
Dipartimento di Informatica
Università degli Studi di Verona

Rapporto di ricerca
Research report

102/2017
April 6, 2017

KArMA
A Knowledge-Aided Monitoring
Approach for SQL Injection
Attacks

Samuele Buro
Isabella Mastroeni

Questo rapporto è disponibile su Web all’indirizzo:
This report is available on the web at the address:
http://www.di.univr.it/report

Abstract

In the general context of web security, there is a clear difficulty in pre-
venting, or even modeling, SQL injection attacks due to the nature itself
of this kind of attacks. They derive from the execution of an untrusted
input containing data created precisely for making the program execute un-
intended code. It is quite hard to universally model what is unintended,
since it may depend on the particular kind of program. In this paper, we
propose a monitoring approach (KArMA - Knowledge-Aided Monitoring Ap-
proach) combining static and dynamic analyses. In particular, in the static
phase we aid the programmer in understanding which (untrusted) inputs’
structure need to be fixed (by contracts) for preventing attacks. Then, dur-
ing execution, a monitor checks whether the dynamic structures respect the
given contracts. In order to prove the feasibility of KArMA, we develop a
prototype tool for a simplified programming language.

1 Introduction

Security is an enabling technology, hence security means power. The correct
functionality and coordination of large scale organizations, e-government,
web services, in general, relies on confidentiality and integrity of data ex-
changed between different agents. According to OWASP (Open Web Ap-
plication Security Project) [1], the most critical security risks are applica-
tion level injections attacks. It is worth noting that, these features, almost
unavoidable, become real opportunities for the attackers which can embed
malicious code which disclose and/or corrupt valuable information.

One of the main problems, due to web application injection vulnerability,
is information leakage. The host used for computation, may violate security
by either leaking information itself or causing other hosts to leak informa-
tion [2]. Unfortunately, this is not the only possible exploitation of injection
vulnerabilities, hence it becomes necessary to tackle the problem from a more
general point of view, focusing on how a vulnerability may be exploited in
an attack rather than on preventing a particular kind of payload (such as
information leakage).

The main problem, that we can observe in facing code injection from
a general point of view, is the difficulty of providing formal definitions of
attacks. In the literature, the definitions of injection are quite specific and
not really general [3, 12, 15] or, they are general enough, but less formal as,
for example, the definition is given in [1] which exhaustively describe the
problem of code injection:

“Injection occurs when user-supplied data is sent to an interpreter as
part of a command or query. Attackers trick the interpreter into exe-
cuting unintended commands via supplying specially crafted data.
Injection flaws allow attackers to create, read, update, or delete any
arbitrary data available [...]. ”

The lack of formalism of this definition is mainly due to the difficulty of
universally formalizing the concept of unintended commands. Indeed, any
formalization of code injection have to fix what is unintended independently
from the web application to analyze, potentially loosing the accuracy of the
mechanism [12], when not even the completeness [3,15] (w.r.t. the definition
above).

In this paper, we embed, in the analysis process, the intention of the
programmer, by generalizing the idea proposed in [3], and focusing on SQL
injection [1]. What we propose is an analysis mechanism sufficiently flexible
to let the programmer to tune what is intended/unintended, structured as
follows:

• We first perform a static analysis gathering the information necessary
to understand which are the program SQL injection vulnerabilities,

1

and requiring, for each vulnerable execution path1, contracts which
should fix the expected untrusted input language guaranteeing preven-
tion from SQLIA;

• We ask the programmer to characterize these contracts as a language
(context free or regular language in order to guarantee decidability) of
safe inputs;

• We obtain the monitored program which, while executing the pro-
gram, performs a dynamic monitor, checking, at each execution point,
whether the dynamic input structure respects the programmer con-
tracts.

Moreover, if we aim at making automatic the second step, we can provide
a default model of intended input, such as the ones proposed in [3, 12], and
monitor the application against this model. The main advantages of the
approach we propose are the following:

• This approach allows the programmers to develop web application
without worrying of inserting too much checks (that could make heav-
ier the execution). A tool based on our approach would identify the
precise vulnerable points, and allow to perform checks only when nec-
essary (during execution);

• This approach is extremely flexible from different point of views: it
allows to tune security checks; the programmer may tune the complex-
ity of the static phase by deciding whether to execute it rather than
putting by hand contracts, and/or by deciding to use a fixed contract
for any untrusted input rather than fixing a different contract for each
input, or rather than fixing the contracts depending also on the partic-
ular path of execution; we believe it may easily applied to other forms
of injection.

Why not a real implementation? We decided to implement a proto-
type of our approach on a toy language, rather than implementing a tool on
a real language. This choice is due to our aim of providing a general ap-
proach, potentially suitable for any real context, together with the practical
proof that this approach is feasible. This was not really possible if we would
have provided the architecture of a tool working for a real language, since
nowadays web applications are rarely developed “from scratch”. They are
mainly developed by using several frameworks driving the implementation
by abstracting several low or medium level details. There are lots of these
frameworks and they are in continuous evolution, each one using different

1We consider vulnerable any execution path leading from an untrusted input to the
execution of a query.

2

mechanism and providing different advantages. Hence, a real tool would
have been to be developed in such a framework, and the particular choice
of a framework would have forced us to analyze several details not really
related to the idea we propose, making the work too specific both for under-
standing the main idea and for being of interest for developers using different
frameworks. On the other hand, by showing the key aspects of our approach
from a general point of view, we allow to implement our mechanism in any
framework.

2 Background

Static Single Assignment (SSA) and reaching definition analysis.
SSA [5] is a well known code representation where the def-use chains are made
explicit. This is an intermediate non-executable representation of code, used
by compilers for simplifying some static analyses. In the SSA form, each
assignment generates a new unique name (usually denoted by a numerical
subscript) for the defined variable, and all the uses reached by that definition
are renamed. The problem is that different definitions may reach the same
use of a given identifier. In order to handle these possibilities, a special
form of assignment, called φ-function, is added: this is a special assignment
identifying the join of several definitions of the same identifier. The presence
of these φ-functions makes the code not-executable. Consider, for instance,
the following simple examples [5]:

V ← 4 V1 ← 4 if P if P

Z ← V + 5 Z1 ← V1 + 5 then V ← 4 then V1 ← 4

V ← 6 V2 ← 6 else V ← 6 else V2 ← 6

W ← V + 7 W1 ← V2 + 7 V3 ← φ(V1, V2)

We also introduce reaching definition analysis, determining the definitions
potentially reaching each use of an identifier. A definition reaches a node
if there is a path from the definition to the node, along which the defined
variable is never redefined. On the SSA form this analysis becomes trivial
since the reaching definition is precisely the unique definition of the used
identifier. Note that, in optimizing compiler, there exist standard techniques
for reconstructing the executable program from the one in SSA form: 1) by
replacing the φ-functions with assignment operations, and 2) by dropping
subscripts [5].

