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1 Introduction

The uneven distribution of opportunities between socio-economic groups has

been a fundamental concern of governments, policy makers and of the scholars

seeking proper policies and strategies to tackle it. Despite extensive research,

e↵orts to identify and tackle inequalities are nested in two interrelated but

somehow separate domains. One genre of literature focuses on inequalities in

an ”aspatial” nature that exists in the form of inequality of income, wealth,

consumption and also in the form of social inequality: due to gender, parental

background, race and ethnicity. The other body of literature studies inequali-

ties in a ”spatial” form, which are generalized as inequalities due to locations.

Various examples are found typically in urban economics: inequality in access

to education, health services, public goods and to a decent employment. Con-

sequently, often there is no explicit correspondence between the spatial and

aspatial measures put forth and employed to empirically implement inequality

investigations. This thesis aims to bridge this gap by employing methods and

theories from both approaches and ultimately present comprehensive analysis

of equality.

A considerable amount of e↵ort has been put forward to identify the

way in which inequalities prevail and the notions of equality, fairness and jus-

tice. The traditional study of equality concerns with the evenness in the distri-

bution of outcomes across populations (Katz et al., 1999). On the other hand

a relatively recent theory building on the equality of opportunity (EOp) argu-

ments puts individual responsibility forefront when investigating inequalities

in life chances. As a responsibility sensitive egalitarian theory, this approach

identifies the causes of disparities in opportunity distributions by decomposing

inequalities into illegitimate sources, for those individuals should not be held

responsible, and legitimate sources ,those for individuals are deemed responsi-

ble. This thesis aims to single out the spatial sources of inequalities observed

in opportunity distributions.
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The roots of the equality of opportunity theory go back to Rawls

(1971) suggesting that the political decisions to be taken behind a veil of ig-

norance where decision makers know nothing about their particular talents,

tastes, social class and so on. With this thought experiment the egalitarian

theory first shifted from the mere concern of equality in outcomes to a philo-

sophical view that inquired into the equality of opportunities. The change

of emphasis was a consequence of the developments in political philosophy,

inspired by Rawls (and Sen (1980)), systematized by Dworkin (1981) (where

he suggested a market behind Rawl’s the veil of ignorance) and subsequently

modified by Arneson (1989) and Cohen (1990) based upon the idea of keeping

people responsible for their choices and preferences (Roemer & Trannoy, 2013).

The theoretical framework of EOp was fist developed by Roemer (1993, 1998)

and several contributions have taken place as the concept has become popular

over years (see, Dirk Van de gaer ( 1993), Walter Bossert (1995, 1997),Vito Per-

agine (2004)). The formal application of the theory analyses the conditions

of leveling the playing field, which holds in a society when the life chances

of individuals depend solely on their own e↵ort purged of exogenous factors

defined as circumstances such as gender, race, ethnicity, family background

(Dardanoni et al., 2006).

The first two chapters of this thesis aim to the bridge theory and

methods of EOp literature to Spatial Accessibility and Neighbourhood E↵ects

studies respectively and the last chapter studies the Spatial Segregation by

Income from equal opportunities perspective.

Paper 1: The Socio-Economic Determinants of Student Mobility and

Inequality of Access to Higher Education in Italy: The first chapter of this

thesis aims to contribute to the methods of both EOp and spatial accessibility

studies and by an empirical application narrows an existing gap in the analyses

of Italian higher education system. The paper measures the spatial inequality

in access to higher education institutions in Italy with a particular attention

to the socio-economic sources of inequality. Accessibility is often computed by
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Hansel-like gravity indices and disparities in the distribution of access levels

between locations is interpreted as spatial inequality. Since the elements in the

formulation of the index are purely geographical, the idiosyncratic character-

istics of individuals who reside in areas are often neglected. This is partially

an expected lack in this particular literature as public goods are, by definition,

non-excludable and non-rivalrous in consumption (Kolstad, 2003). However,

di↵erent socio-economic groups face di↵erent costs of access (both material and

social) for the same set of opportunities in space. In other words, even though

the spatial availability of opportunity in question is increased, there may re-

main an under-representation from disadvantaged backgrounds. Accordingly,

this paper asks the following questions from two opposing directions: provided

that the universities are equally distributed in geographical areas, do students

with di↵erent socio-economic background have the same degree of access ? and

provided that the students share identical socio-economic background, do they

have the same degree of access from parental locations?

Broadening access to higher education is a goal that can produce pos-

itive outcomes both for the individuals concerned and for wider society. In line

with this view, with one of the lowest graduation rates in Europe, the supply

of HE was expanded drastically in the period 1990-98. Large universities set

up new sites, new types of faculties and 9 new universities were founded. How-

ever, the interventions were arbitrary, operated without any field examination

of accessibility or demand (Bratti et al., 2008). After these reforms the Ital-

ian HE has shown an increasing participation (still below the OECD average(

OECD,2011)), yet as it was in the pre-reform period, to what extent the acces-

sibility was widened is still unknown. Therefore, measuring accessibility with

the consideration of the gap between di↵erent socio-economic groups addresses

a delayed exercise.

As shown in Fig.1, to address this exercise, the theory of EOp is

linked to a Hansen-like accessibility index via a spatial interaction model(SIM).

Derived from the gravity logic, SIMs suggest that the interaction between any
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two units must be directly proportional to the masses of origin and destination

whereas inversely related to the distance between them (Sen & Smith, 2012).

The distance function in SIMs is where the accessibility index and EOp are

linked. Roemer (1998) defines social types consisting of the individuals who

share exposure to the same circumstances. The set of individual circumstances

observed allows the specification of these social types in the data. Using a

survey data (Inserimento professionale dei laureati, 2011) containing 14,000

male and 17,400 female students graduated in 2007 and the data from MIUR

(2003-2004-2005), this paper first creates types of students on the basis of

Roemerian approach.

Based on the information available in the dataset, the paper assumes

that the geographic variation in access to HE could be driven by two sources:

gender and parental background. Accordingly, 12 such groups are generated.

Then SIM has been utilized to model the flows of students from parental

locations (origin) to universities (destination). SIMs are calibrated separately

for 12 groups to capture heterogeneities in response to the spatial distribution

of opportunities. The model controls for factors that communicate the quality

of universities. It does so by including university fixed e↵ects when calibrating

the actual flows of students. This approach identifies quality e↵ects from

comparisons between the intensity of interactions, e↵ectively asking whether

the characteristics of universities attract di↵erent types of students in varying

levels. The results indicate that the poor family backgrounds are insensitive to

the university-quality e↵ects employed and only when the family background

becomes better, the university preferences are revealed. Moreover, in line with

initial hypothesis that di↵erent types of students must be facing di↵erent costs

of mobility, varying distance-decay parameters are observed for di↵erent types

of students. Using this heterogeneity, respective distance-decay parameters

are imported to the accessibility index computing access distinctively for each

type. The index suggests that the access at location i is a sum of the number

of seats o↵ered by university at location j, and discounted by the distance
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function that is empirically derived by SIMs. Results from accessibility index

demonstrate that the family background proxies are relevant especially for

female students. From worse to the best family origin, the access increases

on average 101% and heterogeneity in access across genders disappears for

students with highly educated parents.

The critical identification assumption underlying the approach of this

paper is that the access to HE must vary not only by the spatial distribution

of universities but also by gender and parental origin. To quantify this as-

sumption, the computed inequality in access is decomposed first by suppress-

ing the inequality due to geography, therefore leaving inequality only due to

socio-economic background and then by suppressing inequality due to socio-

economic background thus the remaining inequality is only attributable to the

spatial distribution of universities. Results show that 5% of the disparity in

access is due to family origin and gender when using the first approach and

7% when using the second approach.

Overall, these results suggest that when studying spatial accessibility

focusing only on equality in outcomes leaves local variation due to aspatial

factors outside of the picture and e↵orts to decrease inequality in access remain

incomplete for conducting meaningful policy analysis. In particular to Italian

data, this paper finds that the physical and social distance between di↵erent

types of students persist. On the other hand, the residential decisions taken by

parents are clearly exogenous factors that influence the life chances of students.

From the EOp perspective this paper is the first attempt to define parental

location as a circumstance.

Paper 2:Inequality of Opportunity in Sweden:A Spatial Perspective:

The second chapter of the thesis links theory and methods from equality of op-

portunity literature with the neighbourhood e↵ects literature. All conceptions

of equal opportunity draw on some distinction between fair and unfair sources

of inequality. In spite of a vast quantity of empirical applications, the spatial
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dimensions of the issue have been overlooked. The geography has taken place

in the analysis of EOp, however at very large sizes. For instance, some papers

included large administrative units of residence as circumstances (Singh, 2012;

Cogneau & Mesplé-Somps, 2008), some partitioned study area into few macro

regions (Peragine & Serlenga, 2008; Checchi et al., 2010). This paper analyses

geography at its smaller scales when addressing following two complementary

questions: Do parental neighbourhoods exert e↵ects that persist? and if so, to

what extent these e↵ects contribute to inequality of opportunity in outcomes?

A large body of literature investigates neighbourhood e↵ects and pro-

vides solid evidence on their importance in shaping individuals’ life chances

those for child outcomes (Leventhal & Brooks-Gunn, 2000), educational at-

tainment (Garner & Raudenbush, 1991), drop outs (Crane, 1991), reading,

math achievements and higher education participation (Andersson & Malm-

berg, 2015). All these findings are relevant to study of equality of opportuni-

ties. Being exogenous factors to children, parental neighbourhoods are obvious

candidates to be defined as circumstances. Therefore, for the analysis of ed-

ucational EOp, we included several neighbourhood statistics as the sources of

unfair inequality among students during exposure. In addition, we also in-

vestigated whether these e↵ects persisted, remaining influential for the adult

outcomes of the same population after exposure is ceased.

The literature studying the duration of neighbourhood e↵ects o↵er

mixed findings. Some find declining e↵ects on earnings and educational attain-

ment as years pass (Raaum et al., 2006, see), some finds no evidence of such an

impact for economic conditions and educational attainment even for those who

were exposed to a better environment in early ages (see Ludwig et al., 2013, for

instance), Chetty et al. (2015) show that each additional year spent in better

neighbourhoods increases the likelihood of college attendance and of attaining

higher earnings in adulthood. The paper argues that an important method-

ological issue has to do with the boundaries of neighbourhoods when studying

the durability of neighbourhood e↵ect. So far the main approach has been
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to measure neighbourhood context using aggregate values for administratively

defined areas such as municipalities, counties and parishes. This implies that

neighbourhood e↵ect studies, including the ones cited above, have overlooked

the variability at residential areas by defining such aggregate geographies as

neighbourhoods. We argue that neighbourhoods must be treated as personal

experiences implying that the methods to quantify them must construct be-

spoke individual neighbourhoods.

As shown on Fig.2, using the Place longitudinal data keeping the

track of whole Swedish residents since the year 1990, we follow the life span

of whole 1985 cohort. We investigate both the inequality in educational at-

tainment and in income by multilevel models. Multilevel models allow using

municipality random e↵ects, which in return overcomes most of the spatial

autocorrelation problem found with classic OLS approach. Next, based on a

parametric IOp measure, we implement inequality decompositions.

In the first step of our analysis, we define compulsory examination

grades as a linear function of variables that are informative of family back-

ground and typically used in EOp studies and other inherited circumstances

with variables communicating several neighbourhood statistics in 2001 the

year in which this cohort takes a compulsory examination. Instead of using

predetermined administrative units, we construct individual neighbourhoods

based on a population count method for each individual residence. As a form

of scalable egocentric neighbour, this technique departs from an individual

geo-location and begins counting towards every direction until the nearest k

number of population has been reached. Neighbourhood statistics are de-

fined as the ratio of the interested population to the total counted population.

With this approach, we quantify the probability of interacting with a given

population group. The method does not require the use of bounded geograph-

ical units, hence provides an e�cient, comparable and robust definition of a

place. The results of the multilevel regression show that parental neighbour-

hoods matter for children’s educational attainment. Decomposing educational
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inequality indicates that 42.62% of educational inequality is attributable to

circumstances and the e↵ects from parental neighbourhoods weight as much

as 36.94% of overall circumstances.

In the second step, we follow the same cohort up to their employ-

able age. In the year 2010 we create own-neighbourhood statistics based on

the same techniques and we also bring parental neighbourhood statistics from

2001 into the analysis of earnings’ distribution. As years pass the responsi-

bility profile changes. Since in adulthood individuals are free to choose their

residences we deem them responsible for own neighbourhoods. Multilevel re-

gression demonstrates that parental neighbourhoods matter also for children’s

long-term outcomes even years after the exposure. Moreover, according to

our estimates 8.05% of total inequality is due to circumstances where parental

neighbourhoods explain 16.66% of total circumstances and own-neighbourhood

explains 1.95% of total e↵ort.

Finally, we find analogous results when analyzing inequality in out-

comes for genders separately. Though IOp measures are similar for males and

females, there are some di↵erences in response to neighbourhoods by gender.

For instance, during the adulthood parental neighbourhood explains a higher

portion of variation in income for females than men. Whereas, an opposite

situation yields as we look at the variation in educational attainment, that for

the male population parental neighbourhoods are more influential while living

in them.

This paper tests the idea that parental neighbourhoods play an im-

portant role in life chances of children both immediate e↵ects on education

and also long-term e↵ects on earnings. Overall, the findings presented in this

paper suggest that a multidisciplinary methodology that links neighbourhood

studies to EOp literature by the use of bespoke neighbours approach would

not only provide neighbourhood e↵ect studies with a new lease of life, but

would also take EOp studies to a new domain for a more comprehensive inves-
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tigation of fairness in the distribution of opportunities. The neighbourhoods

statistics created in this paper are proxies for the concentration of some at-

tribute (see Fig.2) in the areas of residence. As a consequence in addition to

classic EOp policy recommendations, to decrease inequality in opportunities,

an e↵ective policy must target the residential environments of less advantaged

groups such as minorities and single headed families in particular to Swedish

data. Therefore, this paper is an initial step towards a study of EOp implica-

tions of residential segregation. The residents of cities are normally segregated

along minority status, ethnicity or along household characteristics. For in-

stance large families may prefer to live in similar neighbourhoods as they need

larger apartments, and since household income is dived among larger family

members, they can a↵ord accommodation only in certain localities. Then a

study that would like to cover all these situations simultaneously must inves-

tigate the residential segregation by income.

Paper 3 A Gini Index of Spatial Segregation by Income: The third

chapter of the thesis proposes a Gini index of spatial segregation by income

(GSS). Residential segregation may cause disparities in access to opportuni-

ties. Segregated areas show di↵erential levels of accessibility and spatial match

between job and housing. The residents face varying costs of access to public

goods/services, the range and the quality of local amenities di↵er among areas

of residence. This is an undesirable situation for the society as a whole since

the combination of poverty, adverse neighbourhood spillovers, and isolation

from opportunities all make it di�cult for an individual to perform well in

school, and in the labor market. For this reason quantifying the degree of

residential segregation is of interest to studies of equal opportunities.

Existing segregation measures found in literature are mainly devel-

oped for dichotomous cases such as race, ethnicity, the gender gap in occu-

pations. Although residents sort also by income across areas as choices over

bundles of local public goods (Tiebout, 1956) and often segregation is related

to a↵ordability of the areas of residence, the measurement of residential seg-
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regation by income has not received much attention in the literature. People

may sort into neighbourhoods because they prefer to live with similar people

in terms of educational level, ethnicity or for the quality of amenities provided.

However, the decision of residence is constrained by the budget (also willing-

ness to pay) of the decision maker. Therefore, a locality may show a residential

mixture by dichotomous variables but it can be highly segregated in relation

to the income level of residents .

From a measurement perspective, segregation by nominal groups

amounts to group individuals for membership to a given category. A simi-

lar approach is widely applied for the measurement of segregation by income.

Typically individuals in study area is divided into two categories for being un-

der and above to a given level of income (Massey et al., 2003; Abramson et al.,

1995). Hence, the first issue related to previous measures of economic segrega-

tion is that using this approach discards considerable amount of information in

the underlying parameters of the continuous distribution (Jargowsky, 1996).

