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(
n
2
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S O M M A R I O

Fin dal loro inizio, le neuroscienze hanno investigato il cervello a diverse scale, par-
tendo dalla neurobiologia molecolare alla neuroanatomia. A tal fine si è compreso
che per ottenere una comprensione profonda del funzionamento del cervello, è
necessario un approccio multiscala in cui gli elementi costitutivi vengano valutati
nelle loro interazioni a diversi livelli.

Fra i metodi di indagine neuroscientifica più interessanti, la risonanza magnet-
ica funzionale (fMRI) ha dimostrato che è possibile misurare in tempo reale i cam-
biamenti nel flusso ematico locale legato all’aumento del metabolismo neuronale.
Questa disciplina ha preso il nome di neuroimaging funzionale in quanto permette
di quantificare le attività cerebrali in relazione alle loro funzioni neurofisiologiche
e cognitive. In particolare, attraverso misure della cosiddetta connettività fun-
zionale è possibile quantificare la correlazione temporale di eventi neurofisiologici
in aree neurali spazialmente remote, esprimendo la loro interdipendenza come
deviazione statistica rispetto all’attività di regioni distribuite sull’intera corteccia.

Diversi approcci di analisi multivariata sono applicabili allo studio dei dati ot-
tenuti tramite fMRI, come l’analisi delle componenti indipendenti (ICA) o metodi
seed-based. Ad oggi però, la teoria delle reti complesse, un approccio multidisci-
plinare di cui la teoria dei grafi è il fondamento teorico, ha offerto gli strumenti più
avanzati per indagare la complessità del cervello a diverse scale. Secondo questo
approccio, il cervello viene considerato come un grafo i cui nodi rappresentano
singole regioni cerebrali, le quali possono ricoprire un singolo voxel o arrivare
a rappresentare una regione anatomicamente definita. Gli archi del grafo invece
esprimono numericamente il livello di interazione fra regioni.

Partendo da tali premesse, la moderna teoria delle reti complesse ha dimostrato
che dal punto di vista funzionale, la corteccia cerebrale umana sana è organizzata
secondo un principio di architettura ad invarianza di scala, caratterizzata da una
combinazione di dense interazioni locali ed interazioni a lungo raggio, critiche al
fine di un corretto meccanismo di scambio dell’informazione. Funzionalmente,
tale struttura si poggia su un insieme di nodi molto connessi che agiscono da
“hubs” favorendo processi di integrazione dell’informazione elaborata a livello
locale.

Contemporaneamente, le reti cerebrali mostrano, sia a livello strutturale che fun-
zionale, una struttura modulare organizzata gerarchicamente che ne incrementa la
robustezza a perturbazioni esterne, quali insulti fisici, patologie o alterazioni du-
rante il neurosviluppo. L’architettura modulare di queste reti funzionali, spiega la
capacità del cervello di elaborare una grande quantità di input paralleli proveni-
enti in ogni momento dai vari organi di senso, in quanto ognuno di questi moduli
è altamente efficiente nel suo compito e le connessioni fra moduli consentono un
efficace scambio dell’informazione.

I moduli, o comunità, nelle reti di connettività funzionale, rappresentano sot-
togruppi di nodi che sono strettamente connessi fra di loro più di quanto non lo
siano rispetto a nodi esterni. In altri termini i moduli si possono intendere come
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aree per cui la dipendenza statistica della loro attività temporale è più elevata che
rispetto ad altre regioni.

Diversi sistemi complessi in natura esibiscono un’architettura modulare di questo
tipo e la teoria delle reti complesse fornisce potenti strumenti per la loro indagine,
ispirati per la maggior parte alla fisica dei sistemi disordinati. A questo scopo, la
specialità della teoria delle reti che si occupa di identificare i moduli costitutivi dei
sistemi complessi, è nota in letteratura con il nome di “community detection”.

Non tutti gli algoritmi di community detection proposti negli anni sono però
capaci di risolvere la struttura modulare delle reti funzionali, mettendo in luce la
presenza di moduli e sottomoduli a diverse scale. Uno dei principali problemi
che limitano la capacità di individuazione delle cosiddette comunità, è infatti il
cosiddetto “resolution limit”. Questo problema piuttosto generale e passato in-
osservato nella letteratura neuroscientifica, condiziona la capacità dei metodi di
community detection di individuare moduli le cui dimensioni siano minori di
una scala determinata dalla dimensione complessiva della rete. Precisamente, i
metodi di community detection più ampiamente utilizzati sono basati sulla fun-
zione Modularity introdotta originalmente da Mark Newman. L’ottimizzazione di
questa funzione, vincolata dal limite di risoluzione, fornisce una visione ristretta
sulle comunità corticali, mostrando che quasi indipendentemente da ogni altro
parametro, la corteccia umana sarebbe suddivisa funzionalmente in un numero
variabile da quattro a sei moduli, a seconda degli studi. Questo effetto artefattuale
ha non solo inficiato il potere risolutivo dei metodi di community detection ma ha
anche diminuito la capacità di effettuare discriminazioni di piccole differenze che
possono portare ad utili diagnosi riguardanti alterazioni della connettività.

In questo lavoro mi sono occupato esplicitamente di analizzare, tramite la teoria
delle reti complesse, gli effetti del limite di risoluzione sullo studio della modu-
larità delle reti di connettività funzionale e di fornire una soluzione che permetta
una descrizione multiscala dei moduli di queste reti.

Nel primo capitolo il lettore viene guidato alla teoria delle reti complesse, at-
traverso un’introduzione ai metodi di neuroimaging ed all’applicazione della teo-
ria dei grafi all’analisi dei dataset fMRI. Successivamente nel secondo capitolo ho
trattato nel dettaglio le caratteristiche del problema del limite di risoluzione, sia
in relazione al suo aspetto teorico che a quello pratico sulle reti di connettività
funzionale.

Nel terzo capitolo ho investigato gli effetti del resolution limit negli studi di
neuroimaging, trovando che una varietà di studi dove la teoria delle reti è stata
applicata a dataset di connettività funzionale, mostra i chiari effetti di tale prob-
lema. Per questo motivo ho sfruttato un nuovo metodo basato sull’ottimizzazione
numerica della funzione costo nota come Surprise, centrale per questo lavoro, stu-
diandone le proprietà teoriche in dettaglio e trovando che essa non soffre del
limite di risoluzione. I risultati ottenuti dalla massimizzazione di Surprise su
dati reali, hanno mostrato che dal punto di vista funzionale le reti di connet-
tività funzionale esibiscono una struttura modulare caratterizzata da moduli di
dimensione eterogenea, differentemente da quanto osservato utilizzato approcci
a risoluzione limitata. Alla luce della diversa e più fine partizione in comunità
perciò ho rivalutato il ruolo dei singoli nodi all’interno della rete, facendo emerg-
ere l’indicazione che alcune aree, in particolare il precuneuo, svolgono un ruolo
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fondamentale nell’integrazione dell’informazione fra moduli. Quest’ipotesi risulta
consistente con il ruolo del precuneo come area integrativa di un ampio spettro di
funzioni, dalle abilità visuo-spaziali al recupero di memorie episodiche.

In un secondo studio, contenuto nel capitolo quarto, ho esteso a reti pesate
la tecnica prima sviluppata. Ho prima testato la validità del nuovo approccio
detto Asymptotical Surprise su reti sintetiche dove ho simulato gli effetti dei fat-
tori di disturbo in fMRI, variando il rapporto segnale rumore ed il numero di
partecipanti in un esperimento virtuale. Successivamente ho dimostrato che simi-
larmente a Surprise, anche l’ottimizzazione di Asymptotical Surprise permette sia
di individuare moduli di diversa scala su reti di connettività funzionale umana
che di rivalutare il ruolo dei singoli nodi all’interno della struttura modulare in
esame.

Come ultima applicazione, ho voluto dimostrare con uno studio preliminare,
come la disponibilità di un metodo di community detection a maggiore risoluzione
permetta di discriminare alterazioni delle struttura modulare della connettività
funzionale di pazienti schizofrenici rispetto a soggetti di controllo. Nello speci-
fico, ho notato come le corteccie primarie (percettiva e motoria) mostrino una
disgregazione in sotto-moduli indipendenti. Quest’osservazione risulterebbe in
accordo con una teoria della schizofrenia bottom-up che vede questa devastante
malattia come un disordine cognitivo originato da un deficit negli stadi iniziali
dell’elaborazione sensoriale.

In definitiva, il limite di risoluzione sembra avere mascherato in maniera artefat-
tuale la meravigliosa complessità delle reti di connettività funzionale e lo studio
qui presentato è uno dei primi che ha cercato di svelare le cause di questa appar-
ente cecità.
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A B S T R A C T

Complex networks theory offers a framework for the analysis of brain functional
connectivity as measured by magnetic resonance imaging. Within this approach
the brain is represented as a graph comprising nodes connected by links, with
nodes corresponding to brain regions and the links to measures of inter-regional
interaction. A number of graph theoretical methods have been proposed to an-
alyze the modular structure of these networks. The most widely used metric
is Newman’s Modularity, which identifies modules within which links are more
abundant than expected on the basis of a random network. However, Modularity
is limited in its ability to detect relatively small communities, a problem known as
“resolution limit”. As a consequence, unambiguously identifiable modules, like
complete sub-graphs, may be unduly merged into larger communities when they
are too small compared to the size of the network. This limit, first demonstrated
for Newman’s Modularity, is quite general and affects, to a different extent, all
methods that seek to identify the community structure of a network through the
optimization of a global quality function. Hence, the resolution limit may repre-
sent a critical shortcoming for the study of brain networks, and is likely to have
affected many of the studies reported in the literature. This work pioneers the
use of Surprise and Asymptotical Surprise, two quality functions rooted in prob-
ability theory that aims at overcoming the resolution limit for both binary and
weighted networks. Hereby, heuristics for their optimization are developed and
tested, showing that the resulting optimal partitioning can highlight anatomically
and functionally plausible modules from brain connectivity datasets, on binary
and weighted networks. This novel approach is applied to the partitioning of two
different human brain networks that have been extensively characterized in the
literature, to address the resolution-limit issue in the study of the brain modu-
lar structure. Surprise maximization in human resting state networks revealed
the presence of a rich structure of modules with heterogeneous size distribution
undetectable by current methods. Moreover, Surprise led to different, more ac-
curate classification of the network’s connector hubs, the elements that integrate
the brain modules into a cohesive structure. In synthetic networks, Asymptotical
Surprise showed high sensitivity and specificity in the detection of ground-truth
structures, particularly in the presence of noise and variability such as those ob-
served in experimental functional MRI data. Finally, the methodological advances
hereby introduced are shown to be a helpful tool to better discern differences be-
tween the modular organization of functional connectivity of healthy subjects and
schizophrenic patients. Importantly, these differences may point to new clinical
hypotheses on the etiology of schizophrenia, and they would have gone unno-
ticed with resolution-limited methods. This may call for a revisitation of some
of the current models of the modular organization of the healthy and diseased
brain.
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1 I N T R O D U C T I O N

1.1 the rise of network neuroscience

Starting from 19th century’s neuron doctrine, the brain is described as an incred-
ibly complex system of intercommunicating elements, the neurons, intertwined
with other cells that support neuronal activity.

The dynamical processes running on the biological substrate of neurons are
the basis of information processing that gives rise to cognitive and psychological
processes, from the perception of the external environment to the representation
of mental states and emotions. Neuroscience tackles the investigation of the brain,
the most complex organ in nature, at different scales. Molecular and cellular
neuroscience focus on the finest level of workings of the nervous system cells. At
this scale, molecular biology and genetics are used to address the study of very
small populations of neurons.

At larger scales, hundreds or thousands of neurons are involved and a more
comprehensive approach is needed. The view must shift from the microscopic
level to the so-called systems neuroscience, which deals with widespread networks
of neurons, dubbed neuronal circuits.

System neuroscience studies how these large-scale circuits form and evolve dur-
ing development, how they produce basic processes like reflexes, motor coordi-
nation, circadian rhythms and, ultimately, how they give rise to behavioural and
different internal states like motivation, emotions, and cognition. Hence, an ex-
tension of system neuroscience from the study of small groups of neurons to the
whole brain requires radically different tools, both computational and experimen-
tal. Very small scale neuronal circuits can be studied by mathematically accurate
models. The typical size of the smallest identified functional unit, the cortical
column, is around hundred thousand neurons and, already at that level, many
hypotheses are required to approximately reproduce the electrical and chemical
activity of neurons, at the point that a comprehensive differential equations model
of cortical columns is still lacking.

Yet, a large-scale understanding of the incredibly complicated network of all
the neurons in the human brain, the human connectome, remains a challenging
target to be reached in the future [1]. This scientific, technological and cultural
challenge is named after the term connectomics, a word coined at the beginning of
this decade by Giulio Tononi and Olaf Sporns [2]. Its most ambitious aim is to
map all the connections in the brain at different scales of resolution, deep down
to the synaptic level. Whether this will help answer some of the most profound
questions about the human brain, it is not entirely known and still a topic of hot
debate in the scientific community.

The science of brain connectivity takes advantage of well-consolidated technolo-
gies for looking at the brain at work. These non-invasive methods of analysis of
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6 introduction

brain functions include neuroimaging techniques like magnetic resonance imag-
ing (MRI), electroencephalography (EEG) and transcranial magnetic stimulation
(TMS). Among these modalities, MRI has emerged as a dominant non-invasive
imaging method because it enables the investigation of both brain structure and
function with a good compromise in terms of spatial and temporal resolution.

At the morphological level, MRI provides a comprehensive view of the brain,
as it can identify the white matter fiber pathways connecting gray matter regions
otherwise impossible to obtain in-vivo. The pattern of white matter fibers is of-
ten named after the term structural connectivity as it relates to the morphological
features of the brain connections. Structural networks correspond to a pattern of
anatomical connections, summarizing bundles of axons connecting different brain
regions. Borrowing ideas from the electronics, structural connectivity may be in-
terpreted as the electrical wiring of the different parts of a processor. Although
useful, the wiring diagram of the brain is only a starting point for making hy-
potheses about the brain at work; indeed it cannot reveal how neurons behave in
real-time, nor does it account for the yet unknown regulatory mechanisms that
neurons exert on each other. Unfortunately, these dynamics are and remain par-
tially unpredictable, despite many notable and useful attempts [3], as also the
synaptic weights are changing dynamically due to synaptic plasticity.

The discovery of the BOLD effect in the 90’s by Ogawa [4], led to functional
MRI, a method to spatially map activity in the whole brain. Considered over the
large scale, the BOLD response is descriptive of the temporal metabolic demands
of large groups of cortical and subcortical structures, a quantity strictly related to
the electrical activity of neurons [5]. Indeed an active exchange of information be-
tween neural populations is thought to be at the heart of the BOLD fMRI signal [5].
The local increase of metabolic demand for oxygenated blood to fuel the neuronal
activity increments the vascular flow and favors the consumption of oxygen from
neurons. This metabolic cascade results in the change of the magnetic properties
of hemoglobin that transitions from oxygenated to deoxygenated state, yielding
local magnetic susceptibility variations measured by MRI. Possible confounds of
the fMRI signal, such as the influence of the cardiac and respiratory rhythms on
the BOLD oscillations have been ruled out by a number of studies [6, 7, 5, 8].

The tools offered by fMRI helped scientists to unveil another pattern of connec-
tivity that exists in the brain. Functional connectivity examines functional associ-
ations between temporal fluctuations of neuronal activities from different brain
regions [9]. Activation maps have been estimated for almost every kind of cog-
nitive task and collected in publicly available datasets, like the BrainMap data-
base [10], the Neurovault repository [11] and the UCLA multimodal connectiv-
ity database [12]. In contrast to structural connectivity, functional connectivity
results from estimates of statistical dependencies between neuronal or regional
time courses. Functional networks may vary over time, unlike structural networks
which are stable over long time scales. For instance, electrical patterns of cortical
activity may rearrange over time-scales of milliseconds, in contrast to structural
ones, involved in processes like nervous system development, learning, and ag-
ing. Furthermore, the temporal evolution of functional networks is variable as it
exhibits spontaneous changes during rest and characteristic modulations for dif-
ferent task conditions [13, 14].
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When cognitively at rest, the brain engages in a characteristic pattern of dy-
namic neural activity and most brain regions show spontaneous oscillations in
the BOLD signal [9, 15, 16]. In the resting state, a subject is quietly awake and
alert but does not engage in or attend to any specific cognitive or behavioral task.
Interestingly, this background activity dubbed resting-state connectivity is not extin-
guished but only attenuated during tasks [17], making evident its importance in
response to changes in the external demands. During a typical resting state fMRI
(rs-fMRI) session, volunteers are left in the MRI scanner, instructed to relax and
not to think anything in particular. On the other end, animals like mice or rats,
are lightly sedated and the BOLD signal is measured for longer time intervals,
yielding more stable estimates [18]. In humans, the fluctuations of resting-state
connectivity typically exhibit the highest correlation at low temporal frequencies
(<0.1 Hz) and can be observed during alertness [19], sleep [20], light sedation [21]
and general anesthesia [22]. The structure of temporal correlations of the BOLD
signals defines a network over spatially remote brain regions. Interestingly, these
networks are altered in neuropsychiatric diseases like autism [23] and schizophre-
nia [24]. The extent of these alterations may be a marker for possible diagnoses of
brain disease [25, 26].

Complex network science provides a framework to study the structure of func-
tional connectivity networks and to assess alterations induced by pathological con-
ditions [27, 25, 28, 26]. The methods of network theory date back to the problem
of Königsberg bridges, in 1735, when the famous mathematician Leonhard Euler
was faced with the problem of finding a path through the city that would cross all
the seven bridges just once. The knowledge accumulated since then forms the ba-
sis of modern graph theory. In totally general settings, simple graphs are usually
defined as a set of nodes, connected by a set of links, denoting the strength of the
relation between pairs of nodes. Graphs can be used to represent any type of rela-
tion between interacting elements and the idea that graph-theory can be applied
to brain networks has been pioneered starting from the middle nineties defining a
new specialization of systems biology, dubbed network neuroscience.

The network neuroscience relies upon the treatment of the brain as a graph,
whose nodes are indicative of particular brain regions connected by links repre-
senting the strength of their mutual interactions. The classical general pipeline for
the definition of a brain graph is given in Figure 1.1. In this framework, the mod-
elling of the brain in terms of graphs starts from the definition of its nodes [29].
These can be defined as anatomically or functionally defined regions [30]. A clear
delineation of network nodes is one of the first steps in the whole pipeline of
the graph-theoretical analyses and is highly important for the subsequent analy-
ses [29]. The second step in the definition of a brain network is an estimate of the
continuous association between nodes: the links of the graph indeed measure the
interregional coordination or similarity between nodes [31]. To be more specific,
in the case of fMRI studies of resting state functional connectivity, link weights
are defined as interregional temporal correlations in the fluctuations of the BOLD
signals, and the resulting graph can be represented by a square matrix (adjacency
matrix) where the strongest correlations indicate the presence of a link between
any two specific areas. In other applications, like Diffusion Tensor Imaging, a
technique that is able to show the effective directions of nervous fibers traits in the
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brain, one can define links whose strength is directly proportional to the number
of white matter tracts connecting any two regions. In addition, brain networks
have also been defined on the basis of inter-subject anatomical covariance [32, 33],
co-activation of different brain regions across individuals subjected to experimen-
tal tasks [34], pharmacological challenges [35, 36] or spectral coherence of EEG
electrical time-courses [31]. All of these networks are “weighted” by definition, i.e.
their links are associated with real numbers representing a measure of the strength
of pairwise interactions between nodes.
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Figure 1.1: Structural and functional brain networks can be explored using graph theory
through four steps. Adapted from [27].

The rise of network neuroscience in the last decade has been driven by the
evidence that almost independently from how the network links are defined, brain
networks share some common features at several spatial and temporal scales.

For example, they exhibit the small-world property [37, 38, 39], whereby most
nodes in a graph can be reached from any other node in just a few hops. Small-
worldness in brain networks [40] has been found to positively correlate with higher
IQ in humans [41], suggesting that human intellectual performance may be related
to how efficiently our brain integrates information between multiple brain regions.

Other measures have been correlated with phenotypical and structural charac-
teristics. Rich-clubs are subsets of highly connected nodes who are also highly
connected to each other, forming a communication backbone. It has been hy-
pothesized, that rich clubs might be valuable in supporting high-level and more
cognitively advanced forms of information processing [42]. Moreover, it is thought
that the presence of a rich club increases the diversity of the functional repertoire
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over and above the effects produced by scale-freeness alone [43], a property of a
network of being self-similar at different scales. Forms of rich-club organization
have been observed in cats, macaque, and humans [44, 45, 46, 42], comprising
portions of prefrontal, parietal, temporal and insular cortex. Rich club nodes and
edges participate in a large number of short paths across the network, contributing
disproportionately to global communication.

From the functional point of view, central hubs of rich clubs are concentrated in
heteromodal association cortices, areas that receive input from multiple unimodal
sensory association areas and/or other heteromodal cortices [47, 48, 49]. Con-
versely, primary sensory cortices have low topological centrality and degree [44,
50, 45]. Damage to primary sensory areas only affects them locally, while per-
turbation to the rich-club backbone has diffuse and severe effects on the whole
network architecture [51, 52]. Abnormal rich-club connectivity is hypothesized to
be related to familial vulnerability for schizophrenia [53] and other diseases as
well.

More generally, network neuroscience has matured the ability to map alterations
at the level of structural or functional connectome and may be useful for predict-
ing and generating hypotheses about underlying pathophysiological mechanisms
of disease. To this end, the definition and validation of data-driven biomarkers
based on graph-theoretical observations of the effects of brain diseases is a highly
desirable objective.

1.2 brain networks at the mesoscale

Many natural and artificial networks display a modular organization, i.e. nodes
group together in some kind of clusters, resulting in a particular mesoscopic struc-
ture. At this level of mesoscale organization, the topological properties of nodes
are more dependent on their neighbourhood than on the rest of the graph. When
the structure tends to group nodes with similar properties, the mesoscale structure
is called assortative. Graphs with an assortative structure consist of tightly con-
nected groups of nodes that are themselves loosely connected with other groups.
These groups are therefore dubbed as communities.

The organization into communities is one of the most studied properties of
networks and a large amount of literature has grown on the topic, as reviewed
in [54]. The problem of detecting the communities, community detection or graph-
partitioning in the computer-science jargon, is of high theoretical and practical
importance. From the theoretical point of view, communities are representative
of the generative probabilistic model underlying the formation of links [55] and
tell much about the statistical properties of networks. On the other side, practical
applications of community detection are fundamental not only in neuroscience
but also in sociology, computer science, biology and many other fields. Modules
derive from a decomposition of the network into subcomponents that are inter-
nally strongly coupled but externally only weakly coupled. The property of a
system of being modular or nearly-decomposable, as already noted by Nobel prize
laureate Herbert Simon [56, 57], helps any system to resist external perturbations
by separating different functions into topologically distinct part of the system.
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Near decomposability is in many respects a hallmark of complexity in natural
systems [56].

Strong experimental evidence shows that the nervous system in animals and
humans, from the neuronal level up to macroscopic scale, displays an organiza-
tion that favours the exchange of information over a communication backbone
supported by well-connected areas, the connector hubs of the network [46], re-
sponsible in turn for sending information to local processors, identified as the
communities or modules [58]. Functional brain networks of humans and other
animals consist of connected subnetworks (or modules) associated with cognitive
functions, of vital importance for the daily life and the interaction with the envi-
ronment. The modular organization is exhibited hierarchically at different scales,
with modules inside modules. Within this architecture that confers robustness
and adaptability to the network [59], information flows from lower level sensory
cortices to higher multimodal and associative cortices [60], thus being refined and
filtered in its content at multiple stages of elaboration. The specialized stages of
neural information processing are the regions of functional segregation, a common
feature at multiple scales in the brain, from the neuronal networks to macroscopic
anatomically defined regions. From the functional point of view, segregation is
meant as the statistical dependence of processing elements within the same re-
gion [61]. Functional integration instead is defined as a significant deviation from
independence of large subsystems, and is typically realized through synchroniza-
tion processes that increase the statistical dependence between functional modu-
les, a mechanism required to access widely distributed resources, needed for a
coherent behaviour [62]. A delicate balance between functional integration and
segregation is realized at the edge of metastability as cortical areas are neither
fully synchronized nor full desynchronized [63].

When the subtle balance between functional integration and segregation is al-
tered, like in pathological states or for external insults, the brain responds in
an adaptive manner, in order to maintain homoeostasis, where possible. The
mechanisms of homoeostasis adopted are compensation, degeneracy and redun-
dancy [26]. Through compensation, extra neural resources are recruited to main-
tain normal function and thanks to neural degeneracy and redundancy [64], it is
possible for distinct regions to carry out the same function, to some extent. When
these compensatory mechanisms set in after homoeostatic perturbations, the result
is a reorganization of the brain structure, involving changes in its network prop-
erties. Among the network level changes observed after specific alterations, those
relative to the brain modular structure can be investigated within the framework
of complex networks science [65, 66, 67].

Using the tools of complex network science, the evaluation of the modular struc-
ture of FC networks is cast to the problem of community detection in graphs, i.e.
the problem of identifying independent groups of brain regions that exhibit strong
interconnection between each other but that are weakly connected to other modu-
les.

Several methods have been proposed to resolve the community structure of
complex networks [54, 69, 70]. Many of these methods involve the definition of a
fitness function that assigns positive or negative scores to edges connecting nodes
within or outside the same community, and heuristics to find the optimal partition
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Figure 1.2: Meaning of communities, hubs and connectors of a brain network, depicted
in an artistic view. Adapted from [68].

of the network that maximizes this fitness function. Among all the methods, the
most popular approach is Newman’s “Modularity maximization” and variations
thereof [71]. Following the first demonstration by [36], partitioning of brain net-
works using Newman’s Modularity has been widely applied to assess the brain
modular structure. Despite its wide usage and merits, Newman’s Modularity
is characterized by some important limitations as it may fail to detect modules
smaller than a certain scale determined by the network size, resulting in a few, rel-
atively uniform modules of almost the same dimension. This general behaviour,
not unique to Newman’s approach, is pervasive in community detection and is
dubbed as resolution-limit [72].

As a consequence, even unambiguously defined modules, like almost complete
sub-graphs or even cliques1, may be unduly merged into larger communities when
they are too small compared to the size of the network. This limit hampers the
ability to detect small-scale structures of functionally correlated brain areas and
to notice alterations in connectivity between subjects or groups of subjects. Hence,
it may have prevented detection of alterations in the modular structure of brain
connectivity in patients affected by various neuropsychiatric disorders Hence, the
resolution limit represents a critical shortcoming for the study of brain networks
and is likely to have affected many of the studies reported in the literature.

