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Objectives: The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations
in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI).

Methods: Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as
Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using
permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical
performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects.

Keywords: . X K . . . . .
Ml}l,lvli/i—col’ltl'ast MRI Results: Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be
Quantitative MRI interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus

(p £0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p < 0.05).
MRI metrics accurately predicted memory and executive performances in patients (p < 0.005). SVM classification
reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT
metrics.
Conclusion: Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms lead-
ing to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive
deficits and improve automatic disease classification based on morphometric features.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mild cognitive impairment (MCI) is defined as cognitive decline
greater than expected for an individual’s age and education level but
that does not interfere notably with activities of daily life (Albert et al.,
2011; Gauthier et al., 2006). MCl is considered a prodromal phase to de-
mentia since it has been estimated that more than half of the patients
progress to dementia within 5 years (Gauthier et al., 2006).

The aetiology of MCI appears quite heterogeneous as it encompasses
degenerative diseases (Alzheimer’s disease (AD), fronto-temporal lobe
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degeneration, dementia with Lewy bodies), vascular and psychiatric
disorders and other medical conditions (diabetes, systemic cancer etc.
(Petersen and Negash, 2008)).

Structural and functional magnetic resonance imaging (MRI) have
been extensively applied to identify brain abnormalities in MCI patients,
to perform early diagnosis and estimate time to progression to AD or
other dementias (for review see (McConathy and Sheline, 2015;
Schuff and Zhu, 2007)). Most structural MRI studies applied morpho-
metric analysis to MCI patients evidencing volumetric decrease in the
temporal lobe (cortex and hippocampus, for review see (McConathy
and Sheline, 2015; Schuff and Zhu, 2007)). Longitudinal structural MRI
studies in MCI subjects revealed that hippocampal atrophy rates nega-
tively correlate with time to conversion to AD (Leung et al., 2013;
Westman et al., 2012). Interestingly, reduced cortical volumes in the
parietal and frontal lobes have also been reported before development
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of MCI, preceding hippocampal atrophy (Burgmans et al., 2009;
Westman et al., 2012).

Local atrophy processes are therefore a common characteristic of
MCI brains. Nevertheless, morphometric measurements reveal gross
pathological processes and lack of sensitivity to microstructural tissue
changes, which precede local atrophy and might help in identifying
the nature of the underlying pathological process.

Quantitative MRI relaxometry is sensitive to brain tissue properties,
both in health and pathology (Deoni, 2010; Deoni, 2011; Lamar et al.,
2014). Similarly, Magnetization Transfer Imaging (MTI) techniques
provide semi-quantitative (MTR, Magnetization Transfer Ratio (Wolff
and Balaban, 1989)) or quantitative (magnetization transfer maps
(Gochberg and Gore, 2007; Muller et al., 2013)) metrics to assess the in-
tegrity of macromolecules in the brain tissue such as myelin or cellular
membranes components (proteins, cholesterol, phosphatidylcholine
and galactocerebrosides) (Barkovich, 2000).

To date, only few structural investigations applied MRI relaxometry
and MTI to MCI patients, suggesting both myelin loss and neurodegen-
eration in the hippocampus (Haris et al., 2009; Kiefer et al., 2009) and
white/grey matter (van Es et al., 2007; van Es et al., 2006). Yet, all
these studies applied a single contrast approach to investigate MCI path-
ophysiology and, to our knowledge, there has been no attempt to com-
bine multiple quantitative MRI contrasts to study MCI physiopathology.

