Hyperhierarchy of Semantics

A Formal Framework for Hyperproperties Verification

Isabella Mastroeni and Michele Pasqua

University of Verona - Dipartimento di Informatica
Strada le Grazie 15, 37134, Verona, Italy
(isabella.mastroeni|michele.pasqua)@univr.it

Abstract. Hyperproperties are becoming the, de facto, standard for
reasoning about systems executions. They differ from classical trace
properties since they are represented by sets of sets of executions instead
of sets of executions. In this paper, we extend and lift the hierarchy of
semantics developed in 2002 by P. Cousot in order to cope with verifica-
tion of hyperproperties. In the standard hierarchy, semantics at different
levels of abstraction are related with each other by abstract interpre-
tation. In the same spirit, we propose an hyperhierarchy of semantics
adding a new, more concrete, hyper level. The semantics defined at this
hyper level are suitable for hyperproperties verification. Furthermore, all
the semantics in the hyperhierarchy (the standard and the hyper ones)
are still related by abstract interpretation.

1 Introduction

Since its origin in 1977, abstract interpretation [8] has been widely used, implic-
itly or explicitly, to describe and formalize approximate computations in many
different areas of computer science, from its very beginning use in formaliz-
ing (compile-time) program analysis frameworks to more recent applications in
model checking, program verification, comparative semantics, data and SW se-
curity, malware detection, code obfuscation, etc. When reasoning about systems
executions a key point is the degree of approximation given by the choice of the
semantics used to represent computations. In this direction, comparative seman-
tics consists in comparing semantics at different levels of abstraction, always by
abstract interpretation [7,18]. The choice of the semantics is a key point, not
only for finding the desirable trade-off between precision and decidability of pro-
gram analysis in terms, for instance, of property verification, but also because
not all the semantics are suitable for proving any possible property of interest.
This means that the property to verify necessarily affect the semantics we have
to choose for modeling the system to analyze. For instance, if we are interested
in a property which is not a safety property [2], then we have necessarily to
consider a semantics able to approximate the whole computation (not only the
past of a computation), as static analysis does. While, when we are interested
in safety property then we have to consider a safety abstraction of the semantics
[13,19]. Analogously, if we have to characterize slices (extraction of executable

code sub-fragments of a program [21]) of potentially non-terminating programs
then we need a semantics able to characterize also what happens after loops [17].

These were only examples, but in general new (classes of) properties of in-
terest may induce the necessity of defining new semantics, i.e., new semantic
models for computational systems. In particular, we observed that hyperproper-
ties, namely sets of properties, recently gained more and more interest due to
their capability to capture program features that cannot be caught by classical
properties, namely features that cannot be characterized by a predicate defined
on single computations. For instance, information flow properties can be verified
only by comparing sets of computations, hence they are hyperproperties, and not
properties in the standard sense. Hence, what we propose here is a general for-
mal framework for comparing semantics including the so-called hypersemantics,
modeling programs as sets of sets of computations, since we need such a more
concrete observation of systems computations in order to verify, potentially by
using approximation, hyperproperties. The framework we propose is indeed an
extension of the Cousot hierarchy of semantics [7] enriched with an hyper level,
where still all the semantics are compared by abstract interpretation. Moreover,
we show that at least two existing program analysis approaches (one recent ap-
proach for information flow analysis [3] and standard program static analysis
[9]) can be included or compared in our framework.

2 Transition Systems, Semantics and Approximations

In this section, we introduce the hierarchy of semantics (both definition and
costruction of semantics) proposed by Cousot [7], from which we move towards
the hyperlevel. In this way, while providing a formal framework for hyperseman-
tics we can formally prove its relation with the standard semantics framework.

2.1 Trace Semantics of Systems

We reason about semantics of systems independently from systems themselves.
Let S be the set of possible denotations of states of (computational) systems. The
concrete semantics of a system P is given by the transition system (X, 7, §2,7),
where Y C S is the set of possible states of P, 7" C X is the set of all ini-
tial states of P, 7 C X x X is the transition relation between states of P, and
2 C X is the set of blocking/final states of P, i.e., those states o such that
Vo' € ¥ .(0,0') ¢ 7. For instance, a system could be any program written in
a programming language, the state denotations could be any possible mappings
from program variables to values and the transition system is given by the op-
erational semantics of the language.

The executions of a system are modeled by sequences of transitions [7]. The
set S [0,n) = S, n € N, is the set of finite sequences s = s9s1...5,_1 of
length |s| = n over S. The set of finite non-empty sequences is ST « Uocncw S™.
The set S = N — S contains infinite sequences s = 5051... of length [s| = w
over S. The set of non-empty sequences is S® ST US?. The empty sequence

is €. leen 5,8 € S®, s can be appended to s iff s5—1 = s; and their append
is s ™ 5" = 5081 . . 8]5|=1515% - . . Given a system P, E‘X’ C 8= is the
set of all sequences on the States ﬁ‘ of P analogous for £F - SJr and X% C S%.

An execution (¢race) of a system P is a sequence of states in X where ad-
jacent elements are in 7. 77 = {g € U7 | Vi € [0,n —1).(0;,0441) € T} are the
finite traces of length n, while the set of finite blocking traces of length n is
T E e X 0,1 €RAVIE0,n—1).(0,0i41) €T}

The mazimal finite trace semantics (set of blocking/terminating executions)

is 7T & Uo<new 77~ The infinite trace semantics (set of non-blocking/non-

terminating executlons) is 79 = {g € X9 | Vi € N.{(0;,0,41) € T}. The mazimal
trace semantics is 7 £ rFUr® [7]. In the following, in order to avoid ambiguity,
we can make explicit the system, e.g., we can write 7°°[P] instead of just 7% in
order to denote the maximal trace semantics of P.

2.2 Fixpoint Semantics Approximation

A semantics T is said to be constructive, i.e., expressible in fixpoint form, if
there exists a fizpoint semantic specification (F, D, <), where (D,<,V, 1) is a
partially ordered set with (partially defined) least upper bound V and minimum
1 (usually at least a DCPO'), F': D — D is <-monotone and iteratable? and
T=]fpfF = F°, where § is the least ordinal such that F? = F(F?) and F? is
equal to \/, 5 F"(L) [14].

Consider now the semantic specifications (F, D, x), (F,D, <), and suppose
that (D, <),(D, <) form a Galois connection®, by means of the functions « :
D ™ D (abstraction) and v : D ™% D (concretization), namely a and + are ad-
joint functions. When the semantics is expressed in fixpoint form, we can derive
an abstract fixpoint semantics by abstraction of a concrete one, or vice versa. The
Kleenian fixpoint approximation theorem [7], requires abstraction soundness, i.e.,
aoF < Foa, guaranteeing fixpoint approximation, i.e. a(]pr_) < lfpfF. The
(in the following called backward) Kleenian fixpoint transfer theorem [7] requires
completeness, i.e., ao F' = Foa, guaranteeing the fixpoint transfer from concrete
to abstract domain, i.e., a(lfpfF) = pr?_F.

