
                             Elsevier Editorial System(tm) for Ceramics 

International 

                                  Manuscript Draft 

 

 

Manuscript Number:  

 

Title: Graphene Derived Lanthanum Carbide targets for the SPES ISOL 

Facility  

 

Article Type: Full length article 

 

Keywords: Carbothermal reaction, multilayered graphene, sintering, 

carbides 

 

 

Corresponding Author: Dr. Lisa Biasetto, Ph.D. 

 

Corresponding Author's Institution: University of Padova 

 

First Author: Stefano Corradetti 

 

Order of Authors: Stefano Corradetti; Saramaria Carturan; Alberto 

Andrighetto; Gino Mariotto; Marco Giarola; Alberto Fabrizi; Lisa 

Biasetto, Ph.D. 

 

Abstract: Lanthanum carbide based targets were produced as benchmark 

tests before the production of radioactive uranium carbide targets. 

Carbides possessing excess carbon and porosity seem to be the best 

candidates as target for the production of exotic beams in the SPES-ISOL 

facility. In addition, the capability of tailoring properties such as 

grains size and pores size represents a step ahead to improve the ions 

release efficiency.  

In this work, multilayered graphene was used as source of carbon for the 

production of LaCx and the main physical properties of the produced 

targets were compared to standard LaCx produced using micrometric 

graphite. The main output of the work consisted in the reduced total 

porosity (28.8 vol% vs 47.8 vol%) and increased shrinkage (20.4 vol.% vs 

5.8 vol.%) of the LaCx-Graphene samples compared to LaCx-Graphite ones. 

This result showed how graphene can be successfully employed as sintering 

aid for the sintering of carbides. Further studies are ongoing with UO2 

as starting reagent for carburization within the project AUL-2013-16-176 

"Study of the use of graphene as source of carbon for Uranium Carbide-

Graphene nanocomposites production" now under conclusion at the JRC-ITU 

Actinide User Laboratory. 

 

 

Suggested Reviewers: Gadipelli Srinivas 

University College London 

 g.srinivas@ucl.ac.uk 

 

Peter  Kunz 

TRIUMF 

pkunz@triumf.ca 

 

Toshihiro  Isobe 

Tokyo Institute of Technology 

tisobe@ceram.titech.ac.jp 



 

 

Opposed Reviewers:  

 

 



Vicenza, April 11
th

 2017 

 
 
 
 
 
 

COVER LETTER 
 
 
 
 

Dear Editor, 

on behalf of the all authors, I am sending to your attention the manuscript titled “Graphene Derived Lanthanum 

Carbide targets for the SPES ISOL Facility”. This research is the preliminary part of the project AUL-2013-16-176 

“Study of the use of graphene as source of carbon for Uranium Carbide-Graphene nanocomposites production” 

now under conclusion at the JRC-ITU Actinide User Laboratory. This part of the research was run at INFN-LNL, 

University of Padova and University of Verona (Italy). 

To the best of our knowledge, this is an original research work that studies the effect of graphene as carbon source 

for the production of carbides by carbothermal reaction. Our research show how the use of graphene as carbon 

source increases the densification of the newly formed carbides. We think that this research could be useful not 

only for the production of ISOL facilities targets, but in general for the sintering of covalent carbides.  

 

 

 

 

Best Regards 
Lisa Biasetto 

Cover Letter
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4. Keywords 
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5. Highlights 
 
1) Multilayered graphene was used for the very first time as carbon source for the carburization 

reaction of La2O3 

2) The reaction kinetic showed a similar trend to the carburization of La2O3 using micrometric 

graphite. 

3) The graphene derived LaCx showed an impressively lower porosity (40 vol.% less) and higher 

shrinkage (70 vol.% more) than the graphite derived LaCx samples. 

4) From the results of the present work it is expected that graphene could be used as sintering aid for 

the production of fully dense carbides.  

*Manuscript
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6. Abstract 
 
Lanthanum carbide based targets were produced as benchmark tests before the production of 

radioactive uranium carbide targets. Carbides possessing excess carbon and porosity seem to be the 

best candidates as target for the production of exotic beams in the SPES-ISOL facility. In addition, the 

capability of tailoring properties such as grains size and pores size represents a step ahead to improve 

the ions release efficiency.  

In this work, multilayered graphene was used as source of carbon for the production of LaCx and the 

main physical properties of the produced targets were compared to standard LaCx produced using 

micrometric graphite. The main output of the work consisted in the reduced total porosity (28.8 vol% 

vs 47.8 vol%) and increased shrinkage (20.4 vol.% vs 5.8 vol.%) of the LaCx-Graphene samples 

compared to LaCx-Graphite ones. This result showed how graphene can be successfully employed as 

sintering aid for the sintering of carbides. Further studies are ongoing with UO2 as starting reagent for 

carburization within the project AUL-2013-16-176 “Study of the use of graphene as source of carbon 

for Uranium Carbide-Graphene nanocomposites production” now under conclusion at the JRC-ITU 

Actinide User Laboratory. 