In the present work I have developed an approach that is valuable in detecting
communities in brain networks beyond the resolution limit. The following sections
of this introductory chapter guide the reader into the complex networks science,
by giving an overview of the mathematical terminology and methodological con-
cepts. In the second chapter, the experimental evidence of the modular structure
of brain connectivity is reviewed, together with the methods to disentangle the
mesoscopic structure of complex systems. In particular, sections 2.3 and 2.4 con-
sider the problem of the resolution limit and degeneracy of Newman Modularity.
A new approach, dubbed Surprise, that overcomes the limitations imposed by the
resolution limit and degeneracy, is described in the chapter 3. Throughout chap-
ters, the problems imposed by the resolution limit and degeneracy are analysed
for Surprise and its weighted counterpart, Asymptotical Surprise. The characteris-
tics of the two methods are discussed, together with an efficient algorithm aimed
at their optimization. The application of Surprise and Asymptotical Surprise to
functional connectivity networks constitutes the heart of chapters 3 and 4, whereby
the implications of a resolution limit free analysis of the functional modules are

1 Graphs where all nodes to connect to all nodes
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explored. Throughout the third and fourth chapter, an approach for the creation
of benchmark networks is then proposed, whereby both Surprise and Asympto-
tical Surprise are validated and shown to outperform current resolution-limited
methods.

The lack of resolution limit of Surprise motivated an application on real-world
resting state networks that revealed the presence of a rich structure of hetero-
geneously distributed modules, and differences in networks’ partitions that are
undetectable by resolution-limited methods. Furthermore, after validation in the
synthetic networks with simulated noise as from fMRI studies, Asymptotical Sur-
prise optimization is applied to real world functional connectivity networks and
is shown to lead to substantial differences in the identification of connector hubs
compared to other community detection methods.

Finally, in the last chapter of this thesis I discuss the advantages of using Asym-
ptotical Surprise optimization to detect the reorganization of the modular struc-
ture in the diseased brain. In particular, I found that the higher specificity pro-
vided by a resolution-limit-free method highlights a modular fragmentation of the
primary sensory areas in schizophrenic patients with respect to healthy controls.
This is a preliminary finding although in keeping with recently posited theories
about the aetiology of schizophrenia, that hypothesize an alteration in early sen-
sory processing as the main cause of the cognitive and behavioural deficits often
observed in this disease.

1.3 elements of graph theory

A short and self-contained tutorial to the jargon of graph theory is in order before
delving into the details of community detection and the illustration of how the
resolution limit negatively affected many neuroscientific studies: this section is
devoted to the introduction to the mathematical concepts of graph theory. We
adopt the typical notation used in other works of network science [73, 74].
• A graph G = (V ,E) is a representation of a set V of n nodes, also called vertices,
connected by m links, also called edges, in a set E (Figure 1.3a).
• A graph with no multiple links and no self-loops is dubbed simple graph. If mul-
tiple links exist between two nodes, the graph is called multigraph. Additionally, if
a node links itself, the graph is called loopy graph. Figure 1.3c shows the combina-
tion of a multigraph and a loopy graph: a loopy multigraph. If the direction of the
links is important, the graph is called directed, as shown in Figure 1.3d, otherwise
the graph is called undirected.
• The adjacency matrix A = {Aij} ∈ {0, 1}n×n of a binary undirected graph is a
square n× n symmetric matrix with elements Aij = 1 if an edge exists between
vertex i and j and 0 otherwise.
• An edge-weighted graph (also called weighted graph) G = (V ,E,ω) is a graph that
has a set of weights ω on the links (Figure 1.3b). Although not true in general,
we consider only weighted undirected graphs with a symmetrical real adjacency
matrix, meaning that if an edge exists between node i and j the weight from i to j
is the same as the weight from j to i: ωij = ωji. The weighted adjacency matrix,
indicated as W = {ωij} ∈ Rn×n is a real, square n×n symmetric matrix.
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Figure 1.3: Classes of graphs. (a) is a simple unweighted undirected graph. (b) is a
simple weighted undirected graph, (c) is an unweighted loopy multigraph, (d)
is a simple directed graph.

• The density of a simple graph ρ is defined as the ratio of the actual number of
edges over all possible edges:

ρ =
m(
n
2

) =
2m

n(n− 1)
. (1.1)

• A dense graph is a graph where almost every possible pair of nodes is connected
with an edge. Conversely, a graph is termed sparse if the density is low, meaning
that also the adjacency matrix is sparse and the number of edges is in the order of
magnitude of the number of nodes m ≈ O(n).
• The number of edges incident to a node in a simple graph is called degree, de-
noted as ki. Every half edge incident to a node is called stub. A vertex of degree
ki has therefore ki incident stubs.
• On simple weighted graphs, the sum of weights of the edges incident to a vertex
i is called strength and is denoted as si. Degree and strength are the sums over
rows of the adjacency matrix di = si =

∑n
j=1Aij, they are equal for binary graphs,

but different for weighted graphs.
• The degree sequence {ki} ∀i = 1, . . . ,n is the sequence of the degrees of the nodes,
with these numbers put in ascending order, and repetitions if needed. By the
handshaking lemma [75], the sum of all node degrees is equal to twice the number
of links:

n∑
i=1

ki = 2|E|, (1.2)
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consequently the average node degree is given by

〈k〉 = 2m

n
. (1.3)

• The neighborhood of node i is the set Γi = {j ∈ V |(i, j) ∈ E}. In other words, the
neighbor nodes of i are the nodes which share and endpoint edge to i.
• A path in a graph is a sequence of edges such that the destination of each edge
in the sequence is always the source of the following edge. A cycle is a closed path,
i.e. a path where the origin and destination nodes are the same.
• A graph that has all the possible links, indicated by K = (V ,V × V) is called
complete graph or clique (Figure 1.4a). Complete graphs on n nodes, indicated as
Kn have a total of m =

(
n
2

)
edges and density equal to 1.

• The complementary graph Ḡ is the graph that has edges where G has no edges
and vice-versa, formally Ḡ = (V ,V × V − E). The empty graph is therefore defined
as the complementary graph of the clique K̄, as it has n nodes and no edges
(Figure 1.4b). The cycle graph Cn is a graph containing a single cycle through all
nodes and is the smallest connected cyclic graph (Figure 1.4c). A tree graph is a
graph with no cycles and exactly n− 1 edges.
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• A subgraph G of a graph G is said to be induced if, for any pair of vertices i and j
of G, the pair (i, j) is an edge of G if and only if (i, j) is also an edge of G. In other
words, G is an induced subgraph of G if it has the most edges that appear in G
over the same vertex set. If G is chosen based on a vertex subset S of V(G), then G

can be written as G[S] and is said to be induced by S.
• A simple graph is said connected if there exists a path between any pair of nodes.
If the graph itself is not connected, then it is formed by a set of connected sub-
graphs, also called weakly connected components.

1.3.1 Clustering

Grouping nodes according to some criterion of similarity between them is the
basis of the identification of clusters in networks.
• A set of mutually disjoint, induced subgraphs that covers all the nodes is called
a clustering. A clustering ζ = {ζc} of G is a partitioning of the set V into C disjoint
sets of nodes, ζc ⊆ V , which we call modules or communities, interchangeably. Each
module is a node-induced subgraph G := (V[ζc],E[ζc]), also indicated as G[ζc].
• We denote the number of nodes of the module G[ζc] with nc, the number of
edges with mc and the total number of pairs of nodes with pc =

(
nc
2

)
. From
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the notational point of view, a clustering can alternatively be defined with a node
assignment vector σ ∈ Nn in which every node is assigned to an integer label
representing the community index.

• The Kronecker delta on the assignment vector δ(σi,σj) = 1 indicates when two
nodes lie in the same module and δ(σi,σj) = 0 when they belongs to different
modules.

• The internal degree kint(i) of vertex i in the module G is the number of edges
connecting i to other vertices in G. If kext(i) = 0, the vertex has neighbors only
within G, on the other hand if kint(i) = 0, the vertex is disjoint from G and should
not be part of the same community.

• The external degree kext(i) of vertex i in the module G is the number of edges
connecting i to vertices not in G.

• The subgraph internal degree Kint(G) is the sum of the internal degrees of its ver-
tices. Likewise, the subgraph external degree Kext(G) is the sum of the external de-
grees of its vertices.

• The subgraph total degree k(G) is the sum of the degrees of the vertices of G. By
definition, K(G) = Kext(G) + Kint(G). For convenience of notation we will denote
without loss of generality Kint(G[ζc]) as Kc, specifying the full notation where is
needed.

a

b
c

d
e

1

2

0.5
3

1

G

Figure 1.5: Internal degree kint(a) = 2, internal strength sint(a) = 3, external degree
kext(a) = 2, external strength sext(a) = 3.5.

• The intracluster density of the subgraph G is defined as the ratio of the intracom-
munity edges over the number of pairs of nodes

ρint(G) =
mc

pc
=

2mc

nc(nc − 1)
. (1.4)

• The inter-cluster density is instead defined as the ratio of edges with one endpoint
in G and the other in G− G, over the total possible number of edges connecting G

with the rest of the graph:

ρext =
m−mc
nc(n−nc)

. (1.5)
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• The total intracluster edges and total intracluster node pairs numbers are the
sum over all modules c of intracommunity edges and node pairs:

mζ =

C∑
c=1

|E [Gc] | =

C∑
c=1

mc (1.6)

pζ =

C∑
c=1

(
|V [Gc] |

2

)
=

C∑
c=1

pc. (1.7)

1.3.2 Communities

The word community applied to complex networks originated in sociology as peo-
ple tend naturally to form groups: family, friends, acquaintances. Social commu-
nities can then be thought as subgroups of people connected to each other more
strongly than with other external people.

The problem of quantitatively defining a community, although intuitive at first
sight, is multifaceted and ambiguous. No universally accepted definition of net-
work community exists and some degree of arbitrariness or common sense is re-
quired, a feature that is difficult to describe quantitatively. Importantly, the iden-
tification of communities is possible only for relatively sparse graphs. On dense
graphs indeed, the community detection problem requires different tools, closer
to those of data clustering, with different concepts and definitions.

In the attempt of making the concept of community quantitative, two classes of
definitions can be provided: local and global. The local definitions involve that a
community is viewed as a separate entry or an autonomous module: the commu-
nity is studied as isolated from the graph as a whole. These definitions imply that
the corresponding communities are mostly maximal subgraphs, subsets of nodes
that cannot be enlarged with the addition of new nodes or edges without altering
the property upon which they are defined. The most important local criterion for
communities definition are the complete-mutuality, the reachability, the comparison
of vertex degree and internal-external cohesion [76, 77]. Complete mutuality means
that the identified community is a clique where every node is mutually connected
with all the others, while reachability implies that there exist a path between every
pair of nodes in the community. The internal- external cohesion principle is equiv-
alently represented by the Radicchi’s definitions of strong communities [78]: for a
community G to be defined in strong sense, every node in the community must
exhibit a larger internal degree than external degree. This concept is quantified by
the following definition:

∀i ∈ V[G] kint(i) > kext(i). (1.8)

The strong community criterion is extremely stringent and most real-world net-
works, even the simplest, do not exhibit such property. It is possible though to
weaken this constraint, asking that on average the internal degree is greater than the
external degree. Upon this idea the concept of weak communities is built (Eq. 1.9):∑

i∈V[G]

kint(i) >
∑
i∈V[G]

kext(i) (1.9)
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Finding strong communities is more difficult than finding weak communities and
most algorithms fail in this job. Most methods indeed encode their own concept of
community. Nonetheless these two last definitions are almost universally accepted
and give a precise idea of the meaning of community. Additionally, the weak
criterion of community is the basis of the planted-partition model [79] and its
later modifications [80] that we’ll encounter in the next sections.

Most of the global definitions of communities encompass properties of the graph
that are used by an algorithm to deliver a modular decomposition. In this sense
the global definitions are always indirect, often based on null models or stationary
properties of dynamical processes such as random walkers [81, 82].

Multiple different sub-networks in brain FC networks have been observed con-
sistently with a variety of analysis techniques [83, 84, 85, 35] such as ICA or other
multivariate methods. This empirical evidence, shown not only in humans but
also in higher vertebrates as the cat [86] and macaque [87], suggests that to some
extent the high-level functional organization is based on the balance of two com-
peting principles of segregation and integration. The nervous system is obviously
shaped by this balance as the need of fast information processing is satisfied by
small-scale neuronal circuits, typically at the first stages of sensory input process-
ing. Typical examples are the very localized functional area of visual processing
V1 or the primary motor cortices. At a larger scale the cortex works in concert,
connecting all the segregated areas in a widely distributed complex network. It
is indeed more and more recognized that complex behaviours arise thanks to the
dynamical interplay of the integrated and segregated actions of different regions
of the brain [61, 62, 88].

The presence of communities within FC networks and hubs supports the con-
cepts of integration and segregation. Recently, experiments in which computa-
tional dynamical processes are simulated over the topology of whole-brain net-
works have shed light on the role of communities in shaping the cortical activ-
ity [88]. Importantly, it was found that the network communities consist in the
areas that are devoted to the segregated information processing, while the hubs
and rich clubs are deputed to convey that information over the whole brain.

Assessing the role of nodes within a community is an important task that de-
pends on the community assignment. To this end one can design a cartographic
classification of nodal roles that describes if a node connects two communities or
is buried inside its own community in of help.

1.3.3 Cartographic classification of nodes

Every node in a network is characterized by its role in relation to other nodes.
Once a clustering ζ is imposed on a graph, some nodes may act as bridges between
two or more communities, having neighbours in one or the other module, others
instead may share the majority of neighbours inside their same community, being
more central to their module.

To investigate differences in nodal roles as determined by different community
detection methods, Guimera and Amaral [89] introduced a cartographic character-
ization of nodes based on two parameters. The first, dubbed participation coefficient,
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indicated by Pi and comprised in the range [0, 1] reflects the extent to which a node
is connected to nodes in other modules, and is defined in Eq 1.10 as:

Pi = 1−
∑
c

(
kic
ki

)2
, (1.10)

where kic is the number of links of node i to nodes in module c and ki is the total
degree of node i. Converselely, the second parameter dubbed within-module degree
score, indicated by zi, reflects the degree of connectivity of a node to the nodes in
its same community, and is defined as:

zi =
ki − 〈kci〉
σkci

, (1.11)

where 〈kci〉 is the average degree of nodes in the same module c of node i and
σkci is the standard deviation of degrees of nodes in module c.

Hubs classification is critical for the interpretation of the roles played by the
highly connected nodes within the network structure. The Guimera and Ama-
ral [89] classification scheme places participation coefficient and within-module
degree z-score of every node on a two-dimensional plane. Different regions of
the two-dimensional plane are divided empirically into seven regions as shown
in Figure 1.6. Depending on the specific cut-off values of participation coefficient
and intra-modular connectivity, the nodes are defined as ultra-peripheral (region
R1), peripheral (region R2), connector non-hubs (region R3), kinless non-hubs (re-
gion R4), provincial hubs (region R5), connector hubs (region R6) and kinless hubs
(region R7). Naturally, connector hubs are of great importance for communication
between modules (Figure 1.2). Indeed, connector hubs are those with high values
of participation coefficient and high values of within-module degree z-score.

In the context of brain networks, these hubs are responsible for the integration of
the different modules into a cohesive structure and are thought to be particularly
vulnerable in the presence of brain insult or disease, as damage to these nodes
is likely to disrupt network connectedness [25, 26, 65]. In contrast, provincial
hubs are more importantly involved in functional specialization and local process-
ing; therefore damage to these areas may yield specific clinical deficits, whereas
damage to connector hubs results in complex and pervasive neurological dysfunc-
tions [25, 26].

1.3.4 Models of random graphs

A large effort of network science is devoted to the description of the generative
processes that lead to the networks observed in real-world settings. The ability to
understand such generative models is of primary importance in many fields, as it
enables researchers to make predictions about the behaviour of the system under
exam and to compare systems, gaining knowledge. In general, a random graph is
a model network in which some specific set of parameters take fixed values, but
the network is random in other respects. The theory of random graphs studies the
intersection between graph theory and probability theory. It is usual to describe
a random graph by a sequence of steps to construct it. This sequence is called a
random graph model.
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Figure 1.6: Guimera and Amaral classification scheme for the modular structure induced
by Modularity maximization of a co-activation network as obtained from [34].
Each node is indicated by specific coordinates (Pi, zi) and occupies one of the
seven different regions. Nodal degrees are color-coded from yellow to red, as
shown in the legend.

Figure 1.7: Schematic assessment of nodal roles. Interestingly under this convention,
bridges represent the most extreme case of nodes, with a relatively equal dis-
tribution of connectivity between different modules. Hence, bridges are best
detected when overlapping communities are allowed. They bridges hubs and
non-hubs occupy the R7 region of the original GA scheme. Adapted from [26].

In the Erdős-Rényi model (also called Gn,m model, the sample space Ω is the
set of all graphs having n nodes and m edges. One of the simplest models is
the random network generated by selecting exactly m edges from the set of all
possible edges and placing them at random over the nodes pairs. This model,
with the fixed constraint of edge number, is mathematically known as G(n,m) or
Gilbert random graph. In probabilistic terms, the G(n,m) graph is equivalent to
say that the network is sampled choosing uniformly from the set Ω of all

((n2)
m

)
possible graphs. Intuitively then it is possible to assign a probability score to each
instance of a random graph model. In the G(n,m), each instance is equiprobable.

Strictly speaking, a random graph model is better defined as an ensemble of
networks, therefore as a probability distribution P(Ω) over the space of all graphs
G. The Gilbert random graph model is associated with a probability distribution
sharply peaked in P(G) = 1/Ω for graphs with n nodes and exactly m edges
and zero otherwise. Although some properties of the G(n,m) models are easy
to compute, like the mean number of edges (trivial), others are more complicated
because of the hard constraint imposed on edge number.
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A way more useful random graph model is instead due to Erdős and Rényi [90].
To solve the analytical computation problems on the G(n,m) model, the Erdős-
Rényi model introduces a parameter per that specifies the probability for an edge
to exist given two nodes, rather than picking exactly m edges. Technically the
G(n,p) random graph model or Erdős and Rényi (ER) model, is the ensemble of
simple graphs with n nodes in which each simple graph G of m edges appears
with probability

P(G) = pmer (1− per)
(n2)−m (1.12)

Differently from the G(n,m) model, because of the Bernoulli distribution of edges,
this graph model is also called Bernoulli random graph or Poissonian random graph
and generally intended as the random graph.

As every graph obtained from the Erdős-Rényi model is a sample from a prob-
ability space, a description in terms of ensemble averages is more appropriate. In
the ER model, the expected number of edges in such a graph is the average over(
n
2

)
independent coin tosses with probability per, namely 〈m〉 =

(
n
2

)
per and the

expected degree 〈k〉 = per(n− 1) is the same for every node. The probability that
a node i, chosen at random, has degree k is called the degree distribution. In general
terms, such probability is expressed as:

Pr(k) =
〈|{i‖ki = k}|〉

n
. (1.13)

In the ER model, a given node is connected with probability per to each of the
other n − 1 nodes. Hence, the probability of being connected to a particular k
other nodes and not to any of the others is pk(1− p)n−1−k, but since there are(
n−1
k

)
ways to choose those k other nodes, hence the total probability of being

connected to exactly k others is:

Pr(k) =
(
n− 1

k

)
pker(1− per)

n−1−k (1.14)

a binomial distribution that can be approximated to a Poisson distribution for
large n:

Pr(k) ≈ (nper)
ke−nper

k!
. (1.15)

In generalizing the concepts of random networks models, one can define every
simple graph on n nodes as the output of a random process where each edge (i, j)
is sampled with a probability Pr(i, j)θ with θ a vector of hyperparameters. In
the simplest case of the ER graph, this generative model is a uniform probability
distribution with θ = per as every pair of nodes is linked by an edge with constant
probability.

Importantly, both the ER and Gilbert models should not exhibit any modular
structure as every substructure that appears is an effect of random fluctuations due
to finite sampling effects. Nonetheless, some algorithms may find communities in
ER graphs, due to overfitting [91]. Additionally, the ER model does not realisti-
cally represent empirical networks, even if it is very useful to simplify analytical
calculation of network properties. Its Poissonian degree distribution (Figure 1.8) is
far from the degree distributions seen in most of the real-world networks. In fact,



1.3 elements of graph theory 21

20 30 40 50 60

k

p
(k
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

p=0.000 p=0.106

p=0.265 p=1.000

Figure 1.8: Examples of ER graphs. On the left the Poisson degree distribution of an ER
network, n = 1000,p = 0.04. On the right ER model instances at different
values of p. Adapted from [74].

the empirical behaviour of the degree distribution of real networks is one of the
main reasons why they attracted so much interest from the scientific community.

The world-wide-web, as well as the connectome of the worm C. Elegans2 and
many other examples, shows that the degree distribution of complex networks
is not centered around a mean value, as predicted by ER model, instead highly
connected nodes exist within a bulk of low connected nodes and the degree distri-
bution is not decaying exponentially, thus producing the observed phenomenon of
heavy tails. Many networks display a degree distribution that follows a power-law
form:

Pr(k) ∝ k−γ (1.16)

where γ is usually included in the [2, 3] interval. Power-law distributions, also
dubbed scale-free, lack a specific scale. Indeed, P(αk) = f(α)P(k) for some multi-
plicative constant α and f a function of α. Therefore, the functional form of the
power-law remains unchanged.

Hence, in understanding the limitation of the Erdős-Rényi model, researchers
developed a multitude of generative models of graphs that tried to better model
properties like the heavy-tails saw in power-laws or also the small-worldness phe-
nomenon, i.e. the observation that most nodes in a network are reachable from
every other in a small number of hops. To keep into account the features of empir-
ical networks, other models of networks have been developed like the models of
Watts-Strogatz [37] model and Barabasi-Albert [92].

For example, in the Watts-Strogatz model a graph with groups of densely con-
nected nodes is generated as follows:

1. Construct a ring with n nodes and connect each node to the l nearest nodes
(l/2 nodes on each side of the ring).

2. Choose a node i and the edge e that connects i to its nearest neighbour in a
clockwise manner.

3. With probability pr replace the edge e by the edge that connects i to a node
taken at random according to a uniform distribution over the entire ring.

4. Repeat the steps 2 and 3 for each node in a clockwise manner.

2 Caenorbiditis elegans, a small nematode worm, famous as the first living organism whose connectome
has been completely mapped.
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5. Choose a node i and the edge e that connects i to its second neighbour in a
clockwise sense and repeat the steps 2-4.

6. Repeat the process considering the third nearest neighbour and so on until
each edge of the original lattice has been considered.

The resulting graph shows the property of having short average path length,
although the degree distribution is not power-law. To prevent this issue, the
Barabasi-Albert graph model aims to construct graphs with a dynamic attachment
process. In the BA model, one considers a small number n0 of initial nodes. Then
at each step, one adds a new node and connect it to a fixed number (6 n0) of
nodes that already exist in the network. The probability that the new node will be
connected to a node i is then proportional to kpsi , where ps is a parameter called
the scaling exponent. That algorithm generates graphs in which the frequency of
nodes with degree k is asymptotically proportional to k−3. This power relation-
ship between frequencies and degrees indicates that this model accounts for the
power-law distribution of degrees seen in many real networks. Although very
well studied, both models are still lacking a strong community structure and more
complex models have been studied to explicitly embed modules.

1.3.5 Stochastic block models

None of the previously reported generative models explicitly accounts for the mo-
dular structure. The modules often observed in the ER model are due to statistical
fluctuations. The BA model, too, does not take into account a block structure,
when generating a power-law network and clusters in the BA model are due to
local structures around nodes with high degree. To overcome these limitations, a
variable encoding the block structure must be taken into account explicitly.

The most commonly used generative model for random modular networks is
called the stochastic block model (SBM) [93], which generalizes the Erdős-Rényi
random graph by giving each pair of nodes a connection probability depending
only on their module affiliation σ. The SBM model tends to produce graphs con-
taining communities, subsets characterized by being connected with one another
with specific edge densities.

A stochastic block model for undirected graphs is defined by three variables:
the number of nodes n, the set of communities (represented by a membership
vector σ) and a symmetric square matrix B ∈ R|C|×|C| of edge probabilities be-
tween modules. In the case the matrix B is constant, the SBM recovers exactly
the ER model. If the matrix B takes only two different values, a model known as
the planted partition model, each pair of nodes in the same block are connected with
probability Bij = pin and pairs of nodes in different modules are linked with prob-
ability Bij = pout, as shown in Figure 1.9. Specific edge probability in the planted
partition model is simply described as Prij = pinδ(σi,σj) + pout(1− δ(σi,σj)). In
building the planted partition model, though one has to set in advance the num-
ber of modules |C| (or blocks) and to define an equal number of nodes in every
module.

Although largely used, the planted-partition model has several drawbacks. In-
deed, as a generalization of the ER model, each node has the same expected degree
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A B C

Figure 1.9: Realizations of the planted partition model with different intra- and extra-
cluster linking probabilities and number of modules. A., |C| = 2,pin =

0.99,pout = 0.025, B. |C| = 3,pin = 0.98,pout = 0.06, C. |C| = 4pin =

0.97,pout = 0.12. Adapted from [94].

and all communities have the same size. While these properties are of great help
when performing analytical calculations, they also make it badly suited for practi-
cal applications, as degree homogeneity is seldom realized in real networks.

To overcome the unrealistic settings of the planted partition model, the Lancichi-
netti-Fortunato-Radicchi (LFR) model, first described in [80], modified the planted
partition model to exhibit power-law distribution of both node degrees and com-
munity size, with tunable exponents τd and τc respectively, to respect what is
observed in real networks. As each realization is accompanied by the membership
affiliation vector σ, the LFR model has been used primarily as a benchmark for
evaluating the effectiveness of different community detection methods [54, 69]
at different levels of difficulty. Furthermore, the LFR model was extended to
weighted networks with possibly overlapping modules in [95]. The major ad-
vantage of the LFR model is the tunable level of community mixing. Indeed, each
node share a fraction 1 − µt of edges with nodes in its same community and a
fraction µt with nodes in other communities: 0 6 µt 6 1 is dubbed the topological
mixing parameter. Additionally on weighted networks, a parameter β is used to
assign strength to each node: si = k

β
i . This power-law form of node strengths

is chosen to match observations on real graphs, as indicated by [96]. A weights-
mixing coefficient µw is used to divide the node strength into two components,
intra- and inter community, such that:

si = (1− µw)s
(intra)
i + (µw)s

(inter)
i .