Second issue is that nearly all existing indices are aspatial in nature, implying

that the distribution of individuals in space is not taken into account. The spa-

tial ones (see Reardon et al., 2009; Reardon & Bischo↵, 2011; Dawkins, 2007,

for example) are rather di�cult to compute, and nearly all use some admin-

istratively defined area for the unit of analysis. This last point causes further

issues that are associated to the modifiable areal unit problem (MAUP). The

MAUP occurs with both the scale problem that the same data portrays dif-

ferent spatial patterns for its varying levels of aggregates and with the zoning

problem that altering the grouping schemes produce di↵erent results even if

the units are of the same scale (Openshaw, 1984; Wong, 2004). In this paper

we aim to address issues stated above with a particular attention to the scale

problem. We test the proposed index with an empirical application to Swedish

data, where we show how the definition and the scale of the neighbourhood

influence the measurement of economic segregation.

We define economic segregation as a ratio of two Gini indices, at the
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numerator we replace individuals’ incomes by average incomes in neighbour-

hoods, and we normalize the resulting inequality between neighbourhoods with

the individual level Gini at the macro area where neighbourhoods are nested

as follows:

GSS(y, n) =
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is the income of individual i, µ
is

is the aver-

age income in individual i’s neighbourhood. Unlike other measures of in-

come segregation found in literature, the index makes use of individualized-

neighbourhoods, where the shape (s) of the neighbourhood varies for the def-

inition chosen:

• radii-based neighbourhoods: average income around an individual loca-

tion within a radius (r)

• population count-based neighbourhoods: average income around an in-

dividual location among k nearest neighbours (knn).

The size (n
is

) can be set to meet various scales of geography by configuring k

or r. The GSS is a measure of income homogeneity/diversity at individualized-

neighbourhoods, It takes a minimum of 0 (no segregation) in two case scenarios:

if the numerator is zero thus the between spatial inequality is zero or when the

size of the neighbourhood is equal to that of the whole study area: n
is

= N .

It takes the value 1 (perfect segregation) if the distribution of individualized-

neighbourhood average incomes is identical to that of individual incomes thus

when all persons live only with others who have identical incomes or when the

size of the neighbourhood n
is

= 1, that every neighbourhood consists of one

individual only.

We test the GSS with Swedish data for both approaches to individu-

alized neighbourhoods and for varying scales of geography. Results show that

the segregation has increased from 1994 to 2014. Furthermore, the findings
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illustrate a clear di↵erence with radii and knn approaches to neighbourhood.

The reason for this is that the radii-approach uses the pure geography as the

basis, computing the area constituted within a radius without a direct refer-

ence to the number of people living in those areas. This is a disadvantage

for comparative analyses, since population density may change over time and

among di↵erent areas. Even though the GSS is weighted for the number of

population covered in each radii-neighbourhood still an obvious di↵erence from

knn definition of neighbourhood yields. Knn approach instead computed the

likelihood of interaction between individuals and disregards distances between

them. This is again a disadvantaged for the analyses of sparsely populated ar-

eas since the kth neighbour may live far away. To solve this issue we found an

intermediate way by employing spatial weights matrix based on the distance

between neighbours. As distances between individuals increase, neighbour’s

contribution to mean incomes decreases. This approach communicates both

the geography similar to radii and population count as knn.

Next, we assess the robustness of our results by conducting spear-

man correlation analysis between computed GSS values and several attributes

of Swedish municipalities. For all scales of neighbourhood size, we find posi-

tive and highly significant correlations with the ratio of high and low educated

residents to the total population of municipalities and with the election par-

ticipation rates by municipality. These two attributes are informative for the

sorting behavior of population and their choices. Additionally, we find posi-

tive and significant correlation between GSS values and employment growth,

whereas negative and significant correlation with transfers among municipal-

ities. The latter two are considered as exogenous factors to residents but are

correlated to residential segregation by income.

Overall, based on the evidence from Swedish data, we argue that the

GSS is able to render the patterns of economic segregation in a highly accurate

degree. The index is not subject to robustness issues associated with MAUP

and checkboard phenomenon and as a ratio of two Gini indices, the index has
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the advantage of preserving desirable properties of the Gini. It respects to

the Pigou-Danton principles of transfers, less sensitive to outliers, deviations

from normality and finally is suitable for the segregation measure of continuous

variables.
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Socio-Economic Determinants of Student

Mobility and Inequality of Access to Higher

Education in Italy⇤

Umut TÜRK

Abstract

This paper introduces a modified version of the Hansen-gravity model as a

framework to estimate the accessibility of higher education (HE) institutions

in Italy from equal opportunities perspective. The key assumption underly-

ing gravity models is that accessibility decreases with spatial distance from

opportunities. The paper extends the gravity equation to allow for the inclu-

sion of socio-economic factors influencing the access to HE. The findings reveal

di↵erences in response to quality and to other institutional characteristics by

parental background and gender. Finally, decomposition of overall inequal-

ity into spatial and aspatial components reveals both the physical and social

distance between groups of students seeking higher education opportunities in

the country.

Keywords Spatial Interaction, Higher Education Accessibility, Gravity Model,

Equality of Opportunity
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1 Introduction

An intuitive way to increase spatial accessibility is to decentralize the service

in question. This was the strategy implemented by the Italian authorities in

the period 1990-1998. With one of the lowest participation and graduation

rates in Europe, the supply of higher education (HE) was expanded drasti-

cally. The reforms required larger universities to set up new types of faculties

and 9 new higher education institutions were established as a result of the

decentralization process (MIUR). However these reforms took place without

any field examination of accessibility or demand (Bratti et al., 2008). More

than a decade later, there is no explicit measure of spatial accessibility of the

universities in the country.

In a system granting free access to HE for every potential candidate,

the foremost aim of policy makers is to guarantee full accessibility to the

service irrespective of the location of residence. Previous research has focused

on measuring accessibility through an examination of the match between the

locational distribution of facilities or services and the locational distribution

of residents (Talen & Anselin, 1998). In this framework, the spatial distance

between residence of origin and the location where opportunities are located

is regarded as an important factor determining the spatial accessibility. The

underlying idea is that people from more isolated locations face larger costs to

access to opportunities, with costs growing with spatial distance.

Since the residential location of students prior to HE enrolment is

detemined by parents, inequalities in access to HE across students’ locations

of origin should be regarded as unfair. Modern theory of inequality, building

on equality of opportunity (EOp) arguments, suggests that the di↵erences in

outcomes due to factors that are beyond individual responsibility are unfair

and should be compensated by society (Dardanoni et al., 2006). Reducing

geographical disparities in accessibility can be seen, in fact, as a way of leveling

the playing field (Roemer, 1998) and providing equal opportunities to benefit
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from HE irrespective of the place of origin. The geographical location can be

an unfair source of accessibility on the large scale: a student living in an urban

area where HE services are supplied faces smaller costs of transportation, lower

opportunity costs in commuting and no housing costs, compared to students

living in the countryside who need to commute or move to benefit from HE

services. However, focusing only on geography may leave the influence of

socio-economic factors, in relation to gender, experiences at home and parental

background, unexplored.

The paper argues the existence of a gradient of economic circum-

stances of origin on distance elasticity. Although distance matters in explain-

ing accessibility, there are other variables that determine di↵erences in costs of

movement, correlated with distance which, at the same time, might influence

the distribution of accessibility. This paper tries to single out the contribution

of spatial distance and economic circumstances on inequality in accessibility

to HE by using a multidisciplinary approach, where the problem of disparities

in spatial access is redefined on the basis of both the physical distance from

universities and the social distance between student groups that generates an

additional inequality in access within the same location. The paper looks at

the variability in access both when focusing on comparisons of people located

at di↵erent origin points from HE, but all sharing the same family background

(highlighting the share of inequality due to spatial distribution of HE institu-

tions in the country) and when comparing people located at the same origin

points but with di↵ering backgrounds of family origin, which is taken as a

proxy of the ability of families to cover costs of displacement and, if possible,

to compensate for distance from the location of origin. The latter shows the

share of inequality in access due to the socio-economic background of students.

In an empirical application, the paper sequentially employs a model

and an index to measure overall inequality in access, which is then decom-

posed into its geographical and socio-economic components ; first a spatial

interaction model (SIM) is used to disentangle the migration dynamics of dif-
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ferent student groups. Being flexible and simple enough, these models enable

the investigation flows between origins and destinations (Sen & Smith, 2012).

Actual flows of commodities, information, emails, phone calls, money and of

people along with any other sort of movements are likewise applicable to SIMs

(see Haynes & Fotheringham, 1984; Sen & Smith, 2012, for reviews). In the

present application, student flows from parental residents to universities are

defined as interactions between localities and, to account for socio-economic

factors in place, the total observed flows of students are partitioned into sub-

groups each representing a di↵erent type. It is a common practice for EOp

studies to partition the population according to exogenous factors, which are

assumed to be beyond people’s control (see for instance Checchi & Peragine,

2010; Ferreira & Gignoux, 2011) and resulting subgroups are defined as types

(Roemer, 1998). For the second step, the parameters that are distinctively

calibrated for each type by the SIMs are imported to a Hansen (1959)-like

index to measure potential accessibility for 110 Italian provinces (NUTS3 level

regions). Finally the inequality in accessibility among provinces is decomposed

as follows: the access score in each province is replaced with its average access

score across socio-economic groups hence only variation is allowed to be due to

the geographical distribution of universities. Then the access scores computed

for each socio-economic group is replaced with its average access score across

provinces hence remaining variation is allowed to be due to socio-economic

backgrounds. This operation enables investigating the relative contributions

of spatial and aspatial factors.

The paper contributes to the literature by extending classical spa-

tial accessibility analysis to incorporate the socio-economic circumstances of

students in a spatial accessibility measure for Italian HE institutions. This

practice goes beyond the mere concern of inequalities on outcomes. For the

spatial accessibility analysis this means that the inquiry may shift from ”spa-

tial accessibility where?” to ”spatial accessibility where and for whom?”. It

also contributes to the EOp literature by showing how the spatial dimensions
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of the theory can be incorporated into models that rely solely on geography.

Finally, the findings in this paper provide highly detailed information for policy

makers regarding which groups of students to target and specifically in which

locations the assistance is needed most.

The remainder of the paper is organized as follows: the second section

introduces the model and the accessibility index adopted, the third section sets

out the data and variables, the fourth section shows empirical method for cali-

bration and findings where inequality in access is decomposed into within and

between components. Finally the conclusions and possible policy implications

are given in the fifth section.

2 Theoretical Framework

This section presents the model adopted for student flows and the potential ac-

cessibility index. The link between these two builds on the distance parameter

assumed to reflect both physical and social costs in migrating or commuting to

destination universities. The response to distance is expected to be conditional

on the socio-economic background of students.

2.1 A Spatial Interaction Model of Student Mobility

Spatial interaction models are used to predict the size of spatial flows between

origins and destinations in areas of interest. They have been used mainly

for transportation and environmental planning, then developed further for a

variety of applications where a movement and/or interaction takes place. Re-

cently, most applications relate to health system planning, decisions concerning

hospital locations, the analysis of interaction between patients and physicians

as well as labour studies such as job accessibility and an investigation of the

daily commute to work (Mayhew et al., 1986; R. M. Wilson & Gibberd, 1990;
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Reggiani et al., 2011).

Particularly with regard to SIMs applied to HE choice, Sa et al. (2004)

studied the demand for HE in the Netherlands, given the attractiveness and

accessibility of universities. Alm & Winters (2009) correlated the distance

from parental residence to state HE institutions with tuition, financial aid and

school quality as institution fixed characteristics and found a varying deter-

rence e↵ect of distance in relation to these characteristics. Cooke & Boyle

(2011) included several origin and destination attributes to SIMs, including

the number of high school graduates in origins, employment growth both in

origins and destinations and the relative quality of amenities. Singleton et

al. (2012) integrated SIMs with geodemographic analysis, and looked at both

socio-spatial conditions in the neighbourhood and the attractiveness of des-

tinations. For the Italian data, Dotti et al. (2013) investigated the role of

universities in attracting successful students to certain regions and to settle

down there after graduation. These studies estimate the distance elasticity

of university choice given the attributes of origins/destinations and some also

include university characteristics. However they do not incorporate the socio-

economic profile of students in the analysis. The present paper examines the

role of socio-economic characteristics of students in distance elasticity. Fur-

thermore, based on the distance elasticity values, the paper transforms SIMs

into an explicit measure of accessibility.

SIMs can incorporate a range of origin and destination constraints

and take a number of forms according to this constraint structure. The fol-

lowing formula is a production-constrained form of SIMs that suggests that

the interaction between any two units must be directly proportional to the

masses of origin and destination and inversely related to the distance between

them. The basic assumption is that a positive interaction between each pair

of locations exists 1.
1(see A. S. Fotheringham & Webber, 1980; A. Fotheringham & O’Kelly, 1989; Sen &

Smith, 2012, for reviews)
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For this application, the model is extended to include several univer-

sity fixed characteristics and interactions with distance. Finally the following

model is obtained:
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where S
j

and L
j

are two variables accounting for the attractiveness of a des-

tination. Following the previous studies (see for example Lowe & Sen, 1996;

Gitlesen & Thorsen, 2000; McArthur et al., 2011) a Kronecker delta is added

to the model as follows:

�
ij

=

8
><

>:

1 i = j

0 otherwise

2 With K
i

the model becomes production-constrained. The choice of this model is jus-

tified by the fact that most of the programmes are provided in an open-access fashion in

Italy. Therefore, theoretically, students are free to choose any destination desired hence the

model is not constained by destination (not attraction constrained) but to make sure that

the number of trips produced by an origin do not exceed the number of residents, the model

is constrained from production side. For the formal development see A. G. Wilson (1971)
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The common interpretation of µ is that it reflects the benefit of residing and

studying in the same city, or a start-up cost in case i and j are not in the same

province. Furthermore f(d
ij

) interacts with several destination characteristics

U
jl

where l is the number of interaction terms and �
l

is the distance elasticities

given the institutional characteristics.

2.2 Adopted Accessibility Index

In this paper, the accessibility concept is interpreted as the potential availabil-

ity of HE given the spatial distribution of institutions in the country. The roots

of the index go back to Hansen (1959) when he first proposed the following

gravity model of accessibility:

A
i

=
JX

j=1

S
j

d��

ij

where A
i

is a measure of accessibility , S
j

is the number of opportunities at

the destination and d
ij

is the distance between an origin and a destination. A

similar accessibility index can be constructed as follows:

A
i

=
X

j=1

C
j

d�̂
ij

�
ij

(3)

where

�
ij

=

8
><

>:

exp(µ̂) i 6= j

1 otherwise

µ̂ and �̂ are the two parameters that channel (2) to (3) and are

calibrated beforehand by the production-constrained SIM (2). C
j

is the total

number of places o↵ered by each institution. Additionally, the index discounts

accessibility when i and j are not located in the same province by �
ij

.
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3 Data and Variables

Table 1 shows the variables used in the analyses carried out in this paper. The

data is extracted from a data survey (Inserimento professionale dei laureati,

2011) including 14,000 male and 17,400 female graduates in 2007 and data from

MIUR (Ministry of Education, 2003-2004-2005). The survey data includes the

information of student residence in 110 Italian provinces (NUTS3 level regions)

before enrolling to a university and the name of university enrolled. The actual

flow of students between the province of residence and the exact addresses of

universities is extracted and stacked into a table as a column vector as the

variable of interest.

3.1 Types

This paper argues that at least three aspatial factors are particularly relevant

to the study of HE accessibility. Firstly, the role of parental education is a well-

explored factor that a↵ects the educational choices and outcomes of students.

Specifically in the Italian context, the educational level of parents is found to

be highly influential for the academic attainment of Italian students (Checchi

et al., 2003; Bratti et al., 2008). Higher HE participation rates and less drop-

outs are observed for students with highly educated parents(Checchi & Flabbi,

2007; Brunori et al., 2012). Moreover, since commuting or migrating to a place

involves a cost, the financial condition of families is another aspatial factor

relevant to access (see Frenette, 2003; Lupi & Ordine, 2009). Finally, even

though education is the primary area where women have made substantial

gains and now largely out-perform men (DiPrete & Buchmann, 2006), the

question whether there are systematic di↵erences in spatial access to education

among males and females remains an important one.

