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1.Abstract 

 

The hippocampus has been traditionally associated to spatial long-term memory (LTM). It is 

believed that the hippocampus has a limited role in working memory (WM). Nevertheless, recent 

evidence suggested that it is involved in WM in high memory load (HML) conditions. The WM 

load is the number of elements retained in memory for a short time interval. This number of 

elements is limited and it is called working memory capacity (WMC). The aim of this work is to 

study the role of the hippocampus in WMC in CD1 mice. Anatomic studies suggested, however, 

that the hippocampus is subdivided into distinct dorsal and ventral portions. To study the role of 

the dorsal and ventral hippocampus in WMC in CD1 mice we used a neurotoxic selective dorsal 

and ventral hippocampal lesion approach. We tested control and lesioned mice in a WMC 

version of the radial maze task using a confinement procedure to force the animals to rely on 

allocentric spatial information. Both lesioned groups showed impaired spatial WMC. Removal 

of the confinement procedure favored in control mice the use of a sequential egocentric strategy, 

which lowered the number of errors by lowering the memory load. Dorsal hippocampus lesioned 

mice shifted to the sequential strategy as well as control mice, and showed impaired performance 

only with the highest memory load. In contrast, the ventral lesioned group showed a major 

deficit in the acquisition of the sequential strategy, and a consequent impaired WM performance. 

Then, when these same mice have been tested in a WMC task for objects, only the dorsal group 

showed the impairment. Finally, we tested both control and lesioned mice in a massive protocol 

of the Morris water maze task, the classical hippocampus - dependent spatial LTM task and both 

lesioned groups were impaired. These data suggest that both the dorsal and the ventral 

hippocampus are involved in WMC, as well as in LTM, for spatial information. The ventral 

hippocampus is more involved in mediating the acquisition of egocentric strategies to solve a 

spatial task. In contrast, only the dorsal part regulates WMC for objects. Therefore, this study 

provides an important contribution to the role of the hippocampus subregions along its septo-

temporal axis in WMC.  

1.1.Sommario 

 

L’ippocampo è stato da sempre associato alla memoria spaziale a lungo termine (LTM) mentre il 

suo ruolo nella memoria di lavoro (WM) si credeva limitato. Recenti studi hanno però suggerito 

un coinvolgimento dell’ippocampo nella WM in condizioni di alto carico di memoria. La 

capacità di memoria è definita, infatti, come il numero di informazioni che un soggetto può 

ricordare in un breve intervallo di tempo (WMC). Lo scopo di questo lavoro è valutare il ruolo 
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dell’ippocampo nella WM in topi CD1. Studi anatomici suggeriscono che l’ippocampo è 

suddiviso in due regioni: dorsale e ventrale. Per studiare il ruolo di entrambe le regioni 

ippocampali, sono state effettuate lesioni selettive usando un agonista dei recettori 

glutammatergici NMDA. Successivamente entrambi i gruppi lesionati sono stati testati in una 

versione modificata del labirinto radiale a otto bracci che permette di valutare la WMC spaziale 

cambiando il numero di bracci aperti fra i trials e i giorni e usando una procedura di 

confinamento per “costringere” gli animali a fare riferimento alle informazioni spaziali 

allocentriche. Il passaggio dalla procedura di confinamento a quella di non confinamento 

favoriva lo sviluppo della strategia sequenziale nel gruppo controllo con una conseguente 

riduzione del numero di errori dovuta alla riduzione del carico di memoria. Il gruppo lesionato 

nell’ippocampo dorsale, come il gruppo controllo, nel passaggio dalla procedura di 

confinamento a quella di non confinamento, mostrava anch’esso un utilizzo della strategia 

sequenziale, dimostrando un aumento del numero di errori in condizioni di alto carico di 

memoria. In contrasto il gruppo lesionato nell’ippocampo ventrale mostrava un deficit 

nell’acquisizione della strategia sequenziale. Quando testati nel test di capacità di memoria ad 

oggetto con 6 differenti oggetti, solo i topi lesionati nell’ippocampo dorsale presentavano un 

difetto. In ultimo, entrambi i gruppi sperimentali sono stati testati nel classico test ippocampo- 

dipendente usato per valutare la memoria a lungo termine: il labirinto acqua di Morris in cui 

entrambi mostravano un deficit. Questi dati suggeriscono che sia l’ippocampo dorsale che quello 

ventrale sono coinvolti nella WMC, come nella memoria a lungo termine. L’ippocampo ventrale 

è più coinvolto nel mediare l’acquisizione di strategie egocentriche per risolvere un compito 

spaziale, in contrasto, l’ippocampo dorsale regola la WMC ad oggetto. Questo studio fornisce un 

importante contributo nel definire il ruolo delle subregioni ippocampali nella WMC. 

 

2. Introduction 

2.1. Anatomy of the hippocampal formation and organization of its intrinsic and extrinsic    

connections 

 

The hippocampus proper is a part of an extended anatomic formation: hippocampal formation 

which is divided in four regions: the dentate gyrus, the hippocampus proper (which is divided in 

three subfields: Cornus Ammonis 3, Cornus Ammonis 2 and Cornus Ammonis 1 or CA3, CA2 

and CA1), the subicular complex (which can be divided in three subdivision: subiculum, 

presubiculum and parasbiculum) and the enthorinal cortex which in rodents is divided in medial 

and lateral subdivisions. The neural population of CA1 consists principally of small pyramidal 
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neurons, while CA2 and CA3 region are characterized by a population of big pyramidal neurons. 

The basic knowledge on connections of the hippocampus comes from the classical Golgi studies 

of Ramón y Cajal and Lorente de Nò and from degeneration studies performed by (Blackstad 

1956, Blackstad, Brink et al. 1970). The dentate gyrus receives projections from the enthorinal 

cortex through the perforant pathway, and in turn, granule cells of the dentate gyrus project 

through the mossy fibers to the CA3 region, which gives rise to connection in the same CA3, and 

to the CA1 region through the Schaffer’s collaterals. Perforant path axons make excitatory 

synapsis with dendrites of granule cells; these cells, through the mossy fiber, project to dendrites 

of CA3, which, in turn, project to the ipsilateral CA1 pyramidal cells through Schaffer’s 

collateral and to contralateral CA3 and CA1 pyramidal cells through commissural connections. 

Except for the sequential trisynaptic circuit, there are dense associative networks which 

interconnect CA3 cells on the same side. CA3 cells receive input also from layer II of the 

enthorinal cortex. The distal apical dendrites of CA1 pyramidal neurons also receive a direct 

input from layer III cells of the enthorinal cortex. The three major subfields of the hippocampus 

have a lamilar organization in which cell bodies are packed in a C - shape arrangement (Neves, 

Cooke et al. 2008) (Figure 2.1.). 

 

 

 

Fig. 2.1. Basic anatomy of the hippocampus (Neves, Cooke et al. 2008). 
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2.1.2. Anatomic distinction of dorsal and ventral region of the hippocampus formation 

 

Ramón y Cajal in 1901 and Lorente de Nó in 1934 were the first to study the basic 

cytoarchitectonic structure of the hippocampus. Their work showed the distinct morphological 

properties of small pyramidal neurons in CA1 (region superior of Cajal), large pyramidal 

neurons of CA3 (region inferior of Cajal, in which mossy fiber are present) and CA2. Cajal was 

the first to observe a difference in the hippocampus across its dorsal to ventral axis. He 

distinguished two perforant paths from the enthorinal cortex namely “superior” and “inferior” 

that project respectively to dorsal and ventral hippocampus; Lorente de Nó also divided the 

“ammonic system” into three main segments along its longitudinal axis according to their 

different input. 

   

2.1.3. Neural connectivity of the dorsal hippocampus 

 

Dorsal CA1 contains place cells (Jung, Wiener et al. 1994, Muller, Stead et al. 1996), which 

code spatial location and send excitatory projections to the dorsal presubiculum and para-

subiculum (Swanson and Cowan 1975, van Groen and Wyss 1990, Witter and Groenewegen 

1990). The dorsal part of the subicular complex contains “head direction cells” which code for 

head direction in the space. Dorsal CA1 and the dorsal region of the subiculum complex send 

their projections to the retrosplenial and anterior cingulated cortices (van Groen and Wyss 1990, 

Muller, Stead et al. 1996) which are important for cognitive processes and to encode visuo - 

spatial information. The dorsal region of the subiculum sends projection to medial and lateral 

mammillary nuclei and to anterior thalamic complex (Swanson and Cowan 1975, Kishi, Tsumori 

et al. 2000, Ishizuka 2001). These two structures contain neurons related to the navigation. In 

turn, these structures send their projection back to the dorsal hippocampus and retrosplenial 

cortex (Risold, Thompson et al. 1997). Dorsal CA1 and CA3 regions send projection to the 

lateral septum, which in turn is connected to the medial septal complex and supramammillary 

nucleus (Risold and Swanson 1996). These two structures generate and control theta rhythm 

during voluntary locomotion. The dorsal subiculum and lateral band of the medial and lateral 

enthorinal cortex send their projection to the rostro – lateral part of the nucleus accumbens and 

caudate putamen, which, in turn, project to the ventral tegmental area and to the substantia nigra 

pars reticulata. These structures are involved in locomotion and well-defined movement. Dorsal 
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hippocampus - subicular complex made a network with the retrosplenial and anterior cingulate 

cortex and this complex have a critical role in cognitive processes as learning, memory, 

navigation and exploration (Figure 2.1.2.). 

 

 

 2.1.4. Neural connectivity of the ventral hippocampus 

 

Ventral CA1 projects to the olfactory bulb and to other primary olfactory cortices (anterior 

olfactory nucleus, piriform and endopiriform nucleus) (Cenquizca and Swanson 2007). These 

connections could have a role in depression-like symptoms following the damage of the loss of 

the olfactory bulb. In addition, ventral CA1 have bidirectional projection with amygdlar nuclei. 