Suppose now we are interested in transferring the fixpoint from an abstract
domain to the concrete one?. Unfortunately, the completeness requirement ob-
served in the abstract domain (called backward), i.e., « o F = F o o, is not the

L' A DCPO is a poset where it exists the least upper bound of every directed subset.

2 A function F over D is said iteratable if the transfinite iterates of F from L are well

defined. The transfinite iterates of F from L are F* = 1 and F°*! = F(F?) for

successor ordinals § + 1 and F° = =Vs<c F?® for limit ordinals (.

o, 7y form a Galois connectlon between concrete (D, <) and abstract (D, <) domains,

denoted (D, <) == (D,<x),if Ve€ D,a€ D.a(c) S as c<xy(a). f aoy = idp

then they form a Galois insertion, denoted (D, =) 9‘%‘» (D,).

4 This direction does not change anything in the approximation case, since the sound-
ness requirement is equivalent also when we check it on the concrete, i.e., a0 F < Foa
if Foy<~yoF.

3

same as checking completeness on the concrete domain (called forward), i.e.,
F o~y =~oF.In order to transfer fixpoints from abstract to concrete we need
precisely the latter direction. In this case, we provide the forward version of the
Kleenian fixpoint transfer theorem.

Theorem 1 (Forward Kleenian fixpoint transfer). Suppose that (F, D, <)
and (F,D,<) are concrete and abstract fixpoint semantics specifications. Let
v : D — D be a strict Scott-continuous® concretization function. If yo F = Fovy
(forward completeness) then 'y(]fp?F) = prjF,

In the abstract interpretation framework, it is well known that the Kleenian
fixpoint approximation trivially hold when F' is the best correct approximation
(bca) of F, i.e., F = a0 Fory. Hence, we look for a similar characterization in the
dual case. In particular, we look for a systematic way to retrieve a concrete se-
mantics which best represents a given abstract function. Exploiting the “duality
principle” of abstract interpretation [10] we can obtain the best correct con-
cretization as F' = ~ o F o oo. Then we still trivially have that 'y(]prF‘) = prTF
and przﬁ' = a(]fpiF). Moreover, in a Galois insertion settings, it is always
possible to derive a complete (backward and forward) concretisation, called best
complete concretisation, of a given abstract semantics:

Theorem 2 (Best Complete Concrstiza{ion). Let (D,<) and (D,<) be
partially ordered sets such that (D, <) &—— (D,<). Let F : D ™ D and F"* =

«

~vo Foa. Then D is both backward and forward complete for FP<c.

bca

Note that F is exactly the bea of F°° in D, indeed F**™" = a0 FP* o
7 =aoyoFoaoy = F. Hence, given an abstract function F' it is possible
to derive a concrete function F, for which F' is an approximation, such that
a(lfp] F) = Ifp] F* and IfpT F = y(Ifp] F).

2.3 Standard Hierarchy of Semantics

In [7] the author showed that many well-known semantics can be computed
as abstract interpretations of the maximal trace semantics, and they can be
organized in a hierarchy. For instance, the relational semantics T°° associates
an input/output relation with system traces by using the L symbol to denote
non-termination, while denotational semantics T° gives semantics by considering
input/output functions. Each semantics (said to be in natural style) have three
different abstractions, for instance the angelic abstraction, which observes only
finite computations, e.g., the angelic trace semantics T+ observes only finite
traces, while the angelic relational semantics 7+ and the angelic denotational
semantics 7° the corresponding relations and functions. In [7] the author consider
also several other semantics but, in sake of simplicity, we focus only in the subset
of the hierarchy depicted in Fig. 1, on the left. Another useful semantics is partial

5 A function f is said Scott-continuous if preserves the least upper bound of directed
subsets of X and it is said strict if f(L) = L.

TRCH = (D) TRCH = (D)
75 GEN} = p(p(D))

T : Ta

b
Tpost

b
Tpost

)
Tpost

Standard dimension H Hyper dimension

Fig. 1. A part of the standard hierarchy of semantics with its hyper counterparts

trace semantics (finite prefixes of computations, starting from initial states):
% =Upencufo € 7" | 09 € T} [12].

Furthermore, these semantics can all be computed by fixpoint of a mono-
tone operator over an ordered domain [7,12]. In this case, it is not always pos-
sible to obtain semantics by fixpoint w.r.t. the standard inclusion order (C),
also called the approximation order. In fact, in some cases the fixpoint oper-
ator is not monotone on the approximation order, and therefore we have to
define a computational order forcing monotonicity, and therefore convergence
of the fixpoint operator. For, instance, the maximal trace semantics of P can
be computed as: 7% = lfp%&FO?’, where F® : o(X%®) — o(X%) is defined
as F® Z\X.7'U (72 ™ X), which is monotone on the computational order
XCY € ((xnxH) C(YNnEZH))A(XNE%) D (YNXE9)) (the corresponding
lub is |_|°6le LUXiN Ejr) UN(X; NX%) and L= = 59). As far as the partial
semantics is concerned, the semantics operator is computed as: T&;: lfp,%F X
where F& : o(ZF) = o(X7) is defined as FX £ XX .7 U (X 7 72), which is
monotone on the standard approximation order (C) [12].

def

Example 1. Let P =1 :=4; if (h = 1) thenl := 2h else while (true) do {l := 6}, and
let us denote states as maps between variables to values ([n,m] means [— n,
h +— m). Maximal trace semantics 7%1p] and relational semantics 7°°[P] are:

o = { [n, 1][4,1](2,1], [4,1][2,1], [2,1], [0, m][4,m][6,m]* |n € N,m €N\ {1}}
)= { ([1],[2,1]), ([4,1](2,1]), ([2,1],2,1]), ([n,m], L) [n €N,m € N\ {1}}

3 Hyperproperties

In the security context, there are policies that can be expressed as trace prop-
erties, like access control, and others which cannot, like non-interference. In this
latter case, it is necessary to specify it as an hyperproperty. Intuitively, a prop-
erty is defined exclusively in terms of individual executions and, in general, do

not specify a relation between different executions of the system. Instead, an hy-
perproperty specifies the set of sets of system executions allowed by the security
policy, therefore expressing relations between executions. In [5] it is stated that
in order to formalize security policies, it is sufficient to consider hyperproperties.
This means that hyperproperties are able to define every possible security policy
(this is true for systems modeled as set of states traces).

