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Abstract

Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-
matter fiber orientations from diffusion MRI data. However, while some of these methods
assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is
known to be non-Gaussian and to depend on many factors such as the number of coils and
the methodology used to combine multichannel MRI signals. Indeed, the two prevailing
methods for multichannel signal combination lead to noise patterns better described by
Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-
BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI
noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi
likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was
compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian
noise. Another aim of the study was to quantify the impact of including a total variation (TV)
spatial regularization term in the estimation framework. To do this, we developed TV spa-
tially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was
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performed by comparing various quality metrics on 132 three-dimensional synthetic phan-
toms involving different inter-fiber angles and volume fractions, which were contaminated
with noise mimicking patterns generated by data processing in multichannel scanners. The
results demonstrate that the inclusion of proper likelihood models leads to an increased abil-
ity to resolve fiber crossings with smaller inter-fiber angles and to better detect non-domi-
nant fibers. The inclusion of TV regularization dramatically improved the resolution power of
both techniques. The above findings were also verified in human brain data.

Introduction

After decades of developments in diffusion Magnetic Resonance Imaging (MRI), the successful
implementation of a variety of advanced methods has shed light on the complex patterns of
brain organization present at micro [1] and macroscopic scales [2-4]. Among these methods,
Diftusion Tensor Imaging (DTT) [5] has become a classic in both clinical and research studies.
DTI can deliver quantitative results, it may be easily implemented in any clinical MRI system
and, thanks to its short acquisition time, it may be suitable for studying a wide range of brain
diseases. Unfortunately, it is now well recognized that due to its simplistic assumptions, the
DTI model does not adequately describe diffusion processes in areas of complex tissue organi-
zation, like in areas with kissing, branching or crossing fibers [6].

Such limitations in the DTI approach have prompted the recent development of numerous
sampling protocols, diffusion models and reconstruction techniques (e.g., see [7-9] and refer-
ences therein). While some of these techniques have been based on model-free methods,
including q-ball imaging [10] and its extensions [11-17], diffusion orientation transforms [18,
19], diffusion spectrum imaging [20] and related q-space techniques [21-26], other approaches
have relied on parametric diffusion models using higher-order tensors [27-29] and multiple
second-order diffusion tensors [6]. In the later group, different numerical techniques involving
gradient descent [6], Bayesian inference [30-32] and algorithms inspired from compressed
sensing theory [33-35] have been applied to solve the resulting inverse problems.

Spherical Deconvolution (SD) is a class of multi-compartment reconstruction technique
that can be implemented using both parametric and nonparametric signal models [36-49]. SD
methods have become very popular owing to their ability to resolve fiber crossings with small
inter-fiber angles in datasets acquired within a clinically feasible scan time. This resolving
power is driven by the fact that, as opposed to model-free techniques that estimate the diffusion
Orientational Distribution Function (ODF), the output from SD is directly the fiber ODF itself.

Among the different SD algorithms, Constrained Spherical Deconvolution (CSD) [39, 40]
has been received with special interest due to its good performance and short computational
time. In CSD, the average signal profile from white-matter regions of parallel fibers is first esti-
mated, and afterwards, the fiber ODF is estimated by deconvolving the measured diffusion data
in each voxel with this signal profile, which is also known as the single-fiber ‘response function’.

More recently and as an alternative to CSD, a new SD method based on a damped Richard-
son-Lucy algorithm adapted to Gaussian noise (dARL-SD) has been proposed [37, 42]. An
extensive evaluation of both CSD and dRL-SD algorithms has revealed a superior ability to
resolve low anisotropy crossing-fibers by CSD but a lower percentage of spurious fiber orienta-
tions and a lower over-all sensitivity to the selection of the response function by the dRL-SD
approach [50]. This later feature is of great relevance since the assumption of a common
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response function for all brain tracts is a clear over-simplification of both methods, with the
consequences of it minimized by the dRL-SD.

From an algorithmic perspective dRL-SD inherits the benefits of the standard RL deconvo-
lution method applied with great success in diverse fields ranging from microscopy [51] to
astronomy [52]. Remarkably, RL deconvolution is robust to the experimental noise and the
obtained solution can be constrained to be non-negative without the need for including addi-
tional penalization functions in the estimation process. Moreover, from a modeling point of
view, dRL-SD is implemented using an extended multi-compartment model that allows con-
sidering the partial volume effect in brain voxels with mixture of white matter (WM), gray mat-
ter (GM) and cerebrospinal fluid (CSF), a strategy that has been shown to be effective in
reducing the occurrence of spurious fiber orientations [37].

However, in spite of the good properties of dRL-SD and other SD methods some methodo-
logical issues remain. These methods, to some extent, assume additivity and zero mean Gaus-
sianity for the underlying noise and are potentially vulnerable to significant departures from
such an assumption. Indeed, it is well known that the MRI noise is non-Gaussian and depends
on many factors, including the number of coils in the scanner and the multichannel image
combination method. Real experiments have shown that noise follows Rician [53] and noncen-
tral Chi (nc-y) distributions [54] evidencing the inappropriateness of the Gaussian model. This
issue is especially relevant in diffusion MRI data where the high b-values required to enhance
the angular contrast lead to extremely low signal-to-noise (SNR) ratios. A recent study [55] has
shown that different multichannel image combination methods can changes the properties of
the signal and can have an effect on fiber orientation estimation.

On the other hand, the standard reconstruction in SD, based on a voxel-by-voxel fiber ODF
estimation, although reasonable it may not be optimal in a global sense as it does not take into
account the underlying spatial continuity of the image. Recent research on the inclusion of spa-
tial continuity into SD methods via regularization has yielded promising results [9, 56, 57].
Among these, spatially regularized SD methods based on Total Variation (TV) [9] are very
appealing due to their outstanding ability to simultaneously smooth away noise in flat regions
whilst preserving edges, and due to their robustness to high levels of noise [58].

This work has two main aims: (1) the study and quantification of the benefits of the ade-
quate modelling of the noise distribution in the context of spherical deconvolution, and (2) the
study and quantification of the effects of including a TV spatial regularization term in the pro-
posed estimation framework.

To address the first objective we developed a new SD methodology which, following a
more realistic view, deals with non-Gaussian noise models. Specifically, the estimation
framework is based on a natural extension to the RL algorithm for Rician and nc-y likelihood
distributions. We had chosen the RL algorithm as a starting point for our work because this
algorithm has proven to be highly efficient in diverse applications, and because the perfor-
mance of the resulting method can be directly compared to the state-of-the-art dRL-SD
method, which employs a nearly-equivalent SD estimation algorithm but based on a Gauss-
ian noise model. The second aim was addressed by including TV regularization to the devel-
oped formulation. Moreover, for completeness we have extended also the dRL-SD method
via the spatially-regularized proposed estimation.

To compare the relative performance between the SD methods based on Gaussian and non-
Gaussian noise models, and their respective implementations including the TV regularization,
the different algorithms were applied to several synthetic phantom datasets which had been
contaminated with noise patterns mimicking the Rician and nc-y noise distributions produced
in multichannel scanners. To the best of our knowledge, this is the first evaluation of such
methods in a scenario where Rician and nc-y noise are explicitly created as a function of the
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number of coils, their spatial sensitivity maps, the correlation between coils, and the recon-
struction methodology used to combine the multichannel signals. As a final analysis, the new
method is also applied to real multichannel diffusion MRI data from a healthy subject.