The ventral hippocampus-subiculum-amygdalar complex and medial prefrontal cortex send 

projection to the periventricular and medial zone of the hypothalamus, which are involved in 

neuroendocrine, autonomic and somatic motor activity. Ventral CA1-subiculum-amygdalar 

nuclei are involved in the control of neuroendocrine activity with their strong projection to the 

ventral part of the lateral septum and to the bed nuclei of the stria terminalis (Canteras, Simerly 

et al. 1992). In addition, both ventral CA1 and subiculum send projections to the central 

Fig.2.1.2. Schematic representation of the connectivity of the dorsal hippocampus. Abbreviations: ACA, anterior 

cingulated area; ACB, nucleus accumbens; ATN, anterior thalamic complex; CP, caudoputamen; DGd, dorsal 

domain of the dentate gyrus; ENTl, the caudolateral band of the entorhinal cortex; GP, globus pallidus; LM, lateral 

mammilary nucleus; LSc, the caudal part of the lateral septal nucleus; MM,medial mammilary nucleus; MSC, medial 

septal complex; PRE, presubiculum; POST, postsubiculum; RSP, retrosplenial cortex; SNr, reticular part of the 

substantial nigra. SUBd, dorsal subiculum; SUM, supramammillary nucleus; VTA, ventral tegmental area (Fanselow 

and Dong 2010). 

 



8 
 

amygdalar nucleus (Kishi, Tsumori et al. 2006, Cenquizca and Swanson 2007) that play an 

important role in fear. Finally, ventral CA1- subiculum and lateral and medial enthorinal cortex 

send projections to the nucleus accumbens shell which has an important role in reward and 

feeding behaviour. Ventral hippocampus has an important role in regulating emotional states 

(Figure 2.1.3). 

 

         

       2.2. Learning and memory 

 

Memory was defined as the current knowledge about something that was presented previously 

(Rubinstein, 1988). In the past, the dominant view considered memory as an unitary process. 

Today, memory is considered to take multiple forms and types of brain functions. Learning is 

defined as the change in the behavior based on the experience, while memory is the retention and 

storage of information acquired during learning. According to Atkinson and Shiffrin, 1968, 

memory is composed of three interconnected memory stores, (multi store model of memory). 

Information is initially stored in sensory memory (SM), for only few seconds. This time interval 

allow us to decide what kind of information are important to transfer to WM. In the WM the 

information processing is continued. WM can held only about 7 bits of information (for example 

words, number, letters) for about 30 seconds unless we continue to maintain through repetition 

Fig.2.1.3. Schematic representation of the connectivity of the ventral hippocampus. Abbreviations: ACB, nucleus 

accumbens; AMY, cortical-like amygdalar areas(nuclei); BST, bed nuclei of the stria terminalis; CEA, central 

amygdalar nucleus; LSr, v, the rostral and ventral parts of the lateral septal nucleus; MEA, medial amygdalar nucleus; 

MPF, medial prefrontal cortex; SUBv, the ventral subiculum (Fanselow and Dong 2010). 
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(Miller 1956, Baddeley, Logie et al. 1986, Greene and Crowder 1986). The repetition process is 

called rehearsal and it is important, in first instance, to maintain information in WM as long as 

we repeat and, in second instance, to transfer information at the third and finally store, LTM. The 

process by which items are transferred from short - term memory (STM) to LTM is the synaptic 

consolidation. During the first minutes or hours after the acquisition, the memory trace is 

encoded within synapse, becoming resistant (although not immune) to interference from outside 

sources (Dudai 2002, Dudai 2003). 

  

 2.2.1. Working memory 

 

Atkinson’s and Shiffrin’s multi store model of memory had a dominant role in the 1960’s. But 

their model was discussed especially by Baddeley and Hitch in 1974, who would to investigate 

the link between STM and LTM, According to Atkinson and Shiffrin, retaining information in 

STM guarantee transfer to LTM, but Craik and Lockhart in 1972, demonstrated that the nature of 

processing of the information is important, with a deeper and more elaborated processing leading 

to better learning. A second point was that short-term processing was essential to store 

information in LTM, but there are inconsistences with neuropsychological cases. A third point 

was that Atkinson and Shiffrin considered STM as WM playing a role in cognition, so patients 

with impairment in STM could have intellectual deficits, even if there was a patient, who was for 

example an efficient secretary. These evidence led to Baddeley and Hitch in 1974 to formulate 

their theory on WM, in which WM refers to a brain system that provides temporary storage and 

manipulation of information necessary for complex cognitive tasks as language comprehension, 

learning and reasoning. WM is composed of three different components: 

 The central executive , which is an attentional - controlling system, and it is important for tasks 

like playing chess and it is particularly susceptible to effects of Alzheimer’s disease and its 

“slaves”: 

 

1. The visuo spatial sketch pad which manipulates visual images 

2. The phonological loop, which stores and reharses speech-based information and it is necessary 

for the acquisition of both native and second-language vocabulary ( Figure 2.2.1.). 
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How is defined WM in rodents? The first use of the term WM to rodents comes from studies of 

Olton and Samuelson in 1976 who devised a classical task to assess WM in rodents, the radial 

arm maze and formulated their hypothesis about WM in rodents: WM is the memory that allows 

the animal to remember an arm that was already visited. It is defined as a STM for an object, 

stimulus or location that is used within a testing session, but not typically between sessions, 

differently from reference memory (RM) which is acquired with repeated training and would last 

from days to months. RM is defined as a memory for the “rules” of a given task, for example, 

press a lever in order to obtain food pellet or find an hidden platform in the water maze. WM is a 

delay-dependent representation of stimuli that are used to guide behaviour within a task. For 

Olton and Samuelson WM was different from RM because it uses flexible stimulus - response 

associations and it is sensitive to interference. However, it could be difficult to distinguish 

between STM and WM in rodents. WM is a STM that once used, should be forgotten or ignored. 

It is useful for rodents, for example, to remember which arm they have visited. Finally, a key 

concept in the WM is the WM capacity or span, which is the amount of information that can be 

retained in memory for a short time interval. George Miller in 1956 suggested that in humans 

WM capacity (WMC) is 7± 2 number of items. WM impairments are found in schizophrenia and 

schizophrenia- spectrum patients, who present impairment in spatial, verbal/auditory, object and 

haptic WM (Park, 2014). One of the most characterised animal model of schizophrenia is the 

neonatal ventral hippocampal lesion model first developed by Lipska and colleagues (Lipska, 

1993, Tseng, 2009).  

Fig.2.2.1. Shematic representation of the Baddeley and Hitch working memory model (Baddeley 1992). 
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2.2.2. WM and hippocampus: new perspectives 

 

Historically, WM has been associated to cortical regions such as prefrontal cortex, perirhinal 

cortex, with no involvement of the hippocampus. Indeed, hippocampus is usually linked to LTM 

but there are evidence for which is required in WM maintenance of novel information 

(Ranganath and D'Esposito 2001, Axmacher, Mormann et al. 2007, Axmacher, Henseler et al. 

2010, Fuentemilla, Penny et al. 2010, Poch, Fuentemilla et al. 2011). It has been shown that after 

a presentation of a to - be - remembered stimulus, hippocampus neural representation is elevated 

in medial temporal lobe (Fuentemilla, Penny et al. 2010, Poch, Fuentemilla et al. 2011). Studies 

from Ben - Yakov and Dudai in 2011 (Ben-Yakov and Dudai 2011) were very important to 

investigate on the relation between hippocampus and WM. They performed experiments with 

functional Magnetic Resonance Imaging (fMRI) to identify which brain regions were activated 

in patients after the presentation of complex stimuli, as movie clips, and correlate them with the 

subsequent recall. They reported a bilateral activation of the hippocampus after the stimulus 

presentation. In another experiment, they investigate whether the activation of the hippocampus 

is dependent on the stimulus duration or simply on the offset of the stimulus. In order to study 

this, they presented movies of different lengths, and they observed that the hippocampal 

response was related more to the offset of the stimulus rather than on the duration. In an another 

experiment, they studied the activation caused by movie clips of different lengths but with the 

same beginning and they reported that the bilateral activation of the hippocampus and caudate 

nucleus is time locked to the offset of the presentation of the stimulus and it is predictive for 

subsequent recall. This post - stimulus activity reflects the process of binding experience into 

cohesive units and registering into memory. 

   

 2.3. Tasks to assess WM in rodents 

 2.3.1. Delayed matching /non matching to sample with objects, odours 

 

Delayed non- matching to sample (DNMS) task require a rodent to remember a stimulus over a 

delay in which the stimulus is not presented. After the delay period, the rodent is presented with 

the to-be-remembered stimulus and a novel stimulus, and the rodent is reinforced whether it 

chooses the novel stimulus. In the delayed matching to sample (DMS) tasks, rodents are 

rewarded to select the to -be-remembered stimulus. An example of DNMS task comes from the 

study of Aggleton et al in 1985, where rats are trained on a Y-shaped maze, where boxes 

containing different stimuli are placed at the end of each maze arm. On a given trial two boxes 
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are identical, and after a delay of 20 sec, one box is replaced with a novel box. Rats are rewarded 

to choose the novel box. An example of DNMS task with objects can be find in the study of 

Rothblat and Hayes (Rothblat and Hayes 1987). They used a version of DNMS task with trial 

unique stimuli. In their task, rats were presented with a sample object at the end of a straight 

runway. The rat had to displace the object to obtain food reward. After a 10 sec of delay period, 

rat again ran down the runway and was presented both the sample object and a novel object. In 

this case, reward was provided if rat displace the novel object. An example of DNMS with 

odours could be find in Dudchenko et al. in 2000 (Dudchenko, Wood et al. 2000) in which rats 

were presented with a cup of sand scented with a spice. Rats had to dig in the sand to obtain a 

food reward, after a short delay, the same cup of sand scented with the first odour was presented 

with a new cup of sand scented with another spice, rats were require to dig in the second cup to 

obtain a reward. After another delay, the rat was presented with three cups of sand, two of which 

were already presented, and a third novel cup scented with a different spice, even in this case the 

rat was rewarded to dig in the cup with the novel scent. In this way WMC could be assessed 

(Figure 2.3.1.). 

   

 

2.3.2. Novel object recognition task 

 

Ennaceur and Delacour in 1988 (Ennaceur and Delacour 1988) devised a task in which 

spontaneous exploration of the objects was assessed: Novel Object recognition (NOR). In this 

task, a rat is presented with a pair of identical objects and left freely to explore the two objects. 