The actual weights of the edges are then chosen to minimize the variance be-
tween the expected and the observed strengths by means of an iterative optimiza-
tion step. Hence is possible to obtain a theoretical estimate of the average edge
weights that reads:

〈wint〉 = (1− µw)〈s〉
(1− µt)

〈k〉 = (1− µw)

(1− µt)
〈k〉β−1, (1.17)

〈wext〉 = (µw)〈s〉
(µt)

〈k〉 = (µw)

(µt)
〈k〉β−1. (1.18)
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For the planted partition model, communities were defined as long as pin > pout.
For the weighted LFR model instead the condition to have well defined communi-
ties is:

〈wint〉 > 〈wext〉 (1.19)

resulting in the equivalent formulation µw > µt. If condition 1.19 is not met, then
each node has on average a strength relatively higher than its degree, an unrealistic
circumstance in real-networks, as highest degree nodes are typically nodes with
high strength [96].

The modularity of the LFR network is controlled primarily by the topological
mixing coefficient. In the case µt is exactly zero, the network consists of iso-
lated components and the stochastic block matrix is completely assortative or
block-diagonal. Conversely, for µt = 1, the block matrix is null on the diag-
onal and completely disassortative, exhibiting no links inside communities and
only links between them. The LFR model has a number of other parameters that
control all the network parameters with great precision [80, 95] as described in
Figure 1.10. The LFR model is of great importance as it served as a benchmark
test for community detection algorithms and as a model of heterogeneity of mo-
dules size when studying the performance of community detection methods. The
original c++ code to generate LFR weighted networks is available at the Santo For-
tunato’s homepage https://sites.google.com/site/santofortunato/package3.

tar.gz. Bindings for Matlab,Octave and Python the Fortunato’s code are freely
available at https://github.com/carlonicolini/lfrwmx.

τd > 1 Power-law exponent of nodes degrees.
τc > 1 Power-law exponent of community size.
β > 1 Exponential parameter for strengths distribution.
C ∈ [0, 1] Desidered average clustering coefficient.
minc Minimum number of nodes in each community.
maxc Maximum number of nodes in each community.
µt ∈ [0, 1] Topological mixing coefficient.
µw ∈ [0, 1] Weights mixing coefficient.
〈k〉 Desidered average degree.

Figure 1.10: LFR parameters and a single instance with n = 600, 〈k〉 = 12, τd = 2, τc = 1,
µt = 0.1, µw = 0.1, minc = 5, maxc = 50.

1.4 a synthetic model of a resting state network

Among the synthetic generative models for complex networks, no model tries to
embed the typical circumstances that take place when measuring human brain
resting state activity with fMRI. To this end, here I introduce a theoretically sound
method for the generation of synthetic FC networks that mimic properties of rest-
ing state fMRI networks, including noise and intersubject variability while pre-
senting a pre-determined ground-truth modular structure against which the per-
formance of community detection algorithms can be tested [97].

https://sites.google.com/site/santofortunato/package3.tar.gz
https://sites.google.com/site/santofortunato/package3.tar.gz
https://github.com/carlonicolini/lfrwmx
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The general idea is that, starting from an adjacency matrix with a given modular
structure, we can generate time-courses for each of the nodes whose pairwise
correlations reproduce the edge structure of the original matrix. Noise can be
added to the time-courses, and the resulting correlation matrix will provide a
noisy representation of the original one. This procedure can be repeated multiple
times to produce different datasets that represent different subjects in the study.

In practical terms, given an undirected weighted graph C ∈ Rn×n whose com-
munity structure is known a-priori, its nearest positive definite matrix [98] is ob-
tained with its Cholesky decomposition, i.e. an upper triangular matrix L ∈ Rn×n

such that LLT = C. Starting from uncorrelated variables X ∈ Rn×l, one can then
generate correlated random variables Y = LX such that E(YYT ) = C 3. Differ-
ent levels of noise can then be injected into Y prior to the computation of the
correlation matrix. Schematic of this procedure is shown in Figure 1.11. As de-
scribed in [97] I tested this idea on two different models of planted partition: a
variant of the ring of cliques [72] and the Lancichinetti-Fortunato-Radicchi (LFR)
network [80], whose degree distribution and modular structure can be tuned to
replicate topological features of real-world networks, including scale freeness [99]
and the presence of densely interconnected cores [44].

Adjacency matrix
A

Planted
membership m

A. Network generation

Nearest Positive Definite matrix
C = nearPD(A)

Cholesky Decomposition
C = LLT

B. Preprocessing

Synthetic
BOLD Xs(t)

Synthetic
BOLD Xs(t)

Synthetic
BOLD Xs(t)

Synthetic
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ηRs(t)
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Correlation
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Fisher
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Fisher
transformation

Average

C. Synthetic time series generation

Percolation analysisCommunity
Detection

Partition
Comparison

NMI

D. Graph-theoretic analysis

Figure 1.11: Flowchart of the generation and analysis of the synthetic datasets. In A the
network with a pre-defined community structure is generated. The adjacency
matrix is then processed in block B to obtain the nearest positive definite
matrix for the Cholesky decomposition. This enables the generation of node-
wise time-courses into which different levels of noise can be injected. The pro-
cedure is repeated multiple times to generate different instances (mimicking
different subjects in the sample). Finally, correlation matrices are calculated
for each instance (block C), and Fisher transformed to calculate the average
adjacency matrix for analysis by community detection algorithms (block D).
Lastly, resulting partitions are compared with the original, planted one in
terms of NMI.

3 Since the covariance matrix of a zero-mean, unit-variance random variable X is given by E(XXT ), it
is easy to verify that E(YYT ) = E(LX)(LX)T = E(LX)XTLT = LE(XXT )LT = LT IL = C
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1.5 comparing community structure in networks

Over the years a large number of community detection methods appeared and a
quantitative way to assess their performance on benchmark networks was needed.
In most generative models of networks, the community structure is determined a-
priori, like for example in the stochastic block model, the planted partition model
and the LFR model. Conversely, community structures of real-world networks are
often annotated by experts in the field: it is the case of the karate club network of
Zachary [100] or the political blog network [101].

A large number of functions for comparing similarities and differences between
partitions of a network have been proposed in the past [102, 103]. They are used
to quantitatively provide a number that tells to which extent two partitions are
similar. Typically the result is normalized in the [0, 1] range, being close to 1 for
very similar clusterings and close to 0 when mostly dissimilar.

The most well-grounded and performing metrics for the comparison of two
community structures are rooted in information theory [102, 103, 104]. Normalized
Mutual Information [102] and Variation of Information [105] are the most widely used,
despite it was recently found that both of them suffer from systematic errors due
to the finite size of the network [106]. In the rest of the discussions, we ignore the
limitation of finite size effects, by only working with relatively large networks.

Normalized Mutual Information (NMI) assumes that the clustering comparison
is a problem of message decoding. Implicit in this interpretation is the idea that
if two partitions are similar, inferring one partition from the other needs very
little information. Let us denote two generic partitions of the same graph by their
clusterings ζx, ζy with cx and cy communities respectively: ζx = {ζx1, . . . , ζxcx}
and ζy = {ζ

y
1 , . . . , ζycy}. The number of nodes in the i-th community of ζx is

ni := |ζxi | and the number of nodes in the j-th community of ζy is nj := |ζ
y
j |. The

two communities share a number of nodes nij = |ζxi ∩ ζ
y
j |. Let us also consider

the community assignments σxi and σyi for partitions ζx and ζy respectively; we
treat the labels as values of two random variables X and Y with joint distribution
P(x,y) = P(X = x, Y = y) = nxy/n, which implies that P(x) = P(X = x) = nXx /n

and P(y) = P(Y = y) = nYy/n.

The mutual information between the two clusterings ζx, ζy is then defined as
I(X, Y) = H(X) −H(X|Y) where H(X) = −

∑
x p(x) logp(x) is the Shannon entropy

of X [104]. The mutual information itself is not very useful, because hierarchi-
cally splitting the clusters in ζx would produce no change in the prior H(X|Y)
and partitions with different hierarchies of the same clusters, would go unnoticed.
This observation led Danon [102] to introduce normalized mutual information for
clustering comparison as:

NMI(X, Y) =
2I(X, Y)

H(X) +H(Y)
=

2
cx∑
i=1

cy∑
j=1

nij
n log

(
nijn

ninj

)
(
−
cx∑
k=1

nk
n log

(
nk
n

))
+

(
−
cy∑
k=1

nk
n log

(
nk
n

)) .

(1.20)
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Another measure based on entropy is Variation of Information (VI), proposed by
Meila [105]:

VI(X, Y) = H(X) +H(Y) − 2I(X; Y)

= (H(X) − I(X; Y)) + (H(Y) − I(X; Y)) (1.21)

Informally, VI weighs the contribution of two terms. The first term in brackets
measures the amount of information about X that one looses, while the second
measures the amount of information about Y that one gains when going from
clustering X to clustering Y. The situation is captured in Figure 1.12. VI has the
desirable property that, being a proper distance, it defines a metric on the space of
the partitions. Variation of information is also a local measure, i.e. the similarity of
partitions differing only in a small portion of a graph depends on the differences
of the clusters in that region, and not on the partition of the rest of the graph.
As noted by Karrer [107] VI is upper-bounded by a log(n) factor, so a simple
normalization brings it in the [0, 1] range. Importantly, VI is zero for maximally
equal partitions and 1 for mostly dissimilar, inversely to NMI.

H(X|Y) H(Y|X)

I(
X

;Y
)

H(X, Y)

H(X) H(Y)VI(X, Y)

Figure 1.12: Venn diagram representation of the important quantities used to treat the
clustering comparison problem in terms of information theory. The two
circles are the entropies of variables X and Y. The mutual information
H(X; Y) is the intersection of the information in X with the information in
Y. The Variation of information is equal to VI(X; Y) = H(X|Y) +H(Y|X) =

H(X) +H(Y) − 2I(X; Y) because I(X; Y) is counted twice.

1.5.1 Confusion matrix

It is also possible to quantify the confusion matrix C between the detected and
planted modules. Each element Cij is the number of nodes in the planted com-
munity i that appear in the detected community j. For each planted community
one scores as true positives (TP) the nodes correctly identified as belonging to the
ground-truth community, and as false positives (FP) the nodes wrongly assigned
to a community; similarly false negatives (FN) are nodes wrongly classified in dif-
ferent communities and true negatives (TN) the nodes correctly classified as out
of the community. Sensitivity, defined as TP/(TP+ FN), decreases with increasing
number of False Negatives. Specificity instead is defined as TN/(TN+ FP) and
decreases when many nodes are wrongly assigned in the same community.
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Accuracy (Acc) and Matthew Correlation Coefficient (MCC) are defined on the
basis of the confusion matrix as:

Acc =
(TP+ TN)

TP+ FP+ TN+ FN
MCC =

(TP× TN− FP× FN)√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

where TP, TN, FP, FN are the number of true positives, true negatives, false pos-
itives and false negatives identified in the detected partition with respect to the
planted partition. Accuracy takes into account the proportion of correctly classi-
fied samples and can present relatively high values even in the case of poorly per-
forming detection methods when the classes have very different size. The Matthew
Correlation Coefficient takes into account true and false positives and negatives.
It is a balanced coefficient, to use especially when classes are very imbalanced.

1.6 thresholding and percolation analysis

In weighted networks, sparsification procedures are often applied to remove the
weakest edges, which are the most affected by experimental noise, and to reduce
the density of the graph, thus making it theoretically and computationally more
tractable. Indeed, weak links may contain significant structural information [108],
and procedures to identify the optimal trade-off are the subject of active investiga-
tions [109]. After sparsification, the network can be binarized, by setting all edge
weights to unity. Whether this procedure may help to obtain a better view of the
underlying structure of networks, is a hot debate in the literature [110, 108].

Ideally, the obtained network should retain structural relations and ignore spu-
rious links, but how is it possible to determine a proper value of threshold? No
well-accepted method to choose the best threshold has been adopted pragmati-
cally in the brain networks literature and different scholars motivated their choice
by different needs [111, 112, 113].

Percolation analysis, a method originally grounded in statistical physics, was
suggested by Gallos [111] to identify the optimal sparsification threshold for com-
munity detection in brain connectivity networks. Percolation is a model to de-
scribe phase transitions of connected subgraphs in random networks [114, 115].
In the ER random graph, the size of the largest connected component shows a
sharp transition at some threshold value [114]. Contrarily, brain networks ex-
hibit multiple percolation thresholds, revealing a hierarchy of clusters as shown
in Figure 1.13. The jumps corresponding to percolation transitions are indicative
of non-trivial correlations that constitute well-defined modules of brain activity.
Hence, the multiple percolation thresholds are representative of a set of weak ties
that guarantee appropriate communication (in terms of information transfer) be-
tween functionally specialized modules. Following these observations, the defini-
tion of the optimal threshold is the one just above the fragmentation of the largest
connected component. This choice maximizes the information extracted by subse-
quent applications of community detection algorithms, and has been applied and
validated in human [111] and animal [116] studies.

The most common choice when comparing networks from different groups is
to adopt a fixed threshold that keeps the same number of edges in the two groups.
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Figure 1.13: Percolation analysis for two brain networks available from the BrainConnec-
tivityToolbox [110], available at https://sites.google.com/site/bctnet/.
(A) is a coactivation network, (B) a resting state network, both with 638 nodes
and 18625 edges. The number of nodes in the giant component has a step-
wise behaviour with respect to the threshold.

This does not take into account the particularities of the analyzed group and
datasets. It is indeed important to stress that the distribution of the weights as
well as the density or connectivity of the population are not exploited when us-
ing fixed thresholds and the final result does not mirror this information. To this
end, it has been demonstrated, especially in patients groups such as in schizophre-
nia, that the brain presents weaker functional connectivity than in healthy control
persons [65].

For this reason, percolation analysis should enable data-driven determination
of the optimal sparsification threshold that preserves network structure and con-
nectedness while removing potentially spurious correlations.

https://sites.google.com/site/bctnet/




2 M O D U L A R O R G A N I Z AT I O N O F B R A I N
C O N N E C T I V I T Y: T H E R E S O L U T I O N
L I M I T

2.1 modularity of brain networks

A systematic analysis of the structure of neural systems in different organisms
points out that modularity is a factor that shapes neural networks from the small
nematode worm Caenorhabditis Elegans to the most complex human brain [59, 117,
118]. Topological network analyses suggest indeed that modular and hierarchical
structural networks are particularly well-suited for the functional integration of
locally specialized neural operations that underlie cognition [119, 39, 120, 59, 121].
In this respect, brain function or cognition can be described as global integration
of local integrators [118].

Among the many advantages of a modular organization of the brain, three are of
greatest importance and strictly intertwined: adaptability, robustness and wiring
cost economy. Firstly, from an evolutionary perspective, a modular architecture
is highly adaptable to an ever changing environment and variable loads of cog-
nitive demands. From generation to generation, modules that were already well-
fit to the environmental conditions were selected and passed, while others were
only slightly rewired through the natural selection mechanisms. This pressure,
together with the imperative of a reduced wiring cost have been crucial to select
an architecture that converged into tightly connected sub-networks loosely linked
to each others [122]. Computational studies have shown that a modular organi-
zation emerges spontaneously in complex brain networks, promoting flexibility
to an ever-changing outside environment [123, 124] and maximizing bidirectional
information exchange between neural populations [125].

A second benefit of modularity is robustness as it facilitates evolvability and
robust traits like the multiscale modular architecture are often selected by evolu-
tion [126, 127]. Indeed, keeping a system compartmentalized can limit the influ-
ence of external sources of perturbation, thus bounding the interdependence of
biological processes going on in each unit [128], and promoting greater resilience
in the context of continuous genetic and developmental changes. In addition,
swapping and rewiring maladaptive modules is less demanding that restructur-
ing the whole system. A general problem in the acquisition of new skills is the
phenomenon of catastrophic forgetting, by which newly acquired skills come at
the expense of others [129]. In the case of neural networks it has been shown that
a modular organization helps to avoid catastrophic forgetting of newly learned
skills, whereby new skills are learned by slightly rewiring existing modules, rather
than changing the overall organization [130]. Local disruptive modification may
only affect one module, whereas the others are preserved from the insult [25]. In
the case of externally or internally generated fluctuations, a modular architecture

31
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prevents functional disruption of the network leading to the possible death of the
organism.

Thirdly, the spatial and metabolic constraints of neuronal wiring are factors that
deeply shaped the brain architecture [120, 131]. Computational and empirical
studies converged on the result that a multiscale organization of modules inside
modules is the one that satisfies the constraints imposed by minimization of ener-
getic cost and spatial embedding [132, 120, 133, 134, 135]. Here, wiring cost must
not only be intended as the physical volume of axons and synapses but also be
considered in terms of energetic demand for signal transmission, additional pro-
cessing cost for noise correction over long distance signalling and sustenance of the
necessary neuroglia that supports neuronal activities [120]. Regarding wiring cost
reduction, modular networks emerge naturally when minimizing the average path
length and the total number of links, while maximizing robustness against pertur-
bations in node activity. By way of example, in the field of robotics, spontaneous
structural modularity of neural networks controllers emerge from evolutionary
optimization when successful robot behaviour is encoded as fitness function [136].

Application of resting state fMRI has allowed the identification of various modu-
les in human functional connectivity. These spatially distinct modes that demon-
strate synchronous BOLD fluctuations consist in strongly correlated, anatomically
separated, possibly remote regions of the brain [9, 15, 83, 137]. Various meth-
ods exist for analyzing resting-state data, including seed-based approaches [9, 15],
independent component analysis [138, 139] and graph-based methods [140, 27].
They have generally shown that the human brain is functionally organized in a
number of interconnected regions with boundaries that reflect specific aspects of
cognitive and behavioural aspects [141, 142, 34]. The first analysis method ever
used was the seed-based approach [9], which has been applied in numerous stud-
ies [15]. This technique is based on the correlation of voxels within selected regions
of interest (ROIs), with the average BOLD signal from all other voxels in the brain.
An accurate thresholding is then needed to identify voxels that are significantly
correlated with the region of interest.

Another widely used approach is the decomposition of the endogenous BOLD
fluctuations by means of Independent Components Analysis, a technique that
aims at maximizing statistical independence between time courses of single vox-
els and that can identify separate spatial modes [139, 138, 143]. Yet, ICA with
its variants still relies on user experience to discern important components from
noise [144] and despite some notable attempts to identify noise [145, 146], ICA,
like seed-based approaches, does not yield any information on the hierarchy of
modes, nor on their inter-relations. Moreover, largely overlapping results can be
obtained by ICA and seed-based approaches [147].

The evidence of modules in human functional networks is based on their robust-
ness and consistency within a variety of MRI protocols, different analysis meth-
ods, and MRI scanners. Differently from structural networks, since functional
networks do not measure physical relations with associated metabolic or mate-
rial cost, they may feature long-distance connections [148, 149] and ever chang-
ing patterns. The majority of analysis techniques are concordant in identifying
a set of robust functionally linked regions, or modules in resting state networks.
These modules, roughly highlighted with coloured ellipses in Figure 2.1 span the
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primary somatosensory network, the primary visual and extra-striate network, a
network consisting of bilateral temporal/insular areas and anterior cingulate cor-
tex regions, left and right lateralized networks consisting of superior parietal and
superior frontal regions (often reported as one single network) and the so-called
default-mode network spanning precuneus, medial frontal, inferior parietal corti-
cal regions and medial temporal lobe. The Default Mode Network, or DMN, firstly

Figure 2.1: Functional modules of the resting state brain, averaged over different studies
and protocols, and visualized roughly on a brain template to indicate their
anatomical position. Figure taken from [30].

identified by Raichle [15] with positron emission tomography and then confirmed
by Greicius et al using fMRI [150], is one of the most consistent networks among
a variety of studies. It comprises a group of spatially remote brain regions that
show higher levels of correlation when the brain is not involved in any particular
cognitive or behavioural task. For this reason, it is hypothesized that there are
two opposing concurrent large-scale modes, one including the DMN, indicated as
“task-negative” or “intrinsic” system, and the other comprising regions involved
in attentional and task-evoked activities, dubbed “task-positive” or “extrinsic” sys-
tem [151, 10, 152]. The Default Mode Network or DMN (Figure 2.1) is thought to
be connected to high-level cognitive functions, given its specific traits of structural
links to associative brain regions and that the DMN may support internal mental
processing like mind-wandering, abstract thinking and planning of events in the
future [16, 153]. Additionally, evidence has pointed to disruptions in the DMN
with people with Alzheimer’s disease [153], autism spectrum disorders [154] and
schizophrenia [155].

Apart from the DMN and networks for the primary sensory areas, other net-
works have different roles, many of which are partly speculative. Subcortical
communities have also been identified with rs-fMRI: an appropriate ICA seed-
ing makes possible to observe functional modules located at the thalamus and
hippocampus [156]. Modules in functional brain networks have been explained as
the possible basis of a large variety of neural processes. By way of example, cer-
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tain functional processes, like colour vision, have been described as anatomically
localized [157], while others, like working memory, have been proposed to involve
more globally integrated processing systems [148, 158]. Interestingly modules of
functional brain networks are non-static as recent studies found that they tend to
become less and less modular with ageing [159, 160]. In all respects, the exper-
imental indication of the modular organization is a powerful and robust marker
against which to measure the health of the brain. Thus, modularity is not only
a biologically plausible feature but it is very likely necessary to maintain the rich
repertoire of cognitive tasks that our brain engages in every day of our life.

Modeling of resting state networks using graph-theory provides a compelling
alternative to seed-based and ICA approaches. Within this framework, ROI are
nodes of a network, connected by edges of weight proportional to the strength
of correlation between ROIs. Graph-theory offers a wide amount of measures to
characterize functional connectivity networks and in particular a wealth of meth-
ods to identify communities, subsets of nodes which are more strongly correlated
between each other, than with external nodes [27, 25, 68].

Interestingly, the size distribution of the functional modules has never been ana-
lyzed in details, especially when graph-theoretical methods were applied. This is
the case of one of the most fortunate and widely adopted methods to identify mo-
dules in functional networks, Newman’s Modularity [71]. Despite its popularity
and merits, Newman’s approach presents some important limitations. Already at
an early stage, Modularity-based methods were shown to suffer from a resolution
limit, as they fail to identify modules that are smaller than a scale that depends
on the size of the overall network [72]. As a consequence, even unambiguously
defined modules, like complete sub-graphs or cliques, may be unduly merged into
larger communities when they are too small compared to the size of the network.
Subsequent work by various groups has shown that the resolution limit is quite
pervasive [69, 161, 162, 163, 164], and affects, to a different extent, many other
methods, including Reichardt and Bornholdt’s [165], Arenas and Gomez’ [166],
Ronhovde and Nussinov’s [167], Rosvall and Bergstrom’s (Infomap) [82, 164] and
others.

Fixes have been proposed to circumvent the resolution limit, including the in-
troduction of a tunable parameter that enables analysis of the network at an ad-
justable resolution level [165, 168, 169]. However, this requires prior knowledge
of the expected size of the communities for the tuning of the resolution param-
eter. Moreover, it has been shown that an adjustable resolution parameter may
reduce the tendency to merge small clusters, but only at the cost of unduly split-
ting large clusters [163]. Adjustment of the resolution parameter is an attempt to
balance these two biases, but multiresolution methods fail to recover community
structures comprising heterogeneous distributions of cluster sizes [163]. However,
real-world networks are characterized by the coexistence of clusters of very differ-
ent sizes, and no single parameter can adapt to the variety of network topologies
observed in nature. Hence, the resolution limit may represent a critical shortcom-
ing for the study of brain networks and is likely to have affected many of the
studies reported in the literature.

In the following sections, I’m going to illustrate the current graph-theoretical ap-
proaches for community detection in networks and to discuss the theory of com-
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munity detection, highlighting the practical problems of Modularity maximiza-
tion.

2.2 community detection in networks

The process of grouping nodes in a graph to establish their common behavioral
properties is a popular technique that goes under the name of community detection.
Following the initial work by Hilgetag [170] dubbed OSA (Optimal Set Analysis),
several graph theoretical methods have been deployed to investigate the modular-
ity of structural and functional brain networks [67, 59, 151, 140, 25]. Typically, these
methods rely on the optimization of a fitness function that measures the quality
of a network partition against that of an ensemble of randomized networks with
similar statistical properties, called the “null model”. Optimization of the fitness
function of choice is often computationally demanding and scales steeply with
increasing network size. Hence, heuristics are needed to calculate nearly optimal
partitions of large networks, like those derived from neuroimaging data, within
reasonable computation time [171, 82, 172]. As the definition of community is
not unambiguously stated, it is therefore, important to have a quantitative way to
evaluate the goodness of such clusterings.

A global criterion for the definition of communities in networks can be thought
in terms of a fitness function defined over the clustering. A quality function is a
function Q that given a clustering of a graph ζ returns a scalar number. Usually
one identifies “good” clusterings with high scores of the quality function and
“bad” clusterings with low scores. In this sense, it is possible to rank partitions
from bad to good, although is important to stress that the definition of good or
bad clusterings is an ill-posed problem as every quality function puts emphasis on
some features and perhaps not on others. Here and in the following sections, it
must be stressed that the concept of quality function and community detection
methods are separate as the first is a way to assess the goodness of a partition
while the second relies on the definition of a quality function to design efficient
algorithms and heuristics to find such good partitions.

One of the most important properties of a quality function is additivity, i.e. its
expression as a sum of terms each pertaining to a single community. For a generic
function of a cluster, or subgraph, f(ζi), an additive quality function specifies the
goodness of a clustering as the sum of f over the distinct communities as follows:

Q =
∑
ζc∈ζ

f(ζc). (2.1)

The majority of quality functions are additive, even if this requirement is not
strictly required. In the next section, we explore the properties of some of the
most important additive quality functions that emerged from the literature in this
decade.



36 modular organization of brain connectivity: the resolution limit

2.2.1 Spin glass based quality functions

The simplest formulation of a quality function is one that puts emphasis on in-
tracluster edges and penalizes intercluster edges. In this terms, local optima
of the quality function should correspond to partitions where the communities
emerge as dense areas in the network loosely connected among them. A frame-
work grounded in statistical mechanics for the definition of suitable quality func-
tions for community detection meeting these requirements has been introduced
by Reichardt and Bornholdt (RB) [165].

In the RB model the problem of community detection is cast in terms of finding
the ground state of a spin glass, a model describing the behavior of large sets of
interacting microscopic magnets. Actually, the properties of spin glass models are
subject of intensive research in the last decades as their applications range from
condensed matter and nuclear physics to neural networks. Here we present only
their salient application to community detection and refer the reader for the details
of the model to more specialized books [173].