In this section, we introduce the notion of hyperproperty ([5]), i.e., a set of
sets of executions. In the original formulation, systems are modeled by non-empty
sets of infinite traces, where terminating executions are modeled by repeating
the final state of the trace an infinite number of times [5]. In our work, we will
reason about hyperproperties keeping generality, so we are not restricted to only
infinite sequences.

Safety Hyperproperties [5]. In the context of trace properties, a particular
kind of properties are safety ones [2], expressing the fact that “nothing bad
happens”. These properties are interesting because they depend only on the
history/past of single executions, meaning that safety properties are dynamically
monitorable [2]. Similarly, safety hyperproperties (or hypersafety) are the lift to
sets of safety properties. This means that, for each set of executions that is not
in a safety hyperproperty, there exists a finite prefix set of finite executions (the
“bad thing”) which cannot be extended for satisfying the property.

Another particular class of hyperproperties are the k-safety hyperproperties
(or k-hypersafety). They are safety hyperproperties in which the “bad thing”
never involves more than k executions [5]. This means that it is possible to check
the violation of a k-hypersafety just observing a set of k executions (note that
1-hypersafeties are exactly safety properties). This is important for verification,
in fact, it is possible to reduce the verification of a k-hypersafety on system P to
the verification of a safety on the self-composed systems P* [5]. Furthermore, lots
of interesting security policies can be formalized as k-hypersafety; for instance,
some definitions of non-interference are 2-hypersafety.

The topic of hyperproperties verification is quite new. Besides the reduction
to safety, in [1] the authors introduce a runtime refutation methods for k-safety,
based on a three-valued logic. Similarly, [4, 15] define hyperlogics, i.e., extensions
of temporal logic able to quantify over multiple traces. The use of abstract
interpretation in hyperproperties verification is limited to [3], analyzed in Sect. 7.

4 Verifying Hyperproperties

In this section, we deal with hyperproperties verification. Here, by verification
we mean both walidation, i.e., checking whether a system fulfills the property,
and confutation, i.e., checking whether a system does not fulfill the property. It
is well known that we cannot always answer to both these problems precisely.
Consider the set of state denotations S and a set © of all possible executions
of any system P on states S. The execution of a system could be a sequence
(finite or infinite), a pair, etc., of elements in S, depending on how we mean

to represent computations. In the following, given a system P, we denote by
[P] € © a generic semantics of P, parametric on the executions domain ©. For
instance, if ® = S® then we consider the maximal trace semantics of P, i.e.,
[P] = 7, while if ® = S xS then we consider the angelic relational semantics of
P,ie., [P] = 7t. Usually, a trace property is modeled as the set of all executions
satisfying it. Hence, let 8 C © be such a property, then it is well known that
a system P satisfies B, denoted as P = B, iff [P] C PB. Hence, by definition,
P is fulfilled for a system P iff P is fulfilled for each one of its executions, i.e.,
P EQRiff Vs € [P].s € B (validation). This is quite useful because in order to
disprove that a system fulfills a trace property we just need one counterexample,
ile, PP iff 3s € [P].s ¢ P (confutation). We denote by TRCY, the set of all
trace properties, i.e., p(®). For instance, trace properties in p(®), for ® = S®,
are termination Term & ST and Even! & {s € 8® | Vi> 0. s;(l) even} (saying
that variable [is always even after initialization). Note that, the program in
Example 1 satisfies Even but not Term, since 7¥[p] C Even!, while 7%°[P] Z Term.

For hyperproperties, the satisfiability relation changes from set-inclusion to
set-membership [5], namely P |= $p iff [P] € $Hp.

4.1 Hyperproperties Verification

As introduced in Sect. 2, hyperproperties are sets of sets of executions, hence the
domain of hyperproperties is p(p(D)). We denote by GENY the set of all (generic)
hyperproperties, i.e., p(p(®D)). Similarly to what happens for trace properties,
we characterize hyperproperty validation as:

P = $p € GENy < [P]esnp < {[P]} C 5w

This means that the strongest hyperproperty of a system P is [P] < {[PT} [6],
since every hyperproperty of P is implied by, i.e., include, [P] . An example
of a generic hyperproperty for ® = 8% is generalized non-interference GNI £
{X C p(®) | Vs,s € XI5 € X.(5- =5 s~ A5 =~ ')} [5], stating that, for
each pair s, s’ of executions there exists an interleaving one § which agrees with
s on private variables (H) in input () and with s’ on public variables (L)¢. The
program in Example 1 do not satisfy GNI, since 7% [pP] ¢ GNI.

At this point, we wonder whether we can use standard semantics for verifying,
at least, a subset of hyperproperties. Let us consider the following restriction.

Definition 1 (Trace hyperproperty). tHp € GENY is called trace hyperprop-
erty if t9p = p(UtHp), i.e., if (tHp, C,U,N, 3, JtHp) is a boolean algebra’ .

We denote with TRCY the set of all trace hyperproperties, i.e., TRCY is the set
{t9p € GENY | p(UtHp) = tHp}. Hence, we have validation as

PEtop € TRCE © {{s}|s€[P]} CtHp & Vs [P].{s} € thy

% Note that =y is an equivalence on states while &, is on traces.
" A boolean algebra is a complemented (each x € X has complement y € X: xAy = L,
zVy = T) and distributive (Vz,y,z € X .z A (yVy) = (x Vy) A (zV 2)) lattice.

This means that, exactly as it happens for properties, we can check this kind of
hyperproperties on single executions: if we find at least one execution not satis-
fying the hyperproperty, then the whole system does not satisfy it. For example,
Even), < o(Even') is the trace hyperproperty equivalent to trace property Even'.

The hyperproperties which we can verify with standard trace semantics are
all and only the trace hyperproperties, as stated by the following theorem.

Theorem 3. For every hyperproperty Hp:
Hp € TRCH & IP € TRC, VP € systems. (P =P < P = Hp)

Direction (=) holds since, by definition, Hp € TRCY implies Hp = p(|JHp), and
setting P = JHp we have [P] C UHp < p([P]) C p(UHp) < [P] € Hp. For
the converse (<) we give only an intuition. Take, for instance, Hp = {{a}, {b}} ¢
TRCY, so V3 € TRCE, 3P € systems such that P =P < P = Hp do not hold.
Indeed, if PN JHp 2 {a,b} consider [P] = {a,b}, then we have [P] C B
but [P] ¢ $Hp. Otherwise, if PN (JHp O {a} take [P] = {b}, otherwise take
[P] = {a}, in any case we can show that [P] € $p but [P] £ B.