Following this introduction there is a “Theory’ section providing an overview of the different
topics relevant to the study and the derivation of the new SD reconstruction algorithm. Descrip-
tion about computer simulations, image acquisition strategies and metrics designed to evaluate
the performance of the reconstructions is provided in the Materials and Methods section. Rele-
vant findings are succinctly described in the Results section. Finally, main results, contributions
and limitations of this work are addressed in the Discussion and Conclusions section.

Theory

This section contains a description of the forward/generative model used to relate the local dif-
fusion process with the measured diffusion MRI data. It also provides a brief review of MRI
noise models. Finally, the diffusion and MRI noise models are used to derive the new SD recon-
struction algorithms.

1 Generative signal and fiber ODF model

The diffusion MRI signal measured for a given voxel can be expressed as the sum of the signals
from each intra-voxel compartment. The term ‘compartment’ is defined as a homogeneous
region in which the diffusion process possesses identical properties in magnitude and orienta-
tion throughout, and which is different to the diffusion processes occurring in other compart-
ments. One example of this approach is the multi-tensor model that allows considering
multiple WM parallel-fiber populations within the voxel. In this model the diffusion process
taking place inside each compartment of parallel fibers is described by a second-order self-dif-
fusion tensor [6].

In real brain data, in addition to the different WM compartments, voxels might also contain
GM and CSF components. This issue was considered by [37], who extended the multi-tensor
model by incorporating the possible contribution from these compartments. This is the genera-
tive multi-tissue signal model that will be used in the present study. In the absence of any
source of noise, the resulting expression for the signal is:

M
S, =5, <Zj:1 fjexp(_biViTDjVi> + fouexp(=b,Dgy) + fCSFeXp(_biDCSF))7 (1)

where M is the total number of WM parallel fiber bundles; f; denotes the volume fraction of the
j th fiber-bundle compartment; 5, and fcsr are the volume fractions of the GM and CSF com-
partments respectively, so that Zﬁl f; 4+ fou + fege = 15 biis the diffusion-sensitization factor
(i.e., b-value) used in the acquisition scheme to measure the diffusion signal S; along the diffu-
sion-sensitizing gradient unit vector v;, i = 1, . . ., N; Dgys and D¢ are respectively the mean
diffusivity coefficients in GM and CSF; S is the signal amplitude in the absence of diffusion-
sensitization gradients (b; = 0); D, = R],TARJ. denotes the anisotropic diffusion tensor of the j
th fiber-bundle, where R is the rotation matrix that rotates a unit vector initially oriented along

the x-axis toward the j th fiber orientation (6, ¢;) and A is a diagonal matrix containing infor-
mation about the magnitude and anisotropy of the diffusion process inside that compartment:

A 0 0
A=|0 2 0], (2)
0 0 A
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where ; is the diffusivity along the j th fiber orientation, A, and A; are the diffusivities in the
plane perpendicular to it. It is assumed that A, >X,~A;.

At each voxel, the measured diffusion signals S; for N different sampling parameters (i.e., v;
and b;, i€[1, . . ., N]) can be recast in matrix form as:

S = Hf, (3)

where S =[S;...S;.. .Sy] and H = [HWM|HISO] comprises two sub-matrices. H"isan Nx M
matrix where every column of length N contains the values of the signal generated by the
model given in Eq (1) for a single fiber-bundle compartment oriented along one of the M-
directions, i.e., the (i, j) th element of H"™ is equal to HyM = Syexp(—b,v/D,v,) Likewise,
H™® is an N x 2 matrix where each of the two columns of length N contains the values of the
signal for each isotropic compartment, i.e., H,° = S exp(—b,D,,,) and

H.° = S,exp(—b,D,q;). Finally, the column-vector f of length M+2 includes the volume frac-
tions of each compartment within the voxel.

In the framework of model-based spherical deconvolution, H is created by specifying the
diffusivities, which are chosen according to prior information, and by providing a dense dis-
crete set of equidistant M-orientations Q = {(0,,¢;), j € [L,..., M]} uniformly distributed
on the unit sphere. Previous studies have used different sets of orientations, ranging from
M =129 [43] to M =752 [42]. Then, the goal is to infer the volume fraction of all predefined
oriented fibers, f, from the vector of measurements S and the ‘dictionary’ H of oriented basis
signals. Under this reconstruction model, f can be interpreted to as the fiber ODF evaluated on
the set Q2 Matrix H is also known as the ‘diffusion basis functions’ [43], or the ‘point spread
function’ [37-39] that blurs the fiber ODF to produce the observed measurements.

It should be noticed that solving the deconvolution problem given by Eq (3) is not simple
because the resulting system of linear equations is ill-conditioned and ill-posed (i.e., there are
more unknowns than measurements and some of the columns of H are highly correlated),
which can lead to numerical instabilities and physically meaningless results (e.g., volume frac-
tions with negative values). A common strategy to avoid such instabilities is to use robust algo-
rithms that search for solutions compatible with the observed data but which also satisfy some
additional constraints. Thus, in SD it is typical to estimate the fiber ODF by constraining it to
be non-negative and symmetric around the origin (i.e., antipodal symmetry). As mentioned in
the introduction, though, all these reconstruction algorithms may not be necessarily optimal
when dealing with non-Gaussian noise, as it is the case for MRI noise.

2 MRI noise models

In conventional MRI systems, the data are measured using a single quadrature detector (i.e.,
coil with two orthogonal elements) that gives two signals which, for convenience, are treated as
the real and imaginary parts of a complex number. The magnitude of this complex number
(i.e. the square root of the sum of their squares) is commonly used because it avoids different
kinds of MRI artifacts [53]. Given that the noise in the real and imaginary components follows
a Gaussian distribution, the magnitude signal S; will follow a Rician distribution [53] with a
probability function given by

- s, 1 i\, (SS,
PS5, ) = presp] 52157 + 571 (S5 s, @)

02

where S, denotes the true magnitude signal intensity in the absence of noise, o is the variance
of the Gaussian noise in the real and imaginary components, I, is the modified Bessel function
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of first kind of order zero and u is the Heaviside step function that is equal to 0 for negative
arguments and to 1 for non-negative arguments.

Modern clinical scanners are usually equipped with a set of 4 to 32 multiple phased-array
coils, the signals of which can be combined following different strategies that, in turn, will give
rise to different statistical properties for the noise [54]. One frequent strategy uses the spatial
matched filter (SMF) approach linearly combining the complex signals of each coil and pro-
ducing voxelwise complex signals [59]. Since the noise in the resulting real and imaginary com-
ponents remains Gaussian a Rician distribution is expected in the final combined magnitude
image. An alternative to the SMF is to create the composite magnitude image as the root of the
sum-of-squares (SoS) of the complex signals of each coil. Under this approach the combined
image follows a nc-y distribution [60] given by,

. S, (S\" 1 . s3,
P<Si|Si7 0'2’ }’1) = ; (S—t> CXP{— ﬁ [Si2 + SIZ] }Inl (F) M(Si), (5)

where 7 is the number of coils and I,,_; is the modified Bessel function of first kind of order n-1.
This expression is strictly valid when the different coils produce uncorrelated noise with equal
variance, and when noise correlation cannot be neglected it provides a good approximation if
effective nand o7, values are considered [61], with n.being a non-integer number lower
than the real number of coils and o7, is higher than the real noise variance in each coil.

