥ - P = d is the distance between the op-
tical center and the deforming plane, using some
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some well known properties of vector calculus (i.e.

—[y2f2d+ (P x 7)173] f2 1+

axb)-c¢=(bxd&)d , (& &F)ai+(3-3)i+(H D)y = - .
-’Efi X, ()aibj —( bja:-)) = (E_i X g) . e’é()ﬁ W()eﬁobtgiyn: ! +J§_Z{[_(P X a)jag+ (P x )1 fa)zi+
—(P x &)sa Pxg X
01:%(:7 Z)(Psx1 — P f)+ H=(P < a)zas + (P x B)2fslereat
+[—(P x d)sas + (P x B)afs+ (A3)
S N o
+f_l11[(P x B) - ¥(asx1 — a1 f)+ +(}3 X &)1 — (]3 o B)]ﬂl]fﬁﬂl—i-
+(P x &) - #(Baz1 — B1 )]+ ~[(P x &)2a1(P x B)afi]frat
w —[—(P % &) B A 2
pgller % 8) - 4f = (6 x ) A+ (A2) [—(P x &)zar+ (P x B)sp]f}

Z)(Brf — Paw1)
By rearranging eqn.(??) we obtain:

v = %(711331‘1 + y2 Psxzyaa + (y3 P+

Ly

—v1P1)fx1 —yaPifea —vaPLf?)+

B)ias + (13 X

n

——

+5 (P x &)1 Balzi+

[y

~ -

-i—[(}3 x fB)aas + (P x &)afs]e1aa+

~ -

+[(P x B)sas + (P x a)sfs+

—(P x B)ra1 + (P x &)1 1] for+

—[(P x B)acs + (P x &)afh ] frat
—[(P x B)aa1 + (P x &)api] f2}+

+fd{[72fd+( X )371)]17?+

+[- ‘71fd+( X ¥)avya]T120+
+(P x F)3vs — (P x F)1m]fai+
~[ysfd + (P x )12l frot

In the same way a similar expression for vs can
be obtained and the two components can be writ-
ten as:

vy = a13$% + aszz1zs + (ass — a11) fri+
—as1 frs — az f*

2
vy = a132129 + a3y + (asz — as9) fra+
—aiafzy — aza f?

(A4)
where
ai; = E‘/}SJ (*i egfx 61: %(ﬁf; ﬁ)J)
+Slaj(P><ﬂ)z;15](P><d)i+ (A35)
s, —a;(P x &)i + B; (P x B);
7d

Let us now compute the eigenvalues of the Jaco-
bian matrix of the motion field M in the singular
point p = fﬁ/Pg,. First we rewrite eqn.(12) as a
function of g

vp = Luifa- (Z - ~—-13')]a + Loo[B - (7 -

+L1a[B (% - Lx—ﬁ) &+ Lofa - (7 - Wﬁ)]

—#{Lula- (¥ - %m]as + Laa[B - (7 — 227)] 55+
Lis[B - (% — _')]013 + Loygfa- (- —-17) B3}%
(A6)

We define, for simplicity:



0=a-(7-LZf) (AT)
*p

—hp_LE A

®=p( = (A8)

The motion field ¥p can now be written as:

Tp = L11O& + Lya®B + L12®d + L1 O+
z
—?(fzn@a?, 4 Loa®P3 + L19®as + L91003)

(49)

and the components are:

v1 = L11Oay + Laa®f1 + L12Pas + L2108+
—T'f—l(Ln@Ozs + L22®fB3 + L1aPas + L21003)
vy = L11Oas + Lo ®Ps + L12Pas + L2108+

— %2 (L110as + Lyo®Ps + L1Pas + Ly10/33)
(A10)

Let us now compute the partial derivative:

dvr 00 0P 0P
o, + Lnﬁl@Tm + Lisa 6'—131+

L1 B

80
e %{Ln@as + Los®P3 + L1aPas+

dxy

; 00 19202
+ L2100} — %{Lnasa—ml + L22/7’38—T1+

od 80
+L12a36—1:1 + La1f3 3—:1'1}

(A1)

As O(p) = ®(p) = 0, the above partial deriva-

tive, computed in p becomes:

8’()1 o a3p1 6@
G -, = Li1(a1 — N )3—1'1+

P

Bap1, 0P aspr, 0P
7 )8—131 + Lia(ar — T)a—i‘1+

+Laa(f1 —

+ Lo (B — @)gfg

(A12)
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Similarly we have:

dvy I aapz, 00
dz,|. = Inlee— =g
Bapa, 0P azpy, 0P
+Las (0 — T)a—l’z + Lis(as T)TIZ
ﬂ3p2 E)@
+La1(02 T)a—l?
(A13)
8@1 _ azpy 00
92a - Lyi(ag — 7 )8.752
B3py, O aspy, 0P
+Los (B — 7 )8'—1‘2+L12(a1_ T)a—xz
ﬁ3p1 6@
+ Lo (61 — 7 )3—1'2
(A14)
81)2 a3p9 8@
Br |,y T T
Bapa, O aspy, 0P
+Lao(fs — 7 )8—$1+L12((12— 7 )8—131
ﬁ3p2 6@
+ Lo (02 — 7 )3—1'1
(A15)

00 00 090 0P

3r) Brot Br) Boa do not depend on Z and are

equal to:

00 &-p

-— = 1] — < I_)“’)/l (A16)

Oz yp

00 a-p

e = Q3 — < I_),‘Yz (A17)
P Yop

0% 3.

. = b —{} I_)"Y] (A18)
z1 7P

o 3.5

—— = P2 —{)) I_),’YZ (A19)

Dy vP

Substituting eqns. (A16-A19) into (A12-A15) we
finally obtain:
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9 . ag
T = nlor = e - En) + LBt
_ﬁafpl)(ﬂl 71) + Lis(ag — a}pl)(ﬂ1 - %’71)"'
+Lo1 (61 — )(a1 - W’ﬂ)
(A20)
% = L1 (g — 2222 (g — ‘?‘—"Z72)+L22(52+
ra | f 37
ﬁapz)(ﬁQ _ %72) + Lia(as — &)(52 v2)+
+Lo1 (B2 — B222) (0 — SLy,)
(A21)
G, o &p
o], = Pulen = (o= S + Lt
=88 = o) o+ Laalan = =B — )t
+L21(B1 — ﬁapl)(oﬂ - %’;72)
(A22)
G, a
o = Iunler = 5P = S + LBt
—8p2)(By — BLoy) 4 Lia(an — 582)(B1 — L)+
+ L1 (B2 — BF2) (a1 = $Em1)
(A23)

Now we can compute the trace and the deter-
minant of the Jacobian matrix M:

81)1

v | du
6$1

F=p d

” (A24)
61)2
6;13]

81}2

F=p Oy

We can choose the reference system (O7, & [;’)

such that €3 = /3, and therefore: 81 = 3 = 0

Ba =1 a2 =7 =0, a1 = v3, a3 = —71. As a
consequence, we have:
aﬂ = L11(O£1 — a3p1)(a1 — M71)+
91 |5, 7 7
a3p1 /;’ P
+Lig(ay — —-——
(o= =) =55m)
(A25)
021 _ [y 4 Laa(— 2282 (A26)
B | 22 12 7
81)1 a3pq
J— L _ 3
Dal. 121 7 ) (A27)
Ovs _[11(—a3p2)( 1—6[.]371)4—
1 |z / v r
- 3P [;, -
+Loo(—=—=71) + Li2(— J=—=m)+
f o
+Lot (a1 — = Z_),’h)
(A28)
and the trace of M becomes:
81’ 81’2
TT‘M = % . 6—132 -_-_
l‘—p r=
asp1 a-p
= L1« a —=71)+
11( 1 f )( 1 A/.1071)
+L1a(ey a3p1)(_{;’ _,71) + Las + Lia(— Ozspz)
9P I
(A29)
Remembering that a1 = v3 and v = —as, we
have:
L a-p
TrM = %[01(7310 +vip1) + 013th g(’hprl-

+y3f)] + Loz + %[(’st + 71171)(—;).2]3,71) + agps)

(A30)



TrM = %[73(’7 -p) + as(a - p)l+

Lio . Y1p2
(¥ P) == — 71p2]
f ( q)'y-p

(A31)

+ Lo +

f
TTM:L11—+L22+L12-0: L11+L22 A32
7 [Li1 + Las ] (A32)