We can further generalize this restriction, allowing us to preserve the possi-
bility of verifying hyperproperty on trace semantics at least for confutation. It
should be clear that, in the general case, we have to compute the whole seman-
tics [P] in order to verify (both validate and confute) the hyperproperty $p.
However, it is worth noting that there is a particular kind of hyperproperties
that generalizes hypersafety and whose verification test can be simplified.

Definition 2 (Subset-closed hyperproperty). cHp € GENY is called a subset-
closed hyperproperty if ¢Hp is such that X € ¢Hp = (VY C X .Y € cHp).

We denote with SSCY, the set of all subset-closed hyperproperties, i.e., SSC§ is
the set {cHp € GENG | X € c¢Hp = (VY C X .Y € c¢Hp)}. Note that all trace hy-
perproperties are subset-closed but not vice-versa (one example is observational
determinism [22]). In particular, a subset-closed hyperproperty c$p is also a trace
hyperproperty if, in addition, it holds: X, Y € ¢Hp = X UY € cHp. It turns out
that lots of interesting hyperproperties are subset-closed, e.g., all hypersafety
and some hyperliveness [5]. In this case, validation becomes

PEcHpessCy < p([P]) CcHp < VX C[P].X € cHyp

where [P], £ o([P]) is the strongest subset-closed hyperproperty of P. It is
clear that this does not change the validation of ¢$p, but it may in general
simplify the confutation, since we do not need the whole semantics [P]: it is
sufficient to find a X C [P] such that X ¢ c$p in order to imply {[P]} Z cHp. A
subset-closed hyperproperty for ® = S xS which is not a trace hyperproperty is
termination insensitive non-interference TINI = {X C (D) | Vs,s’ € X .sp =
s = (sg=LVs,=L1Vsy=1s,)} 5], stating that, each pair of executions
agreeing on public variables (L) in input (F), must terminate agreeing on public
variables in output (). The program in Example 1, with typing I'(l) = L, I'(h) =
H, satisfies TINI since all terminating traces provides the same value for [, i.e.,

T7°°(P] € TINI. In [5], the authors proved that TINI is 2-hypersafety, hence it is
subset-closed, and, conversely, they proved that GNI is not subset-closed.

Finally, we can provide a further characterization of subset-closed hyperprop-
erties as union of trace hyperproperties.

Proposition 1. Fvery subset-closed hyperproperty ¢Hp can be decomposed in a
conjunction of trace hyperproperties, namely:

def

Hp = U p(Y) with maxc(X) = {X ex

Y € maxc (¢Hp)

VX' e X.
XCX' =X=X

where maxc (X)) is the set of mazimals of C-chains in X.

Clearly, for all Y in maxc (c$p), it holds p(lJp(Y)) = p(Y) so p(Y) is a trace
hyperproperty. Hence any subset-closed hyperproperty can be characterized as
Hp = U;en tHp; (for a set A C N). This implies that, in order to validate c$HHp
on standard trace semantics it is sufficient to validate just one of these tHp,. In
fact, if P |=t9p,, i.e., [P] € tHp,, then [P] € c¢Hp and hence P = cHp.

4.2 Hyperproperties Relations and Algebraic Structures

In this section, we show the relations existing among the notions of hyperprop-
erties we have introduced. Moreover, we describe the algebraic structures of
hyperproperties domains. In the following, we omit the subscript of proper-
ties/hyperproperties domain when it is clear from the context or not relevant.
It is straightforward to note that TRC® C sSCH C GEN" and that SSC? (and
therefore TRC?) do not contain @. Indeed the empty set has no members, so it

cannot be subset-closed. In addition, the unique singleton subset-closed is {@}.
def

Now let p, be the function AX . v, o a, (X), where X UX and v, =
AX . p(X), and let p, be the function AXY . {X |FY € X. X CY}. It is easy to
note that they are both upper closure operators of GEN? (i.e., monotone operators
in p(p(D)) = p(p(D)) which are extensive and idempotent)®.

Proposition 2. SSCH = p, (GEN") and TRCH = p, (GENH) = p,(SSCH).

Note that (SSCH, C,U, N, {@}, p(D)) is a complete lattice, where the bottom is
{2} because @ is contained in every subset-closed set and the top is p(D) be-
cause it is the top of GEN! and it is subset-closed. For the same reasons they are
the bottom and the top of the complete lattice (TRCY, C,U, N, {@}, p(D)), which
is the sublattice of SSCH (and GEN!) comprising its boolean algebras. Finally, it
is straightforward to note that TRC! is isomorphic, through (o, ~.), to TRCP.
The big picture is depicted by the commutative diagram in Fig. 2. Recall that
the approximation order plays the role of implication. So the strongest hyper-
property, i.e., the one which implies any other hyperproperty, is & for GEN! and
{@} for SSCH TRCY. Conversely, the weakest hyperproperty, i.e., the one which is
implied by any other one, is p(®) for GEN# SSCH, TRC!. For what concerns TRCP,
it is isomorphic to TRCY hence the strongest trace property is o, ({&}) = @ and
the weakest is o (p(D)) = D, as expected.

8 The adjunction (s, v«) and its link with systems properties were already introduced
in [3] (their (@hpp, hpp)) and even before in [13] (their (ao,v0)).

(TRCF, C,U,N, 2,D)

A 3
(e T || x %

(GEN", C,U,N, 2, 0(9)) == (85¢",C,U,N,{2},9(D)) == (TRC",C,U,N, {2}, (D))

Fig. 2. Relations between hyperproperties

5 Approximating Hyperproperties Verification

In this section, we investigate how we can approximate hyperproperty verifica-
tion. Let us briefly recall how we can approximate standard property verification.
In order to cope with the potential non decidability of trace properties verifica-
tion, approximation of systems semantics is necessary. In the standard framework
of abstract interpretation [8,9] we can compute a sound over-approximation
O D [P] of a system semantics allowing sound validation of trace properties
(Fig. 3, part [a]). This is obtained by means of an abstraction of the concrete
domain, where the abstract semantics plays the role of the over-approximation.
Let P be a system, A C TRC? an abstract domain, 3 € TRC? a trace property

and [P]* an abstract interpretation of [P] in A4, i.e., [P] C 4([P]%), then:

(TRC", C) =5 (4,<) and 4([P]) CF implies P =P

[e3

Recall that, by under-approximation we can improve decidability of the confu-
tation of a property, since if U C [P] and U € 8 then we have that [P] = ‘B.
At this point, we can show that trace hyperproperties can be verified in the
standard analysis framework based on abstract interpretation.

