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“Philosophy [nature] is written in that great book which ever is before our eyes -- I 

mean the universe -- but we cannot understand it if we do not first learn the language 

and grasp the symbols in which it is written. The book is written in mathematical 

language, and the symbols are triangles, circles and other geometrical figures, without 

whose help it is impossible to comprehend a single word of it; without which one 

wanders in vain through a dark labyrinth.”  

Galileo Galilei 
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 Abstract 

The general aim of the experiments described in my Thesis is to study how the brain 

creates a representation of the external world. In particular I have investigated three 

different aspects that make possible our subjective visual experience: Visual 

processing, short-term memory and the resulting perceptual awareness.  

The first part of the Thesis deals with visual perception and visual awareness by 

describing experiments involving behavioral tasks in brain damaged and healthy 

subjects. In particular, it is focused on when and where awareness arises. We used 

moving stimuli, because they can reach the motion area V5 bypassing the primary 

visual area V1 and therefore motion represents a suitable feature to study unconscious 

vision. Chapter 1 deals with the differences in the event-related potential (ERP) 

response between static and moving gratings in healthy subjects. We found that 

motion selectively affects N1, i.e. a negative component mainly recorded in the 

posterior electrodes of the right hemisphere. This study was preparatory to the 

experiment described in Chapter 2 in which we tested patients with hemianopia to 

understand how plastic reorganization of visual areas can reinstate unconscious 

(“blindsight”) or conscious vision. As to the main result of this study, we found one 

patient who showed both implicit above chance discrimination performance with 

motion stimuli and an unrelated presence of degraded awareness of the stimulus 

presented to the damaged field. As to ERP recording, we found reliable responses 

correlating either with the patient’s unconscious above chance behavior (Late 

Posterior Negativity) or with the subjective experience of degraded vision during 

stimulus presentation (N1-P2a components). Taken together, these results suggest an 

onset of visual awareness (albeit rudimentary) during early visual processing.  

The second part of the Thesis deals with short-term memory (STM), that is, a crucial 

processing stage for the representation of the external world. The aim of this part is to 

investigate inter-individual differences in STM capacity and the effect of cognitive 

training. Instead of using a classical approach in which subjects are actively involved 



7 
 

in a task we employed a resting state paradigm. Chapter 3 describes a study using 

magnetoencephalography (MEG) to investigate connectivity at rest to assess if 

individual differences in intrinsic brain activity can predict inter-subject variability in 

STM. We found that intrinsic brain activity can predict the behavioral performance 

tested outside the scanner, and that can play a key role in performing a successful 

STM task. In Chapter 4 we have tested the possibility that an intensive STM training 

could modify the functional connectivity, that is, if there are differences in resting 

state networks (RSNs) before and after STM training. In particular, we asked whether 

three different kinds of training (Verbal, Visual and Spatial STM) could affect 

connectivity in the fronto-parietal RSNs and interconnected areas. We found that, at 

behavioral level, training had a specific effect on the different kinds of task, while at 

connectivity level, we did not find any changes in the RSNs. Presumably, the absence 

of a significant effect might be due to the use of three different types of training that 

increased the results variability. In addition, probably the training was too short to 

have effects on intrinsic brain activity, even though it was sufficient to improve 

behavioral performance.  



8 
 

  General Introduction  

Seeing the words in this page, or a wooden desk, or a landscape outside the window 

seems to be an easy process. But it is not. It requires a cascade of many neuronal 

events, which must be encoded into brain activity in fractions of seconds. The main 

goal of this thesis is to study the neurophysiological correlates of the brain processes 

that enable such an internal representation of the external world.  

The idea that all aspects of cognition can be expressed solely in term of neurons and 

cortical circuitry is well expressed in the book The Astonishing Hypothesis (Crick, 

1994) where the author asserts that “a person's mental activities are entirely due to the 

behaviour of nerve cells, glial cells, and the atoms, ions, and molecules that make 

them up and influence them”. At the basis of consciousness, there is a complicated 

and unique mixture of different mental states, from being visually aware of an object 

(visual awareness) to the more complicated recognition of oneself as single human 

being separated from the rest of the world (self-consciousness). This process or 

processes are subserved by a neural circuitry consisting of cortical networks that 

involve many brain areas whose activity correlates somehow with the fact of being 

conscious of something. Therefore, the best way to explore consciousness in a 

scientific way is to investigate the neural bases of perceptual awareness. The visual 

system represents a very important milestone for cognitive neurosciences because its 

structure and physiology are well known and therefore amenable to experimental 

investigation. Studying visual awareness offers many advantages with respect to 

other forms of consciousness. First of all, the human visual system is very similar to 

that of some primates and this allows experiments that for ethical reasons are not 

possible in humans. Moreover, human beings base their external world representation 

mostly on vision by virtue of processes highly structured and rich of information. 

In essence, the aim of this thesis is to study the neural correlates of visual experience, 

from simple perception to the consciousness of what we see and the use of that 

information to interact with the world. Visual experience is characterized by many 
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different stages: From transduction of light in the retina at the lowest sensory 

processing level to complex operations of categorization which require the 

involvement of higher cognitive-level processing subserved by the cerebral cortex. 

When we see, for example, a face in the real world the light that contains the visual 

information is detected by the retina and goes through a sequence of different stages 

to various visual areas in the brain in a semi-hierarchical way. This process is 

structured in such a way as to transform unconscious information into perceptual 

awareness. This means that when we consciously perceive a face the retinal 

information to become explicit requires the activation of a pattern of neurons, or 

entire networks whose activity enables conscious perception. This is the topic of this 

Thesis: how visual information reaches consciousness passing from one visual area to 

another. It is well known that visual information is processed in many streams, for 

example, colour, shape, and movement are processed by different brain areas, but 

eventually the information processed along different streams comes together and 

proceeds to a stage where it can be used to interact with the external word. 

In this thesis, I will investigate three different aspects of visual experience: visual 

processing, visual awareness, and short-term memory.  

The first part will deal with visual perception and visual awareness by describing 

experiments carried out with a classic approach that involves behavioural tasks in 

brain damaged and healthy subjects. In particular, it will be focused on when and 

where the neural correlates of consciousness (NCC) arise, that is, on the temporal 

aspects of processing of unconscious and conscious visual information. There are two 

basic experimental approaches to study visual awareness: One is to study healthy 

participants with visual stimuli rendered invisible or barely visible and comparing the 

neural response to the same stimuli when yielding conscious versus unconscious 

performance. The other approach is to find out whether patients, who cannot have 

access to visual information directly because they lost vision as a result of damage to 

the visual cortex, are still able to respond, albeit unconsciously, to a visual stimulus. 

This phenomenon is known as “blindsight” (Weiskrantz et al, 1974). Knowledge of 
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the timing of shifts from unconscious above-chance visually guided behaviour 

(blindsight) to partial or total perceptual awareness would be crucial for 

understanding the neural as well as cognitive underpinnings of consciousness. For 

this reason, we decided to investigate the timing of NCC by studying the 

electrophysiological responses to visual stimuli in patients with cortical blindness. In 

particular, we used moving stimuli which represent a privileged input for these 

patients because there is evidence that visual motion information can reach cortical 

areaV5 bypassing V1, the primary visual area. In order to do this, as a preliminary 

experiment, we recorded the electrophysiological response to moving square-wave 

gratings in a group of healthy participants. In Chapter 1, we studied the differences in 

the event-related potential (ERP) response between static and moving gratings. We 

found that motion affects the N1 component, i.e. a large negative component mainly 

recorded in the posterior electrodes of the right hemisphere. This study was 

preparatory to the experiment described in Chapter 2, in which we tested patients 

with hemianopia as a consequence of cortical lesions in order to understand which 

kind of lesion (and the resulting plastic reorganization of visual areas) can explain the 

presence or absence of perceptual awareness, or the presence or absence of 

blindsight. In particular, in Chapter 2 is described a study designed to cast light on the 

timing of these phenomena by using EEG, i.e. a technique which can give important 

information on the timing of NCC. As the main result of this study, we found one 

patient who showed both above chance performance with motion stimuli and also an 

unrelated presence of awareness of the stimulus presented to the hemianopic field. 

Remarkably, in the blind field of a hemianopic patient we found a reliable ERP 

response in the time window of N1 mostly present in the ipsilesional (left) posterior 

electrodes. This ERP response was related to the patient’s feeling of something 

appearing in the blind field and was present with both static and motion stimuli. In 

addition, we found that the above-chance unconscious orientation discrimination was 

present only for moving stimuli and was witnessed by a late negative component in 

the contralesional (right) posterior electrodes. This ERP component was present only 

for motion stimuli and can be considered as the neural correlate of a form of 
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blindsight enabling feature discrimination only when stimuli are moving and is 

subserved by the intact hemisphere most likely through an interhemispheric transfer. 

The second part of the Thesis deals with short-term memory (STM), that is, the 

ability to retain a small quantity of information for a short time for further 

elaboration. STM is fundamental for the representation of the external world, for its 

consolidation into long-term memory and for the interaction with the environment. 

Traditionally, STM and awareness are considered strictly related processes. Not all 

the information of the external world reaches awareness, and STM represents the 

process that selects which information will be accessible to higher-level cognitive 

processes and become conscious (Soto and Silvanto, 2014; Sligte, 2008). The aim of 

this part of the thesis is to investigate inter-individual differences in STM capacity 

and if this processing stage can be improved by cognitive training. Instead of using a 

classical approach in which the subject is actively, involved in a task we decided to 

use a new methodology to examine the brain while the subject is literally told to do 

nothing, a condition of spontaneous cerebral activity known as resting state. It is 

known that this activity is spatially and temporally structured in networks, the so-

called resting-state networks. This new methodology enabled us to explore if 

individual differences in intrinsic brain activity can predict inter-subject variability in 

STM assessment. Chapter 3 describes a study making use of 

magnetoencephalography (MEG) to investigate brain activity at rest. In this study, we 

have documented the feasibility of MEG as a tool to explore resting state 

connectivity. Moreover, we have demonstrated that intrinsic brain activity can predict 

the behavioural performance tested outside the scanner, and that can play a key role 

in performing a successful STM task.  

Because information in the external world is constantly changing, it becomes crucial 

to understand how the brain updates these representations. In Chapter 4, we have 

investigated how intrinsic brain activity changes in response to the environment and 

in particular if it is possible to modify the intrinsic brain connectivity as a result of 

cognitive training. This could provide new insight on possible procedures of 



12 
 

cognitive rehabilitation. It is very important to understand not only how brain 

plasticity operates spontaneously after a lesion but also how an intensive training 

could help recover a damaged function. To do this we examined if there are any 

differences in resting state networks before and after STM training. In particular, we 

investigated how three different kinds of training (Verbal, Visual, and Spatial STM) 

could affect the connectivity in the fronto-parietal networks or in the areas, which 

communicate with them. As a result of this study, we found that, at behavioural level, 

training had a specific domain-effect, that is, the improvement after training was 

mainly restricted to the specific domain trained. At connectivity level, we were not 

able to find any changes in the fronto-parietal RSNs. The absence of a significant 

effect is probably due to the complication of using three different types of training 

that created a great variability in terms of connectivity. This variability made it 

difficult that an effect could survive multiple statistical comparisons. On the other 

hand, it could be that training was too short to create changes in the intrinsic brain 

activity, even if its timing was enough to improve the behavioural performance. 

In conclusion, I believe that taken together these results are useful not only to 

understand how the brain builds up his own representation of the world, but also for 

understanding how the brain changes through a plastic cortical reorganization after 

severe injury. 
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 Part I: Neural correlates of visual awareness in healthy participants and 

hemianopic patients 

 

Chapter 1 

Cerebral correlates of motion perception 

 

1. Introduction 

Everything surrounding ourselves is dynamic. This makes motion perception one of 

the most important processes of the visual system because it guides us in moving in 

the external world and also provides important clues for other visual functions such 

as for example pattern discrimination. It has been clearly demonstrated that in the 

human brain there is a specialized area for motion processing. This area is known as 

V5/MT+ and has a homologous in the medio-temporal cortex (MT) of non-human 

primates. It has been demonstrated that V5/MT+ receives input from the striate cortex 

(V1), and extra-striate cortices (V2 V3 V4 and V6), see Galletti et al., 2001. 

Importantly, it has been shown that there are four pathways that from the retina reach 

the motion area directly bypassing V1 (Ffytche et al., 1995; Buchner et al. 1997; 

Schoenfeld et al., 2002). Studies on monkey found that these pathways involve three 

different subcortical structures (see figure 1, Tamietto and Morrone, 2016): Lateral 

Geniculate Nucleus (LGN) (Sincich et al., 2004; Schimd et al.,2010); pulvinar 

(Berman and Wurtz, 2010) and superior colliculus (SC) (Gross,1991).  
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Figure 1. Connections from the eye to the visual cortex involving intermediate relays in LGN, superior 

colliculus and pulvinar. Gray arrows indicate direct projections from the retina with thicker lines 

showing the major geniculo-striate pathway involving LGN and targeting V1. Red arrows indicate 

projections originating from the superior colliculus and reaching the dorsal stream cortical areas via 

the pulvinar, with dashed lines showing disputed input to subdivisions of the pulvinar. Green arrows 

indicate projections from pulvinar subnuclei to areas along the cortical ventral stream. The blue arrow 

indicates projections from the Koniocellular layers of LGN to area MT. In LGN and superior 

colliculus, yellow layers indicate Magnocellular, blue Koniocellular, and pink Parvocellular channels. 

