REVIEW

A systems-wide understanding of photosynthetic acclimation in algae and higher plants

Fiona Wanjiku Moejes^{1,2,*}, Anna Matuszyńska^{1,*}, Kailash Adhikari³, Roberto Bassi⁴, Federica Cariti⁵, Guillaume Cogne⁶, Ioannis Dikaios⁴, Angela Falciatore⁷, Giovanni Finazzi⁸, Serena Flori⁸, Michel Goldschmidt-Clermont⁵, Stefano Magni¹, Julie Maguire², Adeline Le Monnier⁹, Kathrin Müller¹, Mark Poolman², Dipali Singh², Stephanie Spelberg¹, Giulio Rocco Stella⁷, Antonella Succurro¹, Lucilla Taddei⁷, Brieuc Urbain⁶, Valeria Villanova⁹, Claudia Zabke¹⁰ and Oliver Ebenhöh¹

¹ Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, Germany

- ² Bantry Marine Research Station, Gearhies, Bantry, Co. Cork, Ireland P75 AX07
- ³ Department of Biological and Medical Sciences, Oxford Brookes University, United Kingdom
- ⁴ University of Verona, Department of Biotechnology, Italy
- ⁵ Department of Botany and Plant Biology, University of Geneva, Switzerland
- ⁶ LUNAM, University of Nantes, GEPEA, UMR-CNRS 6144, France

⁷ Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France

⁸ Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), Université Grenoble Alpes (UGA), Grenoble 38100, France

- ⁹ Fermentalg, Libourne, France
- ¹⁰ University of Aberdeen, Scotland

* Editors

Received 12 December 2016; Accepted 28 March 2017

Editor: Christine Raines, University of Essex, UK

Abstract

The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drastically different timescales from picoseconds to hours. Efficient functioning of the photosynthetic apparatus and its protection is paramount for efficient downstream processes, including metabolism and growth. Modern experimental techniques can be successfully integrated with theoretical and mathematical models to promote our understanding of underlying mechanisms and principles. This review aims to provide a retrospective analysis of multidisciplinary photosynthetic acclimation research carried out by members of the Marie Curie Initial Training Project, AccliPhot, placing the results in a wider context. The review also highlights the applicability of photosynthetic organisms for

Abbreviations: Dd, diadinoxanthin; Dt, diatoxanthin; FBA, flux balance analysis; LHC, light harvesting protein complexes; LHCSR, light-harvesting complex stress-related; NPQ, non-photochemical quenching; ODE, ordinary differential equation; PBR, photobioreactor; PS, photosystem; PsbS, subunit S of photosystem II; ROS, reactive oxygen species; Vx, violaxanthin; Zx, zeaxanthin

[©] The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com

industry, particularly with regards to the cultivation of microalgae. It intends to demonstrate how theoretical concepts can successfully complement experimental studies broadening our knowledge of common principles in acclimation processes in photosynthetic organisms, as well as in the field of applied microalgal biotechnology.

Key words: Acclimation, biodiversity, European Training Network, interdisciplinary training, mathematical modelling, microalgal cultivation, non-photochemical quenching, PhD training, photosynthetic optimisation.

Introduction

Most life on Earth depends on oxygenic photosynthesis. Photosynthetic organisms such as algae, plants and mosses have the ability to convert solar energy and carbon dioxide (CO₂) into biomass and oxygen. Photosynthetic organisms can be found in highly fluctuating natural environments, which exposes them to stressful conditions, particularly regarding light. While light is a necessary source of energy, too much light can cause severe damage (Niyogi and Truong, 2013; Finazzi and Minagawa, 2014). It was therefore essential for plants and algae to develop mechanisms to optimise energy capture, conversion and dissipation under different light conditions via specific short- and long-term responses. Long-term responses imply ultrastructural changes in the cell and in most cases *de-novo* synthesis or breakdown of proteins, pigments, and redox cofactors. For instance, under limiting light conditions, photosynthetic cells tend to increase their light-harvesting capacity (Sukenik et al., 1987). This involves the biosynthesis of new photosynthetic pigments as well as increasing expression of genes coding for light harvesting protein complexes (LHC) in plants. Conversely, plants tend to decrease the number of LHC proteins when exposed to high levels of light (Anderson et al., 1995), to avoid absorption of excess light. This leads to feedback regulation, where the level of irradiance regulates the antenna size of photosystems on the long-term scale of several hours or days (Smith et al., 1990; Melis, 1991; Ballottari et al., 2007).

Short-term responses, in the order of seconds to minutes, which are the focus of this review, are typically reversible and do not require extensive changes in either gene expression or in the structure of the photosynthetic apparatus. Under high light exposure, excessive photon flux leads to over-excitation of light harvesting complexes, increasing the accumulation of chlorophyll triplets. This triggers the production of potentially damaging reactive oxygen species (ROS; Krieger-Liszkay *et al.*, 2008). To reduce this risk, photosynthetic organisms must increase thermal dissipation of the excess light. This is typically achieved via a process of photosynthesis regulation known as non-photochemical quenching of chlorophyll fluorescence (NPQ), a key rapid response strategy (Müller *et al.*, 2001).

Photosynthetic acclimation is an excellent example of the complexity of biological systems, where different molecular and submolecular processes interact on different timescales. Consequently, diverse experimental approaches are employed to investigate and understand this process. The acceleration in the development of modern experimental techniques, coupled with a rapid growth in systems biology approaches, has allowed for our knowledge of photosynthetic acclimation to broaden. In particular, theoretical and mathematical models are becoming an increasingly useful and utilised approach. Their power lies in providing general theoretical frameworks in which data can be interpreted in a far more sophisticated way than with intuition or purely statistical methods alone. Thus, mathematical models are essentially a simplified representation of the real system. This simplification allows for the identification of common fundamental principles and phenomena and often forms the basis for novel hypotheses. Moreover, they facilitate new predictions and allow for investigations that are often experimentally challenging, if not impossible. Mathematical models can take many forms, depending on the research aim in question (Pfau et al., 2011). In the context of photosynthesis, the range extends from detailed models of processes occurring within photosystem II (PSII) on the timescale of picoseconds to nanoseconds (reviewed in Lazár and Jablonský, 2009) to biochemically structured models of culture growth in bioreactors (Cornet et al., 1998; Cogne et al., 2011) and models of photosynthetic evolution (Heckmann et al., 2013).

This review aims to provide an overview of recent insights on photosynthetic acclimation and consequences on microalgal cultivation, resulting from research by members of the Marie Curie Initial Training Project, AccliPhot, which employed a multidisciplinary approach. We place these findings in the wider context of current research activities.

Short-term stress responses of the photosynthetic apparatus

Oxygen is a strong inhibitor of several stages of photosynthesis, including light harvesting, electron transport and CO_2 fixation. During evolution, phototrophs colonised different environments, with the transition from water to land being particularly challenging. Increased variability in temperature, water availability, light intensities, and UV radiation, made robust protection against oxidative stress a critical requirement for successful evolution.

Among these mechanisms, NPQ is of particular relevance. NPQ refers to the experimentally observable reduction of fluorescence emitted by PSII under light exposure. Based on their different relaxation kinetics (Horton *et al.*, 1996), three main components of NPQ have been proposed. The fastest, energy-dependent component, qE, relaxes in approximately one minute. The second, qT, which relaxes within minutes, has been proposed to correspond to state transitions (Joliot and Finazzi, 2010). Finally, the slowest component, qI, either represents photoinhibition or a particular form of energy quenching (Dall'Osto *et al.*, 2005). The exact contribution of each component varies between organisms and environmental conditions. As a general rule, qE is the major component in moderate to high levels of light, whilst the development of state transitions is supposed to play a role in balancing excitation between the two photosystems and is therefore prominent under low light conditions, where photosynthesis is limited by absorption. Finally, photoinhibition becomes predominant when incident light exceeds photosynthetic capacity.

Energy-dependent quenching, qE

Energy-dependent quenching, qE, derives its name from the fact that it directly depends on an excess of absorbed light energy, which leads to a rapid acidification of the luminal space (Horton et al., 1996), immediately activating a signal for the feedback regulation of light harvesting (Nivogi and Truong, 2013). In higher plants, qE is the major component of NPQ. For decades, two major research questions have been the subject of investigation: i) what is the exact structural basis for the dissipation of excess absorbed light energy? ii) what are the precise molecular mechanisms and signalling pathways triggering this? Whilst the focus of this review is on the second question, it is apparent that both questions are fundamentally interconnected and that an understanding of the structural basis of qE forms the basis to understand the underlying mechanisms. Even though the precise location of the quenching sites and the structural and molecular basis for the energy dissipation are still not entirely understood (Holzwarth et al., 2009; Johnson et al., 2009; Zulfugarov et al., 2010; Betterle et al., 2010; Minagawa, 2013), recent advances have been made that clearly identify the xanthophyll pigments and the PsbS protein, subunit S of PSII, as two major factors for qE in higher plants (Ruban, 2016; Sacharz et al., 2017). Below, we summarise recent research results regarding the role of these two factors, and illustrate differences and common principles across different photosynthetic organisms.