Proposition 3. Let P be a system, A C TRC? be an abstract domain, tHHp € TRC"
be a trace hyperproperty and [[P]]ti be an abstraction of [P] in A, i.e., [P] C
A([P]?), then (TRCP, C) == (A,<) and 4([P]*) C UtHp implies P = tfip.

Hence, we can still use standard analysis based on over-approximation for veri-
fying trace hyperproperties. Moreover, when dealing with confutation of proper-
ties, also in this case we can use under-approximation in the standard way, since

if we have U C [P] and U < |Jt9p then still we can derive that P F= t§p.

PEEERE'N P P
' [@
[l @ 1Pl <
f
® @ f)
02[P] 02[P] >
02 {1P)

Fig. 3. Over-approximation of trace properties [a] and hyperproperties [b]

concretization

@) (TRC, C) b O/T (TRC?, C)

verification of

o . H
abstraction aﬂw Ve;héa;;‘é% of (GEN", C) X Hp € GEN
Q, A
A A? ﬁ
(4, %) abstraction {)

Fig. 4. Verification (abstract interpretation) of properties [a] and hyperproperties [b]

Unfortunately, when we do not have restrictions on hyperproperties, stan-
dard trace semantics, in general, does not provide enough information for ap-
proximating verification, since O D [P]AO € $p # [P] € $Hp (Fig. 3, part [b]
on the left). Over-approximations do not work properly because we are approx-
imating on the wrong domain. Indeed, if we move towards GEN! (or SSC!), then
OD{[P]} A OCHy = {[P]} C Hp, i.e., [P] € Hy (Fig. 3, part [b] on the
right). The problem is due to the fact that the property is defined on the domain
GEN®, different from the domain TRCF, where the system semantics is computed.

The idea we propose in the following sections, consists in moving the systems
semantics on a more concrete domain, i.e., we build the semantics at the same
level of the properties, namely at the hyper level. In this way, we can exploit
the abstract interpretation framework even for approximating hyperproperties
verification. Our goal is to define the system P semantics on the hyper level, i.e.,
we define the hyper semantics [P],, such that {[P]} C [P],,.

An over-approximation of [P],, clearly leads to a sound verification mecha-
nism for hyperproperties. In fact, let P be a system, A C GEN® be an abstract
domain, p € GEN® be an hyperproperty, [P];, be a semantics on GEN* and [[P]]g{

be an abstract interpretation of [P],, in A ie., [P], € ’y([[P]]g_l), then:
(BN, C) == (A, %) and H([PI3,) € Hp imply P = 5p

Hence, we build an hyper semantics of the system, and then we can over-
approximate it in some abstraction of the hyper domain. This is depicted in
Fig. 4, where in [a] we have the standard case and in [b] the hyper case.

6 Hyperhierarchy of Semantics

In Sect. 2.3 we introduced the hierarchy of semantics proposed in [7], where most
well known semantics have been related by Galois insertions. In this section, we
aim at extending this hierarchy in order to include an hyper level of semantics
suitable for hyperproperties verification. The intuition of lifting the classical
hierarchy of semantics to sets of sets was already present in [3], where it was
just sketched. Here we analyze the problem in a deeper and comprehensive way.
Note that, as observed in Sect. 4.2, we have different notions of hyperproperties,
implying different possible approaches for verification. We do not have precisely
the same distinction when dealing with systems semantics.

6.1 Defining Hypersemantics

In the following, we indicate with [P] a generic standard semantics of the system
P, namely an element of the standard hierarchy, as we have done in Sect. 4. So,
for instance, [P] can stand for 7%°[P], or it can stand for 7F[P], etc..

Subset-closed and generic hypersemantics. The first level comprises subset-closed
systems semantics. This means that every element of this hierarchy, which is
parametric by systems denotations (©) as in the standard case, is in the set
SSCH. It turns out that, given a system P, its subset-closed hypersemantics is
[P], = ©([P]), which is indeed its strongest subset-closed hyperproperty. This
happens because any semantics have a maximal set of computations, therefore
an SSC! semantics is in particular a boolean algebra.

The second level comprises generic systems hypersemantics. This means that
every element of this hierarchy, which is again parametric on systems denotations
(D), is in GEN". It turns out that, given a system P, its generic hypersemantics
is [P],, = {[P]}, which is indeed its strongest generic hyperproperty.

It is worth nothing that, [P], € SSC* and [P] € GEN" do not give us more
information on the executions of P than [P], being isomorphic to [P]. Namely
these parallel hierarchies does not provide different observables, but only new
verification methods for hyperproperties. In particular, over-approximations of
hypersemantics on these more expressive semantic levels, provide verification
methods for subset-closed and generic hyperproperties. We cannot verify these
hyperproperties within the standard hierarchy of semantics.

Post/Pre hypersemantics. In the previous sections, we considered only hyperse-
mantics isomorphic to standard ones. It is clear, that the hyper level is indeed
strictly more concrete than the standard level, hence we aim at defining hyper
semantics strictly more expressive than standard ones. In particular, we can
extends to the hyper levels both the maximal trace semantics and the partial
trace semantics and we observe how we can exploit the expressiveness of these
semantics when dealing with hyperproperties verification.

The Post hypersemantics Ty, is defined as:

Tfﬁtd:ﬁ{{un>o7_§ UTG}’XQQ} where 7% £ {0 € 7" | on_1 € X}

The Pre hypersemantics T}f_ﬁe is defined as:

T;Eedz“{{un>0r§}’XgT/\X;é®} where T)idIﬂ{O'GTﬁ|O'0€X}

The first collects the sets of maximals (terminating) computations partitioned
by all the possible sets of final states, plus the infinite computations of course.
This is a backward semantics and intuitively says which initial states we need
to take in order to reach some given final states. The second do the opposite,
namely it collects the sets of partial (finite) computations partitioned by all the
possible sets of initial states. This is a forward semantics and intuitively says
which partial computations we obtain starting from some given initial states.

Ezample 2. As example, consider the transition system with X' = {a,b, ¢, d, e},
T = {<a7 b>a <a7 C>7 <bv d>7 <C, C>a <€7 b>7 <€, €>}, T= {a76} and {2 = {d} Then

7% = {d, bd, abd} U {€"bd}n>1 U {c*, ac”, e}
72 = {a,ab,abd} U {ac"},>1 U{e"}n>1 U{e"b}n>1 U{e"bd}n>1

The hyper versions are

X s3] w w o w
Tpost_ T 7{C ,ac € }}

T;:fe = {T&, {a,ab,abd} U {ac" }>1,{e" }n>1 U{e"b}n>1 U {e"bd}nzl}

being p(£2) = {{d}, @} and p() \ {@} = {{a, e}, {a},{e}}.