In the pulvinar these pathways are not clearly segregated and shaded blue-yellow; pink-yellow colors 

indicate the conjoint presence of the respective channels in given subdivisions. Light green denotes 

areas of the superior colliculus and pulvinar not interesting for the present purposes. Abbreviations: 

PIcl, pulvinar inferior centro-lateral; PIcm, pulvinar inferior centro-medial; PIm, pulvinar inferior 

medial; PIp, pulvinar inferior -posterior; PLdm, pulvinar lateral dorso-medial; PLvl, pulvinar lateral 

ventro-lateral; PM, pulvinar medial; TE,temporal inferior rostral; TEO, temporal inferior posterior. 

 

The detailed anatomo-functional study of these pathways can cast light on the 

residual function of blindsight patients (that is, patients who lost a part of visual field, 

due to V1 damage but can reliably respond to visual stimuli that they do not 

consciously see). In particular, EEG studies can help understand which pathway/s can 

explain the various kinds of blindsight abilities. Some electrophysiological studies 

found a very early activity of V5/MT+ which bypasses V1 activity (Schmolesky et 

al., 1998) and a post stimulus-onset latency ranging from 35 ms to 120 ms. Thus, 

EEG, and, in particular, the study of the evoked response to a motion stimulus 

(Motion ERPs), can clarify the timing of motion processing. In particular, it is well 
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known that the motion onset effect is marked in the N1-N2 time domain, with a 

source localization in V5/MT+ (Lorteije et al., 2009; Pitzalis et al., 2012). However, 

other studies found an early effect also in P1 time domain (De Vries et al., 1989; 

Schoenfeld et la., 2002). In order to better understand the Motion ERPs dynamics we 

designed an experiment where we tested healthy participants while performing an 

orientation discrimination task with motion and static stimuli. This study was 

preparatory to that with patients and helps understand how motion is processed in an 

undamaged brain. This experiment is described as part of a recently submitted paper 

by Bollini et al. (submitted). 

2. Methods 

2.1. Participants 

Eight healthy participants (3 males, 27±6 years old) were tested as visually intact 

controls. All were right-handed with normal or corrected-to-normal vision and with 

no history of neurological or cognitive problems. All signed an informed consent 

prior to participating in the study and were free to withdraw at any time. The study 

was approved by the Ethics Committee of the Azienda Ospedaliera Universitaria 

Integrata of Verona and of the ERC and conducted in accordance with the 2012-13 

Declaration of Helsinki. 

2.2. Experimental procedure 

Participants were tested in a light-dimmed room. They were comfortably seated in 

front of a 24-inch LCD monitor (ASUS VG248) with a refresh rate of 144 Hz driven 

by a PC used for stimulus presentation. The stimuli were black and white square-

wave gratings of 4o of visual angle with a Michelson contrast of 100 % against a grey 

background of 18.33 cd/m2 and a spatial frequency of 0,8750 c/°. The gratings mean 

luminance was 29.46 cd/m2.. They could have either a vertical (0°) or horizontal 

(90°) orientation and could be static or moving (apparent motion), vertical gratings 

drifting to the right and horizontal gratings drifting downward. Stimuli were 
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generated using PsychToolBox-3 (Brainard, 1997) running on Matlab 2013b 

(MathWorks Inc.). The retinal eccentricity of stimulus presentation used was 9° 

measured from the inner portion of the display to the central fixation point along the 

horizontal meridian and 7° along the vertical meridian in the upper visual field. 

The behavioural paradigm (Fig.2) consisted of four different trial blocks repeated 

four times (960 trials) and alternating in the following order: Static gratings in the 

right and then in the left field, moving gratings in the right and then in the left field. 

In patients, the sequence started from the intact field. A block consisted of 60 trials of 

vertical or horizontal gratings presented in random order; in 30% of the trials, no 

stimuli were presented (catch trials).  

 

Figure 2. Experimental procedure: First, a fixation cross was presented for 300 ms followed by an 

acoustic tone lasting 100 ms. After a random interval between 300-600ms the stimulus was presented 

for 150 ms. The subject had 1500 ms to respond by pressing a button on the keyboard. The inter-trial 

interval lasted 1000 ms. 

Participants were asked to perform an orientation discrimination task regardless of 

whether the stimuli were moving or static. Trials started when a fixation cross of 

0.15° appeared in the centre of the screen for 300 ms, followed by an acoustic tone 

(1000 Hz). After a random interval (300-600 ms) the stimulus was presented to the 

left or right upper hemifield for 150 ms and participants had 1500 ms to press as 

quickly as possible one of two keyboard keys, using the right or the left index finger 
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to signal a vertical or horizontal grating, respectively (counterbalanced across 

subjects). The inter-trial interval was 1000 ms. Importantly, patients were asked to 

press one of the two keys also when they did not perceive any stimulus in the blind 

hemifield (including catch trials). 

2.3. EEG recording and analysis 

EEG activity was continuously recorded from 64 active electrodes (actiCap, Brain 

Products GmbH, Munich Germany) placed according to the 10-10 International 

System and was acquired in one experimental session with BrainAmp (Brain 

Products GmbH, Munich, Germany) and BrainVision software. All scalp electrodes 

were referenced online to the left mastoid and re-referenced offline to the 

arithmetically derived average of left and right mastoids. The ground electrode was 

placed at AFz position. Additionally, horizontal and vertical eye movements were 

recorded with four electrodes placed at the left and right canthi and above and below 

the right eye, respectively. Impedance was kept below 5 kΩ for each electrode. The 

EEG was recorded at 1000 Hz sampling rate with a time constant of 10 s as low cut-

off and a high cut-off of 1000 Hz with a 50 Hz notch filter. The EEG signal was 

processed offline using a combination of custom scripts written in Matlab 2013b 

(MathWorks Inc.) and EEGLAB toolbox (Delorme and Makeig, 2004). Continuous 

data were bandpass filtered offline between 1 and 100 HZ. The continuous raw data 

were visually inspected, large signal jumps such as muscle twitches or electrode cable 

movements were rejected, and bad channels were interpolated. Independent 

component analysis (ICA) decomposition with logistic infomax algorithm Runica 

(Makeig et al. 1996; Bell and Sejnowski, 1995) was performed (Lee et al., 1999) to 

separate brain and non-brain source activities. Stereotyped artefacts like blinks were 

corrected by identification of the corresponding ICs. After artefact correction and 

source localization, a mean of 24 ICs (STD=4.83) remained for each subject. Next, 

data epochs were extracted (from -200 before to 800 ms after stimulus presentation) 

and baseline corrected (from -200 ms to stimulus onset). At this point, the data were 

downsampled to 250 Hz. Next, point-by-point non-parametric ANOVAs or T-tests 
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based on 5000 permutation testing were performed in order to identify differences 

among catch trials and the motion and static condition. A FDR correction (Bejamini 

& Yekutieli, 2001) was applied to correct for multiple comparisons. We used non-

parametric statistics because they offer many advantages: first of all, they are highly 

appropriate for correcting multiple comparisons in EEG data, second this kind of 

statistics do not rely on distribution assumptions, this means that are not a priori 

assumptions regarding where and when there will be an effect, lastly they account for 

multiple comparisons and avoid uncontrolled false positive rate. 

In addition, ERP envelope (i.e. minimum and maximum of all electrodes at every 

time point) was used to calculate which three clusters of IC gave the largest source 

contribution to the EEG signals in term of PVAF (percent of variance accounted): 

PVAF(IC) = 100-[100*mean (var (all_data - back_proj))/mean (var(all_data)] 

Where “var” stands for variance; “data” refers to EEG signals, as well as the matrix 

channels x time-points; finally, “back_proj” refers to the ERP activity of the selected 

IC back-projected to the scalp ERPs (as a forward projection from cortical source to 

the scalp channels), thus PVAF indicates the contribution of the IC to the ERP (Lee et 

al., 2015). In order to calculate the cluster of ICs across subjects we used an 

automated K-means algorithm procedure on scalp maps, ERPs, and dipole 

localizations. With this procedure, we selected the clusters of ICs that maximally 

accounted for variance at the electrodes. We used this procedure to explore the nature 

of ERP components; in particular, we focus on C1, P1, N1, and P300. 

3. Results 

3.1. Behaviour 

The performance of subjects was accurate and fast: Right static stimuli = 97.3% 

correct responses and Reaction Time (RT) = 567 ms; right moving stimuli=98.6%, 

RT = 554ms; left static stimuli = 97.8%, RT = 561 ms; left moving stimuli = 98.7%, 

RT = 554 ms). This indicates a low task difficulty. There were no statistically 
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significant differences in accuracy or RT between hemifields and between moving 

and static stimuli (Fig.3). 

 

Figure 3. Behavioural results: In the left, panel the mean percentage of correct responses for each 

experimental condition. In the right side, the mean of response times for each experimental condition. 

 

3.2. EEG  

Figure 4 shows the ERP responses as recorded at electrode Pz. With a peak detection 

procedure we found a negative C1 at 75 ms, the sign being in keeping with the site of 

stimulus presentation in the superior quadrant of the visual field (Jeffreys and Axford, 

1972) and therefore with a V1 generator; moreover, a P1 at 110 ms; a N1 at 185 ms 

and a large P3 between 310 and 480 ms.  

 



20 
 

 

Figure 4. Healthy participants grand average ERPs for the motion, static and catch condition as 

recorded at electrode Pz. The top and bottom inlets show the topography scalp map for each condition 

at the time window of N1 (bottom) and P300 (top). 

A 5000 permutation ANOVA was conducted for the three conditions of stimulus 

presentation (static, motion and catch regardless the side of stimulation). The main 

results are shown in Fig.5: Significant FDR corrected p-values ranged between 

0.00084975 and 0.04977. As shown by the raster plot the main differences between 

the three conditions were in the peaks timing (P1 N1 and P300), in particular in the 

centro-parietal and posterior channels. In order to assess the differences between 

static and motion condition we ran non-parametric t-tests for the peak time-window.  
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Figure 5. Raster plot resulting from the permutation ANOVA across all electrodes and the three 

conditions regardless the side of the stimulation. Colour points represent the p values after the FDR 

correction for multiple comparisons. Ordinates: left, electrode sites; right, p- values. Abscissae: post-

stimulus onset time (ms). 

 

The permutation t-test on the mean amplitude of the peaks showed a difference 

between static and moving stimuli only for the N1 component with a larger negative 

amplitude at the following electrodes: CP6, P1, P2, P4, P6, P7, P8, PO3, PO4, PO8, 

PO10, O1, Oz, O2 (with a p-value<0.05), as shown in figure 6. These differences 

were mainly observed in the right hemisphere regardless of the side of visual field of 

stimulus presentation.  
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Figure 6. Non-parametric t-test between Motion and Static conditions in N1 time window from 170 

ms to 200 ms. On the left side: Scalp maps of the Motion and Static condition; on the right side the 

electrodes with p-values under 0.05 after the correction for multiple comparison. 

To better understand the origin of the above ERP components we calculated the 

contribution of the three largest clusters of ICs to the grand mean ERPs, computing 

the mean across the maximum ERP envelope in the time intervals C1, P1, N1 and 

P300. These intervals were used previously for the t-test analyses. The results of this 

procedure showed that each ERP component is mainly formed by the posterior 

component and that the three clusters of ICs explained approximately 70% of the 

summed PVAF (C1: Static 85.4%, Motion 72.4; P1: Static 68.4%, Motion76.1%; N1: 

static 63.4%, Motion 63.5%; P300: Static 65.4%, Motion 72.3%). As shown in figure 

7, it is interesting to note that the C1 is formed by the same clusters of ICs in both 

motion and static condition while N1 is partially formed from the same clusters of 

ICs and one lateralized cluster in the right hemisphere for the motion condition. 
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Figure 7. Grand mean of C1 and N1 ERP envelopes plotted separately for both stimulus conditions. 

The black line in each plot represent the scalp-recorded data envelope, that is, the minimum and 

maximum potentials at all channels at each latency. The top and bottom of the grey-filled areas give 

the grand mean activity of the back-projected independent components in the corresponding cluster of 

ICs. The mean PVAF by the independent components is given. The dotted lines represent the time 

window considered for the Summed PVAF. 

