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A Stochastic Model of Optimal Debt Management and Bankruptcy∗
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Abstract. A problem of optimal debt management is modeled as a noncooperative interaction between a bor-
rower and a pool of lenders, in an infinite time horizon with exponential discount. The yearly income
of the borrower is governed by a stochastic process. When the debt-to-income ratio x(t) reaches a
given size x∗, bankruptcy instantly occurs. The interest rate charged by the risk-neutral lenders is
precisely determined in order to compensate for this possible loss of their investment. For a given
bankruptcy threshold x∗, existence and properties of optimal feedback strategies for the borrower
are studied, in a stochastic framework as well as in a limit deterministic setting. The paper also
analyzes how the expected total cost to the borrower changes, depending on different values of x∗.
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1. Introduction. We consider a problem of optimal debt management in an infinite time
horizon, modeled as a noncooperative interaction between a borrower and a pool of risk-
neutral lenders. Since the debtor may go bankrupt, lenders charge a higher interest rate to
offset the possible loss of part of their investment.

In the models studied in [8, 9], the borrower has a fixed income, but large values of the
debt determine a bankruptcy risk. Namely, if at a given time t the debt-to-income ratio x(t)
is too big, there is a positive probability that panic spreads among investors and bankruptcy
occurs within a short time interval [t, t + ε]. This event is similar to a bank run. Calling Tb
the random bankruptcy time, this means

Prob
{
Tb ∈ [t, t+ ε]

∣∣∣Tb > t
}

= ρ(x(t)) · ε+ o(ε).

Here the “instantaneous bankruptcy risk” ρ(·) is a given, nondecreasing function.
At all times t, the borrower must allocate a portion u(t) ∈ [0, 1] of his income to service

the debt, i.e., paying back the principal together with the running interest. Our analysis will
be mainly focused on the existence and properties of an optimal repayment strategy u = u∗(x)
in feedback form.

In the alternative model proposed by Nuño and Thomas in [16], the yearly income Y (t)
is modeled as a stochastic process:
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dY (t) = µY (t) dt+ σY (t) dW.(1)

Here µ ≥ 0 is an exponential growth rate, while W denotes Brownian motion on a filtered
probability space. Differently from [8, 9], in [16] it is the borrower himself who chooses when
to declare bankruptcy. This decision will be taken when the debt-to-income ratio reaches a
certain threshold x∗, beyond which the burden of servicing the debt becomes worse than the
cost of bankruptcy.

At the time Tb when bankruptcy occurs, we assume that the borrower pays a fixed price B,
while lenders recover a fraction θ(x(Tb)) ∈ [0, 1] of their outstanding capital. Here x 7→ θ(x)
is a nonincreasing function of the debt size. For example, the borrower may hold an amount
R0 of collateral (gold reserves, real estate, . . .) which will be proportionally divided among
creditors if bankruptcy occurs. In this case, when bankruptcy occurs each investor will receive
a fraction

(2) θ(x(Tb)) = max
{

R0

x(Tb)
, 1
}

of his outstanding capital.
The aim of the present paper is to provide a detailed mathematical analysis of some

models closely related to [16]. We stress that these problems are very different from a standard
problem of optimal control. Indeed, the interest rate charged by lenders is not given a priori.
Rather, it is determined by the expected evolution of the debt at all future times. Hence it
depends globally on the entire feedback control u(·). An “optimal solution” for the borrower
must be understood as the best trade-off between the sustainability of his debt, related to
the interest rate charged by the lenders, and the need to keep the repayment rate as small as
possible.

A precise description of our model is given in section 2. Here the strategy of the borrower
comprises a feedback control u = u(x), determining the fraction of income allocated to ser-
vicing the debt, and a stopping set S⊂ IR+ , where bankruptcy is declared. In a way, this
resembles the classical problem of stochastic control with stopping time, as in [6]. We remark
that, in a naive formulation, the optimization problem always admits the trivial solution

(3) u(x) ≡ 0, S = ∅.

This corresponds to a Ponzi scheme: no payment is ever made, bankruptcy is never declared,
and the interest on old loans is paid by initiating more and more new loans. This strategy
guarantees zero cost and is clearly optimal.

To rule out the trivial solution and achieve a more realistic model, we assume that some
upper bound x∗ for the debt is given, beyond which bankruptcy must instantly occur. For
example, one can think of x∗ as the maximum amount of cash that all financial markets can
provide. It can be very large, but certainly finite. In this modified setting, the optimization
problem is formulated for x ∈ [0, x∗], and the stopping set S ⊂ [0, x∗] must contain the
point x∗.

The main results of the paper can be summarized as follows:
• Given an upper bound x∗ for the debt, we show that the optimal choice of the stopping

set is S = {x∗}. In other words, it is never convenient for the borrower to declare
bankruptcy, unless he is forced to do it.
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We then seek an optimal feedback control u = u∗(x), x ∈ [0, x∗] which minimizes
the expected cost to the borrower. For any value σ ≥ 0 of the diffusion coefficient
in (1), we prove that the problem admits at least one solution, in feedback form. In
the deterministic case where σ = 0, the solution can be constructed by concatenating
solutions of a system of two ODEs, with terminal data given at x = x∗.
• We then study how the expected total cost of servicing the debt together with the

bankruptcy cost (exponentially discounted in time) depends on the upper bound x∗.
Let θ(x∗) ∈ [0, 1] be the salvage rate, i.e., the fraction of outstanding capital that will
be paid back to lenders if bankruptcy occurs when the debt-to-income ratio is x∗. If

(4) lim
s→+∞

θ(s) s = +∞,

then, letting x∗ → +∞, the total expected cost to the borrower goes to zero. On the
other hand, if

(5) lim
s→+∞

θ(s) s < +∞,

then the total expected cost to the borrower remains uniformly positive as x∗ → +∞.
Our analysis shows that if the debtor can access a large amount x∗ of credit, when (4) holds

he can postpone the bankruptcy time far into the future. Due to the exponential discount,
as x∗ → +∞ his expected cost will thus approach zero. On the other hand, when (5) holds,
after the debt has reached a certain threshold, bankruptcy must occur within a fixed time
regardless of the size of x∗. We remark that the assumption (5) is more realistic. For example,
if (2) holds, then θ(x∗)x∗ = R0 for all x∗ large enough.

The remainder of the paper is organized as follows. In section 2 we describe more carefully
the model, deriving the equations satisfied by the value function V and the discounted bond
price p. In sections 3 and 4 we construct equilibrium solutions in feedback form, in the
stochastic case (σ > 0) and in the deterministic case (σ = 0), respectively. Finally, sections
5 and 6 contain an analysis of how the expected cost to the borrower changes, depending on
the bankruptcy threshold x∗.

In the economics literature, some related models of debt and bankruptcy can be found in
[1, 3, 8, 12, 13]. For the basic theory of optimal control and viscosity solutions of Hamilton–
Jacobi equations we refer to [4, 10].

2. A model with stochastic growth. We consider a slight variant of the model in [16].
We denote by X(t) the total debt of a borrower (a government, or a private company) at time
t. The annual income Y (t) of the borrower is assumed to be a random process, governed by
the stochastic evolution equation (1).

The debt is financed by issuing bonds. When an investor buys a bond of unit nominal
value, he receives a continuous stream of payments with intensity (r + λ)e−λt. Here

• r is the interest rate paid on bonds, which we assume coincides with the discount rate,
• λ is the rate at which the borrower pays back the principal.

If no bankruptcy occurs, the payoff for an investor will thus be∫ ∞
0

e−rt(r + λ)e−λt dt = 1.
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In case of bankruptcy, a lender recovers only a fraction θ ∈ [0, 1] of his outstanding capital.
Here θ can depend on the total amount of debt at the time on bankruptcy. To offset this
possible loss, the investor buys a bond with unit nominal value at a discounted price p ∈ [0, 1].
As in [9, 16], at any time t the value p(t) is uniquely determined by the competition of a pool
of risk-neutral lenders.

We call U(t) the rate of payments that the borrower chooses to make to his creditors, at
time t. If this amount is not enough to cover the running interest and pay back part of the
principal, new bonds are issued, at the discounted price p(t). As in [16], the nominal value of
the outstanding debt thus evolves according to

(6) Ẋ(t) = − λX(t) +
(λ+ r)X(t)− U(t)

p(t)
.

For a more detailed derivation of (6) from the economic primitives, we refer the reader to [16].
The debt-to-income ratio is defined as x = X/Y . In view of (1) and (6), Ito’s formula

[17, 18] yields the stochastic evolution equation

(7) dx(t) =
[(

λ+ r

p(t)
− λ+ σ2 − µ

)
x(t)− u(t)

p(t)

]
dt− σ x(t) dW.

Here u = U/Y is the fraction of the total income allocated to pay for the debt. Throughout
the following we assume r > µ.

In this model, the borrower has two controls. At each time t he can decide the portion
u(t) of the total income which he allocates to repay the debt. Moreover, he can decide at
what time Tb bankruptcy is declared.

