
NEUROINFORMATICS

On the macroscale level of description, diffusion-weighted
magnetic resonance imaging (MRI) is the main imaging tech-
nology employed for mapping the structural connectivity of the
human connectome (Hagmann, 2005; Sporns et al., 2005; Sporns,
2011). Magnetic resonance connectomics (Hagmann et al., 2010) is
increasingly recognized as a tool for basic and clinical neuroscience.
Several methodological advances in image acquisition, reconstruc-
tion, and tractography (Wedeen et al., 2008; Johansen-Berg and
Behrens, 2009) suggest that automated processing pipelines will
make it possible to generate comprehensive in vivo whole brain
statistical connectomes.

Despite the big differences in spatial scale and data size, both lev-
els of connectome mapping consist of similar stages. Connectome
mapping workflows involve image acquisition, registration and
segmentation, data organization and sharing, high-throughput
pipelining, analysis, and visualization. Advanced neuroinformatics
tools will be required to meet challenges that each stage presents. In
this article, we will focus on the development of neuroinformatics
tools in the emerging field of macroscale connectomics.

The efficiency of sharing data and source code would benefit if
a transdisciplinary lingua franca for programming was available.
Especially in the neurosciences, where researchers with varying
degrees of scientific knowledge and programming skills meet, a
common programming language helps to bridge gaps between
theoretical and experimental worlds of investigation. Moreover,
the programming language must be high-level, cross-platform,

1 IntroductIon
What nervous systems do – essentially – is to connect. Investigations
into the connectivity properties of nervous systems have a long
history (Douglas and Martin, 2007; Fishman, 2007). Despite many
efforts, contemporary knowledge about the specificity of structural
and functional connectivity is still poor. The new field of connec-
tomics is emerging to tackle the challenge of mapping complete
neural circuitry, or connectomes.

Connectomes represent the fundamental pathways on which
complex spatiotemporal activity patterns evolve. In turn, these
activity patterns modify underlying structural pathways. For an
understanding of how activity patterns arise (physiology) and
what they are able to produce and mean (behavior), it is indis-
pensable to have connectome data (neuroanatomy) on all spatial
 descriptive levels.

On the cellular level of description, light, and electron micros-
copy are the main imaging tools for mapping neuronal circuitry.
Partial and complete connectomes have been mapped in a variety of
organisms and structures such as the nematode Caenorhabditis ele-
gans (Ward et al., 1975; White et al., 1976), the crustacean Daphnia’s
optic lobe (Macagno et al., 1979), cat visual cortex (Binzegger et al.,
2004), macaque (Felleman and Van Essen, 1991; Markov et al.,
2010), the rabbit retina (Anderson et al., 2011), the mouse inters-
cutularis muscle (Lu et al., 2009), hippocampus (Ascoli, 2010), or
Drosophila melanogaster (Cardona et al., 2010; Chklovskii et al.,
2010; Hampel et al., 2011).

The Connectome Viewer Toolkit: an open source framework to
manage, analyze, and visualize connectomes

Stephan Gerhard1*, Alessandro Daducci1, Alia Lemkaddem1, Reto Meuli2, Jean-Philippe Thiran1 and
Patric Hagmann2

1 Signal Processing Laboratory 5, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2 Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland

Advanced neuroinformatics tools are required for methods of connectome mapping, analysis,
and visualization. The inherent multi-modality of connectome datasets poses new challenges for
data organization, integration, and sharing. We have designed and implemented the Connectome
Viewer Toolkit – a set of free and extensible open source neuroimaging tools written in Python. The
key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based
container format to standardize multi-modal data integration and structured metadata annotation.
(2) The Connectome File Format Library enables management and sharing of connectome
files. (3) The Connectome Viewer is an integrated research and development environment for
visualization and analysis of multi-modal connectome data. The Connectome Viewer’s plugin
architecture supports extensions with network analysis packages and an interactive scripting
shell, to enable easy development and community contributions. Integration with tools from the
scientific Python community allows the leveraging of numerous existing libraries for powerful
connectome data mining, exploration, and comparison. We demonstrate the applicability of
the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome
Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/

Keywords: connectomics, connectome, neuroimaging, python, multi-modal data, data management, network analysis,
visualization

Edited by:
Claus Hilgetag, Jacobs University
Bremen, Germany

Reviewed by:
Dennis Säring, University Medical
Center Hamburg-Eppendorf, Germany
Daniel Marcus, Washington University
in St. Louis, USA

*Correspondence:
Stephan Gerhard, Signal Processing
Laboratory (LTS5), Ecole Polytechnique
Fédérale de Lausanne – STI-IEL-LTS5,
CH-1015 Lausanne, Switzerland.
e-mail: stephan.gerhard@epfl.ch

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 1

Methods Article
published: 06 June 2011

doi: 10.3389/fninf.2011.00003

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00003/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00003/abstract
http://www.frontiersin.org/people/stephangerhard/6543
http://www.frontiersin.org/people/alessandrodaducci/31872
http://www.frontiersin.org/people/alialemkaddem/31891
http://www.frontiersin.org/people/retomeuli/33186
http://www.frontiersin.org/people/jean_philippethiran/33185
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/editorialboard

 easy-to-learn, and have a large number of scientific libraries
 available. In recent years, Python1 has become a viable alternative
to Matlab, Java, or C++. More and more, Python is becoming the
language of choice in scientific computing communities (Oliphant,
2007; Langtangen, 2009). Python is a free, open source, cross-
platform programming language with a rapidly growing number
of high-quality scientific libraries and interfaces to legacy code.
A special-topic issue on “Python in neuroscience” in Frontiers in
Neuroinformatics, and a number of publications (Kinser, 2008;
Spacek et al., 2008; Davison et al., 2009) give an indication of the
significance of the Python programming language.

Due to improved data acquisition methods, it is now possible to
acquire large multi-modal datasets in projects involving thousands
of subjects. For instance, the Human Connectome Project2 is cur-
rently underway and collects Diffusion MRI, fMRI, EEG, MEG,
behavioral, and genetic data in a cohort of 1200 healthy subjects.
In such large-scale projects, the neuroinformatics challenges of
data handling, sharing, and analysis become unnecessarily difficult
without common infrastructure and data format standards. Due to
their longer tradition, in the fields of volume-based and surface-
based analysis in neuroimaging, standardized data formats have
already been established such as NIFTI3 for volume-based data and
GIFTI4 for surface-based data. Importantly for MR connectomics,
no common format for network-based data yet exists. To approach
the task of specifying such a format for connectivity-related neu-
roimaging data, the Connectivity InFormatics Technology Initiative
(CIFTI) was launched. Furthermore, a dedicated program of the
International Neuroinformatics Coordinating Facility (INCF5) on
standards for data and metadata sharing was established.

For data management and sharing of large and multi-faceted
datasets, a flexible data format is necessary. The key requirements
of such a flexible data format under the macroscale connectomics
perspective are severalfold:

 A standardized container format for raw and processed multi-
modal datasets that is based on common neuroimaging data
formats, extended by a standard format for network-based
datasets.

 A minimal set of required metadata that can be extended fle-
xibly by user-defined metadata, and that allow easy sharing of
data and metadata across collaborating groups.

 The possibility of relating different data modalities to each
other.

 An interface to database infrastructures.
 A mapping to an object model in common programming

languages.
 To enable the storage of behavioral data.
 To enable the storage of provenance information such as pro-

cessing scripts and runtime environment
 The ability to link data and concepts to semantic frameworks.
 To enable easier data visualization (Benger, 2009) and analysis.

To establish a novel data format, it must come with appropriate
libraries for reading and writing. Only when it is possible to easily
read, modify, and save data in the new format, does it benefit the
researcher who wants to focus on analysis and visualization. There
exist many standard formats for the different data modalities, but
no one has yet tried to combine these multi-modal datatypes into
a single format.

Complementary to common data formats, investigators in the
field of macroscale connectomics will require interactive research
and development environments for data analysis and visualiza-
tion. An optimal solution would be an integrated neuroinformatics
environment based on Python. It would need to provide a graphical
user interface (GUI) with extensive libraries, an interactive scripting
shell and built-in script editors with code-highlighting and debug-
ging functionality. Graph analysis libraries are required to unravel
the complex brain network organization of structural and func-
tional systems (Bullmore and Sporns, 2009). Furthermore, such a
macroscale connectomics research environment needs to support
an interactive mode of analysis and visualization of multi-modal
datasets. Scripting interfaces provide the required flexibility to allow
the implementation of a variety of multi-modal data exploration
and data mining strategies in an interactive way (Akil et al., 2011).
The environment needs not only to provide a methodology to auto-
matically perform elementary functionality, but also guidance for
the performance of more complex analysis and visualization tasks.
Moreover, a modular software architecture fosters contributions
by the open source research community. Open interfaces facilitate
the reuse of a diversity of tools and external libraries that the con-
nectome researcher can draw from.