These hypersemantics can be used for partially verifying hyperproperties, since
they provide the semantics parametrically on the subsets of blocking/initial
states. Suppose that, instead of checking whether a system fulfills an hyper-
property $Hp, we want to check when a system fulfills it. The problem boils down

to analyze the intersection ng’st N$Hp [or T;;Ee N $Hp]. If the intersection is & then

the answer is “never”, if the answer is 755, [or 73] then P |= $p, otherwise
we have that for particular final states [initial states| the system satisfies the
hyperproperty. Hence we have a form of partial satisfiability. This is in practice
useful, for example when we want to know under what conditions we can still

use an unsafe system.

The hyperhierarchy. Up to now, we simply reasoned on single semantics. Finally,
we can show that the whole hierarchy of standard semantics can be lifted on
the hyper levels, preserving all the abstraction relations between semantics. In
the standard hierarchy, 7 and 7 (and hence all their relational /denotational
abstractions) are backward semantics in the sense they are suffix-closed [11].
This means that they represents systems executions with complete traces and
all their suffixes. Instead, the semantics 7% is forward in the sense it is prefix-
closed [13]. This means that it represents systems executions with all the partial
computations starting from initial states (i.e., trace prefixes).

Note that all the semantics in the standard hierarchy are abstractions of 7%

and, analogously, every hypersemantics is an abstraction of 75, .

Proposition 4. Let y € {30, +,&,00,+,8,b}, let a be such that 70 = (1) in
the standard hierarchy of semantics, and let ar = AX . {a(X) | X € X}, then:

Tobst = ar(T;;"st) and a0, = ay 0 Q)
The subset-closed (A) and generic (o) hypersemantics are isomorphic to the stan-
dard ones, trough (o, v,) and (s, AX . {X}) respectively. This means that for
these hypersemantics the commutativity trivially holds. So, lifting to sets the
abstraction function used to go from a semantics to another semantics, in the
standard hierarchy, results in an abstraction between the respective hyperseman-
tics at the hyper level. Prop. 4 justifies Fig. 1, where an arrow between semantics
means that there is an abstraction relation, while a double arrow means that the

semantics are isomorphic. On the left we have the standard hierarchy and on the
right the hyper levels. The central level represents subset-closed (A) and generic
(¢) hypersemantics, which are isomorphic to standard semantics. This allows us,
with the same information, to gain expressiveness in verification. On the right,
we have the level of post/pre hypersemantics, namely semantics which contains
strictly more information w.r.t. the standard ones and which can be used for par-
tial verification. From these hypersemantics we obtain the standard ones through
the abstraction (ay,~.) and hence, by composition with the isomorphism, also
subset-closed (A) and generic (o) hypersemantics are abstractions of them.

6.2 Computing Hypersemantics

In this section, we show how we can compute the semantics at the hyper levels,
similarly to what happens in the standard hierarchy of semantics [7], where each
semantics is obtained as fixpoint of a monotone operator.

Computing hypersemantics by using bee and additive lift. Suppose we are inter-
ested in computing the standard semantics at the hyper level. In this case, our
aim is simply to emulate the standard semantics computation on the hyper level.
This may be considered useful for approximating computation when dealing with
hyperproperty verification, as explained in Sect. 5. In this case we have to trans-
fer the fixpoint computation from the abstract domain of standard semantics,
to the concrete domain of hypersemantics, and we can follow two possible ways:
we can use the best complete concretization (bee) of the standard semantic op-
erator, or we can lift the operator to sets. Basically, we aim at computing by
fixpoint a semantics [P],, (one of the semantics in Fig. 1, on the central level),
namely we want to find a monotone operator Fy : p(p(D)) = p(p(D)), such
that [P],, = Ifp Fy, built on top of the standard semantics operator F.

First, consider Fy £ F, = v+ 0 F o ay (namely we apply Thm. 2 considering
F, as the best complete concretization of F'). Since 7, is a strict Scott-continuous
concretization map between (TRC®, C,U,N, &, D) and (SSCH, C, U, N, {2}, p(D))
and the forward completeness holds by definition, we can apply Thm. 1 and
hence v, (IfpS F) = pr{%a}FA, ie, 7 ([P]) = p([P]) =[P], = pr{gg}FA. Indeed
F, is C-monotone and F?({@}) = {@} C Fl({9}) = p(F(9)) C F2({2}) =
o(F?(2)) C ... Fr({9}) = p(F"(9)) since, for every n, F*"(@) C F" (). It
should be clear that, with this operator, we move inside elements of TRCY, which
is a strict subset of SSCE.

The second choice consists in defining F as the additive lift of F, i.e.,
Fy £ F, = MY . {F(X) | X € X}. Unfortunately, the lift does not guaran-
tee monotonicity. Indeed the iterates of F, from the bottom are: F(2) = &,
Fl(@) ={@}, F2(@) = {F(@)}, ... F(@) = {F"}(©)}. Clearly the iterates
do not form an increasing C-chain and so (F,,GEN", C) is not a fixpoint seman-
tics specification. In this case we need to change the computational domain. Let
us consider the following computational order C,:

w (A= VX eXIY eV.XCY)) A
XY= (Yo ov(vY €YIXeX .Y CX) = X =) (1)

Namely, for each element X € X there exists an element of) in the C relation
with X (the second conjunction just forces antisymmetry). Furthermore, the
equalities with the empty-set add the axiom @ C, @ C, X, for any X. The
bottom is @ and the (partial) least upper bound is ¥ defined as:

{XUY | XeXANY eYAN(XCYVY CX)}LU
XU YE (X | XeXAY=0VVWEY.(XZYAY ZX))}U (2)
{Y|YEIANX=0VVXeX . (YZXAXZY))}

The lub makes the union of the elements of X and) which are in relation C, and
adds all the other elements of both sets, as they are. The domain (GEN!, C, | v, &)
is a pointed DCPO with (partial) lub and bottom, indeed we have & C, X for
every X € GEN" and X C,) implies X&) =). Then we have that (F,, GEN? C,)
is a fixpoint semantic specification, since F, is C,-monotone.

Proposition 5. If (F,TRC?,C) and [P] = lip5F = Unso F™ (@) then we have:
(Fy,GEN', C,) and [P], = lfpg" F,, = Wn>oF2(2) = {[P]}-

Also in this case we simply compute standard semantics on the hyperlevel, but
we do not really exploit the more concrete level at which we are computing the
semantics. In other words, as before, we are emulating the standard computation
on the generic hypersemantics domain. Indeed, the semantics [P] o 18 isomorphic
to the standard semantics [P].