Xanthophyll cycles

In response to high light levels, when the lumen pH drops below 6, specialised enzymes are activated and reversibly convert specific pigments, namely oxygenated carotenoids called xanthophylls, into their de-epoxidised forms in a process known as the xanthophyll cycle. Plant xanthophylls include lutein, neoxanthin, violaxanthin (Vx) and β -carotene. During NPQ, the Vx de-epoxidase (VDE) converts Vx into zeaxanthin (Zx) in two steps, which under low light levels is reversed by the enzyme zeaxanthin epoxidase (ZEP; Hager, 1967). This conversion occurs on a timescale of minutes and is purported to facilitate a conformational change in LHCII, switching PSII into a quenched state (Nilkens *et al.*, 2010; Sacharz *et al.*, 2017).

The diatom equivalent of the xanthophyll cycle is known as the diadinoxanthin cycle (Lohr, 2011). It is comprised of diadinoxanthin (Dd) and diatoxanthin (Dt; Olaizola *et al.*, 1994), which together with fucoxanthin and chlorophyll a/c form the main components of the LHC antennae in diatoms (Beer *et al.*, 2006). The diadinoxanthin cycle is a one-step de-epoxidation from Dd to Dt via the enzyme diadinoxanthin de-epoxidase (DDE), which is active at a low pH. It was demonstrated that the photoprotective pigment Dt is linearly correlated with the extent of qE in diatoms (Goss *et al.*, 2006). In low light, the reverse reaction is catalysed by DTE (diatoxanthin epoxidase).

In a comparison of the genes involved in the xanthophyll cycle to those in the Dd cycle, more copies of the genes putatively involved in de-epoxidase (VDE, VDL1, VDL2, VDR) and epoxidase (ZEP1, ZEP2 and ZEP3) reactions have been found in diatom genomes (Coesel et al., 2008). To further our fundamental understanding of qE, the involvement of these components in diatom photoprotection must be understood. This was achieved by the modulation of their expression levels by gene knock-down and gene knock-out approaches in the model organism Phaeodactylum tricornutum. Results suggest that not all the VDEs are directly involved in the xanthophyll cycle and that some of them are rather biosynthetic enzymes. Moreover, deregulating the relative content of the Dd and Vx pigment pools indicates that the Vx pool is not involved in the NPQ of diatoms and, furthermore, could be interfering with the photoprotective function of the Dd pool (Stella, 2016).

LHC protein superfamily and its variants

As demonstrated repeatedly, a key factor in inducing a quenching state in higher plants is the PsbS protein (Crouchman et al., 2006; Sacharz et al., 2017), which is rapidly protonated by a decreased lumenal pH. The precise nature of the proteins involved in quenching induction that are protonated by a low lumen pH vary greatly between organisms and throughout evolution. However, a common principle appears to hold. In green algae, the light-harvesting complex stress-related (LHCSR) protein is required for quenching (Peers et al., 2009); in the moss *Physcomitrella patens*, descendent from an evolutionary intermediate between algae and higher plants, both LHCSR and PsbS proteins are present and actively contribute to the activation of NPQ (Alboresi et al., 2010); and in diatoms LHCX proteins play a similar role in the activation of qE (Bailleul et al., 2010; Zhu and Green, 2010; Lepetit et al., 2013).

Genetic analysis in the model plant *Arabidopsis thali*ana, has pinpointed PsbS as an essential component of qE(Li *et al.*, 2000, 2004). PsbS acts as sensor of lumen pH through protonation of its acidic residues on the lumenal side of the thylakoid. This promotes the rearrangement of the LHCII-PSII supercomplex (Betterle *et al.*, 2009; Goral *et al.*, 2012) leading to qE activation. Moreover, PsbS is crucial for survival under fluctuating light conditions (Külheim *et al.*, 2002).

In contrast to PsbS in *A. thaliana*, LHCSR proteins are not constitutively present in the model green alga *Chlamydomonas reinhardtii*, but require high light exposure (Tokutsu and Minagawa, 2013; Petroutsos *et al.*, 2016), active photosynthetic electron flow (Maruyama and Tokutsu, 2014),

Page 4 of 15 | Moejes et al.

and a calcium binding protein (CAS) and Ca²⁺ sensing signals (Petroutsos et al., 2011) to be accumulated in the thylakoids. In C. reinhardtii, two LHCSR proteins actively participating in NPQ are encoded in the genome, LHCSR1 and LHCSR3 (Peers et al., 2009; Tokutsu and Minagawa, 2013). The two isoforms possess similar promoter regions followed by an almost identical polypeptide sequence (Maruyama and Tokutsu, 2014). In contrast to PsbS, which has four transmembrane helices and does not bind pigments, LHCSR shares the typical three-helix protein motif as well as the pigment binding capacity of LHCII proteins (Bonente et al., 2011; Fan et al., 2015). Moreover, LHCSR3 binds pigments such as chlorophyll *a/b*, lutein, Vx, and Zx (Bonente *et al.*, 2011), which presumably act as a quencher (Tokutsu and Minagawa, 2013). Like PsbS, the protein LHCSR3 also acts as a sensor for luminal acidification, with several residues, aspartate and glutamate, being essential for NPQ induction (Ballottari et al., 2016).

Novel insights into the regulation of photoprotection mediated by both perception of light colour and metabolism in C. reinhardtii were recently obtained (Petroutsos et al., 2016) and a molecular link between photoreception, photosynthesis, and photoprotection identified. The results showed that C. reinhardtii is able to detect changes in light wavelength using its photoreceptors, and this also induces photoprotection via the regulation of LHCSR3 (Petroutsos et al., 2016). Moreover, besides light, downstream metabolism can affect the NPQ capacity of C. reinhardtii through negative feedback of LHCSR3 accumulation in the thylakoids (Polukhina et al., 2016). These results comprehensively underline how the different processes linked to photosynthesis, namely light absorption, dissipative electron flow and carbon assimilation for metabolism, are tightly interconnected to allow for the successful acclimation of microalgae to their environment.

LHCSRs are absent in higher plants, but can be found in mosses, such as LHCSR1/LHCSR2 in Physcomitrella patens. Organisation of thylakoid membranes is very similar in algae, mosses and plants, suggesting that LHCSR could possibly be functional if inserted in planta. Recent studies show that LHCSR1 from P. patens can be overexpressed in Nicotiana benthamiana and Nicotiana tabacum leading to the accumulation of the protein in vivo (Pinnola et al., 2015). However the role of LHCSR in NPQ and which co-factors are required to obtain a fully functional protein in a heterologous expression system remained unclear. By employing a reverse genetic approach using the *npq4* mutant of *A. thaliana*, which lacks PsbS and is thus unable to perform NPQ, as the host for the expression of the full coding sequence of LHCSR1 from P. patens, LHCSR1 was successfully expressed as a mature protein in the thylakoid membranes of A. thaliana npq4. This expression of LHCSR1 partially overcame the inability of the npq4 mutant to perform NPQ. When expressed in planta, LHCSR1 retains its major structural and functional characteristics such as its ability to bind pigments. Its direct dependence on Zx (Pinnola et al., 2013) was shown by in vivo insertion of LHCSR1 in A. thaliana npq1npq4, a mutant deficient of Zx and PsbS, generating transgenic plants that stably express LHCSR1 and yet were completely unable to perform NPQ.

Diatoms can reach higher NPQ levels when compared to land plants and green algae (Ruban et al., 2004; Finazzi and Minagawa, 2014; Giovagnetti and Ruban, 2017) which may contribute to their ability to dominate phytoplankton communities in turbulent water environments (Smetacek, 1999). Studies of the molecular mechanisms of light acclimation in the diatom Phaeodactylum tricornutum showed that the LHCX1, a member of the LHC protein family, contributes to the dissipation of excess light energy through NPQ (Bailleul et al., 2010). However, LHCX1 is only one member of the expanded LHCX family that diatoms possess. By performing an in silico investigation of the diatom genomes, between 4-17 LHCXs in different species were found (Taddei et al., 2016). In order to further dissect their involvement in excess light energy dissipation, an extended characterisation was performed of P. tricornutum LHCX gene family expression and photosynthetic physiology in cells exposed to different light and nutrient stress conditions. It revealed that amongst the four isoforms identified in P. tricornutum, only LHCX1 is constitutively expressed. The other isoforms are either induced or repressed by specific treatments, including LHCX4, which is the only isoform induced in the absence of light. It was also observed that the amount of the LHCX4 mRNA rapidly decreases following a dark to light transition and that chloroplast-derived signals participate in inhibiting its expression. This poses novel intriguing questions on the role of this isoform in the regulation of chloroplast physiology.

The results reveal a complex regulatory landscape and the existence of multiple stress signalling pathways that tightly control the amount of each LHCX isoform in the cell. We conclude that the observed LHCX gene family expansion reflects a functional diversification of these proteins and may contribute to the regulation of the chloroplast physiology in highly variable ocean environments.

State transitions, qT

State transitions are another important component of NPQ that refer to the mechanisms of excitation energy redistribution between photosystems (Allen, 1992; Goldschmidt-Clermont and Bassi, 2015; Minagawa and Tokutsu, 2015). In plants and green algae, the physical segregation of PSII and PSI imposes the existence of different antenna systems, which excite the two photosystems independently. Thus, state transitions optimise the relative absorption capacity of PSs via redox regulation by reversible activation of specific proteins.