We used the Python programming language to develop the
free and open source Connectome Viewer Toolkit. We specify the
Connectome File Format (CFF) as a container data format for
multi-modal neuroimaging datasets, specifying a connectome file.
We present the Python-based Connectome File Format Library
(cfflib) for data manipulation and data sharing of connectome files.
The Connectome Viewer provides a framework for interactive visu-
alization and analysis of connectomes and multi-modal datasets.
We will illustrate the application of the Connectome Viewer Toolkit
on Diffusion MRI datasets processed by the Connectome Mapper.
The Connectome Mapper is a Python-based tool that currently
implements structural connectome mapping. Figure 1 summarizes
the general connectome processing workflow for structural and
functional data. It highlights the use of the Connectome Viewer
tools presented in this article.

2 toolkIt desIgn
After having outlined the key neuroinformatic challenges when
developing tools for macroscale connectomics, we present the
design and implementation of the Python-based Connectome
Viewer Toolkit for data organization, analysis, and visualization
of connectome data.

General considerations We have adhered to best-practices
for open source scientific software tool development from the
beginning (Baxter et al., 2006). Python provides mature software
engineering tools for writing, testing, debugging, and maintaining
scientific software. We have followed a very modular philosophy
when designing the tools and the toolkit in general.

1www.python.org
2humanconnectome.org
3nifti.nimh.nih.gov
4www.nitrc.org/frs/? group_id = 75
5www.incf.org/core/programs/datasharing

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 2

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Language file and the connectome objects. The Connectome
Markup Language file is a single XML-based file named meta.cml,
containing metadata and a list of connectome objects. The schema
for the Connectome Markup Language file is specified in conform-
ance to the W3C standard XML schema 1.0 language (Thompson
et al., 2004) and is available online. Figure 2 illustrates the basic
design of the CFF graphically.

We take advantage of the power and flexiblity inherent in defin-
ing objects with XML to specify connectome objects. Connectome
objects wrap data files of multiple modalities. They add a layer of
metadata information to the primary data file they refer to. Each
connectome object holds information about its name, fileformat,
datatype, description, and additionally a flexibly extensible metadata
tag. We use the term multi-modal here to distinguish data types
rather than measurement modalities. The basic categories of con-
nectome objects are: CMetadata, CNetwork, CVolume, CSurface,
CTrack, CData, CScript, CTimeseries, and CImagestack. Table 1
describes the connectome object types in detail.

The connectome file is not confined to contain multi-modal
datasets for a single datasets, but it can store multi-subject datasets.
When storing multi-subject datasets, adding metadata annotation
tags of the subject ids is suggested. Retrieving connectome objects
grouped by the subject ids is then enabled by the grouping func-
tion group_by_tagkey as shown below in the listing of Section 2.2
Similarly, when individual connectome objects are tagged as belong-
ing to a patient or control group, retrieving the corresponding data-
sets for group-wise comparison is possible with the same function.

Open Metadata Flexible annotation of metadata for each
connectome object is enabled by the metadata tag. It is possible
to annotate every connectome object in the container in the same
way. We defined two ways to create annotations of metadata: (a)
by simple tagging, (b) by structured annotation.

For (a), simple key-value pairs of the form <tag key=”number_
of_nodes”>83</tag> are used to tag connectome objects. The
employed keys can be used later on to group required objects easily in
Python’s so-called dictionaries. For instance, CNetwork objects can be

We have adopted the powerful and widely used distributed
 version control system called git (Chacon, 2009). It is comple-
mented by its biggest hosting platform GitHub6. We use GitHub
as a project management platform for the support of all stages
of the collaborative software development process. Our GitHub
organization repositories are used for source code hosting, bug
tracking, release management, code review, wiki, and visualization
of the version control history and contributions.

We use the Sphinx tool7 to create the online documentation
for all tools. Sphinx uses so-called restructured text as its markup
language, allowing one easily to create HTML, and PDF documen-
tation with cross-referencing. The built-in syntax highlighting of
code improves the readability of the documentation. Moreover, we
provide user guides, tutorials, and example datasets for all tools.

Installation For proper software packaging and distribution,
the NeuroDebian project8 provides professional expertise and infra-
structure. NeuroDebian provides a repository of neuroscience-related
packages for easy installation on Debian-based Linux operating sys-
tems, such as Ubuntu. The Connectome Viewer Toolkit is distributed
through the NeuroDebian repository, thereby facilitating the installa-
tion of dependencies and regular updates. For users on Windows or
Mac OS X platforms, the Enthought Python Distribution9 provides
the required Python environment for the toolkit. The Enthought
Python Distribution is free for academic purposes.

2.1 the connectome FIle Format
The metaphor of a container shall serve to explain how the
Connectome File Format (CFF) is structured. The CFF makes
a distinction between two entities: the Connectome Markup

Figure 1 | general processing stages of a connectome workflow. The
Connectome Viewer Toolkit currently supports the workflow highlighted in
yellow. Mapping streams for structural data, such as the Connectome Mapper,
or functional data may converge to a connectome file and can be further
managed, analyzed, and visualized with the Connectome Viewer. Connectome
files may be reused in other frameworks for analysis and visualization tasks.

Figure 2 | The Connectome File Format Container. The connectome
objects with reference to their primary data and metadata are depicted as
small boxes. They are stored in a connectome file, represented by the open
big box. After data manipulation, the connectome file can be compressed and
shared with collaborators or sent to databases.

6github.com/LTS5
7sphinx.pocoo.org
8neuro.debian.net
9www.enthought.com

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 3

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

and does not make any assumption about the terminology used.
These terminologies are expected to emerge as the researchers start to
annotate connectome objects using open metadata markup. Existing
controlled vocabularies can already be employed with this schema.
An example of the application of the metadata tag to the CMetadata
object is shown in the Section 3 in Figure 6.

Multi-Modal Data Integration A connectome file can contain
connectome objects for multiple modalities. These modalities are
related to each other using unique numeric identifiers. Any given
entity such as a brain structure or region of interest can poten-
tially be represented in different modalities. Geometrically, an entity

grouped by their number of nodes, or connectome objects of multiple
subjects can be grouped based on the subject id key. Although this
scheme is very handy for everyday analysis, it is often desirable to store
more structured metadata. As for (b), we adopted the Open Metadata
Markup Schema odML10 that was created to represent metadata for
neurophysiology data in a bottom-up fashion. For metadata annota-
tion, there are named sections that contain properties. The properties
have a name and value, and additionally type, unit, and uncertainty
information. This bottom-up scheme is very flexible and extensible

Table 1 | The variety of connectome objects the CFF supports.

Object types Description

CMetadata The CMetadata object describes metadata relevant to contents of the whole connectome file. We use relevant parts of the Dublin Core

Metadata Terms specification (dublincore.org) to define the following tags: title, creator, publisher, created, modified, license,

references, description. We have extended the core metadata tags with generator, species, and email tags. For each connectome

object, a metadata tag can be added that expresses container-wide valid properties.

CNetwork Networks of any sort can be stored. For MR structural connectomes, nodes represent brain regions and edges represent fiber

tractography derived connections. The possibility of storing an arbitrary number of attributes per node and edge allows, for example,

brain region nodes to point to ontologies that define them uniquely.

Formats: GraphML, GEXF, NXGPickle, Other

Types: Attribute Network, Dynamic Network, Hierarchical Network, Structural Network, Functional Network, Effective Network, …
CVolume Volumetric, voxel-based datasets are widely used in the neuroimaging community to store many different measurement modalities.

Examples: Apart from acquired raw data, brain segmentations or probability maps can be stored as 3D volumes.

Formats: Nifti1, Nifti2, Other

Types: Segmentation, T1-weighted, T2-weighted, PD-weighted, fMRI, Probability map, ASL, MD, FA, LD, TD, FLAIR, MRA, MRS, PET, …
CSurface Surface-based datasets are usually stored as triangular meshes. They are often extracted from an underlying volumetric segmentation.

Examples: Cortical maps for parcellations, thickness, or curvature information.

Formats: Gifti, Other

Types: Labeling, Surfaceset, Probability map, Surfaceset + Labeling, …
CTrack Deterministic tractography creates sets of single polygonal lines.

Examples: Reconstructed fiber bundles from Diffusion MRI

Formats: TrackVis, Other

Types: FACT Tractography, …
CData Data of any type that does not fit into any other connectome object category.