At least for other types of brain pathology, multi-contrast investiga-
tions have demonstrated higher sensitivity and specificity (Bonnier
etal, 2014; Granziera et al., 2013; Vavasour et al,, 2011). T1 relaxometry
measurements are sensitive to both tissue loss/increase and to para-
magnetic substances like iron (Deoni, 2010; Levitt, 2008), rendering
the interpretation of single-contrast quantitative T1 changes in MCI
studies very challenging; combining T1 with T2* measurements,
which are strongly influenced by local iron presence (Langkammer
et al,, 2010), might help disentangling the presence of tissue structure
alterations from iron deposition that has been reported in MCI patients
(Haller et al., 2010; Smith et al., 2010). Also, MTI investigations alone
relate about the integrity of macrostructural components in a tissue,
as MTI metrics are mainly influenced by large molecular aggregates
like myelin or cellular lipids and proteins (Helms, 2014). Nonetheless,
combining MTI with T1 relaxometry, provides broader measures of
brain tissue alterations, since T1 metrics are also affected by micromo-
lecular changes. Last, since T1 relaxation times and MTI have shown
some potential to detect neurofibrillary tangles (Berger R., 2011; Haris
et al, 2009) and amyloid plaque deposition (Bigot et al., 2014;
Meadowcroft et al., 2009) in animal models, they appear to be promis-
ing complementary approaches to study brain tissue pathology leading
to cognitive impairment.

In this study, we sought to perform a multi-contrast MRI investiga-
tion of the nature of brain structural changes in a heterogeneous cohort
of MCI patients. To achieve this goal, we applied an MRI sequence that is
sensitive to micro and macromolecular components of the brain tissue
(T1 relaxometry) with others that are sensitive to macromolecular pres-
ence/integrity and/or water accumulation (MTI and T2* relaxometry) as
well as iron presence (T2* relaxometry). Last, we assessed the cognitive
correlates of the identified imaging biomarkers and estimated the
power in discriminating between MCI patients from HC by performing
automatic disease classification.

2. Methods

Forty-two MCI patients (30:12, F: M; age 70.5 4+ 9.5, mean =+ stan-
dard deviation, SD; 30 amnestic MCI-aMCI, 12 non-amnestic MCI-
naMCI) and 77 HC (58:19, F:M; age 66.4 + 7.1, mean + SD) were
enrolled in the study. Cerebrovascular risk factors are reported in
Table 1. Written consent was obtained from all participants. The study
was approved by the ethic committee of Lausanne University Hospital
(CHUV).

Table 1
Cerebrovascular risk factors. HC: Healthy controls; MCI: mild cognitive impairment
patients; p values are reported after correction for multiple comparison.

HC (n = 76) MCI (n = 42) p-Value
Hypertension 20 21 0.05
Tobacco 13 5 1.8
Diabetes 3 5 0.6
Hypercholesterolemia 22 17 0.8

MCI patients were recruited in the geronto-psychiatric, geriatric
and memory clinics of the University Hospitals of Lausanne and
Geneva over a 2-year period (2010-2012) and were properly diagnosed
at the time of the enrolment. Inclusion criteria were the following:
(i) age > 55 years, (ii) Caucasian origin, (iii) Clinical Dementia Rating
(Morris, 1993) (CDR) = 0.5, (iv) no major psychiatric (psychiatric
axis I disorders with the exception of affective and adaptation disorders
as well as dementia according to DSM-IV (American Psychiatric Associ-
ation, 2000) and NINCDS-ADRDA (National Institute of Neurological
and Communicative Disorders and Stroke Alzheimer’s Disease and
Related Disorders Association) (McKhann et al., 1984) or neurological
disorders, (v) no current substance abuse or severe physical illness,
and (vi) 26 years of education.

2.1. Neurobehavioral examination

All enrolled subjects completed the Hospital Anxiety and Depression
Scale (Zigmond and Snaith, 1983) (HADS) and a Mini Mental State
Examination (MMSE). Additional information was obtained by family
members through the Neuropsychiatric Inventory Questionnaire (NPI-
Q) (Cummings et al., 1994), the evaluation of the Basic and Instrumental
Activities of Daily Living (BADL; IADL) (Katz, 1983; Lawton and Brody,
1969) and the Informant Questionnaire on Cognitive Decline in the EI-
derly (IQCODE) (Jorm and Jacomb, 1989).

2.2. Neuropsychological assessment

All Ml participants were administered an extended battery of neu-
ropsychological tests, mainly covering two cognitive domains (memory
and executive functions), recognized as an essential component of early
diagnosis of Alzheimer’s disease (Van der Linden and Juillerat, 2004;
Weintraub et al., 2012).