Observed flows are partitioned according to three sets of proxies re-

ferring to the socio-economic circumstances of students. Each subgroup forms
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a type, which cannot be chosen by students. Accordingly, three circumstance

variables are employed as shown in Table 1: the presence of at least one highly

educated parent at home where the alternative is both parents with basic ed-

ucation. Here “basic education” means the 8 years of compulsory schooling

in Italy. ”High education” consists of parents with at least a bachelor’s de-

gree. In the survey 40.66% of mothers and 39.69% fathers are categorized as

basically educated , and 14.56% and 20.06% as highly educated, respectively.

Survey data contains information on parents’ professions. This information is

categorized as high and low for both fathers and mothers. Hence three groups

are constructed as both-low, both-high and one-high-one-low. The gender of

students is included in addition to the parental background. The combination

of these three categories resulted in 12 types as shown in Table 1.

3.2 Distance

The distance from parental residence to HE institutions strongly influences

the likelihood of participation and the HE outcomes of students (see for exam-

ple Gossman et al., 1967; McHugh & Morgan, 1984; Tinto, 1973; Ordovensky,

1995; Gibbons & Vignoles, 2009; Suhonen, 2014). The costs of commuting or

migrating may deter access or may impose a barrier when enrolling at a uni-

versity. For Italy, the empirical evidence confirms that geographical proximity

strongly influences the choice of university (Pigini et al., 2013). Indeed, in the

survey data, 59.28% studied in their hometown, 40.64% of students was moti-

vated by the closeness of the institution and only 9.74% by the prestige of the

university. For student mobility, distance does not only represent costs but is

also a predictor of how far students are allowed to live away from their families,

which is very relevant in Italy as it is a country characterized by strong family

ties (Alesina & Giuliano, 2010).

In this application d
ij

is the Euclidean distance between the centroid

of city i and the exact address of university j. In the QGIS environment the
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coordinates of city centres are matched with the coordinates of exact location

of universities and the Euclidean distance is calculated for each pair. According

to the interest of the investigation and the data behaviour it is possible to find

the exponential form, exponential square root, the log of distance or a relevant

combination of these (De Vries et al., 2009). To choose the most relevant form

of deterrence function, the predicted values are examined against observed

flows and the power specification of the distance proved most suitable for the

data 3

3.3 University Attractiveness

As far as institutonal attractiveness is concerned, previous studies of SIMs pro-

vide mixed findings. Sa et al. (2004) use university rankings as a quality indi-

cator for Dutch students, but the coe�cient proves to be negative. Although

the authors explain this counterintuitive result as consumption behavior by

students in relation to HE (Sa et al., 2004), this is not entirely convincing.

Similarly Singleton et al. (2012) employ Times Good University Guide rank-

ings but set an arbitrary power of 0.5 rather than empirical derivation. Dotti

et al. (2013) construct an index identifying a province as attractive if inflows

exceed outflows, neglecting institutional attractiveness. This paper employs

two university fixed characteristics in order to account for attractiveness: the

share of successful students in the year before our sample’s enrolment and the

share of limited places provided by each university. In Italy after secondary

school, students take a national exam (Esame di Maturità ). The share of stu-

dents with the highest grades (90-100) from this test in the period 2002-2003

is included in the model (source: MIUR, 2004). Although many programmes

are o↵ered on a free-access principle, some require entrance tests, indicating

excess demand for these programs. The proportion of limited places to the to-

3Also in previous studies the power- decay function has been found to be more suitable for

long distance interactions owing to the log-cost perception (A. S. Fotheringham & Webber,

1980; Reggiani et al., 2011).
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tal number of places available at University is then used as a quality indicator

for the same period (source MIUR, 2004).

3.4 Interactions

Finally, several destination characteristics are interacted with distance to see

how the willingness to migrate to further destinations varies among di↵erent

types (see Gibbons & Vignoles, 2009, for a similar application to British stu-

dents).

Table 1 shows the interacted institutional characteristics as follows:

whether the university at destination is a private institution, dummies for

south, central and island locations and a dummy with value 1 for polytechnic

universities.

4 Empirical Method and Findings

The examination of the model is operated through related statistical log linear

models which were developed alongside entropy maximizing models. There

are several ways of handling spatial interaction models 4 (see A. G. Wilson,

1971; Yun & Sen, 1994; LeSage & Pace, 2008). This study makes use of

the Poisson gravity models, 5 with the same statistical properties, producing

identical estimations to entropy maximization models (Baxter, 1982).

The Poisson gravity model takes the following form:

E(N
ij

) = T
ij

= O✓

i

D↵

j

f(d
ij

) (4)

where N
ij

indicates observed flows, whereas T
ij

is the expectation of observed

4Ordinary least square (OLS) estimation proves to be insu�cient especially in handling

zero flows (Piermartini & Yotov, 2016), which constitute important information for immobile

students.
5(see Flowerdew & Aitkin, 1982; Smith, 1987, for theoretical development)
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flows, treated as a random variable and assumed to have a Poisson distribution

(Baxter, 1982) 6.

The model is calibrated by the generalized linear model (GLM) pack-

age in R 7, where flows follow a Poisson distribution with a logarithmic link

between variables. The estimations are carried out separately for 12 subgroups.

Finally, the Poisson regression is:

T
ijk

= exp[constant+O
i

+↵D
jk

+µ�
ij

+ �ln(d
ij

)+�S
j

+⌘L
j

+
X

l

�
l

ln(d
ij

)U
jl

]

(5)

where k = 1, 2, 3, ...., 12 represents types, S
j

the share of successful students

and L
j

the share of limited places at j, and U
jl

a set of interactions on distance.

This regression produces an exponential value of factor for origin i and is

proportionally equivalent to the product K
i

O
i

, and is therefore equivalent to

the production-constrained model of the entropy-maximizing system.

Table 2 and Table 3 show the results of the first set of regressions

where the model has been applied to 10 groups. Groups 5 and 6 are not taken

into consideration due to the lower number of observations. As expected, dis-

tance has a very strong significantly negative e↵ect, indicating a deterrence

impact for each group. For 1 km decrease in the distance the expectation

number of student flows increases by factors varying form 1.499 to 1.709. The

impact is higher for female students than for male students except for those

with at least one highly educated parent. As a student’s family background

becomes more favourable in terms of the proxies specified above, the di↵er-

ence between male and female shrinks and ultimately female students feel less

deterred. As in previous studies, � is significant at the 0.01 level for all groups

and positive in sign, capturing the benefit of residing and studying in the same

city. Similar values are observed for di↵erent types but with di↵erent motiva-

tions. For socially advantaged groups the parameter µ captures the fact that

these students usually live in big cities where large universities are located and

6The probability mass function of flows is given by Pr(T
ij

) =
exp

�N

ij

N

T

ij

ij

T

ij

!

7(see Dennett, 2012, for details)
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hence they do not need to migrate. On the other hand, groups 1 to 4 it may

reflect the actual startup costs where these students decide to migrate. As

far as the attractiveness of universities is concerned, S
j

(the share of success-

ful students at university) is significant and positively a↵ects flows only for

students who have at least one highly educated parent. Other students seem

to be una↵ected by institutional quality. The e↵ect is observed for L
j

(the

share of limited places o↵ered by universities) again for socially advantaged

groups. Among students with disadvantaged parental backgrounds, only fe-

male students (groups 2 and 4) are attracted to these limited positions. This

is probably due to the fact that female students are interested in faculties

such as medicine and nursing, requiring entrance tests. Hence, for students

with a poor parental background, what seems to matter is obtaining a degree

irrespective of the prestige of the University (Triventi & Trivellato, 2009).

The remaining results allow for interactions between institutional

characteristics and distance. Private universites at destination increase the

tendency of travelling longer distances for all groups. It is an expected result

since for any type deciding to enrol a private university, distance must be be-

coming irrelevant. Looking at the significance levels, polytechnics do not seem

to induce students to travel far except for groups 2 and 7. In contrast to Dotti

et al. (2013), interacting distance with macro regions, where universities are

located, shows that the central region attracts more students than the south

for all students except types 1 and 3. These two types comprise male students

with poor family backgrounds who may prefer Universities in the south due to

the lower cost of living. Finally universities located in Sicily and Sardinia fail

to attract students from all backgrounds.

Table 2-Table 3 [About Here]

After obtaining the parameter values from (5), accessibility scores are

calculated through Equation 3 for each group with their respective impedance
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functions as follows:

A
ik

=
X

j=1

C
j

d�̂k
ij

�
ijk

(6)

where k = 1, 2, 3, ...., 12. As it for the production constrained SIM,

d
ij

is constructed from city centroids to the exact addresses of universities (to

the largest campuses),so there is no zero distance, which in return accounts

for the self-potential (local demand) of universities within provinces. The

measured scores indicate potential access in terms of the places o↵ered to

students. Higher scores indicate better accessibility to the 77 total number of

universities located in 101 di↵erent provinces. Maps 1-2 illustrate the access

scores of 10 groups, where darker blue indicates a higher score (The scores are

also shown in Appendix Table 1-2).

Figure 1-2 [About Here]

The first thing to note from the figures is that if a student belongs

to a socially advantaged group, then their access is relatively higher where

ever they live, except very far south in the country. Similarly for socially

disadvantaged groups, even if they live in a big city where large universities

are located, access remains low, particularly in the south. The lowest access

is observed for group 2 where the type comprising female students with lower-

class parents with a basic education. The types constructed for this paper

seem particularly relevant for female students. Access increases on average

101% from group 2 to group 12 whereas parental background does not seem

to a↵ect male student access to HE as much as female students. From the

least to the highest, access increases 10% on average. Moreover a degree of

gender discrimination in access is observed in the first 4 groups, but lessens as

parental education and financial condition improve.

Decomposition of Access Inequality

To disentangle the relative contributions of spatial and aspatial fac-
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tors to inequality, a decomposable inequality index is used 8. As shown in

Table 4, the resulting inequality is a sum of within and between inequalities.

The first row of Table 4 shows the inequality decomposition where the variation

within types of students is suppressed by substituting each type’s accessibility

score with its arithmetic mean. By this method the inequality between the

types of students is computed as 0.01776 and represents the contribution of

socio-economic factors to total inequality (5% of total inequality). Whereas

in the second row the variation within provinces is eliminated by substituting

each province’s accessibility score with its arithmetic mean, in this approach

the inequality between provinces is computed as 0.34637 and the contribution

of socio-economic factors to total inequality is measures at 7%.

For the sake of a better understanding of the computed inequality,

take a female student with a poor family background (group 2) living in Mat-

era, in order for her to have as much access as a male student with the same

family origin (group 1) living in the same city, she has to travel 151 km to

the nearest city, Foggia (social distance). Moreover, in order for her to have

similar access to a female student with better family origin (group12) living in

Napoli, she has to travel 460 km to the nearest city (social+physical distance).

Therefore, the findings indicate that despite the expansion of HE supply in

the country, access to HE is strongly unequal due to the spatial distribution

of opportunities with additional disparity due to socio-economic factors at the

locations of origin.

Table 4 [About Here]

8Mean Logarithmic Deviation is a path-independent decomposable inequality measure

(Foster & Shneyerov, 2000). It is defined as: MLD(X) = 1

N

P
N

1

ln µ

x

x

i

where X is a distri-

bution, N population size and µ
X

is mean.
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5 Conclusions

This paper provides empirical evidence for the dynamics of student mobility

in Italy and measures inequality in access to HE institutions with particular

attention to the socio-economic background of students. Using a spatial inter-

action model, the flows of students to universities are defined as interactions

between provinces in Italy. The results demonstrate that poor family back-

ground students are impervious to university-quality e↵ects and university

quality becomes relevant only for students with better family backgrounds.

The model allowed for interactions between institutional characteristics and

distance to see how elasticity with respect to spatial distance varies given the

heterogeneity of the universities. The results indicates that private universi-

ties attract students and increase their willingness to travel longer distances.

Universities located in the central region attract more students than in the

south and the location in Sicily or Sardinia deters flows.

As far as distance is concerned, the values of these parameters are

highly significant and negative in sign, indicating a deterrence e↵ect for each

group of students. In line with previous studies, � was significant at the 0.01

level for all groups and positive in sign, capturing the benefit of residing and

studying in the same city. For the second step computed deterrence functions

and �s were imported into a Hansen-like accessibility index and accessibil-

ity scores of 110 Italian provinces to 77 Italian universities were computed.

The results show that socio-economic background matters especially for fe-

male student mobility. Finally, the share of aspatial factors in inequality of

access between types proved to be 5% with the first approach and 7% when

computed with the second approach.

This paper contributes to the accessibility literature by a multidis-

ciplinary approach providing a spatial accessibility measure for Italian HE

institutions with particular attention to socio-economic sources of inequality.

It also contributes to EOp literature by showing how spatial dimensions of
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EOp could be incorporated into models that rely solely on spatial elements.

Furthermore, the investigation of 10 types provides a clear ranking. In other

words, through this application, this study empirically shows which socio-

economic group is better o↵ and by how much. Finally, this study is the first

attempt to define parental location, clearly an exogenous factor for students,

as a circumstance.

The findings provide highly detailed information for policy implica-

tions. In order to increase accessibility three policy strategies can be adopted.

Firstly, an e↵ective policy may target the types with lower potential acces-

sibility to assist them though loans, scholarships and grants. Secondly, the

geographical locations where accessibility is lower can be identified and ac-

cessibility can be increased by the reduction of geographic barriers for cities

such as Nuoro, Brindisi, Ragusa and Belluno where new universities and/or

places may be set up. Finally a combination of these two can be used. For

instance, the empirical evidence in this paper shows that female students with

disadvantaged family backgrounds located in southern Italy would benefit the

most from HE funding. More precisely the identification of inequality resulting

from gender and geography can be extracted from the findings as follows: for

a female student living in the south with low income parents both with a basic

education, on average the potential accessibility is 146.15% lower than a male

student living in the North with better family origin. These examples can be

extended to determine a variety of policy strategies.
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Table 1: Variables in analysis, data from ISTAT and MIUR

Variables Description

Residence Province of residence before enrollment (ISTAT)

Destination University Enrolled University 63 state and 14 private universities(ISTAT)

Distance Euclidean distance between city centroids and University addresses,

measured in QGIS based on coordinates

Sex 14,000 male and 17,400 female students graduated in 2007(ISTAT)

Parent’s Education The highest degree obtained by parents(ISTAT)

Two categories: at least one highly educated parent, both basic educated

“basic education” covers high school degree

high category at least bachelor’ s degree.