Examples: Phenotypic subject variables, assessment results

Formats: NumPy, HDF5, XML, JSON, CSV, Pickle, TXT, Other

Types: Fiber Labeling, Bval, Bvect, FPI-R, NEO-P-I-R, STAI, BIS-Test, I-S-T 2000R, …
CScript Visualization and analysis procedures in the form of executable scripts. They may serve as provenance information for processed data.

Examples: Connectome Mapper configuration script, Nipype script

Formats: TXT, Python, Bash, Matlab, Other

Types: Statistical Analysis, rsfMRI Connectivity Mapping, …
CTimeseries There are plenty of time series related formats which makes it difficult to support a general one. We support generic data array

containers that can store arbitrary time-series data.

Formats: HDF5, NumPy, Other

Types: EEG Time series, MEG Time series, fNIRS, …
CImagestack Series of 2D images not simply representable in volume-based formats.

Examples: Typical examples would be annotated slice-based atlases that represent areas as closed 2D polygons.

Formats: PNG, JPG, TIFF, SVG, Other

Types: Scalable Brain Atlas, …

The connectome objects are a wrapping mechanism, extending single data files by further annotations. Formats lists the file formats that are supported for reading
and writing through the Connectome File Format Library. Types is a freely defined string. It usually denotes the measurement modality and is retrieved from
controlled vocabularies.

10http://www.g-node.org/projects/odml

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 4

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

object represented in the GraphML format11. In later analysis and
visualization stages, the relevant data in the different modalities
can be retrieved and combined as needed. Figure 4 depicts this
schema graphically.

Similarily, this schema is applied to connectivity information,
combining the origin and target entities using their unique inte-
ger identifiers. The labeling of a subset of fibers of a whole brain
tractography corresponds to the group of fibers that connect two
brain regions. This connection has its correspondence in an edge
of a CNetwork. Additional properties that hold for this group of

is instantiated as a set of cortical voxels in a volume and/or as a
 particular set of triangles in a surface mesh. The same entity may
be represented by a node in a network.

We use integer values to establish this three-way relationship.
Each entity is given a unique integer value. For each modality,
this particular integer value is stored at defined places. For the
CVolume object, the values are stored in individual voxels, thereby
defining a segmentation. For the CSurface object, the values are
stored as labelings on the vertices or on the faces, defining a
surface-based parcellation. For the CNetwork object, we store
the integer value as a node property. In Figure 3, we use the key
dn_correspondence_id to store the integer value for a CNetwork

Figure 3 | Networks are represented using the graphML file format. The storage of an arbitrary number of attributes on the nodes and edges is possible. For
instance, nodes denoting brain regions may link to semantic frameworks where definitions, delineation criteria, and literature references given. Standardized node
positions are useful in graph layouting for comparison.

Figure 4 | relationship between multi-modal connectome objects. Correspondence is established with unique (integer) identifiers between the nodes of a
network, the ROI in a volumetric dataset, and the surface mesh. Analogically, a network edge has the same identifier as the fiber tracts that connect such two brain
regions.

11graphml.graphdrawing.org

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 5

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Print summary of contained data
In [3]: mycon.print_ summary()
Retrieve particular connectome object by name
In [4]: mynet = mycon.get_ by_ name(’My
Connectome 83’)
Load the connectome data into memory
In [5]: mynet.load()
Display nodes with attributes
In [6]: print mynet.data.nodes(data = True)
On-the-fly grouping based on metadata key-values tags
In [7]: mygroup = cfflib.group_ by_ tagkey(cobj_
list = mycon.get_ all(),
tagkey = "sex", cobj_ type = ["CNetwork"],
exclude_ values = ["unknown"])
Create list of CVolume names
In [8]: mynamelist = [vol.name for vol in mycon.
get_ connectome_ volume()]

Online tutorials explain extensively how to use cfflib to work with
and create new multi-modal connectome files14.

CFF data repository Via our GitHub repository15, we provide
a set of public, curated connectome datasets: single subject and
group connectome files (generated with the Connectome Mapper),
functional connectomes based on fMRI (Biswal et al., 2010), human
atlas datasets such as Freesurfer’s fsaverage, MNI152 templates,
SRI24 Atlas (Rohlfing et al., 2010), and also some non-human data-
sets from C. elegans, Macaca Mulatta, and Mouse Brain (Johnson
et al., 2010). We welcome contributions of connectome datasets
under an open license for this data repository.

Database Interface We support connectome data sharing
by providing an interface to remote database infrastructures. The
eXtensible Neuroimaging Archive Toolkit (XNAT) is an informatics
platform for managing, exploring, and sharing neuroimaging data
(Marcus et al., 2007). It exposes web services using a RESTful API.
Large neuroimaging initiatives, such as the Human Connectome
Project, use the XNAT infrastructure for storage and sharing of large
multi-subject, multi-site datasets. The Python library PyXNAT16
interfaces to XNAT servers by their RESTful API. It supports an
interactive mode of access for data selection, pulling, and pushing.
Any type of data can be pushed to XNAT.

We implemented a push and pull mechanism using PyXNAT
for connectome files in cfflib. After the configuration of the con-
nection settings to the XNAT server, it is possible to push and
pull connectome files to and from XNAT servers. For pushing
the connectome file, the parameters project id, subject id, and
experiment id must be set, in order to correctly associate the data
in the project organization. All the connectome objects in the con-
tainer are then submitted to the XNAT server sequentially. For the
pulling operation, the same information has to be given with the
storage path as an additional parameter. Submitted connectome
objects can be displayed and downloaded from the XNAT web
interface individually.

fibers, such as the number of fibers or averages of scalar values
along the fibers, are stored as edge properties. For storing the label
information for the fibers belonging to a network edge, we employ
a CData object that represents a Nx2 NumPy array. N is the number
of fibers and the first row stores integer values denoting the ori-
gin region of interest, and the second row stores the target region
of interest. As a convention for the undirected fiber data derived
from magnetic resonance tractography, we store the smaller integer
value always in the first row. Thus, it becomes straightforward to
retrieve all the fibers that connect two arbitrary regions of interest
for further processing or visualization.

For time-dependent data, the same schema can be used. Time-
series data from any source is stored in an NxM dimensional
homogenous array. N is the number of channels and M is the
number of time points. A CData object contains the labeling for
the N channels to relate the series to any entity within the connec-
tome file. Thus, time series can be defined for instance for brain
regions, surface patches, network nodes, or electrodes in a very
flexible manner. The CTimeseries object is used to store the array,
for example in Hierarchical Data Format 5 (HDF512) or NumPy
(Oliphant, 2006) array format. In the CTimeseries metadata
fields, additional parameters such as the sampling frequency can
be stored. Additional CData objects may contain spatial position
of the channels.

When psychological assessments are made in clinical trials, the
datasets are often stored as spreadsheets. Bundling these data as
CData within the connectome files in tabular form (CSV) or as an
XML file, facilities data organization, and subsequent statistical
correlation procedures with neuroimaging data.

Ultimately, all relevant multi-modal datasets for a neuroimaging
study comprising multiple subjects or a single subject can be stored
within a single connectome file.

2.2 the connectome FIle Format lIbrary
The CFF specification is complemented by the Connectome File
Format Library (cfflib) for Python. The cfflib supports (a) reading
and writing of the connectome metadata markup (meta.cml) and
compressed connectome files, (b) basic Input/Output of the sup-
ported file formats using supporting Python libraries, (c) a lazy
loading strategy for data, (d) synchronizing files with a remote
XNAT database servers, (e) setter and getter methods for updat-
ing metadata, (f) auxiliary methods for grouping objects based on
metadata tag values and type.

We used the generateDS library (Dave Kuhlmann13) to create the
Python object model. All classes were derived from the Connectome
File Format XML schema. Subclasses provide additional methods
for manipulation of the connectome files and basic loading and
saving functionality. An example of an interactive Python session
employing cfflib and its object model is given below:

Import cfflib for usage
In [1]: import cfflib
Load connectome markup file
In [2]: mycon = cfflib.load(’meta.cml’)

12www.hdfgroup.org
13www.rexx.com/∼dkuhlman/generateDS.html

14cmtk.org/cfflib/
15github.com/LTS5/cffdata
16packages.python.org/pyxnat/

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 6

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

to understand the commands performed by the script. It is easily
possible to change the basic parameters without going back to the
GUI dialogs again by modifying the script directly. Moreover, the
commands necessary for reading the appropriate data, performing
the visualization and analysis tasks, and generation of results can
be modified in the Script Editor.