Episodic memory was assessed by a verbal RL/RI-48 task (Adam
et al., 2007), while to assess executive functions, we used three tests
proposed by GREFFEX (Godefroy et al., 2010): a verbal fluency task (cat-
egorical and literal fluency in 2 min), a flexibility task (Trail Making Test
B), and an inhibition task (Stroop test).

2.3. Mild cognitive impairment diagnosis

The clinical diagnosis of MCI was based on the criteria proposed by
(Winblad et al., 2004). A cognitive decline was diagnosed using the
CDR scale and a CDR = 0.5 was diagnostic for MCI (Morris, 1993;
Morris et al., 2001), independently from the MMSE result.

2.4. HC recruitment and inclusion/exclusion criteria

Healthy controls were recruited through public advertisement in the
Lausanne area as well as by personal contacts with family members and
acquaintances of the patients. Healthy controls were enrolled according
to the following inclusion criteria: age > 55 years, Caucasian ethnicity,
MMSE > 27 and Clinical Dementia Rating scale (Hughes et al., 1982)
(CDR) = 0. Exclusion criteria were: MCI or dementia, neurological or
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psychiatric disease, alcohol abuse or psychotropic drugs consumption,
severe medical illness, and < 4 educational years.

2.5. MRI acquisition and image processing

All participants underwent structural MRI at 3 T (Magnetom Trio,
a Tim System, Siemens Healthcare, Erlangen, Germany) using a 32-
channel head coil.

The MRI protocol included: (i) an MPRAGE scan based on (Jack et al,,
2010) (TR/TE = 2400/3 ms, TI: 900 ms, voxel size = 1 x 1 x 1.2 mm°,
FoV = 256 x 240 x 212 mm, iPAT = 2, ST = 5:12 min), (ii) an
MP2RAGE acquisition (Marques et al., 2010) to provide T1 relaxometry
maps (TR/TE = 5000/3 ms, TI1/TI2 = 700 ms/2500 ms, FA = 4°/4°,
voxel size = 1 x 1 x 1.2 mm?, FoV = 256 x 240 x 212 mm, iPAT = 3,
ST = 8:22 min), and Magnetization Transfer Imaging (MTI) using an
8-echo FLASH acquisition as in (Granziera et al., 2013) (TR = 48 ms,
TE ranging from 2.3 to 23.1 ms, voxel size = 2 x 2 x 2 mm?>, FoV =
256 x 256 x 192 mm, 8 echos, ST = 2 x 3 min) (Granziera et al.,
2013). Magnetization Transfer Ratio (MTR) was computed from the
MTI acquisition as follows: MTR = (M0 — MT)/MO x 100, where MT
and MO are, respectively, the image intensities acquired with and
without magnetization transfer saturation pulse (MT pulse: flip angle:
220°; duration: 4000 ms; pulse offset: 2000 Hz; spoiler moment:
25,000 ps x mT/m (Helms et al., 2009)). T2* maps were calculated
from the MTI acquisition by least-squares fitting of an exponential
decay to the multiple-echo MO experimental data.

T2-weighted transverse plane images were also acquired with
conventional fast spin-echo sequence (TR/TE = 4000/95 ms, voxel
size = 0.73 x 0.51 x 5.0 mm, gap between slices = 1.5 mm, matrix =
314 x 448, FOV = 230 mm). T2 weighted images were qualitatively
examined by a neuroradiologist to exclude subjects with neo-
plastic or vascular lesions (i.e. strokes, haemorrhages and vascular
malformations).

Bias-field correction, tissue classification, subcortical nuclei and
lobar segmentation were performed on the MPRAGE volumes using
Morphobox (Roche et al., 2011; Schmitter et al., 2015), as previously
reported (Bonnier et al., 2014; Granziera et al., 2013). The following 7
regions-of-interest (ROI) were extracted: global white and cortical
gray matter (WM and cGM), thalamus, caudate, globus pallidus, puta-
men and hippocampus. Segmentation quality was manually confirmed
by one neurologist. Subsequently, T1, MTR and T2* maps were aligned
to the MPRAGE volume by a rigid body registration with 6 degrees of
freedom and mutual information cost function using ELASTIX (Klein
etal.,, 2010). Average MTR, T1 and T2* values were obtained for all ROIs.