 

4. Discussion 

The aim of this study was to investigate the EEG evoked response to motion stimuli 

in an undamaged brain. In particular, we were interested to understand the difference 

between static and drifting stimuli. The results will be compared to the ERP response 

of hemianopic patients in both blind and sighted hemifield. In this study, we found 

that this kind of stimulation evokes a typical ERP response with a negative C1, a P1, 

a N1 and a large P300. In contrast, the catch condition, i.e. the absence of any 

stimulation, does not evoke any reliable activity. Moreover, we found a significant 
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difference between the motion and the static condition in the N1 time window 

consisting in a larger negative amplitude for the motion than the static stimuli. These 

results are in line with previous studies (Schoenfeld et al., 2002; Lorteije et al., 2009; 

Pitzalis et al., 2012), a similar N1 effect was found by Coch and colleagues, 2005, in 

both adults and children using drifting gratings. An important point to highlight is 

that the effect of the motion stimulation is more prominent in the right hemisphere, as 

indicated by t-test and envelope analyses (Fig. 6 and 7). This can provide useful 

information for the study with hemianopic patients because can predict different 

behaviours and different ERP correlates depending upon the lesion side. Although 

Chenk and Zihl (1996) studied a large group of patients and concluded that “neither 

the right nor the left hemisphere possesses a "dominance" for visual motion 

perception”, a recent study of Kavcic et al. (2015), found an interhemispheric transfer 

of motion information in hemianopic patients following left but not right hemisphere 

damage.  
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Chapter 2 

A glimpse of light beyond the darkness: Neural responses from a blind visual 

hemifield 

1. Introduction 

We are always interacting with the ever-changing external world. To understand how 

the brain creates a representation of it implies understanding how information reaches 

our consciousness. The search for the neural correlates of consciousness (NCC) is 

undoubtedly one of the most exciting and challenging enterprises of cognitive 

neuroscience (see Panagiotaropoulos et al., 2014). One approach to investigate NCC 

is to find out what are the cognitive and neural mechanisms that enable some patients 

with cortical blindness to perform above chance in various visual tasks despite lack of 

perceptual awareness. This approach was pioneered by Poeppel et al. (1973) and 

Weiskrantz et al. (1974) who demonstrated that stimuli presented to the blind 

hemifield of hemianopic patients could be reliably spatially located either with 

saccadic or manual pointing movements despite lack of perceptual awareness. 

Following these initial findings, a vast series of studies has provided precious 

information on the functions that can be carried out without perceptual awareness, a 

phenomenon termed “blindsight” by Weiskrantz et al. (1974). This approach has 

yielded key information for understanding the limits and the capacities of 

unconscious vision using both behavioural paradigms and neuroimaging techniques 

(like TMS, EEG or fMRI). One of the main unanswered questions concerns the 

temporal aspects of the processing of unconscious with respect to conscious visual 

information. That is, at what processing stage and at what corresponding neural level 

does perceptual awareness emerge? Certainly, fMRI is not ideally suited for 

answering this question given its relatively low temporal resolution. In contrast, non-

invasive electrophysiological techniques such as electroencephalography (EEG), and 

in particular ERP, with its optimal temporal resolution constitute an invaluable tool 

that we have used in the present study. From a theoretical point of view there two 

main positions on the time of emergence of perceptual awareness: On one side, there 

are theories positing an early activation of the visual cortex as a crucial site, such as, 
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for example, the Recurrent Processing (RP) theory of Lamme et al. (2010). On the 

other side, there are theories positing a later activation in fronto-parietal areas, such as 

for example the global workspace theory (GWT) proposed by Dehaene and Naccache 

(2001). Both theories are controversial: For example, it has been shown that some 

patients with V1 lesion could still report some form of awareness especially with fast-

motion stimuli (Barbur et al., 1993; Milner, 1998; ffytche et al., 1996; ffytche and 

Zeki, 2011) or with TMS stimulation of the intraparietal sulcus (IPS) (Mazzi et al., 

2014) and this is not in keeping with the RP theory. By the same token, also the GWT 

has received some criticism, e.g. as a result of the finding of a negative ERP 

component recorded around 200 ms post stimulus onset, i.e. in N1 domain, over 

posterior cortical areas that correlates with different degrees of visual awareness 

(Koivisto and Grassini, 2016; Tagliabue et al., 2016). To try and further explore the 

problems raised by the above controversial picture, in the present study we focused 

on assessing whether and at what latency stimuli presented to the blind hemifield of 

hemianopic patients can elicit visually evoked responses that might correlate with the 

presence of blindsight or residual conscious vision. ERP studies of blindsight are 

rather scanty: There have been some attempts, with contrasting results, to find 

reliable ERP responses following blind hemifield stimulation, see Kavcic et al. 

(2015) for a review. In a pioneering paper, Shefrin et al. (1988), found in one 

hemianopic patient with blindsight a P300 component when a target word was 

presented to the blind field. However, interestingly, no P100 was found in this as well 

as in the hemianopics without blindsight tested. In Kavcic et al. (2015) study there 

was no evidence of reliable behavioural response to moving dots presented to the 

blind hemifield and no evidence of ERP response in the damaged hemisphere. 

However, they found that the damaged hemisphere could be activated via 

interhemispheric transfer from the intact hemisphere. Importantly, this was the case 

only in left brain-damaged patients suggesting that the right hemisphere has a special 

ability to transfer visual motion information to the other hemisphere, see behavioural 

evidence for this possibility in Marzi et al., 1991. At any rate, apart from possible 

transfer asymmetries, Kavcic et al’s results show that the presence of viable callosal 
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or extracallosal connections between intact and damaged hemisphere is of key 

importance for understanding the mechanisms of plastic reorganization possibly 

leading to partial or total restoration of vision (see discussion in Celeghin et al., 

2015b). 

In the present study, we tested five hemianopic patients with different brain lesions in 

an orientation discrimination of moving or static visual gratings while recording 

ERPs. Because the main goal of this work was to evaluate how the plastic neural 

reorganization due to different lesions can induce different kinds of behaviour, we 

analysed our patients as single-cases. The description of this study is partially 

contained in Bollini et al. (submitted). 

2. Methods 

2.1. Participants 

All the patients signed an informed consent prior to participating in the study and 

were free to withdraw at any time. The study was approved by the Ethics Committee 

of the Azienda Ospedaliera Universitaria Integrata of Verona and of the ERC and 

conducted in accordance with the 2012-13 Declaration of Helsinki. 

2.1.1. Patient LF 

LF (female, 49 years old, right-handed) has a left superior quadrantanopia (Fig. 1A) 

as a consequence of an ischemic stroke. The lesion involves the cortex of the anterior 

half of the right calcarine fissure up to the origin of the parieto-occipital fissure 

(Fig.1B). The patient was tested 30 months after the ischemic event. 
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Figure 1. Patient LF: A) Visual field defect. B) Reconstruction of the lesion. 

 

2.1.2. Patient LC 

LC (male, 66 years old, right-handed) has a left homonymous hemianopia (Fig. 2A) 

due to a right temporal and parietal lesion, with posterior extension to the white 

matter of occipital lobe, involving the lateral part of optic radiation. (Fig. 2B).The 

patient was tested 17 months after the ischemic event. 

 

Figure 2. Patient LC: A) Visual field defect. B) Reconstruction of the lesion. 
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2.1.3. Patient GA 

GA (male, 60 years old, right-handed) has a right inferior quadrantanopia (Fig. 3A) as 

a consequence of an ischemic lesion involving the left parieto-occipital lobe. In the 

occipital lobe, laterally, the lesion involves the superior, middle, inferior, and 

descending occipital gyri. Medially, the lesion involves the cuneus and the occipital 

pole, with relative sparing of the lingual and fusiform gyri (Fig. 3B).The patient was 

tested 11 months after the ischemic event. 

 

Figure 3. Patient GA: A) Visual field defect. B) Reconstruction of the lesion. 

 

2.1.4. Patient AM 

AM (male, 65 years old, right-handed) has an altitudinal hemianopia in his upper 

visual field (Fig. 4A), due a bilateral median para-sagittal occipital ischemic lesions 

involving the lingual gyrus, more evident in the right side where is visible a thinning 

of the anterior portion of calcarine cortex (Fig. 4B ).The patient was tested 35 months 

after the ischemic event. 
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Figure 4. Patient AM: A) Visual field defect. B) Reconstruction of the lesion. 

 

2.1.5. Patient SL 

SL (female, 47 years old, right-handed) has a right homonymous hemianopia with 

partial foveal and upper hemifield sparing (Fig. 5A) as a consequence of an ischemic 

stroke with haemorrhagic evolution. The lesion involves the median para-sagittal 

portion of the left occipital lobe including the lingual gyrus, with peri-calcarine 

fissure distribution (Fig. 5B). The patient was tested 69 months after the event.  

 

Figure 5. Patient SL: A) Visual field defect. B) Reconstruction of the lesion. 
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2.2. Behavioural procedure and statistical analysis 

The behavioural procedure was the same as that used with healthy participants in 

Chapter 1 with the exception of the stimulus position. The stimulus position was 

chosen according to each patient visual defect. Each patient carried out preliminary 

testing to assess the visual defect. Patient AM performed the task in each quadrant to 

evaluate both upper and lower visual field. In summary, the eccentricity used for the 

stimulus presentation with patients was: Patient LF: 13° horizontally and 7° 

vertically; patient LC: ±16° horizontally, -7° vertically; patient GA: ±15° 

horizontally, -7° vertically; patient AM: ±6° horizontally, ±6° vertically and patient 

SL: ±16° horizontally, 7° vertically, measured from the inner portion of the display to 

the central fixation. For statistical analysis, we used a two-tailed binomial test, which 

allowed assessing if performance in the blind hemifield was significantly higher than 

chance level (50%). Two binomial tests were performed, one for the motion condition 

and one for the static condition. 

2.3. EEG recording and analysis 

The EEG recording procedure and the pre-processing of EEG data were the same as 

those used with healthy participants in Chapter 1.To assess the ERP responses of 

patients in the blind field and differences among the experimental conditions; a 

single-case analysis procedure was adopted. Percentile Bootstrap re-sampling (Efron 

and Tibshirani, 1993) was drawn on each trial of every condition of a patient. The 

percentile bootstrap method uses surrogate tests, which consist of randomly re-

sampling with replacement for 5000 times the original trials among the conditions to 

create a data distribution from the shuffled data. Surrogate tests have the advantage to 

make no assumptions about the data. The bootstrap simulation allowed estimation of 

the patient sampling distribution adapted to any shape suggested by the data, taking 

into account variance and skewness of the sample. Next, point-by-point ANOVAs or 

T-tests were performed on all channels with the bootstrap data in order to identify 

differences between catch trials and the moving and static condition. The false 

discovery rate (FDR) correction (Benjamini and Yekutieli, 2001) was applied to 
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correct for multiple comparisons. In addition, ERP envelope (i.e. minimum and 

maximum of all electrodes at every time point) was used to calculate which IC gave 

the largest source contribution to the EEG signals in term of PVAF. With this 

procedure, we selected the IC or ICs that maximally accounted for variance at the 

electrodes in patient blind field. Lastly, in order to better understand the dynamics 

that underlie the generation of the ERPs in the blind field we used a source 

reconstruction based on an empirical Bayesian approach. The estimation of the 

current sources of the ERP components was carried out by using the Statistical 

Parametric Mapping software (SPM12 of the Wellcome Trust Centre for 

Neuroimaging, UK). The patient individual T1-weighted structural MRI image was 

used. The forward computation to prepare the lead field for the subsequent inversions 

was performed using the boundary element method (EEG-BEM) that create closed 

meshes of triangles with a limited number of nodes by approximating the 

compartments that conform the volume conductor (Fuchs et al., 2001). Successively, 

the inverse solution was computed on the entire ERP period after stimulus onset (i.e. 

from 0 to 800 ms) by using coherent smooth prior method (COH) (Friston et al., 

2008) smoothness prior similar to LORETA (Pascual-Marqui, 2002). Sources in each 

time window of interest were visualized in terms of maximal intensity projection 

(MIP) with the corresponding MNI coordinates.  

3. Results 

3.1. Patient LF  

3.1.1. Behaviour 

In the intact hemifield field LF performance was comparable both in accuracy and RT 

to that of healthy controls (right static=99.4%, RT = 608 ms; right moving=99.5%, 

RT = 552 ms).In the blind hemifield LF performed at chance level with 53.9% 

(p=0.426) correct responses for static stimuli and 41.06% correct responses for 

moving stimuli (p=0.089) (Fig.6). She did not report any visual sensation upon 

stimulus presentation. 



33 
 

 

Figure 6. Patient LF: Behavioural results - Percentage of correct responses in each hemifield for each 

condition. 

 3.1.2. EEG 

Blind Hemifield 

Fig. 7 shows the ERP responses as recorded at electrode P3 (intact hemisphere) and 

P4 (damaged hemisphere) for the two hemifields and the three stimulation conditions. 

As can be seen from Fig.7 there are no reliable ERP responses when the stimulus was 

presented in the blind field, in keeping with the performance of the patient that was at 

chance level and without any stimulus-related sensation. A bootstrap ANOVA did not 

yield any difference between stimulus present and stimulus absent (catch) (all p-value 

were above 0.05 without multiple comparisons correction). 
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Figure 7. Patient LF: ERPs in the blind (top) and sighted field (bottom) as recorded at P3 (left-intact 

hemisphere) and P4 (right-damaged hemisphere) for the three stimulation condition. 

Intact Hemifield 

In contrast, when the stimulus was presented in the intact hemifield ERP responses 

were similar to those of healthy participants both in latency as well as in amplitude 

(Fig.7 bottom panel).  

 

3.2. Patient LC Results 

3.2.1. Behaviour 

In the intact hemifield field LC performance was comparable in accuracy to that of 

healthy controls (right static=95.3%, RT = 608 ms; right moving=97.2%, RT = 552 

ms), even he was slower in RT (right static= 989 ms; right moving= 1016 ms. In the 

blind hemifield LC performed at chance level with 58.1% (p=0.133) correct 

responses for static stimuli and 55.3% correct responses for moving stimuli (p=0.368) 

(Fig.8). He did not report any visual sensation upon stimulus presentation. 