2.3.3 Plugin Architecture
The Connectome Viewer as an Envisage-based application consists
of a set of plugins as the primary building blocks. Plugins may
contribute menus, widgets, and other functionality to the applica-
tion. The core plugins are the Connectome File View, the IPython
Shell, the Script Editor, and Mayavi. The Code Oracle and Python
Connectome Toolbox are two additional plugins.

The Connectome File View plugin A connectome file can be
loaded and saved via the menu. The plugin has a tree view widget
that represents the connectome file. All connectome objects are
shown in this tree view. Moreover, the loaded connectome file is
accessible in the IPython shell for scripting. Double-clicking con-
nectome objects in the tree view loads the referred data file into
memory. Connectome objects can be dragged and dropped in the
IPython shell for further data inspection and usage in scripts.

The IPython Shell plugin The IPython Shell plugin provides
a widget with an enhanced interactive Python shell. Features such
as tab-completion, automated docstring display, logging, history,
and many others make it an ideal environment for interactive sci-
entific computing.

The Script Editor plugin The Script Editor plugin enables
loading, saving, and execution of Python scripts and text files. It
features line numbering and syntax highlighting. Scripts can be
executed directly in the IPython Shell by keybindings (Ctrl-R for
executing or Ctrl-S for saving scripts).

The Mayavi plugin The Mayavi plugin is the major building
block that provides advanced interactive 3D visualization and plot-
ting (Ramachandran and Varoquaux, 2011) to the application. It
exposes an easy-to-use interface to the well-known Visualization
Toolkit VTK (Schröder et al., 2006). Mayavi as a stand-alone

2.3 the connectome VIewer
We wanted to provide neuroimaging researchers with an easy entry
into the world of connectome analysis with Python. We designed
the Connectome Viewer as a GUI environment with a powerful
scripting interface for interactive data analysis and visualization.
The primary data source for the application are connectome files.
The role of the Connectome Viewer is to provide a tool for the
analysis and visualization of connectome files derived from dif-
ferent mapping streams (see Figure 1).

2.3.1 Dependencies
The Connectome Viewer depends on the Enthought Tool Suite
(ETS17). ETS provides the application-building framework Envisage
and the Traits and Traits UI libraries for creating GUIs. We use
Mayavi (Ramachandran and Varoquaux, 2011), the main compo-
nent in ETS for interactive scientific 3D data visualization, based
on the popular Visualization Toolkit VTK (Schröder et al., 2006).
Furthermore, we require Chaco for interactive plotting, IPython
(Perez and Granger, 2007) for interactive Python shell support and
cfflib for data input/output. We rely on the NetworkX (Hagberg
et al., 2008) data structures for representation of networks. The
dependencies of the Connectome Viewer are listed in Table 2. All
required dependencies are installed automatically by using the
NeuroDebian repository.

2.3.2 Script Generation Mechanism For Usability
The approach we took in the design of the Connectome Viewer to
support synergy effects of combined analysis and visualization is
based on a simple and proven paradigm. We call it the Code Oracle:
for a given task, first a set of graphical user dialogs are presented
for the setting of task-relevant parameters. Afterward, a Python
script is automatically generated according to the these parameters.
Then the script is displayed in the script editor, and can be executed
without further modifications in order to perform the requested
task. The generated scripts are commented, enabling the researcher

Table 2 | Connectome Viewer library dependencies. When using NeuroDebian for the installation, all required dependencies are installed automatically.

Package Version Short description

Envisage >= 3.1.2 Application-building framework similar to the Eclipse framework. Envisage is a system to define, register and use

plugins to build complete applications. It is part of the Enthought Tool Suite.

Traits/

TraitsUI

>= 3.4.0 Extends the Python type declarations for improved initialization, validation, and notification. TraitsUI provides

GUI-creation methods for Traits-based objects.

Mayavi >= 3.3.2 3D Scientific Data Visualization and Plotting. For easy and interactive visualization of data and seamless integration

in Envisage-based applications. Mayavi uses Traited VTK exposing a Pythonic API to VTK.

Chaco >= 3.3.1 Interactive 2D plotting environment using Traits and TraitsUI.

IPython >= 0.10 An enhanced interactive shell environment for scientific computing.

Fos >= 0.1 A lightweight package for scientific 3D visualization (http://fos.me/). It supports basic visualization of dynamic

networks, surfaces, and large tractography datasets and is included in the Connectome Viewer codebase.

cfflib >= 2.0 The Connectome File Format Library. It provides functionality for manipulation of connectome files and depends on

Nibabel, NumPy, and NetworkX.

Nibabel >= 1.1.0 General library for reading and writing many neuroimaging file formats.

NumPy >= 1.3 Homogenous, multi-dimensional array support for different data types with manipulation, and processing routines.

NetworkX >= 1.4 Data structures and algorithms for complex network analysis.

17code.enthought.com

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 7

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Currently, NIPY consists of the following five packages. A few more
helpful packages for the neuroimaging researcher have been added
to the list:

Nibabel “Nibabel provides read and write access to some
common medical and neuroimaging file formats, including:
ANALYZE, GIFTI, NIfTI1, MINC, DICOM, MGH, TrackVis,
as well as PAR/REC.” Nibabel constitutes a necessary compo-
nent for writing data analysis workflows, because it is crucial
to retrieve and exchange data across different analysis software
and computer platforms.

Dipy “Dipy is an international, free and open software project
for diffusion magnetic resonance imaging analysis in Python.
DiPy includes methods for reconstruction, resampling,
tractography, warping, fiber clustering and visualization.”
(Garyfallidis et al., 2011)

Nipype “Nipype, an open source, community-developed initia-
tive under the umbrella of NIPY, is a Python project that pro-
vides a uniform interface to existing neuroimaging software
and facilitates interaction between these packages within a
single workflow. Nipype provides an environment that encou-
rages interactive exploration of algorithms from different
packages, eases the design of workflows within and between
packages, and reduces the learning curve necessary to use dif-
ferent packages.” (Ghosh et al., 2010)

Nitime “Nitime is a library for time-series analysis of data from
neuroscience experiments. It contains a core of numerical algo-
rithms for time-series analysis both in the time and spectral
domains, a set of container objects to represent time-series, and
auxiliary objects that expose a high-level interface to the nume-
rical machinery and make common analysis tasks easy to express
with compact and semantically clear code.” (Rokem et al., 2009)

NiPy “NiPy is a Python-based framework for the analysis of
structural and functional neuroimaging data. It currently has a
full system for general linear modeling of functional magnetic
resonance imaging (fMRI).”

PyROI “PyROI is a Python package for functional neuroima-
ging region of interest extraction and analysis. It offers an
efficient processing stream and a wide range of flexibility in
the way source images are parcellated. Using PyROI, users can
extract parameter and contrast effect sizes or timecourses.”21

PyMVPA “PyMVPA is a Python package intended to ease stati-
stical learning analyses of large datasets. It offers an extensible
framework with a high-level interface to a broad range of algo-
rithms for classification, regression, feature selection, data import
and export. While it is not limited to the neuroimaging domain,
it is eminently suited for such datasets.” (Hanke et al., 2009)

scikit-learn “For easy-to-use and general-purpose machine
learning in Python. It contains supervised learning (SVM,
GLM), as well as unsupervised learning algorithms.”22

We want to emphasize the additional tremendous potential
for data exploration and data mining of connectomes using these
external libraries. For a functional mapping stream, PyROI may be

 application uses the Envisage application framework. Because all
functionality is exposed as Envisage plugins, the integration as part
of the Connectome Viewer was straightforward. The Mayavi plugin
also provides the Mayavi Visualization Tree widget, which manages
scenes, visualization objects, and filters hierarchically. Additionally,
the Visualization Object Editor lets the user change all parameters
of the visualization objects, filters, and scenes.

The Code Oracle plugin We encapsulated the script-generating
functionality in the Code Oracle plugin. The Code Oracle plugin adds a
menu to the Connectome Viewer for invoking the Code Oracle mecha-
nism for specific task. The Code Oracle menu is structured according to
analysis and visulization task on the different connectome file objects:
“Surface Mesh With Labels” (CSurface); “Volume Slicer,” “Volume
Rendering” (CVolume); “Network Visualization,” “Connection Matrix
Viewer,” “Network Report” (CNetwork); “Network-based statistic
(NBS)” (Statistics); “Fiber Visualization” (CTrack); “XNAT Push and
Pull” (Other); “Brain Extraction using BET” (Nipype).

This list presents a set of basic functionality. Several generated
Code Oracle scripts may be combined and modified in the script
editor for more complex tasks. The number of generated scripts
is expected to grow rapidly as new use cases are discovered and
algorithms developed and integrated.