The reduced state of the plastoquinone (PQ) pool and cytochrome b6/f (cyt b6/f) complex triggers the activation of the protein kinase STN7 (State Transition 7; in algae, Stt7), which phosphorylates subunits of the LHC complex of PSII, some of which can migrate laterally towards PSI (Rochaix *et al.*, 2012). Under some conditions PSII is more strongly excited than PSI. This may occur due to the different absorption spectra of chl *a/b*, for example wavelengths around 460 nm are absorbed efficiently by chl *b* but hardly by

chl a. Under these conditions antenna migrate from PSII to PSI, a process termed state 1 to state 2 transition (Bellafiore et al., 2005). This changes the relative cross-sections towards PSI, balancing the light excitation of both photosystems. The reverse reaction is driven by the protein phosphatase protein phosphatase 1/thylakoid associated phosphatase 38 (PPH1/ TAP38) that dephosphorylates the LHCII associated with PSI and allows for its reallocation to PSII, also referred to as the state 2 to state 1 transition (Pribil et al., 2010; Shapiguzov et al., 2010). This mechanism is absent in diatoms (Owens and Wold, 1986), and present at moderate levels in plants (Niyogi, 1999). However, it represents a much larger component in the green algae C. reinhardtii, where it can reallocate a large fraction of its antenna between photosystems (Delosme et al., 1996). Whilst state transitions in plants are attributed to optimise light absorption in low light, in C. reinhardtii this process also contributes to photoprotection under high light levels (Allorent et al., 2013) and it is still debated whether it involves a different mechanism than the simple physical displacement of LHCII between the two photosystems (Nagy et al., 2014; Ünlü et al., 2014; Nawrocki et al., 2016).

Whilst the functions of the antagonistic kinases and phosphatases (STN7, STN8, PPH1/TAP38 and PBCP) have been thoroughly investigated in *A. thaliana*, in *C. reinhardtii* information regarding mutants other than *stt7*, which is incapable of phosphorylating antenna and is thus locked in state 1, was still missing (Fleischmann and Rochaix, 1999; Depège *et al.*, 2003). This heightened the need for the investigation of other kinase and phosphatase mutants. Preliminary analysis of an algal mutant deficient in PPH1 indicates that the substrate specificity of the algal phosphatase may be somewhat different from its *A. thaliana* ortholog. Similar studies showed *A. thaliana* to differ from monocots such as barley or maize, where phosphorylation of the minor LHCII antenna CP29 appears to play a role in the regulation of energy-dependent non-photochemical quenching (*qE*) (Betterle *et al.*, 2015).

Energy spillover as a photoprotective mechanism

In red algae and cyanobacteria, the traditional mechanisms involved in NPQ are missing and therefore these organisms possess alternate systems to cope with changing environments. The structure of the thylakoid membranes is much simpler than in plants and green algae, and in particular there is no clear spatial segregation of PSI and PSII. Red algae and cyanobacteria possess specific stromal-exposed antenna proteins called phycobilisomes (PBSs). These allow for a direct transfer of absorbed energy from PSII to PSI in a process termed energy spillover. In red algae (Yokono et al., 2011; Kowalczyk et al., 2013) and cyanobacteria (Zhang et al., 2007), it has been shown that this process represents a major contribution to the reduction of chlorophyll fluorescence. Since this mechanism is completely unrelated to PsbS and xanthophyll-related qE quenching, and is triggered by a reduced PQ pool rather than by a low pH (Kowalczyk et al., 2013), the molecular mechanisms underlying NPQ in cyanobacteria and red algae appear to differ significantly from plants and green algae. However, recent evidence points

towards LHCII complexes in the thylakoid membranes of higher plants, which are neither associated with PSII nor PSI, that may perform a similar role and also facilitate energy spillover in plant chloroplasts (Tikkanen and Aro, 2014) both *in vivo* (Jajoo *et al.*, 2014; Grieco *et al.*, 2015), as well as in reconstituted thylakoids *in vitro* (Akhtar *et al.*, 2016).

In diatoms, both photosystems share similar antennas, namely fucoxanthins (FCPs) and chlorophyll a/c binding proteins. Data suggests that the two photosystems may contain specialised antenna pools (Veith et al., 2009). Contrary to what is found in plants, the similarity between FCPs translates into a more homogeneous absorption spectrum of the two photosystems. Despite diatoms not performing state transitions in light (Owens and Wold, 1986), they have succeeded in optimising light utilisation achieving an efficient excitation energy balance at both limiting and saturating light conditions. The peculiar structure of their thylakoids, which is an intermediate between the unstructured one seen in cyanobacteria and red algae and the highly structured one observed in plants and green algae, shows no clear segregation of PSI and PSII. However, the possible existence of energy spillover was never investigated. Using several complementary approaches - spectroscopy, biochemistry, electron microscopy with immunolabelling and 3-dimensional reconstitution - a comprehensive 3D map of the photosynthetic membranes and intracellular compartments was generated. This multidisciplinary study reveals how the external membrane systems, namely the envelope, are organised and operate for the transfer of compounds produced in other intracellular compartments (Flori et al., 2016). It also illustrated how exchanges of ATP/NADPH between plastids and mitochondria and the involvement of mitochondrial respiration contribute to the optimisation of photosynthesis in diatoms (Bailleul et al., 2015).

Photoinhibition

Photoinhibition as a result of prolonged over-excitation of the photosynthetic machinery contributes to the slowest component of NPQ. Photoinhibition mainly constitutes the degradation and disassembly of the core subunit of photosystem II, PsbA or D1 protein (Barber and Andersson, 1992; Aro *et al.*, 1993). Overall, the extent of photoinhibition is a direct balance between damaged PSII and its repair rate (Murata *et al.*, 2007). Despite the fast turnover of D1 proteins (Sundby *et al.*, 1993; Neidhardt *et al.*, 1998), high amounts of ROS can enhance D1 degradation (Murata *et al.*, 2007) leading to a decrease in photosynthetic quantum yield (Krause, 1988).

Identifying common design principles by mathematical modelling of short-term stress responses

The variability of the various mechanisms between different organisms not only illustrates the differences in the molecular characteristics of components involved, but also reveals a commonality of underlying principles. For example, despite all structural and regulatory differences of PsbS in plants and LHCSR3 in green algae, both function as pH sensors and activate a

Page 6 of 15 | Moejes et al.

quenched state. Likewise, the xanthophylls Vx in plants and Dd in diatoms are clearly different molecules, but both are enzymatically de-epoxidised to induce energy dissipation.

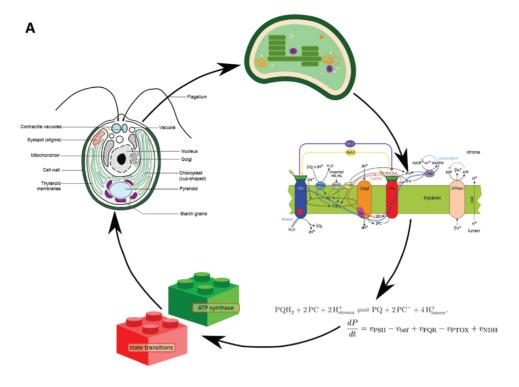
One of the strengths of mathematical models is that they can provide an abstracted description of a system allowing for the simulation of the dynamics without focusing on the exact molecular details but rather on the fundamental design principles. In the past decade a handful of new kinetic models have been published with the aim of increasing our understanding of underlying principles governing short-term acclimation mechanisms (Ebenhöh et al., 2011: Zaks et al., 2012, 2013; Matuszyńska and Ebenhöh, 2015). Because all these models aim to explain the dynamics of the acclimation process, a suitable choice for the mathematical description is the use of ordinary differential equations (ODEs). ODEs have a long history of application to biological and physical processes, and have been used to describe a number of general laws of nature (Simmons, 1972). Clear advantages include their universality, the well-established theoretical background, and the highly efficient and widely accessible numerical and computational implementations available.

The ability to monitor regulatory acclimation mechanisms in a minimally invasive way by means of chlorophyll fluorescence measurements, allows for the existing models to simulate the dynamics of the fluorescence signal (Maxwell and Johnson, 2000; Stirbet *et al.*, 2014). Using these models as a reference and for guidance, new models that are specifically tailored to support the experimental approaches within the AccliPhot project were constructed, which provide a consistent theoretical framework in which new findings can be interpreted and new insights obtained.

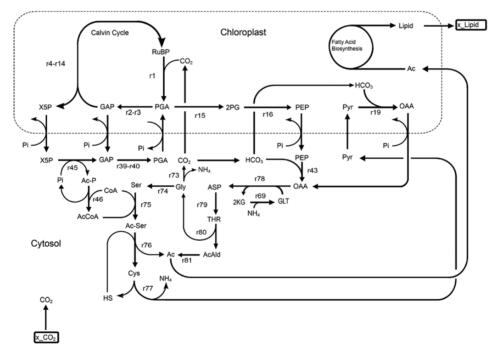
The mathematical model of state transitions in C. reinhardtii (Ebenhöh et al., 2014) realistically represents the dynamics induced by transfers from dark to light, as well as upon changes from aerobic to anaerobic conditions in the dark. This provides a reliable platform to study short-term acclimation in green algae. To complement the model with the fast component of NPQ, a highly reduced model of NPQ for plants was developed (Matuszyńska et al., 2016). With a set of only six differential equations, not only were all the main features of the fluorescence dynamics under low, moderate, and high light intensity captured, but the model can also be employed to quantify the contribution of qE components to short-term light-memory (Murchie et al., 2009; Jahns and Holzwarth, 2012; Ruban et al., 2012). Although the model was constructed for A. thaliana, it was successfully adapted to the non-model organism *Epipremnum aureum*, demonstrating that a basic mechanism of short-term light memory is preserved across both species. Both models were used to create a modular, unifying framework describing common principles of key photoprotective mechanisms across species in general (Matuszyńska, 2016). The scheme of the model development is illustrated in Fig. 1A.