Furthermore, it is important to highlight that the patient LC showed many missed 

responses (42%) in the blind hemifield. 
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Figure 8. Patient LC: Behavioural results - Percentage of correct responses in each hemifield for each 

condition. 

3.2.2. EEG 

Blind Hemifield 

Fig. 9 shows the ERP responses as recorded at electrode P3 (intact hemisphere) and 

P4 (damaged hemisphere) for the two hemifields and the three stimulation conditions. 

As can be seen from Fig.9 there are no reliable ERP responses when the stimulus was 

presented in the blind field, in keeping with the performance of the patient that was at 

chance level and without any stimulus-related sensation. A bootstrap ANOVA did not 

yield any difference between stimulus present and stimulus absent (catch) (all p-value 

were above 0.05 without multiple comparisons correction). 
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Figure 9. Patient LC: ERPs in the blind (top) and sighted field (bottom) as recorded at P3 (left-intact 

hemisphere) and P4 (right-damaged hemisphere) for the three stimulation condition. 

Intact Hemifield 

When the stimulus was presented in the intact hemifield ERP responses were very 

noisy (Fig.9 bottom panel), this is in keeping with the fact that he was under 

medication (with antiepileptic drugs) and the very large lesion. However, we found 

that P1 and N1 were similar to those of healthy participants both in latency as well as 

in amplitude. It is important to notice the absence of a clear P300. It has been 

demonstrated that cortical generator for this ERP component it is in tempo-parietal 

locations (for a review see Linden, 2005). In our patient, these areas are clearly 

compromised by the lesion, and this can explain the absence of P300. 

 

3.3. Patient GA Results 

3.3.1. Behaviour 

In the intact hemifield field GA performance was comparable both in accuracy and 

RT to that of healthy controls (left static=98.6%, RT = 759 ms; left moving=95%, RT 

= 767 ms).In the blind hemifield GA performed at chance level with 47.9% (p=0.764) 
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correct responses for static stimuli and 60% correct responses for moving stimuli 

(p=0.057) (Fig.10). Interestingly, he reported a visual sensation upon stimulus 

presentation, declaring, “I know that the something was presented but I don’t know 

what it was like.” 

 

Figure 10. Patient GA: Behavioural results - Percentage of correct responses in each hemifield for 

each condition. 

3.3.2. EEG 

Blind Hemifield 

Fig. 11 shows the ERP responses as recorded at electrode P3 (intact hemisphere) and 

P4 (damaged hemisphere) for the two hemifields and the three stimulation conditions. 

As can be seen from Fig.10 there are no reliable ERP responses when the stimulus 

was presented in the blind field, in keeping with the performance of the patient that 

was at chance level even though he reported a visual sensation. A bootstrap ANOVA 

did not yield any difference between stimulus present and stimulus absent (catch). 
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Figure 11. Patient GA: ERPs in the blind (top) and sighted field (bottom) as recorded at P3 (left-

damaged hemisphere) and P4 (right-intact hemisphere) for the three stimulation condition. 

Intact Hemifield 

In contrast, when the stimulus was presented in the intact hemifield ERP responses 

were similar to those of healthy participants both in latency as well as in amplitude 

(Fig.11 bottom panel).  

 

3.4. Patient AM Results 

3.4.1. Behaviour 

In the intact hemifield field AM performance was comparable both in accuracy and 

RT to that of healthy controls (right inferior static=100%, RT = 728 ms; right inferior 

moving=93.4%, RT = 653 ms left inferior static=97.8%, RT = 692 ms; left inferior 

moving=98.9%, RT = 632 ms).In the superior blind hemifield AM performed at 

chance level with static stimulation in both right hemifield, with 51.6% (p=0.764) of 

correct responses, and in the left hemifield, with 59.7% (p=0.057) of correct 

responses. Instead, in the motion condition his performance was at chance level just 

in the right hemifield with 49.3% of correct responses (p=0.920) (Fig. 12, left panel), 
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while he was statistically above chance in the left hemifield with 67.2% of correct 

responses (p<0.001) (Fig.12, right panel). Moreover, he reported visual sensation 

upon stimulus presentation in both hemifields without reporting any stimulus feature. 

 

Figure 12. Patient AM: Behavioural results - Percentage of correct responses in each hemifield for 

each condition. Left panel: the stimulus was presented in the right hemifield. Right panel: the stimulus 

was presented in the left hemifield. The asterisk indicates that the number of correct responses was 

significantly different from the chance level of 50% (p<0.001). 

 

3.4.2. EEG 

Blind Hemifield 

Fig. 13 shows the ERP responses as recorded at electrode P3 and P4 for the two 

hemifields and the three stimulation conditions. In the left hemisphere, there was a 

response when the stimulus was presented in the right hemifield. By the same token, 

in the right hemisphere there was an evoked response when the stimulus was 

presented in the left hemifield. The top panels show the response in the blind field 

while the bottom panels show the evoked response when the stimulus was presented 

in the intact field (inferior). As can be seen from top panel of Fig. 13, there are no 

reliable ERP responses when the stimulus was presented in the blind field even 

though the patient’s performance was above-chance and he reported a visual 

sensation. Indeed, the bootstrap ANOVA did not reveal any difference between 

stimulus present and stimulus absent (catch) (all p-value were above 0.05). 
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Figure 13. Patient AM: ERPs in the blind (top) and sighted field (bottom) as recorded at P3 (left-

damaged hemisphere) and P4 (right-intact hemisphere) for the three stimulation condition when the 

stimulus was in the right hemifield (left panel), and when it was presented in the left hemifield (right 

panel). 

Intact Hemifield 

In contrast, when the stimulus was presented in the intact field ERP responses were 

similar to those of healthy participants both in latency as well as in amplitude (Fig.13 

bottom panel). The polarity difference in the first peak of the intact fields (both left 

and right) is it in line with previous studies, which have demonstrated that the sign of 

C1 change according to a superior or inferior stimulus presentation in the visual field 

(Jeffreys and Axford, 1972). 

 

3.5. Patient SL Results 

3.5.1. Behaviour 

The discrimination accuracy of patient SL in the intact hemifield was comparable 

both in accuracy and RT to that of healthy controls (left static=96.2%, RT = 531 ms; 

left moving=99.4%, RT = 577 ms). In contrast, she performed at chance level with 

static stimuli (55.03%; p=0.400) but with moving stimuli her performance was 
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significantly above chance with 65.56% correct responses (p<0.005) (Fig. 14). 

Interestingly, the patient reported “a feeling of something appearing in the blind 

field” during stimulus presentation without any idea of gratings’ orientation or 

whether they were static or moving.  

 

Figure 14. Patient SL: Behavioural results - Percentage of correct responses in each hemifield for each 

condition. The asterisk indicates that the number of correct responses was significantly different from 

the chance level of 50% (p<0.005). 

3.5.2. EEG 

Blind Hemifield 

Fig. 15 shows the ERP responses as recorded at electrode P3 (damaged hemisphere) 

and P4 (intact hemisphere) for the two hemifields and the three stimulation 

conditions. In contrast to the other patients, visual inspection shows an early 

prominent negative component (N1) immediately followed by a positive (P2a) peak 

and later on by a long lasting negativity. The N1 is more pronounced in the damaged 

hemisphere.  
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Figure 15. Patient SL: ERPs in the blind (top) and sighted field (bottom) as recorded at P3 (left- 

damaged hemisphere) and P4 (right- intact hemisphere) for the three stimulation condition. 

Overall Scalp Distribution. Fig. 16 shows the overall scalp distribution of responses 

for the two hemifields of SL. As mentioned above, a large negative peak (N1) is 

clearly visible between 180 and 260 ms after stimulus onset. It is present both for 

static and moving stimuli and is widespread across left hemisphere electrodes with a 

larger amplitude with respect to the right hemisphere. It is important to underline the 

absence of the early ERP components C1 and P1 and also of the later component P3. 

Immediately after the early negative frontal peak (N1), there is a positive component 

(P2a) visible in both hemispheres and a later component at posterior electrodes in the 

right hemisphere. Below we describe and analyse in detail these three components 

that index different aspects of the patient performance and subjective report.  
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Figure 16. Patient SL: Scalp distribution of the ERPs when the stimulus is presented in the blind field. 

Note that the large negative peak (N1) is present in most electrodes in the left (damaged) hemisphere, 

while the frontal peak (P2a) is present in both hemispheres in the fronto-central electrodes. Finally, in 

the right posterior electrodes is present a late negativity selective for the motion stimuli. 

N1. A bootstrap ANOVA was conducted for the three conditions of stimulus 

presentation (static, motion and catch). The main results are shown in Fig.17: 

Significant FDR corrected p-values ranged between 0.00084 and 0.04977. As shown 

by the raster plot the main difference between stimulus present and catch was in the 

N1 domain, in particular in the left posterior channels. In order to assess the 

reliability of the N1 peak two bootstrap t-tests were conducted: Moving vs catch 

condition and static vs catch.  
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Figure 17. Patient SL: Raster data resulting from the bootstrap ANOVA across all electrodes and the 

three conditions of blind field stimulation. Colour points represent the p values after the FDR 

correction for multiple comparisons. Ordinates: left, electrode sites; right, p-values. Abscissae: post-

stimulus onset time (ms). 

As can be observed in Fig.18 the results of the two tests were very similar (all 

significant FDR p-values ranged between 0.00042 and 0.04430). An important point 

is that the N1 component was mainly present in the ipsilesional electrodes, i.e. 

contralateral to the blind hemifield in the damaged hemisphere, see Fig.16.  
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Figure 18. Patient SL: Percentile Bootstrap re-sampling t-test between stimulus against no-stimulus 

conditions in the time window of the N1. On the left side: Scalp maps representing motion against 

catch condition (upper panel) and static against catch condition (lower panel); Right side: distribution 

of the p-values after correction for multiple comparisons. 

In order to examine its origin the PVAF (i.e. what percent of the scalp signal is 

reduced when a specific independent component IC is removed) was calculated from 

the ERP envelope for each condition of stimulus presentation (Fig. 19). 

 

Figure 19. Patient SL: Envelope of the ERP (black line) for the three conditions of stimulus 

presentation to the blind field. The green line represents the contribution of the most prominent IC 

when the stimulus, either static or moving is presented. The red line represents the contribution of the 

most prominent IC during catch trials. The dotted lines represent the time window considered for the 

PVAF. 

The result of this analysis showed that IC16 accounted for more than 80% of the ERP 

variance in that window; for the moving condition the PVAF was 81.8% with the 

maximum of variance at 224 ms; for the static condition was 82.2% with the 

maximum at 220 ms. For the catch condition the IC16 accounted only for the 4.4% of 
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the variance while the IC with the highest PVAF accounted for the 18.8% (IC4). 

Thus, IC16 was specifically involved in the generation of the N1 peak following 

stimulus presentation. Furthermore, we conducted a 3D source reconstruction in the 

time window of the peak. In this window the MIP was at MNI coordinates (-47, -79, 

12), i.e. in the left extra-striate area, BA19, see Fig. 20. 

 

Figure 20. Patient SL: 3D source reconstruction of the ERPs when the stimulus was presented in the 

blind hemifield. A) Time course of the region with maximal activity for the three conditions. For both 

motion and static stimuli the MIP is at the same time (corresponding to N1 latency) in the extra-striate 

cortex (BA19). B) MIP of the 512 greatest source strengths within MNI space projected onto a glass 

brain for the motion condition. The area at the highest density corresponds to left BA 19. C) MIP of 

the statistical map for the motion condition projected on the T1-weighted images of patient SL 

showing both the lesion and in red the source reconstruction. D) Summary power image from source 

reconstruction of motion stimuli presentation to the blind hemifield on a 3D rendered image. 

P2a. At left fronto-central electrodes, a significant positive peak was found 

immediately after N1, with a small amplitude and a latency between 250 and 320 ms 

after stimulus onset. It was present for both moving and static stimuli (the significant 

FDR corrected p-values for the motion condition against the catch ranged between 

0.0031 and 0.0443 and those for the static condition ranged between 0.0061 and 
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0.0351), see Fig. 21. This component has a spatio-temporal distribution similar to a 

positive component referred to in the literature as anterior P2 (P2a: Potts et al., 1996; 

Potts and Tucker 2001; Brignani et al., 2009) or frontal P3 (P3f: Makeig et al.,1999) 

and also as frontal selection positivity (FSP: Kenemans et al., 1993; Martens et al. 

2006). Indeed, its latency between 200 and 300 ms after stimulus onset, a positivity 

distribution in the frontal electrodes, and the fact that its peak emerges immediately 

after the N1 are similar to the typical characteristics of the P2a. Moreover, we found 

that this component was significantly different from catch trials for both motion and 

static stimuli. 

 

Figure 21. Patient SL: Percentile Bootstrap re-sampling t-test between stimulus against no-stimulus 

conditions in the time window of the P2a. On the left side: Scalp maps representing the motion against 

catch conditions (upper panel) and static against catch conditions (lower panel); Right side: 

distribution of the p-values after correction for multiple comparisons. 