The Python Connectome Toolbox plugin The Python
Connectome Toolbox serves as a container for a collection of connec-
tome-related analysis algorithms. They can also be used without the
GUI. We provide within the Python Connectome Toolbox a Python
wrapper to the C++ implementation bct-cpp (Williams et al., 2011)
of the Brain Connectivity Toolbox (Rubinov and Sporns, 2009). We
expose all of the toolbox’s functions with an easy-to-use interface
and parameter descriptions. The Brain Connectivity Toolbox algo-
rithms are widely used for network analysis in the neuroimaging
community. An abundance of additional well-designed network
analysis libraries and Python wrappers exist that cover almost all
aspects of network-based connectome analysis: NetworkX (Hagberg
et al., 2008), Boost Graph Library (Siek et al., 2001), iGraph (Csardi
and Nepusz, 2006), graph-tool18, or Python-graph19.

Furthermore, we provide within the toolbox two Network-
based statistics for case–control or task-control group studies:
the Network-based statistic (Zalesky et al., 2010) and Block-based
statistic (Meskaldji et al., 2010). The Code Oracle plugin produces
scripts that use the Python Connectome Toolbox’s functionality.

2.3.4 Supporting Libraries
Through the open design of the Connectome Viewer, we encourage
the use of the many libraries available in the scientific Python com-
munity. The supporting libraries presented here provide powerful
tools for creative data exploration and data mining. Every library
is usable from the IPython widget in the Connectome Viewer. Vice
versa, contributed packages to the Connectome Viewer are usable
from a pure IPython shell if they do not require the GUI.

The Neuroimaging in Python (NIPY20) project (Millman and
Brett, 2007) is an umbrella project for various efforts to build
well-written and documented open source neuroimaging libraries.

18projects.skewed.de/graph-tool/
19code.google.com/p/python-graph/
20nipy.org

21web.mit.edu/mwaskom/pyroi/
22scikit-learn.sourceforge.net

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 8

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

The multi-modal datasets produced by connectome worksflows
was a major motivation to create the CFF. The product of such
a mapping stream not only comprises the resulting connection
matrix, but also fibers, surfaces, segmentations, labelings, other
data arrays, and metadata. Capturing provenance information and
storing it along with the raw and processed data is very important
for later reproducibility. There are no accepted standards in the neu-
roimaging community for provenance tracking. In the Connectome
Mapper, the log and configuration file including versions of the
called executables and the operating system environment are stored
for provenance everytime the pipeline is run. The CFF provides
a convenient way to store this data, as well as other provenance
information.

3 results
Connectome file for Multi-Modal Datasets The last process-
ing stage of the Connectome Mapper implements an automatic
conversion of original and processed data into connectome files.
Using cfflib, data with relevance for subsequent analysis and visu-
alization are packed into a connectome file. In the Connectome
Mapper, the generated connectome files usually consist of the
networks (CNetwork), the volumetric segmentations and the
raw data (CVolume), the extracted surfaces with their brain
region labeling (CSurfce), the original and filtered fibers from
the deterministic tractography (CTrack), the fiber labeling and
property arrays (CData), and the subject and project metadata
(CMetadata). During the pipeline configuration, these sub-
ject- and project-specific metadata fields have to be entered. In
a postprocessing step, additional datasets such as psychological
assessment and behavioral assays can be added to the generated
connectome file.

An excerpt of the connectome markup meta.cml for a single
subject that was generated in the conversion stage of the process-
ing pipeline is shown in Figure 6. It is enriched by an example
section that contains information about the EEG acquisition
parameters.

The connectome file may now be published to a public or private
repository or database infrastructure. For instance, the connectome
file can be published to an XNAT server (Marcus et al.,2007) using

used to extract averaged time series from regions of interest. Nitime
may then be used to perform functional connectivity analysis from
extracted time-series data. Nipype is ready to implement even more
sophisticated data workflows using external packages and parallelize
them on cluster infrastructures. For Diffusion MRI, Dipy imple-
ments reconstruction, tractography, and fiber visualization meth-
ods in a free and open source manner. Furthermore, the PyMVPA
framework and the scikit-learn library provide widely used machine
learning algorithms. The application of machine learning methods
is facilitated for non-experts through extensive online tutorials, for
instance in tutorials on fMRI decoding analysis with scikit-learn23
or a general introduction to the PyMVPA framework24.

2.4 connectome mappIng workFlows
The general workflow to derive useful connectome information
from primary neuroimaging data was shown in Figure 1. Data
used here for the demonstration of the Connectome Viewer Toolkit
is derived from Diffusion MRI. We reimplemented the pipeline
used by Hagmann et al. (2008). We used the Traits and Traits UI
libraries to build a GUI for the Connectome Mapper tool. The
Connectome Mapper’s processing stages are depicted Figure 5. All
image processing stages can be parameterized and run interactively,
or remotely using a configuration script. Details of the individual
processing stages are available from the online documentation. The
Connectome Mapper is released together with the Connectome
Viewer Toolkit as the Connectome Mapping Toolkit25, but the
toolkit can be used as stand-alone application, and also with other
mapping workflows, such as Nipype.

We will not detail the Connectome Mapper architecture, indi-
vidual processing stages or validation issues here. We note only
that the last “Connectome Creation” stage merges data from the two
processing streams. The fibers from tractography are merged with
volumetric region of interest masks denoting brain regions to form
a network. This step exemplifies one instance of establishing the
relationships between multi-modal data types as shown in Figure 4.

Figure 5 | The general processing stages of the Connectome Mapper. This pipeline is an example implementation of a structural connectome mapping stream.
Here, two processing streams dealing separately with brain region (node) and white matter (edge) information eventually converge into the connectome of one
particular subject.

23nisl.github.com/
24www.pymvpa.org/tutorial.html
25www.cmtk.org

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 9

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

The results of a Code Oracle analysis script to extract and cluster
cortico-cortico U-fibers from tractography are shown in Figure 10. It
uses supporting Python libraries, such as NumPy for array handling
and comparison, Dipy for the local skeleton clustering algorithm
(Garyfallidis et al., 2010) and Fos for visualization. Interactively,
improvements in the fiber extraction and clustering parameters were
made. The direct influence of parameter changes in the script are read-
ily visible by re-executing the script. The script “U-fiber Extraction”
to reproduce Figure 10 can be invoked from the Code Oracle plugin.

Furthermore, we show an example PDF output of the network
report generation mechanism, created using the “Network Report”
Code Oracle (Figure 11). For PDF creation, ReportLab26 is used.
The figures in the report are generated using Matplotlib (Hunter,
2007) for 2D plotting. Connection matrix and node degree histo-
grams are displayed along with basic network statistics for a selected
networks contained in the currently loaded connectome file. The
script that produces the reports can easily be adapted for modi-
fication of the layout or report content to include other network
measures or visualizations (Figure 12).

4 dIscussIon
4.1 connectome FIle Format
In this article, we exemplified the application of the CFF for
Diffusion MRI data and metadata. We envision more use cases of
functional connectivity analysis using fMRI, EEG, MEG methods.
The CFF specification is flexible enough to also accommodate such
multi-modal datasets and their metadata.

Figure 6 | The content of a meta.cml file.

Figure 7 | Connectome File View as a Connectome Viewer widget. The
treeview gives a convenient user interface to deal with connectome objects
contained in a connectome file. Data files are loaded into memory by
double-clicking. Single tree nodes can be dragged to the IPython shell for data
inspection and scripting.

cfflib and PyXNAT with a few lines of Python code. The required
commands are generated with the “XNAT Push and Pull” func-
tion of the Code Oracle plugin. For further analysis and visualiza-
tion, the connectome file is loaded in the Connectome Viewer.
The Connectome File View widget is updated and may appear as
in Figure 7, displaying nodes for each connectome object in the
connectome file.

The Connectome Viewer GUI consists of widgets contributed
by its core plugins. The main window after loading a connectome
file and executing a surface display script (using the Code Oracle)
with an anatomical cortical parcellation (Desikan et al., 2006) is
shown in Figure 8.

In Figure 9, the connectivity matrix based on particular
Diffusion-derived measures for edge values is presented in an inter-
active user interface. The interface allows the user to zoom, drag,
select the display range, switch between different edge values, and
show the connecting regions when moving over an edge.