The while-fun language and the SQL Diminished Grammar. A while-fun
program is formed by three portions: the first and the second portion con-
sists in all the functions and variables declarations, while the third one is
the main portion of code, with all the statements. We can define untrusted
inputs only in the second portion of code, by using their predefined func-
tion calls (see E syntactic category). The language syntax is standard, plus

3

execute and function call:
C ::= skip | end | x := E | C0; C1 | while B do {C} | if B then {C0} else {C1} | execute(x)
E ::= untrusted_int()[str(), float(), bool()] | v | x | op E | E0 op E1 | f(E0, . . . , En)

The semantics is the standard one, while the statement execute takes a string
variable and executes the SQL query it contains.

In the following, we denote by V the set of possible values for variables
in our language (integer, string,...), and by σ ∈ M : Var → V the stores
associating with each variable the actual value in the memory. We denote
by σ[x← v] the store σ′ such that ∀y 6= x. σ′(y) = σ(y) while σ′(x) = v.
Moreover, given a program P , we denote by JP K its operational small-step
(trace) semantics, i.e., the set of all the execution traces, terminating and
not terminaing.

The SQL grammar, we will refer to, is the one given in [12]. It is a simple
but complete grammar inspired by the MSDN SQL Minimum Grammar.

3 Formalizing code injection as interference

In the OWASP definition cited above we read that “Injection occurs when
user-supplied data is sent to an interpreter as part of a command or query”.
In other words, when an untrusted input is totally o partially executed for
instance, as it happens in our language, as part of a query.

Let x be an untrusted input, and Exec be an interpretation statement
(e.g., the execute of a query, or a reflection statement in a dynamic language)
executing a transformation τ (potentially the identity) of the input x (τ
models the transformation performed by the code between the request of
the input and its execution), then by definition we have potential injection
when the execution of Exec(τ(x)) depends on x. Following the definition of
dependency used in (abstract) slicing [10, 11] we formalize this situation as
follows:

∃v1, v2 ∈ V, σ ∈M . JExec(τ(x))Kσ[x← v1] 6= JExec(τ(x))Kσ[x← v2]

We recall that this notion is the negation of a form of standard non-interference,
and, exactly as it happen for non-interference, it is in general too strong, since
it does not allow to really distinguish between secure and potentially insecure
code. In particular, this definition says that the only secure code is the one
not depending on the untrusted input, but this is in general not acceptable.
For instance, also a simple password request would be insecure, since it al-
lows or not an access depending on the inserted password, which is clearly an
untrusted input. For this reason, we need to formalize code injetion, and in
particular SQL injection, parametrically on what the programmer consider
an acceptable behaviour and/or what the programmer consider an attended
input.
Hence, let Π ⊆ M the set of all the stores that the programmer consider

4

acceptable after the execution of the untrusted input (modeling the activity
that the programmer considers attended after the execution statement), we
can define the characteristic map of Π as the binary predicate

ρΠ(σ) =

{
true if σ ∈ Π
false otherwise

Then we can weaken the definition of potential injection following the idea
proposed for weakening dependencies [11], obtaining

∃v1, v2 ∈ V, σ ∈M . ρΠ(JExec(τ(x))Kσ[x← v1]) 6= ρΠ(JExec(τ(x))Kσ[x← v2])
namely ∃σ ∈M . JExec(τ(x))Kσ /∈ Π

At this point, given a set of attended behaviours Π, the framework of abstract
non-interference [6, 9] allows us to bind the predicate, determining what is
attended in output, with a predicate characterizing what is acceptable in
input. In general, consider a binary predicate on the output ρ, then a binary
predicate on input φ not leading to unattended behaviours is such that

∀v1, v2 ∈ V, σ ∈M . φ(v1) = φ(v2)⇒
ρ(JExec(τ(x))Kσ[x← v1]) = ρ(JExec(τ(x))Kσ[x← v2])

(1)

Hence, φ models the satisfaction of contracts on inputs, specifying which
inputs are acceptable in order to guarantee that only attended behaviours
can be reached.

Theorem 1 Let x be an untrusted input and τ(x) a manipulation of x such
that in the program Exec(τ(x)) is executed, and let Πτ

x the set of attended
resulting behaviours for Exec(τ(x))2. If there exists at least one σ ∈M satis-
fying φ for x (i.e., φ(σ(x)) = true) such that ρΠτx(JExec(τ(x))Kσ) holds (i.e.,
JExec(τ(x))Kσ ∈ Πτ

x), then Equation 1 models safety against SQL injection
attacks in Exec(τ(x)).

In other words, if φ models an invariant property of safe untrusted input,
and Eq. 1 holds, then the program is not vulnerable to SQL injection in x
through the path τ , under the assumption that all the behaviour in Πτ

x are
safe.
Moreover, given an untrusted input x, a path τ and a set of attended be-
haviours Πτ

x (for simplicity denoted Π), the framework of abstract non-
interference suggests us how to formally characterize both the contract φ
w.r.t. ρΠ (denoted φΠ), or the attended behaviours ρ w.r.t. the contract φ
(denoted ρφ):

φΠ =
{
σ
∣∣ ρΠ(JExec(τ(x))Kσ) = true

}
(2)

ρφ =
{
σ
∣∣ ∃σ′ . φ(σ′) = true, σ = JExec(τ(x))Kσ′

}
(3)

2Note that τ models the path leading from the input request x to the execution Exec.

5

Sta�c
Analysis

Untrusted
Inputs

Execu�on
Points

Request
for Contracts

Execu�on MonitorProgammer

Secured
Web App

Figure 1: Defense mechanism conceptual framework.

It is clear that, the ideal situation would be to characterize φΠ starting from
ρΠ, the problem is that the resulting predicate could be hard to check (it may
be not decidable), hence we propose to fix a decidable φ (as a context free
grammar or as a regular language), and to verify soundness by certifying that
the corresponding attended behaviour characterization ρφ, at least, under-
approximate the safe output behaviour, in order to guarantee not to miss
any alarm.

Definition 1 (Soundness w.r.t. Π) Given a contract φ, specifying safe
untrusted input, and a set Π of safe output behaviour, characterized by ρΠ,
then φ is sound w.r.t. Π if ∀σ. ρφ(JExec(τ(x))K = true⇒ ρΠ(JExec(τ(x))K =
true.