 
7. Introduction 
 
The development of carbides possessing tailored functional properties is a topic of increasing interest  

for the production of targets for Isotope Separation On-Line (ISOL) Facilities [1, 2, 3, 4]. Within the 

target unit, high temperature (T=2000°C) and high vacuum (p=10-4 Pa) are necessary to extract 

selected beams with high efficiency, though they drive the employed material to critical environmental 

conditions. For this reason, carbide based targets such as LaCx, ThCx, UCx, SiC, TiC seem to be the best 

candidates for the production of neutron-rich and neutron deficient isotopes. The selected 

carbides can be synthesized via the classical carbothermal reaction, starting directly from oxides or 

from oxide generating precursors, such as acetates or oxalates [5], and a carbon source. In some cases 

(UCx, LaCx, ThCx) the carbon in excess has the main role of dissipating the heat generated by the 

nuclear fission reactions occurring between the fissile atoms and the accelerated impinging beam, 

improving the high-temperature stability of the structure [6]. In addition, the presence of porosity and 

the grain size of carbides can affect respectively effusion and diffusion of the produced isotopes and 

consequently the release efficiency of the target [2]. For this reason, in the last few years, active 

research was run in order to understand the role of grain size and porosity on release efficiency 

properties of the target [2, 4]. The main output was the proved effect in terms of release efficiency and 

release times of nanostructured targets. The grain size affects the diffusion release, since diffusion 

constant is inversely proportional to grain size, while porosity and its interconnectivity degree affects 

the effusion. However, it should be noted that nanostructured targets must maintain their 
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nanostructures at the target operating temperature; for this reason grains growth and pores collapse 

must be avoided by mean of a proper design of the target material [7]. 

Within the SPES Project [8], much effort has been given to the development of carbides characterized 

by a tailored morphology as related to grains size and porosity. Lanthanum carbide was used as 

preliminary material for benchmark tests thereby avoiding the risks related to radioactivity.  

Different carbon sources were used (graphite and MWCNTs) [9] as well as different lanthanum 

precursors (La2O3 and La2(C2O4)3) [5]. In addition, highly porous and interconnected cellular 

lanthanum carbide was developed [10, 11]. The same route was run using different uranium oxides 

sources (UO2, U3O8 and UO3) and carbon sources (graphite and MWCNTs) [1, 12] 

The results of release efficiency of UCx targets prepared starting from graphite and MWCNTs were 

recently reported in [13]. These materials proved to be interesting alternatives to the standard ones 

used in ISOL facilities [6, 14], where graphite is used as a carbon source; by means of the optimization 

of the production technique mechanically stable and high porosity samples were obtained. 

Higher than ever yields of radioactive beams of selected isotopes have been indeed obtained using 

nanostructured targets, such as CaO or uranium carbide containing MWCNTs [4, 6]. 

Among the different allotropic configurations of carbon, graphene represents the most promising 

material, due to its unique physical, chemical and mechanical properties.  

Graphene can be derived from thermal or chemical reduction process of graphene oxide (GO) and is 

called Reduced Graphene Oxide (RGO) or it can be obtained by mechanical exfoliation of graphite [15].  

Because of its high accessible surface area and good electrochemical stability, graphene is widely used 

as active material or conductive substrate in energy storage devices [16, 17, 18]. Graphene and 

carbides can be find together in the literature for the synthesis of nanocomposites materials where 

graphene is used as reinforcing phase in carbide matrix composites [19, 20, 21]. Furthermore, 

graphene nanosheets play a key role on the sintering process (inhibiting the grain growth), so as on 

the mechanical properties of the material (increasing the material’s toughness). To the best of our 

knowledge, only one experiment is reported in the literature where graphene is used as source of 

carbon for the synthesis of SiC nanoflakes [22].  

One of the most common route to produce carbides is the carbothermal reduction process where the 

metal oxide is made to react with a source of carbon following reaction (1): 

 

MxOy+ (z+y+n)C =>  MxCz + yCO +nC        (1) 

 

This is a solid state reaction that occurs through solid state diffusion of carbon within the metal oxide 

lattice. The reaction occurs at high temperatures (T>1000°C) and takes long time to complete (several 

hours). In addition, the temperature must be further increased after carbothermal reaction is 

completed, in order to sinter the freshly formed carbide. 
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In [9], where MWCNTs were used as source of carbon, it was observed that the carbothermal 

reduction occurred at lower temperature than LaCx obtained using graphite.   

In the present work, commercial graphene was used as source of carbon for LaC2 formation by means 

of carbothermal reaction run under high vacuum. The prepared samples were compared as for 

composition, structure and morphology to standard graphite-derived LaCx samples in order to verify 

the reactivity of graphene with La2O3, thereby evaluating the possibility to exploit the well-known 

outstanding physical properties of graphene to enhance the final performances of the so obtained LaCx 

composites. 

This work is the preliminary step of the project titled AUL-2013-16-176 “Study of the use of graphene 

as source of carbon for Uranium Carbide-Graphene nanocomposites production” now under 

conclusion at the JRC-ITU Actinide User Laboratory.  