A related SoS image combination method that increases the validity of Eq (5) is the covari-
ance-weighted SoS. This method is equivalent to pre-whitening (i.e., decorrelate) the measured
signals before applying the standard SoS image combination. The covariance-weighted SoS
approach requires the estimation of the noise covariance matrix of the system which, in prac-
tice, may be carried out by digitizing noise from the coils in the absence of excitations [62].

It is important to note that there are additional factors that can change the noise characteris-
tics described above, including the use of accelerated techniques based on under-sampling
approaches such as those used in parallel MRI (pMRI) and partial Fourier, certain reconstruction
filters in k-space, and some of the preprocessing steps conducted after image reconstruction.

Empirical data suggest that some of these factors do not substantially change the type of dis-
tribution of the noise. On the one hand, [54] investigated the effects of the type of filter in k-
space, the number of receiving channels and the use of pMRI reconstruction techniques, and
found that noise distributions always followed Rician and nc-y distributions with a reasonable
accuracy—although their standard deviations and effective number of receiver channels were
altered when fast pMRI and subsequent SoS reconstructions were used. On the other hand,
[55] showed real diffusion MRI data noise to also follow Rician and nc-y noise distributions
after a preprocessing that included motion and eddy currents corrections. Unfortunately, the
combined effect of all factors has not, to the best of our knowledge, being studied. In this
regard, a complete evaluation should include the study of the effects of additional data manipu-
lation processes routinely applied in many clinical research studies, such as B0-unwarping due
to magnetic field inhomogeneity and partial Fourier reconstructions. Although the latter has
been investigated in terms of signal-to-noise ratio, its influence on the shape of the noise distri-
bution remains unknown.

However, while it is impossible to ensure that Rician and nc-y distributions are the optimal
noise models for all possible strategies used for sampling, reconstructing and preprocessing dif-
fusion MRI data, such models are flexible enough to adapt to deviations from the initial theo-
retical assumptions. Their parameterization in terms of spatial-dependent effective parameters
(ie, ng(x,9,2), 0%(x,y,2),asin [61, 63, 64]) allows characterizing the spatially varying

nature of the noise observed in accelerated MRI reconstructed data, as well as the spatial
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correlation introduced by reconstruction algorithms, whilst preserving the good theoretical
properties of the models with standard parameters, i.e. the null probability to obtain negative
signals and the ability to characterize the signal-dependent non-linear bias of the data.

3 Spherical deconvolution of diffusion MRI data

Eq (5) based on either conventional (i.e., 1, ) or effective (i.e., Heft afﬂ) parameters provides a
very general MRI noise model, which includes the Rician distribution (given in Eq (4)) as a spe-
cial case with n = 1. Consequently, if we derive the spherical deconvolution reconstruction cor-
responding to Eq (6) any particular solution of interest will become available.

Specifically, if we assume the linear model given by Eqs (1)-(3) the likelihood model for the
vector of measurements S under a nc-y distribution is

5SS\ 1 - SS.
P fom) = [T5% () epd g l5 1} (e (©)

i=1 i

where S;and S, = (Hf), are the measured and expected signal intensities for ith sampling
parameters, respectively.

3.1 Unbiased and positive recovery: the multiplicative Richardson-Lucy algorithm for
nc-y, noise. The maximum likelihood (ML) estimate in Eq (6) is obtained by differentiating
its negative log-likelihood J(f) = ~log p(S|H,f,0?, n) with respect to f and equating the derivative
to zero, which after some algebraic manipulations becomes

H'Hf ’

f=fo (7)
where ‘o’ stands for the Hadamard component-wise product, and the division operators are
applied component-wise to the vector’s elements.

Eq (7) is nonlinear in f and its solution can be obtained through a modified version of the
expectation maximization technique, originally developed by Richardson and Lucy for a Pois-
son noise model [65, 66] and known as the RL algorithm. When we applied this technique to
nc-y and Rician distributed noise it naturally led to the following iterative estimation formula:

T 1, (SoHf* /2)
H'|So In,l(Sonk/n'z):|

fk+1 — fk
° HHf*

: (8)

in which the solution calculated at the k th iteration step (£*) gradually improves (i.e. its likeli-
hood increases after each step) until a final, stationary solution f:—:' = 1, isreached. As shown
Appendix A in S1 File, this formula can also be related to the RL algorithm for Gaussian noise,
employed in the undamped RL-SD technique [42].

Under the absence of any prior knowledge about f, the initial estimate (f°) can be fixed to a
non-negative constant density distribution [42]. In that case, the algorithm transforms a per-
fectly smooth initial estimate into sharper estimates, with sharpness increasing with the num-
ber of iterations. So, roughly speaking, the number of iterations can be considered as a
regularization parameter controlling the angular smoothness of the final estimate. Notably, if
£° is non-negative, the successive estimates remain non-negative as well, and the algorithm
always produces reconstructions with positive elements. Moreover, as in [37, 42] the estimation
does not involve any matrix inversion, thus avoiding related numerical instabilities.

In order to evaluate Eq (8) an estimate 62 of o” is required. Although obtaining it from a
region-of-interest (ROI) is feasible [67] its accuracy may be compromised by systematic
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experimental issues such as ghosting artifacts, signal suppression by the scanner outside the
brain, zero padding and by filters applied in the k-space. Moreover, with the use of fast parallel
MRI sequences, where each coil records signals with partial coverage in the k-space, properties
of the noise become spatially heterogeneous (i.e. they change from voxel to voxel across the
image). While some authors have proposed alternatives to overcome these limitations [68]
here we have estimated the noise variance at each voxel from the same data used to infer the
fiber ODF.

Specifically, by minimizing the negative log-likelihood with respect to o* we have obtained
an iterative scheme analogous to Eq (8):

1 (S'S+ f"H'Hf I(S o Hf /a¥)
k+1 — === _ T H _n\~ T
o rlN{ 5 1,((So f)olnl(SOHf/Ofk)}} 9)

where o is the estimate of ¢ at the k th iteration (starting with an arbitrarily initial estimate o
°) and 1y is a Nx1 vector of ones. The resulting algorithm based on Eqs (8) and (9) is termed
RUMBA-SD, which is the abbreviation of ‘Robust and Unbiased Model-Based Spherical
Deconvolution’. The spatially-regularized extension to this algorithm is described in the fol-
lowing section.

3.2 Towards a robust recovery: Total variation regularization. When considering the
TV model [58] the maximum a posteriori (MAP) solution at voxel (x, y, z) is obtained by mini-
mizing the augmented functional:

J(f) = —logP(S|H, f,6% n) + o, TV(f), (10)

where the first term is the negative log-likelihood defined in previous sections and the second
term is the TV energy, defined as the sum of the absolute values of the first-order spatial deriva-
tive (i.e., gradient “V”) of the fiber ODF components over the entire brain image,

TV(f) = Z |V[f,p];], evaluated at voxel (x, y, 2); [f5p]; is @ 3D image created in a way that
J

each voxel contains the element at position j of their corresponding estimate vector f, and oy
is a parameter controlling the level of spatial regularization. Importantly, and in contrast to the
previous ML estimate, now the solution at a given voxel is not independent from the solutions
in other voxels. The spatial dependence introduced by the TV functional promotes smooth
solutions in homogeneous regions (discourages the solution from having oscillations), yet it
does allow the solution to have sharp discontinuities [58]. This property is highly relevant for
SD because, while it promotes continuity and smoothness along individual tracts, it prevents
partial volume contamination from adjacent tracts.