Hence, any contract φ characterizes safe behaviours w.r.t. ρφ, while it may
lose precision w.r.t. more general characterization of acceptable behaviours.
Contracts will model φ, while the monitor is the implementation of ρφ.

4 KArMA: A Knowledge-Aided Monitoring Approach

In this section, we propose a dynamic monitor able to check, and if neces-
sary stop, the execution of an application potentially under a SQLIA. We
develop two main ideas: first, we model the programmer expected struc-
ture of untrusted inputs by contracts; second, we combine a static analysis
automatically providing when, during the execution, these contracts should
be verified, with a monitor able to stop the computation before executing
a query containing any untrusted input which do not meet the program-
mer intended structure. Contracts consist in a formal specification of which
untrusted input (interfering with an execution) should be accepted for pre-
venting SQLIA. In particular, this is required for each path leading from an
untrusted input to the execution of a query. The approach we proposed is
composed by three phases depicted in Fig. 1:

• Static analysis: The code is statically analyzed in order to extract
the vulnerable executions, where some untrusted input interferes with
an execution, and therefore where to the programmer should fix some
restrictions;

6

str function f(str s) {

return s;

};

str function g(str s) {

return "foo";

};

str s1 := untrusted_str();

str q1 := concat("SELECT * FROM ", f(s1));

str q2 := concat("SELECT * FROM ", g(f(s1)));

execute(q1);

execute(q2);

(a) Program P source code.

b5
str s0

1
b6

return s0

b7
str s0

1
b8

return "foo"

b0
str s10 := untrusted_str()

b1
str q10 := f(s10)

b2
str q20 := g(f(s10))

b3
execute(q10)

b4
execute(q20)

function f

function g

start

(b)
Control Flow Graph of P after the SSA

form construction.

b3

b1

f(s10)

b6

b5

b1

b0

b4

b2

g(f(s10)

b8

(c)
Trees generated

by Paths.

b3

b1

f(s10)

b6

b5

b1

b0

b4

b2

g(f(s10)

b8

b3

b1

f(s10)

b6

b5

b1

b0

b4

b2

g(f(s10)

b8

(d)
Cleaned up

trees.

Figure 2: Steps of static analysis algorithms.

CFG SSA TAINT CONTRACTS

PROGRAMMER
�

cfgf

�� 8 function f in P

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

C =
�

cfgf

�� 8 function f in P

[{cfgmain}

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

CFG SSA TAINT CONTRACTS

PROGRAMMER�
cfgf

�� 8 function f in P

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

C =
�

cfgf

�� 8 function f in P

[{cfgmain}

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

C =
�

cfgf

�� 8 function f in P

[{cfgmain}

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

STATIC ANALYSIS
C =

�
cfgf

�� 8 function f in P

[{cfgmain}

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =
�

p
�� 9T 2 T.p path in T

Contracts =

⇢
h⌧, �, pi

����
⌧ ✓ L(Gsql), � 2 Er,
p 2 P

�

hP , Contractsi

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.p0 path in T
p = mapexe(p

0)

�

Contracts =

⇢
h⌧, �, pi

����
⌧ ✓ L(Gsql), � 2 Er,
p 2 P

�

hP , Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =

⇢
h⌧, �, pi

����
⌧ ✓ L(Gsql), � 2 Er,
p 2 P

�

hP , Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h⌧, pi

�� ⌧ ✓ L(Gsql), p 2 P

hP , Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

CFG SSA TAINT CONTRACTS

PROGRAMMER�
cfgf

�� 8 function f in P

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

C =
�

cfgf

�� 8 function f in P

[{cfgmain}

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

STATIC ANALYSIS C =
�

cfgf

�� 8 function f in P

[{cfgmain}

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =
�

p
�� 9T 2 T.p path in T

Contracts =

⇢
h⌧, �, pi

����
⌧ ✓ L(Gsql), � 2 Er,
p 2 P

�

hP , Contractsi

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.p0 path in T
p = mapexe(p

0)

�

Contracts =

⇢
h⌧, �, pi

����
⌧ ✓ L(Gsql), � 2 Er,
p 2 P

�

hP , Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

Set of program cfg Cfg in ssa form Set of trees of execute-untrusted paths
Program cfg

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =

⇢
h⌧, �, pi

����
⌧ ✓ L(Gsql), � 2 Er,
p 2 P

�

hP , Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

Set of execute-untrusted
paths

C =
�

cfgf

�� 8 function f in P

[{cfgmain}

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

C =
�

cfgf

�� 8 function f in P

[{cfgmain}

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

1

C =
�

cfgf

�� 8 function f in P

[{cfgmain}

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =
�

p
�� 9T 2 T.p path in T

Contracts =

⇢
h⌧, �, pi

����
⌧ ✓ L(Gsql), � 2 Er,
p 2 P

�

hP , Contractsi

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =

⇢
h⌧, �, pi

����
⌧ ✓ L(Gsql), � 2 Er,
p 2 P

�

hP , Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

Contracts. Once we have the set of trees T with all the paths leading from
a ground or a bottom block to an execute, we need to clean up all the spurious
paths, i.e., those that don’t depend on untrusted inputs. In addition, we also
need to remove non-executable blocks, i.e., the function calls blocks (because
they are part of the abstract syntax of others blocks) and the blocks related to
formal parameters definition (the binding between actual and formal parameters
is done at the function call and not as a separated instruction block)6.
Suppose Tc is the of trees in T where all the trees are cleaned up, then we have
to provide the programmer with the set of all the paths requiring a contract,
i.e., a specification of the admitted input.

At this point, we have the set of trees Tc with all the paths to an SQL
injection attack. Before extracting the set of paths for the programmer, we need
to make some transformation that will make easier to dynamically associate the
executed path with the right contract. In particular, we reverse the paths in
order to have paths in the execution direction, from inputs to execute.

P =
�

reverse(p)
��9T 2 Tc. p path in T

At this point, the programmer, for each path (identifying the pair untrusted in-
put/execution) has to provide the contract, i.e., the SQL sub-grammar � defining
the SQL sub-language of inputs admitted for that path:

Contracts =
�
h�, pi

��� ✓ L(Gsql), p 2 P

Hence a contract h�, pi means that the untrusted input required in the first
block of p, i.e., p0, has to be in the language � if the last block of P is executed.
In the following, we use the map label : Contracts ! Lab associating with
each contract the the labels of the involved untrusted inputs: 8c = (�, p) 2
Contracts. label(c) = l where p0 = (b, l), namely it returns the label of the first
block in the path associated with the contract. For instance, a contract � for the
path p in Fig. 2(d) could be INT_LITERAL to force the untrusted input s0 to be an
integer.
Finally, given a program P to analyze, the static analysis module provide in
output the pair formed by the set of CFG of P C and the set of contracts
Contracts, denoted by hC, ContractsiP .