 

8. Experimental 

8.1 LaCx synthesis 

Lanthanum dicarbide–carbon composites were synthesized by means of the carbothermal reduction 

of lanthanum oxide, in the presence of excess carbon, according to reaction (1) reported above. Both 

graphite and graphene were used as carbon source, where the excess of carbon was calculated in 

order to obtain a final material with a LaC2/C molar ratio equal to 1/2. La2O3 and graphite (mesh size 

<325 um) powders were purchased from Sigma–Aldrich and used as received. Elicarb® Graphene was 

purchased from Thomas Swan&Co. Ltd UK and used as received. The Elicarb® Graphene powders are 

high purity platelets of size ranging from 0.5 nm to 3 nm. Powders were manually mixed and grinded 

in an agate mortar where a 2–4 wt% of phenolic resin in acetone solution at 10 wt% was added as 

binder. Powders were uniaxially pressed at 750 MPa and after extraction were heat treated under high 

vacuum (10-3 Pa) in a graphite furnace [23], up to 1950 °C with a heating rate of 1 °C/min, no dwell 

time and a cooling rate of 5 °C/min. 

Two kinds of samples were prepared, LaCx-Graphite were prepared using graphite as source of carbon, 

whilst LaCx-Graphene were prepared using graphene (details on the production and final properties 

are reported in Table 2). 

Disks of 13 mm diameter and 1 mm thickness were prepared in a number of at least three samples for 

each composition. 

 

8.2. Characterization 

The composition of both the sintered samples and carbon sources were characterized by XRD (Bruker 

D8 Advance diffractometer, Karlsruhe, Germany), using CuK   radiation = 1.5412 Å, at 40 kV and 40 

mA. The 2  range was varied from 25° to 80° with a step size of 0.05° and a step time of 5 s. The 

quantitative analyses of the phases present after sintering  so as the crystallite size were calculated by 

Rietveld method using MAUD [24]. The crystalline phases structure was identified by Crystalline Open 
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Database (COD) [25]. The microstructure of the LaCx samples was characterized by a scanning electron 

microscope (SEM Vega 3xmh, Tescan, Brno, Czech Republic), equipped with an energy-dispersive X-

ray spectroscopy (EDS-EDAX) detector.  

The graphene and graphite powders were also observed by Transmission Electron Microscopy (TEM). 

The micrographs of the as received carbon materials were acquired by means of a JEOL JEM 2000 EX-

II microscope operating at 200 keV. TEM samples were prepared by dispersing the carbon powders in 

ethanol; then, a drop of the suspensions was deposited on a 200-mesh copper TEM grid coated with a 

thin amorphous carbon film. 

Raman spectroscopy was used to characterize both the as received carbon powders (both graphene 

and pyrolytic graphite) and the graphene and graphite derived LaCx samples. Micro-Raman spectra 

were carried out in backscattering geometry using a Horiba-Jobin Yvon apparatus, model LabRam HR, 

consisting of a single spectrograph, with a focal length of 80 cm, and mounting a holographic grating 

(600 lines/mm), to disperse the anelastically scattered radiation. The system exploited a narrow band 

notch filter to reject the elastically scattered light. The spectra here reported were excited by the 633 

nm line of a He-Ne laser through an objective 80X, and recorded by a CCD (256x1024 pixels) detector, 

cooled at -134 °C. The maximum laser power flux impinging the samples, without filters, can be 

estimated of the order of 109 W/m2, critically depending on the focusing precision. In order to prevent 

sample overheating and possible related damage it can be reduced in a controlled manner to the 

optimal value by using neutral filters of optical density ranging from 0.3 up to 4. 

The samples bulk density was measured as mass over volume ratio and the total porosity was 

calculated by eq.2: 

       
     

   
          (eq.2) 

where the       is the bulk density and the     was calculated by the rule of mixture, taking into 

account the volumetric fractions of LaC2 and free carbon present in the final samples (Eq.1) and their 

theoretical solid densities, 5.29 g/cm3 for LaC2 [26] and 1.90 g/cm3 for graphite (as of producer 

datasheet). Analogously to previous studies performed with carbon nanotubes [5, 9], also in this case 

no information on the actual graphene density was obtainable, so the same value of graphite was 

initially used for porosity calculation purposes. However, since literature reports values for graphene 

densities that span from 1.9 to 2.3 g/cm3, porosity calculations were performed in this work also 

considering the latter case, as reported in the next section.  

The shrinkage of the samples was measured as volume variation before and after sintering. 

The specific surface area (SSA) and the presence of micro-meso porosity were estimated by N2 

physisorption measurements (ASAP2020, Micromeritics, Norcross, GA), using the classical Brunauer-

Emmett-Teller (BET) model to derive SSA values and the Barrett–Joyner–Halenda (BJH) method for 

pores size investigation.  
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9. Results and Discussion 

In figure 1 the XRD analyses of both the a.r. graphite and graphene powders are reported. The XRD 

spectra measured in the range 10°-50° show (002) diffraction peak at 2 =26.45° (a.r. Graphite) and 

2 =26.55° (a.r. Graphene), which is related to the distance between graphene layers [27]. The graphite 

spectrum also presents a peak splitting, resulting in the presence of a minor peak at 25.5°. Results are 

reported in Figure 1.  

Figure 1 – Graphite and Graphene Diffraction patterns 

 

In Raman spectra (Figure 2) the presence of the G’ band, with multiple curves fitting, confirms the 

multilayered structure of the graphene used in this work [28]. Monolayer graphene usually displays a 

single, Lorentzian shaped peak in the G’ position and its intensity is much higher than the G band, 

while multilayered structure in graphene leads to multi-component peak for G’ band and strongly 

reduced intensity, with remarkable affinity with highly ordered pyrolytic graphite (HOPG) spectral 

features [29]. 
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Figure 2- Left: Raman spectra of a.r. graphene and graphite; right: Lorentian peak fitting. 