Throughout the following, we assume that an upper bound x∗ for the debt is a priori
given (as an external constraint, imposed by the size of the markets) and consider strategies
in feedback form. These comprise

(i) a closed set S ⊂ [0, x∗], with x∗ ∈ S, where bankruptcy is declared, and
(ii) a feedback control determining the repayment rate

(8) u = u∗(x) ∈ [0, 1] for x ∈ [0, x∗] \ S.

For a given choice of the stopping set S, the bankruptcy time is thus the random variable

(9) Tb
.= inf

{
t ≥ 0 ; x(t) ∈ S

}
.

Given an initial size x0 of the debt, the goal of the borrower is to minimize the total expected
cost, exponentially discounted in time. Namely,

minimize: J (x0, u
∗, S) .= E

[∫ Tb

0
e−rtL (u∗(x(t))) dt+ e−rTbB

]
x(0)=x0

.(10)

Here B is a large constant, accounting for the bankruptcy cost, while L(u) is the instantaneous
cost to the borrower for implementing the control u.

To complete the model, we need an equation determining the discounted bond price p in
the evolution equation (7). For every x > 0, let θ(x) be the salvage rate, i.e., the fraction of
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the outstanding capital that can be recovered by lenders, if bankruptcy occurs when the debt
has size x. Given an initial debt size x0, the expected payoff to a lender purchasing a coupon
with unit nominal value is computed by the right-hand side of

(11) p(x0) = E

[∫ Tb

0
(r + λ)e−(r+λ)tdt+ e−(r+λ)Tbθ (x(Tb))

]
x(0)=x0

.

Assuming that the bond price is determined by the competition of a large pool of risk-neutral
lenders, this expected payoff should coincide with the discounted bond price p(x0). This
motivates (11).

Notice that the stopping time Tb in (9), and hence p(x0), depends on the initial state x0,
on the stopping set S, and on all values of the feedback control u∗(·). Since the salvage rate
θ(·) is nonincreasing, we have

(12) p(x) = θ(x) if x ∈ S, p(x) ∈ [θ(x∗), 1] for all x ∈ [0, x∗].

Having described the model, we can introduce the definition of optimal solution, in feed-
back form.

Definition 2.1 (stochastic optimal feedback solution). In connection with the above model,
we say that a set S ⊂ [0, x∗] and a pair of functions u = u∗(x), p = p(x) provides an optimal
solution to the problem of optimal debt management (7)–(11) if

(i) given the function p(·), for every initial value x0 ∈ [0, x∗] the feedback control u∗(·) with
stopping time Tb as in (9) provides an optimal solution to the stochastic control problem
(10), with dynamics (7);

(ii) given the feedback control u∗(·) and the set S, for every initial value x0 the discounted
price p(x0) satisfies (11), where Tb is the stopping time (9) determined by the
dynamics (7).

We emphasize that in our model, if x(t) = x∗, then bankruptcy must instantly occur. The
following simple observation shows that, for the borrower, it is never convenient to voluntarily
declare bankruptcy at any earlier time.

Lemma 2.2. Let S, u∗(·), p(·) be an optimal solution to the debt management problem
(7)–(11). Then S = {x∗}.

Proof. Assume that, on the contrary, there is a value x0 < x∗ such that x0 ∈ S. We
show that condition (i) in the above definition cannot hold. Indeed, consider the optimization
problem with initial datum x(0) = x0. If x0 ∈ S, then bankruptcy instantly occurs at time
Tb = 0, and the expected cost in (10) is J [x0, u

∗, S] = B. However, the alternative strategy
u(t) ≡ 0, with bankruptcy occurring at the first time where x(t) = x∗, provides the strictly
smaller expected cost

J (x0, 0, {x∗}) = E
[
e−rTbB

]
< B.

Motivated by Lemma 2.2, from now on we shall always take S = {x∗} as the stopping set.
The random stopping time is thus

(13) Tb
.= inf

{
t ≥ 0 ; x(t) = x∗

}
.
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Concerning the cost function L in (10), we shall assume the following:
(A) The function L is twice continuously differentiable for u ∈ [0, 1[ and satisfies

L(0) = 0, L′ > 0, L′′ > 0, lim
u→1−

L(u) = +∞.(14)

For example, for some c, α > 0, one may take

L(u) = c ln
1

1− u
or L(u) =

cu

(1− u)α
.

For a given function p = p(x), we denote by V (·) the value function for the stochastic
optimal control problem (10) with dynamics (7). Namely,

(15) V (x0) .= inf
u(·)

J
(
x0, u, {x∗}

)
.

Denote by

(16) H(x, ξ, p) .= min
ω∈[0,1]

{
L(ω)− ξ

p
ω

}
+
(
λ+ r

p
− λ+ σ2 − µ

)
x ξ

the Hamiltonian associated to the dynamics (7) and the cost function L in (10). Notice that,
as long as p > 0, the function H is differentiable with Lipschitz continuous derivatives w.r.t. all
arguments.

By standard arguments, the value function V provides a solution to the second order ODE

(17) rV (x) = H
(
x, V ′(x), p(x)

)
+

(σx)2

2
V ′′(x)

with boundary conditions

(18) V (0) = 0 , V (x∗) = B .

As soon as the function V is determined, the optimal feedback control is recovered by

u∗(x) = argmin
ω∈[0,1]

{
L(ω)− V ′(x)

p(x)
ω

}
.

By (A) this yields

(19) u∗(x) =


0 if

V ′(x)
p(x)

≤ L′(0) ,

(L′)−1
(
V ′(x)
p(x)

)
if

V ′(x)
p(x)

> L′(0) .

On the other hand, if the feedback control u = u∗(x) is known, then by the Feynman–Kac
formula p(·) satisfies the equation

(20) (r + λ)(p(x)− 1) =
[(

λ+ r

p(x)
− λ+ σ2 − µ

)
x− u∗(x)

p(x)

]
· p′(x) +

(σx)2

2
p′′(x)
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with boundary values

(21) p(0) = 1, p(x∗) = θ(x∗) .

Combining (17) and (20), we are thus led to the system of second order ODEs

(22)


rV (x) = H

(
x, V ′(x), p(x)

)
+

(σx)2

2
· V ′′(x) ,

(r + λ)(p(x)− 1) = Hξ

(
x, V ′(x), p(x)

)
· p′(x) +

(σx)2

2
· p′′(x)

with the boundary conditions

(23)

{
V (0) = 0,

V (x∗) = B,

{
p(0) = 1,

p(x∗) = θ(x∗).

In the next section, an optimal feedback solution to the problem (7)–(11) will be obtained by
solving the above system of ODEs for the value function V (·) and for the discounted bond
price p(·).

We close this section by collecting some useful properties of the Hamiltonian function.

Lemma 2.3. Let the assumptions (A) hold. Then, for all ξ ≥ 0 and 0 < p ≤ 1, the function
H in (16) satisfies

(24)
(

(λ+ r)x− 1
p

+ (σ2 − λ− µ)x
)
ξ ≤ H(x, ξ, p) ≤

(
λ+ r

p
− λ+ σ2 − µ

)
xξ,

(25)
(λ+ r)x− 1

p
+ (σ2 − λ− µ)x ≤ Hξ(x, ξ, p) ≤

(
λ+ r

p
− λ+ σ2 − µ

)
x.

Moreover, for every x, p > 0 the map ξ 7→ H(x, ξ, p) is concave down and satisfies

H(x, 0, p) = 0,(26)

Hξ(x, 0, p) =
(
λ+ r

p
− λ+ σ2 − µ

)
x ,(27)

lim
ξ→+∞

H(x, ξ, p) =


−∞ if

1
p
>

(
λ+ r

p
− λ+ σ2 − µ

)
x ,

+∞ if
1
p
≤
(
λ+ r

p
− λ+ σ2 − µ

)
x .

(28)

Proof.
1. Since H(x, ·, p) is defined as the infimum of a family of affine functions, it is concave

down. We observe that (16) implies

(29) H(x, ξ, p) =
(
λ+ r

p
− λ+ σ2 − µ

)
xξ if 0 ≤ ξ ≤ pL′(0).

This yields the identities (26)–(27).
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2. Taking ω = 0 in (16) we obtain the upper bound in (24). By the concavity property,
the map ξ 7→ Hξ(x, ξ, p) is nonincreasing. Hence (27) yields the upper bound in (25).

3. Since L(w) ≥ 0 for all w ∈ [0, 1], we have

H(x, ξ, p) ≥ min
w∈[0,1]

{
−ξ
p
w

}
+
(
λ+ r

p
− λ+ σ2 − µ

)
x ξ

and obtain the lower bound in (24). On the other hand, using the optimality condition,
one computes from (16) that

(30) Hξ(x, ξ, p) =
(λ+ r)x− u∗(ξ, p)

p
+ (σ2 − λ− µ)x,

where

u∗(ξ, p) = argmin
ω∈[0,1]

{
L(ω)− ξ

p
ω

}
= (L′)−1

(
ξ

p

)
< 1 .

Observe that, as ξ → +∞, one has u∗(ξ, p)→ 1 in (30). The nonincreasing property of
the map ξ → Hξ(x, ξ, p) yields the lower bound in (25).