4.2 Dynamic phase: Monitor

In this section we explain how we mean to use the result of the previous static
analysis in order to provide a monitor, i.e., a dynamic checker, of injection vul-
nerabilities. It is well known that only for safety properties here exists a mon-
itor [16]. Then we observe that SQLIA is a safety property since, once a SQL
query contains an untrusted variable, whose structure differs from the expected
one, then for the given notion of SQLIA, an vulnerability definitively occurred,
meaning that allowing the computation to continue cannot lead back the system
to a secure state, where the variable has an intended structure. Hence, we can
build a monitor for checking the presence of SQLIA vulnerabilities.
6 These operations are strictly related on the algorithm’s design choices.

Figure 3: Static phase

• Contracts request: The static phase requires the programmer in-
teraction only when potentially necessary. The contract request is an
interactive phase, which could be made automatic by providing a gen-
eral definition of restrictions. The result of this phase is an annotated
program with contracts;

• Monitor: Finally, the monitor is able to kill the execution of an anno-
tated program, when an untrusted input violating contracts interferes
with an executed query. In other words, the result of this phase is a
monitored program which can be seen as the monitor specialized on the
annotated program.

4.1 Static phase: Analysis and contracts

In the first phase, the analysis aims at detecting any potential interference
between an untrusted input and a query that can be executed. For instance,
in Fig. 2(a) we should detect the potential interference between the input
s1 and the query q1, but not between s1 and q2, since the function g returns
always a constant value, independently from the parameter in input. The
structure of the static process, including the contracts request, is depicted
in Fig. 3.

Static Analysis. Let P be the program to monitor. The first two steps
of the analysis consists in the construction of the program representation that

7

will be used for performing the analysis. First, we build the control flow
graph for the main program procedure (Cfgmain) and for each procedure
declared in the program (Cfgf) obtaining

C =
{

Cfgf

∣∣ f procedure declared in P
}
∪ {Cfgmain}

Afterwards, in order to improve the analysis (and in particular reaching
definition analysis), we consider the SSA representation of each CFG (see
Sect. 2 for details), where each variable is defined only once: Let ssa(Cfg)
be the transformer producing the Cfg in ssa form:

Cssa =
{

ssa(Cfg)
∣∣ Cfg ∈ C

}

For instance, if P is the program in Fig. 2(a), ssa(Cfgmain) is given in
Fig. 2(b).

Hence, we have the program representation allowing us to perform the
static analysis identifying SQL injection vulnerable paths, i.e., paths where
an untrusted input reaches an execution. Taint performs, for each poten-
tially dangerous block (in our language, any block containing the execute of
a query) any path connecting an untrusted input with the block. In order
to explain this step we have first to introduce how we represent vulnerable
paths. The idea is to build, for each execute, a tree of all the paths leading
(backwards) to an untrusted input. Hence, we define the set Trees of trees
whose nodes are blocks, calls or the ⊥ value, and where there is an edge
from a node n1 to a node n2 if there is a flow (we will describe in details
the meaning of edges when defining the semantics of Taint) from n2 to
n1. Let n be a tree node and T ⊆ Trees, we define the tree constructor
Tree(nT) = 〈nT〉 where 〈n〉 ≡ 〈n∅〉. Namely, starting from a set of several
trees T we build one new tree with root n and sub-trees those in T, i.e.,
there is an edge (n,m) in 〈nT〉 for each m root of a tree in T.
Hence, Taint, starting from the set of CFG Cssa, will return, for each execute

statement, the tree of paths from untrusted inputs to the execute:

T =
{
〈be T〉

∣∣ ∃C ∈ Cssa. be is a block in C containing execute
}

In the example, the returned set of trees is given in Fig. 2(c).
Finally, in order to define the semantics of Taint we need some more do-
mains:

• Fun is the set of declared procedures, e.g., in the example it is {f, g};

• Blocks is the set of all the blocks in the CFG, a block b is ground
if it does not use any variable, i.e., Use(b) = ∅3. In the example,
Blocks = {b0, . . . , b9}, where {b0, b5, b7, b8} are ground;

3Use(b) is the set of all the variables used in block b, where also functions calls (the
function together with its list of actual parameters) are uses (f(a) ∈ Use(b)).

8

• FunCalls is the set of functions calls f(a), where f is the called
function, while a = ai . . . am is the set of actual parameters. In the
example, it is {f(s10), g(f(s10))}. Let us denote by Args the list of
actual parameters of all function calls, e.g., Args = {s10, f(s10)}.

We have now all the ingredients for describing the semantics of Taint
by means of the recursive function Paths, which builds the potential paths
of execution leading from an untrusted input to a query execution. Paths
is a function with two parameters: The first one is a block b ∈ Blocks, or
a procedure call f(a) ∈ FunCalls, or a special value ⊥k (k ∈ N); The
second parameter is an history of function calls c. In particular, a call is a
triple 〈b, f,a〉 consisting in the calling block b, in the called function f and
in its sequence of actual parameters a = a1, . . . , am. The history of calls c
is, therefore a list of calls ci, where ε denotes the empty list. Given a block
b ∈ Blocks containing the execute of a query4 and an initial empty sequence
of calls c = ε, the function Paths tracks backward the potential dependencies
in order to identify which untrusted inputs may end in the executed query in
b. These chains of dependencies form a tree having b as root and the blocks
containing the interfering untrusted input as leaves (or bottom for the paths
where surely injection attacks cannot occur).

The function Paths, defined in Fig. 45, is used to build the paths leading
from an untrusted input to an execute. First, we have to define an auxiliary
function used for determining the arguments of recursive calls, whose aim is
that of determining the parameters of the recursive step of Paths and whose
role is described together with Paths:

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

6= execute

1

The task of Paths is that of identifying all the possible paths reaching
execute from ground blocks. Unfortunately, the execution paths of a program
are potentially infinite, hence the function Paths needs to abstract some
details in order to guarantee termination. Let us describe the semantics of
the call Paths(b, ε), where b contains execute:

(1) BlockA(b, c): If we reach a block b (not ground) containing one or more
uses of variables u, then we create a tree with b as root, and as sons

4In our language, the only potentially dangerous statement is execute, it is clear that,
in general, dangerous statements are language dependent.

5Ret(f) is the set of all the blocks on the CFG of f containing a return instruction.