Computing Post/Pre hypersemantics. Here, we aim at exploiting the concrete
domain on which we are computing by defining new operators moving freely
among elements of GEN® and not only on elements of TRCY. We consider only
one case for the backward hypersemantics, the most concrete, but the others are
similar. We take ® = 8%, so let

Fo, ZMX {Xuxe yxcfl}uoo (XL® P~ X | X e x)

post

Then we have that 755, = lfp Floee - = %0 post({E‘“}) Where CF is de-
fined as in Eq. 1, substituting C & Wlth C= in the definition, the lub W™ is defined
as in Eq. 2, substltutlng U with U in the definition and the bottom is {Z%}.
Analogously, we can do the same for the forward case. Here we have only one
case, hence we take ® = S% and we have Tor lfpz*FP?;e Wnso Pl,e(),
where

FE S (p (r)\{@})w{XuX“TﬂXex}

pre

We can show that the standard operator F'= is the fixpoint transfer (on the ab-
stract domain of standard semantics) by means of the Galois insertion {au, Vs),

of the concrete semantic operator F;g;t Analogously, transferring the operator

F;;e on the standard semantic domain, we fall back on F'%.

Theorem 4. The following hold:
1. przw F°° = a,(Ifp {Ew}Fggst) o (oo

2. Ifps FS = = a,(Ifp5" F,) = au(1%,) and FX o o, = vy 0 Fix,.

% —
) and F>® o oy = o onost

7 Concluding: Hypersemantics Around Us

In this work, we have introduced a formal framework for modeling system se-
mantics at the same level of hyperproperties. These more expressive semantics
not only allow us to provide weaker forms of satisfiability, as shown in Sect. 6,
but provide a promising methodology allowing us to lift static analysis (for hy-
perproperties) directly at the hyper level. We believe that this approach could
provide a deep insight and useful formal tools also for tackling the problem of
analyzing analyzers, aiming at systematically analyzing static analyses [16].

Finally, we present two verification methods that, explicitly or implicitly, can
be generalized in our work. The first is an ad-hoc hypersemantics of programs [3],
made for the verification of information flow policies. The second is the classical
framework of static analysis for program properties verification [9].

7.1 Hypercollecting Semantics

As observed in the previous sections, there is an hyper hierarchies of semantics
that mimic the standard one in more expressive domains. This gain of expres-
siveness allows us to verify (by over-approximation) hyperproperties.

To the best of our knowledge, the only work that perform verification by
mean of abstract interpretation exploiting the full expressiveness of hyperprop-
erties is [3]. They deal with information flow policies that are k-hypersafety and
they focus on the definition of the abstract domains over sets of sets needed for
the analysis. They proposed an ad-hoc hypersemantics (termed hypercollecting
semantics) to show how to apply the abstract interpretation framework. This
semantics is computed denotationally starting from the code of the program to
analyze (their systems are programs of a toy programming language) and it is
used to verify some information flow policies, such as some formulations of non-
interference. In order to perform information flow verification, they consider the
domain of finite relational traces, namely p(S x S) (their p(Trc)), or better its
hyper version, namely o(p(S xS)) (their p(p(Trc))). States are maps from vari-
ables to values, i.e., S = Var — Val (their States). Their semantics computes,
denotationally, the angelic relational semantics 7FP], in the Cousot hierarchy.
More formally, for every program P, the collecting semantics {P}IniTrc of [3],
where IniTrc is the set of all possible inputs?, is 71P] in the standard hierarchy
of semantics ([3], Sect. 2). Then they propose the hypercollecting semantics ()
such that {{P}X € (P){X} (this implies {7F(P]} C (P){IniTrc}).

Proposition 6. (P)p(IniTrc) = 7, [P].

Hence, the hypercollecting semantics proposed in [3], starting from o(IniTrc)!°,

is exactly the hyper angelic relational semantics 7, [P] in our hyper hierarchy.
Let us consider, now, the computation of the semantics for a program P for

the verification of a given property. We can observe that Prop. 6 guarantees

9 Precisely is the set of all pairs (0,0) where o is an initial state.
10 6(IniTrc) is the concretization of IniTrc to set of sets, i.e., p(IniTrc) = . (IniTrc).

the equivalence of these two semantics for property verification only for subset-
closed hyper property, while for general hyperproperty the two semantics are not
comparable. In particular, let c$p € SSCH, we can observe that

PEcp © 77 PCeHp < (P)p(IniTre) C cHp < (P){IniTrc} C cHp

where the first implication holds for our definition of verification, the second
holds by Prop. 6 and the third one holds since the hyperproperty is subset-
closed. On the other hand, if we consider a generic hyper property $p € GENH
the last implication does not hold in general. In particular, the hypercollecting
semantics is the additive lift of the standard semantics for all commands except
the while. Indeed, as also the authors underline, when the program contains a
loop their semantics adds the sets of traces that exit the loop at each iteration
([3], Sec. 4). For this reason, the hypercollecting semantics is not complete for
generic hyperproperties verification.

def

Ezample 3. Let P = while (x < 2)do{z := 2 4+ 1}, with the unique variable
x ranging over the values {0,1,2}. Then IniTrc = {(0,0),(1,1),(2,2)}, where
(v,v') is a concise representation of the couple of mapping (i.e., States) (x —
v,z — v'). The angelic relational semantics of ¢ is 77[P] = {(0,2), (1,2),(2,2)},
which is exactly {P}IniTrc. The hypercollecting semantics (P)p(IniTrc) is
computed as follow. The least fixpoint of the while is the set of sets of traces:

. {00, 1)}, {(1,2)}, {(0, 1), (1,2)}, {(0, 1), (2,2)}, {(1,2), (2,2)}, {(0, 2)},
o(IniTre) U { £(0,1),(1,2),(2,2)}, {(0,2),(2,2)}, {{0,2), (1,2)}, {(0, 2),(1,2), <2,2>}}

At the while exit we have to keep only the traces making false the guard [3], i.e.,

Photamitee) = { &1L (LA (020 @ 9 (0.2), (0.2, 220,

(1
(012> <1/2>}7{<072>7<172>7<272>}

which is exactly p({P}IniTrc) = p(7+(p)) = 75 (P].