An instance of multi-modal data integration using network
properties and reconstructed surfaces is depicted in Figure 9. A
simple network metric, namely the node degree (number of adjoin-
ing edges), was computed. The nodes correspond to brain regions,
delineated on a inflated brain surface. The node degree values were
then used for color-coding the corresponding regions. Mayavi pro-
vides the DataSet Clipper to clip the surface mesh and reveal the
view onto the subcortical nuclei. Comparatively, a much higher
node degree is readily recognizable for the subcortical regions com-
pared to the low node degree on the cortical surface. 26reportlab.com

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 10

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

As multi-modal or multi-subject datasets are often very large,
in the order of tens or hundreds of gigabytes, having all data-
sets in one compressed container is disadvantageous for fast
file access and manipulation. Because the meta.cml file stores
relative references to the connectome object data files, the data
files can reside on the local or remote file system in subfolders
relative to the meta.cml file. The meta.cml can be loaded with

One current limitation is a missing specification in the format
itself of the shared spatial data space among connectome object
types. For instance, it is possible that the affine transformation
stored in NIFTI or GIFTI files do not map to the same common
space, such as MNI152, due to different preprocessing. The annota-
tion of the particular data spaces for individual connectome objects
as metadata of the connectome file is possible.

Figure 8 | The Connectome Viewer gui. The main application is shown with the
placeable widgets contributed by the core plugins. (A) The Connectome File View
shows a treeview of the contents of a loaded connectome file. (B) The Mayavi
Visualization Tree manages the visualization objects and scenes in a pipeline. (C)
The ScriptEditor shows scripts generated with the Code Oracle with syntax

highlighting. They can be manipulated and run in the IPython console. (D) The
Mayavi Scene displays the visualized data. (e) The IPython shell is integrated as a
widget. It exposes the loaded connectome file and other objects for interactive
scripting and data inspection. (F) The Namespace widget displays the variables and
packages currently loaded in memory and accessible in the IPython Shell.

Figure 9 | Node degree display on the surface of an inflated left
hemisphere (left). The right hemisphere and parts of the medial surface of
the left hemisphere are clipped using the Mayavi DataSet Clipper. A set of
left hemispheric cortical and subcortical regions is visible. The node degree
of each region is coded in color. Blue corresponds to a low degree, green

to a medium degree, and red to a high degree. The Connection Matrix
Viewer (right). Switching between edge values and highlighting of the edge
value ranges is possible. The From and To labels, and edge values are
updated automatically when moving over the matrix with the mouse
cursor.

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 11

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Figure 10 | Cortico-cortico u-shaped fibers generated with a Code Oracle script. The method to extract fibers from a subject uses criteria for fiber start and
endpoint closeness, fiber curvature. The local skeleton clustering procedure (Garyfallidis et al., 2011) is used for the cluster coloring. The extracted U-fibers are cortical
short distance connections hypothesized to contribute to the cortical small world network property (Bassett and Bullmore, 2006).

compression mechanisms for individual data files such as GZIP
for NIFTI and GIFTI files reduce the data size substantially and
can still be employed. Only for data exchange or distribution,
the multi-modal dataset is ZIP compressed (filename ending.
cff). We adopted the ZIP compression algorithm because it is
widely supported and gives good performance in terms of fast
compression and compression ratio on medium-sized datasets,
such as single subject datasets.

The XML-Based Clinical Experiment Data Exchange Schema
XCEDE2 (Gadde et al., 2011) provides an extensive metadata
hierarchy for experimental context representation, provenance,
and protocol information. Whereas XCEDE2 focuses on complete
representation of neuroimaging studies and uses web frontends
for data manipulation and annotation, the CFF metadata hier-
archy is more open, flexible, and analysis-centric. All CFF data
manipulation can be performed using cfflib from an interactive
Python console. Experimental context representation may be
stored as CData objects. For example, they may contain instances
of XCEDE2 files.

The CIFTI format for connectivity-related neuroimaging data
is proposed by the CIFTI and is based on the NIFTI-2 format.
Currently, we employ GraphML to store connectivity graphs
and associate them with surface and volume-based datasets,
but adopting the CIFTI format for this purpose will be rather
straightforward.

Recently, efforts to standardize terminologies and build ontolo-
gies for neuroscience have undergone a resurgence (Larson and
Martone, 2009). We encourage linking to and referencing exist-
ing ontologies as much as possible. For instance, every node in a
network produced by the Connectome Mapper denotes a brain
structure. With attributes on these nodes, we refer to a unique
Uniform Resource Identifier, as seen in Figure 3, pointing to

Figure 11 | Network PDF report. Reports can be automatically generated
using the Code Oracle “Network Report.” The layout and report content can
be adapted and extended with required results.

cfflib, thereby exposing the all contained connectome objects.
This enables fast access and manipulation of the connectome
objects without decompression and compression steps. Existing

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 12

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

extensive documentation and examples for many use cases, yet it
allows one to use the underlying VTK objects if necessary. Similarily,
the DataViewer3D (Gouws et al., 2009) uses VTK directly to pro-
vide multi-modal visualization capabilities and is Python-based.
DataViewer3D does not include a Python shell for analysis and
does not use the Enthought Toolsuite or Mayavi.

We have reused supporting libraries as much as possible, taking
advantage from the expertise of library developers in their vari-
ous domains. This has led to a comparatively small codebase for
the Connectome Viewer which is approachable for contributor
who may wish to create extensions. The modular plugin archi-
tecture furthers this. Through the Code Oracle script generation
mechanism, the Connectome Viewer facilitates the introduction to
Python scripting considerably. The scripts are easily adaptable and
extendable to the needs of connectome researcher. As our experi-
ence shows, writing Python scripts feels very familiar to researchers
used to other development environments such as Matlab, and can
be learned in a short time period.

5 conclusIon
We have proposed the Connectome File Format as a conveni-
ent, easy-to-use container data format to deal with some of the
heterogeneity and complexity of multi-modal neuroimaging
data. The CFF connects multi-modal data sources and metadata
in a comprehensive and flexible way. We have showed how the
CFF and its accompanying Python library cfflib solve data man-
agement and integration challenges. We also foresee the useful-
ness of the CFF for datasets from functional neuroimaging and
behavioral domains.

We have presented the Connectome Viewer, an integrated neu-
roinformatics research and development framework for 3D visu-
alization and analysis. The modular plugin architecture provides
means for extensibility and the Code Oracle method supports lev-
eraging of the scripting interface by an automated script generation

a standardized ontology or wiki. This reference allows other
researchers to retrieve the concept and delineation criteria for a
particular brain structure in a parcellation scheme. In addition,
the annotation of metadata by the researcher, together with using
standardized terminologies, will facilitate future data integration
challenges of connectome datasets.

4.2 connectome FIle Format lIbrary
We used the CFF object model to create the Python library cfflib
for connectome file manipulation and annotation. Within the
Connectome Viewer Toolkit, cfflib naturally serves to convert
multi-modal datasets and metadata from the Connectome Mapper
into a connectome file. The Connectome Viewer uses cfflib to load
and save connectome files. Thus, the CFF and cfflib serve well as
interfacing tools.

As new file format input/ouput libraries are developed, the cfflib
will be able to reuse these libraries to expose a common interface
to the neuroimaging researcher dealing with multi-modal datasets
of different file formats.

4.3 connectome VIewer
We have demonstrated the usability of the Connectome Viewer
as a research and development environment. Our experience has
shown that integrating analysis, data manipulation, and visualiza-
tion capabilities synergistically in a single application is beneficial
to researchers. This is especially true for data exploration and data
mining. Extending visualization applications with analysis and
data manipulation functionality by including a Python shell was
recently achieved in 3D Slicer (Gering et al., 2001). 3D Slicer is a
comprehensive application for multi-modal visualization with over
one million lines of mostly C++ code. The underlying toolkit for
visualization is VTK. By using Mayavi as an interface to VTK, we
can hide much of the complexity of VTK and provide an easy-to-
use interface for visualization to the researcher. Mayavi provides

Figure 12 | Brain Connectivity Hairball. Display of the whole connectivity
information at once does not allow for any sensible interpretation.
Interactive manipulation of visualization parameters such as node position
and coloring enables data exploration. Nodes are located here at the center
of gravity of their underlying inflated brain region mesh. Nodes are scaled

and colored according to their k-core number. The k-core number was
computed using NetworkX in the IPython shell. The numbers were reused
as a parameter to update the visualization interactively. Segregation of
nodes with high k-core number at particular regions may be visible
(Hagmann et al., 2008).

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 13

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

 structure, dynamics, and function
using NetworkX,” in Proceedings of
the 7th Python in Science Conference,
eds G. Varoquaux, T. Vaught, and J.
Millman, (Pasadena, CA).

Hagmann, P. (2005). From Diffusion
MRI to Brain Connectomics. PhD the-
sis, Ecole Polytechnique Fédérale de
Lausanne, Lausanne, 127.