A spin glass model is based on the definition of an Hamiltonian, a multi-variable
scalar function that describes the total energy of the physical system with the con-
figuration of its internal components. In our case, the internal components of
the system are the nodes. The configuration of the system is then expressed by
the community affiliation vector σ, meaning that node i stays in the community
σi. The Hamiltonian used by Reichardt and Bornholdt (RB) includes four differ-
ent contributions. The first two contributions act at intracluster level, positively
weighing intracluster edges and negatively weighing intracluster non-edges with
coefficients aij and bij respectively. The third and fourth contributions work on
intercluster edges and non-edges, weighing them with factors cij and dij. The
general form of the RB model is then expressed by the following Hamiltonian:

HRB(σ) = −
∑

(i,j)∈V2

[
aijAij − bij(1−Aij)

]
δ(σi,σj)+

[
(cijAij − dij(1−Aij)

]
(1− δ(σi,σj)), (2.2)

with the convention that lowest energy states correspond to best community as-
signments. Rearranging Eq.2.2 and collecting the terms independent of the parti-
tion into a constant H0, one then gets a simpler expression for HRB(σ):

HRB(σ) = −H0 −
∑

(i,j)∈V2

[
αijAij −βij

]
δ(σi,σj), (2.3)

where the two parameters αij = aij+bij+ cij+dij and βij = bij+dij depend on
the null model, i.e. the probability that an edge exists between i and j after random
edge rewiring. Hence, a null model provides a mean to compare a specific set of
features of a graph, with its randomized version that should specifically lack those
features.

Setting αij = 1, H0 = 0 and moving the summation indexes over the communi-
ties rather than over the pairs of nodes, one can express the resulting Hamiltonian,
as an additive quality function expressed here as HRB

reduced(σ), that reads:

HRB
reduced(σ) = −

∑
(i,j)∈V2

[
Aij −βij

]
δ(σi,σj) = −

C∑
c

[mc − 〈mc〉] . (2.4)
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where mc =
∑
ijAijδ(σi, c)δ(c,σj) represents the number of links inside commu-

nity labeled by c and 〈mc〉 =
∑
ij βijδ(σi, c)δ(c,σj) is the expected number of

links in community c as prescribed by the null model βij1. Among the additive
quality functions that show up in the form of 2.4, the most important and popular
is Newman-Girvan’s Modularity.

2.2.2 Newman-Girvan Modularity

Newman-Girvan Modularity (or simply Modularity) [71], denoted here and for
the rest of the work by QN, is based on the idea that a network obtained by
randomly reshuffling the original graph edges while keeping the same degrees se-
quence, should not display any community structure. An important consequence
of such randomization is that any stub in this null model, dubbed “configuration
model” is equally likely to be connected to any other [73]. Thus, in the absence of
correlations, the probability that two nodes are connected is expressed by:

Pij =
kikj

2m
, (2.5)

where ki and kj are the degrees of node i and j. The “configuration model” is of
great importance in network science as it assigns a higher probability of linking
to nodes with high degrees, a feature that is compatible with most real world
networks [73]. The motivations of the configuration model are addressed in details
in section 2.2.3.

In terms of a spin glass model, Modularity measures the deviation from the ob-
served intracluster density with respect to the expected intracluster density spec-
ified by the configuration model. Modularity is described in the form of 2.4 but
normalized by the number of edges in the graph, taking the form described in
Eq. 2.6.

QN =
1

2m

∑
(i,j)∈V2

[
Aij −

kikj

2m

]
δ(σi,σj), (2.6)

whereby optimal partitions have high values of QN. As shown in Eq. 2.4, Modu-
larity can be expressed as sum over communities of the difference of two terms:

QN =

|C|∑
c

[
mc

m
−

(
Kint(Gc)

2m

)2]
. (2.7)

Modularity takes values in the range [−0.5, 1], then a good partition should have
QN values close to unity, identifying groups with much more internal connections
than expected at random. In contrast, a bad partition withQN close to zero should
identify groups with no more internal connections than we expect at random. In
the next sections, we will challenge this idea and show that this observation has
led to false statements, as a general phenomenon, dubbed resolution limit, heavily
affects any quality function based on comparison with global null models. Specif-
ically, in the case of Newman’s Modularity, the resolution limit hampers its ability
to detect modules smaller than a scale determined by the size of the graph.

1 Here and for the rest of the work, we set Pij := βij for agreement with more conventional notation
of null models
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2.2.3 The configuration model

A central property of the configuration model is the probability Pij of the occur-
rence of an edge between two specified vertices i and j. In absence of correlations,
as prescribed by the random reshuffling imposed by the configuration model, the
probability that a stub emerging from vertex i is connected by an edge to any of
the stubs of vertex j is kj/(2m− 1) as there are 2m− 1 stubs in total. Therefore the
total probability that vertex i and vertex j are connected by an edge is the product
of the stub probability times the number of stubs from vertex i, namely:

Pij =
kikj

2m− 1
≈
kikj

2m
. (2.8)

Although the configuration model is most frequently applied to simple graphs (Fig-
ure 1.3a), the configuration model implies that the randomization is carried over
the space of loopy multigraphs (Figure 1.3c). The rewiring probability considers
indeed that the stubs of nodes can be reconnected both to the same source vertex
(self-loops) or added to already existing edges (multi-edges). Consider for exam-
ple the set of matchings on six stubs that form a triangle graph as illustrated in
Figure 2.2. The configuration model chooses each distinct edge stubs labeling with
equal probability. However, not only the first eight distinct reshuffled labelings are
possible under configuration model (Fig.2.2a) but many other distinct matchings
producing non-simple networks as shown in Figure 2.2b.

In practice, though, the fraction of edges involved in either self-loops or multi-
edges is vanishingly small in the large n limit, and thus we may generally ignore
them without much impact. Hence, the estimate of the probability of rewiring in
Eq. 2.8 is only valid in large, sufficiently sparse graphs with a sufficiently bounded
degree sequence. Under these hypotheses the expected number of edges between
two vertices in the space of simple graphs is asymptotically the same as the ex-
pectation in the space of stub-labeled loopy multigraphs, i.e. the one previously
introduced for the definition of Modularity: Es[aij|k] ≈ kikj/(2m), where the
subscript s denotes the space of simple graphs.
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Figure 2.2: Twelve of the ninety different possible rewirings of a triangle graph in the
configuration model. In (a) only rewirings leading to simple graphs are con-
sidered. In (b) just four rewirings leading to loopy-multigraphs are shown.

An approach that allows to get the right configuration model depending on the
class of graph under exam, relies on the computational simulation of the correct
rewiring probability by means of Markov Chain Monte Carlo algorithms, as pro-
posed in [174]. In the remaining paragraphs, although flawed, we will use the
classic configuration model from Eq. 2.8 to be adherent to most of the brain net-
works literature, justified also by the vanishing effects of self-loops in large sparse
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networks. Nonetheless, we will illustrate many of the problems that the noncritical
use of Modularity with this null model has introduced.

2.2.4 Other null models for Modularity

Modularity identifies communities as the subset of nodes whose internal fraction
of edges deviates from the null configuration model on the same subset with
the term mc/m > (Kc/2m)2. Despite measuring deviation from a null model,
Modularity does not take into account the statistical evidence associated with this
deviation. For this reason, Modularity is not able to separate actual communities
from those arising only from statistical fluctuations of the null model. Even worse,
Modularity can find high-scoring partitions in fully random graphs [91] and in
artificially built graphs with no community structure [175].

The configuration model is not the only possible null-model to use in spin-glass
based quality functions. Different authors proposed several variants of Modular-
ity [168, 167, 161] with different null models. The simplest variation of Modularity
is the so-called ER Modularity [176] that instead of the configuration model uses
an Erdős-Rényi random graph in which every edge appears with the same proba-
bility pER. The number of expected edges 〈mc〉 in a community of size nc is thus
(in the space of simple graphs):

〈mc〉 = pER

(
nc

2

)
. (2.9)

and plugging this null model into the RB model of Eq. 2.4 we obtain the model:

HER = −

C∑
c

[
mc

m
− pER

(
nc

2

)]
. (2.10)

As the most similar ER graph of a given graph is the one that matches its density,
the probability parameter pER must be set equal to the original empirical graph
density ρ. The so-called ER Modularity is derived by plugging the graph density
into Eq.2.10 and inverting its sign:

QER =

C∑
c

[
mc

m
− ρ

(
nc

2

)]
. (2.11)

Under this model, a group of nodes forms a community if its internal density is
greater than the graph density ρ, on average. Interestingly, from a machine learn-
ing perspective, all spin glass models quantify the discrepancy between observed
and expected intramodular fraction of edges using a linear loss function. Among
all the loss function, the linear is not the only possible one, and loss functions that
may take into account the relative size of clusters are desirable.

2.3 resolution limit

Modularity attracted a lot of attention over the years as it became the tool of elec-
tion to inspect the community structure of networks. On one side, the vast use of
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Modularity led many researchers to gain interest in complex networks, with appli-
cations in sociology [177], bioinformatics [178] and ICT [179, 180], just to mention
a few. On the other hand, it offered a fallacious view on the community detection
problem. Indeed, although simple in many senses, Modularity optimization hid a
problem that heavily limits its use in real world networks.

In 2007, a seminal article by Fortunato and Barthelemy [72] did a thorough anal-
ysis of Modularity. Their work showed the inability of Modularity to correctly
identify communities that are smaller than a certain scale, determined by the
square root of the total number of edges. They dubbed this general phenomenon
resolution limit. To illustrate what is meant by the resolution limit, here we follow
the example of Fortunato and Barthelemy, with some obvious notational change.

Let us consider a toy network, G = (V ,E) that is composed of three subnet-
works, as shown in 2.3A. The first subnetwork, a subgraph G0 with n0 nodes and
m0 edges is connected to two cliques, G1 and G2 by m01 and m02 links respec-
tively. The two cliques are also connected by a number of m12 links as shown
in Figure 2.3. While G1 and G2, are complete subgraphs and modules by con-
struction, G0 may consist of many communities. Maximum Modularity partitions
then, should identify G1 and G2 as communities, independently from G0. To be
more specific, let the partition where the two cliques are separated be denoted
by A, with Modularity value QA. On the other hand, the partition where the
two cliques are merged into a single community is denoted by B, with Modular-
ity value QB. To ease the calculations, we indicate the number of links m12 as
functions of m1 and m2, such that m12 = a1, m1 = a2m2, m01 = b1m1 and
m02 = b2m2 with a1,a2,b1,b2 > 0.

As Modularity is a sum over the modules, and the module G0 has the same
Modularity Q0 in both partitions, we are interested in studying the difference
∆Q = QA −QB. After some simple algebraic manipulations it results:

∆Q =
2ma1m1 − (a1 + b1 + 2)(a2 + b2 + 2)m1m2

2m2
(2.12)

Specifically, we want to find the conditions whereby ∆Q > 0, i.e. when the parti-
tion A has a higher Modularity than partition B. This inequality is verified as long
as

m2 <
2ma1

(a1 + b1 + 2)(a2 + b2 + 2)
. (2.13)

In the case where a1 = a2 = 0, there are no links between G1 and G2 and the con-
dition is satisfied. When the two subgraphs are connected (m12 6= 0), it happens
that at some values ofm1 andm2 the partition where the two modules are merged
is preferred, i.e. ∆Q < 0. This means that when maximizing QN on a network, is
possible to miss some important structures, if they are too small. More specifically,
if the two modules have the same size and one sets a1 = a2 = b1 = b2 = 1/m, is
easy to verify that Eq. 2.12 is not satisfied if the number of links in the modules
mc, is lower than the square root of the total number of links in the network:

mc <

√
m

2
. (2.14)

To make this example more concrete, we studied numerically a toy network where
the three subgraphs take a precise form. For the sake of illustration, we have
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defined G1 and G2 as two identical cliques of 5 nodes connected to G0 by a single
edge (m01 = m02 = 1) and to each other by m12 edges. The module G0 was
defined as a clique of variable size with a number of edges ranging from 45 to
2775. We then computed the numerical difference ∆Q and plotted it as a function
of the number of edges m0 in the G0 clique.

Figure 2.3: Analysis of the onset of the resolution limit for Modularity in a model graph
(A) consisting of two cliques, G1 and G2, and a size-varying components G0.
The red line indicates the partition A, with G1 and G2 as different modules,
and the blue line the partition B, with G1 and G2 merged into a single module.
The graph (B) shows the difference in Modularity for increasing number of
edges in G0.

The onset of the resolution limit occurs when ∆Q changes sign and becomes
negative for increasing values of m0. For m12 = 1, i.e. when the two cliques G1
ad G2 were connected by only one edge (red curve), Q showed this sign inversion
for m0 ≈ 200 (Figure 2.3B). With an increasing number of intercluster edges m12,
the resolution limit appeared for smaller and smaller values of m0, eventually
leading to ∆Q values that were always negative, i.e. the two cliques G1 and G2
were always merged by Modularity optimization. An even more striking example
of how the resolution limit affects Modularity is when looking at the optimal par-
tition of a synthetic lattice graph, known as “ring of cliques”, a network made out
of identical cliques, connected in a ring-like structure by single links, as shown in
Figure 2.4. In this toy network, the intracommunity density is the highest possible,
while the intercommunity density is the lowest as to keep the network connected.
If the number of cliques is large enough (they are more than

√
m), Modularity op-

timization leads to a partition where the cliques are combined into groups of two
or more. This phenomenon can be observed already when considering a ring of 30

cliques made of 5 nodes, when the optimal Modularity partition combines cliques
in pairs. Yet, extending the number of cliques, Modularity may merge cliques into
groups of three, fours etc.

2.3.1 Resolution parameter

Different authors proposed solutions that tried to circumvent the resolution limit:
from the introduction of a tunable parameter that enables analysis of the network
at an adjustable resolution level [165, 168, 169] to an adequate edge re-weighting
to decrease its adverse effects [181].
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A B

Figure 2.4: The ring of cliques toy model. The left panel (A) shows the ground truth
partition with maximal intracluster density and minimal intercluster density.
The right panel (B) shows the maximum Modularity partition, whereby cliques
have coalesced in pairs.

In this sense, the most common tuning to the Modularity quality function is
the one that takes into consideration a resolution parameter. From the definition
of QN is evident that is possible to tune the size of the detected modules by
multiplication of the configuration null model by a constant factor γN ∈ [0, 1],
resulting in a modified modularity QN(γ):

QN(σ,γ) =
C∑
c

[
mc

m
− γN

(
Kc

2m

)2]
. (2.15)

However, exact specification of γN requires prior knowledge of the expected size
of the communities. Moreover, it has been shown [163] that an adjustable reso-
lution parameter may reduce the tendency to merge small clusters, but only at
the cost of unduly splitting large clusters. Indeed this is due to two opposite co-
existing effects: the tendency to merge small subgraphs, which dominates when
the resolution is low and the tendency to split large subgraphs, which dominates
when the resolution is high.

In benchmark networks with heterogeneous distributions of cluster sizes, the si-
multaneous elimination of both biases is not possible and multi-resolution modu-
larity is not capable of recovering the planted community structure even in graphs
where the ground-truth structure is evident. Therefore, adjustment of the reso-
lution parameter is an attempt to balance these two biases, but multi-resolution
methods fail to recover community structures comprising heterogeneous distribu-
tions of cluster sizes [163].

In another attempt to better tolerate the resolution limit, scholars applied ap-
propriate techniques of edge re-weighting [181] to enhance communities prior to
Modularity maximization. Although this technique proved able to better tolerate
the detrimental effect of the resolution limit, it only shifted the scale of the prob-
lem. After all, real-world networks are characterized by the coexistence of clusters
of very different sizes, therefore no single parameter can adapt to the variety of
network topologies observed in nature.
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2.3.2 Resolution-limit free quality functions

In an attempt to quantitatively characterize the resolution limit, Traag et al. [161]
proposed a rigorous definition of resolution-limit-free graph partitioning.

A quality function is resolution-limit-free if, given an optimal partition ζ of
a graph G, any module ζi is also optimal for the graph induced by the nodes
in ζi. In other words, each community of the optimal partition is not split by
optimization of the quality function applied to the subgraph induced by the nodes
in the community. Hence, each community does not depend on the rest of the
network and is both locally and globally optimal. Then, in order to design such
resolution-limit-free quality function, Traag took a spin glass model, with a null
model specified by constant quantity γCPM [161] and dubbed it Constant Potts
Model.

The Constant Potts Model (CPM) identifies community as subset of nodes whose
internal density ρc is bigger than the overall graph density multiplied by a fac-
tor γCPM that defines the typical scale of the communities. In the framework of
Reichardt and Bornholdt, the CPM model has the following Hamiltonian:

H(σ)CPM = −
∑

(i,j)∈V2

[
aij − ργCPM

]
δ(σi,σj), (2.16)

that once reworked in an additive quality function, results in the form of Eq. 2.17

QCPM =

|C|∑
c

[
mc − γCPMn

2
c

]
(2.17)

In other words, the model tries to maximize the number of internal edges while at
the same time keeping relatively small communities. The parameter γCPM balances
these two imperatives acting as the inner and outer threshold of edge density.
Hence, in the CPM settings is better to split two communities r and s if γCPM
exceeds the inter-community density mr,s/(2nrns).

Unfortunately, the operation of tuning the resolution parameter, both in the
CPM model as well as in other similar models, is difficult and no widely accepted
method exists, making all the models based on a resolution parameter, scarcely
used in practical applications.

2.3.3 Effects of resolution limit

In the context of brain networks, the resolution limit first highlighted by Fortu-
nato and Barthelemy may be particularly critical for the analysis of brain connec-
tivity networks, as it may unduly merge modules that are too small, therefore
hampering the ability to highlight regions of functional segregation from the rest.
Indeed, there are some functional processes in the brain that are thought to be
better represented as anatomically localized like the first stages of sensory pro-
cessing, while others are seen as more globally integrated processing system, in
particular attentional processes [142]. Hence, we may expect the brain modular
structure to comprise communities of heterogeneous dimensions. Whether the rel-
atively uniform modular structure of brain connectivity, highlighted by Newman’s
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Modularity and other community detection methods in many studies, reflects the
true architecture of the brain organization or is the result of the resolution limit
is still unclear [182]. Hierarchical approaches have shown that large modules can
be further subdivided, indicating that connectivity networks show structure at dif-
ferent spatial scales [67]. However, these findings do not provide information on
the optimal partition of the network, i.e. the optimal cut through the dendrogram
representing connectivity at the different scales.

Thus, the resolution limit is a critical shortcoming for the study of brain net-
works and likely influenced many studies in the literature. The limitation on the
number of detected modules in brain networks is evident in studies where typ-
ically four or five communities of the same size are detected in humans, as in
Crossley et al. [34], Meunier et al. [159, 59], Fair et al. [183] or also in mouse
models [36]. To this end, an optimization method that does not suffer from the
resolution limit would be needed.

It is also very important to stress that comparing the Modularity value QN

across different networks obtained in different studies, with possibly a different
number of nodes or different densities, is an erroneous practice. As shown by a
number of studies [184, 175, 185], even in graphs which do have a natural commu-
nity structure, high modularity values can be achieved by partitions which do not
respect this natural structure. Hence, the Modularity value is only a numerical in-
dication of the current status of optimization of the detected community structure
on a specific graph and should never be confronted across different networks.

2.4 degeneracy

The differences in Modularity between optimal and suboptimal partitions can be
very small, as observed in Figure 2.3B, where ∆Q between the two partitions with
split or merged cliques, remains close to zero for a large range of m0 especially at
m12 = 1. Indeed, even in the case where it would not be beneficial for Modularity
to merge two modules, i.e ∆Q < 0, this difference can be made arbitrarily close to
zero.

The total number of different partitions in a graph is the Bell number Bn [186]
and it grows faster than exponentially in n, therefore a combinatorially large num-
ber of sub-optimal partitions exist around the global optimum. These partitions
may be very close in terms of Modularity to the optimum but radically different in
terms of similarity. Thus, counter-intuitively, when the network becomes more mo-
dular, the globally optimal partitions becomes harder to find among the growing
number of suboptimal but competitive alternatives.

This consideration explains the empirical observation that nearly-optimal solu-
tion tend to group into high-modularity plateaus, although they may differ sub-
stantially [184]. This phenomenon, dubbed degeneracy affects Newman’s Modular-
ity and probably many other spin-glass based quality functions. As a matter of
example, the variation in Modularity for merging a pair of adjacent cliques in the
ring of cliques graph shown in Figure 2.4, is given by:

∆Q =
1

r
((
nr
2

)
+ 1
) − 2r−2 (2.18)
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where r is the number of cliques and nr the number of nodes in each clique. In the
large r limit, the difference in Eq. 2.18 tends to a small negative value, indicating
that a solution where the cliques are merged, may have a Modularity very close
to the optimum. Indeed, already for r = 20 cliques, ∆Q ≈ 5 × 10−3, making
all the suboptimal partitions where cliques are merged, very close to the optimal
solution.

To make this argument more intuitive, I extrapolated a visually interpretable
form of the complex landscape of partitions’ Modularity for a ring of cliques
network. I sampled the configuration space of the partitions of a ring of clique
network through a Montecarlo procedure and annotated the corresponding val-
ues of Modularity for every partition as in [184]. I then built a similarity matrix
between all sampled partitions and embedded it into a three-dimensional space
maintaining similarity relations between partition with the help of Curvilinear
Components Analysis (CCA). In the embedded manifold, two partitions are close
if they are similar, and the z-axis encodes the quality function. A highly degen-
erate plateau can be observed in Figure 2.5 whereby different solutions with high
values of Modularity lay in the same neighborhood.
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Figure 2.5: Degeneracy landscape for Newman’s Modularity in a ring of cliques with
r = 24 cliques of nr = 5 nodes. The axes CC1 and CC2 are complicated
functions of the original partition space computed as to maintain the distance
relation between points and their scale is unimportant.

Like for Modularity, any other quality function afflicted from the degeneracy
problem, displays a landscape with a plateau of optimal partitions, like the one
shown in Figure 2.5, whereas in the case of non-degenerate quality functions, a
sharp and distinct peak exists in the embedded landscape.

Several approaches have been proposed to mitigate the problems that are ap-
parent in Modularity. These include the use of multiple near-optimal solutions to
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avoid the pitfalls of degeneracy. Moreover, a proper choice of the null model may
help overcome the fundamental resolution limit.

The issue of degeneracy affects Newman’s Modularity QN and other quality
functions as well. In this respect, it is clear that choosing the partition with the
highest quality value is not meaningful and a choice that considers all the good
partitions at the plateau may be more desirable. An optimal partition of the net-
work can then be expressed as a median of the solutions over the optimal plateau.
This approach, known as consensus clustering, averages local effects of noise during
optimization over a large set of solutions. Consensus clustering is typically based
on a meta-algorithm rather than a proper community detection method. Indeed,
given a community detection method, consensus clustering forms an ensemble of
optimal solutions from which an association matrix A is computed, where edges
are proportional to the probability that two nodes are connected in the same com-
munity. Consensus communities are then obtained iteratively by clustering the
thresholded association matrix. The choice of the threshold that makes the asso-
ciation matrix sparser [187] is dictated by the properties of the chosen method
of community detection itself. Typically with a judicious choice of the threshold,
consensus clustering converges in a few iterations. The pseudo-code reported in
Algorithm 1 illustrates all the steps of consensus clustering.

ConsensusClustering(a graph G, a community detection method)

1 Apply community detection on G for np times, yielding np partitions.
2 Compute the consensus (association) matrix A where Aij is the probability

that vertex i and j are assigned in the same community over np partitions.
3 Threshold the association matrix A with a parameter τ.
4 Apply community detection on A for np times to yield np partitions.
5 If A is block diagonal (all partitions are equal) stop, else return to 1.

Algorithm 1: Pseudocode for the implementation of consensus clustering.

Although useful to address the degeneracy issue, this approach still suffers from
the resolution limit, as the near-optimal optimal solutions which the consensus
partition is made of, are resolution-limited per se.

2.5 modularity optimization: the louvain method

Optimization of fitness function in the additive form of Eq. 2.4 is typically per-
formed using the Louvain method [171], a greedy stochastic agglomerative cluster-
ing algorithm that works on hierarchical refinements of the network’s partitions.
The inspiration for this method of community detection is the optimization of
Modularity as the algorithm progresses. In the Louvain method of community
detection, first small communities are found by optimizing modularity locally on
all nodes, then each small community is grouped into one node and the first step
is repeated.
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This algorithm has become extremely popular in recent years because it is fast,
allowing to analyze huge networks with billions of edges [69]. Due to its intrinsic
stochastic nature, the Louvain method returns different near-optimal partitions
for every run and must be typically run thousands of times to identify the best
solution.

The optimization method is divided in two phases applied recursively as de-
picted in Figure 2.6. The first phase is the optimization phase which looks for a
locally optimal partition by considering only individual vertex swaps. As in many
other greedy algorithms, the community partition is initialized with a single node
per community and as many communities as nodes in the input network. Then,
based on the chosen cost function, individual nodes are removed from their cur-
rent community and swapped to the neighboring community which produces the
largest positive gain of the cost function. This procedure is repeated iteratively at
different levels, until no further movement produces improvements in the quality
function.

Figure 2.6: Optimization and aggregation steps with the Louvain method. Figure taken
from [188].

2.5.1 Spectral optimization

Another (and earlier) method to optimize Modularity is the spectral Modularity
by Newman and Girvan [71]. Given the form of Modularity as in Eq. 2.6, one calls
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the quantity B = Aij − kikj/2m modularity matrix. From it, it is possible to obtain
an equivalent linear algebra formulation of Modularity that reads:

QN =
1

4m
sTBs (2.19)

where s is a numerical vector that considers a division of the network in two
communities, with values si = +1 if vertex i belongs to group 1 and si = −1 if
vertex i belongs to group 2. With some manipulations [71, 73], the Modularity
maximization is turned into an symmetric eigenvalue problem of the form

Bs = βs. (2.20)

The group assignment of each node is obtained as the signs of the eigenvector s
corresponding to the greatest eigenvalue β. Finally, by repeatedly subdividing the
network, the optimal Modularity assignment is recovered [71, 73].

2.6 conclusions

The modular organization of brain functional connectivity networks has been
investigated by a variety of methods and specifically by graph theoretical ap-
proaches. The rich repertoire of behavioural and cognitive aspects of everyday
life is supported by integration of local processing that is reflected in the func-
tional modules, as identified by a variety of protocols. Unfortunately, Newman’s
Modularity, the most widely used graph-based method for community detection
in FC networks is flawed as it cannot detect modules that are smaller than a cer-
tain scale, making impossible to ascertain important details of the architectural
structure. The two main drawbacks of Modularity have been introduced namely
the resolution limit and its extreme degeneracy, together with analyses that specif-
ically address their origin. In the following chapter, I will illustrate how to over-
come the limitations imposed by Newman’s Modularity with an approach that
has its roots in probability theory: Surprise.