White matter hypointesities were quantified on MPRAGE images
using Freesurfer software (https://surfer.nmr.mgh.harvard.edu/).

2.6. Volumetric assessment

Volumetric information was computed for all the 7 ROIs mentioned
above and for WM and cGM of each lobe (frontal, parietal, temporal and
occipital) on MPRAGE and MP2RAGE images.

2.7. Statistical analysis

Statistical analysis was performed with R-project software (http://
www.r-project.org/). Permutation-based univariate t-tests and multi-
variate Hotelling tests with 10,000 permutations, were applied to com-
pare parametric maps in all ROIs between MCI patients and HC as well
as between the aMCI subgroup and HC. Age and gender were used as co-
variates and correction for family-wise error rate was performed for
multiple comparisons (7 ROIs per contrast).

Volumes and WM abnormality differences between groups
were calculated using an analysis of variance with age and gender
as covariates.

A multivariate linear regression of clinical scores was performed
using a generalized linear model (GLM) applied to T1, MTR and T2* in
all ROIs. Educational years were considered in addition to age and gen-
der as it also affects cognitive performance. Cognitive scores were
adapted using Box-Cox transformation to satisfy model assumption
for normality (Osborne, 2010).

2.8. Classification of MCI patients and healthy controls

Classification performance was evaluated with volumes and para-
metric features (mean T1, MTR and T2*) extracted from all the 7 ROIs
segmented in all HC and MCI subjects.

A cost-sensitive soft-margin support vector machine (SVM) (Cortes
and Vapnik, 1995) was employed using the LIBSVM library (Chang and
Lin, 2011), where the cost parameter was optimized. To account for the
imbalance in the group sizes, the features were weighted in the SVM. No
subject was excluded. Due to the small sample size, the discriminability
of the data set was estimated by leave-one-sample-out cross-validation.
This procedure excludes data and label from one instance, trains with
the remaining instances and then predicts the left-out instance. This
procedure is repeated for every instance. Correction for age was per-
formed using linear detrending as in Dukart et al. (2011).

3. Results

MCI patients were older than HC (p = 0.02) but the groups did not
differ for gender (p > 0.7) nor for education (p > 0.2). Patients had cog-
nitive impairment in both executive and memory domains as summa-
rized in Table 2.

The HADS revealed mild depression in 5 subjects (4 HC and 1 MCI
patient) HC and moderate anxiety in 4 subjects (2 MCI patients and 2
HC). Since no significant difference in anxiety and depression was ob-
served between the two groups, these subjects were not excluded
from the analysis.

There were no differences between groups in most of the vascular
risk factors (diabetes, smoke and hypercholesterolemia, Table 1), with
the exception of hypertension (p = 0.05, Table 1). The freesurfer evalu-
ation of hypointensities revealed slightly more hypointensities in HC
than MCI (HC: 2992 + 2280 voxels (= 3.6 4 2.7 ml); MCI: 2762 +
5914 voxels (=3.3 4+ 7.1 ml), p = 0.02).

Comparing the whole MCI group (n = 42) to the HC (n = 77),
univariate analysis on the 7 segmented ROIs revealed: (i) a significant
increase of mean T1 relaxation time in the global WM and hippocampus
of MCI vs HC (WM MCI: 935 + 32 ms, mean + SD vs HC: 909 + 34 ms,
mean =+ SD, p = 0.02; hippocampus MCI: 1466 + 90, mean + SD vs HC:
1405 4 56, mean =+ SD, p = 0.003); and (ii) a significant decrease of the
MTR in the hippocampus of MCI vs HC (hippocampus MCI: 0.32 + 0.04,

Table 2

Demographic characteristics and neuropsychological assessment. HC: Healthy controls;
MCI: mild cognitive impairment patients; IF_Stroop: interference Stroop test; TMT: trail
making test; p values are reported after correction for multiple comparison.