In a similar way we compute the determinant of

M:

001 6’02 61)1 81’2 _

DetM = 2L %02 _ 0¥ Oa
¢ Ox1 Oxy  Oxy Oxq

= [L11(aq — %)(0‘1 - %1;71)+

+Lia(an — a‘}pl)(—%%)][Lzz + L12(—%)]+

—[Lia(ar = )L (= 2F2) (ar — $Em)+
+Laa(—8Em) + Lia(—22) (= 2E3)+

+ Lot (a1 — %71)]

DetM = LyyLys(ay — =) (ay — %71)"'
+LosLia(ar — %)(—%’Yl)*'

+ L0 — ) (= By ) (232

+L11L12(—a3fp2)+

—Li1Lia(ar — Q}pl V(o1 — %71)(—%)4—

(o — 25 (= By (22 ) 4
—LogLyg(ay — —a}pl)(_@i%)—k

—Lis Loy (g — {13#)(011 — %’h)

(A34)
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DetM = L]]ng(al — O‘“}pl)(al —_ %—g7l)+

+L11L12(—a‘}pz) — Li1Lia(a — a‘}pl Y1+

—%71)(——“3;’2) — Lis Lo (a1 — —ajepl)(al - %71)

(A35)

As we have already found that:

(o1 = (o = sy =1 (as6)

the previous equation becomes:

azp2

DetM = Li1Lss — LiaLo1 + L11L1a(— 7 )+
Qa3pP2
—Li1L1a(— 3p?) =|L11La9 — Lia Loy ‘
(A37)
Therefore the two matrices:
vy ovy
OXG [ gnpr OXG | gnopm
L=
vy vy
OXolgnzpr V5 |gncpn
and
8’0] 6’01
8;‘13] F=p 8;‘62 F=F
M =
8331 F=p 6332 F=F

have the same trace and the same determinant,
and, of course, the same eigenvalues.

Appendix B

Singular point location

We want to study the evolution of the posi-
tion of the singular point of the 2-D motion field
produced by the 3-D motion of a plane with nor-
mal vector 4 translating with uniform speed T and
undergoing a linear deformation with center P(¢)
and matrix L. The solution can be simplified re-
membering that at each time ¢, we can replace
the 3-D motion with the equivalent 2-D linear de-
formation on the plane 4 - X = d(t). This field is
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easily written in the reference system of the plane,
(O™, &, B) and the equations for the singular point
of this equivalent field on the plane 7 are:

VI = L (X — PT) 4 Lia(X5 — PP+

+Ew(Xy —Q3) =0
B (X5 - QF) =0
(B1)
where Fy = — Aj and Q’T = -5 (T a, T. ﬁ)

The singular point of the 2-1 motion field on the
image plane is the projection of the singular point
of the equivalent 2-D field (B1). The singular
point of the equivalent 2-D motion (B1) on the
plane 7 is:

*
Xk = ‘
(DetL)PI+E;, QT +L11 B4y PI+L22 Ber QT+ L12Eer(PF - QF)

(Dt L)+ Eor ((Tr L)+ Fyy )

X; =
(DStL)Pg+E¢2ng+L11EtrQﬁ‘I'LzzEtrPg‘l'LmEtr(P;—Q:;)

(Det L)+ Fer ((TrL)+ By )
(B2)

Now it is useful to write the coordinates of
the singular point (B2) in the reference system
(0,81,€2,€3). As we have taken the 3D position
of O™ as O = d(y-é1,% - €2,% - é3), the 3D coordi-
nates of the point (X7, Xg) of m are:

Xi:X;rOzi—FXgﬂi—f'd’)/i 1=1,2,3
(B3)

and the position of the singular point is given

by:

X;:X;ai—i-Xgﬂi—i-d‘ﬁ 1=1,2,3

(B4)

Replacing X2 and XE with the expressions of
(B2), we have:

N;
x*

i = (DetL) + Eor (TTL) + Eyy) (B3)

where N; is defined as:

N; = (DetL)P; + ELQ; + Eu{L11[(P - &)+

+(@ BB+ (P-9)ml+ Laal(@ - d)oit+
( ﬂ)ﬁz ( )71] +L12( B Q_’B)az‘l'
+Loy(P -6 — Q- 6)pi}
(B6)
Remembering the perspective projection for-
mula:
X*
= L B
= Ig (B1)
we have
* N1
ry = N_3
* Ny
Ty = FB (BS)

Now we introduce the temporal dependences for

]3, FE;, and Cj as:

P;(t) = P;(0) + T3t (B9)

(B10)

S d0)+ (5Tt -
WETew

In order to simplify the calculations it is con-

(B11)

venient to set, as in the text, the time origin so

that d(0) = 0. In this case for t = 0 the plane
passes through the optical center. The equations
become:
1
Q(t) = Tt (B13)

introducing (B9),(B12) and (B13) into eqn.
(B6) we have:



Ni = H{T;[(DetL)t? — (TrL) + 1] + (DetL) P;(0)t+
+HLao(T - e + Lot (T @)BJt — L11 (P(0) - &)+
~Loa(P(0) - B)fi + Lra(P(0) - B+
+Lo1(P - &)
(B14)

and the position of the singular point becomes:

P T O1t4Py
Ty = f{T_a + Tg[(DetL)t2—(TrL)z+1]+T3(DetL)P3(o)t}
* __ Ts Oat+Po
Ty = f{Tg + Tg[(DetL)ﬁ—(TrL)ttLHTa(DetL)P3(o)t}
(B15)
where

01 = Ts[(DetL) Py (0) + L12( -Bai+
Pl =

+L21( &) p1] — T1 P3(0)
(B16)
q>1 = —Tg[Lll(ﬁ(O )011 —|— L 2(13(0 ﬂ1+
+L15(P(0) - B)ar + Laa(P(0) - &
(B]?)
Oy = T3[(DetL) Py(0) 4+ L1o(T - B)as+
+L21( - @) 9] — T2 P3(0)
(B18)
q>2 = —Tg[Lll(ﬁ(O) d)OZQ + L22( (0 /3)ﬁ2+
—|—L12(}3(0) . B)QQ + L21( (0)
(B19_)

From (B15) it is evident that, fot ¢ — oo, i.e.
when the plane is far from the collision, the posi-
tion of the singular point is &* = (T} /T35, T2 /T3).

The curve described by the evolution of the
point is found eliminating? from the system. With
a few steps we have (we drop the stars in the fol-
lowing):

Oy (2273 — fT3) —
Os(x1T5 — fTh) —

Dy (2173 — fT1)

t =
O1(x2T3 — fT5)

(B20)
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From the first of eqs. (B15) and (B20), dividing
by (2175 — fT}) we find a second-order polynomial
equation describing the trajectory of the singular
point:

Ts(DetL)[®: (25T — fTy) — ®o(x1T5 — fT1)]2+

+[(D6tL) — T3(TTL)][(I)1($2T3 — fTQ)-I-

=@y (x1T3 — fT1)][O2(21T5 — fT1) — O1(zaT5+

—f12)] + [O2(x1T5 — fT1) — O1(z2T5 — f14)]*+

—(03®1 — ©10:®3) (2115 — f11)f — (OF Pa+

—010:9®)(x2T5 — fT5) =0

(B21)

This equation can be simplified with a change
of variables: y; = (21 — f%), Y2 = (22 — f%)

(DetL)[(®1y2) — (®2y1)]* + [(DetL)+
—T3(TrL)][(P1y2) — (P2y1)][(O2y1) — (O1y2)]+
+[(©2y1) — (O12)]* — (03®1 — ©102®3)y1+

— (0305 — 010:P1)y; =0

(B22)

In this way we have proved that the curve de-
scribed by the singular point is a conic.