4. To prove (28) we observe that, in the first case, there exists ω0 < 1 such that

ω0

p
>

(
λ+ r

p
− λ+ σ2 − µ

)
x.

Hence, letting ξ → +∞ we obtain

lim
ξ→+∞

H(x, ξ, p) ≤ lim
ξ→+∞

[
L(ω0)− ω0

p
ξ +

(
λ+ r

p
− λ+ σ2 − µ

)
x ξ

]
= −∞ .

To handle the second case, we observe that, for ξ > 0 large, the minimum in (16) is
attained at the unique point ω(ξ) where L′(ω(ξ)) = ξ/p. Hence limξ→+∞ ω(ξ) = 1 and

lim
ξ→+∞

H(x, ξ, p) = lim
ξ→+∞

[
L(ω(ξ))− ω(ξ)

p
ξ +

(
λ+ r

p
− λ+ σ2 − µ

)
x ξ

]
≥ lim

ξ→+∞
L(ω(ξ)) = +∞.

Remark 2.4. We summarize here the main differences between the proposed model and
the model presented in [16]. In [16], the borrower is a government that can control the primary
surplus ratio, the inflation rate, and the time of declaring bankruptcy. The control on the
inflation rate can be used by the government as a monetary policy to temporarily deflate the
actual debt value, by paying a price in terms of welfare cost. While controlling the primary
surplus ratio is actually equivalent in our model to the choice of u(·), and in both models
the borrower can choose the bankruptcy time, in our model the borrower cannot choose the
inflation rate r. This simplification can be motivated assuming either that the borrower is
not a government or that the monetary policy of the government has been delegated to an
independent central banker which acts in order to keep it constant (e.g., 2% in Eurozone), no
matter of the consequences on the borrower’s debt sustainability.

In [16], the instantaneous preferences of the borrower are expressed by a (discounted) util-
ity function of logarithmic type, while our analysis deals with more general cost functions L(·).
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3. Existence of solutions. Let x∗ > 0 be given. If a solution (V, p) to the boundary
value problem (22)–(23) is found, then the feedback control u = u∗(x) defined at (19) and the
function p = p(x) will provide an equilibrium solution to the debt management problem, as
in Definition 2.1.

To construct a solution to the system (22)–(23), we consider the auxiliary parabolic system

(31)


Vt(t, x) = − rV (t, x) +H

(
x, Vx(t, x), p(t, x)

)
+

(σx)2

2
· Vxx(t, x) ,

pt(t, x) = (r + λ)(1− p(t, x)) +Hξ

(
x, Vx(t, x), p(t, x)

)
· px(t, x) +

(σx)2

2
· pxx(t, x)

with boundary conditions
V (t, 0) = 0,

V (t, x∗) = B,


p(t, 0) = 1

p(t, x∗) = θ(x∗)

for all t ≥ 0 .

Following [2], the main idea is to construct a compact, convex set of functions (V, p) : [0, x∗] 7→
[0, B]× [θ(x∗), 1] which is positively invariant for the parabolic evolution problem. A topolog-
ical technique will then yield the existence of a steady state, i.e., a solution to (22)–(23).

Theorem 3.1. In addition to (A), assume that σ > 0 and θ(x∗) > 0. Then the system of
second order ODEs (22) with boundary conditions (23) admits a C2 solution (V , p̄), such that
V : [0, x∗]→ [0, B] is increasing and p̄ : [0, x∗]→ [θ(x∗), 1] is decreasing.

Proof.
1. For any ε > 0, consider the parabolic system

(32) Vt = −rV +H(x, Vx, p) +
(
ε+

(σx)2

2

)
Vxx ,

V (0) = 0,

V (x∗) = B,

(33) pt = (r + λ)(1− p) +Hξ(x, Vx, p)px +
(
ε+

(σx)2

2

)
pxx ,

p(0) = 1,

p(x∗) = θ(x∗),

obtained from (31) by adding the terms εVxx, εpxx on the right-hand sides. For any
ε > 0, this renders the system uniformly parabolic, also in a neighborhood of x = 0.

2. Recalling [2, Theorem 1], for every initial data V0, p0 ∈ C2([0, x∗]), the system (32)–(33)
with initial data

(34) V (0, x) = V0(x), p(0, x) = p0(x)

admits a unique solution V (t, x), p(t, x) in C2([0, T ]× [0, x∗]) for all T > 0. Adopting a
semigroup notation, let t 7→ (V (t, ·), p(t, ·)) = St(V0, p0) be the solution of the system
(32)–(33) with initial data (34).
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Consider the closed, convex set of functions in C2([0, x∗])

D =
{

(V, p) : [0, x∗] 7→ [0, B]× [θ(x∗), 1] ; V, p ∈ C2, Vx ≥ 0, px ≤ 0, and (23) holds
}
.

(35)

We claim that the above domain is positively invariant under the semigroup S, namely,

(36) St(D) ⊆ D for all t ≥ 0 .

Indeed, consider the constant functions
V +(t, x) = B,

V −(t, x) = 0,


p+(t, x) = 1,

p−(t, x) = θ(x∗) .

Recalling (26), one easily checks that V + is a supersolution and V − is a subsolution of
the scalar parabolic problem (32). Indeed

−rV + +H(x, V +
x , p) +

(
ε+

(σx)2

2

)
V +
xx ≤ 0, V +(t, 0) ≥ 0, V +(t, x∗) ≥ B,

−rV − +H(x, V −x , p) +
(
ε+

(σx)2

2

)
V −xx ≥ 0, V −(t, 0) ≤ 0, V −(t, x∗) ≤ B.

A standard comparison principle (see, for example, Theorem 9.1 in [15]) yields

0 = V −(t, x) ≤ V (t, x) ≤ V +(t, x) = B for all (t, x) ∈ [0, T ]× [0, x∗] .

Similarly, since p+ is a supersolution and p− is a subsolution of the scalar parabolic
problem (33), one has that

θ(x∗) = p−(t, x) ≤ p(t, x) ≤ p+(t, x) = 1 for all (t, x) ∈ [0, T ]× [0, x∗] .

This proves that if the initial data V0, p0 in (34) take values in the box [0, B]× [θ(x∗), 1],
then for every t ≥ 0 the solution of the system (32)–(33) will satisfy

(37) 0 ≤ V (t, x) ≤ B, θ(x∗) ≤ p(t, x) ≤ 1

for all x ∈ [0, x∗]. In turn, this implies

(38)


Vx(t, 0) ≥ 0,

Vx(t, x∗) ≥ 0,


px(t, 0) ≤ 0,

px(t, x∗) ≤ 0 .
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3. Next, we prove that the monotonicity properties of V (t, ·) and p(t, ·) are preserved in
time. Differentiating w.r.t. x one obtains

(39) Vxt = − rVx +Hx +HξVxx +Hppx + σ2xVxx +
(
ε+

(σx)2

2

)
Vxxx ,

(40) pxt = − (r + λ)px +
(
d

dx
Hξ(x, Vx, p)

)
px +Hξpxx + σ2xpxx +

(
ε+

(σx)2

2

)
pxxx .

By (26), for every x, p one has Hx(x, 0, p) = Hp(x, 0, p) = 0. Hence Vx ≡ 0 is a
subsolution of (39) and px ≡ 0 is a supersolution of (40). In view of (38), we obtain

px(t, x) ≤ 0 ≤ Vx(t, x) for all t ≥ 0, x ∈ [0, x∗].

This concludes the proof that the set D in (35) is positively invariant for the system
(32)–(33).

4. Thanks to the bounds (24)–(25), we can now apply Theorem 3 in [2] and obtain the
existence of a steady state (V ε, pε) ∈ D for the system (32)–(33).
We recall the main argument in [2]. For every T > 0 the map (V0, p0) 7→ ST (V0, p0)
is a compact transformation of the closed convex domain D into itself in C2(R2). By
Schauder’s theorem it has a fixed point. This yields a periodic solution of the parabolic
system (32)–(33) with period T . Letting T → 0, one obtains a steady state.

5. It now remains to derive a priori estimates on this stationary solution, which will allow
us to take the limit as ε→ 0. Consider any solution to

(41)


−rV +H(x, V ′, p) +

(
ε+

(σx)2

2

)
V ′′ = 0 ,

(r + λ)(1− p) +Hξ(x, V ′, p)p′ +
(
ε+

(σx)2

2

)
p′′ = 0

with V increasing, p decreasing, and satisfying the boundary conditions (23).
By the properties of H derived in Lemma 2.3, we can find δ > 0 small enough and
ξ0 > 0 such that the following implication holds:

x ∈ [0, δ], p ∈ [θ(x∗), 1], ξ ≥ ξ0 =⇒ H(x, ξ, p) ≤ 0 .