HC (n = 77) MCI (n = 42) p-Value

Age 664 + 7.1 705 £ 9.5 0.02

Gender 19/58 12/30 0.65

Education (y) 22 + 06 2.1 £ 0.6 0.19

MMSE 292 + 1.1 278 + 1.6 <0.001
Immediate recall 42.1 +£ 3.0 359 + 5.8 <0.001
Category cued recall 293 + 5.1 20.0 + 6.5 <0.001
Verbal fluency on category tasks 337 + 64 232 + 86 <0.001
Verbal fluency on letters 253 £ 53 205 + 6.3 <0.001
Stroop 1 128 + 2.2 153 + 4.2 <0.001
Stroop 2 15.5 + 2.7 20.8 + 6.2 <0.001
Stroop 3 244 £ 59 384 £+ 16.1 <0.001
IF_Stroop 194+ 04 26 £ 1.0 <0.001
TMT A 36.7 + 10.7 539 + 209 <0.001
TMT B 84.5 + 27 1315 + 51.3 <0.001
Ratio_TMT 24 + 0.7 27 £ 1.1 0.08
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mean =+ SD vs HC: 0.34 + 0.01, mean =+ SD, p = 0.009), Fig. 1. T2* was
increased in the hippocampus and decreased in globus pallidus of MCI
patients vs HC (hippocampus MCI: 81 £ 20 ms, mean =+ SD vs HC:
70 + 9 ms, mean + SD, p = 0.01; globus pallidus MCI: 32 + 3 ms,
mean =+ SD vs HC: 30 4 4 ms, mean 4 SD, p = 0.05), Fig. 1.

Multivariate analysis on T1, T2* and MTR in the 7 ROIs showed dif-
ferences between patients and controls in the hippocampus (p = 0.01).

ROIs normalized by total intracranial volume did not significantly
differ between the two groups.

The analysis performed on the subset of aMCI patients confirmed the
T1 increase and MTR decrease in the hippocampus of MCI subjects
compared to controls (p = 0.03 and p = 0.04 respectively) as well as
the decrease in the globus pallidus T2*,

The analysis of the lobar WM differences between the whole MCI
cohort and HC evidenced that T1 WM abnormalities were widely dis-
tributed and significantly higher in frontal (p = 0.03), parietal (p =
0.01) and occipital (p = 0.02) WM of MCI patients vs HC, Fig. 2.

A GLM applied in the patient population evidenced that memory
(p <0.0001) and executive performances (p < 0.001) were highly pre-
dicted by age, education and T1-MTR-T2* characteristics of WM/GM,
hippocampus, thalamus, caudate, putamen, and globus pallidus
(Table 3).

SVM classification of MCI patients and HC based on (i) all 7 volumet-
ric features calculated on MPRAGE images yielded a balanced accuracy
of 70% (sensitivity of 55% and specificity of 78%); on (ii) volumes calcu-
lated on MPRAGE images and parametric features showed a balanced
accuracy of 75% (60% sensitivity and 83% specificity); and on (iii) volu-
metric measurements calculated on MPRAGE images and T1-based
measurements only exhibited lower balanced accuracy (68%), sensitiv-
ity (60%) and specificity (73%).

SVM classification performed on (i) parametric features and volu-
metric measurements on MP2RAGE images lead to a balanced accuracy
(66%), sensitivity (52%) and specificity (73%) and on (ii) volumetric
measurements on MP2RAGE images and T1 measurements yielded a
balanced accuracy (73%), sensitivity (55%) and specificity (82%).

Last, we performed SVM classification in the subgroup of aMCI
patients and the whole group of HC based on volumetric features calcu-
lated on MPRAGE images and parametric features, and reached a bal-
anced accuracy of 79% (sensitivity 60% and specificity 87%).

4. Discussion

Our multi-contrast MRI study shows WM and hippocampal micro-
structural alterations in MCI patients compared to healthy controls, sug-
gesting loss of microstructure, myelin and/or cellular membrane
proteins. Furthermore, our results provide evidence of iron accumula-
tion in the globus pallidus of MCI subjects.