In this work, the MAP estimate from Eq(10) is obtained using an iterative scheme similar to
that proposed in [51], where the estimate at each iteration is calculated by the multiplication of
two terms: the standard ML estimate, and the regularization term derived from the TV functional

T 1, (SoHf* /62
fk+1 :fkoH Som

HTHf*

o Rf, (11)

with the TV regularization vector R at voxel (x, ¥, z), and at the k th iteration, computed ele-
ment-by-element as

(RY), = ; (12)
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where (Rk)]— is the element j of vector R* and div is the divergence operator. In practice, to correct

for potential singularities at ‘V [ng]j‘ = 0, the term ’V [ng]j is replaced by its approximated

2
value 4/ 'V £ : D]j + &, where £ is a small positive constant. Moreover, any negative value in R*

is replaced by its absolute value to preserve the non-negativity of the estimated fiber ODF. Notice
that by setting oy = 0 the estimator in Eq (11) becomes equal to the unregularized version in Eq
(8).

In the current implementation the simultaneous estimation of all the parameters is carried
out via an alternating iterative scheme summarized in Table 1. Briefly, it minimizes the func-
tional in Eq (10) with respect to the fiber ODF while assuming that o* is known and fixed, and
then it updates the noise variance using the new fiber ODF estimate. While for SMF-based data
all the equations are evaluated using n = 1, for SoS-based data n is fixed to the real number of
coils, or to the effective value n,if provided. (But see Appendix B in S1 File)

The regularization parameter a7 is adaptively adjusted at each iteration following the dis-
crepancy principle. Specifically, it is selected to match the estimated variance [69] using two
alternative strategies: (i) assuming a constant mean parameter over the entire brain image, orry
= E{a"!} (see Table 1), potentially increasing the precision and robustness of the estimator; or
(ii) assuming a spatial dependent parameter, orry(x, ¥, z) = Y (x, ¥, z), which may be more
appropriate in situations where a differential variance across the image is expected, like in
accelerated pMRI based-data.

It should be remembered that the accuracy of the reconstruction for the SoS case depends
on the variant used to combine the images. In this work it is assumed that the data is combined
using the covariance-weighted SoS method. However, even if the available data were combined
using the conventional SoS approach (i.e., without taking into account the noise correlation

matrix among coil elements), the method could still provide a reasonable approximation (for
more details see Appendix B in S1 File).

Table 1. General pseudocode MAP algorithm.

Initialize f° and a°

if SMF, then
n=1

else if SOS, then
n = number of coils (or nes)

end

fork =1,2,..., repeat the following steps, until a termination criterion is satisfied
compute f**! via Egs (11) and (12), assuming o® = o
et _ gt /Sum(fk+1) (%)
compute o*’ via Eq (9) assuming f = <
update ary

end

(*) Optionally, the ODF vector may be scaled to unity, thus preserving the physical definition of the j th
element in f as the volume fraction of the j th compartment of the voxel (see Egs (1)—(3)). This step would
make sense when the fiber response signal used to create the dictionary matches the real signal from the
compartments, whereas it may be omitted when the latter cannot be guaranteed. Notice that the original
implementation of dRL-SD did not include this step.

doi:10.1371/journal.pone.0138910.t001
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The evaluation of the ratio of modified Bessel functions of first kind involved in the updates
of Eqs (11) and (9) is best computed by considering the ratio as a new composite function, and
not by means of the simple evaluation of the ratio of the individual functions. Specifically, this
ratio is computed here in terms of Perron continued fraction [70]. All the details are provided
in Appendix Cin S1 File.

Following a similar estimation framework, the TV regularization was also included into the
dRL-SD method. All the relevant equations are provided in Appendix D in S1 File.

Materials and Methods
1 Synthetic fiber bundles with different inter-fiber angles

In order to test the resolving power of the methods as a function of the underlying inter-fiber
angle, various synthetic phantoms including two fiber bundles were generated. The inter-fiber
angles were gradually modified from 1 to 90 degrees applying one degree increases, eventually
yielding 90 different phantoms with 50 x 50 x 50 voxels. The volume fractions of the two fiber
bundles were assumed to be equal (f; = f, = 0.5) in the fiber crossing region.

The intra-voxel diffusion MRI signal was generated via the multi-tensor model [6] using
N = 70 sampling orientations with constant b = 3000 s/mm” plus one additional image with
b=0 (ie., Sy = 1 was assumed in all voxels). The diffusion tensor diffusivities of both fiber
groups were assumed to be identical and equal to 4, = 1.7 10° mm?*/sand A, =13 =0.310""
mm?®/s respectively.

2 Synthetic fiber bundles with different volume fractions

To test the ability of the different methods to detect non-dominant fibers, various synthetic
phantoms containing two fiber bundles were generated. In these phantoms the inter-fiber
angle was fixed to 70 degrees (an angle presumably detectable by all the methods) and the vol-
ume fraction of the non-dominant fiber bundle was gradually changed from 0.1 to 0.5 in
0.01steps, generating 41 different phantoms with 50 x 50 x 50 voxels each. The intra-voxel dif-
fusion MRI signal was created using the same generative multi-tensor model, b-value and sam-
pling orientations as in the previous section.

3 Synthetic “HARDI reconstruction challenge 2013” phantom

The reconstruction algorithms were also tested on the synthetic diffusion MRI phantom devel-
oped for the “HARDI Reconstruction Challenge 2013” Workshop, within the IEEE Interna-
tional Symposium on Biomedical Imaging (ISBI 2013). This phantom comprises a set of 27
fiber bundles with fibers of varying radii and geometry which connect different areas of a 3D
image with 50 x 50 x 50 voxels. It contains a wide range of configurations including branching,
crossing and kissing fibers, together with the presence of isotropic compartments mimicking
the CSF contamination effects occurring near ventricles in real brain images.

The intra-voxel diffusion MRI signal was generated using N = 64 sampling points on a
sphere in g-space with constant b = 3000 s/mm?, plus one additional image with b = 0. For
pure GM and CSF voxels, signals were generated using two mono-exponential models: exp
(=Dgb) and exp(~Dc¢spb) with Dgy, = 0.2 107> mm?/s and Degr = 1.7 107> mm?/s. In voxels
belonging to single-fiber WM bundles, the signal measured along the g-space unit direction
4 = q/|q| was generated by a mixture of signals from intra- and extra-axonal compartments:
f8n(q,v,7,L,R) +f_.s..(4,Vv,b, A, L,), where v denotes the local fiber orientation. Signal
from the intra-axonal compartment S;,, was created following the theoretical model of a
restricted diffusion process inside a cylinder of length L = 5 mm and radius R = 5 ym at the
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diffusion time 7 =20.8 s [19, 71]. The extra-axonal signal S, was generated using a diffusion
tensor model with cylindrical symmetry (i.e., 1; = 1.7 10~° mm?%/s, A, = A3 = 0.2 10> mm?/s).
Mixture fractions were fixed to f;;,; = 0.6 and f.,; = 0.4. The noiseless dataset can be freely down-
loaded from the Webpage of the site: http://hardi.epfl.ch/static/events/2013_ISBI/.