As a consequence, if V ′(x) > ξ0 for some x ∈ [0, δ], then the first equation in (41) implies
V ′′(x) ≥ 0. We conclude that either V ′(x) ≤ ξ0 for all x ∈ [0, δ] or else V ′ attains its
maximum on the subinterval [δ, x∗].
By the intermediate value theorem, there exists a point x̂ ∈ [δ, x∗] where

(42) V ′(x̂) =
V (x∗)− V (δ)

x∗ − δ
≤ B

x∗ − δ
.

By (24), the derivative V ′ satisfies a differential inequality of the form

(43) |V ′′| ≤ c1|V ′|+ c2 , x ∈ [δ, x∗],
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for suitable constants c1, c2. By Gronwall’s lemma, from the differential inequality (43)
and the estimate (42) one obtains a uniform bound on V ′(x) for all x ∈ [δ, x̂] ∪ [x̂, x∗].
Relying on the first equation of (41), we also obtain a uniform bound on V ′′(x) for all
x ∈ [δ, x∗].

6. Similar arguments apply to p′. By (25), the term Hξ(x, V ′, p) in (41) is uniformly
bounded. For every δ > 0, (41) shows that p′ satisfies a linear ODE whose coefficients
remain bounded on [δ, x∗], uniformly w.r.t. ε. This yields the bound

(44) |p′(x)| ≤ Cδ for all x ∈ [δ, x∗]

for some constant Cδ, uniformly valid as ε→ 0. Relying on the second equation of (41),
we also obtain a uniform bound on p′′(x) for all x ∈ [δ, x∗]
To make sure that, as ε → 0, the limit satisfies the boundary value p(0) = 1, one
needs to provide a lower bound on p also in a neighborhood of x = 0, independent of ε.
Introduce the constant

γ
.= min

{
1 , (r + λ)

(
λ+ r

θ(x∗)
− λ+ σ2 − µ

)−1
}
.

Then define

p−(x) .= 1− cxγ ,

choosing c > 0 so that p−(x∗) = θ(x∗). We claim that the convex function p− is a lower
solution of the second equation in (41). Indeed, by (41), one has

(r + λ)cxγ −Hξ(x, V ′, p) cγxγ−1 ≥
[
(r + γ)−

(
λ+ r

θ(x∗)
− λ+ σ2 − µ

)
γ

]
cxγ ≥ 0.

7. Letting ε→ 0, we now consider a sequence (V ε, pε) of solutions to (41) with boundary
conditions (23). Thanks to the previous estimates, the functions (V ε)′ and (pε)′ are
uniformly bounded by some constant C1,δ > 0 on [δ, x∗], and pε satisty

p−(x) ≤ pε(x) ≤ 1 for all x ∈ [0, x∗], ε > 0.

On the other hand, since H and Hξ are uniformly bounded and uniformly Lipschitz on
[δ, x∗]× [−C1,δ, C1,δ]× [θ(x∗), 1], the functions

(V ε)′′ =
2

2ε+ σ2x2 ·
[
rV ε −H(x, (V ε)′, pε)

]
and

(pε)′′ =
2

2ε+ σ2x2 ·
[
(r + λ) · (pε − 1)−Hξ(x, (V ε)′, pε)(pε)′

]
are also uniformly bounded and uniformly Lipschitz on [δ, x∗].
By choosing a suitable subsequence, we achieve the uniform convergence (V ε, pε) →
(V, p), where V, p are twice continuously differentiable on the open interval ]0, x∗[, and
satisfy the boundary conditions (23).
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Having constructed a solution (V, p) to the boundary value problem (22)–(23), a standard
result in the theory of stochastic optimization implies that the feedback control u∗(·) in (19)
is optimal for the problem (10) with dynamics (7). For a proof of this “verification theorem,”
see Theorem 4.1, p. 149, in [14] or Theorem 11.2.2, p. 241, in [17]. As a consequence of
Theorem 3.1 we thus obtain the following.

Corollary 3.2. Under the same assumptions as in Theorem 3.1, the debt management prob-
lem (7)–(11) admits an optimal solution.

4. The deterministic case. If σ = 0, then the stochastic equation (7) reduces to the
deterministic control system

(45) ẋ =
(
λ+ r

p
− λ− µ

)
x− u

p
.

Throughout the paper, we always assume r > µ. The deterministic debt management problem
can be formulated as follows:

(DMP) Given an initial value x(0) = x0 ∈ [0, x∗] of the debt, minimize

(46)
∫ Tb

0
e−rtL(u(t)) dt+ e−rTbB ,

subject to the dynamics (45), where the bankruptcy time Tb is defined as in (9),
while

(47)

p(t) =
∫ Tb

t
(r + λ)e−(r+λ)sds+ e−(r+λ)(Tb−t) · θ(x∗) = 1− (1− θ(x∗)) e−(r+λ)(Tb−t) .

Since in this case the optimal feedback control u∗ and the corresponding functions V, p
may not be smooth, a concept of equilibrium solution should be more carefully defined.

Definition 4.1 (deterministic optimal feedback solution). A couple of piecewise Lipschitz con-
tinuous functions u = u∗(x) and p = p∗(x) provide an equilibrium solution to the debt man-
agement problem (DMP), with continuous value function V ∗, if the following hold:

(i) For every x0 ∈ [0, x∗], V ∗ is the minimum cost for the optimal control problem

(48) minimize:
∫ Tb

0
e−rtL(u(x(t))) dt+ e−rTbB

subject to

(49) ẋ(t) =
(

λ+ r

p∗(x(t))
− λ− µ

)
x(t)− u(t)

p∗(x(t))
, x(0) = x0 .

Moreover, every Carathéodory solution of (49) with u(t) = u∗(x(t)) is optimal.
(ii) For every x0 ∈ [0, x∗], there exists at least one solution t 7→ x(t) of the Cauchy problem

(50) ẋ =
(
λ+ r

p∗(x)
− λ− µ

)
x− u∗(x)

p∗(x)
, x(0) = x0,
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such that

(51) p∗(x0) =
∫ Tb

0
(r + λ)e−(r+λ)tdt+ e(−r+λ)Tb θ(x∗) = 1− (1− θ(x∗)) · e−(r+λ)Tb ,

with Tb as in (9).

In the deterministic case, (22) takes the form

(52)


rV (x) = H

(
x, V ′(x), p(x)

)
,

(r + λ)(p(x)− 1) = Hξ

(
x, V ′(x), p(x)

)
p′(x)

with Hamiltonian function (see Figure 1)

(53) H(x, ξ, p) = min
ω∈[0,1]

{
L(ω)− ξ

p
ω

}
+
(
λ+ r

p
− (λ+ µ)

)
x ξ .

We consider solutions to (52) with the boundary condition

(54)


V (0) = 0,

V (x∗) = B,


p(0) = 1,

p(x∗) = θ(x∗) .

Let’s introduce two functions:

Hmax(x, p) .= sup
ξ≥0

H(x, ξ, p) and ξ](x, p) .= argmax
ξ≥0

H(x, ξ, p) .

Recalling (30), we have

(55) Hξ(x, ξ, p) =
(λ+ r)x− u∗(x, p)

p
− (λ+ µ)x,

F− ξ] F+O

rV

Hmax(x, p)

ξ

Figure 1. In the case where (λ+ r)x− (λ+µ)px < 1, the Hamiltonian function ξ 7→ H(x, ξ, p) has a global
maximum Hmax(x, p). For rV ≤ Hmax, the values F−(x, V, p) ≤ ξ](x, p) ≤ F+(x, V, p) are well defined.
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where

(56) u∗(ξ, p) = argmin
w∈[0,1]

{
L(w)− ξ

p
· w
}

= (L′)−1
(
ξ

p

)
< 1 .

Two cases may occur:
• If (λ+ r)x− (λ+ µ)px ≥ 1, then the function ξ 7→ H(x, ξ, p) is monotone increasing

and

(57) Hmax(x, p) = lim
ξ→∞

H(x, ξ, p) = +∞ .

In this case, we will define ξ](x, p) .= +∞.
• If (λ+ r)x− (λ+ µ)px < 1, we define

(58) u](x, p) = (λ+ r)x− (λ+ µ)px .

From (55) and (56), we have

(59) ξ](x, p) = p · L′(u](x, p)) = pL′
(

(λ+ r)x− (λ+ µ)px
)

and it yields

Hmax(x, p) = H
(
x, ξ](x, p), p

)
= L

(
(λ+ r)x− (λ+ µ)px

)
.

Notice that u] is the control that keeps the debt x constant in time. This value u]

achieves the minimum in (53) when

L′
(

(λ+ r)x− (λ+ µ)px
)

=
ξ

p
.

Observe that

(60) Hξξ(x, ξ, p) ≤ 0 ,


Hξ(x, ξ, p) > 0 for all 0 ≤ ξ < ξ](x, p) ,

Hξ(x, ξ, p) < 0 for all ξ > ξ](x, p) .