9

Paths : (Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤ ! Tree

Paths(arg , c) =

8
<
:

BlockA(arg , c) if arg 2 Blocks

CallA(arg , c) if arg 2 FunCalls

CallT (arg , c) if 9k . arg = ?k

where c = c1 . . . cm , 8i  m. ci = ((bi , fi),a
i) and ai = ai

1 . . . ai
ni

BlockA : Blocks⇥ ((Blocks⇥Fun)⇥Args)⇤ ! Tree

CallA : FunCalls⇥ ((Blocks⇥Fun)⇥Args)⇤ ! Tree

CallT : {?n}n2N ⇥ ((Blocks⇥Fun)⇥Args)⇤ ! Tree

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(1) BlockA(b, c) = Tree(b, {Paths(Rec(b, u, c)) | u 2 Use(b)})

(2) BlockA(b, c) = Tree(b,?)

if Use(b) = ? and b does not define a formal parameter

(3) BlockA(b, c) = Tree(b, {CallT (?n , c)})

if Use(b) = ? and b defines the n-th formal parameter of last call in c

(4) CallA(f (a), c) = Tree(f (a), {Paths(r , c) | r 2 Ret(f)}) if 8ci , cj . fi 6= fj

(5) CallA(f (a), c) = Tree(f (a),?) if 9ci , cj (i 6= j). fi = fj

(6) CallT (?k , c) = Tree(?,?) if Use(am
k) = ;

(7) CallT (?k , c) =

Tree(bm , {Paths(Rec(bm , u, (c1, . . . , cm�1))) | u 2 Use(am
k)})

if Use(am
k) 6= ;

2

Figure 4: Definition of the function Paths.

all the trees resulting from calling Paths on all the blocks defining the
variables u used in b (computed by Rec(b, v, c));

(2)-(3) BlockA(b, c): When we reach a ground block b (Use(b) = ∅) we
have to distinguish two cases: (2) when the block does not define any
formal parameter (of the function including it), the analysis terminates
on the current block b; otherwise, (3), we create a subtree with root b
and sons the trees resulting by the analysis of the defined parameter,
performed by CallT (⊥k, c).

(4)-(5) CallA(f(a), c): When Paths is called on a function call f(a), and
the call has been already met before in c (5), then the analysis stops
adding f(a) to the tree. Otherwise, (4), we create a subtree with f(a)
as root, and as sons all the trees resulting form calling Paths on all
the return blocks (Ret(f)) of the function f . The idea beyond this
strategy comes from the fact that a function call can, in the worst
case, only propagate, and not generate, flows. While, the strategy of
blocking the recursive calls after the first call depends on the fact that,

10

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

6= execute

1

Figure 5: Example of computation of Paths(b3).

if a parameter interferes at a certain recursion level n, then it would
interfere also at previous levels.

(6)-(7) CallT (⊥k, c): We have ⊥k when we reach the definition of a for-
mal parameter (case (3)). If (7) in the last performed call (m-th)
the k-th formal parameter contains some uses (Use(amk) 6= ∅) then
we track back these uses calling Paths (similar to case (1)). In this
case Rec(b, u, c) updates the list of function calls c if u is a function
call, performs reaching definition otherwise. Otherwise (6) the analysis
stops adding ⊥k to the tree.

Let us show how Paths works on the code in Fig. 2(a). In the example,
the execute blocks are b3 and b4 (in Fig. 5 we have b3). This execution
returns the tree given in Fig. 2(c), on the left. The analysis from block b4 is
similar and returns the set T containing only the tree given in Fig. 2(c), on
the right.

Contracts. Once we have the set of trees T with all the paths leading
from a ground or a bottom block to an execute, we need to clean up all
the spurious paths, i.e., those that don’t depend on untrusted inputs. In
addition, we also need to remove non-executable blocks, i.e., the function calls
blocks (because they are part of the abstract syntax of others blocks) and the
blocks related to formal parameters definition (the binding between actual
and formal parameters is done at the function call and not as a separated
instruction block)6. Suppose Tc is the set of trees in T where all the trees
are cleaned up, we have to provide the programmer with the set of all the

6These operations are strictly related on the algorithm’s design choices.

11

MONITOR INTERPRETER

MONITORLANGUAGE
INTERPRETER

C =
�

cfgf

�� 8 function f in P

Cssa =
n

cfgssa

f

�� 8 cfgf 2 C
o

T =
�

Tb

�� 9 C 2 Cssa. b 2 C is an execute

P =
�

p
�� 9T 2 T.p path in T

Contracts =
�
h⌧, �, pi

�� p 2 P, ⌧ 2 L(Gsql), � 2 Er

hP , Contractsi

1

Step i

CONTRACTS
VERIFIER

Exception

NO

YES

Run

i=i+1

MONITOR INTERPRETER

MONITOR
LANGUAGE

INTERPRETER

Step i

CONTRACTS
VERIFIER

Exception

NO

YES

i=i+1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

6= execute

1

Step i

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

6= execute

1

MONITOR_INTERPRETER

MONITOR (LANGUAGE)
INTERPRETERVERIFY_

CONTRACTS

Exception
NO

YES

bi=next(bi)
Block bi

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

6= execute

1

C =
�

Cfgf

�� 8 function f in P

[{Cfgmain}

Cssa =
�

Cfgssa

f

�� 8 Cfgf 2 C

C↵ =
�
h↵(B),E i

�� hB ,E i = Cfgf 2 C

where

↵(B) =
�
hb,Li

�� b 2 B , L =
�

l
�� 9T 2 T. hb, li 2 Annotate(T)

T =

⇢
Tb

����
9 C 2 Cssa.
b 2 C is an execute

�

P =

⇢
p

����
9T 2 T.T 0 = Annotate(T),
p0 path in T 0, p = reverse(p0)

�

Contracts =
�
h�, pi

�� � ✓ L(Gsql), p 2 P

hC↵, Contractsi

Paths(b3, ") = Tree(b3, {Paths(Rec(b3, q10, ")}) (1)
Rec(b3, q10, ") = (Rd(b3, q10), ") = (b1, ")

Paths(b1, ") = Tree(b1, {Paths(Rec(b1, f(s10), ")}) (1)
Rec(b1, f(s10), ") = (f(s10), (h(b1, f), s10i))
Let ↵ = (h(b1, f), s10i)

Paths(f(s10), ↵) = Tree(f(s10), {Paths(b6, ↵)}) (4)
Paths(b6, ↵) = Tree(b6, {Paths(Rec(b6, s, ↵)}) (1)

Rec(b6, s, ↵) = (Rd(b6, s), ↵) = (b5, ↵)
Paths(b5, ↵) = Tree(b5, {CallT (?1, ↵)}) (3)
CallT (?1, ↵) = Tree(b1, {Paths(Rec(b1, s10, "))}) (7)