Financial Condition Occupation type of parents(ISTAT)

Three categories : both-high, one-high,both-low

High=Managers, Directors,High/Medium Qualification

Low=O�ce Worker, Lower-skilled workers

S
j

Share of students who achieved highest scores (90-100)

from compulsory test before HE enrollment in the period 2002-2003 (MIUR)

L
j

Proportion of limited places o↵ered by universities to the total places (MIUR)

U
jl

Institutional characteristics to be interacted with distance (MIUR)

U
j1 1 if private 0 otherwise

U
j2 1 if polytechnic 0 otherwise

U
j3 1 if south U

j4 1 if center U
j5 1 if island 0 otherwise

Types group1(both basic educated parents,male , low financial condition )

group2(both basic educated parents,female , low financial condition)

group3(both basic educated parents,male, medium financial condition)

group4(both basic educated parents, female, medium financial condition)

group5(both basic educated parents, male, high financial condition)

group6(both basic educated parents, female, high financial condition)

group7(at least one high educated parent, male, low financial condition )

group8(at least one high educated parent, female, low financial condition)

group9(at least one high educated parent, male, medium financial condition)

group10(at least one high educated parent, female, medium financial condition)

group11(at least one high educated parent, male, high financial condition)

group12(at least one high educated parent, female, high financial condition)
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Table 2: Results of Poisson Regression First 5 Groups

Groups (1) (2) (3) (4) (7)

Variables Basic-Male-Lower Class Basic-Female-Lower Class Basic-Male-Middle Class Basic-Female-Middle Class � 1high-Male-Lower Class

S
j

0.455 0.697 0.556 -0.087 1.502***

(0.421) (0.373) (0.595) (0.504) (0.396)

L
j

0.158 0.303*** 0.214 0.277* 0.140

(0.098) (0.086) (0.133) (0.119) (0.123)

µ̂ 0.249*** 0.293*** 0.261*** 0.300*** 0.307***

(0.389) ( 0.032) (0.056) (0.045) (0.036)

Distance -1.535*** -1.709*** -1.530*** -1.574*** -1.625***

(0.047) ( 0.045) (0.069) (0.060) (0.046)

Institutional Interactions

x Private Univ. 0.726*** 0.608*** 0.509*** 0.599*** 0.631***

(0.070) ( 0.058) (0.093) (0.067) (0.057)

x Polytechnic 0.003 0.240 0.105 0.276* 0.134*

(0.072) (0.088) (0.105) (0.105) (0.022)

x South 0.561*** 0.359*** 0.549*** 0.386*** 432***

(0.062) (0.059) (0.090) (0.076) (0.065)

x Center 0.527*** 0.545*** 0.418*** 0.495*** 0.467***

(0.060) (0.058) (0.088) (0.078) (0.058)

x Island -0.206*** -0.039 -0.130 -0.375* -0.283*

(0.155) (0.122) (0.201) (0.173) (0.162)

(Intercept) 6.528*** 7.258*** 5.442*** 6.304*** 6.790***

(0.227) (0.202) (0.392) (0.291) (0.221)

Observations 1,572 1,572 1,572 1,572 1,572

R2 0.88 0.89 0.87 0.86 0.86

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Education of Parents-Gender of Student-Financial Condition of Parents
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Table 3: Results of Poisson Regression Last 5 Groups

Groups (8) (9) (10) (11) (12)

Variables �1high-Lower Class �1high-Male-Middle Class � 1high-Female-Middle Class � 1high-Male-Higher Class �1high-Female-Higher Class

S
j

1.745*** 2.291*** 1.444*** 2.006*** 1.947***

(0.337) (0.313) (0.287) (0.293) (0.260)

L
j

0.384*** 0.184*** 0.187*** 0.112** 0.348***

(0.065) (0.073) (0.072) (0.082) (0.081)

µ̂ 0.337*** 0.287*** 0.281*** 0.305*** 0.273***

(0.032) ( 0.032) (0.029) (0.029) (0.027)

Distance -1.581*** -1.551*** -1.532*** -1.522*** -1.499***

(0.041) ( 0.040) (0.034) ( 0.035) (0.032)

Institutional Interactions

x Private Univ. 0.590*** 0.490*** 0.481*** 0.549*** 0.573***

(0.045) ( 0.043) (0.038) (0.037) (0.033)

x Polytechnic -0.538 0.070 0.706 0.072 0.042

(0.078) (0.051) (0.061) (0.047) (0.054)

x South 0.123* 0.436*** 0.198*** 0.320*** 0.255***

(0.636) (0.609) (0.054) (0.054) (0.049)

x Center 0.399*** 0.499*** 0.418*** 0.384*** 0.407***

(0.053) (0.516) (0.045) (0.045) ( 0.040)

x Island -0.150 0.816 -0.252* -0.490*** -0.331**

(0.125) (0.130) (0.111) (0.118) (0.103)

(Intercept) 6.654*** 7.113*** 7.084*** 6.851*** 6.939***

(0.194) (0.187) (0.172) (0.170) (0.155)

Observations 1,572 1,572 1,572 1,572 1,572

R2 0.85 0.87 0.89 0.86 0.88

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Education of Parents-Gender of Student-Financial Condition of Parents
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Table 4: Decomposition of Inequality In Access (MLD measures)

Spatial Inequality Inequality due to socioeconomic background Total Inequality

Inequality in Access to HE (First Approach) 0.35444 0.01776 0.37220

Inequality in Access to HE (Second Approach) 0.34637 0.02583 0.37220

Percentage Contribution (First Approach) %95 %5 %100

Percentage Contribution (Second Approach) %93 %7 %100
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Figure 1: First 5 Groups
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Figure 2: Last 5 Groups
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Appendix 1

Table 5: Accessibility Scores

Groups (1) (2) (3) (4) (7) (8) (9) (10) (11) (12)

Torino 470 305 475 424 374 417 450 472 483 513

Vercelli 90 41 91 72 57 68 81 88 90 103

Novara 148 75 149 123 101 117 135 146 148 166

Cuneo 60 28 61 49 39 46 54 59 61 69

Asti 77 34 78 61 49 58 69 76 77 88

Alessandria 100 48 102 82 66 78 91 99 101 114

Valle d’Aosta 56 25 57 45 35 42 51 55 57 65

Imperia 39 16 39 30 23 28 35 38 39 45

Savona 56 25 57 45 35 42 51 56 57 65

Genova 191 113 193 167 143 162 180 191 195 212

La Spezia 67 29 68 53 42 50 60 66 68 78

Varese 157 82 158 131 109 125 144 155 158 176

Como 152 80 153 127 106 122 140 150 153 170

Sondrio 55 23 56 43 34 41 49 54 56 65

Milano 937 613 948 848 749 833 899 942 963 1021

Bergamo 174 96 176 148 125 143 161 173 176 194

Brescia 159 89 161 136 115 132 148 158 162 178

Pavia 228 127 231 195 164 187 212 226 231 254

Cremona 99 45 100 79 63 75 89 97 99 113

Mantova 82 35 83 65 51 61 74 81 82 95

Bolzano/Bozen 56 27 57 46 37 44 51 55 57 64

Trento 136 78 138 117 100 114 127 136 139 152

Verona 170 97 172 147 124 142 159 170 173 190

Vicenza 102 51 103 84 69 80 93 101 103 116

Belluno 42 17 43 33 25 31 37 41 42 49

Treviso 83 40 84 68 55 65 75 82 84 94

Venezia 174 102 176 152 130 147 163 174 177 193

Padova 304 188 307 270 234 263 288 304 311 334

Rovigo 99 47 100 80 65 76 90 98 99 113

Udine 97 56 98 84 71 81 91 97 99 108

Gorizia 51 23 51 41 32 38 46 50 51 58

Trieste 87 49 88 75 63 72 81 87 89 97

Piacenza 107 50 108 87 70 82 97 105 107 122

Parma 157 87 159 135 113 130 147 157 160 176

Reggio nell’Emilia 120 60 121 99 81 95 110 119 121 136

Modena 163 89 165 138 116 133 151 162 165 183

Bologna 350 217 354 311 270 303 332 351 358 385

Ferrara 141 76 143 120 100 115 131 140 143 159

Ravenna 93 43 94 75 60 71 84 92 94 106

Forl-Cesena 122 64 123 102 85 98 112 121 123 137

Pesaro e Urbino 130 72 132 111 93 107 121 129 132 146

Ancona 126 70 127 107 90 104 117 125 128 141

Macerata 123 67 124 105 88 101 114 122 125 138

Ascoli Piceno 70 32 71 57 45 53 63 69 71 81

Massa-Carrara 68 28 69 53 41 50 60 67 68 79

Lucca 72 30 72 56 44 53 64 70 72 83

Pistoia 90 40 91 72 57 67 81 89 90 104

Firenze 302 185 305 267 232 261 286 302 309 333

Livorno 61 26 62 48 38 45 55 60 61 71

Pisa 238 145 241 210 181 205 225 238 244 263

Arezzo 77 34 78 61 48 58 69 76 77 89

Siena 125 68 127 107 89 103 116 125 128 141

Grosseto 53 21 54 41 32 39 47 52 54 62

Perugia 146 82 148 125 106 121 136 146 149 163

Terni 85 39 86 69 55 65 77 84 86 98

Viterbo 111 58 113 93 77 89 103 111 113 126

Rieti 88 39 89 70 56 66 79 87 88 101
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Table 6: Accessibility Scores Continued

Groups (1) (2) (3) (4) (7) (8) (9) (10) (11) (12)

Roma 914 602 924 829 733 816 878 919 940 996

Latina 88 41 89 71 57 68 80 87 88 100

Frosinone 111 58 112 93 77 89 102 110 113 126

Caserta 164 92 166 141 119 136 153 164 167 183

Benevento 94 47 95 78 64 74 86 93 95 107

Napoli 579 377 586 523 462 514 555 582 595 632

Avellino 66 29 67 53 42 49 59 65 66 76

Salerno 187 115 190 166 143 162 178 188 192 207

L’Aquila 125 67 127 106 89 102 116 125 127 141

Teramo 80 39 81 66 54 63 73 80 81 92

Pescara 99 52 101 83 69 80 92 99 101 112

Chieti 115 64 117 99 83 95 108 115 118 129

Campobasso 74 36 75 61 49 58 67 73 75 84

Foggia 79 42 80 67 56 65 74 79 81 90

Bari 253 162 256 228 200 223 242 254 260 278

Taranto 54 27 54 45 37 43 49 53 55 61

Brindisi 32 14 32 25 20 24 29 32 32 37

Lecce 93 57 94 82 71 80 88 93 95 103

Potenza 64 32 65 53 43 51 59 64 65 73

Matera 43 19 44 35 27 32 39 43 44 50

Cosenza 131 80 132 116 100 113 124 131 134 144

Catanzaro 67 39 68 58 50 57 63 67 69 75

Reggio di Calabria 45 24 46 38 32 37 42 45 46 51

Trapani 24 10 24 19 15 18 21 24 24 28

Palermo 201 129 203 180 158 177 192 202 206 220

Messina 115 70 117 102 88 99 109 115 118 127

Agrigento 33 15 34 27 21 25 30 33 34 38

Caltanissetta 31 14 32 25 20 23 28 31 31 36

Enna 65 35 66 55 46 53 60 65 66 73

Catania 176 112 178 158 138 154 168 177 181 193

Ragusa 26 12 27 21 17 20 24 26 27 30

Siracusa 30 14 30 24 19 23 27 30 30 34

Sassari 62 36 63 54 46 53 59 63 64 70

Nuoro 21 8 21 16 12 15 19 21 21 25

Cagliari 112 70 113 100 87 98 107 112 115 123

Pordenone 50 22 51 40 31 38 45 49 51 58

Isernia 71 32 72 57 45 53 64 70 71 82

Oristano 19 7 19 15 11 14 17 19 19 23

Biella 80 36 81 64 51 60 72 78 80 92

Lecco 124 60 125 101 82 95 113 122 124 140

Lodi 129 60 130 104 83 97 116 126 128 146

Rimini 95 47 96 78 63 74 86 94 96 108

Prato 125 60 126 102 82 96 113 123 124 141

Crotone 24 9 24 19 14 17 21 24 24 28

Vibo Valentia 25 10 25 19 15 18 22 25 25 30

Verbano-Cusio-Ossola 57 24 58 45 35 42 51 56 57 66

Olbia-Tempio 23 9 23 18 13 17 20 23 23 27

Ogliastra 20 7 20 15 11 14 17 20 20 24

Medio Campidano 22 9 22 17 13 16 19 21 22 26

Carbonia-Iglesias 17 6 17 13 10 12 15 17 17 20

Monza e della Brianza 270 145 272 225 188 213 247 265 267 298

Fermo 63 27 64 50 39 47 56 62 63 73

Barletta-Andria-Trani 43 18 43 33 26 31 38 42 43 50
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Inequality of Opportunity in Sweden:A Spatial

Perspective ⇤

Umut TÜRK†& John ÖSTH‡

Abstract

This paper investigates the spatial dimensions of inequality of op-

portunity by integrating parental neighbourhood characteristics as ex-

ogenous factors influencing the life chances of individuals. We construct

egocentric neighbourhoods, where contextual variables are quantified by

an approach based on k nearest neighbours. The analyses are carried

out with multilevel models departing significantly from previous studies

where solely OLS regressions were employed. Using Swedish longitudi-

nal register data, we show that the parental neighbourhood is highly

influential in educational inequality of opportunity and remains so for

earnings inequality of opportunity even years after exposure.

Keywords neighbourhood e↵ects, equality of opportunity
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1 Introduction

In recent years, the equality of opportunity (hereafter EOp) concept has often

been mentioned in discussions concerning distributional disparities (Cities and

Social Equity, 2009; Urban Equity of Life, 2014; Handbook of Income Distribu-

tion, 2015). It is almost a universally accepted principle developed recently by

Roemer (1998) and already with numerous empirical applications (see Ramos

& Van de Gaer, 2012; Roemer & Trannoy, 2013; Brunori et al., 2013, for re-

views). In this framework the overall inequality observed in di↵erent spheres of

social life is decomposed into ethically acceptable (fair) and o↵ensive (unfair)

components. So-called circumstances representing unfair sources of inequality,

are predetermined and beyond people’s control such as gender, race and family

background (Roemer, 1998; Roemer & Trannoy, 2013). On the other hand,

so-called e↵ort comprises fair (acceptable) sources of inequality for which indi-

viduals are held responsible. Inequality that is due to circumstances is defined

as inequality of opportunity (hereafter IOp).

The IOp is a product of several underlying inequalities, such as in-

equality due to di↵erences in social treatment, inequality of access to basic

opportunities, inequality due to exogenous genetic factors and inequality due

to parental resources and location (de Barros, 2009). A number of empiri-

cal studies seek to disentangle these underlying inequalities in opportunities

through a set of circumstance variables. To assess IOp accurately, analyses

thus need to take a comprehensive approach on the circumstance variables

employed. Most existing studies have been limited to accounting for inequali-

ties due to parental resources and social treatment, with gender, race, parental

income and education as typical predictors of circumstances. So far, however,

there has been little discussion of the spatial sources of IOp and none for

inequalities due to parental location.

It has already been suggested that residential location may gener-

ate unfair inequalities especially for children (Ross et al., 2002; de Barros et
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al., 2008). However, the empirical studies that have sought to evaluate IOp,

include geography either as a reference to a general Urban/Rural division of

birthplace (Ferreira et al., 2010), or as large administrative units, for instance

regions (Peragine & Serlenga, 2008; Checchi et al., 2010; Singh, 2012). Leav-

ing aside the problems of robustness due to spatial e↵ects in place such as

the modifiable areal unit problem (MAUP) (Openshaw, 1984), on such a scale

geography does not represent the residential characteristics to which individu-

als are exposed. Therefore, a more specific characterization of spatial patterns

that communicates the current and past residential environment of individuals

and interaction among them must be included in analyses.

This paper focuses on the role of people’s parental neighbourhood

characteristics as a source of IOp in education and income and their own

neighbourhood characteristics as a source of legitimate inequality in income

distribution. The paper aims to go beyond the analysis of traditonal sources

of inequality by linking the EOp literature to the literature investigating the

neighbourhood e↵ects on various outcomes of individuals. Neighbourhood

studies o↵er empirical evidence on the link between neighbourhoods and the

several life chances of residents. Most previous findings are relevant to this

study, for example, neighbourhood e↵ects on child outcomes (see Leventhal &

Brooks-Gunn, 2000, for a review), on labour market and economic outcomes

(see Vartanian, 1999) and spatial mismatch implications (for a review, see

Kain, 1992), health outcomes such as psychological wellbeing (see Ludwig et

al., 2013), behavioural outcomes such as the likelihood of committing a crime

and drug-alcohol consumption (Case & Katz, 1991). However, it may be prob-

lematic to attribute causal relations to how these e↵ects take place (Buck,

2001). Considerable e↵ort has been put into providing a proper definition of

neighbourhoods, and causal relations with their observed e↵ects (see Ellen &

Turner, 1997, for a review). Galster (2001) argues that the neighbourhood is

a multidimensional phenomenon, in which four actors (households, businesses,

property holders and local government) act both as consumers and producers
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in shaping the structural, demographic and social-interactive characteristics of

neighbourhoods (Galster, 2001). As consumers, residents are exposed to in-

stitutional mechanisms, to peers and networks, to environmental aspects (i.e.

polluted air) and to o↵ered accessibility of opportunities (Sharkey & Faber,

2014). In the light of these suggestions, we treat neighbourhoods as the en-

vironment surrounding residents where its scale is based on the interaction

possibilities between individuals.

The aim of the present work is twofold. The first part of the paper is

devoted to the analysis of neighbourhood e↵ects. We use a multilevel modelling

strategy to disentangle the influence of circumstances in relation to parental

neighbourhood on educational attainment when living with parents and addi-

tionally parental and own-neighbourhood characteristics influencing disposable

income when living independently of parents. Using the longitudinal register

database from Sweden, we focus on the whole population of the 1985 cohort.