Light signalling pathways are interlinked with other external stimuli such as variations in temperature. To investigate the heat shock response (HSR) in *C. reinhartii*, which is observed upon exposure to large temperature changes (Schroda *et al.*, 2015), a kinetic model based on the mechanisms that sense temperature variations by the accumulation of unfolded proteins was developed (Magni *et al.*, 2016). The HSR activates genes

coding for heat shock proteins (HSP), which act as chaperones repairing the heat-induced damage. The system of ODEs describing the signalling network was reconstructed and calibrated from multiple experimental time-resolved datasets available in the literature (e.g. Schmollinger *et al.*, 2013). We showed that the system can adapt to higher temperatures by shifting to a new steady state. The investigation of the response of *C. reinhartii* to a gradual change in temperature suggests that the number of misfolded proteins is considerably reduced when compared to a drastic temperature change such as those commonly applied in experiments.


Metabolism of photosynthetic organisms

Model predictions on the effect of light stress on metabolism


As mentioned, short-term acclimation processes mainly serve to protect the photosynthetic apparatus from damage by ROS resulting from excess light. However, the overall performance is critically dependent on functional metabolism. The energydissipating mechanisms discussed above normally ensure that energy and redox equivalents produced do not exceed the energy that can be consumed by metabolism. However, how can metabolic fluxes be adjusted if this regulation is no longer functional, such as when it is halted experimentally via for example, a sudden drop of CO₂ concentration or in knockout mutants that lack important mechanisms such as qE? This question can be addressed by genome scale metabolic models (GSMs) representing the entire metabolic capabilities of an organism. Such models belong to the class of structural or stoichiometric models which, in contrast to kinetic models, are defined in terms of the reaction stoichiometry and thermodynamics, and are designed to describe the topological characteristics of the system rather than its kinetic behaviour (Heinrich and Schuster, 1996). They are built based on all the enzymes encoded in its genome (Fell et al., 2010). Suitable analytic techniques then allow the identification of potential metabolic behaviours under given environmental and genetic conditions (Thiele and Palsson, 2010). Analysis of structural models generally depends on the steady-state assumption, which states that the rate of consumption and production of internal metabolites remains balanced within the timeframe under consideration (Heinrich and Schuster, 1996). This assumption leads to an equation, from which statements about the distribution of metabolic fluxes can be made. However, since this equation is underdetermined, a prediction of the fluxes is not possible without additional assumptions.

Many approaches, such as flux balance analysis (FBA) (Varma and Palsson, 1993, 1994), overcome this problem by calculating a flux distribution that optimises a certain objective function under given constraints, which include limitations of individual flux values due to thermodynamic constraints, demand for biomass production, observed growth rates etc. The two most common objectives are either the maximisation of growth rate (Varma and Palsson, 1994) or minimisation of total flux (Holzhütter, 2006; Poolman *et al.*, 2009).

Genome-scale models of *A. thaliana*, *C. reinhardtii* and *P. tricornutum* were constructed from their respective BioCyc

В

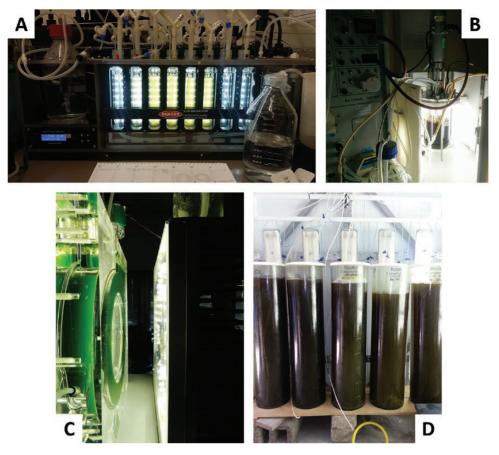
Fig. 1. Schemes of two modelling approaches (A) The reduction process applied to developed kinetic models. The complexity of a model organism, here *C. reinhardtii*, was reduced to include only processes taking place in the chloroplast, specifically the thylakoid membrane. Key biochemical reactions of photosynthetic electron transport were translated into mathematical terms, using ODEs. A set of reactions describing a specific process, from ATP formation through to various NPQ mechanisms like state transitions, were clustered together as modules that can be put together to reconstruct the model organism *in silico*. Figure from (Matuszyńska, 2016). Schematic of Chlamydomonas cell from http://www.cronodon.com/images/Chlamydomonas_2.jpg, see cronodon.com. (B) The Genome Scale Model reconstructed to perform FBA in *P. tricornutum*. The network of reactions exhibits changes in flux in response to increased lipid demand. This model was used to identify reactions with co-related changes in flux and in lipid demand under phototrophic conditions i.e. with the source of energy and inorganic carbon being light and CO₂, respectively. External metabolites are distinguished from internal metabolites with the prefix 'x'.

databases (Caspi *et al.*, 2015), which contain the biochemical reactions of organisms based on their genome sequences, and previously published models (Chang *et al.*, 2011; Cheung *et al.*, 2013; Hunt *et al.*, 2014). They were then manually curated to fill the gaps and to ensure conservation of mass and energy (Gevorgyan *et al.*, 2008; Poolman *et al.*, 2009),

resulting in networks containing approximately 500 (*P. tricornutum*) and 2500 (*C. reinhardtii* and *A. thaliana*) reactions. Gap-filling (Satish-Kumar *et al.*, 2007; Christian *et al.*, 2009) is a necessary process, as gene annotation is far from perfect. In each of the resulting networks, around 50 reactions had to be added during the gap filling process. All three models were used to identify possible metabolic cycles acting as energy dissipation modes under supra-optimal light conditions. In all models the results suggested that photorespiratory reactions may play a constructive role, rather than being an unavoidable inefficiency. The results for *P. tricornutum* showed that glycolate can either be excreted or recycled within the system depending on environmental conditions and that there is a potential link between photorespiration and lipid synthesis in this organism (Fig. 1B) (Singh *et al.*, 2015).

Mixotrophic growth

The evolutionary secondary endosymbiotic event between a photoautotrophic eukaryotic cell and a heterotrophic eukaryote (Gibbs, 1981) is believed to be the origin of modern diatoms such as P. tricornutum. This event has resulted in some unique features in the biochemistry of these diatoms when compared to other photosynthetic eukaryotes, particularly in terms of the subcellular localisation of enzymes and the presence of some enzymes more commonly found in prokaryotes. P. tricornutum possesses lipid biosynthesis pathways comparable to those present in higher plants, both of which contain eukaryotic and prokaryotic pathways (Hu et al., 2008). However, how P. tricornutum channels fix carbon towards the production of lipid molecules is still poorly understood. Generally, under optimal conditions, phototrophs use most of the energy derived from carbon fixation for growth and for the biosynthesis of carbohydrates (Melis, 2013). By contrast, under unfavourable growth conditions P. tricornutum ceases growth and initiates the accumulation of storage molecules such as lipids (Cheng and He, 2014). To find conditions that simultaneously increase algal biomass and lipid production in P. tricornutum, novel strategies are needed.


There are successful examples of metabolic engineering, such as the implementation of genome editing technology that disrupted the UDP-glucose pyrophosphorylase gene, leading to a 45-fold increase in triacylglycerol accumulation in *P. tricornutum* (Daboussi *et al.*, 2014). However obvious constraints exist for using genetically modified organisms in an industrial context.

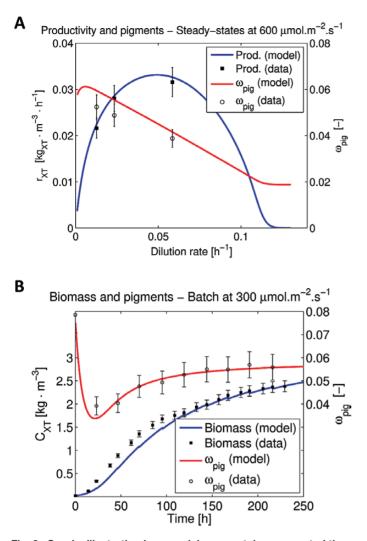
In *C. reinhardtii* it is well established that optimal growth can be established by mixotrophic conditions, in which an additional carbon source is applied in the presence of light (Chen and Johns, 1996), which simultaneously increases lipid production (Moon *et al.*, 2013). Lipid production can be further increased if starch synthesis is inhibited (Li *et al.*, 2010). Mixotrophic cultivation of diatoms, including *P. tricornutum*, has also shown great promise (Cerón-García *et al.*, 2013). However the full potential of this approach has not yet been reached.