7.2 Standard Static Program Analysis

In the literature, standard static program analysis has been modeled as reacha-
bility analysis, since the collected values are all the reachable values for a variable.
Assume that (X, 7, £2, 7) is the transition system associated to the program P,
and ¥ C 7T is a subset of initial states. Static analysis can be seen as the charac-
terization, potentially approximated, of the set of reachable states from initial ¥,
ie., 7'(¥) ={c| 3o € 7®,i € N.oy € ¥ Ao; = ¢}, which provides a, potentially
approximated, invariant of the program [9]. In order to properly model flow-
sensitive static analysis, where we look for invariants for each program point,
we can simply consider a more concrete definition of state, which is not simply
a memory, i.e., an element of M = Var — Val, but it is a pair associating with
each program point a memory [9]. Formally, given a program P, its possible

states are Xp = Lp x M, where Lp is the set of program points in P. When
we move towards approximation, instead of manipulating states we manipulate
sets of states, i.e., elements of p(Xp), for which holds the following

p(Lp x M) 2Lp — p(M) =Lp — p(Var — Val)

Let ¢ : p(Xp) — (Lp — p(Var — Val)) be such an isomorphism, then ¢(7"(¥))
is a map associating each program point with the set of all “reached” memo-
ries, in the computations starting from ¥. In [20] the author shows that this
semantics corresponds to the solution of a system of equations generated from
the program syntax. Static analysis abstracts this semantics considering the map
associating with each variable all the values “reached”, for each program point,
in the computations starting in ¥. This abstraction is a. = Af. (M. (1)),
where \/{g;} & Az \U; gi(z). So the composition a,o¢ is a function in p(Xp) —
(Lp — (Var — p(Val)). We denote with «, . this composition.

Ezxample 4. Consider a program with two variables, x and y, the memory is the
association of a natural value to these variables, i.e., [z +— v1,y — v2], that we
denote concisely with (v1;v2). A state is an association between a program point
and a memory, i.e., im; meaning that with the i-th program point is associated
the memory m;. Hence, consider the following transition system: (suppose we
have only three program points)

Y={a,d} 2={c,f} 7={(a,b),(bc) (de) (e f)}

Hence, o, o(¥) = (*({1,2}; {2}), 2({1. 2}; {3,4}), *({2.3,4}; {3,4})).

At this point, we can observe that the semantics of an (abstract) interpreter of
a program P is an abstraction of the hypersemantics of P. First of all, note that
77(¥) is an abstraction of 7%, through the function AX . a,.({o € X | 09 € ¥}),
where o, £AX . {¢ | 3o € X,i € N.o; = ¢} [13]. Analogously, we show that the
semantics of an abstract interpreter, associating with each possible subset of ini-
tial states, the corresponding reachable states, is an abstraction of T;;Ee - p(E;).
As usual, we obtain abstract invariants in the abstract domain A exploiting a
Galois insertion (p(Val), C) H—ZT» (A, X).

Proposition 7. The semantics of the abstract interpreter w.r.t. abstract domain

A is a:‘}cr o arr(Tée)H, i.e., it is an abstraction of the hypersemantics Tge.

Ezample 5. Consider Example 4. Then 7% = {a,ab,abe,d,de,def} and Tge =
{{a,ab,abc},{d,de,def}, 7%}. We do not consider any abstraction A, then:

aeoan(t™) = avc({aby e dre, f1) = (({1,2}5423), ({1,235 {3,43), ® ({2, 3,4}; {3, 4})
avcoar({a,ab,abe}) = ac({a,bch) = ("({13:{21), 2 ({1} {3,4}), > ({2, 3}; {3,4}))
acoar({d de,def}) = a,c({d e, f}) = ("({2}1:{2}), *({2}: {3, 4}), ({3, 4}; {3,4}))

Hence, the set of invariants, depending on the set of initial states, is:

112D, 2({1);{3,4)), 2 ({2, 3} {3, 4})),
({23421, 2({2):{3,41), 2 ({3, 4}: {3, 4})),

el 0 arl(Th,) =

{ (M({1,23:{23), 2 ({1, 23; {3,41), > ({2, 3,4}, {3,4})), }

1 oA returns abstract invariants maps, i.e., a;, € p(Zp) — (Lp — (Var — A)).

References

10.

11.

12.

13.

14.

15.

Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproper-
ties in HyperLTL. In: IEEE 29th Computer Security Foundations Symposium,
CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 239-252 (2016),
http://dx.doi.org/10.1109/CSF.2016.24

Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters
21(4), 181-185 (1985)

Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercollecting se-
mantics and its application to static analysis of information flow. In: Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017. pp. 874-887 (2017),
http://dl.acm.org/citation.cfm?id=3009889

Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sanchez,
C.: Temporal logics for hyperproperties. In: Proceedings of the 3rd Conference on
Principles of Security and Trust (POST 2014) (2014)

Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157—
1210 (sep 2010), http://dl.acm.org/citation.cfm?id=1891823.1891830

Cousot, P.: Abstract interpretation. ACM Comput. Surv. 28(2), 324-328 (1996),
http://doi.acm.org/10.1145/234528.234740

Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1-2), 47-103 (2002)

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. pp. 238-252. POPL ’77, ACM, New York, NY, USA (1977)

Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. pp. 269-282. POPL ’79, ACM, New York, NY, USA (1979),
http://doi.acm.org/10.1145/567752.567778

Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511-547 (1992), http://dx.doi.org/10.1093/logcom/2.4.511

Cousot, P., Cousot, R.: A case study in abstract interpretation based program
transformation. Electronic Notes in Theoretical Computer Science 45, 41-64
(2001), http://www.sciencedirect.com/science/article/pii/S157106610480954X
Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 178-190. POPL ’02,
ACM, New York, NY, USA (2002)

Cousot, P., Cousot, R.: An abstract interpretation framework for termination.
In: Conference Record of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 245-258. ACM Press, New York,
Philadelphia, PA (jan 2012)

Cousot, R., Cousot, P.: Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics 82(1), 43-57 (1979)

Finkbeiner, B., Rabe, M.N., Sdnchez, C.: Algorithms for model checking HyperLTL
and HyperCTL. In: Proceedings of the 27th International Conference on Computer
Aided Verification, Part I. Lecture Notes in Computer Science, vol. 9206, pp. 30—48.
Springer International Publishing (2015)

16.

17.

18.

19.

20.

21.
22.

Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. In: Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. pp.
261-273 (2015)

Giacobazzi, R., Mastroeni, I.: Non-standard semantics for program slicing. Higher-
Order and Symbolic Computation 16(4), 297-339 (2003)

Giacobazzi, R., Mastroeni, I.: Transforming semantics by abstract interpretation.
Theor. Comput. Sci. 337(1-3), 1-50 (2005)

Mastroeni, I., Giacobazzi, I.: An abstract interpretation-based model for safety
semantics. Int. J. Comput. Math. 88(4), 665694 (2011)

Miné, A.: Backward under-approximations in numeric abstract domains to auto-
matically infer sufficient program conditions. Science of Computer Programming
93, Part B, 154-182 (2014), special Issue on Invariant Generation

Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4), 352-357 (1984)
Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proc. of IEEE Computer Security Foundations Workshop. pp. 29-43.
Pacific Grove, CA (June 2003)