The database provides family background variables such as parental education,

employment, marital status and national origin, and provides information on

individuals disposable incomes and compulsory exam marks that are taken as

dependent variables. Since residential coordinates on 100m x 100m level are

available for each individual as well as over time, geographical information on

residents is used to construct bespoke neighbourhoods for each individual with

the aim of channeling several characteristics of residential locations based on

a k-nearest neighbours approach (Östh et al., 2015). In addition, we include

a measure of negative environment surrounding the parental neighbourhood

derived from the Corine (coordination of information on the environment)

database and a measure of job/housing balance in own-neighbourhood. In

the second part of the paper, we construct a model to perform a comprehen-

sive investigation of IOp with particular attention to the spatial sources of

inequality. As in Bourguignon et al. (2007) and Ferreira & Gignoux (2011)

we formulate a situation where the within-group inequalities are eliminated,

so that the overall inequality both in educational attainment and disposable
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income is decomposed into circumstance (IOp) and e↵ort components. As it

is the foremost aim of this study, we also decompose circumstances and e↵ort

into spatial and aspatial components.

The results of the model show that parental neighbourhoods explain

36.94% of the total variation in educational attainment and 16.66% in income

inequality in Sweden. Therefore, even though Sweden is characterized by lower

levels of inequality in the life chances of individuals, we conclude that a larger

part of IOp can be identified by quantifying spatial circumstances. Finally, we

show that 1.95% of fair inequality of income is attributable to spatial e↵ort

(i.e. own-neighbourhood). This points out the percentage of additional income

that can be generated by moving to better environments.

This study makes several contributions to the existing research: i) via

the comprehensive register data we cover a large set of circumstance variables,

often not available due to data restrictions; ii) adapting several bespoke neigh-

bourhood characteristics provides robust, externally valid and policy-oriented

identification of the spatial factors as a↵ecting opportunities; iii) the measure

of inequality of opportunity is associated with parental neighbourhood char-

acteristics for the first time in this study, and through a multilevel modeling

strategy the results are robust with respect to previous studies where problems

such as spatial autocorrelation have been ignored.

2 Previous Work

Despite the increasing number of empirical papers assessing the degree and

nature of inequality of opportunity in di↵erent contexts none, to the best of

our knowledge, includes parental neighbourhood into typically used parental

background attributes. Some associate geography-of-birthplace as a circum-

stance, but this is often limited to Urban/Rural classifications (see Ferreira et

al., 2011) or to very large administrative units such as regions (see Cogneau &
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Mesplé-Somps, 2008; Singh, 2012). Others partition the study area into fewer

but bigger macro regions and evaluate inequality of opportunity separately

(see Peragine & Serlenga, 2008; Checchi & Peragine, 2010). Among empirical

EOp studies in which geography is taken into account, the work of Checchi

et al. (2010) comes closest to what might be perceived as neighbourhoods. It

provides a comparison between the inequality of opportunity levels in 25 Eu-

ropean countries where the degree of population density in residential areas is

included as circumstance variables.

The lack of spatial considerations in the current literature is probably

related to a general lack of spatially coded data available to researchers. For

many countries even a very limited amount of data in relation to parental

background may not be available. Another reason might be the fact that a

spatial approach requires the recognition of the link between the geography

of residence and any opportunity distribution. As is often underlined by the

scholars proposing variants of the equality of opportunity approach, children

should not be held responsible for their choices in any way (de Barros, 2009;

Björklund et al., 2012). Such a view is readily extendable to include the

residential decisions of parents on behalf of their children. Therefore, given

the context of equal opportunities literature there should be no objections to

defining parental neighbourhood as a circumstance.

Several empirical studies investigate the e↵ects of neighbourhoods

on educational attainment (Garner & Raudenbush, 1991), drop-outs (Crane,

1991) and outcomes such as reading, maths achievement (see Ludwig et al.,

2013) and higher education participation (Andersson & Malmberg, 2015).

However, the extensive body of neighbourhood literature shows no consensus

on the durability of neighbourhood e↵ects. At least two distinctive empirical

strategies seek to investigate whether neighbourhood characteristics continue

to be e↵ective years after the exposure ends.

The first strategy studies the correlation between siblings and neigh-
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bouring children in adult outcomes, a way of quantifying the variation/correlation

in earnings that can be attributed to neighbourhood histories. For instance

Page & Solon (2003) study the correlation between adult earnings of once

neighbouring children and between brothers, where the defined neighbourhood

contains 20-30 contiguous dwelling units. Their findings demonstrate a posi-

tive correlation in earnings among formerly neighbouring children (half of the

correlation observed for brothers), and is interpreted as residential immobility

i.e. the children who grew up in urban areas end up in urban areas where the

earnings are higher and those who grew up in rural areas remain in rural areas

with lower earnings. Using a similar approach Raaum et al. (2006) find declin-

ing neighbourhood e↵ects on earnings and educational attainment as years go

by.

The second empirical strategy makes use of so-called moving to op-

portunity (MTO) experiments, which are randomized social experiments on

housing mobility conducted by the U.S. Department of Housing and Urban

Development (HUD). Ludwig et al. (2013) show that moving to less disad-

vantaged neighbourhoods (census tracts) improves both mental and physical

health conditions. However such an impact is not observed for economic con-

ditions and educational attainment even for the children who were exposed to

a better environment at an early age. In a recent study Chetty et al. (2015)

conclude that for children, each additional year spent in less deprived neigh-

bourhoods (U.S. counties) increases the likelihood of college attendance and

of higher earnings in adult life 1.

Although the above papers di↵er in important respects in how they

study neighbourhood e↵ects, they all identify a neighbourhood as an area

comprising a predefined administrative unit. A few studies make use of be-

spoke, individualized neighbourhood units. For example Ham et al. (2014)

adopt this method for the Stockholm metropolitan area and show that the

negative e↵ects of neighbourhood history are both inherited and persistent

1(see also Chetty & Hendren, 2015)
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over time. Similarly when investigating a population of parental home-leavers

in Stockholm, Hedman et al. (2015) observe negative e↵ects of exposure to

a poverty-concentration parental neighbourhood even after 17 years of living

away from parents.

Throughout this study we refer to a reference year in which the statis-

tics for neighbourhood histories are linked to individuals. The above and other

papers (Quillian, 2003; Clark & Ledwith, 2006) use the same empirical tech-

nique. If there is high residential mobility where both within and between

neighbourhood shifts occur, a one-year reference might lead to measurement

errors. However, we believe that our reference to a single year for parental

neighbourhood does not bring large measurement error bias given the high

similarity in peoples neighbourhoods overtime not only in Sweden (see Ham

et al., 2014) but also in many other countries (see Kunz et al., 2003; Quillian,

2003; Sharkey & Faber, 2014).

This study seeks to bridge the gap between the literature dedicated

to the theory and methods of equality of opportunities and to neighbourhood

e↵ects. For the educational IOp investigation we start from previous empirical

studies on neighbourhood e↵ects, but given the lack of consensus on the dura-

bility of such e↵ects, for the income IOp investigation we first show how the

neighbourhood histories of individuals exert persisting e↵ects on life chances,

therefore their contribution to inequality should be quantified and accommo-

dated in a matrix devoted to circumstances.

3 Data

This study uses the PLACE longitudinal database (located at the Depart-

ment of Social and Economic Geography, Uppsala University) which contains

socio-economic, demographic and geographical information for all Swedish res-

idents since 1990. Following the same individuals over time, we investigate the
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distribution of compulsory examination marks in 2001 and the distribution

of disposable incomes in 2010 for the whole 1985 cohort as our variables of

interest. Two sets of independent variables are considered in the model: cir-

cumstances as measured by parental background and parental neighbourhood

characteristics and e↵ort as measured by educational level and own neighbour-

hood characteristics.

For each individual, we use spatial and aspatial information from the

dataset (see Table 2). The aspatial set of variables includes several covariates

typically used in EOp studies that are informative of the family background

and other inherited circumstances. Eight such variables are used: gender, com-

pulsory examination marks , disposable income for 16-year olds residing in the

household of upbringing (measured as part of household disposable income),

whether or not a visible minority (VM, here understood as all individuals

born outside Europe, USA, Canada or Australia), parent’s marital status (sin-

gle parent or dual parent households), parental education and employment

status. The parental educational level is measured as the highest educational

level reached by either of the parents. Employment status is measured as each

parent working or not working in 2001.

The spatial set of variables includes parental neighbourhood charac-

teristics in 2001 and own neighbourhood in 2010. These are quantified using a

k nearest neighbour (knn) algorithm. Generating a form of scalable egocentric

neighbourhood, this technique departs from each residential location and be-

gins counting in every direction until a threshold (k) is reached. It then relates

the population involved to the total counted population. The method does

not require the use of predetermined administrative units and thus provides

an e�cient, comparable and robust definition of place (Östh et al., 2015). The

computations were carried out using EquiPop software (Östh, 2014), which

sorts people (in this case) according to a georeferenced grid and generates

contextual variables quantifying the share of a given attribute within their k

nearest neighbours, including for large data sets such as ours.
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Table 2 [About Here]

We channel the following parental neighbourhood characteristics from

2001: the share of similar-age peers among the nearest 40 neighbours that ac-

counts for socialization and network patterns, the share of visible minority

(VM) neighbours among the nearest 400 neighbours show the degree of segre-

gation and deprivation, the share of single parents and families with 3 or more

children (large families) among the nearest 40 neighbours account for house-

hold and housing characteristics. We use smaller k-levels for the year 2001 as

the potential interaction with the neighbourhoods might be limited compared

to 2010. see Table 3 for an interpretation of di↵erent k values.

In addition to these bespoke neighbourhoods, the negative environ-

ment surrounding the parental neighbourhood is constructed based on Corine

(coordination of information on the environment) data, which is available as

100-meter pixel raster images. ArcGIS software is used to match the land

cover data to the coordinates of individuals (both available as 100x100 geo-

coordinates) and after a classification of good/bad elements of Corine, the

exposure to negative surroundings within a 500m radios is imported into the

data as a column vector.

The own neighbourhood in the year 2010 is defined as the share of

VMs among the nearest 1600 neighbours and a measure of job/housing bal-

ance is computed for 2010 as follows: we first classify individuals according to

their level of education and the jobs available to them under three categories:

low, intermediate and high. Then for each residential location, the nearest

10,000 jobs and the longest distance to reach the workplace are computed

by EquiPop. The assumption is that individuals seek jobs that correspond

to their level of education. Thus for a lower educated person this method

looks for available jobs in the low category alone. The observed Cartesian

distance between home and work can be used as a crude measure of job ac-

cessibility at any location i. However, since some of the studied individuals
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were not in employment in 2010 and others may have travelled distances that

are considerably di↵erent from others residing in close proximity, data from

near neighbours need to be interpolated. In order to depict a local commut-

ing distance that renders potential commuting distances for non-commuters

and renders commuting distances that reduce outlier e↵ects for individuals

with very short or long distances we employ a Kriging strategy where the 12

nearest neighbours constitute the search radius for the commuting distance

interpolation surrounding any location where a population member resided in

2010. The smoothed interpolation expresses a commuting distance used as a

representation of the potential commuting distance at any location i. 2.

4 Analytic Framework

As in Ferreira & Gignoux (2011), we model compulsory examination marks as

a function of circumstances (reduced form equation) as follows:

g
i

= f(C
i

, u
i

, ) (1)

and the disposable income as a function of circumstances and e↵ort as follows:

y
i

= f(C
i

, E
i

(C
i

, v
i

), u
i

, ) (2)

E
i

= BC
i

+ v
i

(3)

where g
i

is compulsory examination grade of i, y
i

represents disposable in-

come, C
i

a vector of circumstances and E
i

is of e↵ort, finally u
i

is unobserved

determinants of disposable income such as luck. We recognize the correla-

tion between e↵ort on circumstances and other unobserved determinants with

equation (3).

In general (1) and (2) are estimated by OLS regressions (see Bour-

guignon et al., 2007; Ferreira & Gignoux, 2011). In this study we employ a

2Kriging was conducted in ARCInfo using the ordinary spherical semivariogram method,

k=12

66



multilevel model with linear specification. It is obvious that spatial factors

play a key role in this study. For this reason we need to specify a model that

caters for the spatial patterns of variation that may lead to erroneous infer-

ences. By employing the Morans I test on the regression residuals we can test

if there are any spatial dependencies not catered for in the specified models

(Moran, 1950). Four models were tested: (1) full model OLS, (2) empty model

MLM, (3) contemporary model MLM and (4) full model MLM. Model results

reveal that the OLS and empty models fail to take the spatial autocorrelation

into account. That the empty model fails to explain variation is expected since

no parameters are included, but that the full OLS model lies comparatively

close to the empty model and far from remaining models clearly indicates that

using OLS does not cater for the spatial variation present in the dataset. Of

the remaining two models, the contemporary model is the one with no spatial

autocorrelation, whilst the full model displays a weak but significant spatial

autocorrelation. The chief di↵erence between models explains why the full

models show spatial autocorrelation. In the contemporary model, individual

level parameters as well as contemporary contextual variables are introduced.

Variables and the multilevel approach account for the spatial variation in re-

gression residuals. However, in the full model, contextual variables from the

year 2001 are also included. The variables introduced improve the overall

model fit (see Table 1) but also introduce a spatial bias related to the sorting

of individuals during the years of upbringing.

Table 1 [About Here]

We specify the empirical models as:

g
ij

= a0 + a
ij

C
ij

+ a
j

x
j

+ t
j

+ q
ij

(4)

y
ij

= �0 + �
ij

C
ij

+ ↵
ij

E
ij

+ �
j

x
j

+ u
j

+ z
ij

(5)

E
ij

= b0 + b
ij

C
ij

+ b
j

x
j

+ v
j

+ e
ij

(6)

for individual i living in municipality j, g
ij

represents the log of compulsory

examination marks, y
ij

is the log of disposable income, �0 and a0 are the inter-
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cepts, x
j

represents municipality-level covariates, t
j

and u
j

are municipality-

specific random e↵ects. In order to measure income IOp, the correlation be-

tween circumstances C
ij

and E
ij

e↵ort needs to be examined. Again we follow

Roemer (1998) in treating the e↵ort variables, because a fundamental aspect in

this setting is the fact that the distribution of e↵ort within each circumstance

group is itself a characteristic of that type; since this is beyond individual con-

trol, it constitutes a circumstance. 3. Therefore only genuine e↵ort ê
ij

must

be derived. Finally we estimate the following model:

y
ij

= �0 + �
ij

C
ij

+ ↵
ij

ê
ij

+ �
j

x
j

+ u
j

+ z
ij

(7)

where ê
ij

is the estimate obtained in (6).

Using the estimates from reduced form equation (4) and from the

full model (7), we construct a counterfactual distribution of compulsory ex-

amination marks g
ij

and of disposable income y
ij

where all variation within

circumstance groups is eliminated as follows:

gc
i

= exp[C
i

â
ij

] (8)

and

yc
i

= exp[C
i

�̂
ij

] (9)

Subsequently the absolute and relative inequality of opportunity measures

are calculated both with a path-independent decomposable inequality index,

namely the mean logarithmic deviation (MLD) and with the Gini index as

IO = I(g
i

) and IO = I(y
i

). Following this procedure, we can see how much of

the inequality is due to inequality in opportunities and the share attributable

to e↵ort.

EIOp =
I(gc

i

)

I(g
i

)
(10)

and

IOp =
I(yc

i

)

I(y
i

)
(11)

3see Jusot et al. (2013) for other approaches
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Using the same techniques we further decompose the relative contri-

butions of spatial and aspatial factors to both circumstances and e↵ort par-

titions of inequality. This practice is able to pinpoint the extent to which

neighbourhoods influence given outcomes.

EIOp
spatial

=
I(gsc

ij

)

I(gc
ij

)
(12)

In a similar manner for earnings inequality:

IOp
spatial

=
I(ysc

ij

)

I(yc
ij

)
and IO

spatial

=
I(yse

ij

)

I(ye
ij

)
(13)

Therefore, IOp
spatial

quantifies the relative contribution of parental neighbour-

hoods to overall inequality due to circumstances and IO
spatial

indicates the

relative contribution of own-neighbourhood to overall inequality due to e↵ort.

5 Findings

The main goal of this study is to investigate the spatial sources of inequal-

ity in relation to neighbourhood characteristics to which individuals are ex-

posed. In this section we first briefly report the regression results of two models

on educational attainment and disposable income respectively, then we show

the outcomes of inequality decomposition into circumstances/e↵ort and spa-

tial/aspatial components. Before we proceed with the inequality decomposi-

tion, we verify the temporal extent of parental neighbourhood histories.