After a brief period of exploration, the rat is removed for a delay period and one of the object is 

replaced with a novel object. Then rat is brought back into the arena and the two objects are 

Fig.2.3.1. Odour span task, a rat is first presented with a cup of sand scented with a specific spice (A+), 

after a delay period it is presented the same scented cup of sand and a new cup of sand scented with 

another spice, food reward is available in the cup with the novel scent (B+), after a delay period, three cups 

of sand are presented, two with scented with the previous scent and another cup with a novel scent, food 

reward is presented in cup with the novel scent (C+). Additional cups are presented to rat, and its task is to 

remember which scents it has previously sampled. The rat’s span is the number of odours it can correcty 

remember before making an error ( Dudchenko 2004). 
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presented. The rats’ natural tendency is to explore more the novel object compared to the 

familiar one (Figure 2.3.2.). 

      

 

 In their task Ennaceur and Delacour used a delay period from 4 h to 24 h and observed that the 

preference for the new object is maintained for delays up to 4 hours and decrease after 24h. An 

important factor in this task is the exploration time given to rats to explore the two identical 

objects in first phase. If the exploration time is only 20 sec, the preference for the novel object is 

not significant after a 1 hour of delay. 

 

2.3.3. 6 - different objects task and 6 - identical objects task 

 

NOR test do not allow to study the object WMC in rodents. Sannino et al., 2012 (Sannino, Russo 

et al. 2012) proposed a new version of the NOR, in which the number of the object is increased 

to 3, 4 ,6 and 9 different objects. This allowed them to discover that the WMC in mice is six. The 

test that allowed them to define WMC in rodent as six is called 6 different object task (6-DOT). 

This task is used to asses object WM but in HML conditions. In the first phase, a mouse is 

presented with six different objects and it is left freely to explore the objects for 10 minutes or 

Fig.2.3.2. (A) Novel object recognition task. Rat is presented with two identical objects. (B) After a delay period one 

of the objects is replaced with a new one and the other with an identical copy. Rats usually tend to explore more time 

the new object compared to the familiar object. 
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for a 210 sec of total exploration. After that, the mouse is removed from the arena, and a delay of 

1 minute is introduced. One of the objects is replaced with a new object, while the others are 

replaced with identical copies to prevent the presence of scent of the mouse. After a delay of 1 

minute, the mouse is brought back to the arena and left freely to explore the objects for five 

minutes. As well as for the NOR, the mouse spent more time exploring the new object compared 

to the familiar objects. In the 6 identical object task (6-IOT), the mouse is presented with 6 

identical objects and is left freely to explore the 6 object for 5 minutes or for a total exploration 

of 35 sec. After the mouse is removed from the arena and a delay of 1 minute is introduced. One 

object is replaced with a new object, while the other objects are replaced with copies in order to 

prevent the presence of mouse scents. After a delay of 1 minute, the mouse is reintroduced in the 

arena and left free to explore the objects. The natural tendency of the mouse is to explore more 

the new object compared to the familiar objects. The 6-IOT is considered a control task of the 6-

DOT because in 6-IOT the memory load is low being all the objects identical. Whether a mouse 

is impaired in performing the 6-IOT, is very difficult that it is able to perform the 6-DOT 

(Figure 2.3.3.). 

                      

                                     

 

 

Fig.2.3.3. 6-DOT (A), mouse is presented with 6 different objects for 10 minutes or for a total exploration of 210 

sec, after a delay period of 1 minute, one object is replaced with a new one and the other objects are replaced 

with copies.6-IOT (B) mouse is presented with 6 identical objects in the study phase for 5 minutes or a total 

exploration of 35 sec, after a delay period of 1 minute, one object is replaced with a new one and the other with 

copies. 6- DOT is an object working memory test in high memory load condition, while 6-IOT is an object 

working memory test in low memory load conditions (Sannino, Russo et al. 2012). 
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 2.3.4. The radial arm maze 

 

Olton and Samuelson in 1976 devised a task to assess WM in rodents, the radial arm maze. It is 

composed of eight arms radiating form a central platform. In their experiment, a rat is placed in 

the center of the apparatus, with a food reward at the end of each arms of the maze. Olton and 

Samuelson observed that rats are able to retrieve food from each arm, and quickly learn to visit 

all arms without entering in previously visited arms. First, rats are habituated to the apparatus 

placing them in the central platform and allowing them to freely explore the apparatus for 15 min 

per day. Reinforcement (food pellet) are scattered on the floor and rats can retrieve the food. On 

the last day of habituation the reinforcements are reduced to the half and the session ends when 

all eight arms are visited. After the habituation phase, rats are trained one session per day for 

eight consecutive days. The reinforcement is placed at the end of each arm in a well, hidden 

from the sights of the animals. Rats are free to explore the maze to retrieve food. Each session 

lasts until 1) all eight arms are visited (a visit is considered when the animal enters in the arm 

with the whole body, except the tail); 2) a fixed time (which is different form a protocol to 

another) elapses In order to prevent odour cues the maze is cleaned with wipes between different 

animals. The parameters analysed are 1) The number of errors in each session (a re- entering in 

an arm previously visited is considered an error), and the total number of errors across the eight 

sessions; 2) The number of correct choices in the first eight arms of each session 3) The location 

of the first error in each session; 4) The number of adjacent arms entries in each session; 5) The 

time spent to visit (total time to complete the session divided by the total number of arm entries; 

6) The number of sessions to reach the criterion of one error or less. In this protocol rats usually 

enter > 7 arms before making an error (Figure 2.3.4.). 
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In other experiments Olton and Samuelson tested rats in a version of the maze in which a delay 

was introduced after the rats had made the third arm choice. After a confinement period of 1 

minute in the center of the apparatus, closing all the arms with guillotine doors, rats are allowed 

to freely explore the other 5 arms of the maze. Olton and Samuelson found that this delay had no 

effect on the accuracy of the test, indeed rats made an average of 7.7 correct responses in their 

first 8 choices. Increasing the delay at least at 2 minutes did not produce an impairment in the 

performance, indeed rats made an average of 7.6 correct responses in their first 8 choices. Based 

on this protocol Suzuki et al in 1980 introduced a delay of 2.5 min between the third arms choice 

and the subsequent choices. After this delay rats visited the remaining 5 arms they had not 

previously entered with an average of correct responses of 4.3 correct choices from the five 

remaining arms. They also found that rats based on extramaze cues to solve the task and the 

rearrangement of the spatial cues during the delay period resulted in chance performance 

following the delay. Bolhuis et al.1986 (Bolhuis, Bijlsma et al. 1986) studied how long could be 

the delay to impair rats’ performance. They found that rats were impaired in solving the task 

with a 60 s delay between the fourth and subsequent arms choices and performed at chance level 

with 120 sec of delay. Jarrard et al in 1983 developed a version of the radial maze to test both 

WM and RM. In their version of the radial maze, only four of the eight arms were baited with 

food. The same arms were baited each day and across sessions. The rats learned to not enter in 

the four non - baited arms. This is the reference component of the task, and an entry into a never- 

Fig.2.3.4. Eight arms radial maze. The mouse or rat is placed in the center of the apparatus and it is allowed to 

freely explore the apparatus to retrieve food reward (black circles) at the end of each arm of the maze. 
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baited arm is considered a reference error, while a re - entry in a baited arms is considered a WM 

error. Jarrard et al in 1983 (Jarrard 1983) also tested rats in a match – to - sample version of the 

radial maze. In this task, the rat is allowed to explore the maze to find the reward. When it 

returns in the center of the apparatus is confined there for a delay period. After the delay, the 

doors of each arm are opened and rat is required to return in the arm where it obtained the 

reward. On different days, different arms are reinforced as are used as to be - remembered 

stimulus. But there is a problem: animals can solve the task in ways that not rely on spatial WM. 

One of these is the use of the chaining, serial or sequential strategy (entering each arm 

successively in a systematic order). To prevent the development of the sequential strategy one 

way is to interpose a delay between arm choices. This requires that after a subject enters an arm, 

all remaining doors are closed to prevent an immediate entry into another arm. Once the animal 

renters the center, the door of the arm visited is also blocked and the animal is confined in the 

center for a delay period. After the confinement is over, all the doors are raised and the animal 

can continue to freely explore the maze. This procedure is repeated each time an animal exits 

from an arm. The confinement procedure allows the animal to hold in working memory the last 

arm visited. Dubreuil et al. in 2003 (Dubreuil, Tixier et al. 2003) in their experiment, used 

confinement procedure to prevent the development of the sequential strategy. They use three 

different delay periods: 0, 5 and 10 s and demonstrated that even a confinement delay of 0 sec is 

sufficient to prevent the development of the sequential egocentric strategy, (a description of the 

difference between the allocentric and egocentric strategy will be provided in the next 

paragraph). Another strategy used to solve the task is the alternating strategy (Dubreuil, Tixier et 

al. 2003), in which a mouse enters in successively into arms separated by two arms (alternating 

strategy). The number of arms in the radial maze can be varied from four-maze which is called 

plus maze used by Olton and Feustle in 1981 (Olton and Feustle 1981) Other versions can 

include maze with 12,17 and 24 arms, which are used especially to study both WM and RM. 

 

 2.4. Types of navigation: allocentric and egocentric 

 

 Navigation is the ability of organisms to find their way in the environment without getting lost, 

and requires information for locations and routes. Two types of navigation can be distinguished: 

allocentric and egocentric. Allocentric way finding is the ability to navigate using distal cues and 

landmarks present in the environment, located outside the organism. Egocentric way finding is 

defined as the ability to navigate using internal cues (feedback from limb movement for rate of 

movement, direction, turns and sequence of turns). Egocentric navigation can be made in 
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darkness, indicating that the visual cues are not essential; even if egocentric navigational 

accuracy is reduced. By contrast, allocentric navigation cannot happen in the absence of distal 

cues (Figure 2.4.). 