4 Multichannel noise generation

The synthetic diffusion images from the above phantoms were contaminated with noise mim-
icking the SoS and SMF strategies used in scanners in order to combine multiple-coils signals.
To that aim, the noisy complex-valued image measured from the kth coil was assumed to be
equal to

S, = SC, + ¢; + iey, (13)
where C is the relative sensitivity map [72] of kth coil, ef ~ N(0,X) and e} ~ N (0, X) are two

different Gaussian noise realizations simulating the noise in the real and imaginary compo-
nents with zero-mean value and covariance matrix Z. For simplicity ~ was assumed to be

given by
L p p
p 1 e p
o T (14)
p p e 1

where o” is the noise variance of each coil and p indicates the correlation coefficient between
any two coils.
For the SoS reconstruction, magnitude images were generated as:

Ssos = \/ 22:1 |Sk|2a (15)

where |S;| stands for the magnitude of S;. Notice that Eq (15) is the conventional SoS image
combination and not the covariance-weighted variant. We have followed this approach in
order to simulate the effect of any remaining residual correlation p present in real systems (we
have assumed a p = 0.05) [63].

In the SMF reconstruction, magnitude images were generated as:

Somr = ‘Zk:l S Cils (16)

with simulated sensitivity maps depicted in Fig A in S2 File satisfying the relationship

22—1 C; = 1, which holds in practice when the relative sensitivity maps are calculated as C; =

|Sk|/Ssos [72]. These sensitivity maps have been previously used in [73].

It should be noted that different scanner vendors can implement different SMF and SoS var-
iants. In this work we have used the variants given in [55] for datasets acquired without under-
sampling in the k-space, i.e., R = 1, where R is the acceleration factor of the acquisition defined
as the ratio of the total k-space phase-encoding lines over the number of k-space lines actually
acquired. Notice that in the absence of noise Ssos = Sspr- Besides, for the particular case of a
single coil with uniform sensitivity, i.e., n =1 and C =1, Eq (15) and Eq (16) become identical.

The 132 3D phantoms resulting from the procedures described in the three previous sec-
tions were contaminated with noise using a range of clinical signal-to-noise ratios (SNR) of 10,
15,20 and 30, where SNR = Sy/0. In order to generate signals under equivalent conditions, for
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each value of ¢ the same noise realizations {ef } and {e, } were used to generate the final images
Ssos and Sgpsr. All datasets were created simulating a scanner with 8 coils (see Figs A and B in
S2 File).

5 Evaluation metrics

The performance of the algorithms was quantified by comparing the obtained reconstructions
against the ground-truth via three main criteria: (i) the angular error in the orientation of fiber
populations, (ii) the proper estimation of the number of fiber populations present in every
voxel and (iii) the volume fraction error.

For the analyses, local peaks from the reconstructed fiber ODFs were identified as those ver-
tices in the grid with higher values than their adjacent neighbors, considering only cases where
magnitudes exceeded at least one tenth of the amplitude of the highest peak (i.e., 0.1-f,,.5) [50].
From all identified peaks, the highest four where finally retained.

Next, we adopted some of the evaluation metrics widely used in the literature [9]. Specifi-
cally, we used the angular error, defined as the average minimum angle between the extracted
peaks and the true fiber directions [74]:

1 Mirge .
0= mzk:l mmm{arccos(|eﬁvk{)}, (17)

where M is the true number of fiber populations, e,,, is the unitary vector along with the mth
detected fiber peak and vy is the unitary vector along the kth true fiber direction. The volume
fraction error of the estimated fiber compartments was assessed by means of the average abso-
lute error between the estimated and the actual peak amplitudes:

1
A= S

where f,, is the normalized height of the mth detected fiber peak and f; is the volume fraction
of the kth true fiber. As usual, the angular and volume fraction errors between each pair of
fibers were measured by comparing the true fiber with the closest estimated fiber.

Finally, the success rate (SR) was employed to quantify the estimation of the number of
fiber compartments. The SR is defined as the proportion of voxels in which the algorithms esti-
mate the right number of fiber compartments. To discriminate the different factors leading to
an erroneous estimation, the mean number of over-estimated n* and under-estimated n”~ fiber

£, — £, (18)

populations were computed over the whole image [9].

6 Settings for the evaluation algorithms

Both RUMBA-SD and dRL-SD methods were implemented using in-house developed Matlab
code, applying the same dictionaries H created from the signal generative model given in Eqs
(1)=(3). These used M = 724 fiber orientations distributed on the unit sphere, with a mean
angular separation between adjacent neighbor vertices of 8.36 degrees, and a standard devia-
tion of 1.18 degrees.

To assess the effect of using dictionaries with optimal and non-optimal diffusivities, two dif-
ferent dictionaries were created and applied to the datasets described in subsections 1 (i.e., fiber
bundles with different inter-fiber angles) and 2 (i.e., fiber bundles with different volume frac-
tions). The first dictionary was generated by using the same diffusivities employed in the syn-
thetic data, whereas the second dictionary was created from diffusivities estimated in regions of
parallel fibers (outside the fiber crossing area) by means of a standard diffusion tensor fitting
on the noisy data (i.e., dtifit tool in FSL package).
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Similarly, two dictionaries were created to test the reconstructions on the data described in
subsection 3 (i.e., “HARDI Reconstruction Challenge 2013” phantom data). In this case the
model diffusivities and the ‘true’ diffusivities were deliberately set to different values in order to
consider the possibility of model misspecification. The first dictionary was created with tensor
diffusivities equal to A; = 1.4 10> mm?/s and A, = A3 = 0.4 10> mm?/s. Two isotropic compart-
ments with diffusivities equal to 0.2 10> mm?/s and 1.4 107> mm®/s were also included. In the
second dictionary the diffusivities were assumed to be equal to A, = 1.6 10> mm?/s and A, = A3
=0.3 107> mm?/s, and the isotropic diffusivities were equal to 0.2 10> mm?/s and 1.6 10~
mm?/s respectively.

The starting condition f° in all cases was set as a non-negative iso-probable spherical func-
tion [37]. The accuracy and convergence of both methods as a function of the number of itera-
tions was investigated by repeating the calculations using 200 and 400 iterations, which is
within the optimal range as suggested in [37] and [50]. The extended algorithms with TV regu-
larization were also tested using 600 and 1000 iterations. The geometric damping and threshold
parameters for dRL-SD were set to v = 8 and 17 = 0.06 respectively [37], see Appendix D in S1
File. For SoS-based data, n was fixed to the real number of coils in RUMBA-SD.

To differentiate the standard RUMBA-SD and dRL-SD algorithms from their regularized
versions, we have added the term ‘+TV’ to their names, i.e., RUMBA-SD+TV and dRL-SD
+TV.

7 Real brain data

Diffusion MRI data were acquired from a healthy subject on a 3T Siemens scanner (Erlangen)
located at the University of Oxford (UK). The subject provided informed written consent
before participating in the study, which was approved by the Institutional Review Board of the
University of Oxford. Whole brain diffusion images were acquired with a 32-channel head coil
along 256 different gradient directions on the sphere in q-space with constant b = 2500 s/mm?®.
Additionally, 36 b = 0 volumes were acquired with in-plane resolution = 2.0 x 2.0 mm” and
slice thickness = 2 mm. The acquisition was carried out without undersampling in the k-space
(i.e., R = 1). Raw multichannel signals were combined using either the standard GRAPPA
approach or the GRAPPA approach with the adaptive combination of the SMF available in the
scanner, giving SoS and SMF-based datasets respectively. Then, the two resulting datasets were
separately corrected for eddy current distortions and head motion as implemented in FSL [75].