We regard the first equation in (52) as an implicit ODE for the function V . For every x ≥ 0
and p ∈ [0, 1], if rV (x) > Hmax(x, p), then this equation has no solution. On the other hand,
when

0 ≤ rV (x) ≤ Hmax(x, p),

the implicit ODE (52) can equivalently be written as a differential inclusion:

(61) V ′(x) ∈
{
F−(x, V, p) , F+(x, V, p)

}
,

where F±(x,V,p) are denoted by

F−(x, V, p) ≤ ξ](x, p) ≤ F+(x, V, p) and H(x, F±(x, V, p), p) = rV .
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Remark 4.2. Recalling (45), we observe that
• the value V ′ = F+(x, V, p) ≥ ξ](x, p) corresponds to the choice of an optimal control

such that ẋ < 0,
• the value V ′ = F−(x, V, p) ≤ ξ](x, p) corresponds to the choice of an optimal control

such that ẋ > 0,
• when rV = Hmax(x, p), then the value V ′ = F+(x, V, p) = F−(x, V, p) = ξ](x, p) corre-

sponds to the unique control such that ẋ = 0.

Since ξ 7→ H(x, ξ, p) is concave down, the functions F± satisfy the following monotonicity
properties (Figure 1):
(MP) For any fixed x, p, the map V 7→ F+(x, V, p) is decreasing, while V 7→ F−(x, V, p) is

increasing.
For V ′ = F−, the second ODE in (52) can be written as

p′(x) = G−
(
x, V (x), p(x)

)
,

where

G−(x, V, p) .=
(r + λ)(p− 1)

Hξ

(
x, F−(x, V, p), p

) ≤ 0 .(62)

4.1. Construction of a solution. Consider the function

(63) W (x) .=
1
r
L
(
(r − µ)x

)
,

with the understanding that W (x) = +∞ if (r − µ)x ≥ 1. Notice that W (x) is the total cost
of keeping the debt constantly equal to x (in which case there would be no bankruptcy and
hence p ≡ 1).

Moreover, denote by (VB(·), pB(·)) the solution to the system of ODEs

(64)


V ′(x) = F−(x, V (x), p(x)) ,

p′(x) = G−(x, V (x), p(x)) ,

with terminal conditions

(65) V (x∗) = B, p(x∗) = θ(x∗) .

Notice that the ODE (64) admits a unique local solution around every point (x0, p0) with
V (x0, p0) = η0 provided that Hξ(x0, F

−(x0, η0, p0), p0) 6= 0, i.e., F−(x0, η0, p0) < ξ](x0, p0),
or, equivalently, rη0 < Hmax(x0, p0). On the other hand, if VB(x) < W (x), then Hξ (x, V ′B(x),
pB(x)) > 0. Assume by contradiction that

Hξ

(
x, V ′B(x), pB(x)

)
= 0 .

Then we have

VB(x) =
1
r
·Hmax(x, pB(x)) ≥ 1

r
·Hmax(x, 1) = W (x)
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and it yields a contradiction. Thus, (VB, pB) is uniquely defined on [x1, x
∗] where the point

(66) x1
.= inf

{
x ∈ [0, x∗] ; VB(x) < W (x)

}
.

Call V1(·) the solution to the backward Cauchy problem

(67)

V
′(x) = F−(x, V (x), 1) , x ∈ [0, x1],

V (x1) = W (x1);

we will show that a feedback equilibrium solution to the debt management problem is obtained
as follows (see Figure 2):

V ∗(x) =


V1(x) if x ∈ [0, x1],

VB(x) if x ∈ [x1, x
∗],

(68)

p∗(x) =


1 if x ∈ [0, x1],

pB(x) if x ∈ ]x1, x
∗],

(69)

u∗(x) =


argmin
ω∈[0,1]

{
L(ω)− (V ∗)′(x)

p∗(x)
ω

}
if x 6= x1,

(r − µ)x1 if x = x1 .

(70)

V
W

V

BB

0 1
r−µ

x
1

*x

1

Figure 2. Constructing the equilibrium solution in feedback form. For an initial value of the debt x(0) ≤ x1,
the debt increases until it reaches x1, then it is held at the constant value x1. If the initial debt is x(0) > x1,
the debt keeps increasing until it reaches bankruptcy in finite time.
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Theorem 4.3. Assume that the cost function L satisfies the assumptions (A), and moreover
L((r − µ)x∗) > rB. Then the functions V ∗, p∗, u∗ in (68)–(70) are well defined and provide
an equilibrium solution to the debt management problem, in feedback form.

Proof.
1. The solution of (64)–(65) satisfies the obvious bounds

V ′ ≥ 0, p′ ≤ 0, V (x) ≤ B, p(x) ∈ [θ(x∗), 1].

We begin by proving that the function VB is well defined and strictly positive for x ∈
]x1, x

∗].
To prove that

VB(x) > 0 for all x ∈]x1, x
∗] ,

assume, on the contrary, that VB(y) = 0 for some y > x1 ≥ 0. From (59), it holds that

ξ](x, p) ≥ C1 > 0 for all x ∈ [y, x∗], p ∈ [θ(x∗), 1]

for some positive constant C1. Recalling (60), we obtain that

Hξ(x, ξ, p) ≥ C2 for all x ∈ [y, x∗], p ∈ [θ(x∗), 1], ξ ∈ [0, C1]

for some positive constant C2. Since H(x, 0, p) = 0, the mean value theorem yields

H(x, F−(x, V, p), p) ≥ C2 · F−(x, V, p) for all x ∈ [y, x∗], p ∈ [θ(x∗), 1]

provided by F−(x, V, p) ≤ C1. The definition of F− implies that there exists a constant
δ1 > 0 small such that

(71) F−(x, V, p) ≤ r

C2
· V

for all x ∈ [y, x∗], p ∈ [θ(x∗), 1], and V ∈ [0, δ1]. Hence, for any solution of (64), V (y) = 0
implies V (x) = 0 for all x ≥ y, providing a contradiction.
Next, observe that the functions F−, G− are locally Lipschitz continuous as long as
0 ≤ V < Hmax(x, p). Moreover, V (x) < W (x) implies

V (x) < W (x) = Hmax(x, 1) ≤ Hmax(x, p(x)).

Therefore, the functions VB, pB are well defined on the interval [x1, x
∗].

2. If x1 = 0 the construction of the functions V ∗, p∗, u∗ is already completed in step 1. In
the case where x1 > 0, we claim that the function V1 is well defined and satisfies

(72) 0 < V1(x) < W (x) for 0 < x < x1 .

Indeed, if V1(y) = 0 for some y > 0, the Lipschitz property (71) again implies that
V1(x) = 0 for all x ≥ y. This contradicts the terminal condition in (67).
To complete the proof of our claim (72), it suffices to show that

(73) W ′(x) < F−(x,W (x), 1) for all x ∈ ]0, x1].
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This is true because

W ′(x) =
r − µ
r

L′
(
r − µ)x

)
=

r − µ
r

ξ](x, 1) < ξ](x, 1)

= F−
(
x,Hmax(x, 1), 1

)
= F−(x,W (x), 1).

3. In the remaining steps, we show that V ∗, p∗, u∗ provide an equilibrium solution. Namely,
they satisfy the properties (i)–(ii) in Definition 2.
To prove (i), call V (·) the value function for the optimal control problem (48)–(49).
For any initial value, x(0) = x0, in both cases x0 ∈ [0, x1] and x0 ∈ ]x1, x

∗], the feedback
control u∗ in (70) yields the cost V ∗(x0). This implies

V (x0) ≤ V ∗(x0) .

To prove the converse inequality we need to show that, for any measurable control
u : [0,+∞[ 7→ [0, 1], calling t 7→ x(t) the solution to

(74) ẋ =
(
λ+ r

px1(x)
− λ− µ

)
x− u(t)

px1(x)
, x(0) = x0,

one has

(75)
∫ Tb

0
e−rtL(u(t))dt+ e−rTbB ≥ V ∗(x0),

where
Tb = inf

{
t ≥ 0 ; x(t) = x∗

}
is the bankruptcy time (possibly with Tb = +∞).
For t ∈ [0, Tb], consider the absolutely continuous function

φu(t) .=
∫ t

0
e−rsL(u(s))ds+ e−rtV ∗(x(t)).

At any Lebesgue point t of u(·), recalling that (V ∗, p∗) solves the system (52), we
compute

d

dt
φu(t) = e−rt

[
L(u(t))− rV ∗(x(t)) + (V ∗)′(x(t)) · ẋ(t)

]
= e−rt

[
L(u(t))− rV ∗(x(t)) + (V ∗)′(x(t))

((
λ+ r

p∗(x(t))
− λ− µ

)
x(t)− u(t)

p∗(x(t))

)]

≥ e−rt
[

min
ω∈[0,1]

{
L(ω)− (V ∗)′(x(t))

p∗(x(t))
ω

}
+
(

λ+ r

p∗(x(t))
− λ− µ

)
x(t)(V ∗)′(x(t))− rV ∗(x(t))

]

= e−rt
[
H
(
x(t), (V ∗)′(x(t)), p∗(x(t))

)
− rV ∗(x(t))

]
= 0.
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Therefore,

V ∗(x0) = φu(0) ≤ lim
t→Tb−

φu(t) =
∫ Tb

0
e−rtL(u(t))dt+ e−rTbB,

proving (75).
4. It remains to check (ii). The case x0 = 0 is trivial. Two main cases will be considered.