                        

 In general, egocentric navigation is the ability to navigate by internal self - movement cues and 

can be divided in route - based navigation and path integration. Route- based navigation relies on 

internal cues of rate movements, turns and signposts, while path navigation involves the vector 

addition. Simply in a route - based navigation an organism follows a path with the order of turns 

remembered as set of specific rules, such as straight, left, right, left, right, left. These memorized 

operation can became habits. Path - integration is the ability of an organism to leave its home - 

base and move to different locations and then return by a different, more direct path. What are 

the brain region involved in navigation? In the allocentric navigation, the regions more involved 

are the hippocampus and the entorhinal cortex. With electrophysiological studies, place cells 

were identified in the hippocampus (Nadel 1978, O'Keefe and Conway 1978). These cells 

respond to different environments and features within them. They form a map of the 

environment and they remap the environment as the organism moves within a space or moves in 

another space. Also in the medial entorhinal cortex place cells have been identified and the 

entorhinal cortex communicate with hippocampus (Hafting, Fyhn et al. 2005). In the entorhinal 

cortex are also present grid cells. Each grid cell is characterised by spacing (distance between 

fields), orientation (tilt relative to an external reference axis) and phase (xy displacement relative 

to an external reference point). The smaller response field are located in the dorsal entorhinal 

cortex, while the larger response field are located in the most ventral region of the enthorinal 

cortex. In the entorhinal cortex, in presubiculum and parasubiculum head direction cells are 

Fig.2.4. Schematic representation of allocentric and egocentric navigation. 
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present (Buzsaki and Moser 2013), that have a role in orientate an organism to distal cues and 

contribute to the direction of the movement. In the entorhinal cortex, border cells are also present 

(Solstad, Boccara et al. 2008), these cells have response fields that react to the boundary and the 

edges within the environment. Place, grid, head direction cell, and borders cells in the entorhinal 

cortex and place cells of the hippocampus form a network that map places in the space outside 

the organism. Brain regions involved in the egocentric navigation are less known. An important 

fact is that allocentric and egocentric navigation can overlap, because head direction cells are 

very important for egocentric navigation. They are present in other brain region as thalamus, 

mammillary nucleus, retrosplenial cortex and dorsal striatum. Sometimes allocentric and 

egocentric navigation could be dissociated indeed for example hippocampal lesion causes spatial 

but not nonspatial impairment in the Morris water maze or dorsal striatum lesions cause 

nonspatial impairment in the Morris water maze (Packard and McGaugh 1992, McDonald and 

White 1994, Devan, McDonald et al. 1999). Experiments in humans with virtual reality 

demonstrated that egocentric path integration recruits neural activity in the hippocampus and 

parietal cortex (Sherrill, Erdem et al. 2013). 

 

2.5. Morris Water Maze 

 

Richard Morris developed Morris Water maze in 1984. It is a test for spatial learning in which 

rodents have to use distal cues to create a map to find an hidden platform in an open swimming 

arena. In the basic and classical procedure of the Morris water maze, rodents have to learn, using 

distal cues, the path to find an hidden platform, starting from four different location: south, 

north, west and east. The training lasts 5 days with 4 trials per day. To assess RM, a probe test is 

done the subsequent day of the last training day. In the probe phase the platform is not present 

(Figure 2.5.). 
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A variant of the test is the spatial reversal in which the platform is relocated in another quadrant 

(usually the opposite quadrant), and rodents have to made other 5 days of training with 4 trials 

per day. Reversal learning is useful because it can test the ability of rodents to acquire a new 

path to reach the platform. In the spatial double-reversal with a smaller platform the platform is 

moved back to the original goal (double – reversal) or to a different quadrant (shift), but with an 

additional change: the use of a smaller platform. For example if the starting platform was 15 x 15 

cm, the reduced platform is 10 x 10 cm. This reduction in platform size allows investigating the 

spatial accuracy requirements of the rodents. Another procedure is to perform a set of reversal 

and shift phases serially. This allows investigating the animal’s flexibility to learn across 

multiple phases of learning. Morris water maze is also used to test spatial WM, in this case, a 

matching- to sample method is used. The platform is relocated each day, with two trials per day. 

In the first trial the animal, have to learn the new location of the platform by trial and errors. The 

second trial is the test or matching trial in which savings in recall the between trial 1 and trial 2 

are measured. If the animal recall the sample trial, it will swim with a more direct path to the 

platform. A control condition which is very used in the Morris water maze, is the cued learning. 

The platform is the same as used in the hidden version, but it is elevated above the water surface 

and usually a flag is mounted on it. The location of the goal and start are both moved to new 

position during each trial. In this version the platform is visible to rodents and this test is used to 

assess same basic abilities as (intact eyesight, motor ability), basic strategy (learn to swim away 

Fig.2.5. Schematic representation of the Morris Water Maze. Rats or mice have to find an hidden platform, using 

spatial cues present in the environment. 
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from the wall, learn to climb on the platform). If a rodent is impaired in the cued version, it will 

be difficult for it to learn spatial version.  

 

 3. Aim of the study 

 

Working memory (WM) refers to a brain system that provides temporary storage and 

manipulation of information necessary for complex cognitive tasks as language comprehension, 

learning and reasoning (Baddeley and Hitch, 1974). An important concept in WM is its capacity 

or WM span, that is the amount of information that one subject can retain for a short period and 

it is estimated to be 7± 2 in human (Miller, 1956). WM alterations are associated with a wide 

range of deficits such as attention deficits, or problems in the manipulation of the information 

which could result in problems in daily life as carry on a conversation. Traditionally WM was 

associated with dopaminergic fronto - striatal network, whose deregulation causes severe 

alterations in WM (Klostermann, Braskie et al. 2012). In the last decades, a role of the 

hippocampus in WM has been investigated, but the data are controversial. Studies on rhesus 

monkey with a lesion in the hippocampus have shown a performance similar to control when the 

number of item to- be-remembered was high (Murray and Mishkin 1998), while other studies 

showed a deficit in the performance in rhesus monkey with bilateral lesions of the hippocampus 

only in high memory load conditions (Beason-Held, Rosene et al. 1999). Similar findings were 

found in a recent study in rodents (Sannino, Russo et al. 2012) in which it was reported that 

dorsal hippocampus lesioned mice were impaired in the discrimination of a novel object in high 

memory load (HML) conditions, using a task in which animals had to discriminate a new object 

among 5 familiar objects (the 6 different objects task/6-DOT). All toghether these findings 

suggest that the hippocampus regulates working memory capacity (WMC). 

The hippocampus is a heterogeneous structure, with its dorsal region defined as a “cold 

hippocampus” more involved in cognitive processes as learning, memory, navigation and 

exploration, while its ventral part defined as a “hot hippocampus”, which is more involved in the 

processing of emotional information (Fanselow and Dong 2010). There are no studies in 

literature which investigate the role of dorsal and ventral hippocampus in WMC. The aim of this 

study is, therefore, to investigate the role of dorsal and ventral hippocampus in spatial WMC and 

object WMC. We selectively lesioned dorsal and ventral hippocampus with high concentration 

of N-methyl-D-aspartate (NMDA); after lesion mice were tested in a modified version of the 

eight arms radial maze in which the memory load was changed by changing the number of open 

/baited arms between trials and among days with 3 open/ baited arms (low memory load 
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condition), 6 open/baited arms (intermediate memory load condition) and 8 open /baited arms 

(high memory load condition). Mice usually solve the task using an egocentric sequential 

strategy which reduces the WM load. Therefore, in order to assess WMC we introduced a 

confinement procedure that has been previously showed to prevent the use of egocentric 

strategies (Olton 1977, Dubreuil, Tixier et al. 2003) 

After five days of confinement procedure, we switched to the no - confinement procedure, to 

observe whether there were changes in the use of strategy used to solve the task. Finally, to 

assess the role of these distinct two regions in object WMC in HML conditions, the same mice 

were tested in 6-DOT/IOT. There is no evidence in literature whether there is a functional 

difference between ventral and dorsal hippocampus in object WMC. The results of this study are 

highly relevant for humans, as reduced WMC is a core cognitive symptom of schizophrenia and 

ageing. 

   

4. Materials and Methods 

   4.1. Subjects 

 

CD1 outbred male mice (Charles River); 5-7 weeks on arrival are used for all experiments. They 

are housed five per cage with food and water ad libitum. Mice are kept on 12 hours light/dark 

phase and tested during the light phase (9:30 a.m-6:00p.m). Before testing animals are 

acclimatized to the behavioral room for at least 30 minutes. At the beginning of the experiment 

mice are 15-20 weeks old. All procedures related to the animal care and treatment are conformed 

to the guidelines and policies of the European Communities Council and approved by the Italian 

Ministry of Health. 

 

   4.1.1. Surgery 

 

All surgical procedures are performed under general anaesthesia using avertine injected 

intraperitoneally (i.p.). Mice are placed in a stereotaxic frame (Kopf Instruments, USA). N-

methyl-D-aspartate (NMDA, Sigma Aldrich, Italy), (20 mg/kg) is injected bilaterally in the 

dorsal and ventral hippocampus with a volume of 0.3 µL/side. The stereotaxic coordinates for 

the bilateral lesion of the dorsal hippocampus are anteroposterior (AP) =-1.9 mm, lateral (L) =± 

1.2 mm, dorsoventral (DV) = -1.6 mm. For the bilateral lesion of the ventral hippocampus are 
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AP=-3.3 mm; L=-3.0 and DV=- 3.7 mm from the bregma. The stereotaxic coordinates are taken 

according to the atlas of Franklin and Paxinos (1998). The sham group receives a bilateral 

injection of PBS 1X at the same coordinates. After surgery, mice are allowed to recover for ten 

days before behavioral tests. At the end of all behavioral procedures, mice are deeply 

anesthetized and transcardially perfused with phosphate buffered saline (PBS 1X, pH 7.4), 

followed by 4% paraformaldehyde in PBS. Brains are removed and post- fixed in the same 

fixative for a week and then cut on a vibratome. Only animals with correct placements, verified 

under a light microscope by analysing consecutive coronal brain sections (50µm) stained with 

Nissl staining, are included in statistical analysis. 

  

 4.2. Behavioral procedures 

 4.2.1. Elevated plus maze apparatus and procedure 

 

 The elevated plus maze is widely used in literature to test anxiety and to validate new anxiolytic 

drugs because it has a predictive and construct validity. It is based on the natural aversion of 

rodents to heights. The apparatus consists of four arms (37 x 9cm), two open arms and two 

enclosed arms and lit by a 100 W light. The maze is elevated from the floor 50 cm. The mouse is 

placed in the center of the maze, at the junction of the four arms of the maze, and it is free to 

explore the maze for 5 minutes. The test is videotracked by a camera mounted on the ceiling and 

connected to a videotracking system (AnyMaze, Stoelting, USA). The measures taken are , the 

entries in the open arms, the percentage of time in the open arms, the distance in open arms and 

the total distance travelled. More time spent in the open arms is an index of less anxiety. 