A subset of 64 directions with nearly uniform coverage on the sphere was selected from the
full set of 256 gradients directions, and measurements for this subset were used to ‘create’ an
under-sampled version of the data, which also included 3 b = 0 volumes. The resulting HARDI
sequence based on 64 directions is similar to those widely employed in clinical studies, thus
results from this dataset are useful to evaluate the impact of the new technique on standard
clinical data.

Results
1 Gaussian versus non-gaussian noise models

The angular and volume fraction errors from the dRL-SD and RUMBA-SD reconstructions in
the 90 synthetic phantoms with different inter-fiber angles are depicted in Fig 1, as well as in
Fig Cin S2 File. Fig 1 shows results using a dictionary created with the same diffusivities
applied to generate the data (i.e., A; = 1.7 10> mm®/s and A, = A3 = 0.3 10> mm?/s), whereas
Fig C in S2 File displays results using tensor diffusivities estimated from the noisy data (A, =
1.1107°> mm®/s and A, = A3 = 0.35 10> mm?/s). In both dictionaries two isotropic compart-
ments with diffusivities equal to 0.1 10> mm?/s and 2.5 107> mm®/s were included. Average
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Fig 1. Reconstruction accuracy for RUMBA-SD and dRL-SD using a dictionary based on original diffusivities. Reconstruction accuracy of
RUMBA-SD (blue color) and dRL-SD (red color) are shown in terms of the angular error () (see Eq (17)) and the volume fraction error (Af) (see Eq (18)), as a
function of the inter-fiber angle in the 90 synthetic phantoms. Continuous lines in each plot represent the mean values for each method. The semi-transparent
coloured bands symbolize values within one standard deviation from both sides of the mean. Analyses are based on a dictionary created with the same
diffusivities used to generate the data and with a SNR = 15.

doi:10.1371/journal.pone.0138910.g001

values of SR, n" and n™ are also reported in Figs D and E in S2 File. Results shown come from
the reconstructions employing 200 iterations and the datasets with a SNR = 15.

A set of patterns can be drawn from these results. First, RUMBA-SD was able to resolve
fiber crossings with smaller inter-fiber angles (around 5 degrees and 10 degrees for datasets
corrupted with Rician and nc-y noise respectively). Second, RUMBA-SD produced volume
fraction estimates with a higher precision (lower variance), even in phantoms where the fiber
configuration was well-resolved by both methods. Third, although dRL-SD produced a rela-
tively lower proportion of spurious fibers (n*), RUMBA-SD produced a lower proportion of
undetected fibers (n”) leading to a higher success rate (SR). Finally, the performance of both
methods was inferior when the dictionary was created using diffusivities estimated from a
‘standard’ DTI fitting in WM regions of parallel fibers. In line with previous findings on
dRL-SD [50], optimal results were obtained from the sharper fiber response model.

All these points also hold for results obtained with other SNRs and with a differing number
of algorithm iterations. Specifically, when a higher number of iterations was employed (i.e.,
400), a lower proportion of n~ and a higher proportion of n™ was obtained with both methods.
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Fig 2. Reconstruction accuracy of RUMBA-SD and dRL-SD measured in phantoms with different volume fractions. Reconstruction accuracy of

RUMBA-SD (blue color) and dRL-SD (red color) is shown in terms of the volume fraction of the smaller fiber bundle (upper panel) and the success rate

(middle panel) in the 41 synthetic phantoms with inter-fiber angle equal to 70 degrees, using different volume fractions. The lower panel shows results similar
to those depicted in the upper panel but considering only voxels where the two fiber bundles were detected. The discontinuous diagonal black line in the
upper and lower panels represents the ideal result as a reference. The continuous coloured lines in each plot denote the mean values for each method. The
semi-transparent coloured bands represent the values within one standard deviation to both sides of the mean. Results refer to the datasets with SNR =15
and dictionary created with the true diffusivities.

doi:10.1371/journal.pone.0138910.9002

Fig 2 shows the performance of dRL-SD and RUMBA-SD in the 41 phantoms with inter-
fiber angle equal to 70 degrees and using different volume fractions. Specifically, average values

and standard deviations for the estimated volume fractions of the smaller fiber group are

reported for the SNR = 15 datasets. Results are based on 200 iterations, using the dictionary
created with the sharper fiber response model. Additional results on n* and n™ are show in Fig

F in S2 File.
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Rician noise

The performance of RUMBA-SD was better in terms of the estimated volume fractions and
the success rate, especially in the Rician noise case. In order to verify if the lower bias in the vol-
ume fractions estimated by RUMBA-SD could be explained only by its higher success rate, the
calculation was repeated by considering only those voxels in each phantom where the two fiber
populations were identified. After correcting for this factor, a noticeable advantage was still
observed for RUMBA-SD (see left lower panel of Fig 2).

2 Original versus TV-regularized algorithms

Fig 3 reports angular and volume fraction errors corresponding to the TV spatially-regularized
versions of both methods applied to the 90 phantoms characterizing the different inter-fiber
angles. Results are based on the same parameters and options used in Fig 1: dictionary created
using the sharper fiber response model; noisy datasets with a SNR = 15 and reconstructions
using 200 iterations. Average values of SR, n” and n™ are reported in Fig G in S2 File.

When comparing these results with those from Fig 1 (and Fig D in S2 File), it is clear that TV
regularization provides multiple benefits in both algorithms, including a superior ability to detect
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Fig 3. Reconstruction accuracy levels of RUMBA-SD+TV and dRL-SD+TV. Reconstruction accuracy of RUMBA-SD+TV (blue color) and dRL-SD+TV
(red color) is shown in terms of the angular error (8) (see Eq (17)) and the volume fraction error (Af) (see Eq (18)) as a function of the inter-fiber angle in the 90
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deviation on both sides of the mean. This analysis is based on a dictionary created with the same diffusivities used to generate the data with a SNR = 15.
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Fig 4. Main peaks in the 45-degrees phantom data. Main peaks extracted from the fiber ODFs estimated in the phantom data with inter-fiber angle equal to
45 degrees and Rician noise with a SNR = 15 are shown. Results are based on reconstructions using 200 iterations. Peaks are visualized as thin cylinders.

doi:10.1371/journal.pone.0138910.g004

fiber crossings with smaller inter-fiber angles and a higher success rate. The later is due to a lower
proportion of undetected fibers (n") and of spurious fibers (n™). This pattern is evident in Fig 4,
which depicts the peaks extracted from the fiber ODFs estimated from the SMF-based phantom
with inter-fiber angle equal to 45 degrees and SNR = 15. Peaks are plotted as thin cylinders.
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Fig 5. Main peaks in the 33-degrees phantom data. Main peaks extracted from the fiber ODFs estimated in the phantom data with inter-fiber angle equal to
33 degrees and Rician noise with a SNR = 15 are shown. Results are based on reconstructions using 200 iterations. Peaks are visualized as thin cylinders.

doi:10.1371/journal.pone.0138910.g005

As before, the above patterns were also observed in the analyses obtained with datasets
based on other SNRs and with different number of iterations. In all cases RUMBA-SD+TV
detected fiber crossings at lower inter-fiber angles. Fig 5 shows an example of this in the phan-
tom with inter-fiber angle equal to 33 degrees corrupted with Rician noise and SNR = 15.
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Fig 6. Main peaks from the fiber ODFs estimated in the “HARDI Reconstruction Challenge 2013” phantom. Visualization of the main peaks extracted
from the fiber ODFs reconstructed from the SMF-based data generated with SNR = 20 in a complex region of the “HARDI Reconstruction Challenge 2013”
phantom. Results are based on reconstructions using 400 iterations. Peaks are visualized as thin cylinders.

doi:10.1371/journal.pone.0138910.g006

3 “HARDI reconstruction challenge 2013” phantom data

Fig 6 depicts the peaks extracted from the fiber ODFs estimated in a complex region containing
various tracts from the SMF-based data generated with a SNR = 20. Results come from recon-
structions using 400 iterations and a dictionary with diffusivities equal to A; = 1.6 107> mm?/s
and A, = A3 = 0.3 10> mm?/s. Figs H, 1, ] and K in S2 File show the results from both methods
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and their regularized versions in the whole slice. Additionally, Fig L in S2 File shows the results
corresponding to the reconstructions using 1000 iterations on the same region of interest
depicted in Fig 6.