Case 1. x0 ∈ ]0, x1]. Then there exists a solution t 7→ x(t) of (50) such that p(t) = 1
and x(t) ∈ ]0, x1] for all t > 0. Moreover,

lim
t→+∞

x(t) = x1 .

In this case, Tb = +∞ and (51) holds.
Case 2. x0 ∈]x1, x

∗]. Then x(t) > x1 for all t ∈ [0, Tb]. This implies

ẋ(t) = Hξ(x(t), VB(x(t)), pB(x(t))) .

From the second equation in (52) it follows that

d

dt
p(t) = p′(x(t))ẋ(t) = (r + λ)(p(t)− 1),

d

dt
ln(1− p(x(t))) = (r + λ) .

Therefore, for every t ∈ [0, Tb] one has

p(x(0)) = 1− (1− p(x(t))) · e−(r+λ)t.

Letting t→ Tb we obtain

p(x0) = 1− (1− θ(x∗))) · e−(r+λ)Tb ,

proving (51).

Remark 4.4. In general, however, we cannot rule out the possibility that a second solution
exists. Indeed, if the solution VB, pB of (64)–(65) can be prolonged backward to the entire
interval [0, x∗], then we could replace (68)–(69) simply by V ∗(x) = VB(x), p∗(x) = pB(x) for
all x ∈ [0, x∗]. This would yield a second solution.

We claim that no other solutions can exist. This is based on the fact that the graphs of
W and VB cannot have any other intersection, in addition to 0 and x1. Indeed, assume on
the contrary that W (x2) = VB(x2) for some 0 < x2 < x1 (see Figure 3). Since pB(x2) < 1
and W ′(x2) ≤ V ′B(x2), the inequalities

rW (x2) = H(x2,W
′(x2), 1) < H(x2,W

′(x2), pB(x2)) ≤ H(x2, V
′
B(x2), pB(x2)) = rVB(x2)

yield a contradiction.
Next, let V †, p† be any equilibrium solution and define

x†
.= sup

{
x ∈ [0, x∗] ; p(x) = 1

}
.
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BV

1

W

x x

B

0 1
r−µ

x *
2

Figure 3. By the monotonicity properties of the Hamiltonian function H in (53), the graphs of VB and W
cannot have a second intersection at a point x2 > 0.

Then
• on ]x†, x∗] the functions V †, p† provide a solution to the backward Cauchy problem

(64)–(65);
• on ]0, x†] the function V † provides the value function for the optimal control problem

minimize:
∫ ∞

0
e−rtL(u(t)) dt

subject to the dynamics (with p ≡ 1)

ẋ = (r − µ)x− u

and the state constraint x(t) ∈ [0, x†] for all t ≥ 0.
The above implies V

†(x) = VB(x) if x ∈ [x†, x∗],

V †(x) ≤W (x) if x ∈ [0, x†].

Since V † must be continuous at the point x2, by the previous analysis this is possible only if
x2 = 0 or x2 = x1.

5. Dependence on the bankruptcy threshold x∗. In this section we study the behavior
of the value function VB when the maximum size x∗ of the debt, at which bankruptcy is
declared, becomes very large.

From a modeling point of view, this amounts to discussing the possibility of the optimality
of a Ponzi scheme, in which the debt is serviced by initiating more and more new loans. We
will show that under some natural assumptions on the function θ(·) expressing the fraction
recovered by lenders as a function of the debt-to-income ratio at the moment of bankruptcy.
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For a given x∗ > 0, we denote by VB(·, x∗), pB(·, x∗) the solution to the system (64) with
terminal data (65). Letting x∗ → ∞, we wish to understand whether the value function
VB remains positive or approaches zero uniformly on bounded sets. Toward this goal, we
introduce the constant

(76) M1
.=

2
r − µ

·max
{

1,
rB

L′(0)

}
.

Recalling Lemma 2.3 for σ = 0, we have

H(x, ξ, p) ≥ (r − µ)x− 1
p

· ξ for all x ∈ [0, x∗], ξ ≥ 0 .

Thus, the first equation of (52) implies that

rB ≥ rVB(x, x∗) ≥ (r − µ)x− 1
pB(x, x∗)

· V ′B(x, x∗), x ∈ [0, x∗] .

In turn, if x∗ > M1, this yields

V ′B(x, x∗)
pB(x, x∗)

≤ L′(0) for all x ∈ [M1, x
∗] .

Calling u = u∗(x) the optimal feedback control, by (19) we have

(77) u∗(x) = 0 for all x ∈
[
M1, x

∗] .
In this case, the Hamiltonian function takes a simpler form, namely,

H(x, V ′, p) =
[
(λ+ r)−−(λ+ µ)p

]
· V
′x

p
,

Hξ(x, V ′, p) =
[
(λ+ r)− (λ+ µ)p

]
x .

Therefore, the system of ODEs (64) can be written as

(78)


V ′ =

rp

[(λ+ r)− (λ+ µ)p]x
V ,

p′ = (λ+ r) · p(p− 1)
[(λ+ r)− (λ+ µ)p]x

.

The second ODE in (78) is equivalent to

d

dx
ln
(

(1− p(x))r−µ

p(x)r+λ

)
=

r + λ

x
.

Solving backward the above ODE with the terminal data p(x∗) = θ(x∗), we obtain

(79) pB(x, x∗) =
θ(x∗)x∗

x
·
(

1− pB(x, x∗)
1− θ(x∗)

) r−µ
r+λ

for all x ∈
[
M1, x

∗] .
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Therefore,

(80) pB(x, x∗) ≥

(
θ(x∗)x∗

x

) r+λ
r−µ

1 +
(
θ(x∗)x∗

x

) r+λ
r−µ

for all x ∈
[
M1, x

∗] .
Different cases will be considered, depending on the properties of the function θ(·). By

obvious modeling considerations, we shall always assume

θ(x) ∈ [0, 1], θ′(x) ≤ x for all x ≥ 0.

We first study the case where θ has compact support. Recall that M1 is the constant in (76).

Lemma 5.1. Assume that

(81) θ(x) = 0 for all x ≥M2

for some constant M2 ≥ M1. Then, for any x∗ > M2, the solution VB(·, x∗), pB(·, x∗) of
(64)–(65) satisfies

VB(x, x∗) = B and pB(x, x∗) = 0 for all x ∈
[
M2, x

∗] .
Proof. By (79) and (81), for every x∗ > M2 one has

pB(x, x∗) = 0 for all x ∈
[
M2, x

∗] .
Inserting this into the first ODE in (78), we obtain

V ′B(x, x∗) = 0.

In turn, this yields VB(x, x∗) = B for all x ∈
[
M2, x

∗]. This means that bankruptcy instantly
occurs if the debt reaches M2.

Next, we now consider that case where θ(x) > 0 for all x.

θ(x) > 0 for all x ∈ [0,∞[ .(82)

Lemma 5.2. If x∗ > M1 and θ(x∗) > 0, then

(83) VB(x, x∗) = B ·
(
pB(x, x∗)x
θ(x∗)x∗

) r
r−µ

for all x ∈
[
M1, x

∗] .
In particular, for x ∈

[
M1, x

∗] one has

(84) B ·

(
1 +

(
θ(x∗)x∗

x

) r+λ
r−µ
)− r

r+λ

≤ VB(x, x∗) ≤ B ·
(

x

θ(x∗)x∗

) r
r−µ

.
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Proof. Since pB(x, x∗) solves the second equation of (78) and pB(x∗, x∗) = θ(x∗) ∈ (0, 1),
we have that x 7→ pB(x, x∗) is a strictly decreasing function of x. For a fixed value of x∗,
let p 7→ χ(p) : [θ(x∗), 1[ 7→ [0, x∗] be the inverse function of pB(·, x∗). From (78), a direct
computation yields

(85)


d

dp
VB(χ(p), x∗) =

rp

[(λ+ r)− (λ+ µ)p]χ(p)
· VB(χ(p), x∗) · χ′(p) ,

d

dp
pB(χ(p), x∗) = (λ+ r) · p(p− 1)

[(λ+ r)− (λ+ µ)p] · χ(p)
· χ′(p) = 1 .

From (85) it follows that

d

dp
lnVB(χ(p), x∗) =

r

λ+ r
· 1
p− 1

.

Solving the above ODE with the terminal data VB(x∗, x∗) = B, pB(x∗, x∗) = θ(x∗), we obtain

(86) VB(χ(p), x∗) =
(

1− p
1− θ(x∗)

) r
r+λ

B ,

hence

VB(x, x∗) =
(

1− pB(x, x∗)
1− θ(x∗)

) r
r+λ

B.

Recalling (79), a direct computation yields (83). The upper and lower bounds for VB(x, x∗)
in (84) now follow from (80) and the inequality pB(x, x∗) ≤ 1.

Corollary 5.3. Assume that

(87) lim sup
x→+∞

θ(x)x = +∞.

Then the value function V ∗ = V ∗(x, x∗) satisfies

(88) lim
x∗→+∞

V (x, x∗) = 0 for all x ≥ 0 .