Table 4 shows the marginal e↵ects of circumstance variables on com-

pulsory examination marks. We employed the following 10 circumstance vari-

ables including the spatial covariates: gender, minority status (VM or not),

the highest level of education attained by parents and employment and the

marital status of parents, disposable income in 2001 and the share of the fol-

lowing attributes in the neighbourhood (k levels in parenthesis): single headed

69



families (k=40), same age children (k=40), families with at least 3 children

(k=40) and visible minorities (k=400). All coe�cients have expected signs

and are statistically significant at the 0.001 level (p values=0.00), except the

share of same-age peers in the neighbourhood that is also significant but at

the 0.05 level with a negative coe�cient sign. This result may be interpreted

as the distraction impact of having same-age peers in the neighbourhood due

to the longer time spent on non-school activities. However we acknowledge

the importance of socialization for the development of children. Besides, as

mentioned in the following paragraphs, having same-age peers in the parental

neighbourhood is positively associated with the subsequent disposable income

of adults.

Of the remaining variables, living in a VM-concentrated area shows

the strongest e↵ect on marks. A likely explanation for the strong e↵ect is that

the share of VMs in a neighbourhood might coincide with the poverty concen-

tration and other possible adverse characteristics of the locality. This can be

seen from the maps in Fig.1, containing all residential coordinates aggregated

to 100m x 100m units for the greater Stockholm area, where on the left hand

side the VM population in the 400 nearest neighbours for the whole popu-

lation is shown and on the right hand side the poverty concentration(OECD

criteria) among the 400 nearest neighbours is mapped for the whole Stock-

holm metropolitan area. These maps show how the two aspects of the locality

are statistically entangled, so that almost the same pattern of segregation is

observed for both attributes of neighbourhoods.

Furthermore, positive e↵ects are observed for students with employed

parents (slightly higher if the mother is employed), with the presence of at least

one highly educated parent at home and for students with high disposable in-

comes. Negative e↵ects are found for students with a single parent and those

who belong to VMs. The estimates for the single-parent and large families in

the neighbourhood as well as negative surroundings show a negative associa-

tion with educational attainment although the multilevel model controls the
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variability both at the individual and municipality level. The negative e↵ect of

single-mother concentration in neighbourhoods is a well explored phenomenon

especially in the US, the single-parent specification in our model shows a simi-

lar pattern in Sweden. Due to lower household income, these families reside in

worse neighbourhoods, therefore the variable performs as a proxy of residential

environment and housing conditions to which the study population is exposed.

A similar interpretation can be given to large-family concentration. Since large

apartments are not found in the central districts, these families reside in rural

areas or areas with rural character far from amenities. Furthermore, with three

or more children, mothers stop studying at an early age, therefore large-family

concentrated areas might be characterized by lower human capital accumula-

tion.

Table 4 [About Here]

To analyze disposable income, we added gender to the circumstance

variables from the previous model with the following e↵ort variables: compul-

sory examination marks, job/housing balance(k=10000) and observed com-

muting distance between job opportunities and individual residences and the

share of VMs (k=1600) in 2010. The variable for the highest level of educa-

tional attainment among parents interacts with ten city classes to account for

di↵erent degrees of industrialization in cities as well as functions in terms of

population density, commuting and remoteness following a classification used

by SALAR (Swedish Association of Local Authorities and Regions) 4. We ex-

amine the correlation between e↵ort and circumstances by equation (3) for all

e↵ort variables. This procedure guarantees that the e↵ort variables reflect only

pure e↵ort, without the influence of observed circumstances. Then we substi-

tute the resulting residuals terms in equation (2). Now, the circumstances in

4Multilevel regression showed a negative association with the disposable income of indi-

viduals and their parental education. To correct this we used a classification that sorted

municipalities by the degree of industrialization, population density, commuting and remote-

ness
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(5) are expected to reflect both their direct impacts on the response variable

and indirect e↵ects on 5 e↵ort variables. An important result to note is that

as we regress the VM concentration of own-neighbourhood in 2010 on the cir-

cumstance variables, most of the variation is explained by the VM share of the

parental neighbourhood. It is apparent from this result that the study pop-

ulation ended up in similar neighbourhoods as their parents. This residential

immobility, or similarity in neighbourhood characteristics over time, points

to long-term exposure to whatever e↵ects neighbourhoods produce and the

likelihood that these e↵ects are transmitted to o↵spring. People may sort into

neighbourhoods because of hedonistic motivations (quality services etc.) or be-

cause they might prefer to live with similar people. On the other hand, some

neighbourhoods might be well (or less well)-endowed in terms of public goods

and services because certain income/education groups and taxpayers live in

those areas. We do not attribute any causal links between the two. However,

from the equal opportunities perspective, being locked-in parental neighbour-

hoods (or to those with similar characteristics to parental neighbourhoods) is

clearly a factor influencing life chances. For this reason, even though we deem

individuals responsible for their choice of neighbourhood, it seems reasonable

to derive pure e↵ort purged of the influence of parental neighbourhood and

other circumstances through the procedure explained above.

Table 5 shows regression results of the multilevel model for the log of

disposable income. All the variables are statistically significant and those in

common with the previous model show the same association with disposable

income, except the share of same-age peers, which now has a positive coe�cient

sign. This is an interesting result that shows how the e↵ects of residential

contexts may di↵er over time. Growing up in an area with the strong likelihood

of interaction with similar-age peers probably increases the chances of finding

a better job and of being successful when employed through childhood ties.

Of the aspatial circumstance variables, being a female, belonging to

VMs and having a single parent are negatively associated and disposable in-
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come in 2001, parental education and employment positively associated with

disposable income. As for the spatial circumstances (i.e. parental neighbour-

hood attributes), the strongest e↵ects are found for the share of VMs in the

parental neighbourhood in 2001. Furthermore, growing up in areas with a high

proportion of single-parent and large families and having negative environmen-

tal surroundings are negatively associated with subsequent earnings. Turning

now to the discussion of the long-term e↵ects of neighbourhoods, we are in po-

sition to conclude that historical neighbourhood characteristics influence adult

earnings even though a range of individual and household characteristics are

present in the model.

The only aspatial e↵ort variable employed was compulsory examina-

tion marks. It shows a relatively lower e↵ect on the response variable, which

is in part attributable to the fact that all e↵ort variables were purged of any

influence of circumstances, as explained in the previous section. Regarding

the spatial e↵ort variables (i.e. own-neighbourhood characteristics) living in a

neighbourhood with a high proportion of VMs and the observed commuting-

distance between home and job are negatively associated and the degree of

job/housing balance positively associated with disposable income. Since the

spatial mismatch hypothesis first advanced by Kain (1968), there has been

great interest in understanding di↵erences in unemployment and job search

success rates, job accessibility and job/housing mismatch (see for example

Kain, 1992; Van der Klaauw & Van Ours, 2003; Houston, 2005). We are un-

aware of any application of job/housing (mis)match using the k nearest neigh-

bour algorithm, which in return accounts for both residential location-driven

and skill-based job accessibility.

Table 5 [About Here]

In terms of variation, the multilevel model indicates that the vari-

ance in disposable income is largely attributable to individuals. However it

is important to remember that the fixed part of the model includes not only
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individual-level e↵ects but also contextual variables that are defined individu-

ally both in parental neighbourhoods and when living independently of parents.

Moreover, the 1% variation is explained by the municipality level covariates.

If people were forced to live in certain municipalities, we would conclude that

this value is the inequality of opportunity produced by Swedish municipalities.

But since individuals are less restricted in their ability to choose where to live,

we consider them responsible for their choice of municipality.

Fig.2 shows the variables over which the decomposition is undertaken

and the second and third columns of Table 6 illustrate the magnitude of in-

come and educational inequality of the entire Swedish population born in 1985.

Based on the estimated coe�cients from equations (4) and (7), the overall op-

portunity share in total inequality in income is computed as 8.05% and the

overall opportunity share in educational inequality is 42.63% as measured by

MLD. Note that since the e↵ort partition contains both the e↵ort and the un-

explained part of disposable income variation and only the unexplained part

of variation in educational inequality, the IOp estimates are lower bound.

As far as disposable income inequality is concerned, the relative de-

composition of circumstances shows that 16.66% of the total share of circum-

stances is attributable to spatial circumstances (parental neighbourhood) and

83.33% is to aspatial circumstances. While the fair inequality decomposition

indicates that the 01.95% of the total e↵ort is due to spatial e↵ort (own-

neighbourhood) and the remaining part is caused by aspatial e↵ort (compul-

sary examination marks) and the residual of the model. The correspond-

ing decomposition for educational inequality shows that the spatial circum-

stances (parental neighbourhood) represent 36.44% of total circumstances.

Even though earnings and educational attainment are two di↵erent outcomes,

we can conclude that the neighbourhoods are more influential while the expo-

sure is ongoing.

Table 6 [About Here]
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We also conducted separate analyses for gender. The estimates of to-

tal inequality in educational attainment and income and related decomposition

results are shown in Table 7 for females and Table 8 for the male population. A

higher income IOp is observed among men than women. However, the relative

income IOp is almost identical for both. The latter result seems to be related

to the spatial sources of IOp. For women parental neighbourhood is more in-

fluential than for men (27.27% for women compared to 16.66% for men). On

the other hand, spatial e↵ort counts more for men than for women with 5.21%

and 4.06% respectively. Regarding the IOp in educational attainment, overall

circumstances explain a higher degree of variation for male students. Again

this result seems to be related to parental neighbourhoods. For male students

30.15 percent of the total circumstance pertains to spatial circumstances, it is

only 13.75 percent for female students.

Comparing the results in Table 7 concerning the e↵ects of spatial

circumstances, parental neighbourhood is more influential for the educational

attainment of male students, hence during exposure. Once in employment,

male students seem to be more successful in overcoming these e↵ects through

spatial e↵ort than the female population. That is to say the male population

uses mobility as an instrument at their disposal to generate additional income

and to decrease the gap with higher income groups. In line with the findings

for the whole population, for men the influence of parental neighbourhood

proportionally decreases from 2001 to 2010. However, it is interesting to note

that for the female population parental neighbourhoods cause a lower varia-

tion in marks during exposure and a higher variation in subsequent earnings

than males. One interpretation of this pattern is that while being exposed

to characteristics explained above for parental neighbourhoods, female stu-

dents might manage to focus on their studies and reflect the adverse e↵ects

of parental neighbourhoods to a relatively lower degree to their marks. Yet,

as females grow up, they might be building personal identities similar to that

of the residents of their parental neighbours. This is a relevant interpretation
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especially given the fact that neighbourhood statistics for single-parent and

large families mostly relate to women. Another view relates to mobility pat-

terns. For the female population, parental neighbourhoods potentially become

own-neighbourhoods since they seem to be immobile.

Table 7 [About Here]

Table 8 [About Here]

6 Concluding Remarks

A society is said to be equal in opportunities if the life chances of individuals

do not depend on the factors beyond their choice and e↵ort and the system-

atic di↵erences in any outcome that are explained by so-called circumstances

is considered as inequality of opportunity. It has been shown repeatedly that

parental background plays an important part in the life chances of individ-

uals. So far, however, there has been no discussion of the role of parental

neighbourhood as a source of illegitimate inequality.

In this paper investigating the inequality in educational and earnings

opportunities in Sweden for the whole 1985 cohort, we included parental neigh-

bourhood statistics in a matrix of circumstance variables and own neighbour-

hood characteristics in a matrix devoted to e↵ort variables. We constructed

egocentric neighbourhoods where a count of k-nearest population forms the

neighbourhood and the overall share of individuals who carry given char-

acteristics identifies the likelihood of interactions. In addition, the share of

negative components surrounding parental residence and a measure of hous-

ing/job market balance and the observed commuting distance between own-

neighbourhoods and job opportunities were added to the analyses. Instead of

the standard OLS approach, we utilized a multilevel model, which overcame

most of the spatial autocorrelation problem.
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The findings indicate that as well as the conventional aspatial cir-

cumstance variables, parental neighbourhoods strongly impact educational at-

tainment and even years after exposure they remain influential for earnings

distribution. Therefore, based on the evidence from Swedish data, we can

conclude that in order to obtain accurate measures of IOP, there is a defi-

nite need for a multidisciplinary approach that links individual outcomes to

neighbourhoods.

We hope that our findings may influence the way in which IOp anal-

yses are conducted both in terms of methods and techniques to quantify and

include characteristics of neighbourhoods. We are aware that the latter re-

quires detailed information on geo-locations. This is the central policy impli-

cation of our study, that data collection methods must be designed to contain

necessary geographic information on residents. The recent developments in

data collection methods associated with ”big data” significantly facilitate the

collection of contextual variables. For instance there is a vast quantity of in-

formation that is made freely available on internet through open maps and the

social-media data provides a wealth of information to researchers. Therefore,

what is left is the proper handling of geography. The findings of this study

recommend using bespoke neighbours to define an individual’s residential en-

vironment. Creating individualized neighbourhoods based on the k nearest

neighbour algorithm enabled us to overcome problems associated with admin-

istratively defined areas plagued by indeterminacy. Through this approach,

this paper has gone some way towards enhancing our understanding of the

temporal e↵ects of neighbourhoods.

Furthermore, our results show that the opportunity gap between in-

dividuals widens both for visible minorities and for the residents of visible

minority-concentrated neighbourhoods. Therefore, another important impli-

cation specific to Swedish data is that in order to decrease inequality in op-

portunities, an e↵ective policy must target the population belonging to the

visible minority population and their residential environment. Observed nega-
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tive e↵ects with proxies of housing conditions suggest a need for comprehensive

analysis of segregation not only by nominal categories but also by income.
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Tables and Figures

Table 1: Moran’s I Tests

Full model OLS Empty model MLM Contemporary model MLM Full model MLM

Moran’s I 0,005457 0,005947 0,000181 0,00104

Expect I -0,000025 -0,000025 -0,000025 -0,000025

z-score: 13,437288 15,425446 0,534853 2,98011

p-value: 0,00000 0,00000 0,592751 0,002881

84



Table 2: Variables

Variables Description

1. Individual Gender 1=Female, 0=Male

Visible Minority 1=VM, 0=Not a VM

Compulsory Exam marks

Family Background Parents’ Employment Status and Education, single-headed household

2. neighbourhood Share of Visible Minorities 2001(k=400) and 2010(k=1600)

Single-Parent Families 2001(k=40)

Share of families with 3 or more children 2001 (k=40)

Share of same-age peers 2001(k=40)

Negative Space Corine database 2001 (500m radii-based)

Housing/Job Market Balance 2010 k=10000 and commuting distance
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Table 3: K-neighbours

k-neighbours Possible Interactions

12 Stairs in building

25 Building

50 Bicycle basement, garbage recycling bins etc.

100 Block

200 Bus stop

400 Kiosk, familiar with topology, recognize all neighbours

800 Football field

1600 Small shop

3200 Day care, school

6400 Local square, di↵erent retail stores, dentist...

12800 Upper secondary schools, Big stores, communities (sports, religion)

25600 Hospital, place-belonging, municipality
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Table 4: Multilevel Model: Log of marks (Compulsory Exam)

Fixed Coef. Standard Error P values

1.Individual

Employment Father 0.2361 0.0180 0.000

Employment Mother 0.2614 0.0170 0.000

Parental Education 0.1694 0.0123 0.000

Single Parent -0.2322 0.0143 0.000

Visible Minority -0.1702 0.0313 0.000

Disposable Income(2001) 0.1310 0.0151 0.000

2.neighbourhood

Single-Headed Families(2001) 20 - 0.2323 0.0143 0.000

Large Families(2001) 20 -0.2253 0.0468 0.000

Same-Age peers 20 -0.2399 0.1136 0.035

Negative Space -0.2063 0.0411 0.000

Visible Minority(2001) 200 -1.0354 0.0937 0.000

Random E↵ects Parameters Estimate Standard Error

Municipality Level var( cons) 0.0094 0.0020

Var(Residual) 2.9919 0.0139

Number of obs = 92674
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Table 5: Multilevel Model: Log of Disposable Income