On the one hand, RUMBA-SD was able to resolve some fiber configurations that were not
detected by dRL-SD, especially in voxels involving small inter-fiber angles or fiber crossings
with a non-dominant tract. On the other hand, the spatially-regularized algorithms have sub-
stantially improved the performance of the original methods. Moreover, RUMBA-SD+TV was
the method providing better reconstructions. These findings are in line with results from previ-
ous sections and remained valid also when different dictionaries, number of iterations and
noise levels were employed.

Additional complementary results about the performance of RUMBA-SD in relation to sev-
eral other reconstruction methods can be found in the website of the ‘HARDI Reconstruction
Challenge 2013’: http://hardi.epfl.ch/static/events/2013_ISBI/workshop.html#results. An ear-
lier version of RUMBA-SD took part in that Challenge, ranking number one in the ‘HARDI-
like’ category (team name: ‘Capablanca’). In the discussion section we provide additional
information.

4 Real brain data

Fiber ODFs were estimated separately for each different SMF- and SoS-based dataset, including
the original measured data with the full set of 256 gradient directions and its reduced form
including a subset of 64 directions. In all cases, both RUMBA-SD and dRL-SD methods were
implemented using the same dictionary, which was created assuming a sharp fiber response
model with diffusivities equal to A; = 1.7 107> mm?/s and A, = A3 = 0.3 10> mm*/s, and two
isotropic terms with diffusivities equal to 0.7 10> mm?/s and 2.5 107> mm?/s.

Fig 7 shows the fiber ODFs estimated from the reduced SMF- and SoS-based datasets (i.e.,
data containing the reduced set of 64 gradient directions) in a coronal ROI on the right brain
hemisphere. These results correspond to the reconstructions employing 200 iterations. Visual
inspection of Fig 7 reveals that RUMBA-SD has produced sharper fiber ODFs than dRL-SD in
both data. It has detected more clearly the fiber crossings. Interestingly, the fiber ODF profiles
estimated by dRL-SD from the SoS-based data are smoother than those estimated from the
SMEF-based data. This behavior is less perceptible in the case of RUMBA-SD, suggesting that it
could be more robust to different multichannel combination methods.

Fig 8 depicts the fiber ODFs estimated with RUMBA-SD and RUMBA-SD+TV in a ROI of
both the full and reduced SMF-based datasets. This region contains complex fiber geometries,
including the mixture of the anterior limb of internal capsule (alic), the external capsule (ec)
and part of the superior longitudinal fasciculus (slf) on the left brain hemisphere. Although in
both cases multiple fibers were detected in the area of intersection, RUMBA-SD+TV has pro-
vided multi-directional fiber ODFs with a higher number of lobes, which may represent fiber
crossings as well as intra-voxel fiber dispersion. The similarity of the reconstructions from the
full and reduced datasets suggests that the method is robust with respect to the number of mea-
surements, with the regularized version being the most robust.

In a subsequent analysis we examined the statistical properties of inter-fiber angles as esti-
mated by all methods. Fig 9 depicts scatter plots of inter-fiber angles estimated by dRL-SD and
RUMBA-SD (panel A) and by dRL-SD+TV and RUMBA-SD+TV (panel B). These results are
based on reconstructions employing 300 iterations in the 64-direction SMF-based dataset.
Only white matter voxels where both methods detected one or two fibers are included in each
plot, with inter-fiber angles in single fiber voxels assumed to be zero. Points on the main diago-
nal line characterize voxels where both methods gave identical inter-fiber angle estimates,
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Fig 7. Fiber ODF profiles estimated from real data. Visualization of the fiber ODFs estimated in a region of interest on the right brain hemisphere. Results
from both SMF- and SoS-based multichannel diffusion datasets (i.e., with Rician and Noncentral Chi noise, respectively) are depicted. The background
images are the generalized fractional anisotropy images computed from each reconstruction.

doi:10.1371/journal.pone.0138910.g007

whereas points above and below the main diagonal correspond to voxels where the two meth-
ods detected two fibers with different inter-fiber angle. The high density of points forming two
secondary lines near the main diagonal indicates nearly similar reconstructions by both meth-
ods, with the angular differences being similar to the angular resolution of the reconstruction
grid (i.e., about 8 degrees). The higher number of points above the main diagonal in both pan-
els, especially for inter-fiber angles lower than 50 degrees, suggests that RUMBA-SD and
RUMBA-SD+TYV provide higher inter-fiber angles than dRL-SD and dRL-SD+TV,
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Fig 8. Fiber ODF profiles estimated from real data. Visualization of the fiber ODFs estimated from
RUMBA-SD and RUMBA-SD+TV in a region of interest on the left brain hemisphere. Results are based on
estimates employing 300 iterations. The upper and lower panels correspond to results from the full and
reduced SMF-based datasets, respectively. The following tracts are highlighted: alic (anterior limb of internal
capsule), ec (external capsule), and part of the slf (superior longitudinal fasciculus).

doi:10.1371/journal.pone.0138910.g008

respectively. Finally, points located on the X and Y axes are voxels where one method detected
two fibers while the other detected one. The very low density of points on the X axis of panel A
for inter-fiber angles lower than 50 degrees (see the blue bracket) indicates that in nearly all
voxels where dRL-SD detected two fibers, RUMBA-SD was also able to detect two fibers. In
contrast, the high density of points on the Y axis in the same range of inter-fiber angles indi-
cates that in many voxels RUMBA-SD detected two fibers whereas dRL-SD detected a single
one. A similar but attenuated effect can be noticed in panel B, suggesting that TV regularization
contributes to reduce the differences between both methods.