Rec(b1, q10, ") = (Rd(b1, s10), ") = (b0, ")
Paths(b0, ") = Tree(b0,?) = hb0i

Paths(b4, ") = Tree(b4, {Paths(Rec(b4, q20, ")}) (1)
Rec(b4, q20, ") = (Rd(b4, q20), ") = (b2, ")

Paths(b2, ") = Tree(b2, {Paths(Rec(b2, g(f(s10)), ")}) (1)
Rec(b2, g(f(s10)), ") = (g(f(s10)), (h(b2, g), f(s10)i))
Let ↵ = (h(b2, g), f(s10)i))

Paths(g(f(s10)), ↵) = Tree(g(f(s10)), {Paths(b8, ↵)}) (4)
Paths(b8, ↵) = Tree(b8,?) = hb8i (2)

Rec : Blocks⇥ (Vars [FunCalls)⇥ ((Blocks⇥Fun)⇥Args)⇤ !
(Blocks [FunCalls [{?n}n2N)⇥ ((Blocks⇥Fun)⇥Args)⇤

Rec(b, arg , c) =

⇢
(Rd(b, v), c) if arg = v (1)
(f (a), (c, h(b, f),ai)) if arg = f (a) (2)

6= execute

1

Block bi
execution if a contract is not satisfied, i.e., if Verify_con(bi) returns false.

Monitor_int(hC↵, ContractsiP , �0) = Monitor((b0, l0), �0)

Monitor((bi, li), �i) =

8
<
:

Monitor(next((bi, li)), Interpreter(bi, �i))
if bi 6= execute(q) _ Verify_con(bi)

Exception otherwise

At this point, our idea is to release the monitor interpreter Monitor_int spe-
cialized on the program P , namely specialized on its static analysis output
hC↵, ContractsiP : Monitor_inthC↵,ContractsiP (�) [?]. Hence, we have the follow-
ing result.

Theorem 2. Let P be a program to monitor. For each initial memory � 2 M
we have JMonitor_inthC↵,ContractsiP K(�0) ✓ JP K(�0).

Proof (Scketch). We prove the subseteq inclusion of the partial semantics by
provng that the the single step execution of the two programs perform the same
computation or the monitor stops the computation. By definition of special-
ization Monitor_inthC↵,ContractsiP (�0) = Monitor_int(hC↵, ContractsiP , �0) =

Monitor((b0, l0), �0). Hence, by definition, for each step of computation it is
executed Interpreter(bi, �i) if bi is not an execute, or the corresponding contract
is satisfied, otherwise the computation is killed. On the other hand each step of
computation of P performs always Interpreter(bi, �i). Hence, the two computa-
tions are the same or the monitor has finished.

First of all we observe that JP K = JP aK since the annotation does not change
the code behaviour. Then, let M be the monitor we propose

JMK(P a, �) = JMP aK(�)

JMK(P a, �) =

⇢ JP aK� = JP K� if �(�in) = true

X ✓ Pref(JP K) otherwise

Algorithm. The monitor algorithm is given in Fig. 6. It works as described in
Fig. ??, calling the language interpreter and checking the security of each execute

instruction w.r.t. the contracts. The monitor operates on two data structures: a
list of labels l and a map m between untrusted inputs and their original value
(both initially empty). For each block bi until the program termination (line 5),
the monitor collects all the label globally associated to bi in the list l (excluding
the label already inserted in l). If bi is an execute block, the monitor must check
the satisfiability of all contracts which apply to the followed path (we will soon
explain how this step is done) and stops the program execution if there is at
least one of them unsatisfied, otherwise it calls the interpreter to execute the
instruction (line 11). If the instruction is an untrusted input function call then
put in the map m the new entry (v, Value(v)) where v is the variable identifier
and Value(v) its actual value (line 13).

The core of the algorithm is to identify the contracts to check every time
an execute instruction is encountered (line 8). To explain this step, we give the
following definition:

Contracts. Once we have the set of trees T with all the paths leading from
a ground or a bottom block to an execute, we need to clean up all the spurious
paths, i.e., those that don’t depend on untrusted inputs. In addition, we also
need to remove non-executable blocks, i.e., the function calls blocks (because
they are part of the abstract syntax of others blocks) and the blocks related to
formal parameters definition (the binding between actual and formal parameters
is done at the function call and not as a separated instruction block)6.
Suppose Tc is the of trees in T where all the trees are cleaned up, then we have
to provide the programmer with the set of all the paths requiring a contract,
i.e., a specification of the admitted input.

At this point, we have the set of trees Tc with all the paths to an SQL
injection attack. Before extracting the set of paths for the programmer, we need
to make some transformation that will make easier to dynamically associate the
executed path with the right contract. In particular, we reverse the paths in
order to have paths in the execution direction, from inputs to execute.

P =
�

reverse(p)
��9T 2 Tc. p path in T

At this point, the programmer, for each path (identifying the pair untrusted in-
put/execution) has to provide the contract, i.e., the SQL sub-grammar � defining
the SQL sub-language of inputs admitted for that path:

Contracts =
�
h�, pi

��� ✓ L(Gsql), p 2 P

Hence a contract h�, pi means that the untrusted input required in the first
block of p, i.e., p0, has to be in the language � if the last block of P is executed.
In the following, we use the map label : Contracts ! Lab associating with
each contract the the labels of the involved untrusted inputs: 8c = (�, p) 2
Contracts. label(c) = l where p0 = (b, l), namely it returns the label of the first
block in the path associated with the contract. For instance, a contract � for the
path p in Fig. 2(d) could be INT_LITERAL to force the untrusted input s0 to be an
integer.
Finally, given a program P to analyze, the static analysis module provide in
output the pair formed by the set of CFG of P C and the set of contracts
Contracts, denoted by hC, ContractsiP .

4.2 Dynamic phase: Monitor

In this section we explain how we mean to use the result of the previous static
analysis in order to provide a monitor, i.e., a dynamic checker, of injection vul-
nerabilities. It is well known that only for safety properties here exists a mon-
itor [16]. Then we observe that SQLIA is a safety property since, once a SQL
query contains an untrusted variable, whose structure differs from the expected
one, then for the given notion of SQLIA, an vulnerability definitively occurred,
meaning that allowing the computation to continue cannot lead back the system
to a secure state, where the variable has an intended structure. Hence, we can
build a monitor for checking the presence of SQLIA vulnerabilities.
6 These operations are strictly related on the algorithm’s design choices.

Figure 6: Monitor interpreter architecture

paths requiring a contract. For instance, in Fig. 2(d) we have the cleaned
tree for the running example.