Hagmann, P., Cammoun, L., Gigandet,
X., Meuli, R., Honey, C. J., Wedeen,
V. J., and Sporns, O. (2008). Mapping
the structural core of human cerebral
cortex. PLoS Biol. 6, e159. doi: 10.1371/
journal.pbio.0060159

Hagmann, P., Cammoun, L., Gigandet,
X., Gerhard, S., Ellen Grant, P.,
Wedeen, V., Meuli, R., Thiran, J.-P.,
Honey, C. J., and Sporns, O. (2010).
MR connectomics: principles and
challenges. J. Neurosci. Methods 194,
34–45.

Hampel, S., Chung, P., McKellar, C. E.,
Hall, D., Looger, L. L., and Simpson,
J. H. (2011). Drosophila brainbow:
a recombinase-based fluorescence
labeling technique to subdivide neu-
ral expression patterns. Nat. Methods
8, 253–259.

Hanke, M., Halchenko, Y. O., Sederberg,
P. B., Olivetti, E., Fründ, I., Rieger,
J. W., Herrmann, C. S., Haxby, J. V.,
Hanson, S. J., and Pollmann, S. (2009).
PyMVPA: a unifying approach to the
analysis of neuroscientific data. Front.
Neuroinformatics 3:3. doi: 10.3389/
neuro.11.003.2009.

Hunter, J. D. (2007). Matplotlib: a 2D
graphics environment. Comput. Sci.
Eng. 9, 90–95.

Johansen-Berg, H., and Behrens, T.
E. J. (2009). Diffusion MRI: From
Quantitative Measurement to In-vivo
Neuroanatomy. London: Academic
Press, 490.

Johnson, G. A., Badea, A., Brandenburg,
J., Cofer, G., Fubara, B., Liu, S.,
and Nissanov, J. (2010). Waxholm
space: an image-based reference for

 processing in the primate cerebral
cortex. Cereb. Cortex 1, 1–47.

Fishman, R. S. (2007). The Nobel Prize of
1906. Arch. Ophthalmol. 125, 690–694.

Gadde, S., Aucoin, N., Grethe, J. S., Keator,
D. B., Marcus, D. S., and Pieper, S.
(2011). XCEDE: an extensible schema
for biomedical data. Neuroinformatics
1–14.

Garyfallidis, E., Brett, M., Amirbekian, B.,
Nguyen, C., Yeh, F.-C., Halchenko, Y.,
and Nimmo-Smith, I. (2011). “Dipy
– a novel software library for diffu-
sion MR and tractography,” in 17th
Annual Meeting of the Organization
for Human Brain Mapping, Quebec
(submitted).

Garyfallidis, E., Brett, M., and Nimmo-
Smith, I. (2010). “Fast dimensional-
ity reduction for brain tractography
clustering,” in 16th Annual Meeting
of the Organization for Human Brain
Mapping, Barcelona.

Gering, D. T., Nabavi, A., Kikinis, R., Hata,
N., O’Donnell, L. J., Grimson, W. E.,
Jolesz, F. A., Black, P. M., and Wells,
W. M. (2001). An integrated visualiza-
tion system for surgical planning and
guidance using image fusion and an
open MR. J. Magn. Reson. Imaging 13,
967–975.

Ghosh, S., Burns, C., Clark, D.,
Gorgolewski, K., Halchenko, Y.,
Madison, C., Tungaraza, R., and
Millman, K. (2010). “Nipype: open-
source platform for unified and
replicable interaction with existing
neuroimaging tools,” in 16th Annual
Meeting of the Organization for Human
Brain Mapping, Barcelona.

Gouws, A., Woods, W., Millman, R.,
Morland, A., and Green, G. (2009).
DataViewer3D: an open-source,
cross-platform multi-modal neuro-
imaging data visualization tool. Front.
Neuroinformatics 3:9. doi: 10.3389/
neuro.11.009.2009

Hagberg, A. A., Schult, D. A., and Swart,
P. J. (2008). “Exploring network

Zang, Y. F., Zhang, H. Y., Castellanos,
F. X., and Milham, M. P. (2010).
Toward discovery science of human
brain function. Proc. Natl. Acad. Sci.
U.S.A. 107, 4734–4739.

Bullmore, E., and Sporns, O. (2009).
Complex brain networks: graph
theoretical analysis of structural and
functional systems. Nat. Rev. Neurosci.
10, 186–198.

Cardona, A., Saalfeld, S., Preibisch, S.,
Schmid, B., Cheng, A., Pulokas, J.,
Tomancak, P., and Hartenstein, V.
(2010). An integrated micro- and
macroarchitectural analysis of the
Drosophila brain by computer-assisted
serial section electron microscopy.
PLoS Biol. 8, e1000502. doi: 10.1371/
journal.pbio.1000502

Chacon, S. (2009). Pro Git. Apress, 288.
Available at: http://progit.org/book/

Chklovskii, D. B., Vitaladevuni, S., and
Scheffer, L. K. (2010). Semi-automated
reconstruction of neural circuits using
electron microscopy. Curr. Opin.
Neurobiol. 20, 8.

Csardi, G., and Nepusz, T. (2006). The
igraph software package for com-
plex network research. InterJournal
Complex Syst. 1695.

Davison, A. P., Hines, M. L., and Muller,
E. (2009). Trends in programming
languages for neuroscience simula-
tions. Front. Neurosci. 3:374–80. doi:
10.3389/neuro.01.036.2009

Desikan, R. S., Ségonne, F., Fischl,
B., Quinn, B. T., Dickerson, B. C.,
Blacker, D., Buckner, R. L., Dale, A. M.,
Maguire, R. P., Hyman, B. T., Albert,
M. S., and Killiany, R. J. (2006). An
automated labeling system for subdi-
viding the human cerebral cortex on
MRI scans into gyral based regions of
interest. Neuroimage 31, 968–80.

Douglas, R. J., and Martin, K. A. C. (2007).
Mapping the matrix: the ways of neo-
cortex. Neuron 56, 226–238.

Felleman, D. J., and Van Essen, D. C.
(1991). Distributed hierarchical

reFerences
Akil, H., Martone, M. E., and Van Essen,

D. C. (2011). Challenges and oppor-
tunities in mining neuroscience data.
Science 331, 708–712.

Anderson, J., Jones, B., Watt, C., Shaw,
M., Yang, J.-H., DeMill, D., Lauritzen,
J., Lin, Y., Rapp, K., Mastronarde, D.,
Koshevoy, P., Grimm, B., Tasdizen, T.,
Whitaker, R., and Marc, R. (2011).
Exploring the retinal connectome.
Mol. Vis. 17, 355–379.

Ascoli, G. A. (2010). The coming of age of
the hippocampome. Neuroinformatics
8, 1–3.

Bassett, D. S., and Bullmore, E. (2006).
Small-world brain networks.
Neuroscientist 12, 512–523.

Baxter, S. M., Day, S. W., Fetrow, J. S.,
and Reisinger, S. J. (2006). Scientific
software development is not an oxy-
moron. PLoS Comput. Biol. 2, e87. doi:
10.1371/journal.pcbi.0020087

Benger, W. (2009). On safari in the file for-
mat jungle – why can’t you visualize
my data? Comput. Sci. Eng. 11, 98–102.

Binzegger, T., Douglas, R. J., and Martin,
K. A. C. (2004). A quantitative map of
the circuit of cat primary visual cortex.
J. Neurosci. 24, 8441–8453.

Biswal, B. B., Mennes, M., Zuo, X.
N., Gohel, S., Kelly, C., Smith, S.
M., Beckmann, C. F., Adelstein, J.
S., Buckner, R. L., Colcombe, S.,
Dogonowski, A. M., Ernst, M., Fair,
D., Hampson, M., Hoptman, M. J.,
Hyde, J. S., Kiviniemi, V. J., Kötter,
R., Li, S. J., Lin, C. P., Lowe, M. J.,
Mackay, C., Madden, D. J., Madsen,
K. H., Margulies, D. S., Mayberg,
H. S., McMahon, K., Monk, C. S.,
Mostofsky, S. H., Nagel, B. J., Pekar, J.
J., Peltier, S. J., Petersen, S. E., Riedl, V.,
Rombouts, S. A., Rypma, B., Schlaggar,
B. L., Schmidt, S., Seidler, R. D., Siegle,
G. J., Sorg, C., Teng, G. J., Veijola, J.,
Villringer, A., Walter, M., Wang, L.,
Weng, X. C., Whitfield-Gabrieli, S.,
Williamson, P., Windischberger, C.,

cmtk.org/. Furthermore, the tools are listed and associated in the
Neuroimaging Informatics Tools and Resources Clearinghouse
under http://www.nitrc.org/.

acknowledgments
We would like to thank the NIPY community and the open
source Python community in general. Special thanks go to Leila
Cammoun, Gaël Varoquaux for Mayavi development and support,
Yannick Schwartz for PyXNAT, Eleftherios Garyfallidis for the Dipy
package and the Fos vision, Christophe Chênes for supporting the
development of cfflib, Erik Ziegler for the Nipype connectivity
tutorial, and Mark Longair, Patricia Milz, and Alessandra Griffa for
their helpful comments on the manuscript. This work is partially
supported by the SPUM project number 33CM30-124089 of the
Swiss National Science Foundation.

 mechanism for common analysis tasks. The full compatibility with
the CFF facilitates cross-modal data mining, analysis and visualiza-
tion in an interactive, scriptable way.