 

4.2.2. The 6-DOT/IOT tasks apparatus and procedure 

 

The 6-DOT is a modified version of the NOR. It is used to test object WM in HML conditions 

(Sannino, Russo et al. 2012). In the 6-DOT mice are isolated for 15 minutes in a waiting cage 

before testing and then subjected to a habituation period of 10 minutes in an empty arena (35 x 

47 x 60 cm), T1 phase. Habituation period allows assessing motor impairment. After 1 minute of 

inter trial interval (ITI) spent in their waiting cage, mice are subjected to the testing phase, T2, 

during which they explore six different objects for ten minutes or for a total exploration of 210 

sec. Exploration is considered when mouse approaches to the object at a distance of 2 cm. In the 
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last phase, T3, after 1 minute of ITI in their waiting cage, the objects are replaced with identical 

copy of the familiar objects and a new object for 5 minutes. The six identical object recognition 

task (6-IOT), is considered a control test, in this case WM load is low, because mice have to 

discriminate among identical objects. T1 phase is identical of that of 6 DOT, in the T2 phase 

mice are allowed to explore objects for a total exploration of 35 sec or for a total of 5 minutes In 

the T3 phase, all the objects are replaced with identical copies of the familiar objects and a new 

one for 5 minutes. 

   

 4.2.3. Morris Water Maze apparatus and procedure 

 

Morris Water Maze apparatus is a circular pool (110 cm diameter x 36 cm depth), filled with 

water at a temperature of 22°C. The pool is filled with water with black no toxic colour, (Helios, 

Milan), until 10 cm from the edge. The black colour is used to make invisible the platform and to 

increase the contrast between the mice and the apparatus. It is important to create a contrast 

between mice and water in order to allow to videotracking system to follow mice in their path to 

reach the platform (13 cm diameter), which represents the escape from water. The apparatus is 

ideally divided in four quadrants; north, south, west and east. The platform is located in the south 

quadrant during the shaping phase and in the north quadrant during the training phase. Around 

the platform area, the videotracking system creates a concentric circle (annulus) of a diameter of 

25 cm. The test is video tracked by a camera mounted on the ceiling and linked to a 

videotracking system (AnyMaze, Stoelting, USA). The apparatus is illuminated by a 100 W 

light, and a by a neon light, and enclosed by a grey curtain at south and west. The apparatus is 

surrounded by different spatial cues, which are maintained in a fixed position during the test. 

The behavioral procedure is a modification of the protocol described in Ferretti et al., 2007. It 

consists of three phases: shaping phase, training phase and probe test. In the shaping phase, the 

platform is visible (1 cm above the water surface), and is located in the south quadrant. It 

consists of three consecutive trials in which mice are released from three different quadrants, 

choosed in a pseudo-random way. The platform is visible to habituate mice to the new 

environment, reducing the emotional component (stress, anxiety), which can influence the 

performance of the test. The localization of the platform is different from that used in the 

training phase in order to avoid pre - learning in this phase. Mice are isolated in their waiting 

cage for 30 m before any behavioral procedure. Shaping phase starts putting the mouse on the 

platform for 60 s, in order to allow it to observe the behavioral room and to habituate to the 

platform. At the start of every trial mouse is released in the pool with its face toward the pool 



25 
 

wall. AnyMaze records the path of the mouse to reach the platform. Every trial has a cut-off of 

60 s. If the mouse reaches the platform it is allowed to stay on it for 15 s, if it does not reach the 

platform, it is gently accompanied by the experimenter on the platform and allowed to remain on 

it for 15 s. The quadrants in which the mouse is released are chosen in a pseudo-random way in 

order to avoid that starting from the same quadrant, mouse can learn a specific path using an 

egocentric strategy, without using the spatial cues present in the environment. In the second day, 

the training phase starts. The platform is located in the north quadrant, and it is submerged 0.5 

cm below the water surface. It consists of six sessions of three consecutive trials per sessions, 

with an ITI of 30-45 m, in which mice are returned in their waiting cage. If a mouse does not 

reach the platform, the experimenter gently accompanies it and it is allowed to remain on it for 

15 s. After the three consecutive trials end, mouse returns in its waiting cage and another mouse 

is tested. The six sessions are made using the same procedure, the starting quadrants change 

from a session to another, and they are chosen in a pseudo-random way. On the following day, 

24 hours later, probe test takes place, the platform is removed and mouse is released in the center 

of the pool and videotracked for 60 s. The measures analysed in the training phase are the time 

spent to reach the platform (latency) and the distance travelled to reach the platform. In the probe 

test the percentage of time in the target quadrant (the quadrant in which the platform was 

located) is analysed and the entries in the annuli. 

 

4.2.4. Eight arms radial maze apparatus and procedure 

 

The radial arm maze apparatus is constructed with clear Plexiglas material with painted grey 

flooring. It consists of eight equally spaced arms (38 cm in length, 8 cm in width, 9 cm in 

height), all radiating from a small octagonal central platform (with a diameter of 19 cm). 

Plexiglas doors of 9 cm in height are placed if necessary between every arm and the central area. 

The maze is elevated 84 cm from the floor on a platform It is enclosed by curtains hung from the 

ceiling in one corner of the behavioral room and is illuminated by overhead white lighting. Four 

visual cues have been positioned around the maze. The experimenter is in the same fixed 

position for all the duration of the test. The confinement box is hand made, created with three 

clear Plexiglas squares, glued together. It is placed at the end of the arm as soon as the mouse 

enters in it, so when it is leaving the arm, goes in the box and the Plexiglas door of the arm 

closes the box. The mouse is confined in the box for 5 seconds. Then, the box is raised to allow 

the mouse to continue to explore the maze. The day before the start of the test mice are food - 

restricted so they reach and maintain 80-85% of their free feeding weight for all the duration of 
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test. The test consists of three day of habituation to the apparatus for ten minutes. During the 

habituation phase, all arms are open and twenty chocolate cereal grains are placed in the 

apparatus (two for every arm, one at the entrance and one at the end of every arm and four in the 

central zone). The number of cereal grains eaten is recorded. On the second day of habituation, 

the confinement box is introduced to habituate them to it. In the habituation period mice do not 

enter automatically in the box, so when they are almost at the end of the arm, the Plexiglas door 

of the arm is gently placed between the mouse and the box, so the mouse is confined and enters 

the box. In the training phase, mice do not longer consider the box as “something adverse” and 

go straight to it. After the habituation period, a pretraining phase (PT) takes place. It consists of 

nine trials per day for two days. During the PT phase only two of the eight arms are open and 

baited. The open/ baited arms change within the trials and between the two days. Mouse is 

placed in the center of the apparatus and the stopwatch is running. Every time the mouse enters 

an arm, the experimenter places the confinement box at the end of the arm and when the mouse 

is in the box, closes the door of the arm. The mouse is confined for 5 seconds. During the trial, 

the experimenter records the path of the mouse and the time when the mouse enters the last 

baited arm. The trial is considered completed when the animal has visited the two different arms 

or 6 minutes have passed. After the PT phase, a training phase takes place. It consists of nine 

trials per day for five consecutive days, in which the number of open/ baited arms change within 

trials and among days (3, 6 and 8 open/baited arms). In these first five days, the confinement box 

is used (confinement procedure). A trial ends when a mouse enters all the open/baited arms or 

when 6 minutes have passed. After the five days of confinement procedure, four days with no - 

confinement take place. They consist of four days of training, without confinement box, with 

nine trial per day. A trial ends when a mouse enters all open/baited arms or 5 minutes have 

passed. It is important to clean the apparatus after every trial with 25% ethanol solution, in order 

to eliminate the scents of the mouse and of the experimenter. All the experimental group is tested 

for the first trial, before performing to the next one. The measure analysed in the PT phase is the 

mean number of errors. In the training phase in both confinement and no - confinement 

procedure, the measures analysed are: the mean number of errors in the confinement and no - 

confinement procedure, the mean of the score of the sequential strategy at 3, 6 and 8 open/baited 

arms in the confinement and no - confinement procedure, the mean of the score of the alternating 

strategy at 3, 6 and 8 open/baited arms in the confinement and no- confinement procedure. 
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4.3. Statistical analysis 

 

 Elevated Plus Maze: control mice= 11; dorsal hippocampus lesioned mice= 8; ventral 

hippocampus lesioned mice= 16 

We analyse the time spent in open arms, the total distance travelled, the percentage of the time 

spent in open arms and entries in the open arms using a one-way ANOVA using as the between 

factor the factor treatment (two levels: control and dorsal hippocampus lesioned mice or control 

and ventral hippocampus lesioned mice). 

 6-DOT/IOT: control mice = 8; dorsal hippocampus lesioned mice= 6; ventral hippocampus 

lesioned mice = 12 

 The analysis of distance in T1 and the exploration in T2 are performed with a one-way 

ANOVA, using as a variable between the factor treatment (two levels: control and dorsal 

hippocampus lesioned mice or control and ventral hippocampus lesioned mice). The analysis of 

exploration in T3 is made using a two- way ANOVA for repeated measures using as a variable 

between the factor treatment (two levels: control and dorsal hippocampus lesioned mice or 

control and ventral hippocampus lesioned mice), and as repeated measures the number of objects 

(six levels: six objects). Novel object discrimination is defined as: the new object explored 

significatively more than the all other familiar objects based on the results of Duncan post - hoc 

analysis. 

Morris water maze: control mice = 12; dorsal hippocampus lesioned mice = 10; ventral 

hippocampus lesioned mice = 15. 

The mean of latency and distance is made with an average of the values of three trials, in order to 

obtain a single value of latency and distance. The analysis is performed with a two- way 

ANOVA for repeated measures using as a variable between the factor treatment (two levels: 

control and dorsal hippocampus lesioned mice or control and ventral hippocampus lesioned 

mice), and the variable sessions as repeated measure (six levels: six sessions). A significative 

reduction in the mean latency or in the mean distance represents an index of learning. In the 

probe test, the analysis of the percentage of the time spent in the quadrant is performed with a 

two-way ANOVA for repeated measures using as variable between the factor treatment (two 

levels: control and dorsal hippocampus lesioned mice or control and ventral hippocampus 

lesioned mice) and as repeated measures the percentage of time spent in each quadrant (four 

levels: north, south, west and east). The entries in the annulus are analysed with a two-way 
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ANOVA for repeated measures using as variable between the factor treatment (two levels: 

control and dorsal hippocampus lesioned mice or control and ventral hippocampus lesioned 

mice) and as repeated measures the factor entries in the annuli (four levels: north, south, west 

and east). 