During periods of light, microalgae can both respire and perform photosynthesis simultaneously, the basis of which is the poorly understood chloroplast-mitochondria interaction. In diatoms, it was recently shown that the NADPH generated in the plastid is exported to the mitochondria to generate additional ATP. The ATP produced can then be transported to the chloroplast providing the extra energy needed for carbon fixation (Bailleul et al., 2015), demonstrating the close interaction between the two compartments. Taking an interdisciplinary approach, the genome-scale model of P. tricornutum developed was used to calculate metabolic fluxes and to aid experimental activities. The latter was facilitated by testing the potential of new culture conditions in silico, which predicted a simultaneous increase of biomass and lipid production (Singh et al., 2015). In the model, an increase in light intensity and the addition of sodium bicarbonate led to a significant increase in lipid production. Experiments were designed using these parameters, which resulted in an increase in lipid production and growth rate (Villanova et al., 2017). The addition of glycerol enhanced biomass production by a factor of two as compared with growth on medium lacking glycerol; approximately 9 million cells/mL when grown in the absence of glycerol compared with 18 million cells/mL in the presence of glycerol. The combination of theory and experiments allowed for the elucidation of the main pathways involved in mixotrophic growth and the identification of gene targets for possible future metabolic engineering of P. tricornutum to optimise the efficiency of mixotrophic cultivation approaches. Other limiting factors such as medium composition, light, pH, aeration/mixing, temperature etc., have to be taken into account (Merchant and Helmann, 2012) for successful implementation of mixotrophy for industrial exploitation. Efforts to optimise the medium composition by an AccliPhot industrial partner, Fermentalg - a company producing high value bioactive compounds - led to the development of a novel medium that optimises growth by the addition of micronutrients that are limited in natural seawater (Villanova, 2016). The optimised growth conditions were tested in laboratory-scale 2L photobioreactors (PBRs) that possess better system control, in terms of temperature, pH, light, and aeration/mixing, compared with open ponds (Sheehan et al., 1998).

From bench to bank: scaling up microalgal cultivation for industry

In order to translate our novel understanding of short-term light acclimation and its effect on metabolism to industrial processes, optimised large-scale cultivation techniques are required. Considering the future potential of algal biotechnology, one fundamental research goal of the microalgal biotechnology field is to investigate scale-up approaches by understanding the performance of algal populations in bioreactors, increase lipid production by implementing mixotrophic growth conditions, and assess the extent to which the models developed for controlled laboratory conditions are applicable to outdoor, industry-scale cultivation. Some examples of cultivation scales can be found in Fig. 2A–D. A substantial amount of research efforts are placed on *C. reinhardtii* and *P. tricornutum* due to extensive knowledge

Fig. 2. Different algal cultivation scales implemented (A) An 80 mL mulicultivator was used to carry out systematic investigations on the effect of the presence of bacteria on *P. tricornutum* growth (Moejes, 2016). (B) A 2 L chemostat was used to study the effect of mixotrophic growth on *P. tricornutum* (Villanova, 2016). (C) A 2 L Torus PBR was used for kinetic growth analysis and modelling *C. reinhardtii* at the population scale. (D) Vertical columns, 80 L in volume, were used to investigate the population-level response of scaling up *P. tricornutum* cultures (Moejes, 2016).


of the behaviour of *C. reinhardtii*, including photosynthetic mechanisms, and because of the ability of *P. tricornutum* to synthesise a number of commercially-relevant molecules, including lipids such as triacylglycerols (TAG) and poly-unsaturated fatty acids (PUFA) (Kates and Volcani, 1966; Siron *et al.*, 1989; Rebolloso-Fuentes *et al.*, 2001; Fajardo *et al.*, 2007).

Bioreactors and engineering

To gain insight into the performance of algal populations in bioreactors, a biochemically-based structured model for the autotrophic growth of C. reinhardtii in PBRs was developed, using knowledge of the detailed underlying metabolic network previously determined (Cogne et al., 2011). The model is reduced to a minimal set of seven reactions derived from metabolic investigations of light-limited growing cells in PBRs (Rügen et al., 2012). Structuration of the model, including a fully detailed description of cellular energetics, led to the formulation of only three kinetic equations, namely photon uptake rate and light-dependent kinetics for pigment synthesis and maintenance, thus setting the degree-of-freedom of the system to zero. The model involves the introduction of only three parameters that are estimated by experimental data. The experimental approach included a wide range of experimental conditions: batch cultures at 100, 300, 500 and 700 μ mol m⁻² s⁻¹ incident photon flux density, as well as various steady-states at 200 and 600 μ mol m⁻² s⁻¹. The elaborated model was found to accurately represent the behaviour of *C. reinhardtii* cultures with good predictability and robustness, as illustrated in Fig. 3A and B. Kinetic model analysis showed that increasing pigment content has a negative effect on population-level growth dynamics. Furthermore, measurements of oxygen uptake rate in the light showed that respiratory activity increases relative to the photosynthetic oxygen production rate. The increasing maintenance flow, due to the existence of an increasing dark zone inside the PBR, suggests concomitant oxidative and reductive processes.

Novel approaches to scaling up microalgal cultures

Whilst PBRs are closed systems ideal for keeping monocultures (Grima and Fernández, 1999), which is particularly desired if the final product is a bioactive molecule for human consumption (Mata *et al.*, 2010), operational costs are high, preventing industrial-scale production of low- or mediumvalue compounds. Other options include open raceway ponds, simple open-air cultivation systems that have been in use since the 1950s (Chisti, 2007). They are highly susceptible to contamination, and unless the desired species is a halophile or thermophile (Parmar *et al.*, 2011), it is hard to maintain monocultures. Irrespective of the cultivation method, the

Fig. 3. Graphs illustrating how models accurately represented the behaviour of *C. reinhardtii* **cultures** (A) Graph showing the biomass productivity and pigment mass fraction as a function of the dilution rate for steady-state cultures with an incident photon flux density of 600 μmol m⁻² s⁻¹. Full lines are model predictions, data points are shown with error bars. (B) Graph showing the biomass concentration and pigment mass fraction as a function of time for a batch culture with an incident photon flux density of 300 μmol m⁻² s⁻¹. Full lines are model predictions, data points are shown with error bars.

establishment of unwanted organisms is a serious obstacle for large-scale microalgae cultivation (Day *et al.*, 2012; Wang *et al.*, 2013). Despite intense research on microalgal culture upscaling, very little is known about the identity and characteristics of these invading organisms responsible for microalgal culture 'crashes', which lead to loss of biomass, and therefore, loss of revenue.

Bacteria, which have co-existed with diatoms for more than 200 million years, form a crucial part of a complex ecosystem and have been shown to enhance the growth of diatoms (Bruckner *et al.*, 2011; Amin *et al.*, 2015). Increased understanding of the interactions could allow for the exploration of 'synthetic ecology' as a novel scaling up technique (Kazamia *et al.*, 2012).

To gain insight into the dynamics of the bacterial communities associated with diatoms, we translated the complexity of a natural system into a reproducible, systematic experimental approach, where the microbiome of batchgrown 5L non-axenic cultures of *P. tricornutum* were investigated using barcoded 16S-V6 next generation sequencing. The results identified four major players within the microbiome and a network of putative interactions between *P. tricornutum* and each of the bacterial factions was proposed, thus providing a framework to understand the dynamics of diatom-associated microbial communities. Species-specific co-culture experiments were carried out, and preliminary results showed increased growth rates and maximal cell densities when *P. tricornutum* is co-cultured with representative members of the four identified families (Moejes, 2016; Moejes *et al.*, 2016).

The proposed network of putative interactions was translated into a set of ordinary differential equations, which together constitute a computational dynamic model. The proposed mathematical model is able to capture the population dynamics and therefore represents a simple yet important proof of concept of the hypothesised community-level interactions. Further experimental measurements of biomass production rates and concentrations of metabolites exchanged within the community will allow the model to develop from qualitative to quantitative, providing a powerful and practical predictive tool for culture monitoring. The interdisciplinary analysis provides a framework to understand the dynamics of diatom-associated microbial communities and represents a solid starting point for systematic investigation of organism interactions mediated by metabolite exchange (Moejes et al., 2016). While in its current state, the model resembles a classical population dynamics model (Verhulst, 1838; Lotka, 1925; Volterra, 1926), a promising approach to combine FBA and kinetic models is to consider the steady state solution of FBA as input for a set of differential equations defining the evolution of metabolite concentrations. In such dynamic FBA (Mahadevan et al., 2002), constraints on the fluxes change at each time step, based on defined reaction kinetics and on the FBA solution at the previous time step. To advance our understanding of population dynamics of bacterial communities associated with photosynthetic organisms, an integrated modelling framework was developed, inspired by the dynamic FBA modelling approach utilised by (Harcombe et al., 2014). This framework coupled the complexity of structural models with the simplicity of ODE. This modelling framework can now be used to consolidate our understanding of the mechanisms regulating symbiosis or produce new hypotheses to be experimentally tested.