 

Table 1-Stacking layers calculation for a.r Graphene and Graphite 

 ID/IG La [nm] 

Graphite 0.38 44.3 

Graphene 1.08 15.6 

 

The nanocrystallite size, La, can be derived from the ratio Id/Ig as detailed in [30]: for graphite the 

estimated La value is 44.3 nm, while for graphene is 15.6 nm (λexc 514.5 nm). 

The intensity of the D band, generally associated to the presence of defects, increases in graphene as 

compared to graphite. This trend can be associated to the reduced grain size of graphene and 

consequently to the presence of defects associated to grain boundaries. As stated by Cançado and co-

workers [31], the amount of disorder in a nanocrystallite is given by the extent of border (one-

dimensional defects) with respect to the total crystallite area, that is La. Therefore, the increase of the 

D band intensity for the case of graphene used in this study can be associated to the increase of the 

ratio between grain boundaries width and grain size (La) (Table 1).  

  

Figure 3- TEM micrographs of as received a) graphene and b) graphite powders. 

 

Representative bright-field TEM images of the provided graphite and graphene powders are shown in 

Fig. 3 a and b, respectively. Both carbon materials clearly show an evident platelet-like morphology 

and the size of the sheets, often stacked one to each other, ranges from several microns to a few 

hundred nanometers. 

An overview of the produced samples in terms of shrinkage, weight loss and calculated porosity is 

reported in Table 2. It can be observed the impressively higher shrinkage for LaCx-Graphene sample 

(20.4±3.1 %) compared to LaCx-Graphite (5.8±0.6%). This is associated to a reduction of total porosity 
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for LaCx-Graphene (28.9±2.2% considering a graphene density of 1.9 g/cm3 or 32.6±2.1% considering 

a graphene density of 2.3 g/cm3) versus 47.8±1.0% of LaCx-Graphite. On the other hand, the weight 

loss for the two type of samples is quite similar, with a slightly higher weight loss for LaCx-Graphite, 

thus proving that the reaction proceeds in both cases at quite the same extent.  

 

Table 2- Composition, shrinkage, weight losses and calculated total porosity of the produced samples. 

a Data for  graphene = 1.9 g/cm3, b data for  graphene = 2.3 g/cm3 

 Composition 
Density 
[g/cm3] 

Shrinkage 
[vol.%] 

Weight loss 
[wt.%] 

Theoretical 
weight loss 

[wt.%] 

Total 
porosity 
[vol.%] Sample 

La2O3 
[wt.%] 

Graphite 
[wt.%] 

Graphene 
[wt.%] 

LaCx-
Graphite 

71.2 28.8 - 3.1 ± 0.1 5.8 ± 0.6 23.8 ± 0.3 18.4 47.8 ± 1.0 

LaCx-
Graphene 

71.2 - 28.8 2.2 ± 0.1 20.4 ± 3.1 22.2 ± 0.2 18.4 
28.9 ± 2.2a 
32.6 ± 2.1b 

 

The base pressure versus temperature during the whole process in the vacuum chamber, as reported 

in Figure 4 for a batch of two LaCx-Graphene and two LaCx-Graphite samples treated simultaneously. 

The reported gas release is very similar to the ones already reported for LaCx-Graphite [9], with the 

samples outgassing and the phenolic resin decomposition occurring in the 200-800 °C region and 

carbothermal reaction starting between 1100 °C and 1200 °C. Therefore, negligible differences in the 

reactivity of the starting mixtures either employing graphite or graphene can be inferred. As reported 

in a previous study [5], additional gas release occurred for temperatures above 1700 °C which could 

be attributable to both the furnace outgassing and the LaC2 sublimation from the pellets surfaces. This 

latter phenomenon could also explain the higher weight loss of the treated samples with respect to the 

theoretical ones which were calculated basing on stoichiometry, as reported in Table 2 and discussed 

in [5]. 
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Figure 4- Gas evolution upon carburization and sintering of graphene and graphite derived LaCx (two 

samples for each composition treated together).  

 

Previous results with MWCNT as carbon source have shown higher reactivity as compared to graphite 

[9]: the carburization reaction starts at 1000 °C and is complete at 1400 °C, whereas for graphite-

based composites the reaction starts at 1200 °C and is still ongoing at 1400 °C. In that case, the 

activation energy of the carbothermal reaction is clearly reduced by the presence of the nanotubes: the 

reaction proceeds either by direct contact between carbon and the oxide or by diffusion of carbon 

through the newly formed carbide grains and reaction with the oxide. Then, CO evolution occurs as a 

by-product of the reaction. The presence of MWCNT favours both the contact between reactants, 

owing to their high aspect ratio leading to more intimate contact with oxide powders, and the easier 

release of gaseous products, owing to the presence of nano-sized tubular channels. In the case of 

multi-layered graphene used herein, the observed similar reactivity as compared to graphite leads to 

the conclusion that agglomeration of multilayered graphene and phase separation between oxide and 

graphene itself occurs, thus leading to interfacial contact between the two phases quite similar to the 

case of graphite. The expected intercalation of oxide powders between the 2D-platelets does not take 

place and different techniques of mixing should be investigated to avoid agglomeration. On the other 

hand, the possibility that using a graphene with higher aspect ratio, composed of fewer layers of sp2 

carbon atoms, could sensibly modify the interfacial contact and increase the reactivity cannot be ruled 

out.  