Late Posterior Negativity. Finally, an additional bootstrap t-test was conducted 

between static and moving trials in the time range of 320-440 ms (Fig. 22). This time 

window was chosen because of the presence of a negative peak in right posterior 

electrodes that was present only for the moving condition.  
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Figure 22. Patient SL: Percentile Bootstrap re-sampling t-test between Blind Motion and Blind Static 

conditions in the time window from 320ms to 440 ms. On the left side: Scalp maps representing the 

Bootstrap t-test to compare the motion against static; on the right side the distribution of the p-values 

after the correction for multiple comparisons. 

The results showed a significant difference between static and motion conditions for 

posterior right channels (P4, P6, P8, PO4, PO10, and Oz) as well as T7 in left 

hemisphere (significant FDR corrected p-values ranged between 0.0024 and 0.0175). 

The envelope in this time window, see Fig. 23 showed that the IC accounting for 

most of the variance was IC16 with PVAF of 49.4% in the moving condition, while 

in the static condition its contribution was negligible (PVAF -3%). 

 

Figure 23. Patient SL: Envelope of the ERP (black line) for the motion condition of stimulus 

presentation to the blind field. The green and blue lines represent the contribution of the two most 

prominent ICs. The dotted lines represent the time window considered for the PVAF. 
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Intact Hemifield 

The patient’s ERPs when the stimulus was presented in the intact hemifield were 

similar to healthy participants in latency as well as in amplitude (Fig.15, bottom 

panel). Notice the presence of a large P3 component in the contralateral hemisphere.  

4. Discussion 

The present study aimed at exploring the neural correlates of conscious and 

unconscious vision in hemianopic patients. The main thrust of this study is that the 

patients’ behaviour and report change on the basis of different lesion location. We 

found two patients (SL, AM) out of five that showed a significant above-chance 

performance and three (SL, AM, GA) that reported a sort of residual conscious 

vision. It is important to underline that only patient SL showed evidence of above-

chance behavioural performance and visual sensation for the stimulus presentation, 

which correlated with ERPs responses (Late posterior negativity and N1-P2a).  

In this patient, we found three different ERP components that are related to her 

behaviour and subjective report: the N1 and P2a are related to her degraded conscious 

vision while the late posterior negativity is related to the above-chance performance. 

N1-P2a components. As described in the Results, patient SL upon stimulus 

presentation in the blind hemifield reported that she had no clue as to the features of 

the stimuli, i.e. about their orientation or whether they were static or moving. 

However, she was consistent in discriminating catch from stimulus trials, as reported 

in preliminary testing and in another study (Mazzi et al., 2016), and after each trial 

block in reporting the occurrence of the stimuli as “something appearing in the visual 

field”. In contrast, the other hemianopic patient LF never experienced the presence of 

the stimuli or a difference between catch and real trials. An important finding is a 

clear correspondence between the subjective reports of the two patients and their 

electrophysiological responses to stimuli presented to the blind field. Patient LF did 

not provide any perceptual report while in SL two ERP components can be 
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considered as likely correlates of her report, namely N1 and P2a, i.e. the frontal 

positive peak immediately following N1. Both components were present irrespective 

of whether the stimuli were static or moving and therefore cannot be considered as 

related to the behavioural evidence of orientation discrimination but rather to the 

“feeling that something appeared in the blind field.” The time window of the N1-P2a 

components is roughly compatible with that of the Visual Awareness Negativity 

(VAN) that is, a ERP component resulting from the difference between conscious and 

unconscious stimulus processing (Koivisto and Grassini, 2016; Koivisto et al., 2016). 

Notably, the electrode location where the N1 was clearly detectable was widespread 

in the ipsilesional hemisphere, see Fig. 6. Its source could be located mainly in the 

left extrastriate cortex (BA 19) and, to a lesser extent, in the right hemisphere. It is 

important to underline that, in contrast to N1, the early components, C1 and P1, and 

the later component, P300, were absent following blind field stimulation. The 

absence of C1 and P1 might explain the incapacity of SL to discriminate the 

orientation of static stimuli and is a likely consequence of the striate cortex lesion 

impairing initial basic sensory processing with static stimuli. In healthy subjects, the 

N1 was followed by a small amplitude complex P2-N2 and by a very large P300 

while this was not the case in SL. This is in keeping with SL lack of full stimulus 

awareness. Thus, we believe that the presence of N1 and P2a might be considered as 

an electrophysiological correlate of degraded conscious vision. This possibility is 

reinforced by the source of N1 in BA 19 which is broadly in agreement with 

Bagattini et al., (2015), Koivisto and Grassini (2016) and Tagliabue et al., 2016, and 

with the hypothesis of an early site of emergence of perceptual awareness. In the 

present case, however, it is awareness of degraded rather than full vision. The 

relationship between N1 and perceptual awareness is controversial. On one hand N1 

has been repeatedly associated with selective attention, see Mangun (1995), rather 

than with consciousness. In keeping with that, Sergent et al. (2005) in an attentional 

blink paradigm found that the presentation of unseen words yielded a P1 and N1 

component prior to emergence of consciousness that occurred at later processing 

stages. On the other hand, there is evidence for a link of N1 with awareness. For 
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example, in a face inattentional blindness paradigm Shafto and Pitts (2015) found that 

the N170 was absent during inattentional blindness and present in the aware 

conditions. Studies of binocular rivalry have also provided important information on 

the physiological correlates of consciousness. For example, Kaernbach et al., (1999) 

and Roeber and Schroeger (2004) have shown that changes of perceptual awareness 

are witnessed by changes of the N1 component and this is in accord with an early 

emergence of consciousness probably made possible by feedback processes involving 

V1, see Di Lollo et al. (2000); Lamme and Roelfsema (2000); Tong (2003). Thus, 

although debated, the involvement of N1 in an early onset of perceptual awareness 

seems to have solid grounds. 

 Late posterior negativity. Starting from the historical finding by Riddoch (1917) 

who provided evidence of residual degraded vision for moving stimuli in cortically 

blind patients (Zeki and ffychte, 1998), that motion stimuli are the most frequent 

protagonists of above chance unconscious discrimination (blindsight type 1) is a well-

established notion, see Ajina and Bridge, 2016 for a recent review and Azzopardi and 

Cowey (2001) for controversial evidence. In the present study, the novel finding is 

that the presence of motion made possible the above-chance discrimination of another 

visual feature, namely pattern orientation. Patient SL was able to discriminate 

orientation only when the gratings drifted either horizontally or vertically. This effect 

might be attributed to activity of cortical motion area V5/MT receiving input from 

subcortical centres bypassing V1 (Ajina et al. 2015; Kavcic et al., 2015) and retaining 

the capacity of discriminating apparent motion in the absence of V1. Importantly, the 

ERP results in patient SL showed a difference between the static and the motion 

condition in the posterior electrodes of the intact right hemisphere, see Fig. 13, as a 

negative peak around 390 ms post stimulus onset. The PVAF analysis showed that 

this peak could be accounted for by the same ICs as for the N1 but bilaterally 

distributed and is in agreement with V5/MT activity. Thus, moving stimuli engage 

large neuronal pools that enable an effective interhemispheric transfer of directional 

movement information presumably at parietal level. In keeping with this possibility is 
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the finding in the present study of ERP differences between moving and static stimuli 

in the right hemisphere of healthy controls. In addition, these results are in accord 

with Kavcic et al. (2015) who found an interhemispheric transfer of motion 

information in hemianopic patients with left but not right hemisphere damage. 

Indeed, one likely possibility is that the blindsight exhibited by patient SL is 

subserved by the intact (right) hemisphere as a result of interhemispheric integration 

and this is in broad agreement with the results of Celeghin et al. (2015a) who found 

that in hemianopic patients the above-chance visuo-motor responses in a simple RT 

paradigm depended on the intact hemisphere as a result of interhemispheric transfer. 

It is important to notice that another patient showed a similar behaviour as patient SL. 

Patient AM reported both experience of the stimulus and an above-chance 

performance. As for patient SL performance was above-chance just for moving 

stimuli even though perceptual awareness was present for both stimulus conditions. 

Interestingly, because of AM altitudinal hemianopia it was possible to analyse both 

blind hemifields and we found an interesting difference: only the stimulus presented 

in the left hemifield showed above-chance performance. This difference could be 

explained by the left hemisphere’s larger damage compared with that of the right 

hemisphere. By the way, it is important to highlight that despite similar behaviour it 

was not possible to find any EEG correlates in response to blind field stimulation, as 

in patient SL. Also patient GA reported a visual sensation of the stimulus when it was 

presented in the blind field but his performance was at chance level for both stimulus 

conditions, even though he showed a trend to be more correct in the motion 

condition. Also in this case we could not find any reliable response in EEG recording 

following blind hemifield stimulus presentation. 

5. Conclusion 

In conclusion, we found reliable EEG responses in a hemianopic patient with a 

selective lesion of left V1 who showed an above-chance discrimination of the 

orientation of moving visual gratings presented to the blind hemifield. Importantly, 
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the patient reported no visual experience of the different features of the stimuli except 

for a visual sensation that something appeared in the blind hemifield. This subjective 

observation found an electrophysiological correlate in the presence of a N1 and of a 

frontal P2a component. In contrast, the earliest visual components such as C1 and P1 

and the later P300 could not be identified. Thus, as to the earliest physiological 

correlate of perceptual awareness our results support an early stage occurrence. 

However, this conclusion applies to a form of degraded visual experience and might 

not necessarily be generalized to onset of full perceptual awareness. As far as the 

blindsight effect found for the discrimination of the orientation of moving stimuli, a 

very likely physiological correlate is represented by the posterior late negative 

component in the intact right hemisphere. It is important to stress that the behavioural 

performance of patient SL can be defined as a form of blindsight made possible by 

stimulus motion. In this study, another patient (with a bilateral lesion leading to an 

altitudinal hemianopia) showed both degraded vision and above-chance performance, 

but it was not possible to find any EEG correlate. Also, patient GA showed a visual 

sensation similar to that of patient SL but without any EEG correlates. The absence of 

a reliable ERP response could be explained by the different size and location of the 

lesion that are larger in patients GA and AM compared with patient SL. Finally, one 

should note that patient SL underwent a stroke almost six years before the present 

testing and that this suggests the possibility of plastic neuronal reorganization of her 

cortical and subcortical areas while for patients GA and AM the recording took place 

only less than one year from the event for GA and less than three years for AM. It is 

possible that this time probably is not sufficient to obtain some cortical reorganization 

as in patient SL. It would be interesting to gather further information in future testing 

session to find out whether this reorganization is still in progress and might further 

enable a shift from totally or partially unconscious behaviour to full perceptual 

awareness. 
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 Part II: Neural correlates of short-term memory and resting state 

 

Chapter 3 

Individual differences in resting state connectivity and their relationship with 

short-term memory 

 

1. Introduction 

The internal representation of the external world relies on our capacity to hold in 

mind various amounts of information. This capacity is what is known as short-term 

memory (STM). Temporary storage abilities, such as STM and working memory 

(WM) are considered a stable characteristic of intellectual and cognitive functions. 

However, it has been demonstrated that there is a great individual variability in STM 

performance, which is closely related to differences in fluid intelligence and cognitive 

aptitudes (Engle et al., 1999; Cowan et al., 2005; Fukuda et al., 2010). This 

variability is also probably reflected in the organization of brain cortical architecture, 

which is fundamental to carry out complex cognitive tasks. It is a well-established 

fact that there is an overlap between STM and cognitive control (Awh and Jonides, 

2001; Gazzaley and Nobre, 2012) that optimizes perception by enhancing detection 

and discrimination of relevant targets and by suppressing irrelevant information (for a 

review see Desimone and Duncan, 1995). The involvement of a cognitive control 

system can explain why STM performance in different cognitive domains tends to be 

correlated (Stevens et al., 2012). Many studies have demonstrated the involvement of 

fronto-parietal areas in STM tasks (Mayer et al., 2007; Rutman et al., 2010). The role 

of these areas is to maintain the information, independently from the kind of sensory 

modality; therefore, they should receive a direct or indirect input from the domain-

specific posterior lower-level sensory areas, which encode the information to be 

memorized. Thus, in order to better understand the dynamics underlying STM it is 

important to study the interactions among the multiple brain areas usually engaged in 
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STM tasks. In particular, it is of great importance to study the STM mechanisms and 

dynamics responsible of the great variability among subjects. This variability is likely 

to be generated by inter-individual differences in the connections between the fronto-

parietal system and the lower-sensory areas. We hypothesize that this variability can 

be reflected in the functional connectivity of the networks involved in STM, even 

when the subject is not actively involved in a memory task.  

In the last decade, a growing body of neuroimaging research has demonstrated that 

the cerebral spontaneous activity is spatially and temporally structured in networks, 

the so-called resting-state networks, (RSNs), challenging longstanding assumptions 

that this activity is just internal noise. It has been hypothesized that RSNs represent 

the spatio-temporal correlates of past experiences and the prediction of the response 

to upcoming stimulations (Engel et al., 2001; Friston, 2002; Deco and Corbetta, 

2014). Many studies have demonstrated that intrinsic brain activity can predict trial 

by trial individual differences and variability in task performance (Fox et al., 2007; 

Kelly et al., 2006; Hampson et al., 2010), suggesting that the intrinsic functional 

connectivity of the cognitive control networks measured in a resting state paradigm 

provides substantial information about actual cognitive performance (Stevens et al., 

2012).  