Before extracting the set of paths for the programmer, we need to make
some transformations that will make easier to dynamically associate the
executed path with the right contract. In particular, we reverse the paths
in order to have paths in the execution direction, from inputs to execute.

P =
{

reverse(p)
∣∣ ∃T ∈ Tc. p path in T

}

Proposition 1 Let P be a program to analyze. If an untrusted input x
required in block p0 interferes with an execute statement in block pn, for some
execution of P , then there exists a path p0 . . . pn in P leading from p0 to pn.

At this point, the programmer, for each path (identifying the pair un-
trusted input/execution) has to provide the contract, i.e., the grammar φ
defining the sub-language of inputs admitted for that path:

Contracts =
{
〈φ, p〉

∣∣ φ ⊆ L(G), p ∈ P
}

Hence a contract 〈φ, p〉 means that the untrusted input required in the first
block of p, i.e., p0, has to be in the language φ if the last block of p is
executed. For instance, a contract φ for the path p in Fig. 2(d) could be
INT_LITERAL to force the untrusted input s0 to be an integer. Finally, given a
program P to analyze, the static analysis module provide in output the pair
〈C,Contracts〉P formed by the set of CFG C of P and the set of contracts
Contracts.

4.2 Dynamic phase: Monitor

In this section, we explain how we mean to use the result of the previous static
analysis in order to provide a monitor, i.e., a dynamic checker, of injection
vulnerabilities. It is well known that there exists a monitor only for safety
properties [13]. Then we observe that SQLIA is a safety property since, once
a SQL query interfers with an untrusted variable, whose structure differs
from the expected one, then for the given notion of SQLIA, a vulnerability
definitively occurred, meaning that allowing the computation to continue
cannot lead back the system to a secure state, where the variable has the
intended structure.

12

Algorithm 1 Monitor_int
1: procedure Monitor_int(〈C,Contracts〉, σ0)
2: V = ∅
3: σ = σ0
4: b = b0 . initial block of the program
5: while b 6= ⊥ do
6: DBlocks = DBlocks ∪ {b}
7: if b 6= b0 then DEdge = DEdge ∪{(bp, b)}
8: if b is an execute then
9: Verify_con(V,Contracts, D, b)

10: end if
11: bp = b
12: (b, σ) = Interpreter(b, σ,C)
13: if b is an untrusted input request x then
14: V = V ∪ {(x, σ(x))}
15: end if
16: end while
17: end procedure

Algorithm 2 Verify_con
1: procedure

Verify_con(V,Contracts, D, b)
2: for all c = (φ, p0 . . . pn) ∈ Contracts do
3: if pn 6= b then continue
4: for i = 0 to n− 1 do
5: if not Reachability(D, pi, pi+1)

then
6: continue to the next contract c
7: end if
8: end for
9: u = untrusted input variable in p0

10: if V (u) /∈ φ then Throw Exception
11: end for
12: end procedure

Figure 7: Knowledge-Aided Monitor algorithm

Algorithm for Monitor_int. In the following, we develop a monitor, ex-
ploiting the contracts verifier only when necessary. In particular the idea is
to design a monitor which, as shown in Fig. 6 executes directly the language
interpreter on all the statements, except those executing a query, for which
the monitor has prior to check the satisfiability of one or more contracts,
i.e., of the contracts on untrusted inputs involved in the executed query.
The monitor algorithm is given in Fig. 7. In Algorithm 1, the monitor takes
in input the set C of CFG of a program P , the set of contracts Contracts

and an initial memory σ0 for the execution of P . First of all (lines 6-7)
the process has to build the dynamic CFG D, namely it has to follow on
the CFGs the paths executed considering also call and return edges between
CFG of different procedure. This is used for keeping trace of the executed
path, and will be used for determining the contracts to check. Then, if the
current block is an untrusted input x (lines 13-14), we have to store (in
V) the initial value, that will be potentially checked, of x. If the current
block is the execute of a query (lines 8-9) then we launch the contract ver-
ification (Algorithm 2). Finally, if the verification procedure does not stop
the execution, the current block is executed (line 12) by the language in-
terpreter Interpreter : Blocks×M×℘(CFG)→ Blocks×M, and the blocks
variables, the current block b and the previous executed block bp are updated
(lines 11-12), in particular b is updated with the next block to execute in
C. Algorithm 2, verifies contracts and if it finds an input not satisfying its
contract it stops execution throwing an exception. In particular, it takes the
executed (dynamic) CFG D and checks, for each contract c = 〈φ, p0 . . . pn〉,

13

whether the path p0 . . . pn is a sub-path in D7, in this case the procedure
checks whether the input value V (u) of the untrusted variable u required in
input in the block p0 satisfies the contract φ. If the contract is satisfied the
execution continues, otherwise it is stopped.

The monitor semantics. Let P be the program to monitor. Let 〈C,Contracts〉P
be the output of the static analysis applied to P , let M : Blocks×M×℘(CFG)×
Contracts → (Blocks×M) ∪ {Exception} the function executing each step
(block bi) as it was the language interpreter Interpreter, the only difference
is in the interpretation of execute [4, 7] which can stop the execution if a
contract is not satisfied, i.e., if Verify(bi) returns false.

JMonitor_intK(〈C,Contracts〉P , σ0) = M(b0, σ0,C,Contracts)

M(bi, σi,C,Contracts) =





M(Interpreter(bi, σi),C,Contracts)
if bi 6= execute ∨ Verify(bi,Contracts)

Exception otherwise

Theorem 2 Let P be a program to monitor. For each initial memory σ ∈M
we have that ∀t ∈ JMonitor_intK(〈C,Contracts〉P , σ)∃t′ ∈ JP K(σ).t is prefix of t′.

Proof. [Scketch] JMonitor_intK(〈C,Contracts〉P , σ) = M(b0, σ,C,Contracts)
by definition. Hence, by definition, for each step of computation it is exe-
cuted Interpreter(bi, σi) if bi is not an execute, or the corresponding contract
is satisfied, otherwise the computation is killed. On the other hand each
step of computation of P performs always Interpreter(bi, σi). Hence, the two
computations are the same or the monitor has finished. �

Corollary 1 Let P be the program to monitor, σ ∈ M. For each execute in
t, if it depends on some untrusted input then the input satisfies the corre-
sponding contract iff (t ∈ JMonitor_intK(〈C,Contracts〉P , σ) ⇔ t ∈ JP K).

Our idea is to release the monitor interpreter Monitor_int specialized on
the program P , namely specialized on its static analysis output 〈C,Contracts〉P :
JMonitor_int〈C,Contracts〉P K(σ) = JMonitor_intK(〈C,Contracts〉P , σ)

5 Analyzing and discussing feasibility of KArMA

KArMA is a proof of concept implementing all the proposed algorithms. Its
purpose is to test our approach against while-fun web applications to prove
the feasibility and the scalability (in terms of complexity) of the mechanism.