On the other hand, a quite impressive shrinkage in the case of graphene-derived composites is 

observed. The much higher densification degree can be ascribed to a sintering-aid effect induced by 

the graphene nanoplatelets. This behaviour has been previously reported in literature for the case of 

other carbides such as B4C and TiC [19, 20, 21] and will be discussed below in more detail. 

Differences in densities of LaCx-Graphite with respect to previously reported data [5, 9] could be 

ascribed to differences in the thermal treatment. In past studies indeed the treatments were divided 

into many substeps including heating at 2 °C/min and extremely long dwell times (9, 12 or 24 hours), 

whereas in this case a continuous, although slower in terms of rate, heating was performed up to very 

high temperatures. 

N2 adsorption-desorption isotherms of samples obtained using either graphite or graphene are 

reported in Figure 5, with pores size distribution as derived by BJH method. 

In the case of graphite derived samples the SSA is almost negligible and approaching the sensitivity of 

the technique, around 1 m2/g, irrespectively of the heating rate during treatment and in agreement 

with previously reported data [9]. The isotherm recorded for purified graphene is reported in the inset 

graph of Figure 5. The estimated BET value for SSA is only 29 m2/g, a surprisingly low value for 

graphene, taking into account that the powder has been treated with sonication in N-methyl 

pyrrolidone and filtered with a Teflon membrane (pore size 2.5 µm) prior to analysis in order to 
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separate possible stacked layers [32]. On the other hand, this result is in agreement with XRD and 

Raman analyses, which point to a tight packing of several graphene sheets, and with previously 

reported N2 physisorption data on multi-layered graphene [33].  

 

Figure 5- N2 adsorption-desorption isotherms for LaCx composites derived from graphite or graphene 

(left side, inset graph graphene after purification) and pore size distribution as derived from BJH 

model (right side). 

 

Since the interlayer distance of graphene is around 0.34 nm, from XRD estimation, most of the packed 

layers are inaccessible by liquid nitrogen molecule, thus resulting in dramatically reduced SSA with 

respect to the theoretical SSA for graphene single layers (2620 m2/g) [34]. For samples obtained from 

graphene as carbon source, a very weak increase in SSA can be noticed and values around 2.8 m2/g are 

estimated using the BET algorithm. The isotherm is of type IV according to IUPAC classification [35], 

the hysteresis loop extends up to the high pressure regime indicating the presence of mesopores of 

large size (around 10 nm), as confirmed by BJH analysis performed on the desorption branch.  

XRD investigations, reported in Figure 6, show the formation of only   LaC2 for both samples, as 

confirmed by the good Rietveld fitting.  

It is worth to note that the presence of residual carbon cannot be detected by the XRD analyses due to 

the presence of the high atomic number lanthanum atoms. The Rietveld analyses show that LaCx-

Graphite samples possess an asymmetric shape with crystallites of about 32 nm size in the [112] 

direction, whilst on [110] direction a size of about 85 nm. As concern the LaC2 crystallites in LaCx-

Graphene samples, they also possess an asymmetric shape, thus giving in the [112] direction a size of 

about 27 nm, whilst on [110] direction a size of about 55 nm. 

The small inserts in figure 7a and c, where SEM images of the samples surface are reported, show the 

aspect of the composites after thermal treatment: the LaCx- Graphite sample shows a dark-grey color 

with small bright spots, the LaCx-Graphene sample shows a light yellow colour with some grey spots. 

This difference can be attributed both to the higher amount of porosity in LaCx-Graphite and to the less 

efficient dispersion of carbon among the LaCx grains. This is confirmed by the SEM images reported in 
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Figure 7 where the higher level of dispersion of carbon in LaCx-Graphene sample is clearly observed. 

The high magnification images in Figure 7b and d and their inserts show the formation of micron-sized 

grains, as detected on the sample surface. The observation at high magnification of the samples cross-

section, as shown in Figure 8, clearly evidences the enhanced degree of compaction in graphene-

derived composite. 

 

 

Figure 6- Top, XRD diffraction of LaCx-Graphene; bottom XRD pattern of LaCx-Graphite 

 

The data on porosity and SEM images point to a possible scenario where enhanced densification 

occurs in the samples in the case of residual graphene after the carbothermal reaction. In fact, the 

carburization process displays almost the same features as for starting temperature, CO evolution with 

temperature and time and final yield, either using graphene or graphite as starting reactant. As soon as 

carburization reaches the maximum extent, the role of residual multilayered graphene changes to that 

of a sintering-aid, hence smaller grains, higher compaction and little or no porosities develop in this 

system as compared to graphite-based one. 
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Figure 7-SEM images of LaCx-Graphite (a,b) and LaCx-Graphene(c,d). The inserts in figures a and c 

show the samples after thermal treatment.  