Fixed Coef. Standard Error P values

1.Individual

Gender -0.1644 0.0030 0.000

Compulsory Exam marks 0.0188 0.0008 0.000

Employment Father 0.0714 0.0047 0.000

Employment Mother 0.0784 0.0044 0.000

Parental Education

x CityClass2 0.0634 0.0108 0.000

x CityClass3 0.0252 0.0081 0.002

x CityClass4 0.1121 0.0223 0.000

x CityClass5 0.0808 0.0151 0.000

x CityClass6 0.0508 0.0220 0.021

x CityClass7 0.1039 0.0144 0.000

x CityClass8 0.0968 0.0303 0.001

x CityClass9 0.0850 0.0135 0.000

x CityClass10 0.0845 0.0200 0.000

Single Parent -0.0249 0.0037 0.000

Visible Minority -0.1152 0.0081 0.000

Disposable Income(2001) 0.1211 0.0041 0.000

2.neighbourhood

Large Families(2001) 40 -0.0382 0.0123 0.020

Single-Headed Families(2001) 40 -0.0789 0.0113 0.000

Same-Age peers 40 0.0790 0.0296 0.002

Negative Space -0.0291 0.0107 0.007

Visible Minority(2001) 400 -0.3598 0.0248 0.000

Job/Housing Balance(2010) 10000 0.2074 0.0129 0.000

Commuting Distance(2010) -0.0117 0.0007 0.000

Visible Minority(2010) 1600 -0.6481 0.0205 0.000

Random E↵ects Parameters Estimate Standard Error

Municipality Level var( cons) 0.0024 0.0003

Var(Residual) 0.2045 0.0009

Number of obs = 91413
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Table 6: Inequality Decomposition

Income Inequality Educational Inequality

Total Inequality (GINI) 0.2674 0.1749

Total Inequality(MLD) 0.1315 0.2667

Inequality of Opportunity(GINI) 0.0695 0.1528

Inequality of Opportunity(MLD) 0.0106 0.1137

E↵ort Circumstances E↵ort Circumstances

Contibuiton(%) to Total inequality (MLD) 91.95% 8.05% 57.37% 42.63%

Aspatial (residual) Spatial Aspatial Spatial Aspatial Spatial

Spatial/Aspatial (MLD) 98.05% 1.95% 83.33% 16.66% residual 63.06% 36.94%
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Table 7: Inequality Decomposition Female Population Only

Income Inequality(Female) Educational Inequality (Female)

Total Inequality (GINI) 0.2495 0.1657

Total Inequality(MLD) 0.1105 0.2552

Inequality of Opportunity(GINI) 0.0548 0.1436

Inequality of Opportunity(MLD) 0.0058 0.1091

E↵ort Circumstances E↵ort Circumstances

Contibuiton(%) to Total inequality (MLD) 94.76% 5.24% 57.24% 42.76%

Aspatial (residual) Spatial Aspatial Spatial Aspatial Spatial

Spatial/Aspatial (MLD) 95.94% 4.06% 72.73 % 27.27% residual 86.25% 13.75%
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Table 8: Inequality Decomposition Male Population Only

Income Inequality(Male) Educational Inequality (Male)

Total Inequality (GINI) 0.2729 0.1784

Total Inequality(MLD) 0.1423 0.2747

Inequality of Opportunity(GINI) 0.0623 0.1601

Inequality of Opportunity(MLD) 0.0082 0.1342

E↵ort Circumstances E↵ort Circumstances

Contibuiton(%) to Total inequality (MLD) 94.02% 5.80% 51.12% 48.88%

Aspatial (residual) Spatial Aspatial Spatial Aspatial Spatial

Spatial/Aspatial (MLD) 94.79% 5.21% 50.00 % 16.66% residual 69.85% 30.15%
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Figure 1:
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Circumstances Effort

Educational	IOp q Aspatial
• Visible	Minority	
• Parents’	Employment	Status
• Parental	Income
• Parental Education
q Spatial
• Parental	Neighbourhood

• Residual

Income	IOp q Aspatial
• Visible	Minority	
• Gender
• Parents’	Employment	Status
• Parental	Income
• Parental Education
q Spatial
• Parental	Neighbourhood	

q Aspatial
• Compulsory	Education Grades	
• Residual
q Spatial
• Own-Neighbourhood

Figure 2: Decomposition

93



Chapter 4

A Gini Measure of Spatial

Segregation by Income
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A Gini measure of Economic Segregation ⇤

Umut TÜRK

Abstract

This paper proposes a new measure of spatial segregation by income

that uses the Gini index as the basis of measurement. Gini Index of

spatial segregation (GSS) is a ratio of two Gini indices comparing in-

equality between neighbourhoods to inequality between individuals at

the macro area where neighbourhoods are nested. Unlike other measures

of income segregation found in literature, the index uses individualized

neighbourhoods. Depending on the population density and proximity

between individuals, an individualized neighbourhood is defined both

as an area constituted within a radius or as a population-count method

around an individual geo-location. The GSS is suitable for the mea-

surement of residential segregation by any continuous variable. It is

sensitive to spatial configuration of areas, easy to compute and inter-

pret and suitable for the comparative studies of segregation over time

and across di↵erent contexts. An empirical application of the index is

illustrated using data from Sweden covering the entire population in the

years 1994, 2004 and 2014. We show how the definition and scale of the

neighbourhood dramatically a↵ect the measures of economic segrega-

tion.

⇤This chapter is based on a joint work with Eugenio Peluso (DSE, University of Verona,

Italy) John ÖSTH (Department of Social and Economic Geography, Uppsala University,

Sweden), Francesco Andreoli( Luxembourg Institute of Socio-Economic Research, LISER,

Luxembourg)
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1 Introduction

The measurement of residential segregation by income (hereinafter Economic

Segregation ) has attracted relatively less attention than measurement of res-

idential segregation by race or occupation. Economic and racial segregation

share many factors in common: both are distinctively spatial phenomena, may

occur from similar dynamics and are often empirically entangled (Reardon,

2011). Whereas the literature studying income segregation faces the challenge

of measuring segregation along a continuous dimension, hence it cannot eas-

ily borrow indices from the racial segregation literature. Racial segregation

refers to the uneven distribution of people belonging to di↵erent groups across

physical space, while economic segregation amounts to quantify the income

homogeneity or diversity in the areas of residents.

The e↵orts to identify segregation in urban spaces is not new to liter-

ature. Previous studies by sociologist, economists and geographers theorized

the distinctive distribution of social classes in cities. The patterns of segrega-

tion among people by ethnicity, race, social class and among institutions, roads

and variety of economic activities would be observed in cities growing radially

from a core as rings outwards (The Concentric Zone model by Burgess (1928))

or as star-shaped, sector base (The Second Theory Model by Hoyt (1939)) or

in a multiple core fashion, where the number and size of cores (nuclei) vary

highly for di↵erent cities prevailing from historical development, geography and

culture (Multi-core Model by Harris & Ullman (1945)). Most residential segre-

gation studies use these theories as a basis to understand urban structure. The

similar patterns of residential segregation has been confirmed repeatedly. The

e↵ects and causes of the segregation have been shown to prevail from house-

holds sorting across neighbourhoods with di↵erential public goods/services

that are excludable for location (Tiebout, 1956; Epple et al., 1984). Similarly,

by the preferences of neighbourhood racial composition (Schelling, 1969), by

education and income (Jargowsky, 1996), by exogenous factors such as changes
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in spatial distribution of opportunities and due shifts from manufacturing ac-

tivities to service-oriented economies (Moreno↵ & Tienda, 1997) and by de-

mographic changes: female participation in the market, aging population thus

changes in demographic composition of cities (Wyly et al., 1998). Moreover,

the e↵ects of segregation have been shown to be related to inequality in growth

(Burgers & Musterd, 2002; Reardon & Bischo↵, 2011) and the distribution of

top 1% income in the space (Essletzbichler, 2015). However, the scale in which

these factors become evident has started to attract scholarly attention only re-

cently.

To quantify the relative clusters of people by socioeconomic charac-

teristics, any measurement has to aggregate them into some spatial unit so

called ”neighbourhood”. The measurements are likely to vary depending on

the definition of neighbourhood chosen. Especially, when relied on some prede-

fined administrative unit such as census tracts or municipalities findings can be

erroneous. This is what has become known as the modifiable areal unit prob-

lem (MAUP) (Openshaw, 1984; Wong, 2004). The MAUP occurs both with

the scale problem, where the same data portrays di↵erent spatial patterns for

its varying levels of aggregates,and with the zoning problem, where altering

the grouping schemes produce di↵erent results even if the units are of the same

scale. In particular to racial segregation analysis, the scale problem has been

recognized and addressed in several ways (Wong, 1993, 1999, 2005; Reardon

et al., 2008, 2009). Since the residential segregation by definition relates to

clusters of people, the way in which the geography is handled becomes not only

a statistical issue but also a crucial strategy to study the e↵ects and causes

of segregation. A way to address this issue is to construct scalable egocentric

local environments. Depending on the definition of neighbourhood either a

set of varying radius (see Lee et al., 2008, for racial segregation) or varying

population sizes around an individual location so called k nearest neighbours

(knn) used (see Östh et al., 2015, for interaction among racial groups).

The aim of the present work is to construct an index to perform a com-
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prehensive investigation of residential segregation by income with a particular

attention to the scale problem. The proposed index compares the inequality

between individualized-neighbourhoods to the inequality between individuals

at the macro area where neighbourhoods are nested. It is flexible in deciding

the definition and size of neighbourhoods.

Section 2 recalls some relevant tools used in income segregation mea-

surement. Section 3 presents the new GSS index. Section 4 provides an em-

pirical application to Swedish context. Neighbourhoods are considered both

as the area constituted within a radius that is drawn around each individual

location and as the nearest population-count approach using the information

of residential coordinates. Observing the diverse patterns in segregation mea-

surements in response to the definition of neighbourhood chosen, we propose

a variant of k nearest neighbour algorithm that makes use of spatial weights

matrix (see Getis, 2009). In return, this new approach communicates both

the spatial distribution of individuals and the population density constituted

in each neighbourhood. The paper shows how the definition and scale of the

neighbourhood influence the measures of economic segregation and the use

of individual neighbourhoods permits managing the related weakness of the

traditional tools and to obtain robust results.

2 The Gini indices of segregation

Despite the problems associated with the dissimilarity index, it remains the

most di↵used index of segregation. It measures the degree to which the mi-

nority proportions of areal units di↵er from the minority proportion of the

whole area in absolute terms (James & Taeuber, 1982). Hence, the dissimi-

larity index is designed to measure the unevenness in the distribution of two

population groups. The fundamental issue associated with the index is that it

is sensitive to the share of minority population in di↵erent spatial units and to

the size of the overall areal unit (Cortese et al., 1976). On the other hand, it is
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insensitive to the reallocation of minority groups among areal units where mi-

nority proportion is less or higher than the overall area’s minority proportion

(James & Taeuber, 1982). Even so, the dissimilarity index is widely used for

the measurement of economic segregation in a similar manner to racial segrega-

tion. Typically, the index computes the uneven distribution of two population

groups defined under and above to a given income threshold. However, this ap-

proach discards considerable amount of information hidden underneath income

distributions (Abramson et al., 1995; Massey et al., 2003, see).

There are many other alternative indices found in literature: the

index of exposure, relative concentration, absolute centralisation and spatial

proximity (Massey & Denton, 1988), nearly all inequality indices can measure

dichotomous /categorical segregation (Kim & Jargowsky, 2005). These include

entropy and Atkinson indices for analyses of evenness in distributions.

In the present paper we focus on the Gini segregation indices. In

its original form, the Lorenz curve is a representation of sorted cumulative

percentage of total income as a function of cumulative percentage of total

households (Lorenz, 1905). Whereas, the Gini coe�cient is a measure of the

area between Lorenz curve and the line of perfect equality, normalized by the

total areal under the 45 degree line. As for the measurement of racial segre-

gation, the index performs similar to the dissimilarity index, where the Gini

coe�cient represents the area between Lorenz curve normalized by the total

area under 45 degree line for the minority populations weighted across all pairs

of areal units (Massey & Denton, 1988). It takes a maximum value 1 when the

minority and majority members of the society are perfectly segregated and 0

for no segregation. This form of the Gini is limited to measure the segreation

along two population groups only. Reardon & Firebaugh (2002) proposed

extensions of six segregation indices measuring multi-group segregation, in-

cluding the Gini. As a function of the disproportionality in group proportions

across organizational units, the index is interpreted as the weighted sum of the

weighted average absolute di↵erence in group proportions between all possible
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pairs of units over multigroups. Kim & Jargowsky (2005) developed a version

of the Gini segregation index that accounts for continuous variables. By this

extension the Gini becomes suitable for the measurement of income segrega-

tion, where the Gini for income disproportionality among neighbourhoods is

normalized by the individual level Gini.

The forms of the Gini index listed above do not account for the spa-

tial configuration of areas, therefore, are subject to the problems associated

with MAUP. Also to ”checkerborad phenomenon” occuring when an index is

insensitive to spatial proximity between areas(White, 1983). A spatial ver-

sion of the Gini is proposed by Dawkins (2004), it measures racial segregation

given the spatial proximity of neighbourhoods. The decomposition of the in-

dex produces within and between components and also a residual term that

captures the correlation of neighbourhood’s own position and the position of

its neighbours when ranked with some proximity among neighbourhoods. Ex-

tending the standardized spatial Gini index , Dawkins (2007) proposed spatial

ordering index calculated from either a nearest neighbour or a monocentric

spatial ordering of neighbourhood per capita income and the Gini index of

between-neighbourhood income segregation. The index represents a ratio of

two covariances where numerator is the covariance between neighbourhood ag-

gregate income and spatial reranking of neighbourhood whereas denominator

is the covariance between neighbourhood aggregate income and the average

ranking of neighbourhood. However, the index does not address the scale is-

sue. Table 1 shows these Gini segregation indices with their corresponding

papers.

3 The GSS Index

In this section we introduce the Gini index of spatial segregation (GSS). Given

a population of N individuals, let y
i

be the income of individual i and µ
is

be the

average income in individual i’s neighbourhood. The latter can be either radii-
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based (considering people comprised within a circle of a given radius drawn

around individual i) or a count of the k nearest neighbours around i’s location.

Therefore, the shape (s) of the neighbourhood varies for the definition chosen

and the size (n
is

) can be set to meet various scales of geography. Note that

for any population size n
is

6=N , µ
s

will di↵er from µ.

The GSS is a weighted measure of income homogeneity/diversity in

the areas of residents. It is defined as the ratio of two Gini indices as follows:

GSS(y, n) =
1

N

2
µs

P
i

P
j

|µ
is

� µ
js

|
1

N

2
µ

P
i

P
j

|y
i

� y
j

|
(1)

where

µ
is

=

P
j2s yj

n
is

(2)

The GSS index is the ratio of the between neighbourhoods inequality I
B

to the

individual level inequality I
G

. It takes a minimum of 0 (no segregation) in two

case scenarios: if the numerator is zero thus the between spatial inequality is

zero or when the size of the neighbourhood is equal to the size of the whole

study area: n
is

= N . While the index takes maximum value 1 (perfect seg-

regation) if the distribution of individualized-neighbourhood average incomes

is identical to that of individual incomes thus when I
B

= I
G

or when the size

of the neighbourhood n
is

= 1 every neighbourhood consists of one individual

only.

The GSS measures the extent to which neighbourhoods di↵er from

each other in terms of income, without concerning the fairness in income distri-

butions. In a given area, neighbourhoods might be populated solely by lower

income groups. In such a case the GSS shows lower values. This implies a

lower residential segregation by income for this particular area.

The index has several advantages. First, in contrast to Kim & Jar-

gowsky (2005) the index is sensitive to the spatial configuration of neighbour-

hoods so that it overcomes the checkerboard problem. Second, it does not

require the use of predefined administrative units, hence it is not subject to
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the MAUP. Finally as a ratio of two Gini indices GSS preserves several prop-

erties of the index. It respects to the Pigou-Danton principles of transfers, it

is less sensitive to outliers, deviations from normality and it is suitable for the

segregation measure of continuous variables. Finally normalizing the index by

individual level income provides an ideal research environment for comparative

studies among di↵erent contexts and over time.

4 Empirical Application

In this section we test how the GSS performs with an empirical application

to Swedish register data for the years 1994, 2004 and the latest year available

in Place database 2014. The database contains the disposable income and

residential coordinates of entire population. A common problem shared by

previous studies of segregation is the choice of predefined administrative units

of analysis. This study uses residential the coordinates that are available for

each individual as 100x100m grid units in the database.