Significance is set at p<0.05. All the effects are decomposed with Duncan post – hoc analysis. 

Eight-arm radial maze: Two control animals are tested in the confinement procedure and not in 

the no - confinement procedure with a total of 10 control mice in the confinement procedure and 

8 control mice in the no - confinement procedure; dorsal hippocampus lesioned mice = 8; ventral 

hippocampus lesioned mice = 12. 

 In the PT phase, the mean number of errors is analysed with a one-way ANOVA with  

treatment as between variable (three levels levels: control, dorsal and ventral hippocampus 

lesioned mice). 

Training phase: The analysis of the mean number of errors at 3, 6 and 8 open/ baited arms is 

performed before making an average of the number of errors for the five days of confinement 

procedure and a mean for the four days of no - confinement procedure and then analysed with a 

three-way ANOVA for repeated measures, using as variable between the factor treatment (3 

levels: control, dorsal and ventral hippocampus lesioned mice), and as repeated measures the 

number of open/baited arms ( 3 levels: 3, 6 and 8 open/baited arms ) and the procedure used ( 

two levels: confinement/no - confinement).  

The analysis of the mean number of errors at 3, 6 and 8 open/baited arms for the dorsal 

hippocampus lesioned mice and the ventral hippocampus lesioned mice separately is made with 

a three- way ANOVA for repeated measures using as variable between the treatment (two levels: 

control and dorsal hippocampus lesioned mice or control and ventral hippocampus lesioned 

mice) and as repeated measures the factor number of open/ baited arms (three levels: 3, 6 and 8 

open/baited arms ) and the factor procedure (two levels: confinement/no - confinement ). 

Significance for the treatment is performed using a two- way ANOVA for repeated measures 

using as variable between the factor treatment (two levels: control and dorsal hippocampus 

lesioned mice or control and ventral hippocampus lesioned mice), and as repeated measure the 

number of open/baited arms (three levels: 3, 6 and 8 open/baited arms). Duncan post – hoc 

analysis is applied on the two-way ANOVA. 

Calculation of the score of sequential strategy: The score of sequential strategy is calculated 

by counting +2 when a mouse enters an adjacent arm. This is called sequential strategy with 

errors because it does not take in account the re - entry in a previously visited arm. For example 
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in the sequence of visits 1-2-3-4-5-6-7, where each number represents a visit in an arm, the total 

score is 7. But we take in account even when a mouse make an error (a re-entry in a previously 

visited arm), in this case we a score of -1 is given and it is subtracted to the total score of the 

sequential strategy. This is called sequential strategy without errors: for example for the 

sequence 1-2-3-4-5-6-5-, the total score of the sequential strategy is six with one error (the re-

entry in the arm 5). The score of alternating strategy is calculated by counting +1 when a mouse 

enters in alternating arms, for example 1-3-5-7 , has a score of 4. The score are calculated 

automatically by a software, RAM Tigem, developed by the Tigem Bioinformatics core. The 

sequential and alternating strategy analysed in this work are the sequential and alternating 

strategy with errors. 

The analysis of the mean of the score of the sequential and alternating strategy is performed 

before making an average of the score of sequential or alternating strategy for the five days of 

confinement procedure and the four days of no - confinement procedure and then is analysed 

with a three- way ANOVA for repeated measures using as variable between the factor treatment 

(three levels: control, dorsal and ventral hippocampus lesioned mice) and as repeated measures 

the variable number of open/baited arms (three levels; 3, 6 and 8 open/ baited arms) and the 

procedure (two levels: confinement/ no confinement). The analysis of the mean of the sequential 

or the alternating strategy for the dorsal and ventral hippocampus lesioned mice separately is 

made with a three-way ANOVA using as variable between the factor treatment (two levels: 

control and dorsal hippocampus lesioned mice or control and ventral hippocampus lesioned 

mice) and as repeated measures the factor number of open/baited arms (three levels: 3, 6 and 8 

open/baited arms) and the procedure (two levels: confinement/ no confinement). Significance for 

the treatment is analysed with a two-way ANOVA for repeated measures using as variable 

between the factor treatment (two levels: control and dorsal hippocampus lesioned mice or 

control and ventral hippocampus lesioned mice), and as repeated measures the number of 

open/baited arms (three levels: 3, 6 and 8 open/ baited arms). Duncan post – hoc analysis is 

applied on the two-way ANOVA. 

The analysis of the sequential strategy compared to the alternating strategy is made using a four 

way ANOVA for repeated measures using as variable between the factor treatment (two levels: 

dorsal and ventral hippocampus lesioned mice) and as repeated measures the factor strategy (two 

levels: sequential /alternating strategy), the number of open/ baited arms (three levels: 3, 6 and 8 

open/ baited arms) and the factor procedure (two levels: confinement/ no confinement).  

Significance is set at p<0.05. All the effects are decomposed with Duncan post – hoc analysis. 
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The tests are performed in this order: elevated plus maze; 6- DOT, 6-IOT, Morris water maze, 

radial arm maze (Figure 4). 

 

                       

 

 

5. Results 

5.1. Histological verification of the lesion 

 

Nissl staining on consecutive coronal section of the brain of lesioned animals, as compared to 

sham control animals, showed a wide cellular loss, with necrosis areas and alteration of the 

tissue. Anteroposterior analysis of the dorsal lesion, such reported in the Franklin and Paxinos, 

1998 and relative to the bregma distance, showed that animals had a wide bilateral lesions which 

extended from the coordinates – 1.22 to -2.98, with the more extended lesion including wide 

neuronal loss and gliosis in CA1, CA2 and CA3 fields of the hippocampus and dentate gyrus, 

while the smallest lesion cover CA1, CA2 and CA3 with no dentate gyrus. The antero-posterior 

analysis of the ventral hippocampus lesion revealed that the lesion extended from the bregma -

2.70 to -3.64 with the more extended lesion including CA1, CA2 and CA3 and dentate gyrus, 

while the smallest lesion cover a portion of the CA1, CA2 and CA3 and a small portion of the 

dentate gyrus, with no lesion in the entorhinal cortex (Figure 5.1.). Our approach of excitotoxic 

lesion with high concentration of NMDA is widely used in literature, for example Pothuizen in 

2004 (Pothuizen, Zhang et al. 2004) performed excitotoxic lesion with NMDA in dorsal and 

ventral hippocampus of the rats, in which the dissociation of the two areas was made using our 

criterion; posterior hippocampus corresponding to the temporal/ventral hippocampus, while the 

Fig. 4. Schematic representation of the experimental plan. Abbreviations: D: days; EPM: elevated plus maze; MWM: 

Morris water maze; RAM: radial arm maze. 

 



31 
 

anterior portion corresponding to the septo/dorsal hippocampus. In their lesions Pothuizen found 

that dorsal hippocampus lesion is characterized by extensive cell loss and gliosis of all the three 

CA subfields of the hippocampus, CA1, CA2 and CA3 and also in the dentate gyrus. Our dorsal 

lesion is similar extending in the three CA subfields and in the more extended lesion in the 

dentate gyrus. Ventral lesion in Pothuizen are characterized by cell loss in all the ventral 

hippocampus and described two cases in which ventral lesions extended also in the temporal part 

of the dorsal hippocampus. Sometimes the lesion spared the CA1 subfield, and the lesion never 

extended in the enthorinal cortex as in our case. This approach and the dissociation of dorsal and 

ventral hippocampus based on antero-posterior bregma coordinates is used in Trivedi in 2006 

(Trivedi and Coover 2006) in which excitotoxic lesion with NMDA is performed in rats. In their 

work they found that dorsal hippocampal lesion included all the three CA subfield and the 

dentate gyrus, and in some cases in dorsal subiculum. Lesion in the ventral hippocampus 

extended in the three CA subfields, dentate gyrus and almost in all cases in the ventral 

subiculum. Also in Bannerman in 1999 (Bannerman, Yee et al. 1999), it is reported that NMDA 

lesion in dorsal and ventral hippocampus in rat’s brain, involved the three CA subfield, but in 

this case neither the dorsal nor the ventral subiculum. The anteroposterior distinction between 

the dorso and the ventral hippocampus has also been recently posed on a genetic basis by a study 

in our laboratory showing that developmental loss of function of the gene encoding for the gene 

COUP-TFI leads to a dramatic reduction of the volume dorsal/anterior hippocampus, while it 

spears the most posterior/ventral part (Flore, Di Ruberto et al. 2016).  
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Fig.5.1. (A) Grafic reconstruction of the dorsal and ventral lesion. Panel of coronal sections taken from Franklin and 

Paxinos mouse brain atlas (1998). Numbers indicate distance in millimeters from bregma. The plates show the smallest 

representative (black) and the largest representative (gray) lesion in dorsal (left) and ventral (right) hp lesioned mice. (B) 

Histological sections of a dorsal and a ventral hp lesion. Photomicrographs of a representative dorsal (upper) and 

ventral (lower) hp lesion Nissl-stained. Black arrows indicate the lesions. 
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5.2. Effect of dorsal hippocampus lesion on anxiety 

 

Performance in the elevated plus maze was tested to assess the level of anxiety in lesioned 

animals. One-way ANOVA showed that dorsal hippocampus lesion did not affect the percentage 

of time (Figure 5.2.A), [treatment (F1,17=0.230;p=0.6373)], the distance travelled [treatment 

(F1,17=1.850;p=0.1916)] (Figure 5.2.B) and the number of entries [treatment (F1, 17=0.064; 

p=0.8038)] (Figure 5.2.C) in the open arms, as well as the total total distance travelled 

[treatment (F1, 17=3.392; p=0.0830)] (Figure 5.2.D). All together, these data suggest that dorsal 

hippocampus is not involved in modulating anxiety in this task. 

      

 

 

 

 

 

Fig.5.2. Elevated plus maze. (A) Percentage of open arms time for control and dorsal hp lesioned mice. (B) Open 

arms distance. (C) Open arms entries. (D) Total distance travelled. Data are expressed as mean ± SEM. 
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5.2.1. Effect of ventral hippocampus lesion on anxiety 

 

Differently from what reported for the dorsal hippocampus, ventral hippocampus lesion 

increased the of the percentage time [treatment (F1, 25=8.806; p=0.0065)] (Figure 5.2.1.A), the 

distance [treatment (F1, 25=3.897; p=0.0595)] (Figure 5.2.1.B) and the number of entries 

[treatment (F1,25=3.279;p=0.0822)] (Figure 5.2.1.C) in open arms, as compared to control, 

although only the first measure was fully significant. The one- way ANOVA for the analysis of 

the total distance travelled showed that there were no significant differences in the total distance 

between the two experimental groups [treatment (F1,25=0.011;p=0.9179)] (Figure 5.2.D). This 

analysis suggests that ventral hippocampus is more involved than dorsal hippocampus in anxiety 

and emotional processes. 