 

 

Figure 8. SEM images of the cross-section of the samples derived from graphite (a) and graphene (b) 

taken at the same magnification (1600x). 

 

Micro-Raman spectra of the sintered carbides are shown in Figure 9.  The spectra recorded from 

unreacted grains of either graphite or graphene derived samples clearly show the typical fingerprints 

of crystalline sp2 carbon. i.e.: D, G and G’ bands (Fig. 9, top panel). The spectra collected from the 

bright grains of both graphite and graphene derived samples, do not show any Raman mode of the 
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LaCx phase, but only the D and G bands of the residual carbon (Fig. 9, bottom panel). In fact, the G’ band 

at high wavenumbers is no longer observed. Moreover, the ratio ID/IG is much higher in these spectra 

as compared to the spectra from dark grains, coming from unreacted, massive carbon, either graphite 

or graphene. All these features strongly point to a remarkable amorphization of the carbonaceous 

residual phase. A further evidence of this structure modification is the reduced intensity of the D band 

in the unreacted graphene, as compared to the as received graphene (see, Fig. 2, left panel). Since 

sintering is a diffusion driven process, it can be expected that the higher amount of defects present in 

the multilayered graphene used in this work become active during sintering, thus reducing the 

gradient of defects concentration between graphene grain boundaries. 

 

Figure 9- Raman spectra of LaCx-Graphite and LaCx-Graphene samples (black grain, unreacted carbon, 

while bright grain is the LaCx grain. 

 

10. Conclusions 

Multilayered graphene as source of carbon for the carbothermal reaction of La2O3 has been chosen in 

this study and this approach has been compared with the traditional use of standard graphite. Main 

results revealed that multilayered graphene does not act as a catalyst for the carburization reaction, as 

was expected from previously observed behavior of MWCNTs as carbon source. The negligible effect of 

the presence of multilayer graphene on the thermodynamics of the whole process can be ascribed to 

the fact that the graphene used in this work is mainly composed of agglomerated and the reactivity is 

similar to graphite due to the comparable SSA between the two reactants.  
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However, it should be observed how the use of graphene leads to the production of composites with 

remarkably enhanced reduction of porosity of the 40 vol.% if compared to LaCx-Graphite samples, 

meanwhile displaying an increase of the shrinkage of the 70 vol.%. These data drive to the conclusion 

that the multilayered graphene used in this work can be effectively used as sintering aid for lanthanum 

carbides production, and that this effect could be extendable to other carbides. The role of graphene as 

sintering aid is still under study, however the experiments herein described give evidence that it 

becomes active at temperatures higher than 1250°C, that is the temperature at which the 

carbothermal reaction starts to occur.  

 

11. References 

                                                        
[1] L. Biasetto, P. Zanonato, S. Carturan, P. Di Bernardo, P. Colombo, A. Andrighetto, G. Prete, 

Developing uranium dicarbide–graphite porous materials for the SPES project, J. Nucl. Mater. 404 

(2010) 68-76. 

[2] B. Hy, N. Barré-Boscher, A. Ozgumus, B. Roussiere, S. Tusseau-Nenez, C. Lau, M. Cheikh Mhamed, M. 

Raynaud, A. Said, K. Kolos, E. Cottereau, S. Essabaa, O. Tougait, M. Pasturel, An off-line method to 

characterize the fission product release from uranium carbide-target prototypes developed for 

SPIRAL2 project, Nucl. Instrum. Methods Phys. Res. B 288 (2012) 34-41. 

[3] T. Storà, Recent developments of target and ion sources to produce ISOL beams, Nucl. Instrum. 

Methods Phys. Res. B 307 (2013) 402-410. 

[4] J.P. Ramos, A. Gottberg, R.S. Augusto, T.M. Mendonca, K. Riisager, C. Seiffert, P. Bowen, A.M.R. Senos, 

T. Stora, Target nanomaterials at CERN-ISOLDE: synthesis and release data, Nucl. Instrum. Methods 

Phys. Res. B 376 (2016) 81–85. 

[5] L. Biasetto, P. Zanonato, S. Carturan, P. Di Bernardo, P. Colombo, A. Andrighetto, G. Prete, 

Lanthanum carbide-based porous materials from carburization of lanthanum oxide and lanthanum 

oxalate mixtures, J. Nucl. Mater. 378 (2008) 180-187. 

[6] A. Gottberg, Target materials for exotic ISOL beams, Nucl. Instrum. Methods Phys. Res. B 376 

(2016) 8-15. 

[7] J. Guillot, S. Tusseau-Nenez, B. Roussière, N. Barré-Boscher, F. Brisset, M. Cheikh Mhamed, C. Lau, S. 

Nowak, Study of uranium oxide milling in order to obtain nanostructured UCx target, Nucl. Instrum. 

Methods Phys. Res. B 374 (2016) 116-120. 

[8] A. Monetti, A. Andrighetto, C. Petrovich, M. Manzolaro, S. Corradetti, D. Scarpa, F. Rossetto, F. 

Martinez Dominguez, J. Vasquez, M. Rossignoli, M. Calderolla, R. Silingardi, A. Mozzi, F. Borgna, G. 

Vivian, E. Boratto, M. Ballan, G. Prete, G. Meneghetti, The RIB production target for the SPES project, 

Eur. Phys. J. A 51 (2015) 128-138. 