We begin by creating individualized-neighbourhoods for each indi-

vidual’s geo-location in the country. As far as the approach to the neighbour-

hood is concerned, the best method that renders the spatial boundary of the

neighbourhood must be chosen. The optimal method potentially varies among

di↵erent context and especially with the population density at the interested

area. Both the radii and knn approaches have their advantages and disad-

vantages. The radii-based neighbourhood depicts the geography constituted

within a predetermined radius, therefore the space as the point of interest.

This is a desirable way of studying geography when the analyses focus on

locations, services: parks, recreational areas and when there are no changes

expected in terms of population density in the space defined. But when the

concern is the spatial relationship between individuals, knn approach might

be more appropriate. As a population-count method knn successfully illus-

trates the interaction possibilities between individuals, when the areas are not
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populated too sparsely. In this paper we make use of both approaches and we

propose an intermediate method that benefits the advantages of two.

First, we construct neighbourhoods based on a knn algorithm. Each

neighbourhood contains the average disposable income earned by nearest 100

200 400... 51200 working-age (20-64) people for each residential location as

follows: µ
ik

=
P

i

yi

k

. Since we work on the entire Sweden, the physical sep-

aration between neighbours is an issue that we have to handle especially for

the northern parts of the country. For this reason, we introduce a distance

decay model f(�, d
in

): a function of distance between individual i and their k

nearest neighbours n = 1, 2, 3, ..., k with a distance decay factor �. This oper-

ation spatially weights the observations, so that as the distance between i and

k nearest neighbours increases ks’ relative contribution to the average income

decreases. Therefore, for densely populated metropolitan areas, the neigh-

bourhood average incomes remain similar to those produced by knn algorithm

without a decay factor. The computations are carried out by the EquiPop

software (Östh, 2014). The EquiPop permits introducing a decay factor prior

to computations start and produces outputs both with and without spatial

weigths in an e�cient way.

Since the daily interaction behavior of residents is not feasible to

extract from the data and given the spatially disaggregate nature of income

distributions, � is derived mathematically by half-life models1 as 0.0001153

1Common way to determine distance decay factor is to use spatial interaction mod-

els(SIMs) where observed flows of people between origins (O) and destinations(D) are re-

gressed over distances between all possible O-D pairs. This operation reduces the overall

deviation from the mean commuting distance in a given population. Mathematically derived

half-life models (HLMs) are valid alternatives to SIMs when the flows of people are not ob-

served and in the presence of spatially highly disaggregate data. HLMs use median value as

departure. This is because the median commuted distance always occur at a distance where

half of the population commute longer and half of the population commute shorter distance.

Therefore, knowing the maximum distance from i to its kth neighbor, we can say that the

probability of interacting with neighbours equals 0.5 at the observed median distance. Then

for the decay function to describe this probability at various distances, the probability-value
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with an exponential decay function. Then the spatial weights function becomes

exp(��d
in

) for each pair of neighbours.

Table 2 shows the GSS values for three years where each value cor-

responds to a di↵erent size of neighbourhood and every second column of a

given year reports the index weighted with decaying distance. While the last

row shows the overall Gini of disposable income for each year. The slight

increase in the Gini from 1994 to 2004 is reflected by the GSS measured at

neighbourhood size k = 100, for larger k values instead a similar segregation

pattern yields. Therefore, from 1994 to 2004 residential segregation by income

has increased only at a very small geography i.e. among 100 nearest neigh-

bours. Moreover, the GSS values for the year 2014 show that the increase in

inequality at individual level is reflected at any scale of geography.

Furthermore, using the spatial analyst tools available in ArcGIS, we

construct radii-based neighbourhoods where the average disposable income in

i’s neighbourhood is measured as µ
ir

=
P

j2r yi

nir
. Computations are repeated for

the radius sizes: r = 100m, 1km, 5km, 25km. The estimates reported on Table

3 show increasing index values parallel to increase in individual level Gini over

years. There is no direct equivalence between r and k in how much geography

is depicted as we move from one definition to other. Fig.1 o↵ers a useful

picture how the GSS varies between years and for di↵erent neighbourhood

sizes and definitions. On the left-hand side a similar pattern is observed for

the years 1994-2004, whereas the GSS in year 2014 (grey line) lies above for all

k values. Therefore, what we observe from knn approach is that the residential

segregation by income remained at a similar rate from 1994 to 2004 despite a

slight rise in the overall inequality and it increased in 2014. The radii-based

approach (below) instead shows a clear ranking among years 1994, 2004 and

2014 with a similar response to di↵erent r values. Compering pictures in the

Fig.1, it is evident that the radii-approach exhibits a higher level of segregation

will decay from one at no distance towards almost zero at far, far away (see Östh et al.,

2016, for details).
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than knn. But the GSS values with decay factor display a similar pattern to

radius. Both show a decreasing at a decreasing rate for increasing size of

neighbourhoods. The di↵erence between k-nearest and radii-based neighbour

approaches becomes clear as we move to the analysis at the municipality level.

To show how economic segregation varies by geographic locations

within the country, we compute the GSS separately for 290 Swedish munic-

ipalities. Each value represents the ratio of the inequality between average

incomes earned in the bespoke neighbourhoods of people who live in the same

municipality and the total inequality in the country. We use both radii and

k-nearest neighbour aggregates and for the k-nearest neighbour approach we

reporte values both with and without a decay factor (=0.0001153). The re-

sults for the year 2014 with di↵erent radius and k values are shown in Fig.2.

The colours correspond to the fixed intervals of GSS values for all maps. This

makes easier to compare the values obtained by the two approaches to neigh-

bourhoods.

By looking at the maps for smaller to higher r and k values, a lens

scans economic segregation from block level to larger units of localities such

as census tracks. Smaller r and k values may communicate a residential seg-

regation in a couple of buildings and as the scale gets larger the GSS may

communicate the economic segregation in an area including schools, stores,

play grounds etc. The radius and knn approaches display di↵erent patterns

especially for lower values of r and k. As stated above, the reason for this is

that the radii-based approach focuses on the geography only, meaning that the

number of people living within a given radius varies between locations (and

time) and this is not catered for by this approach. This is evident especially

on the first row of Fig.2 with r=100 meters, at this scale the GSS values are

very high. They vary between 0.4-0.6 for all municipalities. Even for a small

k value as 200 (may be equivalent to a block in a densely populated area), a

much lower segregation is observed, close to zero in some municipalities but

still retaining the high GSS values for metropolitan areas.
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As opposed to radii, knn approach focuses on people and neglects

how far they live from each other. This becomes a relevant issue especially for

the sparsely populated areas in the northern parts of the country where kth

neighbour might reside kilometers away from i. The second and the third rows

of the figure o↵er a useful comparison for this respect. For a smaller value

k = 200 both maps display a similar pattern, while for intermediate k levels,

decayed GSS values capture some of the segregation pattern similar to radii

approach. Therefore, the maps on the third row lie somewhere between radii

and knn maps, rendering both the number and the geographic distribution of

people. Fig.3 shows the change in GSS values from 1994 to 2014. The maps are

organized in the same way as in Fig.2. In the northern parts of the country

economic segregation mostly remained the same and decreased in couple of

northern municipalities. While in the metropolitan areas such as Stockholm,

Malmö and Göteborg, it has increased, even for higher aggregates of people

i.e. for larger r and k values.

In the next step we report spearman2 rank-order correlations between

the computed GSS values and several characteristics of the municipalities to

explore the properties of areas signaling the current state of the residential

segregation by income. The municipalities are characterized based on the vari-

ables provided by Statistics Sweden. We use the information on the changes

in employment by an application of the Martin resilience-employment index

(Martin, 2012) measuring the growth rate of employment overtime and ex-

pressed as the change over time � = t� t+ 1 and employment levels at local

(Er) and national level (EN).

REI
i

=
(�Er/Er)� (�EN/EN)

|�EN/EN |

We find a significant positive correlation between REIs calculated

for the time intervals 1993-1994 and 2013-2014 and the GSS indices for 1994
2Spearmans correlation coe�cient is a statistical measure of the strength of a monotonic

relationship between paired data.

106



and 2014, respectively. This can be interpreted as a degree of job/housing

balance, that the population tend to cluster both as employed/unemployed,

therefore employment growth is associated with economic segregation and by

the earnings generated from di↵erent types of jobs. We find negative corre-

lation with cost-equalization grants per municipality, this suggests that the

equalization grants ensure a degree of residential mixture by income. More-

over, there is a significant positive correlation with election participation rates

and strong positive correlation with the number of low/high educated people in

areas. These two correspond to the sorting behavior of individuals by political

orientation/politicization and education.

Fig.4 displays how the spearman correlations vary for the GSS indices

computed for increasing k values in 1994 and 2014. In both years a constant as-

sociation is observed with REI and election participation rates for any scale of

geography, whereas in both years the correlation with cost-equalization spend-

ing and number of low/high educated people decreases after k = 6400. This is

probably because at this scale we exceed the municipality size. Interestingly,

despite the increase observed in economic segregation from 1994 to 2014 (see

Table 2), the exact pattern of sorting by education is observed in the two years

in response to varying scales of the neighbourhood.

Sweden has three levels of government; the central government(staten),

county council (landstinget) and municipality (kommunen). All three are al-

lowed to tax personal income and the municipalities provide public services

and are subject to income, cost and structural equalization grants. The first

two are purely re-distributive, the income equalization grants are transferred

from the high income municipalities to the ones with lower incomes and the

cost equalization grants are transferred to municipalities with less favourable

cost structure from the ones with better conditions. The structural equaliza-

tion instead is a grant from the central government to municipalities with a

small population or a high share of unemployment.
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The strong local government sector in Sweden o↵ers a useful research

environment for the study of economic segregation, particularly useful to pos-

sible policy implications for other contexts. Using OLS regressions, we test

the e↵ects of all three equalization grants took place in 2013 on the GSS val-

ues computed with knn (decayed) approach to neighbourhoods for the year

2014 (see Appendix 1). We find that the economic segregation decrease with

both the income and structural equalization grants at any scale of neighbour-

hood. Moreover, looking at the cost equalization grants for di↵erent structural

costs, again the transfers are associated with a degree of residential mixture

by income. For instance, the grants to equalize costs of heating, public trans-

portation, upper secondary and compulsory schools decrease the economic seg-

regation in the following year. Whereas the municipalities that receive higher

grants for the costs of streets&roads and the grants devoted to children with

foreign background on average experience higher degree of economic segre-

gation. A possible interpretation as far as the grants for streets&roads are

concerned is that the municipalities in need of grants due their relatively less

favorable infrastructure may show higher physical separation between classes.

Similarly, the municipalities that are eligible to receive grants for children with

foreign background constitute higher minority population that potentially clus-

ter in neighbourhoods due to relatively lower earnings.

5 Conclusions

So far, the segregation measures found in literature have been mainly developed

to measure the extent to which individuals are clustered by groups: typically

race, ethnicity, gender in occupations. The residential segregation by income

instead has not received much attention in the literature. The most of the

existing studies of the latter use the indices originally developed for racial

segregation by dividing population into two categories; being under and above

to a given level of income i.e. poor and not poor. By restricting the analysis
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to two groups, the indices do not make full use of the available information.

Moreover, nearly all existing indices are aspatial in nature, that they do not

take into account the distribution of individuals in space. Although there exits

few spatial ones, they are rather di�cult to compute and nearly all use some

administratively defined area for the unit of analysis.

In this paper, we o↵er a new measure of residential segregation by in-

come based on a individualized-neighbourhood approach and therefore makes

use of the full information on the income distribution of residents and their

distribution in space. The proposed index allows to handle the geography flex-

ibly as neighbourhoods can be constructed by both radii and knn approaches

and the scale can be set to varying levels to meet distinctive characteristics of

di↵erent contexts. This last point allows the index to avoid robustness issues

associated with MAUP and checkboard phenomenon, the problems that may

severely distort the sensitivity of the results of spatial analyses. Additionally

as a ratio of two Gini indices, the index has the advantage of preserving de-

sirable properties of the Gini. It respects to the Pigou-Danton principles of

transfers, it is less sensitive to outliers, deviations from normality and finally

it is suitable for the segregation measure of continuous variables.

Moreover, using the Swedish register data we have tested the e�-

ciency of the index. We have used both approaches to individualized neigh-

bourhoods and by employing spatial weights matrix based on the distance

between neighbours we have proposed an intermediate approach that benefits

the advantages of both. In particular to Sweden, the estimates suggest that

the economic segregation has remained at a similar degree from 1994 to 2004.

Although it has increased from 1994 in 2014 in parallel to rise in inequality,

correlation analysis has shown that the individuals sort into neighbourhoods

almost identically in both year. Additionally, the analysis on the influence of

transfers among municipalities has illustrated that as the smallest local gov-

ernments in Sweden, the municipalities can reduce the economic segregation

through equalization grants of income, and several structural costs.
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Tables and Figures

Table 1: Gini indices of Segregation a
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Table 2: GSS for di↵erent k values

k GSS 94 GSSdecay 94 GSS 04 GSSdecay 04 GSS 14 GSSdecay 14

100 0,315 0,319 0,323 0,327 0,328 0,333

200 0,287 0,294 0,287 0,293 0,298 0,306

400 0,264 0,272 0,260 0,269 0,274 0,286

800 0,241 0,253 0,235 0,247 0,2548 0,270

1600 0,220 0,235 0,215 0,231 0,237 0,258

3200 0,200 0,220 0,199 0,218 0,221 0,248

6400 0,179 0,204 0,180 0,207 0,204 0,237

12800 0,156 0,188 0,158 0,192 0,182 0,222

25600 0,139 0,177 0,139 0,180 0,161 0,209

51200 0,121 0,172 0,120 0,177 0,140 0,205

GINI(Individual) 0,257 0,262 0,332

Table 3: GSS for di↵erent r values

r GSS 96(radius) GSS 04(radius) GSS 14(radius)

100m 0,436 0,475 0,497

1000m 0,290 0,327 0,373

5000m 0,212 0,264 0,302

10000m 0,186 0,236 0,267

25000m 0,158 0,186 0,209

GINI(Individual) 0,257 0,262 0,332
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Figure 2: 2014 GSS values-first row radii-approach-second row knn-third row

knn with decay
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Figure 3: Deviation GSS values year 2014-year 1994. First row radii-approach-

second row knn-third row knn with decay
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Appendix 1

a

(1) (2) (3) (4)

VARIABLES GSS14decay 200 GSS14decay 800 GSS14decay 3200 GSS14decay 6400

Structural Eq. (2013) -0.698*** -0.912*** -1.454*** -1.152***

(0.212) (0.235) (0.240) (0.238)

Income Eq. (2013) -0.141*** -0.140*** -0.129*** -0.116***

(0.0324) (0.0337) (0.0276) (0.0302)

Cost Eq. (2013):

Heating Eq. (2013) -3.388* -4.163** -4.702** -4.334**

(2.020) (1.950) (1.850) (1.884)

Streets&Roads (2004) 2.618** 3.167** 2.824* 3.085*

(1.179) (1.257) (1.695) (1.662)

Public transportation (2013) -1.364*** -1.245*** -1.150*** -0.895***

(0.282) (0.289) (0.305) (0.330)

Elderly Care (2013) -0.206** -0.223*** -0.463*** -0.525***

(0.0800) (0.0847) (0.0941) (0.0954)

Foreign Children (2013) 5.739*** 6.238*** 7.288*** 7.448***

(1.221) (1.320) (1.501) (1.571)

Upper secondary school (2013) -0.408** -0.534*** -0.541*** -0.697***

(0.192) (0.202) (0.208) (0.222)

Compulsory School (2013) -0.591*** -0.617*** -0.958*** -1.016***

(0.158) (0.171) (0.194) (0.202)

Gini (2014) 2.053*** 1.757*** 1.210*** 1.068***

(0.150) (0.156) (0.134) (0.146)

Constant 0.610*** 0.910*** 1.736*** 1.498***

(0.214) (0.244) (0.241) (0.230)

Observations 290 290 290 290

R-squared 0.861 0.838 0.823 0.814

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

aNotes: i) Model controls for the Gini index computed at the municipality level.

ii) Statistics Sweden provides information on the total amount of income and struc-

tural equalization grants transferred among total of 290 municipalities, for the cost

equalization grants instead several structural factors are available. iii) Data source:

http://www.statistikdatabasen.scb.se
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