7This is achieved by n−1 calls to Reachability algorithm, which returns true iff there
is a path in the graph D from pi to pi+1.

14

Approach complexity. The CFGmodel and the SSA form are well known
code representations and can be computed in polynomial time w.r.t. the ab-
stract syntax tree of the program.The bottleneck of the static phase is the
taint analysis computing, for each execute, the function Paths (fig. 4). Unfor-
tunately, the number of these paths (and therefore the number of branches)
could be exponentially large in the size of the Cssa. This potential explo-
sion is due to the generality of our approach, allowing the programmer to
provide a, potentially different, contract for each possible vulnerable path,
i.e., for each triple 〈Untrusted input, Path, execute〉. In practice, it is high
unlikely to have an exponential number of ways in which an untrusted input
can interfere with a single query execution, and therefore we believe that in
the average case, this approach scales well on the Cssa size. However, the
programmer can always decide to reduce the complexity by (1) providing a
(different) contract for each pair 〈Untrusted input, execute〉, or (2) providing
a different contract depending only on the input.In the first case, the com-
plexity of the approach is reduced to O(ne) where n is the number of the
untrusted inputs and e is the number of execute blocks while, in the second
one, the complexity is further reduced to O(n) (see table 1).

On the other hand, dynamic monitor checking costs O(1) when a non-
execute instruction is executed. Otherwise, the cost is divided in (1) comput-
ing Reachability between each pair of adjacent nodes (which is polynomial
in the size of Cssa) for each contract c and (2) checking whether an untrusted
variable initial input u satisfies the corresponding contract φ (which costs
O(|u|3|Gφ|) where |Gφ| is the size of the CNF grammar that generates the
contract language φ).

The prototype. KArMA is entirely written in Java (compiled with openjdk

version “1.8.0_111”) and implements the while-fun language, the static anal-
ysis and the monitor-interpreter. It receives, in input, the program source
code, and it performs all the analyses ensuring that the program is well-
typed. To carry out the lexical and syntactical analyses, the tool benefits
from two Java libraries: the lexical analyzer JFlex [8] and the CUP [14]
parser generator. KArMA implementation builds single-statement blocks:
this require more time and space during the process but simplifies subse-
quent analysis.While computing the control flow graph, the tool derives the
structures used to produce the semipruned SSA form (such as the dom-
inator trees and the dominance frontiers) which optimizes the number of
φ-functions placed by the algorithm. The source code of KArMA is avail-
able at https://gitlab.com/samuele/KArMA.git. Here it is possible to try the tool
also on some examples.

Related works. In the last years, many researchers have studied mech-
anisms for mitigating injection attacks, while only few works focused on a

15

What to fix Complexity

∀ p, e, x .fix (p, e, x) if x interfere with e on path p O(|V |!)
∀ e, x . fix (e, x) if x interfere with e O(ne)

∀ x . fix x if ∃e. x interfere with e O(n)

Table 1: Scaling the complexity (p: path, e: execute, x: untrusted input).

formal definition of the problem [3,12]:

1. [3], (CANDID), uses parsing trees for detecting syntactic differences be-
tween queries. The idea is that of dynamically characterizing the in-
tended structure of a query obtained by running an application A on
a valid representation (VR) of a candidate input, and then comparing
the syntactic structure of the output program, so far obtained, with
the one derived at run-time;

2. In [12], the authors split symbols in code and non code, and then they
apply a taint analysis for detecting the query tainted by untrusted
data. If at least one of the injected symbols in a query is code, then an
SQLIA is detected, otherwise the execution proceeds. Intuitively, the
non code symbols are the closed symbols of the language, since they
are the irreducible elements. In general, a symbol is closed if it is a
final value (such as an integer or a string).

It is worth noting that these approaches are particular instantiations of the
general OWASP definition: they fix a priori what is unintended and what is
not, regardless of programmer intention. In this sense, our approach is more
general.

References
[1] Open Web Application Security Project (OWASP). https://www.owasp.org,

2016. [Online; accessed 13-November-2016].

[2] M. Balliu and I. Mastroeni. A weakest precondition approach to robustness.
LNCS Transactions on Computational Science, 10:261–297, 2010.

[3] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan. CAN-
DID: preventing sql injection attacks using dynamic candidate evaluations. In
Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages
12–24, 2007.

[4] P. Cousot and R. Cousot. Systematic design of program transformation
frameworks by abstract interpretation. In Conference Record of POPL 2002:
The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Portland, OR, USA, January 16-18, 2002, pages 178–190, 2002.

16

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control dependence
graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[6] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameteriz-
ing non-interference by abstract interpretation. In Proc. of the 31st Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL ’04), pages 186–197. ACM-Press, 2004.

[7] R. Giacobazzi and I. Mastroeni. Making abstract models complete. Mathe-
matical Structures in Computer Science, 26(4):658–701, 2016.

[8] JFlex Team. JFlex The Fast Scanner Generator for Java — JFlex, JFlex 1.6.1.

[9] I. Mastroeni. Abstract interpretation-based approaches to security - A sur-
vey on abstract non-interference and its challenging applications. In Seman-
tics, Abstract Interpretation, and Reasoning about Programs: Essays Dedicated
to David A. Schmidt on the Occasion of his Sixtieth Birthday, Manhattan,
Kansas, USA, 19-20th September 2013., pages 41–65, 2013.

[10] I. Mastroeni and D. Zanardini. Data dependencies and program slicing: From
syntax to abstract semantics. In Proc. of the ACM SIGPLAN Symp. on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM’08), pages
125 – 134. ACM Press, 2008.

[11] I. Mastroeni and D. Zanardini. Abstract program slicing: an abstract
interpretation-based approach to program slicing. ACM Transactions on Com-
putational Logic, 18(1), 2017.

[12] D. Ray and J. Ligatti. Defining code-injection attacks. In J. Field and M. Hicks,
editors, POPL, pages 179–190. ACM, 2012.

[13] F. B. Schneider. Enforceable security policies. Information and System Secu-
rity, 3(1):30–50, 2000.

[14] G. Scott E. Hudson, GVU Center. LALR Parser Generator for Java — CUP,
CUP 0.11b.

[15] Z. Su and G. Wassermann. The essence of command injection attacks in web
applications. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2006, Charleston, South Car-
olina, USA, January 11-13, 2006, pages 372–382, 2006.

17

University of Verona
Department of Computer Science
Strada Le Grazie, 15
I-37134 Verona
Italy

http://www.di.univr.it