[9] L. Biasetto, S. Carturan, G. Maggioni, P. Zanonato, P. Di Bernardo, P. Colombo, A. Andrighetto, G. 

Prete, Fabrication of mesoporous and high specific surface area lanthanum carbide–carbon nanotube 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

                                                                                                                                                                                        
composites, J. Nucl. Mater. 385 (2009) 582-590. 

[10] L. Biasetto, M.D.M. Innocentini, W.S. Chacon, S. Corradetti, S. Carturan, P. Colombo, A. Andrighetto, 

Gas permeability of lanthanum oxycarbide targets for the SPES project, J. Nucl. Mater. 440 (2013) 70-

80. 

[11] S. Corradetti, L. Biasetto, M.D.M. Innocentini, S. Carturan, P. Colombo, A. Andrighetto, Use of 

polymeric fibers to increase gas permeability of lanthanum carbide based targets for nuclear physics 

applications, Ceram. Int. 42 (2016) 17764-17772. 

[12] S. Corradetti, L. Biasetto, M. Manzolaro, D. Scarpa, S. Carturan, A. Andrighetto, G. Prete, J. Vasquez, 

P. Zanonato, P. Colombo, C.U. Jost, D.W. Stracener, Neutron-rich isotope production using a uranium 

carbide–carbon nanotubes SPES target prototype, Eur. Phys. J. A 49 (2013) 56. 

[13] S. Tusseau-Nenez, B. Roussière, N. Barré-Boscher, A. Gottberg, S. Corradetti, A. Andrighetto, M. 

Cheikh Mhamed, S. Essabaa, H. Franberg-Delahaye, J. Grinyer, L. Joanny, C. Lau, J. Le Lannic, M. 

Raynaud, A. Saïd, T. Stora, O. Tougait, Characterization of uranium carbide target materials to produce 

neutron-rich radioactive beams, Nucl. Instrum. Methods Phys. Res. B 370 (2016) 19-31. 

[14] S. Corradetti, L. Biasetto, M. Manzolaro, D. Scarpa, A. Andrighetto, S. Carturan, G. Prete, P. 

Zanonato, D.W. Stracener, Temperature dependence of yields from multi-foil SPES target, Eur. Phys. J. 

A 47 (2011) 119. 

[15] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A. C. Ferrari, Production and processing 

of graphene and 2d crystals, Mater. Today 15 (2012) 564-589. 

[16] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor Devices Based on 

Graphene Materials, J. Phys. Chem. C 113 (2009) 13103–13107. 

[17] B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, 3D Macroporous Graphene Frameworks for 

Supercapacitors with High Energy and Power Densities, ACS Nano 6 (2012) 4020–4028. 

[18] D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry, Chem. Soc. Rev. 39 (2010) 

3157–3180. 

[19] X. Liu, J. Li, X. Yu, H. Fan, Q. Wang, S. Yan, L. Wang, W. Jiang, Graphene nanosheet/titanium carbide 

composites of a fine-grained structure and improved mechanical properties, Ceram. Int. 42 (2016) 

165–172. 

[20] L. Liu, Y. Wang, X. Li, L. Xu, X. Cao, Y. Wang, Z. Wang, C. Meng, W. Zhu, X. Ouyang, Enhancing 

Toughness in Boron Carbide with Reduced Graphene Oxide, J. Am. Ceram. Soc. 99 (2016) 257–264. 

[21] M. Chen, J. Zhang, Q. Chen, M. Qi, X. Xia, Construction of reduced graphene oxide supported 

molybdenum carbides composite electrode as high-performance anode materials for lithium ion 

batteries, Mater. Res. Bull. 73 (2016) 459–464. 

[22] S. Chabi, H. Chang, Y. Xia, Y. Zhu, From graphene to silicon carbide: ultrathin silicon carbide flakes, 

Nanotechnology 27 (2016) 602-609 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

                                                                                                                                                                                        
[23] S. Corradetti, A. Andrighetto, M. Manzolaro, D. Scarpa, J. Vasquez, M. Rossignoli, A. Monetti, M. 

Calderolla, G. Prete, Research and development on materials for the SPES target, Eur. Phys. J. Web 

Conf. 66 (2014) 11009. 

[24] L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in 

thin film diffraction, Nucl. Instrum. Methods Phys. Res. B 268 (2010) 334-340. 

[25] S. Grazulis, D. Chateigner, R.T. Downs, A.T. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. 

Butkus, P. Moeck, A. Le Bail, Crystallography Open Database – an open-access collection of crystal 

structures, J. Appl. Cryst. 42 (2009) 726-729. 

[26] D.L. Perry, Handbook of Inorganic Compounds, second Edition, CRC Press, Boca Raton, FL, USA, 

2011. 

[27] L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. 

Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron 

spectroscopy methods, J. Electron Spectrosc. Relat. Phenom. 195 (2014) 145-154. 

[28] Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman Spectroscopy and Imaging of Graphene, Nano Res. 1 (2008) 

273-291. 

[29] A. Jorio, Raman Spectroscopy in Graphene-Based Systems: Prototypes for Nanoscience and 

Nanometrology, ISRN Nanotechnol. 2012 (2012) 234216. 