The Connectome Viewer Toolkit, its supporting libraries and the
Connectome Mapper constitute the Connectome Mapping Toolkit.
Altogether, this toolkit creates a unique, extensible workbench for
new and ongoing macroscale connectome mapping, management,
analysis, and visualization.

6 InFormatIon sharIng statement
The Connectome Viewer Toolkit is released under the terms of
the open source Modified BSD license (opensource.org/licenses/
bsd-license.php). Contributed packages and plugins adhere to
their own open source licensing policy. All packages, documenta-
tion and example datasets can be downloaded from http://www.

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 14

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

of crossing fibers. Neuroimage 41,
1267–1277.

White, J. G., Southgate, E., Thomson,
J. N., and Brenner, S. (1976). The
structure of the ventral nerve cord of
Caenorhabditis elegans. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 275, 327–348.

Williams, S., Manicka, S., and Yaeger, L.
(2011). bct-cpp. Available at: http://
code.google.com/p/bct-cpp/

Zalesky, A., Fornito, A., and Bullmore, E. T.
(2010). Network-based statistic: iden-
tifying differences in brain networks.
Neuroimage 53, 1197–1207.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential conflict
of interest.

Received: 28 February 2011; accepted: 18
May 2011; published online: 06 June 2011.
Citation: Gerhard S, Daducci A,
Lemkaddem A, Meuli R, Thiran J-P and
Hagmann P (2011) The Connectome
Viewer Toolkit: an open source framework
to manage, analyze, and visualize con-
nectomes. Front. Neuroinform. 5:3. doi:
10.3389/fninf.2011.00003
Copyright © 2011 Gerhard, Daducci,
Lemkaddem, Meuli, Thiran and Hagmann.
This is an open-access article subject to a
non-exclusive license between the authors
and Frontiers Media SA, which permits
use, distribution and reproduction in other
forums, provided the original authors and
source are credited and other Frontiers con-
ditions are complied with.

Schröder, W., Martin, K., and Lorensen,
B. (2006). Visualization Toolkit: An
Object-Oriented Approach to 3D
Graphics, 4th Edn. Kitware Inc: New
York 528.

Siek, J. G., Lee, L.-Q., and Lumsdaine, A.
(2001). The Boost Graph Library: User
Guide and Reference Manual. Boston,
MA: Addison-Wesley Professional,
352.

Spacek, M., Blanche, T., and Swindale, N.
(2008). Python for large-scale electro-
physiology. Front. Neuroinformatics
2:9. doi: 10.3389/neuro.11.009.2008

Sporns, O. (2011). The human connec-
tome: a complex network. Ann. N. Y.
Acad. Sci. 1224, 109–125.

Sporns, O., Tononi, G., and Kötter, R.
(2005). The human connectome: a
structural description of the human
brain. PLoS Comput. Biol. 1, e42. doi:
10.1371/journal.pcbi.0010042

Thompson, H. S., Beech, D., Maloney,
M., and Mendelsohn, N. (2004). XML
Schema Part 1: Structures, 2nd Edn.
W3C Recommendation. Available at:
http://www.w3.org/TR/xmlschema-1/

Ward, S., Thomson, N., White, J. G.,
and Brenner, S. (1975). Electron
microscopical reconstruction of the
anterior sensory anatomy of the nem-
atode Caenorhabditis elegans. J. Comp.
Neurol. 160, 313–37. doi: 10.1002/
cne.901600305

Wedeen, V. J., Wang, R. P., Schmahmann,
J. D., Benner, T., Tseng, W. Y. I., Dai,
G., Pandya, D. N., Hagmann, P.,
D’Arceuil, H., and de Crespigny, A. J.
(2008). Diffusion spectrum magnetic
resonance imaging (DSI) tractography

Meskaldji, D. E., Cammoun, L., Hagmann,
P., Meuli, R., Thiran, J. P., and
Morgenthaler, S. (2010). Efficient
statistical analysis of large correlated
multivariate datasets: a case study on
brain connectivity matrices. Available
at: http://arxiv.org/abs/1008.1909.

Millman, K. J., and Brett, M. (2007).
Analysis of functional magnetic reso-
nance imaging in Python. Comput. Sci.
Eng. 9, 52–55.

Oliphant, T. E. (2006). Guide to NumPy.
Trelgol Publishing. Available at: http://
www.tramy.us/

Oliphant, T. E. (2007). Python for scien-
tific computing. Comput. Sci. Eng. 9,
10–20.

Perez, F., and Granger, B. E. (2007).
IPython: a system for interactive sci-
entific computing. Comput. Sci. Eng.
9, 21–29.

Ramachandran, P., and Varoquaux, G.
(2011). Mayavi: a package for 3D vis-
ualization of scientific data. Comput.
Sci. Eng. 13, 40.

Rohlfing, T., Zahr, N. M., Sullivan, E. V.,
and Pfefferbaum, A. (2010). The SRI24
multichannel atlas of normal adult
human brain structure. Hum. Brain
Mapp. 31, 798–819.

Rokem, A., Trumpis, M., and Perez, F.
(2009). “Nitime: time-series analysis
for neuroimaging data,” in Proceedings
of the 8th Python in Science conference,
eds. G. Varoquaux, S. Van Der Walt,
and J. Millman, Pasadena, CA, 68–75.

Rubinov, M., and Sporns, O. (2009).
Complex network measures of brain
connectivity: uses and interpretations.
Neuroimage 52, 1059–1069.

 coordinating mouse brain research.
Neuroimage 53, 365–372.

Kinser, J. (2008). Python For Bioinformatics.
Sudbury, MA: Jones and Bartlett
Publishers, 417.

Langtangen, H. P. (2009). A Primer on
Scientific Programming with Python
(Texts in Computational Science and
Engineering). New York: Springer, 693.

Larson, S. D., and Martone, M. E. (2009).
Ontologies for neuroscience: what
are they and what are they good for?
Front. Neurosci. 3:1. doi: 10.3389/
neuro.01.007.2009

Lu, J., Tapia, J. C., White, O. L., and
Lichtman, J. W. (2009). The inters-
cutularis muscle connectome. PLoS
Biol. 7, e32. doi: 10.1371/journal.
pbio.1000032.

Macagno, E. R., Levinthal, C., and Sobel, I.
(1979). Three-dimensional computer
reconstruction of neurons and neu-
ronal assemblies. Annu. Rev. Biophys.
Bioeng. 8, 323–351.

Marcus, D. S., Olsen, T. R., Ramaratnam,
M., and Buckner, R. L. (2007). The
Extensible Neuroimaging Archive
Toolkit: an informatics platform for
managing, exploring, and sharing
neuroimaging data. Neuroinformatics
5, 11–34.

Markov, N. T., Misery, P., Falchier, A., Lamy,
C., Vezoli, J., Quilodran, R., Gariel,
M. A., Giroud, P., Ercsey-Ravasz, M.,
Pilaz, L. J., Huissoud, C., Barone, P.,
Dehay, C., Toroczkai, Z., Van Essen,
D. C., Kennedy, H., and Knoblauch,
K. (2010). Weight consistency speci-
fies regularities of macaque cortical
networks. Cereb. Cortex 21, 1254–1272.

Gerhard et al. The Connectome Viewer Toolkit

Frontiers in Neuroinformatics www.frontiersin.org June 2011 | Volume 5 | Article 3 | 15

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	The Connectome Viewer Toolkit: an open source framework to manage, analyze, and visualize connectomes
	1 Introduction
	2 Toolkit Design
	2.1 The Connectome File Format
	2.2 The Connectome File Format Library
	2.3 The Connectome Viewer
	2.3.1 Dependencies
	2.3.2 Script Generation Mechanism For Usability
	2.3.3 Plugin Architecture
	2.3.4 Supporting Libraries

	2.4 Connectome Mapping Workflows

	3 Results
	4 Discussion
	4.1 Connectome File Format
	4.2 Connectome File Format Library
	4.3 Connectome Viewer

	5 Conclusion
	6 Information Sharing Statement
	Acknowledgments
	References