         

      

5.3. Effect of dorsal hippocampus lesion on object WM in high memory load conditions 

 

The 6-DOT consisted of three phases; first phase of 10 minutes (T1), in which mice were free to 

explore an empty arena, a second phase of 10 minutes or 210 sec of total exploration (T2) in 

which mice had to explore six different objects, and a last phase of 5 minutes (T3) in which one 

of the objects was replaced with a new one and the other objects, called familiar objects, were 

Fig.5.2.1. Elevated plus maze. (A) Percentage of open arms time for control and ventral hp lesioned mice. Data are 

expressed as mean ± SEM. °p <0.05 ventral hp lesioned mice vs control. Duncan post - hoc analysis. (B) Open arms 

distance. (C) Open arms entries. (D) Total distance travelled. Data are expressed as mean ± SEM. 
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replaced with identical copies. In the T1 we measured the total distance travelled in the arena, we 

did not find significant differences between control and dorsal hippocampus lesioned mice 

(Figure 5.3.A). In addition, we did not observe significant differences between the two groups in 

the total exploration (Figure 5.3.B). In Sannino et al. 2012 was reported that dorsal hippocampus 

lesions impaired object WM in HML conditions. We first replicated this result showing that 

control mice explored the new object significantly more than the familiar ones, while dorsal 

hippocampus lesioned mice were not able to discriminate the new object. This analysis confirm 

that dorsal hippocampus lesion causes an impairment in object WM in HML conditions as 

demonstrated in Sannino et al., 2012 (Sannino, Russo et al. 2012) (Figure 5.3.C). 

      

5.3.1. Effect of ventral hippocampal lesion on object WM in high memory load conditions 

 

We expanded on the results obtained in the study of Sannino et al. 2012 (Sannino, Russo et al. 

2012) investigating the role of the ventral hippocampus in object WM in HML conditions using 

the 6-DOT. In the T1 we examined the total distance travelled and we did not find significant 

difference in the total distance travelled between control and ventral hippocampus lesioned mice 

Fig.5.3. 6-DOT. (A) Total distance travelled in T1 phase in control and dorsal hp lesioned mice. (B) Exploration time 

in T2 phase. (C) Exploration time in T3 phase. New indicates the new object; F1, F2, F3, F4, F5 indicate the familiar 

objects. Data are expressed as mean ± SEM *p<0.05 new object vs all the familiar objects. Duncan post - hoc 

analysis. 
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(Figure 5.3.1.A). Also for the total exploration, we did not find significant difference between 

the two experimental groups (Figure 5.3.1.B). In the T3 phase, both control and ventral 

hippocampus lesioned mice were able to discriminate the new object compared to the familiar 

ones. This analysis shows that, unlike the dorsal hippocampus, the ventral hippocampus is not 

involved in object WM in HML conditions (Figure 5.3.1.C). 

 

      

5.4. Effect of dorsal hippocampus lesion on object WM in low memory load conditions 

 

6- IOT was used as a control test for the 6-DOT, T1 phase was identical to the 6-DOT; in T2 

mice had to explore 6 identical objects (overall exploration 35 sec). During the T3 phase, an 

object was replaced with a new one, and the others with identical copies. This test represented a 

control test because being the objects identical, the memory load is low. The analysis of the 

distance travelled in T1 showed no significant difference between the two groups (Figure 

5.4.A). In addition, the analysis of the total exploration did not show significant difference 

between control and dorsal hippocampus lesioned mice (Figure 5.4.B). Duncan post - hoc 

analysis showed that control and dorsal hippocampus lesioned mice discriminate the new object 

Fig.5.3.1. 6-DOT. (A) Total distance travelled in T1 phase in control and ventral hp lesioned mice. (B) 

Exploration time in T2 phase. (C) Exploration time in T3 phase. New indicates the new object; F1, F2, F3, 

F4, F5 indicate the familiar objects. Data are expressed as mean ± SEM *p<0.05 new object vs all the 

familiar objects. Duncan post - hoc analysis. 
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compared to the familiar ones. This analysis confirms previous findings showing that the dorsal 

hippocampus is not involved in object working memory when the load of memory is low 

(Figure 5.4.C). 

      

 

5.4.1. Effect of ventral hippocampus lesion on object WM in low memory load conditions 

 

The analysis of T1 distance revealed no significant differences between the two experimental 

groups in the distance travelled and also in the total exploration (Figure 5.4.1. A, B). In the T3, 

Duncan post - hoc analysis showed that both control and ventral hippocampus lesioned mice 

were able to discriminate the new object compared to the familiar ones. This suggest that ventral 

hippocampus, as the dorsal hippocampus, is not involved in object working memory in low 

memory load conditions (Figure 5.4.1. C). 

Fig.5.4. 6-IOT. (A) Total distance travelled in T1 phase in control and dorsal hp lesioned mice. (B) Exploration 

time in T2 phase. (C) Exploration time in T3 phase. New indicates the new object; F1, F2, F3, F4, F5 indicate 

the familiar objects. Data are expressed as mean ± SEM *p<0.05 new object vs all the familiar objects. Duncan 

post - hoc analysis. 
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5.5. Effect of dorsal hippocampus lesion on spatial LTM 

 

Long-term spatial memory was measured by subjecting the animals to the Morris water maze, 

using a massive procedure. The two- way ANOVA for the latency to reach the platform during 

the training day showed that dorsal hippocampus lesion increased the latency to reach the 

platform during training [ treatment (F1,20=7.295;p=0.0137); sessions (F5,100=0.0504); sessions x 

treatment (F5,100=1.183;p=0.3229)]. Duncan post - hoc analysis showed that control mice 

reduced the latency to reach the platform in the two last sessions compared to the first session, 

while dorsal hippocampus lesioned mice did not show a significant reduction in the latency to 

reach the platform across training sessions (Figure 5.5.A). A similar although, less severe effect 

was observed with a two-way ANOVA on the distance travelled to reach the platform [treatment 

(F1,20=3.790;p=0.0657); sessions (F5,100=3.771;p=0.0036); sessions x treatment 

(F5,100=0.867;p=0.5059)]. Duncan post - hoc analysis showed that control mice, but not dorsal 

hippocampus lesioned mice, reduced the distance to reach the platform in the last session as 

compared to the first session (Figure 5.5.B). 

Fig.5.4.1. 6-IOT. (A) Total distance travelled in T1 phase in control and ventral hp lesioned mice. (B) 

Exploration time in T2 phase. (C) Exploration time in T3 phase. New indicates the new object; F1, F2, F3, F4, 

F5 indicate the familiar objects. Data are expressed as mean ± SEM *p<0.05 new object vs all the familiar 

objects. Duncan post - hoc analysis. 
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Relative time permanence in the target quadrant during the probe trial is an index of long-term 

memory. The two-way ANOVA for repeated measures on the percentage of time in quadrants 

showed that dorsal hippocampus lesion impaired the preference for the target quadrant 

[treatment (F1,20=0.908;p=0.3521); quadrants (F3,60=14.484;p<0.0001); quadrants x treatment 

(F3,60=6.592;p=0.0006)]. Duncan post - hoc analysis confirmed that while control mice spent 

more time in the quadrant in which the platform was located, the dorsal hippocampus lesioned 

mice randomly searched the platform around all four quadrants (Figure 5.5.1.A). This result was 

further confirmed with the analysis of the entries in the annulus, which gives a more precise 

indication where the platform was located [treatment (F1,20=4.094;p=0.5666); annulus 

(F3,60=9.378;p<0.001); annuli x treatment (F3,60=3.490;p=0.0210)]. Duncan post - hoc analysis 

revealed that control mice made more entries in the annulus target while dorsal hippocampus 

lesioned mice did not remember the precise location of the platform. All together, these analyses 

indicated that the lesion we performed in the dorsal hippocampus was sufficient to impair spatial 

LTM (Figure 5.5.1.B). 

 

 

Fig. 5.5. Training phase of the Morris water maze massive test. (A) Latency to reach the platform for control 

and dorsal hp lesioned mice. S1, s2, s3, s4, s5, s6 indicate the sessions. Data are expressed as mean ±SEM. 

*p<0.05 vs s1, Duncan post- hoc analysis. (B) Distance travelled to reach the platform. Data are expressed as 

mean ± SEM. *p <0.05 s6 vs s1. Duncan post - hoc analysis. 
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 5.6. Effect of ventral hippocampus lesion on spatial LTM 

 

Animals with lesion of the ventral hippocampus where much slower [treatment (F1,25=9.812; 

p=0.0044); sessions (F5,125=6.428; p<0.0001); sessions x treatment (F5,125=0.399; p=0.8486)] and 

travelled longer distance [treatment (F1,25=4.385;p=0.0466); sessions (F5,125=11.994;p<0.0001); 

sessions x treatment (F5,125=0.853;p=0.5147)] (Figure 5.6.A), as compared to control mice, to 

find the platform during training sessions. However, Duncan post - hoc analysis showed that by 

the last training sessions ventral hippocampus mice improved performance as compared to the 

very first training session (Figure 5.6. A-B).  

 

 

Fig. 5.5.1. Probe phase of the Morris water maze massive test. (A) Percentage of the time in quadrant for 

control and dorsal hp lesioned mice. Data are expressed as mean ± SEM. * p<0.05 target quadrant vs all other 

quadrants, Duncan post- hoc analysis. (B) Entries in the annulus. Data are expressed as mean ± SEM. *p<0.05 

target annulus vs all other annuli. Duncan post - hoc analysis. 

 

Fig. 5.6. Training phase of the Morris water maze massive test. (A) Latency to reach the platform for control 

and ventral hp lesioned mice. S1, s2, s3, s4, s5, s6 indicate the sessions. Data are expressed as mean ±SEM. 