Perspectives and outlook

Collectively, the projects undertaken by the members of the AccliPhot consortium underline how by increasing our understanding of the different processes linked to photosynthesis, such as light absorption, dissipation, electron flow and carbon assimilation for metabolism, we can successfully unravel the mysteries of photosynthetic acclimation. The complementary research on four model species, namely the green alga *Chlamydomonas reinhardtii*, the diatom *Phaeodactylum tricornutum*, the moss *Physcomytrella patens* and the higher plant *Arabidopsis thaliana*, opens completely novel perspectives on the evolution and diversification of different adaptation mechanisms in phototrophs. Providing novel support to theoretical studies, this information can feed into encompassing models of photoprotection, shedding light on unsolved evolutionary and functional questions of photosynthetic acclimation.

A unique feature of AccliPhot was the successful integration of theoretical approaches with experimental ones. Dynamic models were used to explain dynamic responses of photosynthesis, to confirm that our understanding of the underlying quenching mechanisms is basically correct and to highlight common principles in evolutionarily distant species. Structural models were employed to fill knowledge gaps, explain physiological properties and to support synthetic biology approaches. Combining these approaches allowed construction of a computational framework, in which bacterial community dynamics associated with large-scale cultures can be investigated, thus paving the way towards the establishment of controlled synthetic communities. All these efforts demonstrate the value of interdisciplinary collaborations, by which biological problems are elucidated from various complementary vantage points.

Furthermore, the project improved our knowledge of algal growth in PBRs and highlighted the need for advancement in scaling up approaches, which are essential to optimising industrial-scale cultivation of microalgae. Continued work to understand population dynamics in PBRs will aid PBR design, for example, to ensure maximal light absorption, a good gas transfer rate, efficient nutrient distribution and avoidance of dark zones. In conjunction with the novel mixotrophic growth conditions developed, this will pave the way for optimised industry-scale algal cultivation in PBRs. We also show that applying laboratory and ecological data to create synthetic ecologies, in theory, has the potential to optimise scaling up techniques. This is particularly true for open raceway pond cultivation, which is a cheap large-scale technique but very susceptible to contamination. Optimising such scaling up techniques would allow the production of low- or medium-value compounds to become an economically viable option. Further research is required to explore the full potential of applied microbial ecosystem management for a sustainable bio-economy.

One of the fundamental goals of AccliPhot was to illustrate the importance of an interdisciplinary approach to scientific research. We believe that this review is a testament to the successful marriage of theoretical and experimental approaches. Although this multidisciplinary approach is not a novel idea, we have never encountered a comparable large-scale project, in which the numbers of theoretical and experimental scientists were as balanced as was in AccliPhot. The working principle that every research question should be addressed by both experimental and theoretical methods is reflected in the development of successful mathematical models, which assisted in experimental design and where experimental data has facilitated the advancement of models to become predictive tools.

Acknowledgements

This research was funded by the Marie Curie Initial Training Network project, AccliPhot (grant agreement number PITN-GA-2012-316427). The consortium was composed of 26 researchers (13 PhD students, 2 post-doctoral researchers, and 11 principal investigators) based in 11 institutions in Germany, Italy, Switzerland, France, the United Kingdom and Ireland.

References

Akhtar P, Lingvay M, Kiss T, Deák R, Bóta A, Ughy B, Garab G,

Lambrev PH. 2016. Excitation energy transfer between Light-harvesting complex II and photosystem I in reconstituted membranes. Biochimica et Biophysica Acta **1857**, 462–472.

Alboresi A, Gerotto C, Giacometti G. 2010. *Physcomitrella patens* mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proceedings of the National Academy of Sciences, USA **107**, 11128–11133.

Allen JF. 1992. Protein phosphorylation in regulation of photosynthesis. Biochimica et Biophysica Acta **1098**, 275–335.

Allorent G, Tokutsu R, Roach T, et al. 2013. A dual strategy to cope with high light in *Chlamydomonas reinhardtii*. The Plant Cell **25**, 545–557.

Amin SA, Hmelo LR, van Tol HM, *et al.* 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature **522**, 98–101.

Anderson JM, Chow WS, Park YI. 1995. The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynthesis Research **46**, 129–139.

Aro EM, Virgin I, Andersson B. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta 1143, 113–134.

Bailleul B, Berne N, Murik O, et al. 2015. Energetic coupling between plastids and mitochondria drives CO₂ assimilation in diatoms. Nature **524,** 366–369.

Bailleul B, Rogato A, De Martino A. 2010. An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proceedings of the National Academy of Sciences, USA **107**, 18214–18219.

Ballottari M, Dall'Osto L, Morosinotto T, Bassi R. 2007. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. The Journal of Biological Chemistry **282**, 8947–8958.

Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, Fleming GR, Bassi R, Niyogi KK. 2016. Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in *Chlamydomonas reinhardtii*. The Journal of Biological Chemistry **291**, 7334–7346.

Barber J, Andersson B. 1992. Too much of a good thing: light can be bad for photosynthesis. Trends in Biochemical Sciences **17**, 61–66.

Beer A, Gundermann K, Beckmann J, Büchel C. 2006. Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry **45**, 13046–13053.

Bellafiore S, Barneche F, Peltier G, Rochaix JD. 2005. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature **433**, 892–895.

Betterle N, Ballottari M, Baginsky S, Bassi R. 2015. High lightdependent phosphorylation of photosystem II inner antenna CP29 in monocots is STN7 independent and enhances nonphotochemical quenching. Plant Physiology **167**, 457–471.

Betterle N, Ballottari M, Hienerwadel R, Dall'Osto L, Bassi R. 2010. Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Archives of Biochemistry and Biophysics **504,** 67–77.

Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall'osto L, Morosinotto T, Bassi R. 2009. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. The Journal of Biological Chemistry **284**, 15255–15266.

Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R. 2011. Analysis of LhcSR3, a protein essential

Page 12 of 15 | Moejes et al.

for feedback de-excitation in the green alga *Chlamydomonas reinhardtii*. PLoS Biology **9**, e1000577.

Bruckner CG, Rehm C, Grossart HP, Kroth PG. 2011. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environmental Microbiology **13**, 1052–1063.

Caspi R, Billington R, Ferrer L, et al. 2016. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/ genome databases. Nucleic Acids Research **44**, D471–D480.

Cerón-García MC, Fernández-Sevilla JM, Sánchez-Mirón A, García-Camacho F, Contreras-Gómez A, Molina-Grima E. 2013. Mixotrophic growth of *Phaeodactylum tricornutum* on fructose and glycerol in fed-batch and semi-continuous modes. Bioresource Technology **147**, 569–576.

Chang RL, Ghamsari L, Manichaikul A, et al. 2011. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Molecular Systems Biology **7**, 518.

Chen F, Johns MR. 1996. Heterotrophic growth of *Chlamydomonas reinhardtii* on acetate in chemostat culture. Process Biochemistry **31**, 601–604.

Cheng D, He Q. 2014. Assessment of environmental stresses for enhanced microalgal biofuel production—an overview. Frontiers in Energy Research **2**, 1–8.

Cheung CY, Williams TC, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ. 2013. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. The Plant Journal **75**, 1050–1061.

Chisti Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25, 294–306.

Christian N, May P, Kempa S, Handorf T, Ebenhöh O. 2009. An integrative approach towards completing genome-scale metabolic networks. Molecular BioSystems **5**, 1889–1903.

Coesel S, Oborník M, Varela J, Falciatore A, Bowler C. 2008. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PLoS One **3**, e2896.

Cogne G, Rügen M, Bockmayr A, Titica M, Dussap CG, Cornet JF, Legrand J. 2011. A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae *Chlamydomonas reinhardtii*. Biotechnology Progress **27**, 631–640.

Cornet J, Dussap C, Gros J. 1998. Kinetics and energetics of photosynthetic micro-organisms in photobioreactors. Bioprocess and Algae Reactor Technology **59**, 153–224.

Crouchman S, Ruban A, Horton P. 2006. PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin. FEBS Letters **580**, 2053–2058.

Daboussi F, Leduc S, Maréchal A, et al. 2014. Genome engineering empowers the diatom *Phaeodactylum tricornutum* for biotechnology. Nature Communications **5,** 3831.

Dall'Osto L, Caffarri S, Bassi R. 2005. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. The Plant Cell **17,** 1217–1232.

Day JG, Thomas NJ, Achilles-Day UE, Leakey RJ. 2012. Early detection of protozoan grazers in algal biofuel cultures. Bioresource Technology **114,** 715–719.

Delosme R, Olive J, Wollman F. 1996. Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from *Chlamydomonas*. Biochimica et Biophysica Acta **1273**, 150–158.

Depège N, Bellafiore S, Rochaix JD. 2003. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in *Chlamydomonas*. Science **299**, 1572–1575.

Ebenhöh O, Fucile G, Finazzi G, Rochaix JD, Goldschmidt-Clermont M. 2014. Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences **369**, 20130223.

Ebenhöh O, Houwaart T, Lokstein H, Schlede S, Tirok K. 2011. A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence. Bio Systems **103,** 196–204.

Fajardo AR, Cerdán LE, Medina AR, Fernández FGA, Moreno PaG,

Grima EM. 2007. Lipid extraction from the microalga *Phaeodactylum tricornutum*. European Journal of Lipid Science and Technology **109**, 120–126.

Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, Zhang J, Chang W. 2015. Crystal structures of the PsbS protein essential for photoprotection in plants. Nature Structural & Molecular Biology **22**, 729–735.