So far, the favourite tool to investigate resting state has been fMRI, which is an 

indirect measure of brain activity as it is based on a hemodynamic response. 

Moreover, despite its good spatial resolution, fMRI has a poor temporal resolution in 

the order of seconds compared to milliseconds of EEG or MEG. In particular, the 

latter technique circumvents this problem because it relies on the magnetic field 

produced by the neural activity of the neurones. Many studies have used MEG power 

envelope to derive RSNs with results spatially similar to those found with fMRI (de 

Pasquale et al., 2010; Brookes et al., 2011; Hipp et al. 2012; Wens et al. 2014a, 

2014b) but with a higher temporal resolution. These studies have provided evidence 

of the importance of exploring the temporal dynamics of the resting state in order to 

understand the connections among networks.  
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In the light of that, we decided to use MEG in our investigation because of its 

temporal resolution and because, when it is combined with an adequate inverse 

model, it allows a source reconstruction with good spatial resolution. 

The aim of the present study is double: to confirm the feasibility and efficiency of 

MEG as tool to assess the RSNs by studying the temporal structure of spontaneous 

oscillatory activity; and, to verify if the variability of connectivity at rest can predict 

individual differences in STM capacity. In particular, we wanted to assess if the 

dynamics of the fronto-parietal networks and of the areas connected with them 

correlate with STM performance. 

2. Methods 

2.1. Participants 

Eighty healthy participants aged between 17 and 34 years were recruited to 

participate in the study. Five subjects dropped out before the completion of the 

study
1
, eight subjects were not MEG compatible for the presence of orthodontic 

appliances or other metallic materials; and 13 participants were excluded because 

over 50% of their data had to be removed due to high noise levels caused by 

movement and eye-blink artefacts. The final dataset includes data from 54 

participants, (mean age = 24.09 years, SD= 4.43, 34 females). All subjects had 

normal or corrected-to-normal vision and no history of psychiatric or neurological 

conditions. All participants gave written informed consent for participation in the 

study that was approved by the University of Cambridge Psychology Research Ethics 

Committee. 

 

 

 

                                                           
1
 This study was part of a larger study involving a training procedure, see Chapter 4 
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2.2. Cognitive assessment 

Multiple different short-term memory (STM) assessments were administered using a 

tablet computer. Verbal STM was evaluated using three tests: Forward Digit Span 

and Forward Letter Span required participants to recall sequences of visually 

presented digits or letters, respectively; the Forward Digit Span procedure was also 

administered with acoustically presented numbers. Spatial STM was evaluated using 

two tests: a Spatial Span Task, similar to Corsi blocks task (Corsi, 1972), required 

participants to remember locations of a sequence of dots for subsequent recall and a 

Visual Pattern task (Della Sala et al., 1997), that consists of a square grid with 

patterns of flashing squares presented simultaneously; subjects were required to 

remember the spatial arrangement. For all span tasks, the procedure was divided into 

blocks of six trials. The trails of the same block have the same series length. Each 

trial consists within a series (a set of items) to be remembered. If at the end of the 

block, the subjects got four or more correct trials they would get another block of six 

trials with a longer series (one extra memory item within each set). The task 

continued adding an extra item within the series for each block, until they scored less 

than four correct trials in a block. The length of the series prior to this unsuccessful 

final block determined the individual span for each task. The score was calculated as 

the proportion of correctly remembered trials weighted by this individually 

determined span. Visual STM was measured using two Visual Change-detection tasks 

(Luck & Vogel, 1997), with either coloured dots or oriented arrows as targets, with 

subjects deciding if the second array was identical or different from the first. In these 

tasks the number of item presented could be 6, 9, or 12. Each condition had fixed 

number of 20 trials. The score was calculated as the sum of the proportion correct for 

each of the three conditions. 

2.3. Behavioural analysis 

In order to establish the potentially different underlying memory processes that our 

battery assessed, we used a data-driven principal component analysis. We used a 
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varimax rotation, with the aim of maximizing the distinction between any potentially 

separable underlying factors. We identify three factors on the basis of eigenvalues. 

For the interpretation of the factor we used the factors that after the rotation showed 

an item loading greater than 0.45.  

2.4. MEG data acquisition 

Nine minutes of eyes-closed MEG resting state activity were continuously recorded 

in a magnetically shielded room using a VectorView MEG system (Elektra-

Neuromag) that contains a magnetometer and two orthogonal planar gradiometers at 

each of 102 locations (totals of 306 sensors). The MEG activity was recorded at 1000 

Hz sampling rate with a high-pass filter of 0.01Hz. A three-dimensional digitizer 

(Polhemus FASTRACK) was used to record around 100 head shape coordinates 

relative to the position of the five head position indicator (HPI) coils and the fiducials 

(the nasion and the left and the right preauricular points), which were used to monitor 

the head position during recording. Additionally, two bipolar electrodes recorded the 

ECG (electrocardiogram) pulse from wrists and four bipolar electrodes (HEOGs and 

VEOGs) recorded horizontal and vertical eye movements throughout the session. 

Subjects were instructed to sit comfortably, to close their eyes, to try to stay as still as 

possible without focusing on any particular thought or falling asleep. 

2.5. MEG analysis 

We used the same analysis pipeline of Barnes et al. 2016. 

2.5.1. Pre-processing 

The raw MEG data were processed offline using a combination of custom scripts 

written in FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fs), SPM 12 

(Wellcome Trust Centre for Neuroimaging, UK, 

www.fil.ion.ucl.ac.uk/spm/software/). As a first step, the raw data were processed 

using MaxFilter version 2.0 (Elektra-Neuromag) to reduce the strength of external 

noise (using a signal space separation method). The MaxFilter, in particular the 

http://www.fmrib.ox.ac.uk/fs
http://www.fil.ion.ucl.ac.uk/spm/software/
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MaxMove algorithm, was used to compensate for head movement. The data were 

also downsampled to 250 Hz. Then, the continuous raw data were visually inspected 

and large artefacts resulting from signal jumps were rejected. At this stage, bad 

channels were also identified and removed, via visual inspection. In order to remove 

heartbeat and eye-movements artefacts a temporal Independent Component Analysis 

(ICA) was run at channel-space level, using fastICA algorithm. To identify the bad 

component we used a combination of metrics and manual inspection: components, 

which showed a correlation higher than Pearson r=0.1 with ocular and cardiac 

channels were removed. 

2.5.2. Source reconstruction 

Each subject’s MEG data were co-registered to a standard MNI template using the 

digitized scalp locations and fiducials via an iterative closest point algorithm using 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). Prior to beamforming the data were 

bandpass-filtered to focus only on the frequencies within the beta band (14-30 Hz); 

previous work has shown that these frequencies are best for exploring functional 

connections with MEG (Brookes et al. 2011; Barnes et al., 2016), and more generally 

that focusing on these oscillations increases the discrimination between spurious and 

genuine connectivity (Luckhoo et al. 2012). For each subject, source space activity 

was estimated at every vertex of an 8mm grid covering the entire brain, using a 

linearly constrained minimum variance beamformer (Van Veen el al., 1997). The 

beamformer combines information from both the magnetometers and planar 

gradiometers while taking into account the reduced dimensionality of the data 

introduced by the signal-space separation algorithm (Woolrich et al., 2011). 

Beamformer procedure works constructing a set of spatial filters, which are applied to 

the sensor data to reconstruct the signal at each grid point throughout the brain, with 

the aim of achieving unit bandpass response at the grid point while minimizing the 

contribution from all other sources. The process can be repeated across all grid 

locations to achieve a whole brain source reconstruction.  



60 
 

2.5.3. Amplitude Envelope Estimation, Down-sampling, and Concatenation.  

Once we created the dataset that contained source-projected oscillatory data, we 

estimated the amplitudes of those oscillations through computation of the absolute 

value of the analytic signal, which was found using a Hilbert Transform. Basically, 

this procedure leads to an estimate of instantaneous signal amplitude at each voxel, at 

our frequencies of interest. The envelope time series for every voxel was then low-

pass filtered and we divided each envelope time course into 1s windows and 

averaging within those windows (see Brookes et al., 2011). Both beamformer-

weights-normalised and non-beamformer-weights-normalised envelopes were 

estimated for use in the subsequent group-level (general linear model) analysis 

(Luckhoo et al., 2014). Spatial smoothing was also applied to the down-sampled 

envelope estimates (FWHM 5mm).  

Once we had down-sampled amplitude envelopes for all source space voxels and all 

subjects, we temporally concatenated the beamformer-weights-normalised envelopes 

across all participants to produce one continuous dataset that contained all 

participants’ data, adjoined end-to-end.  

We analysed the MEG resting state data in two ways. Firstly, we used a temporal 

ICA procedure to derive networks in our participants. Secondly, we identified three 

particular networks of interest, in this case using spatial information from an 

independent fMRI dataset, and then we extracted electrophysiological information 

from those networks using a dual regression procedure. Using this combined fMRI / 

MEG analysis, we could then explore functional connections between other brain 

systems and these networks on the basis of this electrophysiological information. 

Finally, we obtained whole-brain maps for each subject and used them to run a GLM, 

in order to find out whether differences in connectivity at rest are associated with 

individual differences in our cognitive measures. 
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2.5.4. Temporal ICA 

To identify temporally distinct RSNs using the source-space envelope data we used a 

temporal Independent Component Analysis (ICA) as a blind source separation 

method. Substantially, this is a validation procedure, because it has been 

demonstrated that this approach can be used to derive RSNs using the spontaneous 

fluctuations in ongoing oscillatory signal (see Astle et al., 2015 and Barnes et al., 

2016). This temporal ICA was run to reduce the data in 25 temporally independent 

components. To do that we combined the Principal Component Analysis (PCA) with 

the fastICA algorithm (Luckhoo et al., 2012). Each of the 25 independent time 

courses generated were converted into correlation spatial maps by estimating the 

Pearson correlation coefficient between each time course and the amplitude envelope 

associated with each voxel. This process was repeated across all vertices to yield a 

whole-brain map for each temporal IC. The maps created using this procedure 

correspond to our RSNs. This approach replicates that used by Brookes and 

colleagues (2011) and it identifies brain areas with oscillations that have a similar 

temporal structure. Then, we compared our networks to a set of canonical networks 

from an independent resting state fMRI study (Smith et al., 2009). To do that we 

calculated spatial cross-correlations (using fslcc, a special tool included in FSL 

library) between our MEG-derived networks and our canonical fMRI RSNs maps 

(Woolrich et al., 2009, as in Barnes et al. 2016). The spatial correspondence was 

calculated for seven different classic RSNs: the right fronto-parietal (rFPN), the left 

fronto-parietal (lFPN), the bilateral fronto-parietal, also known as dorso-lateral 

attentional network (DAN), the anterior cingulate (ACC), the visual, the sensori-

motor and the cerebellum components.  

2.5.5. MEG-adapted dual regression 

 In this study, we investigated whether variability in fronto-parietal RSNs would be 

related to individual differences in STM capacity. We used an independent set of 

canonical fMRI RSNs as a basis set for this analysis (Smith et al., 2012). The 
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advantage of choosing networks a priori from this independent data set is that it takes 

advantage from the higher spatial information in fMRI, providing a well-identified 

standard set of RSNs. Within this set of canonical RSNs, we then only looked for 

differences among subjects in the left and right lateral fronto-parietal and bilateral 

fronto-parietal networks. We chose these networks a priori because they represent our 

best approximation of those cortical networks particularly responsible for cognitive 

control. It is possible that better expression of, and / or communication with, these 

networks is associated with enhanced STM performance outside the scanner. We 

therefore tested whether differences in these networks, or in the areas that 

communicate with them, might explain individual differences in memory capacity.  

In order to derive subject specific maps for each of the fMRI networks, we performed 

a MEG-adapted dual regression (DRMEG) analysis (Luckhoo, 2014), analogous to 

the dual regression approach developed for use in fMRI data (Filippini et al., 2008). 

In the first stage of DRMEG, we performed a spatial regression of the fMRI network 

maps on the concatenated beamformer-weights-normalised envelopes to yield 

concatenated network time courses. In the second stage, we broke these concatenated 

time courses into subject specific blocks. For each subject, we performed a temporal 

regression of the network time course segment from the non-beamformer-weights-

normalised downsampled envelopes. By means of this procedure, we obtained a 

spatial map for each RSN that is specific to each subject, but definitely, the 

estimation of the true variance of activity for that network has an unbiased estimate, 

and this is primary for all subsequent multi-subject statistics (Luckhoo et al., 2014). 

The result of this methodology was that we obtained a whole-brain map for each 

subject and chosen network, which corresponded to each voxel’s strength within that 

network. 
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2.5.6. Group level regression analysis (GLM)  

The final stage of our analysis pipeline tested whether variability in our derived 

RSNs, or in the areas that communicate with them, correlate with STM performance. 

In order to do this we used a voxel-wise General Linear Model (GLM) (Friston et al. 

1994) to establish significant associations between the spatial distribution of each 

network and the behavioural scores. The aim of GLM procedure is to explain or to 

predict the variability of a dependent variable in terms of linear regression using 

multiple regression procedure. In short, we used the following linear model:  

Y= β1* Order STM + β2*Visuo-Spatial STM Factor + β3 * Visual STM Factor + 

noise. 