3 B E YO N D T H E R E S O L U T I O N L I M I T I N
B I N A R Y N E T W O R K S

In the last chapter I have introduced the framework of network science used to
study brain networks. I discussed the modular organization of brain networks
and the graph theoretical approaches that enabled its study. I have also shown that
graph partitioning methods based on the maximization of global fitness functions,
like Newman’s Modularity, suffer from a fundamental resolution limit as they fail
to detect modules that are smaller than a scale determined by the size of the entire
graph. Furthermore, I explored the effects of this limitation on the study of brain
connectivity networks, demonstrating that the resolution limit prevents detection
of significant details of the modular brain structure, thus hampering the ability
to appreciate differences between networks and to assess the topological roles of
nodes.

In this chapter I’ll show that Surprise, a recently proposed fitness function based
on probability theory, does not suffer from these limitations. I’ll introduce Surprise
from its theoretical foundations and discuss its properties in details. Moreover, I’ll
describe an algorithm for Surprise optimization in binary graphs with an assess-
ment of its performance on benchmark networks. Surprise maximization in brain
co-activation and functional connectivity resting state networks reveals the pres-
ence of a rich structure of heterogeneously distributed modules, and differences
in networks’ partitions that are undetectable by resolution-limited methods. More-
over, Surprise leads to a more accurate identification of the network’s connector
hubs, the elements that integrate the brain modules into a cohesive structure.

3.1 probabilistic approach to clustering in binary
networks

The spin-glass based additive quality functions described in the previous chapter,
including Newman’s Modularity, measure the deviation between the fraction of
edges falling within modules and the null model. None of these, though, assesses
the statistical significance of this deviation. In other terms, no spin-glass based
quality function is telling us the level of statistical confidence at which one should
discard the null hypothesis that the observed fraction of edges inside a community
is the same as the one expected from a given null model.

To address this question, one should instead compute probabilities, as they are
the natural way to measure statistical significance. Specifically, given a node in-
duced subgraph (a community), one is interested in computing the probability
to find another subgraph having more internal edges than the observed one: the
lesser the value, the more significant is the considered subgraph.

More precisely, the problem can be expressed as in the following: given a sub-
graph, what is the probability of observing another subgraph with a larger number

49
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of internal edges drawn from a random graph with a given density? This question
can be answered by the urn model in classical probability theory. The reason is
clear if one imagines that each pair of nodes is a marble, which is one color if
the nodes are connected by a link and the other color if they are not. A number
of marbles is drawn from an urn without replacement, and the probability of ob-
serving a given number of marbles of one specific color is calculated using the
hypergeometric law. When applied to clustering, the problem corresponds to the
calculation of the probability to observe a fixed number of internal edges in a ran-
domly drawn set of nodes defining a community. For example, suppose that one
draws a subgraph with nc nodes, pc pairs of nodes and mc edges from a graph
with n nodes, p pairs of nodes and m edges (see Section for the notation 1.3.1). As
indicated by the urn model, the probability to observe exactly mc internal edges
is given by:

Pr[i = mc] =

(
m
i

)(
p−m
pc−i

)(
p
pc

) =

(
pc
i

)(
p−pc
m−i

)(
p
m

) (3.1)

where the last equality is because of the Vandermonde identity [189]. The proba-
bility in Eq. 3.1 is simply understood in terms of urn model as there are

(
pc
i

)
ways

of choosing exactly i black marbles from a population of pc black marbles,
(
p−pc
m−i

)
ways of choosing (m− i) white marbles from a population of (p− pc) white mar-
bles, and

(
p
m

)
total possible number of combinations of m marbles taken from a

population of p of them. Figure 3.1 shows an example where the probability of
randomly picking the subgraph G from the graph G is computed by means of the
urn model. As the probability of observing i or more internal edges, is given by

e f

gg h

a b

c d

GG− G

Pr(G) =

(
6
4

)(
28−4
10−6

)(
28
10

)
≈ 0.0121

mc = 4,pc = 6,nc = 4

p = 28,m = 10,n = 8

Figure 3.1: Probability for the subgraph G = (V,E) where V = {e, f,g,h} and E =

{(e, f), (f,g), (g,h), (e,h)} to be randomly drawn from the graph G.

the sum of the probabilities of observing exactly i,i+ 1,i+ 2 etc. internal edges,
summing on i yields the probability of getting at least mc white marbles:

Pr[mc > i] =
m∑

i=mc

(
pc
i

)(
p−pc
m−i

)(
p
m

) . (3.2)

In this last equation we are considering the probability of randomly drawing a
subgraph with mc or more internal edges over the set of all random subgraphs
with n nodes (p pairs of nodes) and exactly m edges as in the Gnm model de-
scribed in section 1.3.4. Indeed, the denominator

(
p
m

)
in Equation 3.2 represents

the possible number of graphs with p pairs of nodes and m edges.
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3.2 surprise

The intuition captured by Eq. 3.2 is very close to a quality function dubbed Surprise,
firstly introduced in a seminal paper by Aldecoa and Marin [190]. To the best
of my knowledge, this clearer theoretical motivation did not appear in any other
works. If one considers as the random subgraph that is drawn from the Gn,m set, a
subgraph with at leastmζ =

∑
cmc internal edges and pζ =

∑
c pc pairs of edges,

then this subgraph represents a whole clustering. In this case, the definition given
in Eq. 3.2 and the definition given in [190] are perfectly corresponding. Indeed,
for a partition ζ, the probability that a subgraph G randomly drawn from the set
Gnm has at least mζ intracluster edges and pζ intracluster pairs is modeled after
the inverse cumulative hypergeometric distribution, exactly as in 3.2. Here and
in the rest of the work, the quality function Surprise is therefore expressed by the
following definition:

S(ζ) :=

m∑
i=mζ

(
pζ
i

)(
p−pζ
m−i

)(
p
m

) . (3.3)

Surprise computes the probability to (surprisingly) observe at least as many
internal edges as within the proposed partition in a uniform random graph. As
mentioned, model in Eq. 3.3 corresponds to an urn model without reinsertion,
where S is the probability of extracting at least mζ white balls out of m trials from
an urn containing pζ white balls and p − pζ black balls. Intuitively, the lower
S(ζ), the better the clustering. Optimal partitions with respect to S are those with
the highest number of intracluster edges and the smallest number of intracluster
pairs.

Differently from Modularity, S(ζ) equals one both for the partition where every
node is in a separated community (|ζ| = n) and for the partition that entails all
nodes into a single community (|ζ| = 1), as is evident from its formulation in terms
of urn model. Contrarily, Newman’s Modularity is zero when |ζ| = 1, but different
from zero in the case |ζ| = n. In terms of Surprise, these two extreme partitions
are thus equally uninformative. This can be understood as for a single community
comprising all nodes, the probability of observing a number of intracluster edges
greater or equal than the number of edges is one. On the other hand, if the
partitioning has zero intracluster edges (the case of n separate communities), the
probability to observe more than zero intracluster edges still equals one.

It should be noted that, due to numerical precision problems in the evaluation of
large binomial coefficients, Ŝ(ζ) := − log10 S(ζ) is often taken as measure of quality
of the partition, which is totally equivalent with respect to optimum solutions,
whereas higher values correspond to better clustering. Different authors [191, 192]
refer to S as Surprise, whereas others [190, 193] use Ŝ. Hereafter I stick to the
notation of [192] where Surprise is indicated as S defined in Eq. 3.3 and indicate Ŝ
where needed.

3.2.1 Statistical test interpretation

Surprise considers the problem of community detection as the one of making the
intracluster density as further as possible from the global density in statistical
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terms. In this sense, it is worth noting that S is a p-value of a one-tailed Fisher
exact-test where one is asking how confidently should reject the null hypothesis
that the intracluster density is greater than the graph density. It turns indeed out
that this problem has an equivalent description in statistics, where one seeks to
maximize the odds-ratio of the 2× 2 contingency table defined in Table 3.1.

The Fisher exact test implemented by Surprise is, as its name states, exact as
long as the contingency table keeps the row and column totals fixed, and it can be
used regardless of the sample characteristics. A simpler χ2 statistic can be used
when the elements of the contingency table are large enough, although only an
approximation of the p-value can be obtained. In this case, it is possible to tackle
the problem of computation of S by means of odds-ratio. Precisely, the normalized
log odds-ratio is computed as:

log(OR) = log
(
mζ(p−m− pζ +mζ)

(m−mζ)(pζ −mζ)

)
, (3.4)

and asymptotically Surprise is equal to the probability:

Pr
(
z < −

| log OR)|
SE

)
(3.5)

where z is a random variable with standard normal distribution z ≈ N(0, 1) and
SE is the standard error of the odds-ratio, approximately computed as

SE =

√
1

mζ
+

1

(pζ −mζ)
+

1

(m−mζ)
+

1

(p−m− pζ +mζ)
. (3.6)

Although not interesting in the case of binary graphs, Equation 3.5 is telling us that
in developing a version of Surprise that will keep into account weighted graphs,
we should in some way rely on its asymptotic distribution.

Drawn Not drawn Total
Intracluster mζ pζ −mζ pζ
Intercluster m−mζ p−m− pζ +mζ p− pζ

Total m p−m p

Table 3.1: Contingency table for the urn model.

3.2.2 General properties of Surprise

As noted by [192], for a given graph, m and p are fixed so S(ζ) is depending only
on the number of intracluster edges mζ and intracluster pairs pζ, namely S :=

S(mζ,pζ). In establishing the domain of validity of (m,p,mζ,pζ) the urn model
is of help. A valid clustering ζ of mutually disjoint communities automatically
satisfies intuitive but important requirements:

Observation 1. it is impossible to draw more white balls than the white balls contained
in the urn, therefore pζ > mζ.

Observation 2. it is impossible to have more white balls than total number of drawn balls,
therefore m > mζ.
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Observation 3. it is impossible to draw more black balls than the black balls contained in
the urn, therefore p− pζ > m−mζ.

All valid clusterings are enclosed inside the domain L defined as from these last
three observation:

L := {(mζ,pζ) |mζ > 0∧ pζ > mζ ∧m > mζ ∧ p−m > pζ −mζ} (3.7)

The urn models gives other three important properties, indicating that Surprise
is a convex function inside the domain of validity of its variables. Specifically
as shown in [192] three inequalities apply for Surprise and for the urn model in
general.

Proposition 1. it is less probable to draw at least mζ + 1 than mζ white balls if the urn
contains the same number of pζ white balls, therefore S(mζ + 1,pζ) < S(mζ,pζ).

Proposition 2. it is less probable to draw at least mζ white balls if the urn has one white
balls less, therefore S(mζ,pζ − 1) < S(mζ,pζ).

Proposition 3. it is less probable to draw at leastmζ+ 1 white balls if the urn has pζ+ 1
white balls, than drawing at least mζ white balls if the urn has pζ white balls, therefore
S(mζ + 1,pζ + 1) < S(mζ,pζ).

The scheme in Figure 3.2 shows the order relation between the elements of the
three aforementioned inequalities.

S(mζ,pζ) S(mζ + 1,pζ)

S(mζ,pζ + 1) S(mζ + 1,pζ + 1)
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Figure 3.2: Behaviour of the landscape of Surprise S.

A fourth inequality S(mζ,pζ + 1) > S(mζ + 1,pζ) is implicit by looking at the
behaviour of S(ζ) for a given graph. The scheme in Figure 3.2 allows to rank the
values of Surprise in relation to changes in mζ and pζ. it is to easy verify that S
satisfies the following strict order relation:

S(mζ + 1,pζ) < S(mζ + 1,pζ + 1) < S(mζ,pζ) < S(mζ,pζ + 1). (3.8)

This property led me to the observation that Surprise S is a monotonically de-
creasing function (increasing Ŝ) of mζ and monotonically increasing function (de-
creasing Ŝ) of pζ in the convex interval L. Moreover, from Figure 3.2 follows that
optimal solutions with respect to S are Pareto-optimal with respect to maximizing
mζ and minimizing pζ. In other words, a partition that is optimum with respect
to Surprise is such that no further increment in mζ leads to a decrement in pζ
that has lower S (higher Ŝ). The Pareto optimality of optimum Surprise partitions,
implies that a perturbation of δmζ, δpζ leads to a change in Surprise such that it
monotonically decreases if and only if δmζ > δpζ, precisely:

S(mζ + δmζ
,pζ + δpζ) < S(mζ,pζ) ⇐⇒ δmζ

> δpζ . (3.9)
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The result in Eq.3.9 is of great help in designing optimization algorithms as
every move that increases the number of intracluster edges more than intracluster
pairs is good, while moves that increase intracluster pairs more than intracluster
edges must be ignored, therefore sparing time for the computation of Surprise.
Additionally, Eq. 3.9 is useful when analyzing the onset of the resolution limit
for different models. In the next sections I will show to what extent Surprise is
affected by the resolution limit for Surprise, to show with convincing theoretical
arguments that S is nearly resolution-limit-free in Traag’s sense [176].

3.3 resolution limit and surprise

Unfortunately, the resolution limit is an intrinsic feature of many quality functions,
and there appears to be a “narrow scope to resolution-limit-free methods” [176].
Surprise has been shown to outperform other network partitioning methods in the
detection of small features within large graphs, but the extent to which it suffered
from the resolution limit was unknown [190, 193], until our work [182].

Aldecoa [190] pointed out that while Modularity-based methods define a com-
munity as a region with an unexpectedly high density of links with respect to
the global characteristics of the network, Surprise weights the number of actual
intracluster edges against the maximum number of links given the nodes in the
clusters. Hence, Surprise can discriminate local subnetworks whose internal den-
sity is close to that of a clique independently of their size.

To assess the extent to which Surprise is affected by the resolution limit, I di-
rectly compared Newman’s Modularity and Surprise in the example of Fortunato
and Barthelemy illustrated in the previous chapter in Figure 2.3. Already for
m12 = 1, i.e. when the two cliques G1 and G2 were connected by only one edge,
QN showed sign inversion for m0 ≈ 200, meaning that it was beneficial for Modu-
larity to merge two cliques. In this same example, Surprise never merges cliques,
as shown in Figure 3.3.

Figure 3.3: Difference in Ŝ between the partition where the two cliques are separated (red)
and the partition where the two cliques are merged (blue), as in the benchmark
network of Fortunato and Barthelemy. As the quantity ∆Ŝ is always positive,
Surprise is never going to merge cliques, independently from other global
parameters. Adapted from Nicolini and Bifone [182].

Figure 3.3 shows that Surprise does not suffer from the resolution limit at least
in this specific case. Indeed, ∆Ŝ is always positive and grows monotonically with
increasing m0. Hence, the two cliques G1 and G2 are always resolved by Surprise
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as separate communities independently of the network size, and also in the pres-
ence of some “fuzziness”, i.e. when m12 > 1 and the two cliques are connected
by more than one edge. In order to assess whether this behavior reflects a general
property of Surprise, or is incidental to this particular example, I have also studied
a generalization of Fortunato and Barthelemy’s model.

A consequence of the definition of a resolution limit free quality function in
Traag’s sense, is that such method will never depend on the size of the network
to merge cliques in a graph comprising r cliques of nr nodes connected in a ring
structure as in Figure 2.4 (often called the “ring of cliques” model). This observa-
tion prompted me to explore the behavior of Ŝ in the ring of cliques model graph,
as an extension of Fortunato and Barthelemy’s model. Interestingly, given its
two-variables formulation, Surprise optimization can be seen as a multiobjective
optimization problem where one seeks to minimize the intracluster pairs while
maximizing the number of intracluster edges. With increasing graph size, the com-
putational problem of calculating Ŝ for every possible partition becomes rapidly
intractable (maximization of S is NP hard) [192]. However, as explained before
and pointed out by Fleck et al. [192], the Surprise optimal clustering must be
Pareto optimal with respect to minimizing pζ and maximizing mζ, i.e. any fur-
ther improvement in one of the two variables must occur at the expense of the
other.

In this sense, the problem of Surprise optimization is shown to be equivalent to
a linear program [192], where one seeks to minimize pζ while keeping mζ equal
to a constant h from 1 to m, choosing then among the resulting m clusterings, the
one that maximizes Ŝ. Hence, to delineate the Pareto frontier in the (mζ,pζ) space,
we need to solve m integer linear programs (ILP) in the form:

minimize
∑

{i,j}∈(V2)

Xij

s.t. Xij ∈ {0, 1}

Xik +Xki −Xij 6 1∑
{i,j}∈E

Xij = h

where Xij, equivalent to δ(σi,σj), are a set of
(
n
2

)
binary variables corresponding

to vertex pairs, with the interpretation that Xij = 1 if vertex i and vertex j are
in the same community. The alternative objective function

∑
ijXij measures the

number of intracluster pairs pζ, while the number of intracluster edges mζ =∑
ij∈EXij was set equal to a fixed h ∈ [0,m]. The remaining constraints are

necessary in order to ensure transitivity, i.e. if nodes i and j are in the same
community, nodes i and k are in the same community, then nodes j and k share
the same community too. Figure 3.4 shows the Pareto frontier for a ring of cliques
where I independently varied the number of cliques r and the number of nodes n
in every clique1. As Ŝ reaches its minimum (zero) both in the case where all nodes
are separated communities (pζ = 0) or when a single community entails all nodes
(pζ = p), Figure 3.5 shows monotonically increasing Surprise along the frontier

1 Linear programs were solved using the Python interfaces of Gurobi 5.7.3 on Linux (Gurobi Opti-
mizer Version 5.7, Gurobi Optimization, Inc., Houston, Texas, United States).



56 beyond the resolution limit in binary networks

with increasing pζ up to the Surprise optimum, indicated by black circles in the
Pareto front of Figure 3.4, whereas the corresponding partition identified each
clique as a separate community. Importantly, in the range of parameters I have
investigated, Surprise optimization never merged cliques in the ring of cliques,
independently of the size of the graph, and behaved as a Traag’s resolution-limit
free method.
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Figure 3.4: Pareto front for a ring of cliques graph. Optimal solutions with respect to
Surprise are indicated as small black dots. Adapted from Nicolini and Bi-
fone [182].
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Figure 3.5: Surprise Ŝ for a ring of cliques graph at different levels of pζ for corresponding
solutions at fixed mζ. The peak of Ŝis always reached at pζ when the modules
entail single cliques separately. Adapted from Nicolini and Bifone [182].

While it is likely that this property is quite general and can be extended to ev-
ery ring of cliques, an analytical demonstration is hampered by the non-additivity
of the Surprise function. Nonetheless, the size of the graphs explored numeri-
cally is quite typical of brain connectivity networks and I felt encouraged to apply
Surprise maximization to the study of the community structure of the brain.

3.4 degeneracy of surprise

Interestingly, the maximum value of Surprise for given (mζ,pζ) is sharply peaked
and very different from other partitions, indicating that at least in this case Sur-
prise shows no degeneracy of optimal solutions, as instead shown for Modularity
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in Section 2.4. This observation led me to investigate to what extent Surprise is af-
fected by the degeneracy problem (previously described in section 2.4). I repeated
the procedure indicated in section 2.4, embedding the complex landscape of par-
titions of a ring of cliques graph in a three-dimensional space to show whether
optimal Surprise solutions group in a broad plateau of high Surprise values or
not. As evident from Figure 3.6 instead, the global optimum sits on a sharply
distinct point, at the highest value of Surprise. This observation makes evident
that the Surprise does not show the problematic degeneracy of optimal solutions,
but instead has a global optimum that is very different from other suboptimal
partitions, at least in these ring of cliques example.

Figure 3.6: Degeneracy of Surprise landscape in a small (left, 24 cliques with 5 nodes) and
large (right, 30 cliques with 6 nodes) ring of cliques graph. No plateaus exist,
indicating the uniqueness of the global maximum that emerges from the other
local optima.

3.5 maximization of surprise: fagso

Community detection is a NP-hard problem, and heuristics have to be developed
for the optimization of quality functions for relatively large networks. In their
original paper, Aldecoa et al. [190] applied metaheuristics, involving the evalua-
tion of Surprise for partitions resulting from seven different community detection
methods, each of those maximizing different quality functions. Here, I describe
direct maximization of Surprise by exploiting FAGSO [194] (Fast AGlomerative
Surprise Optimization), an agglomerative optimization algorithm that builds on a
variation of the Kruskal algorithm for minimum spanning tree [75]. The detailed
pseudocode of this algorithm is reported in Algorithm 2 and illustrated step by
step on an example network in Figure 3.7.

The first step of FAGSO consists in ranking the edges in the graph in decreasing
order by the Jaccard index of the neighbors of their two endpoints nodes. An
union-find data structure is used to hold the community structure throughout
the computation. In the beginning, each community consists only of one vertex.
Then, starting from the edge with the highest Jaccard index at the top of the list,
the endpoints are attributed to the same community by disjoint-set union if this
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operation leads to a strictly better Surprise and if they do not belong already in
the same community. This step is repeated for all edges and the final community
structure is returned in the disjoint-set. FAGSO finds partitions with high Surprise
and it is deterministic, unless two edges with the same Jaccard index are found. In
this case, ties are broken at random. The implementation of FAGSO in C++, Python
and GNU Octave is freely available at https://github.com/carlonicolini/fagso.

Figure 3.7: FAGSO algorithm steps illustrated. Firstly, Jaccard indices are computed. In
box A., every node is associated to a separate community and FAGSO evalu-
ates whether to merge nodes d and f in the same community as the edge they
form has the highest Jaccard index. Since this merge results in an increased
value of Surprise, d and f are merged in box B. then FAGSO proceeds to eval-
uate the merges of nodes a and b as their Jaccard index is the second greatest.
FAGSO merges the two nodes in a second community and proceeds updating
the Surprise value and analyzing the subsequent merges in boxes D to F, until
no moves are available and FAGSO terminates with the community structure
in box G.

https://github.com/carlonicolini/fagso
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Fagso(G)

1 S← 0� Initialize Surprise to 0
2 D← ∅� Initialize disjoint set forest
3 for each vertex v in V[G]
4 do Make-Set(v)
5 E ′ ← Sort-Jaccard(E)� Sort edges in decreasing order by Jaccard index
6 for each edge(u, v) ∈ E ′, � Taken in decreasing order by Jaccard index
7 do if Find-Set(u) 6= Find-Set(v)

8 then if Surprise(G,D∪ {(u, v)}) > S
9 D← D∪ {(u, v)}

10 Union(u,v) � Merge the communities u and v belong
11 S = Surprise(G,D)� Update current Surprise
12 return D

Make-Set(x)

1 p[x]← x

2 rank[x]← 0

Link(x,y)

1 if rank[x] > rank[y]
2 then p[y]← x

3 else p[x]← y

4 if rank[x] = rank[y]
5 then rank[y]← rank[y] + 1

Union(x,y)

1 Link(Find-Set(x),Find-Set(y))

Find-Set(x)

1 if x 6= p[x]
2 then p[x]← Find-Set(p[x])

3 return p[x]

Surprise(G,D)

1 mξ ← 0� Number of intracluster edges
2 pξ ← 0� Number of intracluster pairs of vertices
3 m← |E[G]|� Number of edges
4 p←

(|V[G]|
2

)
� Number of pairs of vertices

5 for each g in Connected-Components-Subgraphs(D,G)
6 do mξ ← mξ + |E[g]|

7 pξ ← pξ +
(|V[g]|
2

)
8 return − log10

(
m∑

i=mζ

(pξ
i

)(p−pξ
m−i

)(
p
m

) )

Algorithm 2: Pseudocode of FAGSO, with description of the implementation of union-find
data structure.



60 beyond the resolution limit in binary networks

3.6 surprise optimization on functional connectiv-
ity networks

I assessed the performance of Surprise maximization through of FAGSO in the
detection of the community structure of two benchmark brain networks. All
coordinate data and functional metadata were taken from the BrainMap data-
base [10, 195], processed by Crossley et al. [34] and made available to the sci-
entific community as reference networks through the public Brain Connectivity
Toolbox [110]. I used BrainNetViewer as a tool for the visualization of the commu-
nities on brain templates [196].

3.6.1 Human resting state dataset

The first network represents the coactivation of brain regions as obtained from a
meta-analysis of 1641 task-related fMRI or PET studies [34]. Meta-analyses have
been useful in estimating the frequency with which two brain regions are consis-
tently activated across different tasks and are an indication of the behavior of the
brain during activity. Jaccard similarity, i.e. the number of studies activating both
regions divided by the number of studies activating either one of them, was used
as an index to evaluate the strength of the coactivation of 638 parcellated brain
regions. More details on the construction of the network are available in [34].

The second network that I considered is a resting state functional connectivity
network obtained from correlations between time series of fMRI signals, from a
group study of 27 healthy subjects. In short, fMRI data were acquired from 27

healthy volunteers at 3T. Gradient echo-planar imaging data were collected for 5

min with 2s TR and 13 and 31 ms echo-times. Thirty six interleaved 3mm slices
with in-plane resolution of 3.5× 3.5mm were acquired. Time series were extracted
from 638 brain regions defined by a template [34], corrected for motion and band-
passed (0.01–0.1Hz). Functional connectivity was defined in terms of pairwise
Pearson correlations at a subject’s level. A group-level functional connectivity
matrix was calculated by averaging individuals’ matrices after Fisher-transform2,
and thresholded to retain 18625 edges, as described in Crossley et al. [34]. Ethical
statements are present in the original references by the groups who performed the
experiments. The resting state network was built using the same set of 638 regions
and thresholded to have the same number of edges as in the coactivation study.
Both networks have been previously studied using Modularity-based algorithms
and node-classification methods [34].

Due to its definition in terms of binomial coefficients, Surprise can be com-
puted for integer values of its parameters. I have therefore binarized the two
adjacency matrices retaining an equal number of edges for both networks. While
the binarization process discards information contained in the edge weights, a
judicious choice of the threshold can ensure robust decomposition of the net-
work [59, 197]. I have checked this statement by percolation analysis, a natural

2 A mathematical transformation needed to correctly compute averages of correlation coefficients.
Fisher transformation of a correlation coefficient −1 6 r 6 1 is computed as arctanh(r) and ranges
from −∞ to +∞.
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and non-arbitrary method to derive binary graphs from continuous adjacency ma-
trices (see section 1.6). Specifically, I have studied the size of the largest connected
component of the coactivation and resting state networks iteratively removing the
smallest weight edges.

This analysis, shown in Figure 3.8, revealed the presence of percolation-like
transitions, whereby the largest component of the network drops in jumps with
increasing binarization threshold. For the coactivation and the resting state net-
works I found that the thresholds adopted by [34] of 0.015576 and 0.600, respec-
tively, are above the first jump in the size of the largest connected components and
maintain network connectedness while ensuring that the networks are sufficiently
sparse and possess the same number of edges. Hence, I adopted these thresholds
for network’s binarization. Analysis of the structures of networks obtained by a
range of thresholds around these values showed stable solutions, with Normal-
ized Mutual Information between partitions close to 1, and a stable number of
communities (Figures 3.9 and 3.10).