Indeed, for x ≥ M1 we have V (x, x∗) = VB(x, x∗), and (88) follows from the second
inequality in (84). When x < M1, since the map x 7→ V (x, x∗) is nondecreasing, we have

0 ≤ lim
x∗→∞

V (x, x∗) ≤ lim
x∗→∞

V (M1, x
∗) = 0 .

Corollary 5.4. Assume that

(89) R
.= lim sup

x→+∞
θ(x) · x < +∞.

Then

(90) VB(x, x∗) ≥ B ·

(
1 +

(
R

x

) r+λ
r−µ
)− r

r+λ

for all x∗ > x > M1 .

Moreover, the following holds:
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(i) If

(91)
θ′(x)
θ(x)

+
1
x
≥ 0 and θ′(x) ≤ 0 for all x > 0,

then

(92) inf
x∗>0

VB(x, x∗) = lim
x∗→∞

VB(x, x∗) > 0 for all x ≥M1 .

(ii) Assume that there exist 0 < δ < 1 such that

(93) δ · θ
′(x)
θ(x)

+
1
x

< 0

for all x sufficiently large. Then, for each x > M1, there exists an optimal value x∗ =
x∗(x) such that

(94) VB(x, x∗(x)) = inf
x∗≥0

VB(x, x∗).

Proof. It is clear that (90) is a consequence of (84) and (89). We only need to prove (i)
and (ii). For a fixed x ≥M1, we consider the functions of the variable x∗ alone:

Y (x∗) .= VB(x, x∗), q(x∗) .= pB(x, x∗).

Using (83) and (79), we obtain

(95)
Y ′(x∗)
Y (x∗)

=
r

r − µ
·
(
q′(x∗)
q(x∗)

−
[
θ′(x∗)
θ(x∗)

+
1
x∗

])
and

(96)
q′(x∗)
q(x∗)

=
θ′(x∗)x∗ + θ(x∗)

θ(x∗)x∗
+
r − µ
r + λ

·
(
−q′(x∗)

1− q(x∗)
+

θ′(x∗)
1− θ(x∗)

)
.

This implies

q′(x∗)
q(x∗)

−
[
θ′(x∗)
θ(x∗)

+
1
x∗

]
=

 1

1 + r−µ
r+λ ·

q(x∗)
1−q(x∗)

− 1

 · [θ′(x∗)
θ(x∗)

+
1
x∗

]

+
r − µ

(r + λ)
(

1 + r−µ
r+λ ·

q(x∗)
1−q(x∗)

) · θ′(x∗)
1− θ(x∗)

.(97)

If (91) holds, then (95) and (97) imply

Y ′(x∗)
Y (x∗)

=
q′(x∗)
q(x∗)

−
[
θ′(x∗)
θ(x∗)

+
1
x∗

]
≤ 0 for all x∗ > x ≥M1.

Hence the function Y is nonincreasing. This proves (92).
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To prove (ii), we observe that

lim sup
x∗→∞

 1

1 + r−µ
r+λ ·

q(x∗)
1−q(x∗)

− 1

 < 0 , lim
x∗→∞

θ(x∗) = 0 .

Hence (93) and (97) imply
q′(x∗)
q(x∗)

−
[
θ′(x∗)
θ(x∗)

− 1
x∗

]
> 0

for all x∗ sufficiently large. By (95) this yields

Y ′(x∗)
Y (x∗)

> 0

for all x∗ large enough. Hence there exists some particular value x∗(x) ≥ x where the function
x∗ 7→ Y (x∗) = VB(x, x∗) attains its global minimum. This yields (94).

6. Dependence on x∗ in the stochastic case. In this section we study how the value
function depends on the bankruptcy threshold x∗ in the stochastic case where σ > 0.

Extensions of Corollaries 5.3 and 5.4 will be proved, constructing upper and lower bounds
for a solution V (·, x∗), p(·, x∗) of the system (22)–(23), in the form

(98) V2(x) ≤ V (x, x∗) ≤ V1(x), p1(x) ≤ p(x, x∗) ≤ p2(x),

where
(i) for any V (·, ·) with Vx ≥ 0, the functions p1(·) and p2(·) are a subsolution and a

supersolution of the second equation in (31), respectively;
(ii) for any p(·, ·) with p ∈ [0, 1] and px ≤ 0, the functions V1(·) and V2(·) are a supersolu-

tion and a subsolution of the first equation in (31), respectively.
1. We begin by constructing a suitable pair of functions V1, p1. Let (p1, Ṽ1) be the solution

to the backward Cauchy problem

(99)


rṼ1(x) =

(λ+ r

p1
+ σ2

)
xṼ ′1 ,

(r + λ)(p1 − 1) =
(λ+ r

p1
+ σ2

)
xp′1 ,


Ṽ1(x∗) = B,

p1(x∗) = θ(x∗).

This solution satisfies

(100) p1(x) =
θ(x∗)x∗

x
·
(

1− p1(x)
1− θ(x∗)

)σ2+λ+r
λ+r

, lim
x→0+

p1(x) = 1 ,

(101) Ṽ1(x) = B ·
(

1− p1(x)
1− θ(x∗)

) r
r+λ

, lim
x→0+

Ṽ1(x) = 0 .
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Using (99) and (100) one obtains

−1 = p′1(x) ·
(

x

p1(x)
+
σ2 + r + λ

r + λ
· x

1− p1(x)

)

= p′1(x) ·

 x

p1(x)
+
σ2 + r + λ

r + λ
· 1− θ(x∗)

(θ(x∗)x∗)
r+λ

r+λ+σ2
· x

σ2

r+λ+σ2

p1(x)
λ+r

λ+r+σ2

 .

Since p1 is monotone decreasing, it follows that p′′1(x) > 0 for all x ∈ ]0, x∗[ . In turn,
this yields

(r + λ)(1− p1) +
(λ+ r

p1
+ σ2

)
xp′1 +

σ2x2

2
p′′1 > 0 .

Recalling (25), we have

(102) (r + λ)(1− p1) +Hξ(x, ξ, p1)p′1 +
σ2x2

2
p′′1 > 0 for all ξ ≥ 0.

Next, differentiating both sides of the first ODE in (99), we obtain(
r − σ2 − λ+ r

p1
+

(λ+ r)p′1
p2
1

x

)
· Ṽ ′1 =

(
λ+ r

p1
+ σ2

)
xṼ ′′1 for all x ∈ ]0, x∗[ .

This implies
Ṽ ′′1 (x) < 0 for all x ∈ ]0, x∗[ .

Recalling (24) and (99), we obtain

(103) − rṼ1 +H(x, Ṽ ′1 , p1) +
σ2x2

2
Ṽ ′′1 < 0 .

When x ≥ 1
λ+r , the map p 7→ H(x, ξ, p) is monotone decreasing. Defining

V1(x) .=


Ṽ ( 1

r+λ) for x ∈
[
0, 1

r+λ

]
,

Ṽ (x) for x ∈
[

1
r+λ , x

∗
]
,

we thus have

(104) − rV1(x) +H(x, V ′1(x), q) +
σ2x2

2
V ′′1 (x) ≤ 0 for all q ≥ p1(x) .

2. We now construct the functions V2, p2. Defining

p̃2(x) .=
1
x

(
θ(x∗)x∗ +

2
r − µ

)
,
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a straightforward computation yields

p̃′2(x) = − p̃2(x)
x

< 0 , p̃′′2(x) = 2 · p̃2(x)
x2 .

Set

(105) x2
.= θ(x∗)x∗ +

2
r − µ

,

and consider the continuous function

(106) p2(x) = min
{

1, p̃2(x)
}
.

For x ∈ [0, x2[ one has p2(x) = 1 and hence

(r + λ)(1− p2) +Hξ(x, ξ, p2)p′2 +
σ2x2

2
p′′2 = 0 .

On the other hand, for x ∈]x2, x
∗[ and ξ ≥ 0, one has p2(x) = p̃2(x) < 1, and

(107) Hξ(x, ξ, p2) ≥ (λ+ r)x− 1
p2(x)

+ (σ2 − λ− µ)x ≥ (r − µ)x2 −
1

p̃2(x2)

= x2 ·

[
(r − µ)− 1

θ(x∗)x∗ + 2
r−µ

]
≥ r − µ

2
· x > 0 .

Recalling (25), we get

(r + λ)(1− p2) +Hξ(x, ξ, p2)p′2 +
σ2x2

2
p′′2

≤ (r + λ)(1− p2) +
[

(λ+ r)x− 1
p2

+ (σ2 − λ− µ)x
]
p′2(x) +

σ2x2

2
p′′2

= (r + λ)(1− p2)−
[

(λ+ r)x− 1
p2

+ (σ2 − λ− µ)x
]
· p2(x)

x
+ σ2p2

= (r + λ)(1− p2)−
[
(λ+ r)− 1

x
+ (σ2 − λ− µ)p2

]
+ σ2p2

=
1
x
−(r − µ)p2=− (r−µ)θ(x∗)x∗

x
− 1
x
< 0 .