Fell DA, Poolman MG, Gevorgyan A. 2010. Building and analysing genome-scale metabolic models. Biochemical Society Transactions **38**, 1197–1201.

Finazzi G, Minagawa J. 2014. High Light Acclimation in Green Microalgae. In: **Demmig-Adams B, Garab G, Adams W, Govindjee**, eds. Non-Photochemical Quencing and Energy Dissipation in Plants, Algae and Cyanobacteria. Springer Netherlands, 445–469.

Fleischmann MM, Rochaix JD. 1999. Characterization of mutants with alterations of the phosphorylation site in the D2 photosystem II polypeptide of *Chlamydomonas reinhardtii*. Plant Physiology **119**, 1557–1566.

Flori S, Jouneau PH, Finazzi G, Maréchal E, Falconet D. 2016. Ultrastructure of the periplastidial compartment of the diatom *Phaeodactylum tricornutum*. Protist **167**, 254–267.

Gevorgyan A, Poolman M, Fell D. 2008. Detection of stoichiometric inconsistencies in biomolecular models. Bioinformatics **24,** 2245–2251.

Gibbs SP. 1981. The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Annals of the New York Academy of Sciences **361**, 193–208.

Giovagnetti V, Ruban AV. 2017. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom *Phaeodactylum tricornutum*. Biochimica et Biophysica Acta **1858**, 218–230.

Goldschmidt-Clermont M, Bassi R. 2015. Sharing light between two photosystems: mechanism of state transitions. Current Opinion in Plant Biology **25**, 71–78.

Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW. 2012. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. The Plant Journal 69, 289–301.

Goss R, Ann Pinto E, Wilhelm C, Richter M. 2006. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. Journal of Plant Physiology **163**, 1008–1021.

Grieco M, Suorsa M, Jajoo A, Tikkanen M, Aro EM. 2015. Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery—including both photosystems II and I. Biochimica et Biophysica Acta **1847**, 607–619.

Grima E, Fernández F. 1999. Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology **70**, 231–247.

Hager A. 1967. Studies on the backward-reactions in the xanthophyllcycle of *Chlorella*, *Spinacia* and *Taxus*. Planta **76**, 138–148.

Harcombe WR, Riehl WJ, Dukovski I, *et al.* 2014. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Reports **7**, 1104–1115.

Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P, Weber AP, Lercher MJ. 2013. Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell **153**, 1579–1588.

Heinrich R, Schuster S. 1996. The regulation of cellular systems. London: Chapman & Hall.

Holzhütter HG. 2006. The generalized flux-minimization method and its application to metabolic networks affected by enzyme deficiencies. Bio Systems **83**, 98–107.

Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. 2009. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chemical Physics Letters **483**, 262–267.

Horton P, Ruban AV, Walters RG. 1996. Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology **47**, 655–684. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal **54**, 621–639.

Hunt KA, Folsom JP, Taffs RL, Carlson RP. 2014. Complete enumeration of elementary flux modes through scalable demand-based subnetwork definition. Bioinformatics **30**, 1569–1578.

Jahns P, Holzwarth AR. 2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta **1817**, 182–193.

Jajoo A, Mekala NR, Tongra T, Tiwari A, Grieco M, Tikkanen M, Aro EM. 2014. Low pH-induced regulation of excitation energy between the two photosystems. FEBS Letters **588**, 970–974.

Johnson MP, Pérez-Bueno ML, Zia A, Horton P, Ruban AV. 2009. The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiology **149**, 1061–1075.

Joliot P, Finazzi G. 2010. Proton equilibration in the chloroplast modulates multiphasic kinetics of nonphotochemical quenching of fluorescence in plants. Proceedings of the National Academy of Sciences, USA **107**, 12728–12733.

Kates M, Volcani BE. 1966. Lipid components of diatoms. Biochimica et Biophysica Acta **116**, 264–278.

Kazamia E, Aldridge DC, Smith AG. 2012. Synthetic ecology—A way forward for sustainable algal biofuel production? Journal of Biotechnology **162**, 163–169.

Kowalczyk N, Rappaport F, Boyen C, Wollman FA, Collén J, Joliot P. 2013. Photosynthesis in *Chondrus crispus*: the contribution of energy spill-over in the regulation of excitonic flux. Biochimica et Biophysica Acta **1827**, 834–842.

Krause G. 1988. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiologia Plantarum 74, 566–574.

Krieger-Liszkay A, Fufezan C, Trebst A. 2008. Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research **98**, 551–564.

Külheim C, Agren J, Jansson S. 2002. Rapid regulation of light harvesting and plant fitness in the field. Science **297**, 91–93.

Lazár D, Jablonský J. 2009. On the approaches applied in formulation of a kinetic model of photosystem II: different approaches lead to different simulations of the chlorophyll alpha fluorescence transients. Journal of Theoretical Biology **257**, 260–269.

Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J. 2013. High light acclimation in the secondary plastids containing diatom *Phaeodactylum tricornutum* is triggered by the redox state of the plastoquinone pool. Plant Physiology **161**, 853–865.

Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature **403**, 391–395.

Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK. 2004. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. The Journal of Biological Chemistry **279**, 22866–22874.

Li Y, Han D, Hu G, Sommerfeld M, Hu Q. 2010. Inhibition of starch synthesis results in overproduction of lipids in *Chlamydomonas reinhardtii*. Biotechnology and Bioengineering **107**, 258–268.

Lohr M. 2011. Carotenoid metabolism in phytoplankton. In: Roy S, Llewellyn C, Egeland E, Johnsen G, eds. Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. New York: Cambridge University Press, 113–161.

Lotka A. 1925. Elements of Physical Biology. Baltimore (MD): Williams and Wilkins, Ed.

Magni S, Succurro A, Skupin A, Ebenhöh O. 2016. Dynamical modelling of the heat shock response in *Chlamydomonas reinhardtii*. bioRxiv: http://dx.doi.org/10.1101/085555, accessed November 3 2016.

Mahadevan R, Edwards JS, Doyle FJ 3rd. 2002. Dynamic flux balance analysis of diauxic growth in *Escherichia coli*. Biophysical Journal **83**, 1331–1340.

Maruyama S, Tokutsu R, Minagawa J. 2014. Transcriptional regulation of the stress-responsive light harvesting complex genes in *Chlamydomonas reinhardtii*. Plant & Cell Physiology **55**, 1304–1310.

Mata T, Martins A, Caetano N. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews **14**, 217–232.

Matuszyńska A. 2016. Mathematical models of light acclimation mechanisms in higher plants and green algae. PhD thesis, Germany: Heinrich-Heine University Düsseldorf.

Matuszyńska A, Ebenhöh O. 2015. A reductionist approach to model photosynthetic self-regulation in eukaryotes in response to light. Biochemical Society Transactions **43**, 1133–1139.

Matuszyńska A, Heidari S, Jahns P, Ebenhöh O. 2016. A mathematical model of non-photochemical quenching to study short-term light memory in plants. Biochimica et Biophysica Acta **1857**, 1860–1869.

Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany **51**, 659–668.

Melis A. 1991. Dynamics of photosynthetic membrane composition and function. Biochimica et Biophysica Acta **1058**, 87–106.

Melis A. 2013. Carbon partitioning in photosynthesis. Current Opinion in Chemical Biology **17**, 453–456.

Merchant SS, Helmann JD. 2012. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Advances in Microbial Physiology **60**, 91–210.

Minagawa J. 2013. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis. Frontiers in Plant Science **4**, 513.

Minagawa J, Tokutsu R. 2015. Dynamic regulation of photosynthesis in *Chlamydomonas reinhardtii*. The Plant Journal **82**, 413–428.

Moejes FW. 2016. Dynamics of the bacterial community associated with *Phaeodactylum tricornutum* cultures: a novel approach to scaling up microalgal cultures. PhD thesis, Germany: Heinrich-Heine University Düsseldorf.

Moejes FW, Popa O, Succurro A, Maguire J, Ebenhöh O. 2016. Dynamics of the bacterial community associated with *Phaeodactylum tricornutum* cultures. bioRxiv, http://dx.doi.org/10.1101/077768, accessed October 16 2016.

Moon M, Kim CW, Park W-K, Yoo G, Choi Y-E, Yang J-W. 2013. Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in *Chlamydomonas reinhardtii*. Algal Research **2**, 352–357.

Müller P, Li XP, Niyogi KK. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiology **125**, 1558–1566.

Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. 2007. Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta **1767**, 414–421.

Murchie EH, Pinto M, Horton P. 2009. Agriculture and the new challenges for photosynthesis research. New Phytologist **181**, 532–552.

Nagy G, Ünnep R, Zsiros O, et al. 2014. Chloroplast remodeling during state transitions in *Chlamydomonas reinhardtii* as revealed by noninvasive techniques *in vivo*. Proceedings of the National Academy of Sciences, USA **111**, 5042–5047.

Nawrocki WJ, Santabarbara S, Mosebach L, Wollman FA, Rappaport F. 2016. State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas. Nature Plants 2, 16031.

Neidhardt J, Benemann J, Zhang L, Melis A. 1998. Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and. Photosynthesis Research **56**, 175–184.

Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P. 2010. Identification of a slowly inducible zeaxanthindependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in *Arabidopsis*. Biochimica et Biophysica Acta **1797**, 466–475.