Figure 3.8: Percolation analysis for the coactivation matrix (A) and resting state matrix
(B).

3.6.2 Community detection results by FAGSO

Figure 3.11 shows a direct comparison of the partitions obtained by Modularity
and by Surprise maximization for the coactivation and resting state networks. The
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Figure 3.9: Different resting state networks were generated varying the binarization
threshold in a range that changed the number of edges up to the 15th quan-
tile of the edge weight distribution. This corresponds to threshold ranges of
0.015-0.03 for the co-activation network, and 0.60-0.62 for the resting state net-
work. The resulting networks were partitioned by Surprise maximization. The
value of Surprise, the Normalized Mutual Information between the resulting
optimal partitions, the number of edges and the number of communities are
reported in panel A, B, C and D, respectively.

four panels display the adjacency matrices of the two networks, with their vertices
rearranged by their module membership.

By Newman’s decomposition, the resting state and coactivation brain networks
present a modular structure with four large modules that have been anatomically
labeled as occipital, central, frontoparietal and Default Mode networks [34] (de-
marcated by a red line in Figure 3.11). These partitions are highly similar (Rand
Index 0.78), despite the different neurofunctional bases of the two networks [198]
and comprise modules that are relatively uniform in terms of number of nodes
and number of edges within each module.

The partitions obtained by Surprise maximization for the two networks are
shown in Figure 3.11B, 3.11D. Surprise found 51 communities, Ŝ = 8969.24, for
the resting state network, and 28 communities, Ŝ = 5725.65 for the coactivation
network. These modules are delimited by blue lines that show the wide distri-
bution in size of the components, ranging from communities with 119 nodes and
4586 edges down to singletons. The size distributions of the modules are different
for the two networks, with a more rapid drop and a fatter tail in the coactivation
network compared with the resting state network.

The complete list of communities, with anatomical labels and stereotaxic coor-
dinates for all nodes [199, 200, 201], as well as the density and number of nodes of
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Figure 3.10: Different coactivation networks were generated varying the binarization
threshold in a range that changed the number of edges up to the 15th quan-
tile of the edge weight distribution. This corresponds to threshold ranges
of 0.015-0.03 for the co-activation network, and 0.60-62 for the resting state
network. The resulting networks were partitioned by Surprise maximiza-
tion. The value of Surprise, the Normalized Mutual Information between the
resulting optimal partitions, the number of edges and the number of commu-
nities are reported in panel A, B, C and D, respectively.

each community found by Modularity and Surprise optimization, are reported in
tabular form in the appendix (Tables A.2, A.3, A.4, A.5).

Analysis by Surprise suggests that the modular structure of resting state func-
tional connectivity brain networks comprises modules of very different sizes, in
sharp contrast with previous studies that have used resolution-limited functions
like Newman’s Modularity (see [59] for a review). To emphasize this point, I have
also partitioned the coactivation and resting state networks using Infomap [82] and
a multiscale version of Modularity with an adjustable resolution parameter [165]
provided by the Brain Connectivity Toolbox [110]. Interestingly, increasing the res-
olution parameter results in a larger number of smaller communities that are how-
ever characterized by a relatively homogeneous size distribution, a result of the
intrinsic scale built into these methods (Figure 3.14). Additionally, I have made a
quantitative comparison between the partitions obtained by Surprise, Infomap and
the Reichardt and Bornholdt’s method [165] by calculating the Normalized Mu-
tual Information between the resulting community structures (Tables 3.2 and 3.3).
Despite the fact that these methods retrieve a few more modules that Newman’s
Modularity, they fail to capture the heterogeneous distribution of clusters revealed
by Surprise.
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Figure 3.11: Modular structure of the coactivation and resting state networks under Mod-
ularity and Surprise maximization. The node indexes have been reordered
by membership to highlight the modules, which are demarcated by a red
line, for Modularity, or a blue line, for Surprise. Modularity maximization
identifies only four, large modules, consistent with previous analysis of these
data-sets. Surprise reveals a much finer and complex modular structure.

In order to assess the significance in neurofunctional terms of the finer partitions
obtained by Surprise, I show the node distribution as an overlay of the MNI brain
atlas template for the 10 largest modules of the resting state network in Figure
3.12. The communities highlighted by Surprise show a correspondence with some
well-known functional networks previously identified by multivariate analysis (e.g.
Independent Component Analysis) of functional MRI data [15, 85, 139, 84], and
with well-defined, segregated anatomical or functional districts.

The largest communities of the resting state network correspond to the primary
sensorimotor cortex [9], primary visual and extra-striate visual network, fronto-
parietal lateralized networks [198] as well as the so-called default mode network
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Coactivation
NMI Modularity Surprise Infomap RB γ = 1.75

Modularity 1.00 0.61 0.56 0.61

Surprise 0.61 1.00 0.54 0.62

Infomap 0.56 0.54 1.00 0.59

RB γ = 1.75 0.59 0.61 0.59 1.00

Table 3.2: Normalized Mutual Information between partitions of the coactivation network
with Newman’s Modularity, Infomap, Reichardt and Bornholdt and Surprise.
We used the Fagso algorithm for Surprise maximization, the igraph imple-
mentation of Infomap, the Brain Connectivity Toolbox implementation for RB
(community_louvain.m function) and modularity_und.m for Modularity. For
each method the best solution over 100 repetitions was used to calculate NMI.

Resting State
NMI Modularity Surprise Infomap RB γ = 1.75

Modularity 1.00 0.52 0.70 0.66

Surprise 0.52 1.00 0.53 0.58

Infomap 0.70 0.53 1.00 0.68

RB γ = 1.75 0.66 0.58 0.68 1.00

Table 3.3: Normalized Mutual Information between partitions of the Resting state net-
work with Newman’s Modularity, Infomap, Reichardt and Bornholdt and Sur-
prise. We used the Fagso algorithm for Surprise maximization, the igraph im-
plementation of Infomap, the Brain Connectivity Toolbox implementation for
RB (community_louvain.m function) and modularity_und.m for Modularity. For
each method the best solution over 100 repetitions was used to calculate NMI.
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Figure 3.12: The ten largest modules found by Surprise in the resting state network over-
laid on an MRI brain template. The module indexes are ordered by decreas-
ing size. The modules are named after corresponding functional networks
previously identified by multivariate analysis of resting state fMRI data.

(DMN) [15, 17]. The attentional frontoparietal networks (FPAN) [138] were de-
tected as two separate, lateralized subnetworks, in agreement with [84] although
other studies have identified a single, bilateral FPAN [202].

Smaller networks, like the executive control and auditory networks [85, 30] were
also resolved by Surprise, as well as subcortical structures, like the hippocampal
and thalamic formations [203, 204]. Interestingly, the thalamic nuclei appear as
one tight community, despite the fact that they are structurally unconnected, in
keeping with the idea that functional connectivity does not necessarily require the
presence of strong structural links.

The more accurate partition afforded by Surprise may enable identification of
differences in the modular structures of networks that cannot be appreciated with
a resolution limited method. By way of example, I have compared the partitions of
the resting state and coactivation networks (Figure 3.13). Indeed, these networks
are of a different nature, the former representing intrasubject baseline fluctuations
in the brain’s resting state, and the latter the responses to a variety of different
tasks across subjects. However, Newman’s Modularity finds similar partitions for
these two networks, with 4 large modules each.

Conversely, under Surprise maximization, the partition of the resting state net-
work shows many more small communities comprising less than 5 nodes (32 in
total) compared with the coactivation one (only 11). Moreover, certain communi-
ties of the resting state network appeared to be split into smaller modules in the
coactivation matrix. By way of example, the cuneus and the lingual and perical-
carine gyri were part of the occipital visual module in the resting state, but not in
the coactivation network, where they formed a separate community (first row of
Figure 3.13). Similarly, the precuneus and medial parts of the postcentral gyrus
were identified as an independent community in the coactivation network, while
they were part of the broad somatosensory network in the resting state connectiv-
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Figure 3.13: Comparison of selected modules in the partition obtained by Surprise in the
resting state and coactivation networks. The indexes are inversely ranked
according to the size of the modules in their respective networks.

ity graph [205] (second row of Figure 3.13). Interestingly, the Broca area, indicated
as Module 11 in Figure 3.13, was separated from the auditory network in the
coactivation network, and identified as a small, but anatomically and function-
ally distinct, community. Conversely, other communities were split in the resting
state but not in the coactivation network. The executive and attentional control
networks were merged into a large community in the coactivation network, while
they were separated under resting-state conditions, including a subdivision of the
left and right fronto-parietal networks (third row of Figure 3.13).

While the resting state and coactivation networks appeared to possess virtually
identical modular structures under Newman’s analysis, they showed functionally
and anatomically relevant differences when analyzed by Surprise maximization,
with a Normalized Mutual Information between the partitions of the two net-
works of 0.5922. Indeed, Modularity tends to assign small communities to larger
structures even when they correspond to tightly-knit modules, thus concealing
differences in the graphs’ modular structures that involve aggregation or disag-
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Figure 3.14: Partitions obtained with multiresolution Modularity (Reichardt and Born-
holdt method) for a value of the resolution parameter γ = 1.75 for the
coactivation and resting state networks. Increasing the resolution parame-
ter improves detection of smaller modules, but breaks up larger ones, thus
resulting in relatively homogeneous size distributions.

gregation of smaller clusters. It is conceivable that the detrimental effects arising
from the resolution limit may have affected previous studies comparing different
populations [59]. Surprise may offer a sharper tool to detect alterations of brain
connectivity induced, for example, by psychiatric or neurological conditions, thus
enabling the exploration of novel markers of brain disease.

3.6.3 Hubs classification

Besides the exploration of functional and anatomical segregation, understanding
the modular structure of brain networks is critical for the interpretation and classi-
fication of the roles played by the nodes within the network structure [47]. Highly
connected nodes, or hub nodes, are particularly important for their topological
centrality, and function as integrators. Hubs that primarily connect to nodes
within the same module are dubbed “provincial hubs”, and nodes that connect
different modules are referred to as “connector hubs”. The former are thought
to be responsible for the formation and stability of the modules, while the latter
ensure integration of the activity of the different modules. Obviously, interpreta-
tion of the hub’s role relies on the correct identification of the optimal network
partition, and may be strongly affected by the resolution limit.

Here, I have performed a hub’s role analysis for the resting state and coactiva-
tion networks under Modularity and Surprise maximization. To this end, I have
adopted Guimera’ and Amaral classification scheme [89], whereby nodes are clas-
sified by their within-community degree z (a measure of how well-connected a
node is to other nodes in the same community) and their participation coefficient
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P, a parameter that is 0 for nodes with purely intra-module connections and 1 for
nodes whose links project primarily to other modules.

Figures 3.15A and 3.15B show the different positioning of high-degree nodes
in the Guimera’ and Amaral plot for the coactivation and resting state networks
partitioned using Newman’s approach and Surprise maximization. In this scheme,
provincial hubs are high-degree nodes that score high z and low P values (R5
region); conversely, connector hubs are characterized by larger P values (regions
on the right-hand side of the plot).

Figure 3.15: Classification of representative nodes according to their intra- and intermod-
ule connections for the resting state (A) and coactivation (B) networks. Empty
circles and full circles indicate the position of each node in the Guimera’ and
Amaral’s plot after partition by Modularity or Surprise, respectively. An over-
all increase in the participation coefficient, a measure of the intermodular
connectivity, is observed for the Surprise partition relative to the Modularity
partition. To avoid cluttering of the graph, I only reported those nodes with
a degree higher than the average within a Standard Deviation, and whose
classification is different in the two partitions. The abbreviations of the brain
regions corresponding to the nodes are reported in the appendix, Table A.1.

A finer partition in smaller communities may be expected to determine an over-
all increase in participation coefficient and a decrease in within-community de-
gree. However, the heterogeneous partitions obtained by Surprise maximization
resulted in non-trivial changes in the Guimera’ and Amaral classification. By way
of example, I discuss in greater detail two regions whose roles are very different
in the two partitions, to highlight the effects of the resolution limit.
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Nodes that belong in the hippocampal formation show a large within-module
coefficient, and appear as provincial hubs (region R5 of Figure 3.15) under Mod-
ularity optimization. However, their participation coefficient increases 6-fold in
the partition by Surprise, which reveals a role as connectors for these nodes, with
widespread projections to many other modules across the brain, including the
module 3, 6, 8, 5, 2, corresponding to the DMN, the amygdala and parahippocam-
pal formation, the temporal inferior gyrus, the cuneus and lingual gyrus, and the
visual cortex, respectively. This finding is in agreement with the idea that the hip-
pocampus acts as “network convergence zone”, as it receives polysensory input
from distributed association areas in the neocortex [206].

Interestingly, the right shift in the Guimera-Amaral plot is less pronounced for
the nodes in the posterior part of the hippocampus (Figure 3.16). A differential
classification of the anterior and posterior hippocampus is consistent with the
hypothesis of a functional differentiation of this structure [207], with the poste-
rior hippocampus mostly involved in memory and cognition, and the anterior
hippocampus playing a role in the processing of stress, emotion and affect [208].
Moreover, studies in animal models have shown differential organization of the
efferent connections of the hippocampal formation [209], consistent with different
functions for the anterior and posterior hippocampus.

Figure 3.16: Top panel: classification of all the hippocampal nodes according to the
Guimera’ and Amaral’s scheme for the coactivation network. Empty circles
and full circles indicate the position of each node after partition by Modu-
larity or Surprise, respectively. Bottom panel: anatomical positions of the
nodes in the hippocampal formation, colored by Surprise community mem-
bership. The increase in participation coefficient upon partition by Surprise
is more pronounced for nodes in the anterior part of hippocampus, with an
antero-posterior gradient.
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Similar rightward shifts for nodes and hubs were observed in the resting state
network, and reported in Figure 3.15. However, increases in participation coeffi-
cients are by no means the only differences in the classification of nodes obtained
by Surprise maximization. A prominent example is the precuneus (PC) (Figure
3.15B, blue dots) that shows a high participation coefficient in both partitions by
Modularity and Surprise, but a much higher within-module degree under Sur-
prise maximization.

Indeed, the nodes comprised in the precuneus intrinsically possess high inter-
cluster connectivity, but are distributed among the four modules found by Modu-
larity. In the partition by Surprise they are grouped together, and this precuneal
module as a whole plays a connector’s role integrating different communities (Fig-
ure 3.17), a hypothesis that is consistent with the precuneus supporting a wide
spectrum of highly integrated tasks, from visuospatial imagery to episodic mem-
ory retrieval and self-processing operations [210].

In summary, partition by Surprise maximization results in very different distri-
butions of participation coefficients and within-module degree compared to Mod-
ularity. These differences are not uniform across nodes, and arise from the limited
ability of Modularity to identify small modules. Finer partition by Surprise re-
veals very different roles for some key brain areas, and suggests that a systematic
reanalysis of the topological roles of brain nodes and hubs may be in order.

Figure 3.17: Top panel: classification of the precuneal nodes according to the Guimera’
and Amaral’s scheme for the resting state network. Empty circles and full
circles indicate the position of each node after partition by Modularity or
Surprise, respectively. Bottom panel: anatomical positions of the nodes in
the precuneus, colored by Surprise community membership. The nodes in
the dorsal part of the precuneus exhibit a sharp increase in within-module
degree.
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3.7 limitations of binary surprise

A potential limitation of Surprise is related to its definition in terms of discrete
probability distributions. This makes Surprise suited for the study of binarized
networks. While the topological backbones of the networks I have investigated
appear quite robust against removal of lowest-weight edges and binarization, as
shown by our percolation and stability analyses (Figures 3.8, 3.9, 3.10), the appli-
cation of its weighted counterpart, Asymptotical Surprise, will help overcome the
need of binarization.

The superior resolution afforded by Surprise may make it more vulnerable than
other methods to noise and experimental errors. Indeed, occasional misassign-
ment of nodes due to noise-induced changes in edge distribution are likely to
affect small modules, comprising only a few nodes, more than large ones. Hence,
experimental uncertainty also limits resolution, and a resolution-limit-free method
would not necessarily improve the quality of the partition in a scenario dominated
by noise.

To ascertain whether this is the case for the co-activation and resting state net-
works investigated here, I have simulated the effects of experimental errors by in-
jecting noise into the distributions of weights prior to the binarization procedure,
thus introducing variability in the connectivity structure of the resulting binary
networks. I set levels of noise sufficient to perturb up to 10% of the edges of the
final binary network. Using this procedure, for each level of noise I generated
ten different graphs, and applied the Surprise Maximization algorithm to each of
them.

The ten different graphs were generated by adding noise to the off-diagonal
elements of the adjacency matrix prior to the binarization procedure. The ampli-
tude of noise was chosen to randomly perturb 10% of the edges after binarization.
Surprise maximization was applied to the resulting graphs. In the left panel of
Figure 3.18, I reported the Normalized Mutual Information (NMI) between the
optimal partitions of each of the ten perturbed networks and that of the origi-
nal resting state network. The number of communities retrieved by FAGSO in
each of the perturbed networks is reported in the right panel of Figure 3.18. The
graphs show that the partitions of the “noisy” graphs are consistent and similar to
those of the unperturbed network, with NMI scores close to 1 and almost constant
numbers of communities. These results demonstrate that Surprise maximization
can retrieve the network’s community structure even in the presence of substantial
noise in the data. I found that the partitions of these graphs were highly consistent
with those of the original networks (Figure 3.18).

We should also stress that there is no constraint in the FAGSO algorithm im-
posing inter-hemispherical symmetry of the partition. Nevertheless, I observed
homotopic correspondence in the community structure, and a close resemblance
with established neurofunctional circuits as in Figure 3.12 and 3.13. Taken together,
simulations of the effects of noise and qualitative considerations on the neurofunc-
tional significance of the modules identified by Surprise corroborate the idea that
experimental error is not the predominant factor in the networks investigated.

A final and important point I should highlight is that Surprise maximization,
in the implementation I have used here, does not allow for overlapping commu-
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Figure 3.18: Assessment of the effects of experimental error on the community structure
of the resting state network.

nities. Other methods have been applied to investigate this aspect in brain net-
works [211, 212]. However, a recent comparative analysis of graph partitioning
algorithms on a variety of benchmark networks [69] has shown that these meth-
ods are also prone to merging overlapping communities, with relatively modest
performance in recovering heterogeneous cluster distributions planted in model
networks. Despite these potential limitations, the resolution-limit-free behavior of
Surprise makes it an excellent tool to explore and to overcome the effects of the
resolution limit in the modular structure of brain connectivity networks.

3.8 conclusions

In conclusion, I have shown that Surprise, a recently proposed fitness function for
graph partitioning, behaves like a resolution-limit-free function. I have applied
Surprise maximization to study the modular structures of two different brain net-
works. Surprise maximization resulted in partitions comprising communities of
widely distributed sizes, consistent with the idea that small and large modules
coexist in brain networks. Moreover, the finer partition afforded by Surprise made
it possible to appreciate differences in the modular structures of diverse brain net-
works that were undetected by resolution limited methods like Newman’s Modu-
larity. Finally, the use of Surprise revealed the deleterious effects of the resolution
limit in the classification of nodal roles. Altogether, these results indicate that the
resolution limit may have substantially affected many of the analyses of brain con-
nectivity networks reported in the literature, and call for a revisitation of some of
the conclusions and models that have relied on Modularity maximization or sim-
ilarly resolution-limited algorithms. Surprise appears as a promising alternative
method that appeals to the intuition that tightly-knit clusters of nodes represent
legitimate structural or functional modules independently of their size.





4 B E YO N D T H E R E S O L U T I O N L I M I T I N
W E I G H T E D N E T W O R K S

Brain networks are intrinsically weighted with weights reflecting a continuous
distribution of connectivity strengths between different regions. A fundamental
limitation of Surprise lies in its definition in terms of discrete probability and bi-
nomial coefficients that make it applicable only to binary networks, i.e. graphs
with edge values 1 or 0. For this reason, Surprise requires binarization of brain
connectivity networks, a process that may discard potentially relevant information
contained in the edge weights distribution. Moreover, different binarization pro-
cedures may lead to different network representations for the same connectivity
dataset. This represents a substantial drawback of the binary Surprise approach.

The results obtained from binary Surprise optimization on real functional con-
nectivity networks encouraged me to extend the Surprise optimization approach
to weighted networks. Capitalizing on recent developments in the field of statisti-
cal physics of complex networks, here I show that binary Surprise can be extended
to weighted networks. This recently introduced approach dubbed Asymptotical
Surprise provides a new and valuable tool to study the modular organization of
brain connectivity beyond the resolution limit. Furthermore, I will present a new
algorithm for the direct optimization of Asymptotical Surprise that is based on the
previously described FAGSO method.

Improved resolution afforded by Asymptotical Surprise may imply increased
vulnerability to spurious modules resulting from noisy correlations. It is there-
fore important to assess the benefits of increased resolution against the limitations
arising from intrinsic data variability. To this end, I will demonstrate this new
approach in networks derived from synthetic datasets that mimic different struc-
tures, levels of noise and variability, like those observed in functional connectivity
experimental data.

Finally, I will apply Asymptotical Surprise optimization to weighted functional
connectivity networks from real-world resting state fMRI data, revealing a het-
erogeneous, multiscale community structure. The finer modular subdivision of
resting state functional connectivity networks obtained by Asymptotical Surprise
optimization leads to substantial differences in the identification of connector hubs
compared to other community detection methods.

4.1 from surprise to asymptotical surprise

In developing a quality function inspired by the principle of Surprise that works
for weighted networks, it is convenient to consider the asymptotical expansion of
the hypergeometric distribution. Hereafter I will stick to the derivation obtained
by Traag [176]. One can introduce q = mζ/m and 〈q〉 = pζ/p as the observed and
expected fraction of intracluster edges. By only taking into account the dominant
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term of the sum in Eq. 3.3 (the one with i = mζ), after some manipulations one
gets an approximate expression for the logarithmic Surprise1:

log(S) ≈ log

(〈q〉pmζ

)((1−〈q〉)p
m(1−q)

)(
p
m

)
 (4.1)

which corresponds to the probability of observing exactly mζ internal links, given
the clustering ζ. As the denominator in Eq. 4.1 is independent of the partition,
it can be discarded, and, thanks to the Stirling approximation of the binomial
coefficients, which reads

log
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≈ k log
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)
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one can write the dominant term 4.1 as:
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The term (m/p)−m is also independent of the partition and can be ignored. Hence,
the asymptotic expansion of Surprise reads:

log(S) = −m

[
q log

〈q〉
q

+ (1− q) log
1− 〈q〉
1− q

]
(4.4)

Interestingly, this last equation corresponds to the binary Kullback-Leibler diver-
gence mDKL(q‖ 〈q〉), which is interpretable as the distance between the two prob-
ability distributions q and 〈q〉. More precisely, it is the information lost when
one encodes the distribution q with the distribution 〈q〉. Thus, in the limit of
large networks, Surprise Ŝ can be approximated by a binomial distribution. This
observation led to definition of Asymptotical Surprise Sa [176]:

Sa = mDKL (q‖ 〈q〉) (4.5)

where the binary Kullback-Leibler divergence [213, 104] is

DKL(x‖|y) = x log
(
x

y

)
+ (1− x) log

(
1− x

1− y

)
.

In the framework of information theory [104], Asymptotical Surprise represents
the Kullback-Leibler (KL) divergence between the observed and expected fraction
of intra-cluster edges; it encodes the information lost when the prior distribution
〈q〉 is used to approximate the posterior distribution q. Kullback-Leibler diver-
gence is a quasi-distance on probability distributions as it is always non-negative,
non-symmetric and zero only when q = 〈q〉, exactly like binary Surprise.

Asymptotical Surprise has a simpler formulation than binary Surprise as there
are no binomial coefficients to evaluate and it has been shown to be resolution-
limit-free in the limit of large networks [176]. As a side effect of its definition in
terms of an information-theoretic quantity, Asymptotical Surprise transparently al-
lows the extension to weighted networks, when the intracluster number of edges is

1 If not specified, starting from here we use natural base logarithms.
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replaced by the sum of intracluster weights. This powerful property made Asym-
ptotical Surprise suited for community detection in weighted networks and in
particular to brain functional connectivity networks, thus avoiding the need of
binarization procedures prior to the community detection, as shown in [97].

Given its information-theoretic formulation as a KL divergence, Asymptotical
Surprise clearly features convexity, a property that is more difficult to assess for bi-
nary Surprise. Optimization of convex functions is typically simpler due to some
regularities featured by such functions and the availability of practical algorithms.
Furthermore, a convex function guarantees a landscape with a global optimum
and no degeneracy, a property that is extremely important for community detec-
tion.

Numerical evaluation of Asymptotical Surprise is much faster than binary Sur-
prise. Furthermore, it approximates very well Surprise already for networks with
more than 50 nodes, as shown in Figure 4.1.
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Figure 4.1: Approximation of binary Surprise with a binomial formulation and the Asym-
ptotical formulation based on the Kullback-Leibler divergence. In the inset, the
approximation ratio of binomial and Asymptotical Surprise to hypergeometric
Surprise tends to 1 for graphs larger than 50 nodes. Adapted from [176].

4.2 maximization of asymptotical surprise: paco

Finding the optimal partition of a graph is an NP-hard problem [54] and practical
implementations of community detection rely on heuristic approaches that enable
finding nearly optimal solutions in a reasonable computation time.

Here I introduce a powerful and general method for the optimization of Asym-
ptotical Surprise dubbed PACO (PArtitioning Cost Optimization). PACO is a non-
deterministic agglomerative algorithm based on FAGSO (described in chapter 3.5)
and, like the Louvain method, has an element of randomness that enables a more
efficient exploration of the partition landscape.

The operating principle of PACO is based on the triadic closure property, i.e. the
fact that, in real-world networks, nodes with many common neighbors are more
likely to be neighbors. This transitive neighborhood property underlies the forma-
tion of communities of nodes [214, 215]. In principle, any measure of structural
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similarity between nodes could guide a community detection heuristic toward the
optimal partition. Specifically, PACO uses the Jaccard index [216], a measure of
the fraction of overlap between the neighbors in common between nodes, as the
guiding principle for the agglomeration of similar nodes in the same community.

In the first phase of PACO, the Jaccard metric is evaluated for every edge. More
formally, for an edge e = (u, v) the Jaccard index is computed as J(e) = |Γ(u)∩Γ(v)|

|Γ(u)∪Γ(v)|
where Γ(u) and Γ(v) are the neighboring nodes of u and v respectively.