Where Y it is the connectivity at each voxel, while β1, β2, β3 are the beta values that 

indicate the level of correlation for each regressor. The beta values from this model 

were then used to explore the neural impact of STM measures on ongoing brain 

activity. The outcome was that for each of our seed networks we had a whole-brain 

dataset in which we estimated the linear contribution of each of our behavioural 

factors to voxel-wise connectivity values (as indexed by the corresponding beta 

values from the model). We adopted a standard procedure for testing the hypothesis 

that there are no significant clusters of voxels. We identified clusters of contiguous 

voxels where the output of the voxel-wise GLM was greater than t=2.46. This value 

is essentially arbitrary since it is the subsequent permutation process that actually 

tests for significance. However, we chose this value because it takes into account our 

degrees of freedom, and is Bonferroni corrected to account for our GLM being 

repeated on three networks, and the alpha limit was split in two, to account of the 

two-tailed distribution. This threshold corresponds to a p value of 0.0083. Once we 

identified the size of these clusters, we conducted a sign-flipping permutation 

procedure to produce a null distribution, using 5000 permutations. We were then able 

to compare the size of any cluster to this null distribution, thereby identifying the 

relative alpha level and producing a P value. This non-parametric permutation 
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approach has a number of advantages relative to more traditional approaches to 

significance testing with electrophysiological data: Firstly, it makes no a priori 

assumptions about when or where effects are likely to be apparent; secondly, this 

approach accounts for multiple comparisons over space and time, which can result in 

an uncontrolled false positive rate if uncorrected (Kilner, 2013). To summarise: the 

result of this GLM analysis is that it identifies areas within the candidate networks 

whose inclusion positively or negatively covaries with individual differences in our 

behavioural factors, and that these results are fully corrected for multiple comparisons 

at a whole-brain level.  

3. Results 

 

3.1. Behavioural results 

The PCA identified three factors, with eigenvalues greater than 0.9, which explained 

the 76.86% of the total variance. The factor loadings are shown in table 1. 

 

STM assessment 

 

Factors 

Order 

Factor 

Visuo-Spatial 

STM Factor 

Visual STM 

Factor 

    

Forward Digit Span task 

Forward Letter Span task 

Acoustic Forward Digit Span task 

Spatial Span task 

Visual Pattern task 

Visual Change Detection (colour dots) 

Visual Change Detection (arrows) 

0.879 

0.919 

0.855 

0.675 

0.196 

0.204 

-0.025 

0.184 

0.181 

0.142 

0.210 

0.804 

0.835 

-0.057 

0.013 

-0.030 

0.052 

-0.114 

-0.141 

0.059 

0.989 

 

Table 1. Factor loadings scores from PCA of STM assessment. The values in bold are taken in 

consideration for the interpretation. 

 

The first factor was strongly associated with four tests (Digit, Corsi, Letter and 

Spoken digit tasks), in these tasks the subject has to remember the given sequence of 

presentation of an array, independently from the nature of the material to be encoded. 
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The second factor was associated with the Colour dot and the Visual Pattern task, that 

is, with visuo-spatial STM. The third factor was associated with just one test, the 

Direction arrow task, which represents a task of visual STM without any spatial 

information. We used the factors produced by this analysis to assign a score to each 

factor for each participant, which will be used in the MEG analysis GLM. 

 

3.2. Meg Results 

 

3.2.1. Temporal ICA 

 We identified 25 ICs in the beta frequency band. Through the estimate of cross-

correlation, we were able to detect those networks that showed the highest degree of 

spatial correspondence to an independent set of fMRI networks. The beta-band 

showed high correlation values, thus a good average spatial overlap with fMRI 

networks (beta-cross-correlationavg = 0.45). As shown in Figure 1 we were able to 

find the seven MEG RSNs, in the figure it is possible to see also their fMRI 

counterparts (top panel).  
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Figure 1. Spatial maps of our MEG RSNs, derived by using the temporal ICA (bottom) and the 

associated spatial map of fMRI RSNs (Smith et al., 2012) (top). For each network we calculated he 

cross-correlation values between the two maps (r-values). The threshold for MEG maps is at 2.1 except 

for left and right fronto-parietal networks that is it at 1.9 and for cerebellum is 3. The threshold of 

fMRI maps is at 5. 

The cross correlation values for each network are shown in Table 2. It is noteworthy 

that the spatial resolution between the two techniques is different. This difference is 

noticeable in the bilateral fronto-parietal network, where some areas/nodes in the 

MEG network are merged compared with the fMRI. These results are in line with 

previous MEG works (Mantini et al., 2007; Brookes et al., 2011; Barnes et al., 2015). 
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Cross-Correlation Values 

 Beta Band 

ACC 0.53 

rFPN 0.31 

lFPN 0.32 

Bilateral FPN 0.36 

Sensori-motor Network 0.39 

Visual Network 0.57 

Cerebellum network 0.55 

 

Table 2. Cross-correlation values between MEG and fMRI networks for seven networks in each 

frequency band. 

 

 

3.2.2. Meg-adapted dual regression/GLM 

 

 In order to verify our second research hypothesis, namely the possibility that the 

differences in resting functional connectivity in the fronto-parietal networks could 

mirror inter-subject differences in STM capacity, we ran a GLM on these networks 

using the three factors derived from our behavioural PCA analysis. To do this we had 

to create a whole-brain map for each participant, in which the degree of connectivity 

with the networks of interest is expressed. We found that connectivity between the 

left fronto-parietal network and a lower-sensory processing area in temporo-occipital 

cortex was significantly related to the subject variability in the STM assessment 

measured outside the scanner. 
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Figure 2. The results of GLM procedure. The green area shows an area of the left fronto-parietal 

network that correlated significantly with visuo-spatial STM (pcorr <0.05) 

The behavioural factor that showed the significant correlation with our RSN was the 

second factor, the visuo-spatial STM. Moreover, this effect survived the permutation 

cluster correction for multiple comparison (pcorr = 0.003). Figure 2 shows this effect 

with the green regions representing the significant cluster. The cluster was formed by 

31 voxels, which span from the temporal to the occipital lobe with the involvement of 

the bilateral inferior temporal cortex, left and right middle temporal gyrus and left 

superior temporal gyrus. In order to assess the nature of the relationship between 

connectivity and STM capacity we calculated the correlation between the strength of 

connectivity in that area and the visuo-spatial STM factor.  
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Figure 3. Scatter plot of the relationship between connectivity in the significant area and visuo-spatial 

STM scores (Pearson’s R=0.40). The black solid line represents the regression line. 

As a result of this analysis we found a significant positive Pearson correlation 

(Pearson’s r=0.40, p=0.003).This result is shown in Figure 3. To check if our 

significant correlation was affected by the presence of outliers we calculated Cook’s 

distance, which identifies points that negatively affect the regression model. It also 

shows the influence of each observation on the fitted response values. The threshold 

value used for spotting highly influential points was 1. All Cook’s distance values 

measured were smaller than 0.11, and that means that the relationship between 

connectivity and STM scores were not influenced by single cases. 

No other effect survived our multiple comparison correction.  

 

4. Discussion 

In this study, the first goal was to demonstrate the feasibility and validity of MEG as 

a tool to explore resting state functional connectivity. In order to do that we used the 
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temporal information from the neural oscillation in the beta band to parcellate the 

brain into separate brain networks. These networks were spatially similar to the ones 

widely reported in fMRI studies. It is well known that it is possible to obtain RSNs by 

the direct measure of the dynamic pattern of activity across different brain regions 

through the use of invasive electrodes recording (see Engel et al., 2001 for a review). 

The issue with this direct approach is ethical: it is possible to pursue it just from non-

human primates or from patients who need brain surgical interventions. Alternatively, 

the method used in the present study allowed investigating the neural activity of the 

brain at rest both spatially and temporally with non-invasive recording. We used a 

particular blind source-separation procedure, the temporal ICA, which allowed us to 

decompose brain oscillations into distinct independent components. What is 

remarkable is that this procedure does not require any spatial information because the 

spatial distribution of our RSNs emerges from the temporal patterns of 

electrophysiological activity. Therefore, our method is substantially assumption-free 

and does not depend upon a choice of a particular brain area. With this methodology, 

we were effectively able to derive RSNs and were also able to use a beamformer 

source reconstruction to identify seven different networks in our resting state data: 

ACC network, left, right, and bilateral hemisphere fronto-parietal networks, sensori-

motor network, visual network, and cerebellum network. These networks were 

significantly similar to other RSNs previously observed in an independent fMRI 

study.  

The second goal of this study was to prove that the MEG networks variability is 

related to STM capacity. Individual differences in STM ability have been investigated 

by means of psychological research for decades. Here we have demonstrated that the 

basis of these differences relies on the variability of ongoing brain activity. Our 

hypothesis was that the functional organization of multiple brain areas involved in 

multiple cognitive functions could predicts STM capacity in terms of inter-subject 

variability. We combined MEG data with fMRI spatial set to improve our spatial 

resolution. The employment of this methodology allowed us to identify the fronto-
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parietal networks and then to use the temporal structure of the MEG brain oscillations 

in these networks to investigate their variable coordination with other brain areas, and 

finally to use this electrophysiological coordination to prove that it covaries with 

STM. The use of a spatial set helps to mitigate a common problem in performing 

connectivity analyses on electrophysiological data. However, our analysis depends 

upon the temporally downsampled Hilbert envelopes of our MEG recordings. 

Moreover, the use of this procedure has a great advantage for interpreting differences 

between subjects in term of networks. Here, we have found that electrophysiological 

coordination between left fronto-parietal network and a lower-level sensory 

processing area (temporal cortex) covaried with our subjects’ visual-spatial STM 

capacity. Because our subjects were at rest and not involved in an active task, 

differences in strategy or motivation cannot account for the relationship between 

behavioural and connectivity measures. This is one of the greatest advantages to use a 

resting state paradigm. Moreover, because MEG is a direct measure of neural activity 

these differences cannot be attributed to basic differences in the vascular system, like 

using the BOLD response.  

The fact that the fronto-parietal network is connected with the temporal lobe might 

explain the important role that this network plays in controlling an efficient 

perceptual processing of the material to be encoded. In particular, other studies found 

the involvement of temporal lobe, and specifically the inferior temporal cortex, in 

STM or in WM tasks, involving visuo-spatial material (for a review see Logothetis 

and Sheinberg, 1996). Recent works have stressed the importance of prefrontal cortex 

for WM and STM, in reactivating the appropriate neural representations in posterior 

lower-level areas (Ranganath and D’Esposito, 2005; Woloszyn and Sheinberg, 2009). 

Furthermore, the involvement of the left fronto-parietal network, that includes the 

middle frontal gyrus, with the frontal eye field (FEF) and the superior parietal cortex, 

explains the relation with covert and overt spatial attention process (Schwartz et al., 

2005; Taylor et al., 2007). Intra-cranial recordings in non-human primates have 

demonstrated that it is possible to find a neural signature of WM in the sustained cell 
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responses in the inferior temporal cortex (Chelazzi et al. 1998) and a recent study has 

proved that when the monkey was involved in an attentional task the FEF signals 

were mirrored also in visual areas including V4 and inferior temporal cortex 

(Gregoriou et al., 2009). Our results confirm the merit of MEG recordings for 

investigating spontaneous brain activity and demonstrated that intrinsic connectivity 

between fronto-parietal network and lower-level sensory areas can predict visuo-

spatial STM.  

It is also important to highlight that we could not find any significant correlation with 

verbal STM. This could be due to different reasons. One could be that subjects use 

different strategies to retain the verbal material. There are two main mechanisms for 

storing verbal information: articulatory rehearsal and attentional refreshing. The 

former is based on language processes while the latter is based on reactivation of 

memory traces (for a recent review see Camos 2015). The use of different strategies 

across participants could increase the variability and so create difficulties in finding 

an unique relationship between connectivity at rest and verbal STM, and this might 

explain why no difference survives after our conservative correction for multiple 

comparison. Another reason could rely upon the fact that we chose three networks a 

priori, based upon their involvement in attention and control mechanisms, but it is 

possible that they do not comprise all the mechanisms and cortical areas involved in 

language processing. A final possibility is that MEG is not able to detect the several 

areas recruited by language processing. 

In conclusion, we have demonstrated the importance to use MEG as tool to 

investigate intrinsic connectivity and that the functional connection between fronto-

parietal network and temporal lobe at rest represents an important pathway for 

successful cognitive performance in STM tasks. 
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Chapter 4 

Does Cognitive Training Enhance Intrinsic Brain Connectivity? A MEG study 

 

1. Introduction 

 

In Chapter 3 we have pointed out the importance of short-term memory (STM) for 

creating a neural representation of the external world. The brain processes, stores and 

acts on the incoming information. However, representations of the external world are 

constantly changing, and therefore the brain needs to update these representations 

constantly. We have also demonstrated that the intrinsic brain activity is the neuronal 

substrate on which STM capacity relies, and it is well known that resting state 

connectivity is highly consistent across subjects. Moreover, electrophysiological and 

neuroimaging techniques indicate that the resting state networks (RSNs) are for a 

large part predetermined. In the light of these considerations, the aim of the work 

described in this chapter is to investigate how functional connectivity changes in 

response to the environment and in particular if it is possible to modify it as a result 

of cognitive training. This is important not only to understand how the brain codifies 

its response to change in the external world but also to understand how cognitive 

rehabilitation can improve mental performance in brain-damaged patients. 