Now we can see in more detail the equations
of the conics in the three cases of Fig. 3, with
the translation perpendicular to the image plane
(Th =Ty =0, T3 = T)) with the deforming plane
parallel to the image plane and a deformation de-
scribed just by one elementary component. In
this case v = 72 = 0, P(0) -4 = 0 and we
can choose the reference systems so as to have
& = é1, B = é5. In the case of a pure expansion
(1e L11 = L22 = E, L12 = L21 = 0) eqn. (B15)
becomes:

_ . EP(0) .
2, = fm (B23)
b g EPy(0)

T(Et —1)
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If Bt £ 1 we can write:

T(Et — 1)1‘1 - EPl(O)f =0
T(Et — 1)zy — EP5(0)f =0 (B24)

and we obtain:

TEx, TEzoy

The equation of the curve is the straight line:
Py (O)Z‘Q — P2(0)$1 =0 (B26)

In the case of a pure rotation (i.e. L1; = Lag =
0 and L1y = —L9y = w) the system becomes:

wZ(Pl (0)wt — P5(0)
T +1))

wQ(PQ(O)wt + P (0)
T + 1))

Ilzf

Jfg:f

(B27)

multiplying the first equation by x5, the second by
z1 and subtracting the two equations we obtain:

. 1 Pl(O)l‘l + P2(0)$2

t = —
W P](O)CEQ - PQ(O):L‘l

(B28)

from eqs. (2?) and (2?) we have:

21 T?(P1(0)z1 + Po(0)z2)? + 21 T?(Py(0) 2o+
—Py(0)21)? = TPL(0)£(Py(0)z1+
+P2(0)xs)(P1(0)zs — Pa(0)x1)+

+w Py (0)Tf(P1(0)z2 — P2(0)z1)? = 0
(B29)

and after a few steps we obtain the equation of a
circle:

Tz? +Tx2 +wfPy(0)2; —wfPi(0)zy =0 (B30)

When L11 = —L22 = 51 and L12 = L21 = 0,
the singular point is located at:

—S, TP (0)(Sit + 1)
T%(1 — S3t?)
—S1 TPy (0)(Sit — 1)
T%(1 — S3t?)

@ =f (B31)

Jfg:f

and, after a few steps, the curve is found to be the
hyperbola:

2Tx1x9 — Sy PQ(O)fQZl + Slpl(O)fQZQ =0 (B32)



FIGURE LEGENDS
Fig. 1: The reference system (O7, &, ) solid to
the plane m with normal unit vector 4 and the
reference system (O, é1, €2, €3) solid to the imag-
ing device, with O coinciding with the optical cen-
ter and the image plane coinciding with the plane

Xs=1.

Fig. 2: Linear deformations (A: expansion; C: ro-
tation; E: shear) and their projections (B, D and
F respectively) on the image plane. The normal
vector to the plane 4 is (0.92,0,0.40).

Fig. 3: A: trajectories of the singular point on
the image plane in the case of a translation and
an expansion (solid line, see eqn. B26), a rotation
(broken line, see eqn. (B30)) and a shear (dot-
ted line, see eqn. (B32)). The translating plane
is always parallel to the image plane. B: allowed
trajectories of the singular point in the TrM and
DetM plane.

Fig. 4: Simulation of the 2D motion field on
the image plane of moving and deforming planes.
A: 2D motion field on the image of an expand-
ing and translating plane with center of deforma-
tion P = (148,148) pixel and eigenvalue £ =
I frame™!. The moving plane is perpendicular
to the optical axis with distance from the opti-
cal center d = 3000 pixel, and translates with
T = (0,0,—500) pixel frame™!. B: Same as A,
but with d = 500 pixel. C: evolution of the po-
sition of the singular point on the image plane
for the expanding and translating plane in A and
B. D: 2D motion field on the image of a rotating
and translating plane with center of deformation
Pr = (148, 148) pixel and angular speed w = 1
rad frame™!. The moving plane is perpendicu-
lar to the optical axis with distance from the op-
tical center d = 3000 pixel, and translates with
T = (0,0, —500) pixel frame=!. E: same as in D
but with d = 500 pixel. F: evolution of the posi-
tion of the singular point on the image plane for
the rotating and translating plane in D and E.
G: 2D motion field on the image of a deforming
and translating plane with center of deformation
P = (148,148) pixel and component of shear
S = 1 frame ~!. The moving plane is perpen-
dicular to the optical axis with distance from the
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optical center d = 3000 pixel, and translates with
T = (0,0, —500) pixel frame=!. H: same as in G
but with d = 500 pixel. T: evolution of the position
of the singular point on the image plane for the de-
forming and translating plane in G and H. In C,
F and I the arrows point toward the collisions.