The agglomerative process starts with an initial partition where every vertex
represents a community on its own. This partition has n communities and no
intra-cluster edges. The edges of the graph are then ranked in decreasing order by
their Jaccard index and iteratively, for every edge in the sorted list, endpoint nodes
are merged only if they belong to different communities. In this case, one of the
two endpoints, selected by chance, is assigned to the other’s endpoint community
and the increment of Surprise is computed: if it is positive, the partition is updated
together with the new value of Surprise (or Asymptotical Surprise), otherwise the
algorithm proceeds to the next edge.

Algorithm 3 describes the details of PACO for Surprise and Asymptotical Sur-
prise Optimization. The function Paco takes as input a graph G and returns the
nodes community membership vector C. Line 1 initializes the value of Surprise to
0. Line 2 assign to each node in the graph its community. Line 3 creates a list of
edges E ′ sorted in decreasing order by their Jaccard coefficient. Line 4 iterates on
every edge e = (u, v) and at line 6 checks if the endpoints they share the same com-
munity. Line 8 copies the membership vector to a temporary vector C ′. Lines 9-13

choose randomly at chance if to put node u in the community of v or viceversa.
Line 14 computes the new value of Surprise S ′ from the just updated community
membership C. The function ComputeSurprise returns the value of Surprise for
graph G and partition C. Lines 15 to 18 checks if the new value of Surprise S ′ is
greater than the previously stored value S and update Surprise and the member-
ship vector, otherwise continue to the next edge. Line 19 returns the final commu-
nity membership assignment. The implementation of PACO in C++, Python and
GNU Octave is available upon request http://forms.iit.it/view.php?id=68447.

4.2.1 Running time analysis of PACO

I applied PACO on a full-resolution voxelwise connectivity matrix with 51,653

nodes and almost 2 million edges. PACO took 14 minutes for a single repetition
on a server with Intel Xeon E5-2643@ 3.40 Ghz CPU and 256 GB ram. I estimated
that 2000 repetitions of PACO would take approximately 2.5 weeks on this server.
I have also tried to run PACO on a standard office PC with 16 GB memory and an
Intel Core i7: it took almost 40 minutes. It is important to notice that the running
time of PACO is mainly determined by the computation of Jaccard indexes in the
initial step. The running time for this computation is in the order of O(n〈k〉2)
where n is the number of nodes and 〈k〉 is the average degree of nodes. On a
desktop workstation with a 2.5 GHz CPU, PACO runs in some tenths of seconds
on a single repetition for a graph of around 600 nodes with a density close to 10%,
typical of brain networks. A small benchmark of PACO running time on a desktop
workstation is shown in Figure 4.2, where I found optimal Surprise partitions of a

http://forms.iit.it/view.php?id=68447
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Paco(G)

1 S← 0� Initialize Surprise to 0
2 C← (1, . . . , |V |)� Initialize membership vector
3 E ′ ← Sort-Jaccard(E)� Sort edges in decreasing order by Jaccard index
4 for each edge (u, v) in E ′

5 do
6 if C[u] 6= C[v]� try to move nodes only if in different communities
7 then
8 C ′ ← C� Create a temporary membership vector
9 if UnifRand(0,1) < 0.5

10 then
11 C ′[v]← C[u]

12 else
13 C ′[u]← C[v]

14 S ′ = ComputeSurprise(G,C ′)
15 do if S ′ > S
16 then
17 C← C ′ � update membership
18 S ′ ← S� update Surprise
19 return C

Algorithm 3: Pseudocode of the PACO algorithm.

LFR network with the parameters described in the text but increasing number of
nodes.

200 400 600 800 1000 1200 1400 1600

N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
im

e 
[s

]

PACO performance on LFR networks

Figure 4.2: Performance of PACO on a LFR network with parameters

4.2.2 Reproducibility of PACO optimal solutions

To get a better idea of how fast the PACO method converges to a maximum, I
have plotted in Figure 4.3 the optimal value of Asymptotical Surprise over the
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10000 runs for one instance of the LFR network, and for the resting state data-set
presented in the section 3.6.1. From these graphs, it appears that 2000 runs may
be sufficient to reach stable community detection for the experimental data-set. A
near-optimum value is reached earlier for the LFR network, but it should be noted
that I have taken an instance of the synthetic network with no-noise added.

Figure 4.3: Maximum value of Asymptotical Surprise with respect to number of repeti-
tions on a LFR networks (left panel) and on a resting state network as in [34].

4.2.3 Benchmarking PACO

Two of the most important parameters to shape the community structure of an
LFR network are the topological and mixing coefficients (see section 1.3.5). The
topological mixing coefficient µt is the average ratio of intra-cluster neighbors di-
vided by the number of inter-cluster neighbors, as defined in [80]. The weights
mixing coefficient is defined as the average ratio of node intra-cluster strength
and inter-cluster strength, as defined in [95]. I explored the effects of these param-
eters on the ability of PACO to retrieve the planted structure in the network. I
set µt = µw, as setting µw greater than µt would introduce inconsistency in the
relative number and weight of the edges, with intermodule edges carrying the
largest weights. I analyzed the performance of Newman’s Modularity, Infomap
and PACO on LFR networks when varying topological and weights mixing coeffi-
cients. Figure 4.4 shows that the performance of the three methods is comparable
in terms of NMI, with a faster decay of NMI for InfoMap and Newman compared
to PACO for large µt.
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Figure 4.4: NMI of the retrieved vs planted partition of an LFR network as a function of
µt = µw for the three community detection methods.

4.3 degeneracy of asymptotical surprise

Degeneracy of nearly-optimal solutions, whereby similar values of the fitness func-
tion around its maximum correspond to substantially different partitions, has been
observed for Newman’s Modularity [184]. A consensus approach has been sug-
gested in [187] as a means to mitigate the degeneracy problem, yielding a stable
“average” solution over a large set of partitions. In order to ascertain whether
Asymptotical Surprise suffers from a similar shortcoming I have performed de-
generacy analysis by following [184], for Newman’s Modularity. In created a
benchmark network consisting of 24 cliques of 5 nodes, connected by a single
link to form a connected ring-like structure. I sampled the configuration space
of partitions during iterative steps of PACO optimization starting from different
random solutions and annotating the corresponding values of Asymptotical Sur-
prise for each partition. Afterward, I embedded the similarity matrix between
all sampled partitions into a three-dimensional space maintaining similarity re-
lations between partition with a Curvilinear Components Analysis (CCA) [184].
In the embedded manifold, two partitions are close if they are similar and the
z-axis encodes the quality function. Whereas a broad plateau of solutions with
similar values of maximum Modularity is observed as in Figure 2.5A, consistent
with [184], Asymptotical Surprise displays a much sharper peak corresponding to
the optimal solution, as shown in Figure 4.5. The existence of a globally maximum
partition that is much different from the other suboptimal solutions indicates that
there is no need to resort on consensus-based approaches for the identification of
the best candidate solution, as picking the highest Asymptotical Surprise value
already yields the correct partition.
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Figure 4.5: Degeneracy landscape of Asymptotical Surprise on a ring of clique model with
24 cliques of 5 nodes. The axes CC1 and CC2 are complicated functions of the
original partition space computed to maintain the distance relation between
points and their scale is unimportant. The height of this surface is the value
of Asymptotical Surprise. Red points represent individual partitions and their
metric distance is proportional to their NMI, the closer the points, the more
similar the partitions.

4.4 synthetic benchmark networks

One important finding in [182] is that brain networks are organized in modules
with a heterogeneous size distribution. I implemented this property in our two
types of benchmark networks. For the first test, I generated a ring of cliques
with 300 nodes, and sizes of the cliques sampled from a power-law with exponent
τc = 2, minimum and maximum clique size respectively minc = 5, maxc = 50.
For each subject of the sample, I synthesized 150 time-points for each node using
the neuRosim R package [217]. I set the baseline value of all the time series to
100 [218].

Finally, I correlated the original synthetic time series X by multiplication with
the matrix L, obtained the correlated time series Y and added Rician noise [219]
to Y independently for each area. The simulated data Y did not include slow drift
components, simulated physiological noise, nor spatial noise. The average SNR is
defined as SNR = S̄/σN where S̄ is the average magnitude of the signal and σN is
the standard deviation of the noise [220].
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To be more exhaustive and extend the validity of results, I repeated the same
procedure on weighted LFR networks withN = 600 nodes, sampling nodes degree
from a power-law with exponent τd = 2, average degree 〈k〉 = 12 and maximum
degree maxk = 50. I set the topological and weights mixing coefficients, i.e. the
average fraction of intra-cluster and inter-cluster degree and strengths, to µt = 0.1
and µw = 0.1, respectively. Planted community sizes ranged from 5 to 50 nodes
and were sampled from a power law with exponent τc = 1. Figure 4.6 shows two
realizations of these models.
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Figure 4.6: The two benchmark networks used in this study, laid out. (A) is a power-law
ring of cliques, where cliques present different sizes sampled from a power-
law distribution; (B) is the layout of an LFR network with parameters N = 600,
〈k〉 = 12, maxk = 50, µt = 0.1, µw = 0.1, minc = 5, maxc = 50. The layout of
(B) was generated with the graph-tool library [221].

Group-level correlation matrices were computed by Fisher-transforming and
averaging individual instances of the above matrices. Sparsification was obtained
by removing edges with weights below the most stringent threshold that main-
tained the network connectedness, a procedure known as percolation analysis [111,
116, 65]. This approach measures the size of the largest connected component of
the network upon iterative removal of the weakest edges and enables data-driven
determination of the optimal sparsification threshold that preserves network struc-
ture and connectedness while removing potentially spurious correlations.

The community structure of the resulting weighted sparsified matrices was de-
tected by Asymptotical Surprise optimized with PACO and compared against two
widely used methods, Infomap [82] and Newman’s Modularity [171, 71], that are
affected by the resolution limit, albeit to different extents. In Newman’s Modular-
ity, the size of the smallest detectable cluster is of the order of the square root of
the number of edges in the entire network [72], while Infomap has a limit that de-
pends on the overall number of inter-cluster edges [164]. Here I used the Louvain
implementation available in the Brain Connectivity toolbox [110] and the Infomap
implementation available in the igraph-0.7.1 package [222].

For all methods, including PACO, I launched 10, 000 independent runs and
picked the membership corresponding to the partition with the best value of the



84 beyond the resolution limit in weighted networks

fitness function, the maximum for Modularity and Asymptotical Surprise, the
minimum for Infomap. As discussed in the previous chapter, sections 2.4, 3.4, 4.3,
degeneracy of nearly-optimal solutions does not appear to severely affect Surprise
or Asymptotical Surprise, and a consensus approach is not deemed necessary for
these functions. This analysis supports the choice of selecting the solution with
the highest value of the fitness function.

4.5 paco benchmark on synthetic networks

I compared the quality of the partitions of the synthetic benchmark networks ob-
tained by Asymptotical Surprise with those of Infomap [82] and Newman’s Mod-
ularity [71, 171]. Figure 4.7A shows Normalized Mutual Information, Sensitivity
and Specificity of the three methods applied to the ring of cliques for different
sample sizes and SNRs; the no-noise condition is represented as “Inf”. This model
network was constructed to test the ability of the three methods to retrieve hetero-
geneous community structures under various noise conditions.

As expected, all methods showed better performance with increasing SNR and
number of subjects, as noise and intersubject variability introduce spurious edges
that hinder the ability to retrieve the planted structure. Partitions obtained with
Newman’s modularity showed the lowest NMI with respect to the planted parti-
tion under all conditions. Sensitivity of Newman’s modularity did not exceed 0.75
even for high SNRs and a large number of subjects, a consequence of its stronger
resolution limit. For this network, Infomap performed substantially better in terms
of NMI against the planted partition, with a Sensitivity that was superior to that
of Modularity across the spectrum of conditions.

Asymptotical Surprise showed highest NMI and Sensitivity across conditions,
consistent with its resolution-limit-free behavior. It proved superior in terms of
NMI and Sensitivity in the low SNR regimes, and in the presence of relatively
large intersubject variability as mimicked by the generation of different instances
of the ring of cliques. Specificity of Asymptotical Surprise was not inferior to
the other methods under all conditions, thus ruling out increased vulnerability to
False Positives, at least in this particular model network.

Comparable results were obtained for the LFR network (Figure 4.7B), a model
graph that replicates the distribution of nodal degree observed in many real-world
networks, including those representing functional brain connectivity. All three
methods showed similar values of NMI for high SNR and a large number of sub-
jects, with a plateau reaching maximum Sensitivity with a group sample bigger
than 20 and SNR above 30. Sensitivity was only slightly worse for Modularity, but
it should be noted that for the LFR network the size distribution of the planted
modules was narrower than for the ring of cliques, thus making the resolution
limit less evident.

In the lower SNR regime, Asymptotical Surprise presented the best performance
in terms of NMI and Sensitivity, with a slower decay for decreasing SNR.

Specificity was almost equivalent across the three methods, with a quick conver-
gence to the maximum value of 1 for high SNR and good performance (around
0.97) for low SNR. Asymptotical Surprise presented a faster decay with decreasing
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SNR. However, it should be noticed that the scale of Specificity has a very narrow
range (0.97-1.00), and the differences between the three methods were relatively
small.

Consensus analysis applied to Newman’s Modularity to assess the potential
effects of the degeneracy of nearly optimal solutions did not show substantial
differences in the comparison with the other methods. Notably, Infomap showed
a large variability in Accuracy for lower SNRs and number of subjects. Under
closer examination, however, it appeared that the increased variance for Infomap
was due to occasional runs in which the algorithm only retrieved one or two large
modules. This is a known problem with Infomap (and other algorithms based on
random walks) that depends on the need to parametrize the teleportation step in
order to make the dynamics ergodic [223].

For the sake of completeness, I also computed Accuracy and Matthew Correla-
tion Coefficient for the same model networks. As shown in Figure 4.8A, Accuracy
of Newman’s Modularity is lower for small SNRs and number of subjects and in
any case it does not reach 100% of true positives classification even in the no-noise
condition. Infomap accuracy is high for SNR greater than 20, largely independent
on the number of subjects. The large variance of Infomap for low SNRs is due to
the merging of all nodes in a single large community in a few runs, as discussed in
the main text. Asymptotical Surprise, behaves well in terms of Accuracy and has
the least variability across all methods, plateauing at 100% for SNRs greater than
20 and more than 40 subjects. In terms of MCC, Figure 4.8A shows that Asympto-
tical Surprise behaves comparably or better than Infomap. Newman’s modularity
is the least performer, due to its resolution limit, and never reaches maximum
MCC. Interestingly, Asymptotical Surprise slightly outperforms Infomap regard-
ing MCC in the single subject case in the no-noise condition. The comparison of
the three methods is similar in the case of the LFR benchmark, as shown in Fig-
ure 4.8B. Altogether, the picture that emerges from the analysis of Accuracy and
MCC is entirely consistent with the results shown in this section.
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A

B

Figure 4.7: NMI, Sensitivity and Specificity of the three community detection algorithms
applied to a power-law ring of clique network (A) and to Lancichinetti-
Fortunato-Radicchi network (B). SNR indicates Signal to Noise Ratio, and Inf
the situation with a network structure unperturbed by noise. Number of Sub-
jects indicates the different number of instances used to generate the group
level network.
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Figure 4.8: (A) Accuracy and Matthew correlation coefficient on the modified ring of
clique benchmark. (B) Accuracy and Matthew correlation coefficient on the
LFR benchmark.
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4.6 asymptotical surprise on resting state dataset

Figure 4.9 shows a comparison between the modular structure of the resting state
fMRI dataset obtained with Newman’s Modularity, Infomap and Asymptotical
Surprise. For each method, I had 10, 000 independent runs and picked the parti-
tion with the best value of the respective fitness functions (Q = 0.4967, L = 8.5173,
Sa = 5925.3, for Modularity, Infomap and Asymptotical Surprise, respectively).
The three methods showed significantly different partitions (relative NMIs in Ta-
ble 1), with a number of detected communities of 10, 19 and 47 for Modularity, In-
fomap and Asymptotical Surprise, respectively. Interestingly, Modularity detected
a relatively uniform size distribution, consistent with the intrinsic scale built into
the fitness function. Infomap showed a wider distribution of module sizes, with
number of nodes ranging between 156 and 3, while Surprise showed the largest
spread, and included communities as small as single nodes (singletons).

A B CNewman Infomap Asymptotical Surprise

Figure 4.9: Adjacency matrix of the resting state functional connectivity network. The
node indices have been reordered by module membership in each graph, and
the red lines highlight the community structures obtained by A) Louvain-
Newman’s Modularity (Q = 0.4967); B) Infomap (L = 8.5173); C) Asymptotical
Surprise (Sa = 5925.28).

Figure 4.10 shows the 16 largest modules detected by Asymptotical Surprise,
ranked by the number of nodes comprised in each community.

The first and largest module (Figure 4.10A) includes the pre- and post-central
gyri, part of the supramarginal gyrus and supplementary motor area. The second
community (Figure 4.10B) consists largely of nodes belonging to the occipital lobe:
the visual areas and the surrounding calcarine sulcus, the lingual and fusiform
gyrus. The third module (Figure 4.10C) reflects the Default Mode Network, span-
ning the temporoparietal cortex, the medial prefrontal cortex and the posterior
cingulate/precuneus. The nodes involved in the executive frontal functions form
the fourth largest community. Interestingly, nodes in the communities D, E, G
are the major players that take part in the so-called frontoparietal attentional net-
work [202]. The auditory network, comprising temporal areas, was detected as a
distinct community (Figure 4.10F). Deeper structures emerge as separate modules
in Figure 4.10H, with subcortical areas including the basal ganglia, i.e. putamen,
globum pallidum, caudate nucleus and the whole thalamus. The hippocampus
and the parahippocampal gyrus were identified as separate communities (O and
P). Additional, smaller substructures are shown in the third and fourth row of Fig-
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ure 4.10, including the Supplementary Motor Area (Figure 4.10J) and the orbital
(Figure 4.10M) and orbitofrontal (Figure 4.10I) modules, containing nodes from
Brodmann area 47.

HippocampalParahippocampalOrbital

Orbitofrontal Suppl.Motor

BasalAssociative

A B C D

E F G H

I J K L

M N O P

Sensorimotor Visual Default mode Executive

Attentional Auditory

Parietal InferiorExecutive

Fronto-opercular

Figure 4.10: Sixteen largest modules found by Asymptotical Surprise Maximization in
the resting state network overlaid on an MRI brain template. The modules
are ranked by decreasing size, and named after corresponding functional
networks previously identified by multivariate analysis of resting state fMRI
data, or by the comprised anatomical districts.

Newman’s Modularity retrieved four large, relatively uniform communities, cor-
responding to the Default Mode Network, the central network, occipital and fron-
toparietal networks. This is in keeping with previous studies using Modularity
optimization by spectral decomposition [34], and consistent with the strong res-
olution limit that affects this method. Additionally, a few smaller modules were
found by Louvain optimization of Newman’s Modularity, corresponding to the
basal ganglia, the hippocampal/parahippocampal formation, and two asymmetri-
cally distributed subcortical clusters.

Infomap identified 19 communities of various sizes, also shown in Figure 4.12.
The largest modules showed a close correspondence with those identified by Asym-
ptotical Surprise, albeit with some notable differences. By way of example, the
largest component includes the motor-sensory and auditory modules, identified
as separate communities by Asymptotical Surprise. The Default Mode Network
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Figure 4.11: First largest 8 modules of the optimal partition as found by Newman’s Mod-
ularity, with a value of the Modularity Q = 0.4967. Module 9 is not shown
as it consists of a single node.

Figure 4.12: First largest 16 modules of the optimal partition as found by Infomap, with
a value of the description length L = 8.5173.

retrieved by Infomap includes parts of the temporal cortices that are not normally
associated with the DMN. Similarly, hippocampus and the parahippocampal mo-
dules were merged by Infomap and resolved as individual modules by Asym-
ptotical Surprise. Other modules, including the visual, associative and executive
networks (C, E and F in Figure 4.12, respectively) were qualitatively very similar
to those identified by Asymptotical Surprise.

Altogether, the picture that emerges is consistent with the idea that the reso-
lution limit is more severe in Newman’s Modularity than in Infomap, and that
Asymptotical Surprise presents the best resolving power among the three meth-
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ods in a real-world network with finite SNR and variability as the resting state
functional connectivity network used for this study.

4.6.1 Hub classification

Maps of the anatomical distribution of the participation coefficient and within-
module degree show substantial differences between the three community detec-
tion methods (Figure 4.13), resulting in discrepancies in the identification of the
connector hubs for the same functional connectivity network.

Figure 4.14 shows the nodes with simultaneously high values of participation
coefficient and within-module degree (connector hubs, according to the Guimera
and Amaral’s classification). All three methods pinpoint connector hubs in the su-
perior, superior medial and middle frontal areas, as well as in the supplementary
motor area. However, substantial differences are observed for other hub regions.
The partition of Asymptotical Surprise localizes connector hubs in the Temporal
Middle and Frontal Middle gyri, as well as in the Rectus, Middle Cingulate Cortex,
Lingual gyrus and in the Precuneus.

Community detection by InfoMap results in the identification of hubs that are
partially consistent with either of the two other methods, in keeping with the idea
that its resolution limit is less severe than for Newman’s Modularity. Altogether,
these findings indicate that node role classification is method-dependent, and may
be affected by the resolution limit.

Newman

Asymptotical
Surprise

Participation coefficient Within module degree

Infomap

Figure 4.13: Anatomical distributions of the participation coefficient and within-module
degree z-score for the resting state functional connectivity network parti-
tioned by the three community detection methods.

4.6.2 Validation of Asymptotical Surprise in model networks

The performance of Asymptotical Surprise optimization by PACO was assessed
in model graphs with a built-in community structure, and compared with two es-
tablished community detection methods. I have chosen two synthetic benchmark
networks, the ring of cliques and the LFR network.
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NewmanA.

InfomapB.

Asymptotical SurpriseC.

Figure 4.14: Nodes presenting simultaneously large values of the participation coefficient
and within-module degree (larger than 0.6 and 1.5, respectively) for the three
community detection methods. These nodes are thought to represent the
connector hubs responsible for the integration of the networks’s modules.

The ring of cliques presents a clear-cut modular structure by construct, with
modules corresponding to complete subgraphs of variable sizes sampled from a
power-law distribution.

This toy network proved useful to assess the effects of the resolution limit in
the presence of a wide distribution of cluster sizes. The effects of this limit were
particularly apparent for Newman’s Modularity (Figure 4.7A), that showed poor
Sensitivity even for noiseless rings of cliques, plateauing at a value of 0.75. This is
consistent with the findings of [72], which showed that for Modularity the resolu-
tion limit is set by the square root of the total number of edges in the graph. For
Infomap, this limit is less severe and is determined by the number of inter-cluster
edges [164]. Accordingly, the effects of the resolution limit were not apparent
in this model network, where modules are sparingly connected by single edges.
Asymptotical Surprise presented the best performance, consistent with the idea
that this cost function is quasi-resolution limit free [176].

However, real brain networks are characterized by heterogeneous distributions
of node degree, with fat tails and power-law decays [27]. Such heterogeneity is
critical, as it determines some of the remarkable features of brain connectivity
networks, including resilience to random failure and rich-clubness [44, 58]. To
provide a more realistic benchmark, I used the Lancichinetti-Fortunato-Radicchi
algorithm [80], which made it possible to generate networks with realistic and
tunable power law degree distribution and community sizes.

For LFR networks, the difference in performance in the low-noise regime was
more nuanced for the three methods compared in this study, possibly a result of a
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fuzzier community structure of the LFR network compared to the ring of cliques,
and of the narrower distribution of cluster sizes. However, the picture appeared
different when noise and intersubject variability were injected into the network
structure.

Noise and other sources of variability in the data can significantly affect the
structure of the resulting network representation. Noisy fMRI time-courses, for
example, may introduce spurious correlations in brain functional connectivity net-
works. This problem may be particularly relevant for methods endowed with high
resolution, like Asymptotical Surprise, that may be more vulnerable to False Pos-
itives generated by the misassignment of peripheral nodes, particularly in small
clusters. Hence, the resolving power of community detection methods should
be gauged against Specificity, which may be affected by noise in the distribution
of edges that define the network’s structure. However, to the best of our knowl-
edge, this aspect has never been considered in the existing literature assessing the
performance of community detection algorithms as applied to the study of brain
connectivity.

To this end, I have devised methods to inject noise, with amplitude and spectral
distribution that mimic those of experimental noise, into networks with a well
defined planted structure. Moreover, I have generated different instances for each
network, corresponding to different subjects in a group, to account for intersubject
variability that occurs in typical neuroimaging studies.

Unsurprisingly, for all methods and networks, detection of the planted structure
improved with decreasing levels of noise, and with increasing number of subjects
in the study. However, Asymptotical Surprise appeared to provide a superior
performance in terms of NMI and Sensitivity to the planted structure for lower
SNRs in both types of networks, while its Specificity was in line with that of
resolution-limited methods like Newman’s and Infomap (Figures 4.7A, 4.7B). This
rules out the idea that the higher sensitivity to small clusters of Asymptotical
Surprise may be detrimental in noisy networks, making it more vulnerable to
small, spurious modules.

4.6.3 Asymptotical Surprise optimization on resting state networks

Application of Asymptotical Surprise maximization to a group-level, resting state
functional connectivity network from the brains of 27 healthy subjects revealed a
heterogeneous distribution of modules, with large and small modules coexisting
in the optimal partition. This is in keeping with previous findings with binary Sur-
prise [182]. These modules closely reflect functional networks reported in many
studies using Independent Component Analysis or other multivariate methods,
including the sensorimotor, visual, default mode, executive, and attentional net-
works. Moreover, anatomically defined subcortical structures, like the hippocam-
pus and parahippocampal formations emerged as independent modules.

While this is entirely consistent with our understanding of the neurofunctional
and anatomical organization of the human brain, the accuracy of Asymptotical
Surprise in identifying these networks is notable. Indeed, Surprise, like other
graph-based community detection methods, divides networks into disjoint clus-
ters of nodes on the basis of topological criteria. While a correspondence between
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topological modularity and functional networks identified by, e.g. Independent
Component Analysis, may be expected, it is not a given, for they are defined on
different principles. Indeed, multivariate methods like ICA separate components
on the basis of the statistical independence of the time-courses, and do not convey
information regarding the mutual relationship between modules nor about their
topological organization.

Previous studies applying resolution-limited methods like Newman’s Modular-
ity to the same dataset hereby analyzed [34] found a few, large modules encom-
passing large-scale networks, but failed to identify finer, neurofunctionally plau-
sible substructures like those shown in the present study. Infomap, on the other
hand, proved sensitive to heterogeneously distributed clusters, thus implying that
this method does not have an intrinsic scale, like Modularity and variations thereof
based on the introduction of a resolution parameter.