[30] L.G. Cançado, K. Takai, T. Enoki, General equation for the determination of the crystallite size La of 

nanographite by Raman spectroscopy, Appl. Phys. Lett. 88 (2006) 163106. 

[31] L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. 

Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11 (2011) 3190–3196. 

[32] G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, R. Ruoff. Synthesis of graphene-like nanosheets 

and their hydrogen adsorption capacity, Carbon 48 (2009) 630-635. 

[33] K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, A study of graphenes prepared 

by different methods: characterization, properties and solubilization, J. Mater. Chem. 18 (2008) 1517–

1523. 

[34] D.W. Wang, F. Li, Z.S. Wu, W.C. Ren, H.M. Cheng, Electrochemical interfacial capacitance in 

multilayer graphene sheets: Dependence on number of stacking layers et al., Electrochem. Commun. 

11 (2009) 1729–1732. 

[35] K.S.W.Sing, D.H.Everett, R.A.W.Haul, L.Moscou, R.A.Pierotti, J.Rouquerol, T.Siemieniewska, 

Reporting physisorption data for gas/solid systems with special reference to the determination of 

surface area and porosity, Pure Appl. Chem. 57 (1985) 603–619. 



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/ceri/download.aspx?id=877437&guid=7ced6d52-58a0-4d28-88ab-be12f228ff8c&scheme=1


Figure 2
Click here to download high resolution image

http://ees.elsevier.com/ceri/download.aspx?id=877438&guid=39483889-2034-4939-b146-566cdf5b048f&scheme=1


Figure 3
Click here to download high resolution image

http://ees.elsevier.com/ceri/download.aspx?id=877439&guid=2903c8d8-de64-47cf-9102-fb6329923b4e&scheme=1


Figure 4
Click here to download high resolution image

http://ees.elsevier.com/ceri/download.aspx?id=877440&guid=99be80d2-52d4-4b9a-a93e-9d48a340bac6&scheme=1


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/ceri/download.aspx?id=877441&guid=3065d473-0ade-471f-a647-77b5bb01ba1d&scheme=1


Figure 6
Click here to download high resolution image

http://ees.elsevier.com/ceri/download.aspx?id=877442&guid=b4ce5811-8a2e-4cf4-ac4d-4e327e6a2e5f&scheme=1


Figure 7
Click here to download high resolution image

http://ees.elsevier.com/ceri/download.aspx?id=877443&guid=a19224d2-c2a4-4b96-bdfa-3d808d2f0be9&scheme=1


Figure 8
Click here to download high resolution image

http://ees.elsevier.com/ceri/download.aspx?id=877444&guid=f0a2be50-1889-41ae-bbd9-0ab9b491364e&scheme=1


Figure 9
Click here to download high resolution image

http://ees.elsevier.com/ceri/download.aspx?id=877445&guid=ffbac3f9-c7cd-4b1d-b399-7edd3bf7f9a6&scheme=1


Table 1 

 ID/IG La [nm] 

Graphite 0.38 44.3 

Graphene 1.08 15.6 

Table 1



Table 2 

 
 Composition 

Density 

[g/cm3] 

Shrinkage 

[vol.%] 

Weight loss 

[wt.%] 

Theoretical 

weight loss 

[wt.%] 

Total 

porosity 

[vol.%] Sample 
La2O3 

[wt.%] 

Graphite 

[wt.%] 

Graphene 

[wt.%] 

LaCx-

Graphite 
71.2 28.8 - 3.1 ± 0.1 5.8 ± 0.6 23.8 ± 0.3 18.4 47.8 ± 1.0 

LaCx-

Graphene 
71.2 - 28.8 2.2 ± 0.1 20.4 ± 3.1 22.2 ± 0.2 18.4 

28.9 ± 2.2a 

32.6 ± 2.1b 

 

Table 2



Figure 1 – Graphite and Graphene Diffraction patterns 

Figure 2- Left: Raman spectra of a.r. graphene and graphite; right: Lorentian peak fitting. 

Table 2-Stacking layers calculation for a.r Graphene and Graphite 

Figure 3- TEM micrographs of as received a) graphene and b) graphite powders. 

Table 3- Composition, shrinkage, weight losses and calculated total porosity of the produced samples. a 

Data for  graphene = 1.9 g/cm3, b data for  graphene = 2.3 g/cm3 

Figure 4- Gas evolution upon carburization and sintering of graphene and graphite derived LaCx (two 

samples for each composition treated together).  

Figure 5- N2 adsorption-desorption isotherms for LaCx composites derived from graphite or graphene 

(left side, inset graph graphene after purification) and pore size distribution as derived from BJH model 

(right side). 

Figure 6- Top, XRD diffraction of LaCx-Graphene; bottom XRD pattern of LaCx-Graphite 
Figure 7-SEM images of LaCx-Graphite (a,b) and LaCx-Graphene(c,d). The inserts in figures a and c show 

the samples after thermal treatment.  

Figure 8. SEM images of the cross-section of the samples derived from graphite (a) and graphene (b) 

taken at the same magnification (1600x). 

Figure 9- Raman spectra of LaCx-Graphite and LaCx-Graphene samples (black grain, unreacted carbon, 

while bright grain is the LaCx grain. 
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