Niyogi KK. 1999. Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology **50**, 333–359.

Niyogi KK, Truong TB. 2013. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology **16**, 307–314.

Olaizola M, La Roche J, Kolber Z, Falkowski PG. 1994. Nonphotochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynthesis Research **41**, 357–370.

Page 14 of 15 | Moejes et al.

Owens TG, Wold ER. 1986. Light-harvesting function in the diatom *Phaeodactylum tricornutum*: I. Isolation and characterization of pigment-protein complexes. Plant Physiology **80**, 732–738.

Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D. 2011. Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource Technology **102**, 10163–10172.

Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK. 2009. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature **462**, 518–521.

Petroutsos D, Busch A, Janssen I, Trompelt K, Bergner SV, Weinl S, Holtkamp M, Karst U, Kudla J, Hippler M. 2011. The chloroplast calcium sensor CAS is required for photoacclimation in *Chlamydomonas* reinhardtii. The Plant Cell **23**, 2950–2963.

Petroutsos D, Tokutsu R, Maruyama S, et al. 2016. A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature **537,** 563–566.

Pfau T, Christian N, Ebenhöh O. 2011. Systems approaches to modelling pathways and networks. Briefings in Functional Genomics **10**, 266–279.

Pinnola A, Dall'Osto L, Gerotto C, Morosinotto T, Bassi R, Alboresi A. 2013. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in *Physcomitrella patens*. The Plant Cell **25**, 3519–3534.

Pinnola A, Ghin L, Gecchele E, Merlin M, Alboresi A, Avesani L, Pezzotti M, Capaldi S, Cazzaniga S, Bassi R. 2015. Heterologous expression of moss light-harvesting complex stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment-protein complex catalyzing nonphotochemical quenching, in *Nicotiana* sp. The Journal of Biological Chemistry **290**, 24340–24354.

Polukhina I, Fristedt R, Dinc E, Cardol P, Croce R. 2016. Carbon supply and photoacclimation cross talk in the green alga *Chlamydomonas reinhardtii*. Plant Physiology **172**, 1494–1505.

Poolman MG, Miguet L, Sweetlove LJ, Fell DA. 2009. A genomescale metabolic model of *Arabidopsis* and some of its properties. Plant Physiology **151**, 1570–1581.

Pribil M, Pesaresi P, Hertle A, Barbato R, Leister D. 2010. Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biology **8**, e1000288.

Rebolloso-Fuentes MM, Navarro-Pérez A, Ramos-Miras JJ, Guil-Guerrero JL. 2001. Biomass nutrient profiles of the microalga *Phaeodactylum tricornutum*. Journal of Food Biochemistry **25,** 57–76.

Rochaix JD, Lemeille S, Shapiguzov A, Samol I, Fucile G, Willig A, Goldschmidt-Clermont M. 2012. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences **367**, 3466–3474.

Ruban AV. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology **170,** 1903–1916.

Ruban AV, Johnson MP, Duffy CD. 2012. The photoprotective molecular switch in the photosystem II antenna. Biochimica et Biophysica Acta **1817**, 167–181.

Ruban A, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne AL. 2004. The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynthesis Research **82**, 165–175.

Rügen M, Bockmayr A, Legrand J, Cogne G. 2012. Network reduction in metabolic pathway analysis: elucidation of the key pathways involved in the photoautotrophic growth of the green alga *Chlamydomonas reinhardtii*. Metabolic Engineering **14**, 458–467.

Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV. 2017. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nature Plants **3**, 16225.

Satish Kumar V, Dasika MS, Maranas CD. 2007. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8, 212.

Schmollinger S, Schulz-Raffelt M, Strenkert D, Veyel D, Vallon O, Schroda M. 2013. Dissecting the heat stress response in Chlamydomonas by pharmaceutical and RNAi approaches reveals conserved and novel aspects. Molecular Plant **6**, 1795–1813.

Schroda M, Hemme D, Mühlhaus T. 2015. The Chlamydomonas heat stress response. The Plant Journal 82, 466–480.

Shapiguzov A, Ingelsson B, Samol I. 2010. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in *Arabidopsis*. Proceedings of the National Academy of Sciences, USA **107**, 4782–4787.

Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. A look back at the US Department of Energy's aquatic species program: biodiesel from algae; close-out report. National Renewable Energy Laboratory **328**.

Simmons GF. 1972. Differential equations: with applications and historical notes. New York: McGraw-Hill, pp. VII–IX.

Singh D, Carlson R, Fell D, Poolman M. 2015. Modelling metabolism of the diatom *Phaeodactylum tricornutum*. Biochemical Society Transactions **43**, 1182–1186.

Siron R, Giusti G, Berland B. 1989. Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Marine Ecology Progress Series **55**, 95–100.

Smetacek V. 1999. Diatoms and the ocean carbon cycle. Protist 150, 25–32.

Smith BM, Morrissey PJ, Guenther JE, Nemson JA, Harrison MA, Allen JF, Melis A. 1990. Response of the photosynthetic apparatus in *Dunaliella salina* (Green Algae) to irradiance stress. Plant Physiology **93**, 1433–1440.

Stella GR. 2016. Light stress and photoprotection in green algae, mosses and diatoms. PhD thesis, France: Université Pierre et Marie Curie (UPMC) Paris.

Stirbet A, Riznichenko GY, Rubin AB, Govindjee. 2014. Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochemistry **79**, 291–323.

Sukenik A, Bennett J, Falkowski P. 1987. Light-saturated photosynthesis—limitation by electron transport or carbon fixation? Biochimica et Biophysica Acta **891**, 205–215.

Sundby C, McCaffery S, Anderson JM. 1993. Turnover of the photosystem II D1 protein in higher plants under photoinhibitory and nonphotoinhibitory irradiance. The Journal of Biological Chemistry **268**, 25476–25482.

Taddei L, Stella GR, Rogato A, et al. 2016. Multisignal control of expression of the LHCX protein family in the marine diatom *Phaeodactylum tricornutum*. Journal of Experimental Botany **67**, 3939–3951.

Thiele I, Palsson BØ. 2010. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols **5**, 93–121.

Tikkanen M, Aro EM. 2014. Integrative regulatory network of plant thylakoid energy transduction. Trends in Plant Science **19,** 10–17.

Tokutsu R, Minagawa J. 2013. Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in *Chlamydomonas reinhardtii*. Proceedings of the National Academy of Sciences, USA **110**, 10016–10021.

Ünlü C, Drop B, Croce R. 2014. State transitions in *Chlamydomonas reinhardtii* strongly modulate the functional size of photosystem II but not of photosystem I. Proceedings of the National Academy of Sciences, USA **111,** 3460–3465.

Varma A, Palsson BO. 1993. Metabolic capabilities of *Escherichia coli*: I. synthesis of biosynthetic precursors and cofactors. Journal of Theoretical Biology **165**, 477–502.

Varma A, Palsson BO. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type *Escherichia coli* W3110. Applied and Environmental Microbiology **60**, 3724–3731.

Veith T, Brauns J, Weisheit W, Mittag M, Büchel C. 2009. Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom *Cyclotella meneghiniana*. Biochimica et Biophysica Acta **1787**, 905–912.

Verhulst P. 1838. Notice sur la loi que la population suit dans son accroissement. Correspondance mathématique et physique de l'Observatoire de Bruxelles **10,** 113–121.

Villanova V. 2016. Identification of the mechanism of mixotrophy in *Phaeodactylum tricornutum*. PhD thesis, France: Biosciences and Biotechnology Institute of Grenoble, CEA Sciences.

Villanova V, Emidio A, Singh D, et al. 2017. Investigating mixotrophic metabolism in the model diatom *Phaeodactylum tricornutum*. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Accepted.

Volterra V. 1926. Fluctuations in the abundance of a species considered mathematically. Nature **118**, 558–560.

Wang H, Zhang W, Chen L, Wang J, Liu T. 2013. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresource Technology **128**, 745–750.

Yokono M, Murakami A, Akimoto S. 2011. Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochimica et Biophysica Acta **1807**, 847–853.

Zaks J, Amarnath K, Kramer DM, Niyogi KK, Fleming GR. 2012. A kinetic model of rapidly reversible nonphotochemical quenching.

Proceedings of the National Academy of Sciences, USA **109**, 15757–15762.

Zaks J, Amarnath K, Sylak-Glassman EJ, Fleming GR. 2013. Models and measurements of energy-dependent quenching. Photosynthesis Research **116**, 389–409.

Zhang R, Li H, Xie J, Zhao J. 2007. Estimation of relative contribution of "mobile phycobilisome" and "energy spillover" in the light-dark induced state transition in Spirulina platensis. Photosynthesis Research **94,** 315–320.

Zhu SH, Green BR. 2010. Photoprotection in the diatom Thalassiosira pseudonana: role of Ll818-like proteins in response to high light stress. Biochimica et Biophysica Acta **1797**, 1449–1457.

Zulfugarov IS, Tovuu A, Dogsom B, Lee CY, Lee CH. 2010. PsbSspecific zeaxanthin-independent changes in fluorescence emission spectrum as a signature of energy-dependent non-photochemical quenching in higher plants. Photochemical & Photobiological Sciences **9**, 697–703.