However, Asymptotical Surprise appears to provide superior performance in
identifying small subnetworks, particularly in the presence of noise, thus suggest-
ing that this method may represent a new standard for community detection in
brain networks. It should also be noted that no symmetry constraint was imposed,
and the symmetrical bilateral distribution of nodes in the retrieved modules arises
entirely from Asymptotical Surprise optimization.

Hierarchical clustering methods have been extensively applied to investigate the
structure of brain connectivity networks, showing smaller and smaller clusters as
the modules are iteratively subdivided [59]. Maximization of Asymptotical Sur-
prise reflects the optimal cut through the dendrogram representing connectivity
at these different levels of subdivision and provides information on the optimal
partition of the network. Hence, the heterogeneous distribution of cluster sizes
retrieved by Asymptotical Surprise suggests that multiple scales of structure exist
at the same level of the dendrogram.

Finally, abnormal functional connectivity has been observed in a number of
neurological and psychiatric diseases, but the coarse resolution of methods like
Newman’s Modularity [26] may not have detected differences in the modular or-
ganization of networks in patients compared to healthy controls. The improved
resolution and sensitivity to multiscale structure afforded by Asymptotical Sur-
prise may provide a powerful means to assess the brain functional architecture in
disease states, thus contributing a potential imaging-based marker and a key to
interpret the functional effects of aberrant connectivity.

4.6.4 Hub classification

The presence of heterogeneously distributed modules in functional connectivity
networks may have important consequences for our understanding of the brain
functional organization. By way of example, it has been shown that highly con-
nected nodes, or hubs, are critically important in brain connectivity networks, and
may play different roles depending on their position and connectivity distribution
within and between modules [27]. Hubs that primarily connect to nodes within
the same community are dubbed “provincial hubs”, and are thought to be respon-
sible for the definition and stability of the modules. Conversely, hubs that connect
different modules are referred to as “connector hubs” and ensure integration of
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the activity of the network. The classification of hubs strongly depends on the
modular structure that is considered, and inaccurate partitioning due to the res-
olution limit can lead to the wrong interpretation of their role in the interplay
between segregation and integration of brain function [27]. The present study sug-
gests that this may have been the case in previous studies, in which resolution
limited methods characterized by an intrinsic scale have been used, and provides
a solution that may enable more accurate classification of hubs and nodes.

The connector hubs identified by our three methods (Asymptotical Surprise,
InfoMap and Newman) present some substantial differences, consistent with the
idea that hub classification depends on community structure. These differences
are particularly interesting in the light of the important role that connector hubs
are thought to play in integrating information flow through the brain, and their
putative role in brain disease [28, 25]. By way of example, the Precuneus and the
Cingulate Cortex are highlighted by Asymptotical Surprise, but not by Newman’s
Modularity, as connector hubs. These are two key elements of the Default Mode
Network that have been consistently identified as vulnerable regions in neurolog-
ical diseases [58, 224].

Community detection by resolution limited free methods should enable more
accurate classification of hub nodes, and improve our understanding of their role
in brain disease.

4.7 limitations of asymptotical surprise

Some caution should be taken in the interpretation of the graphs in Figures 4.7A,B.
Indeed, the SNRs of the synthetic networks I have generated, reflect noise with
features, like a Rician distribution, that mimic some, but not all aspects of the vari-
ability of experimental data. By way of example, the brain parcellation scheme
applied to define the nodes, and the heterogeneity of voxels within these parcels
may play a role that is hard to model in toy networks [225]. Hence, the simulated
Sensitivity and Specificity as a function of SNR and number of subjects should not
be taken as absolute values to be used in the power and sample size estimation
in real experimental designs. Nevertheless, these simulations provide useful in-
formation on the dependence of these parameters on noise levels, and a rigorous
means to assess the relative merits of different community detection methods.

Finally, I should note that the maximum value of Asymptotical Surprise calcu-
lated with PACO is an index of quality of the entire partition, and not of individual
modules. Hence, individual modules may not all have the same strength of inter-
nal cohesiveness relative to their connection with other modules. We have found
hints of this phenomenon in the comparison of nearly-optimal partitions obtained
in the 10, 000 runs of PACO that I have performed to find the optimal community
structure for this network. The overall community structure appeared to be robust,
with most modules persistently emerging in every nearly-optimal partition, but in
some cases pairs of modules split or merge in otherwise similar solutions. Most
notably, this was observed for the thalamus that in some instances was merged
with the basal cluster and in others, featured as a separate module. This phe-
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nomenon may be less critical for methods like Newman’s Modularity that have an
intrinsic scale and retrieve uniformly distributed modules.

4.8 conclusions

I have extended the use of Surprise, a resolution-limit-free fitness function for the
study of the modular structure of complex networks, to weighted brain functional
connectivity networks. Specifically, I have developed a novel method, dubbed
PACO, for the optimization of Asymptotical Surprise, a weighted counterpart of
Surprise in the limit of large networks. I have applied PACO optimization of
Asymptotical Surprise in synthetic networks to evaluate the relative merits of this
novel approach against Newman’s Modularity and Infomap, two of the leading
methods used for community detection in brain connectivity networks.

Specifically, I have implemented a process to inject noise into networks endowed
with a ground-truth modular structure to assess the trade-off between improved
resolution afforded by Asymptotical Surprise and potential sensitivity to spurious
correlations introduced by variability in the data. Asymptotical Surprise optimiza-
tion proved superior to existing methods in terms of Sensitivity and accuracy in
the detection of the planted structure as measured by Normalized Mutual Infor-
mation, while showing comparable Specificity.

I have also applied this approach to the partitioning of functional connectiv-
ity networks from resting state fMRI experiments. Direct comparison with other
methods clearly demonstrated an improved capability to identify neurofunctio-
nally plausible and anatomically well-defined substructures otherwise concealed
by the resolution limit. Asymptotical Surprise revealed a complex modular struc-
ture of resting state connectivity, with communities of widely different sizes re-
flecting distributed functional networks alongside with small, anatomically or
functionally defined modules.

This evidence corroborates the idea that the resolution limit may have negatively
affected current models of the brain modular organization and the identification
of the hubs responsible for the integration of functional modules. For this reason,
the application of methods like Asymptotical Surprise provides a novel, powerful
approach to study the modular structure of brain connectivity beyond this limit.



5 B E YO N D T H E R E S O L U T I O N L I M I T I N
T H E D I S E A S E D B R A I N

Since the work of pioneers of neuropsychology, it has been observed that many
neurological and psychiatric disorders can be described as dysconnectivity syn-
dromes [226]. The emergence of symptoms or functional impairment in these
disorders can be related to the damage or abnormal integration of spatially dis-
tributed brain regions that would normally constitute a large-scale network sub-
serving function. Abnormal patterns of brain functional connectivity have been
consistently observed in patients affected by Schizophrenia (SZ) using functional
MRI and other neuroimaging methods. Graph theoretical approaches have been
applied to study defective interactions and modular organization in networks of
distributed brain areas, perhaps a result of dysfunctional conscious integration in
SZ.

As shown in the previous chapters, current graph analysis methods suffer from
a fundamental resolution limit, as they fail to detect modules that are smaller than
a scale determined by the entire connectivity network.

In this chapter, the first application of Asymptotical Surprise optimization is
demonstrated for the study of the modular organization of resting-state functional
connectivity networks in a large cohort of SZ patients, and in matched healthy
controls. These preliminary results have been obtained with the collaboration of
my colleague Cécile Bordier at the Center for Neuroscience and Cognitive Systems
of “Istituto Italiano di Tecnologia” in Rovereto (Italy).

Application of the methodological advances introduced in this work showed a
substantial fragmentation and reorganization involving primary sensory, auditory
and visual areas in SZ patients. Conversely, frontal and prefrontal areas related
with higher cognitive functions appeared to be less affected, with changes involv-
ing mostly language-processing regions. These findings, not yet published, sup-
port the hypothesis that cognitive deficits in SZ may be driven by impairments in
basic perceptual processes that localize to primary sensory brain regions.

5.1 functional connectivity in schizophrenia

Schizophrenia has been associated with aberrant functional connectivity as mea-
sured by neuroimaging methods in a number of studies [227, 228, 229, 230, 231, 65,
66, 232]. This growing evidence is in keeping with the disconnectivity hypothesis
of Schizophrenia that posits that the core dysfunction of this disease may cor-
respond to a weakening of the functional interactions between specialized brain
areas [233, 234, 235], resulting in defective integration of activity in distributed
networks and cognitive disintegration [236]. Indeed, psychotic symptoms akin
to those of schizophrenia, including hallucinations and delusions, are also ob-
served in certain neurological disorders that involve disruption of corticocortical
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and cortico- subcortical connections [237]. Understanding the nature of connectiv-
ity alterations in SZ patients and their effects on brain functional integration may
provide important insights into the etiology of this devastating disease, as well as
potential diagnostic or prognostic markers.

To this end, graph theoretical approaches have been proposed as a powerful
framework to assess topological features of functional connectivity networks [238,
27, 239, 140]. Several alterations in graph-related metrics of resting state connec-
tivity have been identified in schizophrenia patients, including reduction in global
network efficiency [230, 27, 240], small worldness [230, 241, 242] and rich-club
organization of high-connectivity nodes [243].

Several studies have assessed the modular structure of resting state functional
connectivity networks derived from functional MRI in Schizophrenia patients com-
pared to healthy controls [230, 65, 244]. Disrupted modular organization and re-
duction in Modularity, a measure of segregation of functional modules within the
network, was found in Childhood Onset Schizophrenia [65]. Reduced Modularity
was associated with a proportional increase in inter-cluster edges and decrease in
intra-cluster edges [66]. Lerman-Sinkoff et al. [244] reported similar community
structures in adult schizophrenia patients and healthy subjects under stringent
control of potential sources of imaging artifacts, with small but significant alter-
ations of node community membership in specific networks. Yu et al. [245] found
reduced overall connectivity strength and a larger number of communities in the
patients’ group (6 in SZ subjects vs 5 in healthy controls).

These pioneering investigations provide important indications that the modu-
lar organization of functional connectivity networks may be altered in patients
affected by schizophrenia. However, graph theory as applied to the study of brain
networks is still in its infancy, and several methodological and conceptual issues
that are still open may have affected early studies.

In the previous chapters, I have shown that the resolution limit severely ham-
pered the ability to resolve the modular organization of human brain connectivity
networks and to capture their complex community structure. This pervasive limit
is likely to have biased previous studies in clinical populations and may have pre-
vented detection of differences in the organization of functional connectivity in
patients and controls at a finer scale. Indeed, even though previous studies in SZ
populations systematically report a substantial reduction in functional connectiv-
ity strength and modularity compared to healthy controls, differences in the num-
ber, size, and boundaries of functional modules appear to be inconsistent across
studies and dependent on the specific clustering approach that was adopted.

The deleterious effects of the resolution limit propagate to the evaluation of rel-
evant topological parameters that depend on the network’s community structure.
These include within-module-degree and participation coefficient, parameters that
enable the identification of highly connected nodes, or hubs, responsible for the
integration and efficient exchange of information between modules [27].
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5.2 asymptotical surprise optimization on schizophrenic
patients

Here, capitalizing on these important methodological advances discussed in the
previous chapters, we applied Asymptotical Surprise to resolve and compare the
modular structures of resting state functional connectivity networks in two cohorts
of 78 schizophrenia subjects and 91 controls.

In contrast with previous studies, we have found profound changes in the rest-
ing state brain connectivity structure of schizophrenia patients, with a substantial
functional reorganization reflecting both fragmentation and merging of functional
modules. Additionally, we investigated alterations in node-wise participation co-
efficients and the resulting rearrangement of integrative brain regions in patients.

5.2.1 Material and methods

MRI data were downloaded for 78 people with schizophrenia strict (SCZ) (64

males, 14 females) and 91 healthy controls (CON) (65 males, 26 females) from
the open COBRE database http://fcon_1000.projects.nitrc.org/indi/retro/

cobre.html. Ranging ages going from 18 to 65 years in both groups. All the sub-
jects in the COBRE were screened and excluded if they had history of neurological
disorder, history of mental retardation, history of severe head trauma with more
than 5 minute loss of consciousness, history of substance abuse or dependence
within the last 12 months. Ethical statements are contained in the original pub-
lication of this dataset. Images were acquired with a Siemens MIND TRIO 3T
scanner equipped for echo-planar imaging (EPI). Echo-planar imaging was used
for resting state fMRI data collection with (Repetition Time) TR=2s, (Echo Time)
TE=29ms, matrix size: 64x64, slices=33, voxel size=3× 3× 4 mm3 (for more details
see [246]). A total of 150 volumes of functional images were obtained for all the
subjects except one (this subject was excluded from the present study). The data
were pre-processed using SPM8 (Wellcome Trust Centre for Neuroimaging, Lon-
don, UK). After discarding the four initial volumes, the remaining volumes were
slice-timed, head-motion realigned and normalized to the standard MNI EPI tem-
plate space (voxel-size re-sampled to 3× 3× 3 mm3). Then, for each participant,
638 regional mean time series were computed by averaging the voxel time series
within each of the parcellized areas of [34] template. Finally, after regressing the
movement parameters from each areas signal, we estimated the connectivity ma-
trix by computing pairwise inter-regional correlation for each participation. In or-
der to have a connectivity matrix by population, we Fisher-transformed individual
correlation matrix and average them by group to get an adjacency matrix. In order
to determine the optimal modular partitions for the experimental groups beyond
the resolution limit, we applied optimization of Asymptotical Surprise by PACO.
Prior to community detection, the group level adjacency matrices were sparsified
using a percolation analysis approach to remove weaker edges and reduce the
effects of noise, thus maximizing information about the network’s modular struc-
ture [97, 116, 111], as described in section 1.6.

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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5.2.2 Disruption of modular structure in SZ patients

Figure 5.1 shows the group-level adjacency matrices, with the node indexes rear-
ranged by module membership, for the control and schizophrenia groups. Disjoint
clusters of nodes, or modules, are delineated by red lines. We found 44 communi-
ties in the control group, with module sizes ranging between 141 and 1 nodes. The
optimal partition of the patients’ group comprised 39 communities and showed a
less heterogeneous size distribution. The statistical significance of the difference
in community structure was assessed using a recently proposed permutation ap-
proach [66], resulting in a p-value of p = 0.009 (1000 permutations, FDR corrected).
The smaller number of modules in the schizophrenia group may appear somewhat
counterintuitive, in the light of overall weaker functional connectivity strength in
this group. However, while the largest modules appear to break up into smaller
modules in patients, the tail of the distribution of community sizes is fatter in the
schizophrenia group, thus indicating aggregation and reorganization of smaller
modules.

Figure 5.1: Optimal Asymptotical Surprise partitions for the two populations.

Figure 5.2 shows the distribution of functional modules in the two groups over-
laid on an anatomical template. Note that the colors denoting the communities
were chosen independently in the two groups to maximize contrast between adja-
cent modules. Differences in the modular structures of functional connectivity in
the two groups are apparent and involve complex reorganization of nodal mem-
bership across modules. The main differences in modular organization between
the two groups involve the sensorimotor, visual and auditory cortices. The large
central module in the healthy controls’ group (dark blue in Figure 5.2A) comprises
somatosensory cortices and temporal auditory cortices, consistent with previous
findings in healthy volunteers [247]. In schizophrenia patients, this module breaks
up into four different clusters of nodes. Similarly, the controls’ large occipital mod-
ule (light brown in Figure 5.2) is split in the patients’ group, with primary visual
cortex standing as an independent community together with part of the inferior
temporal lobe. The more dorsal part of the occipital community includes part of
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A. Controls

B. Patients

Figure 5.2: Maps representation of the communities for each group: A. Healthy control,
B. Schizophrenia patient. Please note that the colors of each community are
random even across groups.

the superior parietal lobule in HCs, but not in SZ patients, where the boundary of
this community lies in the vicinity of the parieto-occipital fissure.

Substantial fragmentation and reorganization is also observed in the modular
structure of the temporal cortex. In controls, we find well-delineated modules
comprising the middle temporal gyrus and the inferior temporal gyrus, while the
superior temporal gyrus is part of larger community that includes somatosensory
cortices. In patients, the superior temporal gyrus is separated from the larger
somatosensory community, and is split into two modules, anterior and posterior,
respectively, that comprise also part of the supramarginal cortex. The middle tem-
poral gyrus is split rostrocaudally into four different communities that include
parts of the superior and inferior gyri. The inferior gyrus is split in ttwo modu-
les, anterior and posterior, respectively. The anterior module includes part of the
middle temporal gyrus, while the posterior one extends to visual cortices.

Interestingly, the angular gyrus and the supramarginal gyrus appear as sepa-
rate modules in healthy controls, but, in patients these areas are merged into a
single community including the temporoparietal junction. Finally, between-group
differences in frontal lobe organization pertain particularly the language regions,
with the Broca area forming an independent community in patients. The modular
structure of other frontal and prefrontal areas is consistent in the two groups.

Figure 5.3 shows statistically significant voxelwise differences in participation
coefficient, a measure of diversity in intermodular connections of individual nodes.
Nodes characterized by high participation coefficients have many links pointing to
different modules, and are thought to play an integrative role. Conversely, nodes
with most links pointing to other nodes within the same community are dubbed
provincial hubs, and contribute to defining functional segregation of their com-
munities. Significantly larger participation coefficients are observed observed in
sensorimotor, visual and auditory areas of SZ patients. Conversely, lower partic-
ipation coefficients in patients are observed in frontal and parietal regions, with
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A. SCZ > CON

B. CON > SCZ

Figure 5.3: Participation coefficient map of the difference between the two populations. a.
Nodes with higher participation coefficient in SCZ than for CON; b. Nodes
with lower participation coefficient in SCZ than for CON.

the most prominent decrease in the temporal primary auditory cortex in the vicin-
ity of the Heschl gyrus. Substantial differences are also observed in functional
connectivity of areas related with language generation and processing.

The anterior part of the Broca area (Brodmann area 45), which receives afferent
projections from the PFC, shows a decrease in participation coefficient, while the
posterior part (Brodmann area 44), which has more structural connections with
sensory cortices and inferior parietal cortices, shows an increase in PC.

Network nodes characterized by high degree and high participation coefficient
represent the integrative hubs of connectivity networks, and are dubbed “connec-
tor hubs”. Differences in centrality and connectivity structure between the two
populations may result in a different distribution of connector hubs in the brain.
Figure 5.4 shows the regions with simultaneously high values of degree and par-
ticipation coefficient in the SZ and healthy control groups. Notable differences are
observed in the parietal regions, where the superior parietal lobule represents a
connector hub in control subjects, but not in patients. Importantly, the Broca area
appears as prominent connector hub only in the SZ subjects.

To get an idea of the main changes due to the difference of network, we looked at
the participation coefficient of the nodes. This information points out the changes
of node role in the different population, i.e. when nodes get important because
of its links towards the other communities. As shown on Figure 5.4, the nodes of
the motor cortex of the patient group increase their participation coefficient in the
inter-community connection when conversely, the parietal as well as some frontal
and temporal nodes reduce the importance of their external links compared to the
second groups.

In summary, the modular structure of functional connectivity is substantially
reorganized in SZ patients, with prominent differences involving primary sensory
and sensorimotor areas, and language related areas.
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A. Controls

B. Patients

Figure 5.4: Maps of connector hubs with a participation coefficient higher than 0.6 and a
degree higher than 1 for both populations.

5.3 conclusions

In conclusion, we have applied a novel graph theoretical approach, dubbed Asym-
ptotical Surprise, to study the structure of brain functional connectivity networks
in a large cohort of Schizophrenia patients. Global and node-wise connectivity pa-
rameters show an overall reduction in connectivity in patients compared to healthy
controls, in line with previous studies. The improved resolution afforded by our
method reveals substantial reorganization of the modular structure of functional
connectivity in patients, with a fragmentation of visual, auditory and sensorimo-
tor cortices. This evidence is in keeping with bottom-up theories of schizophrenia
that posit that cognitive dysfunction and conscious disintegration observed in SZ
may arise from deficits occurring already at early stages of sensory processing.
The reorganization of auditory and language modules, and the merging with mul-
timodal association cortices is interesting in the light of the auditory hallucinations
often experienced by SZ patients. Significant changes were observed in the partic-
ipation coefficient of sensory, visual, and in primary auditory cortices, including
the Heschl gyrus, a region critically implicated in auditory hallucinations. This
evidence indicates that these regions play a different role in the integration of the
network of functional connectivity in the patient’s brain. Previous studies using
similar, but resolution-limited methods, may have failed to detect the abnormal
organization of functional connectivity at the scale reported here due to intrin-
sic methodological limitations. The present approach may provide a novel and
powerful tool to study alterations in the brain functional organization in other
neuropsychiatric conditions that are thought to be associated with aberrant con-
nectivity.





6 C O N C L U S I O N S A N D F U T U R E
D I R E C T I O N S

Functional brain connectivity, measured by fMRI, greatly increased our knowl-
edge of the architecture and function of the brain. In particular, investigation of
the modular organization of brain functional connectivity networks is specifically
explored in this thesis by means of a new graph theoretical approach.

In the past, these functional networks have been investigated with methods
hampered by a limit that impeded the detection of modules smaller than a scale
determined, in the best case, by the amount of interconnections and, in the worst
case, by the overall size of the graph under consideration.

In this work, I pioneered the use of Surprise and Asymptotical Surprise, two
approaches for community detection in brain networks that are demonstrably free
from these severe limitations.

The methodological advantage of the approach proposed in this thesis is two-
fold. Firstly, the resolution limit-free method for community detection offered a
richer view on the modular structure of brain networks. Indeed, direct comparison
with other methods clearly demonstrated an improved capability to identify neu-
rofunctionally plausible and anatomically well-defined substructures otherwise
concealed by the resolution limit. Moreover, the more heterogeneously distributed
partitions obtained by Surprise maximization resulted in non-trivial differences of
the roles of single nodes, compared to current models.

As a second point, the validation of a method to maximize Asymptotical Sur-
prise and its application on synthetic networks endowed with a ground-truth com-
munity structure provided a comparative term for benchmark of other community
detection methods. In particular, I described a procedure to artificially simulate
the effects of noise on time-courses of BOLD signals, to see its detrimental effects
on the performance of community detection. Altogether the picture that emerged
is that Asymptotical Surprise has proved superior to existing methods in terms
of Sensitivity and accuracy in detection of the planted structure as measured by
Normalized Mutual Information, while showing comparable Specificity.

As the last test of the validity of this newly developed approach for commu-
nity detection beyond the resolution limit, Asymptotical Surprise optimization
revealed a functional fragmentation and reorganization of the primary sensory ar-
eas in schizophrenic patients. Although preliminary, this study is in keeping with
bottom-up theories of schizophrenia, hypothesizing that alterations in early sen-
sory processing may be at the heart of the cognitive and behavioural dysfunctions
that characterize this tremendous disease.

As a future direction of this work, I plan to implement a multilevel method for
the optimization of Asymptotical Surprise that may be of help in dealing with
huge graphs as those coming from voxelwise approaches to functional connectiv-
ity. Graphs in the order of fifty thousand nodes and several million edges are
the next natural step in this “big data” challenge that is pushing the frontiers
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of efficient algorithms design. While PACO has been already tested on graphs
with millions of edges, its performance is still poor, requiring an entire week for
a single run. On the other hand, a deeper theoretical analysis of the behaviour of
Surprise/Asymptotical Surprise on networks non-trivial architecture could shed
light on more efficient implementations.

As the last chapter of this work confirmed, I see much space for the utilization of
my new methods in the realm of the analysis of neuroimaging data for the investi-
gation of neuropsychiatric alterations. As observed in schizophrenia patients, the
greater resolution afforded by the methods presented in this work may provide
novel markers for diagnosis and prognosis of neuropsychiatric disorders.
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A TA B L E S A N D A B B R E V I AT I O N S

Region Abbreviation
ACG Anterior Cingulate Gyrus
CAL Calcarine
CAU Caudate
CUN Cuneus
DCG Median cingulate and paracingulate gyri
FFG Fusiform Gyrs
HES Heschl Gyrus
HIP Hippocampus
IFGoperc Inferior Frontal Gyrus, opercular part
IFGtriang Inferior Frontal Gyrus, triangular part
INS Insula
IOG Inferior Occipital Gyrus
IPL Inferior Parietal Gyrus
ITG Inferior Temporal Gyrus
LING Lingual Gyrus
MFG Middle Frontal Gyrus
MOG Middle Occipital Gyrus
MTG Middle Temporal Gyrus
ORBinf Inferior Frontal Gyrus, orbital part
ORBmid Middle Frontal Gyrus, orbital part
ORBsup Superior Frontal Gyrus, orbital part
ORBsupmed Superior Frontal Gyrus, medial orbital
PAL Globus Pallidum
PCG Posterior cingulate Gyrus
PCL Paracentra Lobule
PCUN Precuneus
PHG Parahippocampal Gyrus
PoCG Postcentral Gyrus
PreCG Precentral Gyrus
PUT Putamen
REC Rectus
ROL Rolandic Operculum
SFG Superior Frontal Gyrus
SFGmed Superior Frontal Gyrus, medial part
SMA Supplementary Motor Area
SMG Supramarginal Gyrus
SOG Superior Occipital Gyrus
SPG Superior Parietal Gyrus
STG Superior Temporal Gyrus
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124 tables and abbreviations

THA Thalamus
TPOmid Temporal Pole, Middle temporal Gyrus
TPOsup Temporal Pole, Superior temporal Gyrus

Table A.1: Abbreviation of brain areas.

Table A.2: Modularity Coactivation
Community Density |Ec| |Vc|

0 0.122457 2486 202

1 0.311761 4167 164

2 0.321541 4090 160

3 0.342825 2131 112

Table A.3: Modularity Resting state
Community Density |Ec| |Vc|

0 0.154097 3545 215

1 0.109951 1674 175

2 0.489336 5323 148

3 0.671313 3323 100

Table A.4: Surprise Coactivation
Community Density |Ec| |Vc|

0 0.491261 3626 122

1 0.482883 2948 111

2 0.553282 1298 69

3 0.388811 834 66

4 0.573077 447 40

5 0.458128 186 29

6 0.442029 122 24

7 0.394737 75 20

8 0.452632 86 20

9 0.397661 68 19

10 0.415205 71 19

11 0.379085 58 18

12 0.541667 65 16
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Table A.5: Surprise Resting State
Community Density |Ec| |Vc|

0 0.653183 4586 119

1 0.755375 3162 92

2 0.543101 2224 91

3 0.495277 367 39

4 0.560317 353 36

5 0.616756 346 34

6 0.513228 194 28

7 0.525362 145 24

8 0.601307 92 18

9 0.454545 30 12

10 0.583333 21 9

11 0.678571 19 8

12 0.607143 17 8
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