In particular,

(108) (r + λ)(1− p2) +Hξ(x, ξ, p2) · p′2 +
σ2x2

2
p′′2 ≤ 0 for all x ∈ ]0, x∗[, ξ ≥ 0 .
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Next, define

(109) V2(x) .= (1− p2(x))B for all x ∈ [0, x∗] .

For all x ∈ [0, x2], we thus have V2(x) = 0, and hence

(110) − rV2 +H(x, V ′2 , q) +
σ2x2

2
V ′′2 = H(x, 0, q) = 0 for all q ∈]0, 1] .

On the other hand, for x ∈ ]x2, x
∗] we have

V ′2(x) = B · p2(x)
x

> 0 and V ′′2 (x) = − 2B · p2(x)
x2 .

Recalling (24), (106), (107), and (105), we estimate

−rV2 +H(x, V ′2 , p2) +
σ2x2

2
V ′′2

≥ − rV2 +
(

(λ+ r)x− 1
p2

+ (σ2 − λ− µ)x
)
V ′2 +

σ2x2

2
V ′′2

= B ·
[
rp2 − r +

(
λ+ r − 1

x
+ (σ2 − λ− µ)p2(x)

)
− σ2p2

]

= B ·
(
λ−1

x
−(λ+ µ− r)p2

)
=B ·

[
λ(1− p2(x))+(r − µ)p2(x)− 1

x

]
> 0

for all x ∈ ]x2, x
∗[.

Recalling (105), one has

(λ+ r)x > 1 for all x ∈]x2, x
∗] .

Therefore the map p → H(x, V ′2(x), p) is monotone decreasing on [0, 1] for all x ∈
]x2, x

∗]. This implies

−rV2 +H(x, V ′2 , q) +
σ2x2

2
V ′′2 ≥ 0 for all x ∈ ]x2, x

∗], q ∈]0, p2(x)] .

Together with (110), we finally obtain

(111) −rV2(x)+H(x, V ′2(x), q)+
σ2x2

2
V ′′2 (x) ≥ 0 for all x ∈]0, x∗[ , q ∈]0, p2(x)] .

Relying on (102), (103), (108), and (111) and using the same comparison argument as in
the proof of Theorem 3.1 we now prove the following.

Theorem 6.1. In addition to (A1), assume that σ > 0 and θ(x∗) > 0. Then the system
(22) with boundary conditions (23) admits a solution (V (·, x∗), p(·, x∗)) satisfying the bounds
(98) for all x ∈ [0, x∗].
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Proof.
1. Recalling D in (35), we claim that the domain

(112) D0 =
{

(V, p) ∈ D
∣∣∣ (V (x), p(x)) ∈ [V2(x), V1(x)]× [p1(x), p2(x)] for all x ∈ [0, x∗]

}
is positively invariant for the semigroup {St}t≥0, generated by the parabolic system
(32)–(33). Namely,

St(D0) ⊆ D0 for all t ≥ 0 .

Indeed, from the proof of Theorem 3.1, we have

(113) px(t, x) ≤ 0 ≤ Vx(t, x) for all t > 0, x ∈]0, x∗[ .

We now observe the following:
(i) For any V (·, ·) with Vx ≥ 0, by (102) the function p(t, x) = p1(x) is a subsolution

of the second equation in (31). Similarly, by (108), the function p(t, x) = p2(x) is a
supersolution.

(ii) For any p(·, ·) with p ∈ [0, 1] and px ≤ 0, by (104) the function V (t, x) = V1(x) is a
supersolution of the first equation in (31). Similarly, by (111), the function V (t, x) =
V2(x) is a subsolution.

Together, (i)–(ii) imply the positive invariance of the domain D0.
2. Using the same argument as in step 4 of the proof of Theorem 3.1, we conclude that the

system (22)–(23) admits a solution (V, P ) ∈ D0.

Corollary 6.2. Let the assumptions in Theorem 6.1 hold. If

lim sup
s→+∞

θ(s) s = +∞,

then, for all x ≥ 0, the value function V (·, x∗) satisfies

(114) lim
x∗→∞

V (x, x∗) = 0.

Proof. Using (47), (101), and Theorem 6.1, we have the estimate

V (x, x∗) ≤ V1(x) = B ·
(

1− p1(x)
1− θ(x∗)

) r
r+λ

≤ B ·
( x

θ(x∗)x∗
) r
r+λ+σ2

for all x ≥ 1
r+λ . This implies that (114) holds for all x ≥ 1

r+λ . Since x 7→ V (x, x∗) is monotone
increasing, we then have

0 ≤ lim
x∗→∞

V (x, x∗) ≤ lim
x∗→∞

V

(
1

r + λ
, x∗

)
= 0 for all x ∈

[
0,

1
r + λ

]
.

This completes the proof of (114).
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Corollary 6.3. Let the assumptions in Theorem 6.1 hold. If

C1
.= lim sup

s→+∞
θ(s) s < +∞,

then

(115) lim inf
x∗→∞

V (x, x∗) ≥ B ·
(

1− C2

x

)
for all x > M2 ,

where the constants C2,M2 are defined as

C2
.= C1 +

2
r − µ

and M2
.=
λ+ µ− r

λ
C1 +

2λ+ µ− r
λ(r − µ)

+ 1 .

Proof. This follows from (106), (109), and Theorem 6.1.

7. Concluding remarks. If the upper bound for the debt size (beyond which bankruptcy
instantly occurs) is allowed to be x∗ = +∞, then the equations (52) admit the trivial solution
V (x) = 0, p(x) = 1, for all x ≥ 0. This corresponds to a Ponzi scheme, producing a debt
whose size grows exponentially, without bounds. In practice, this is not realistic because there
is a maximum amount of liquidity that the market can supply. It is interesting to understand
what happens when this bankruptcy threshold x∗ is very large.

Our analysis has shown that three cases can arise, depending on the fraction θ of out-
standing capital that lenders can recover.

(i) If lims→+∞ θ(s) s = +∞, then for the borrower it is convenient to have x∗ as large
as possible. Indeed, the expected total cost for servicing the debt approaches zero as
x∗ → +∞.

(iii) If lims→+∞ θ(s) s < +∞ and (91) holds, then for the borrower it is still convenient
to have x∗ as large as possible. However, as x∗ → +∞, the expected total cost for
servicing the debt remains uniformly positive.

(iii) If lims→+∞ θ(s) s < +∞ and (93) holds, then for every initial value x0 of the debt
there is a value x∗(x0) of the bankruptcy threshold which is optimal for the borrower.

Examples corresponding to three cases (i)–(iii) are obtained by taking

(116) θ(s) = min
{

1,
R0

sα

}
with 0 < α < 1, α = 1, or α > 1, respectively.

In case (iii) we observe that even if the bankruptcy threshold x∗ were not imposed by
the external market but could be selected by the borrower in an optimal way, this choice of
x∗ could never “time consistent.” Indeed, assume that at the initial time t = 0 the borrower
announces that he will declare bankruptcy when the debt reaches size x∗. Based on this
information, the lenders determine the discounted price of bonds. However, when the time Tb
comes when x(Tb) = x∗, it is never convenient for the borrower to declare bankruptcy. It is
the creditors, or an external authority, that must actually enforce bankruptcy.

To see this, assume that at time Tb when x(Tb) = x∗ the borrower announces that he has
changed his mind and will declare bankruptcy only at the later time T ′b when the debt reaches
x(T ′b) = 2x∗. If he chooses a control u(t) = 0 for t > Tb, his discounted cost will be

e−(T ′b−Tb)rB < B.
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This new strategy is thus always convenient for the borrower. On the other hand, it can be
much worse for the lenders. Indeed, consider an investor having a unit amount of outstanding
capital at time Tb. If bankruptcy is declared at time Tb, he will recover the amount θ(x∗).
However, if bankruptcy is declared at the later time T ′b, his discounted payoff will be∫ T ′b

Tb

(r + λ)e−(r+λ)(t−Tb) dt+ e−(r+λ)(T ′b−Tb)θ(2x∗).

To appreciate the difference, consider the deterministic case, assuming that θ(·) is the function
in (116), with α ≥ 1, and that x∗ ≥M1. By the analysis at the beginning of section 5, we have
u∗(x) = 0 for all x ∈ [x∗, 2x∗]. Replacing x∗ with 2x∗ in (79) we obtain that the solution to
(78) with terminal data

p(2x∗) = θ(2x∗) =
R0

(2x∗)α

satisfies

pB(x∗, 2x∗) = 2θ(2x∗) ·
(

1− pB(x∗, 2x∗)
1− θ(2x∗)

) r−µ
r+λ

< 2θ(2x∗) = 21−αθ(x∗) ≤ θ(x∗) .

If the investors had known in advance that bankruptcy is declared at x = 2x∗ (rather than at
x = x∗), the bonds would have fetched a smaller price.

In conclusion, if the bankruptcy threshold x∗ is chosen by the debtor, the only equilibrium
can be x∗ = +∞. In this case, the model still allows bankruptcy to occur, when total debt
approaches infinity in finite time.
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