Discussion and Conclusions

In this study we propose a new model-based spherical deconvolution method, RUMBA-SD. In
contrast to previous methods, usually based on Gaussian noise with zero mean, RUMBA-SD
considers Rician and noncentral Chi noise models, which are more adequate for characterizing
the non-linear bias introduced in the diffusion images measured in current 1.5T and 3T multi-
channel MRI scanners. Although recent progress has been made in new SD methods adapted
to corrupted Rician data, e.g., see [41, 76] to the best of our knowledge, our study provides the
first SD extension to noncentral Chi noise. Furthermore, RUMBA-SD offers a very general esti-
mation framework applicable to different datasets, with its flexibility emanating from two
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Fig 9. Scatter plots of inter-fiber angles estimated in real data. Scatter plots of the inter-fiber angles estimated by dRL-SD and RUMBA-SD (panel A) and
by dRL-SD+TV and RUMBA-SD+TV (panel B) in the same voxels. Results are based on reconstructions in the 64-direction SMF dataset. Only voxels in
white matter where both methods detected one or two fibers are included. The inter-fiber angle in voxels with a single fiber was assumed to be equal to zero.
Points on the main diagonal line are those voxels where the inter-fiber angle estimated from both methods was identical, whereas points above and below the
main diagonal correspond to voxels where the two methods detected two fibers but with different inter-fiber angle. Points located on the X and Y axes are
voxels where one method detected two fibers whereas the other detected a single fiber.

doi:10.1371/journal.pone.0138910.g009

features: i) the explicit dependence between the likelihood model and the number of coils in
the scanner and ii) the specific methodology employed to combine multichannel signals. In
addition, the voxel-wise estimation of the noise variance adequately deals with potential devia-
tions in the noise distribution, due, for instance, to accelerated MRI techniques or to prepro-
cessing effects. We hope that the proposed technique will help extend SD methods to a wide
range of datasets taken from different scanners and using different protocols.

This study adds to previous diffusion MRI studies trying to overcome the signal-dependent
bias introduced by Rician and noncentral Chi noise. Apart from the robust DTI estimation
methods in [77] and the earlier DTT study conducted by [78], the noise filtering techniques
recently described in [79, 80] are specially relevant. These techniques can be applied in the pre-
processing steps prior to HARDI data estimation.

The performance of RUMBA-SD has been evaluated exhaustively against the state-of-the-
art dRL-SD technique. For that, we have used 132 different 3D synthetic phantoms, including
90 phantoms simulating fiber crossings with different inter-fiber angle, 41 phantoms simulat-
ing fiber crossings with different volume fraction, and the complex phantom designed for the
“HARDI Reconstruction Challenge 2013” Workshop organized within the IEEE International
Symposium on Biomedical Imaging. The comparison of these two methods has allowed us to
weight the impact on the results of the Rician and noncentral Chi likelihood models included
in RUMBA-SD, in relation to the Gaussian model assumed in dRL-SD. Since both approaches
were implemented using the same dictionary of basis signals and similar reconstruction meth-
ods based on Richardson-Lucy algorithms adapted to Gaussian, Rician and noncentral Chi
noise models, results should be considered comparable.
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Taken together, findings from all synthetic datasets demonstrate the benefits of an adequate
modelling of the noise distribution in the context of spherical deconvolution, and of the inclusion
of TV regularization. Interestingly, RUMBA-SD resolved fiber crossings with smaller inter-fiber
angles and smaller non-dominant fibers. Likewise, RUMBA-SD produced volume fraction esti-
mates with higher accuracies and precision and produced, as well, a lower proportion of unde-
tected fibers, resulting in a higher success rate (see Figs 1 and 2 in S2 File). On the other hand, the
TV spatially-regularized versions of both dRL-SD and RUMBA-SD have substantially improved
the performance of the original methods in all studied metrics (see Figs 3-6 in S2 File).

As previously mentioned, an earlier version of RUMBA-SD took part in the HARDI Recon-
struction Challenge 2013, ranking number one in the ‘HARDI-like’ category. Notably, this
position was shared with a reconstruction based on the CSD method included in Dipy software
[81] (http://nipy.org/dipy/), which had applied a Rician denoising algorithm [82] to the raw
diffusion MRI data prior to the actual CSD reconstruction. The superior performance of these
two approaches strengthens the importance of taking into account the non-Gaussian nature of
the noise. Moreover, it opens new questions on the optimal strategy to be followed. Should we
divide the deconvolution process into to two disjoint steps (first denoising and then estima-
tion) or it is more adequate to follow the unified approach proposed here?. The main advantage
of the former is that it may benefit from including state-of-art denoising algorithms like the
adaptative non-local means denoising method proposed in [82]. Conversely, the main advan-
tage of the unified approach is that it provides a precise model to distinguish real signals from
noise throughout all the 4D diffusion MRI data. Many of the advanced denoising algorithms
that are currently applied in isolation were developed to filter volumetric (3D) data. Since each
3D image is processed individually, their mutual dependence in terms of orientation is ignored.
In contrast, the unified approach described here provides a more general estimation framework
that may be extended to include advanced similarity measures like those employed in [82],
merging the benefits of both strategies. A new manuscript on the ‘Challenge’ phantom (cur-
rently under preparation) will provide additional information on the performance of RUM-
BA-SD in relation to several reconstruction methods and in terms of connectivity metrics
derived from fiber tracking analyses.

When applied to human brain data, RUMBA-SD has also achieved the best results, with its
reconstructions showing the highest ability to detect fiber crossings (see Figs 7-9). And
although any conclusion derived from real data is hampered by the unknown anatomy at the
voxel level, all previous results on synthetic data seem to support the validity of RUMBA-SD
for real data.

Our findings can also be contrasted with those reported in [55]. In that study, the authors
show that the SoS approach produces a signal-dependent bias that reduces the signal dynamic
range and may subsequently lead to decreased precision and accuracy in fiber orientation esti-
mates. Our study, however, suggests that the noncentral Chi noise in SoS-based data is not a
major concern for the SD methods considered. Thus, heavier squashing of fiber ODFs when
SoS reconstruction is used [55] is not that prominent with the SD if compared to diffusion
ODF estimation methods [11]. This result may have different explanations for each technique.
The robustness of dRL-SD may be explained, in part, by its lower over-all sensitivity to selec-
tion of the response function [50], which make it robust to the use of dictionaries estimated
from either biased or unbiased signals. This behaviour may be additionally boosted by the
inclusion of the damping factor in the RL algorithm. In contrast, the robustness of RUMBA-SD
can be explained by the use of proper likelihood models that explicitly consider the bias as a
function of the noise corrupting the data.

To finish, some limitations and future extensions of the study should be acknowledged.
First, we have not evaluated the proposed method in synthetic data simulating partial Fourier
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k-space acquisitions and with parallel imaging using various acceleration factors (i.e., R>1), yet
it may be interesting to consider it. Second, the RUMBA-SD estimation framework is based on
a discrete approximation of the fiber ODF, which may be potentially extended to continuous
functions on the sphere, like the spherical harmonics and the wavelets. Third, the TV regulari-
zation implemented in this study is based on a channel-by-channel first order scheme. New
studies may be designed to compare different regularization techniques such as higher order
TV, vectorial TV and the fiber continuity approach introduced in [56], to mention only a few
examples. Fourth, different strategies for creating the signal dictionary could be explored, like
using mixtures of intra-compartment models to capture different diffusion profiles, or applying
more appropriate models to fit multi-shell data [31, 83]. Fifth, the recursive calibration of the
single-fiber response function proposed by [84] may be another possible add-on. Finally, it is
worth mentioning that the inversion algorithm behind RUMBA-SD is not limited to fiber ODF
reconstructions, but it can be also applied to solve other linear mixture models from diffusion
MRI data. It was recently showed that some microstructure imaging methods such as ActiveAx
and NODDI can be reformulated as convenient linear systems, however, the deconvolution
methods proposed for them assume Gaussian noise and are performed on a voxel-by-voxel
basis [85]. Here the iterative scheme proposed in RUMBA-SD could be used to address both
limitations, potentially leading to improved reconstructions in microstructure imaging.
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