Brain microstructural properties in MCI patients were strong pre-
dictors of memory and executive performances and improved the
classification of MCI subjects versus controls, compared to volumet-
ric measures only.

Quantitative and semi-quantitative multi-parametric MRI may pro-
vide useful information about the pathological substrate of MCI. An in-
crease in T1 relaxation times may point at a loss in tissue micro- and
macrostructural integrity (Deoni, 2010; Levitt, 2008), including myelin
damage (Koenig, 1991; Labadie et al., 2014) and iron loss (Gelman
et al,, 2001). Similarly, T2* relaxation times strongly depend on the
local iron content with high iron leading to shortened T2* values
(Stuber et al., 2014). MTR is a semi-quantitative marker of structural in-
tegrity, which is sensitive to the proportion of macromolecules (myelin
and cellular membrane components such as lipids and proteins)
(Kucharczyk et al., 1994) relative to water. A reduced MTR indicates

therefore a loss of macromolecules and/or microscopic oedema
(Helms, 2014; Henkelman et al., 2001).

In this work, we studied a heterogeneous cohort of patients with
MCI, who did not suffer from any severe medical condition, nor of any
neurological or psychiatric disorders (only one patient reported moder-
ate anxiety and two moderate depression). A trend to significantly
higher number of hypertensive subjects was observed in the patients
cohort compared to the control one.

Multi-parametric MRI data evidenced a significant increase in T1 and
decrease of MTR and T2* in the hippocampus of MCI patients compared
to HC. The concomitant changes in T1, MTR and T2* suggest that, a loss
of myelin/cellular membrane integrity and possibly iron, is the major
determinant of the observed alterations. These findings are compatible
with pathological studies showing synaptic loss and neuronal degener-
ation in MCI (Vemuri et al., 2010).

Similarly, the broad T1 increase in WM (frontal, parietal and occipi-
tal) most likely indicates loss of subcortical microstructural integrity. In
this context, three major pathophysiological mechanisms have been
proposed as causes of WM alterations in MCI: (i) tissue rarefaction of
vascular origin (Scheltens et al., 1995) (ii) Wallerian degeneration sec-
ondary to GM pathology (Englund, 1998), oligodendrocyte death and
reactive gliosis (Englund and Brun, 1990) and (iii) retrogenesis, a pro-
cess leading to WM degeneration through reverse myelogenesis
(Reisberg et al., 2002). The observed increase in WM T1 might be com-
patible with all these mechanisms. Nevertheless, Wallerian degenera-
tion and reverse myelogenesis appear unlikely since we did not
observe any cortical abnormalities in our patients cohort nor changes
in WM MTR. On the other hand, MCI patients presented a trend to
higher arterial tension when compared to HC (see Table 1). Therefore,
the most plausible explanation of the T1 increase in WM in our cohort
is a tissue rarefaction of vascular origin. Interestingly, T1 abnormalities
reflected a damage that was independent from focal vascular damage
(WM hypointensities), which were more numerous in HC compared
to MCI patients.

We also observed a decrease in T2* in the globus pallidus of MCI
patients compared to HC, suggesting iron accumulation. This finding
confirms previous reports (Haller et al., 2010; Smith et al., 2010) and
supports the hypothesis that MCI patients may exhibit accelerated
iron accumulation in other brain regions than the cortex, where it is
expected with aging (Haller et al., 2010; Smith et al., 2010).

Few MRI studies applied relaxometry and Magnetization Transfer
Imaging to MCI patients. House et al. compared R2 relaxometry features
between elderly participants with mild to severe cognitive impairment
and healthy controls, showing increased iron and in several WM regions
(House et al., 2006). Only one study reported increased T1 relaxation
times in the hippocampus of AD and MCI patients compared to controls
(Haris et al., 2009) and, to our knowledge, no report is available about
T2* relaxometry in MCI patients.