Fig. 5: A and B: two images (256 x 256) of an
expanding tiger. C and D: two images of the same
tiger undergoing a shear deformation.

Fig. 6: Examples of the sparse optical flows ob-
tained with the algorithm of De Micheli et al.
1993 for the expanding tiger (Fig. 5 A and B)
and for the deforming tiger (Fig. 5 C and D) re-

spectively. Images were convolved with a Gaus-
. _z24y? .

sian filter # exp~ 202 with ¢ = 1.5 pixels and
the control parameters dy and cy were set equal
to 0.4 and 0.3 respectively, so as to obtain a sparse
but reliable optical flow (see De Micheli et al, 1993
for further details). C and D are the best linear
vector field through the sparse optical flows shown
in A and B respectively, obtained with a least
squares fit. From these estimation of the optical
flow, the deformation components were obtained

from eqs. (33-35)

Fig. 7: A reproduces an image of synthetic de-
forming clouds. B and C are the sparse optical
flow (computed with the technique of De Micheli
et al., 1993 with the values of 1.5,0.4 and 0.3
for o,dg and cy respectively) and its best lin-
ear approximation respectively. D reproduces a
plot of the time-to-collision against number of
frame. This values are obtained by filtering the
values computed with eqn. (30) with the filter:
tte(k) = yltte(k—1) = 1]+ ailttc(k) with a de-
pending on the measurement error (see De Micheli

et al., 1993 for further details).

Fig. 8: A and B reproduce two images of a black
drop of liquid deforming in water. C, D are the
optical flows computed with the technique of De
Micheli et al., 1993 (¢ = 1.5,dy = 0.4,cy = 0.3)
and Campani and Verri, 1992 (after a gausssian
filtering with ¢ = 1.5 pixels and with patches of
41 x 41 pixels) respectively. E represents the con-
tour of the drop at the two frames of A and B
with the superimposed optical flow computed at
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the edges of the first frame with the technique of
Campani and Verrin and magnificated by a fac-
tor equal to the number of frames (12) separating
the two images. F reproduces the coefficient of
expansion obtained from the best linear approxi-
mation of the sparse optical flow computed with
the technique of De Micheli et al., 1993.

Fig. 9: A and B reproduce two images of a stir-
ring magnet deforming a mixture of water and
dark particles. C is an example of an optical
flow computed with a correlation-based technique.
This technique consists of the comparison with a
suitable distance function, of the grey level pat-
tern in a patch of 41 x 41 pixels around each pixel
of the frame with other patterns of the same size in
the successive frame centered in a set of points ap-
propriately shifted from the original position. The
shift minimizing the distance function is taken as
the true motion. D is the angular velocity against
the distance from the center of rotation. The an-
gular velocity at the distance p was computed as
the average value of the rotational component of
the optical flow in the annulus inside the two cir-
cles with radius p + 5 pixels.

Fig. 10: A and B reproduce two frames of an
eraser rubber squeezed by two clamps. C and D
reproduce the subsampled optical flow obtained
from the entire image (computed with the tech-
nique of Campani and Verri (1990) over patches of
41 x 41 pixels) and a dense flow relative to the re-

gion near the singular point (the black dot). The
analysis of the optical flow around the singular
point provides an estimate of the deformation pa-
rameters.

Fig. 11: A and B reproduce two frames of an
elastic textile expanded along y direction. C and
D reproduce the optical flow obtained from the en-
tire image and a dense flow relative to the region
near the singular point (black dot). The optical
flow was computed as in the case of Fig. 10.

Table 1: Estimations of the components of de-
formation obtained from the sparse optical flows
relative to the sequences of Fig. 5. Egs. (30) and
(33-35) were used. o is the standard deviation.

Table 2: The recovery of the components of de-
formation for different values of the angle © be-
tween the deforming plane and the image plane.
Egs. (30) and (33-35) were used. o is the stan-
dard deviation.

Table 3: Estimation of the true time to colli-
sion and components of deformation for a translat-
ing and deforming plane. The average estimated
expansion, rotation and shear were 2.08 - 1072
frame™! |, 1.74 - 1072 frame~! and 1.98 - 10~2
frame~" respectively, while the true values were
1.98 - 1072 frame™! | 1.74 - 10~2 frame™! and
1.98 -1072 frame™1.