In the literature, it has been already demonstrated that, despite predetermination, the 

RSNs pattern specifically changes after intensive perceptual, motor, or higher 

function training (Lewis et al., 2009; Voss et al., 2010; Jolles et al., 2013). In 

particular, there is evidence that the practice of cognitive training changes RSNs, 

especially the fronto-parietal networks (Olesen et al., 2004; Dahlin et al., 2008; Jolles 

et al. 2013; Astle et al., 2015). The main goal of our project is to investigate if the 

RSN connectivity related to STM (for further details see Chapter 3) changes after a 

STM training. It has been demonstrated that STM plays a fundamental role in 

executive functions, such as Working Memory (WM), but also in other higher 

functions such as perceptual awareness (Soto & Silvanto, 2014) and that 
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improvements in STM extend beyond the specific training tasks (Jaeggi et al., 2008). 

Therefore, a further aim is to assess if the improvement in STM capacity remains 

confined to the domain trained or if it is extended also to other domains as a general 

improvement in encoding and storing perceptual information. In order to do this we 

recorded 9 minutes of resting state MEG scan and carried out a complete STM 

assessment before and after STM training. To assess the possibility that the training 

can affect STM ability in general, regardless of the domain trained, we used three 

different kinds of training: Verbal, Spatial, or Visual STM.  

To summarize our hypothesis: In this study we have attempted to answer the 

following important questions (a) Does the specificity of training (verbal, spatial or 

visual) affect the relationship between fronto-parietal networks and the related lower-

level domain-specific sensory areas? In addition, (b) Can training enhance the global 

strength of functional connectivity in the RSNs typically associated with higher-order 

executive functions?  

2. Methods 

2.1. Participants 

The participants were the same as in the previous study (see Chapter 3). The final 

dataset comprises data from 54 participants, (mean age = 24.09 years, SD= 4.43, 34 

females). They were randomly assigned to one of four conditions: Verbal Group (14 

subjects), Spatial Group (16 subjects), Visual Group (14 subjects) and Control Group 

(10 subjects). Three groups out of four performed one of the three different STM 

trainings (Verbal, Spatial, Visual) while the fourth group was a control group that did 

not follow any training. All subjects had normal or corrected-to-normal vision and no 

history of psychiatric or neurological conditions. All participants gave written 

informed consent to the participation in the study, which was approved by the 

University of Cambridge Psychology Research Ethics Committee.  
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2.2. Cognitive assessment 

The same multiple different STM assessments described in Chapter 3 were 

administered using a tablet computer before and after the training. There were no 

differences between the groups in the pre-training assessment scores (Verbal STM: 

F(1,3) =0.333, p=0.802; Spatial STM: F(1,3) =1.524, p=0.220; Visual STM: F(1,3) 

=0.935, p=0.431). Both pre-training and post-training assessments were conducted by 

a member of the staff who was blinded to the group where the subjects were 

allocated. 

2.3. Cognitive training 

The training groups performed the training at home: it consisted of two training 

sessions per day that could be done in separate sessions or back-to-back, each session 

taking no more than 30 minutes (as the subjects improved sessions would take longer 

since the sequences would get longer). There were 20 training sessions in total spread 

over 14 days. Subjects were asked to not take more than two days off consecutively. 

So they trained for 10 out of 14 days. The research team could remotely monitor 

online the progress of each participant. The training task consisted of one task of the 

assessment: the Verbal group performed the digit task, the Spatial group performed 

the similar to Corsi block task, and the Visual group performed the colour visual 

change detection task; while the control group did not perform any training. All 

subjects repeated resting state MEG recording and post-training STM assessment 

within seven days of completing the training. 

2.4. Behavioural analysis 

For the purpose of analysing the behavioural performance of our subjects, we 

averaged the three Verbal STM tasks measures, the two Spatial STM tasks measures, 

and the two Visual STM tasks measures. These composite scores of Verbal, Spatial, 

and Visual STM were later used to assess the training improvements. In order to 

establish the effect of the training on participants’ STM capacity we carried out a 3-
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way Mixed ANOVA using as between factor the group membership (4 levels) and as 

within factor session time (pre-training and post-training) and STM domains (Verbal, 

Spatial and Visual)  

2.5. MEG data acquisition 

We used the same procedure to acquire MEG resting state before and after the 

training (see Chapter 3). 

2.6. MEG analysis 

We used the same analysis pipeline of Astle et al. 2015. 

2.6.1. Pre-processing, Source Reconstruction, Envelope, and Concatenation 

The first stages of the procedure were identical to the one used in the pre-training 

resting state analysis (see Chapter 3) with the exception of the fact that, in order to 

assess the connectivity changes after the training, we included both single-subject 

pre-training and post-training downsampled envelope estimates. This leads to the 

creation of a single dataset including the data of all the subjects temporally 

concatenated. 

2.6.2. MEG-adapted dual regression 

 At this stage, we used again the MEG-adapted dual regression procedure as in the 

Chapter 3 on the same three networks in the beta band: the left, the right fronto-

parietal networks, and the bilateral fronto-parietal network. As a result of this 

procedure, we obtained for each participant a whole-brain map, which corresponds to 

voxel-by-voxel electrophysiological connectivity with each of our three networks 

before and after the training procedure. 

2.6.3. Group level regression analysis (GLM)  

As last step we tested whether our candidate RSNs or the interconnections with other 

areas were affected as a result of training. In particular, we wanted to verify if there 
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was a general improvement of STM capacity independently from the domain trained 

and/or if we could find changes in connectivity associated with the trained domain. In 

order to test our hypothesis we used four different whole-brain GLM procedures. To 

explore the association between changes in intrinsic connectivity and STM capacity 

we conducted a GLM containing the information regarding the impact of the training 

regardless of the group membership. In this way, we ran the GLM in which the first 

regressor corresponded to the relationship between STM scores and connectivity after 

the training (in this case measured as average of the three composite scores), and the 

second regressor corresponded to the relationship between STM scores and 

connectivity before the training. We repeated this procedure for Verbal, Spatial and 

Visual scores with other three GLM procedure. These GLMs allowed us to explore 

the relationship between intrinsic connectivity and STM ability after the training 

while controlling for any relationship before the training. In other words, we tested 

for an association between changes in STM capacity and changes in functional 

connectivity. We also added a regressor, which corresponded to the subject mean for 

each participant. 

Then, we adopted the same procedure used in Chapter 3 to correct for multiple 

comparisons. 

3. Results  

3.1. Behavioural Results 

The ANOVA showed that the main effect of both session time and STM were 

significant, F(1,50) = 22.68, p = 0.0001, pη
2 

= 0.31 and F(2,100) = 4.58, p = 0.013, 

pη
2 

= 0.08, respectively. Moreover, we found a significant interaction between group 

and STM domain, F(6,100) = 7.15, p = 0.0001, pη
2 

= 0.30. A Bonferroni post-hoc 

correction revealed a significant difference in the Visual STM training group, with 

higher scores than the Verbal and Spatial STM domains (both p-values = 0.001), see 

figure 1.  
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Figure. 1 Significant Interaction between Group Membership and STM domain. Bonferroni corrected 

post hoc analysis of the subjects in the different domains of STM as a function of group membership. 

 

We found also another significant interaction among group membership STM domain 

and time session, F (6,100) = 3.61, p = 0.003, pη
2 

= 0.18.  

 Verbal STM scores 

Pre vs Post 

Spatial STM scores 

Pre vs Post 

Visual STM scores 

Pre vs Post 

Verbal Group p= 0.001 p=0.020 p=0.482 

Spatial Group p=0.003 p=0.001 p=0.717 

Visual Group p=0.056 p=0.218 p=0.024 

Control Group p=0.670 p=0.104 p=0.787 

 

Table. 1 - Bonferroni corrected p-value in the post hoc of the subjects in the different domains of STM 

before and after training as a function of group membership. 

 

This interaction can be explained by the Bonferroni corrected post-hoc testing that 

showed that for the Verbal Group there was an improvement after the training in both 

Verbal and Spatial STM domain (p = 0.001 and p= 0.02 respectively); the same 
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improvement was found in both domains in the Spatial Group (Verbal STM p = 

0.003, Spatial STM p = 0.001); finally the visual group showed a significant 

improvement just in Visual STM domain (p = 0.024). In contrast this was not the case 

for the control group (all p-value >0.05), see table 1 and figure 2. 

 

Figure 2. Significant interaction among time session, STM domain and Group membership. 

Behavioural scores of the subjects in the different domains of STM before and after training as a 

function of group membership. The stars indicate the Bonferroni corrected p-value in the post hoc (* 

p<0.05; ** p<0.005; *** p<0.001 comparisons).  
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3.2. MEG Results 

In order to verify our second hypothesis, namely the possibility that training could 

modify the resting state functional connectivity in the fronto-parietal networks, we 

ran four different GLMs on these networks using as regressor the behavioural scores 

before and after the STM training. To do that we created a whole-brain map for each 

participant in which the degree of connectivity with the networks of interest was 

expressed. As a result, no effect survived to our multiple comparison correction. 

 

4. Discussion 

In the present study, we examined if STM training can enhance STM capacity and if 

such effect would be mirrored by changes in resting brain connectivity. Moreover, we 

wanted to assess if the effect of training in just one domain could be generalized and 

yield a general improvement in STM. To do that we recorded resting state activity 

before and after STM training in four different subject groups. In three groups 

subjects performed one of the three different STM trainings (Verbal, Spatial, and 

Visual) while the fourth group was a control group that did not follow any training. 

We found that after 20 sessions of STM training STM ability was substantially 

increased especially in the domain in which subjects were trained as demonstrated by 

two significant interactions (see Figure 1 and 2). This effect was not present in the 

Control group. What is remarkable is that both the Spatial and Verbal Group 

improved in both Spatial and Verbal STM domains while the Visual Group improved 

just in the Visual STM domain. This pattern can be explained by the nature of the 

training tasks: in both Spatial and Verbal training, the subject has to memorize the 

order in which the items are presented while in the Visual training task the subject has 

only to detect the presence or absence of a change of an item in the array. This can 

explain the significant interaction between STM domain and Group membership 
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(Figure 1). The fact that in the Verbal and Spatial tasks the subjects must encode and 

retain the order of presentation of certain quantity of items might promote the use of a 

similar encoding strategy. It has been demonstrated that training improvements are 

related to the choice of a successful strategy (for a recent review see Klingberg, 

2010). Indeed, our training might have improved or changed the subjects’ strategy 

resulting in a greater efficacy in memorizing a set of items (locations or digits). 

Perhaps performance improvements are related to the use of chunking strategy: an 

ability to reorganize materials into familiar or structured sequences (Ericcson et al., 

1980). The use of chunking is not efficient for a visual detection task, which, instead, 

promotes the use of visual search strategies. This can explain why Spatial and Verbal 

group improved in both Spatial and Verbal STM while Visual group improved just in 

Visual STM.  

All that said, the substantial improvements of behavioural performance were not 

mirrored by changes in subjects’ functional connectivity. There are several possible 

explanations for this. First, despite that the 20 sessions of training were sufficient to 

increase the STM capacity at behavioural level more sessions might be needed to 

change intrinsic brain connectivity. Second, each group had done a different kind of 

training that might promote a different kind of strategy and this could create an 

increment of variability in neurocognitive processes. For example Bor and colleagues 

(2003) found that the use of structured chunks as encoding strategy correlated with 

the activation of the lateral frontal cortex, the inferior parietal lobule and the fusiform 

gyrus while during unstructured sequence (i.e. requiring the use of visual strategy to 

encode the sequences) they found a recruitment of bilateral parietal and premotor 

areas. Therefore, the use of different strategies may make more complicated to 

identify significant relationships with RSNs, especially when applying a conservative 

correction for multiple comparisons. Third, we investigated only the beta band and it 

could be that the neural processing underlying training affects other frequency bands. 

Moreover, we chose seed networks that have a consistent role in control-demanding 

tasks (Lepsien et al., 2005), but it is possible that training affects interconnections 
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with other sensory-specialized areas (Smith et al., 1996). A final related possibility is 

that functional connectivity changes in resting state networks are less detectable using 

MEG than other neuroimaging techniques. 

5. Future Direction 

In the present study, we used MEG resting state to investigate changes in functional 

connectivity after STM training. We could not identify any significant relationship 

between changes in performance and changes in connectivity. In future experiments, 

it would be interesting to try new approaches. First of all, it could be worth looking at 

different frequency bands in the oscillatory activity. Second, because it is possible 

that training might affect lower-level sensory areas we could focus on sensory 

networks. Third, because different training domains created a great variability of our 

data we could implement the GLM to test the improvement linked to the specific 

training. This means that our analysis should focus on finding a significant interaction 

between time and group, using a paired t-test on within-subject effects of each group 

against the control group. Lastly, to avoid the influences of individual strategy based 

on task demand we could develop a new training procedure that includes all the tasks 

used here in an unique session. Furthermore, it could be worth including an active 

control group (i.e. placebo group). This control group should receive a believable 

alternative training to control for effects of expectancy, a factor that is known to have 

influence on cognitive performance. To do that, one possibility could be to use in the 

placebo group a similar training program as the active group with the difference that 

it does not become progressively more difficult depending on participant’s 

performance.  
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