On the other hand, reduced MTR has been previously reported in GM
and WM in MCI subjects compared to HC and the MTR metric has been
shown to correlate with cognitive performance (Kabani et al., 2002a;
Kabani et al,, 2002¢; van Es et al,, 2007; van Es et al., 2006). Interestingly,
MTR changes were also observed in the absence of volumetric differ-
ences (Kabani et al., 2002c) as we report for both relaxometry and
MTR measurements, suggesting that parametric MRI might be sensitive
to pre-atrophy brain changes in MCL

Yet, we did not detect any alterations in MCI WM MTR, which might
depend on the milder cognitive deficits (MMSE) of our patients com-
pared to those studied in previous studies (Haris et al., 2009; Kabani
et al., 2002a; Kabani et al., 2002c; van Es et al., 2007; van Es et al.,
2006) and/or on the lack of sensitivity of this semi-quantitative metric
to subtle tissue alterations. Future studies applying quantitative MTI

Fig. 1. Mean MTR, T1 and T2* relaxation times in the seven ROIs considered (Th: thalamus, Pu: putamen, Pa: pallidus nucleus; Ca: caudate; Hip: hippocampus; GM: grey matter; WM:

white matter).
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Multiple regression analysis performed using a generalized linear model between MRI characteristics, covariates, and clinical scores in patients. Top part: Each line corresponds to the
p-values of each predictor for every regression model performed. Bottom part: Each line corresponds to the p-values, corrected p-values, and adjusted-R of each model (n = 11)
subjected to regression, cross-validation analysis and correction for multiple comparison.The colour scheme signifies the difference in significance: Dark orange p < 0.0001, light orange
p £0.001, yellow p < 0.01, light yellow p < 0.05.

Verbal
Clinical scores Immediate | Category | fluency on ﬂu:i:;?:m Stroop1 Stroop2 Stroop3 Interference TMT A ™MT B Ratio TMT
Predictors (p-value) recall cued recall | category lett Stroop
faska etters
GM_T1 0.0123
Conventional
T WM_T2 0.0300 0.012
GM_T2 0.0303 0.0180 0.0297
WM_MTR
GM_MTR 0.0400 0.0185 0.0367
THALAMUS_T1
THAL THALAMUS_T2 0.0337
THALAMUS_MTR 0.0172 0.0297 0.0420
HIPPO_T1 0.0453
HIPPO HIPPO_T2
HIPPO_MTR 0.0120
PUTAM_T1 0.0490 00418 | 00209 | 00149 Poeer| |
PUTAMEN PUTAM_T2 0.0100 0.0163
Additional
PUTAM_MTR
PALL_T1 0.0440 0.0464 @I: 0.0165 0.044
PALLIDUM PALL_T2 0.03%4 0.019
PALL_MTR
CAUD_T1 0.0443
CAUDATE CAUD_T2 0.0358
CAUD_MTR 0.0353 0.014 0.017¢
Age 0.0091
Covariates Gender i
Educational years 0.0014 0.0289
p-Value 00
Stepwise regression Corrected p-value m 0.00053 0 0 00055 0
Adjusted-R 021040 | 024640 | 018980 | 02206 | 023200 | o3ss70 | oa3ssoo | 0.1436 026680 | 0423 | 0431 |
pValue
Cross validation : ) 0
Leave-one-out Corected p-vale 000114
Adjusted-R 0.12170 0.10570 0.17070 0.14820 0.27560 0.28970 0.19920 0,35980 0.08400

might provide more sensitive measures to confirm or discard the re-
verse myelogenesis aetiology of MCI.

Our work provide also evidence that multi-contrast MRI in MCl is a
strong predictor of memory and executive function in patients. This as-
pect confirms the clinical value of quantitative MRI and would benefit
from further exploration in longitudinal settings.

Last, adding T1, MTR and T2* characteristics to volumetric features,
we showed that the classification of MCI patients vs HC improved
compared to the one performed on volumes only (75% vs 70% balanced
accuracy). These results confirm and extend previous work showing im-
proved classification performance when multimodal data were used
compared to one single modality (Zhang et al., 2011).

In summary, multi-parametric MRI holds promises to improve the
understanding of MCI pathophysiology and automated methods to

p <0.0001
p %0001
ps0.01

p =005

support patients’ diagnosis. Future longitudinal studies are needed to
determine the prognostic values of multi-parametric biomarkers in MCI.
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