*p<0.05 s5 and s6 vs s1. Duncan post- hoc analysis. (B) Distance travelled to reach the platform. Data are 

expressed as mean ± SEM. *p <0.05 vs s1. Duncan post - hoc analysis. 
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The two-way ANOVA for the percentage of time in quadrant showed that, as well as for the 

dorsal lesioned mice, ventral hippocampus lesioned mice did not show a preference for the 

correct quadrant [treatment (F1,25=1.140;p=0.2958); quadrants (F3,75=8.550;p<0.0001); quadrants 

x treatment (F3,75=3.798;p=0.0136)]; Duncan post - hoc analysis confirmed that ventral 

hippocampus lesioned mice did not spent more time in the quadrant in which the platform was 

located (Figure 5.6.1.A). These results were further confirmed by the analysis of the entries in 

the annulus in which the two-way ANOVA showed once again a lack of preference for the target 

annulus in the ventral hippocampus lesioned group [treatment (F1,25=2.665;p=0.1151); annulus 

(F3,75=12.210;p<0.0001); annuli x treatment (F3,75=3.196;p=0.0282)]. Duncan post - hoc analysis 

confirmed that ventral hippocampus lesioned mice did not rememeber the precise location of the 

platform (Figure 5.6.1.B). These data suggest an impairment in ventral hippocampus lesioned 

mice in spatial LTM as well as dorsal hippocampus lesioned mice. 

 

 5.7. Effect of dorsal and ventral lesion in spatial WM 

 

We tested the hypothesis that the dorsal and ventral hippocampus were involved in WML 

capacity. To this aim, we used mice with a selective lesion of the dorsal hippocampus and the 

ventral hippocampus. Eight arms radial maze was designed to assess the contribution of the 

information load on spatial memory. The WM load was increased increasing the number of 

open/baited arms. During the pre-training phase in the confinement procedure, only two of the 

eight arms of the radial maze were open and baited. One-way ANOVA for the mean number of 

Fig. 5.6.1. Probe phase of the Morris water maze massive test. (A) Percentage of the time in quadrant for 

control and ventral hp lesioned mice. Data are expressed as mean ± SEM. * p<0.05 target quadrant vs all other 

quadrants. Duncan post- hoc analysis. (B) Entries in the annulus. Data are expressed as mean ± SEM. *p<0.05 

target annulus vs all other annuli. Duncan post- hoc analysis. 
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errors showed that there are differences between the three experimental groups [treatment (F2, 

27=3.447; p=0.0464)], Duncan post - hoc analysis showed that ventral hippocampus lesioned 

mice made significatively more errors than dorsal hippocampus lesioned mice (Figure 5.7.), this 

could be due to the major number of the total entries of the ventral hippocampus lesioned mice 

indeed the calculation of the number of total entries showed a difference among the three 

experimental groups [ treatment (F2,27= 5.454; p=0.0102)]. Duncan post - hoc analysis showed 

that ventral hippocampus lesioned mice made more enteries than control and dorsal 

hippocampus lesioned mice (data not shown). 

        

 

 

 

 

 

In the confinement procedure, the number of open/baited arms changed from 3, 6 and 8 between 

trials and among the training days. We firstly analysed the mean number of errors at 3, 6 and 8 

open/baited arms in the five days of confinement and four days of no - confinement procedure 

for both dorsal and ventral hippocampus lesioned mice. The three-way ANOVA for repeated 

measures showed that increasing the number of open arms increased the memory load, 

depending on the procedure (confinement/no - confinement used) [procedure 

(F1,25=92.570;p<0.0001); number of open arms (F2,50=142.753;p<0.0001); procedure x number 

Fig.5.7. Mean number of errors in the pre - training phase phase. Ventral hp lesioned mice make 

significatively more errors than dorsal hp lesioned mice. Data are expressed as mean ±SEM. ° p<0.05 ventral hp 

lesioned mice vs dorsal hp lesioned mice. Duncan post - hoc analysis. 
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of open arms (F2,50=19.009;p<0.0001)]; hippocampus lesion impaired performance depending on 

the number of open arms and on the procedure, [treatment (F2,25=7.137;p=0.0035); procedure x 

treatment (F1,25=6-552;p=0.0052); number of open arms x treatment (F4,50=5.061;p=0.0017)]. No 

significant effect of the multiple interaction between procedure x number of open arms x 

treatment (F4, 50=0.443; p=0.7771) was observed (Figure 5.7.1.). 

 

       

To dissociate the effects of the dorsal and the ventral hippocampus lesion, we performed a three- 

way ANOVA for repeated measure for each of the two groups as compared to the control group. 

Dorsal hippocampus lesion impaired performance depending on the procedure (confinement/ no 

- confinement used), [treatment (F1, 14=5.464; p=0.0348); procedure (F 1, 14=78.110; p<0.0001); 

procedure x treatment (F1, 14=5.387; p=0.0359)]. Therefore, we have separately analysed the 

results for each of the two procedures with a two-way ANOVA for repeated measure and found 

a significant effect of treatment in the confinement procedure [(F1, 16=9.699; p=0.0067)]. 

Furthermore, in the confinement procedure we found that increasing the number of open/baited 

arms also leaded to an increased number of errors [number of open arms (F2, 

32=69.089;p<0.0001)]; the same result was not observed in the no - confinement procedure, in 

which the number of errors was not depended on the treatment [(F1,14=1.201;p=0.2916)]. In the 

Fig.5.7.1. Mean number of errors of the training phase in the confinement and no - confinement 

procedure of the working memory capacity radial maze task. Mean number of errors of control, dorsal 

and ventral hp lesioned mice in the five days of the confinement procedure and in four days of the no - 

confinement procedure at 3, 6 and 8 open/baited arms. Data are expressed as mean ± SEM. 
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no - confinement procedure, although the number of errors was dramatically reduced as 

compared to the confinement procedure, the number of open arm leaded to an increase in the 

number of errors in both groups [number of open arms (F2,28=38.317;p<0.0001)]. In the no - 

confinement procedure the ANOVA did not reveal a significant effect for the interaction number 

of open arms and treatment [number of open arms x treatment (F2,28=1.755;p=0.1914)], but 

Duncan post - hoc analysis showed that control mice made more errors at 6 and 8 open/baited 

arms as compared to 3 arms, while dorsal hippocampus lesioned mice made more errors at 8 

arms compared to 6 open/baited arms, also revealing that the number of errors increased with the 

number of open/baited arms. All together, these findings showed that: 1. By increasing the 

number of open/baited arms we increased the memory load in the confinement procedure; this 

effect also much less evident as compared to the confinement procedure, was also evident in the 

no confinement procedure; 2. Lesion of the dorsal hippocampus impaired performance in the 

confinement but not in the no confinement procedure, and this effect was more evident with the 

highest memory load (Figure 5.7.2.).  

   

The analysis of the mean number of errors at 3, 6 and 8 open/baited arms in the confinement and 

no - confinement procedure showed that ventral hippocampus lesion impaired performance in 

Fig.5.7.2. Mean number of errors of control and dorsal hp lesioned mice in the training phase, in the 

confinement and no - confinement procedure of the working memory capacity radial maze task. Mean 

number of errors of control and dorsal hp lesioned mice in the five days of the confinement procedure and in four 

days of the no - confinement procedure at 3, 6 and 8 open/baited arms. Data are expressed as mean ± SEM. * p 

< 0.05 vs 3 arms, within group, within procedure; # p < 0.05 vs 6 arms, within group, within procedure; ° control 

vs dorsal hp lesioned animals. Duncan post - hoc analysis. 
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both cases [treatment (F1,18=16.191;p=0.0008), procedure (F1,18=44.569;p<0.0001), procedure x 

treatment (F1,18=1.354;p=0.2597)], and the effect was dependent on the number of open/baited 

arms [number of open arms (F2,36=95.552;p<0.0001); number of open arms x treatment 

(F2,36=8.165:p=0.0012); procedure x number of open arms (F2,36=12.337;p<0.0001), procedure x 

number of open arms x treatment (F2,36=0.416;p=0.6630)]. These results suggest an involvement 

of the ventral hippocampus in spatial WM in both confinement and no - confinement procedure 

unlike the dorsal hippocampus lesioned, which is involved in the spatial WM only in the 

confinement procedure (Figure 5.7.3.). The two-way ANOVA on the confinement procedure 

showed that ventral hippocampus lesioned impaired performance depending on the number of 

open/baited arms [treatment (F1,20=12.812; p=0.0019), number of open arms (F2,40=92.955; 

p>0.0001), number of open arms x treatment (F2,40=5.202; p=0.0098)]. Duncan post - hoc 

analysis showed that ventral hippocampus lesioned mice made more errors than control mice at 8 

open/baited arms. In the no - confinement procedure we found an overlapping effect of the 

ventral hippocampus lesion [treatment (F1, 18=16.678; p=0.0007)], number of open arms [(F2, 

36=38.618; p<0.0001)], number of arms x treatment (F2, 36=7.868; p=0.0015)]. Duncan post -

hoc analysis revealed that ventral hippocampus lesioned mice made significatively more errors at 

6 and 8 open/baited arms as compared to control mice. This analysis suggests that the ventral 

hippocampus lesioned mice are impaired in spatial WM in both confinement and no - 

confinement procedure unlike dorsal hippocampus lesioned mice, which are impaired in spatial 

WM only in the confinement procedure (Figure 5.7.3.). 

                

 

 
Fig.5.7.3. Mean number of errors of control and ventral hp lesioned animals in the training phase, in 

the confinement and no - confinement procedure of the working memory capacity radial maze task. 

Mean number of errors in control and ventral hp lesioned mice in the five days of the confinement procedure 

and in four days of the no - confinement procedure at 3, 6 and 8 open/baited arms.  Data are expressed as 

mean ± SEM. *p < 0.05 vs 3 arms, within group, within procedure; # p < 0.05 vs 6 arms, within group, within 

procedure; ° p < 0.05 vs control animals, within arm, within procedure. Duncan post - hoc analysis. 
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The confinement procedure was introduced to reduce the development of the sequential strategy, 

which consists in consecutive entering in adjacent arms. The sequential strategy does not require 

the use of distal visual cues to solve the task, as it can be totally based on egocentric information. 

Another type of strategy that has been described in the radial maze (Dubreuil, Tixier et al. 2003) 

is the alternating strategy, which consists in entering in alternating arms. To evaluate the use of 

the these two strategies in the confinement and no - confinement procedure we calculated a 

strategy score (see methods) for each of them and analysed the effects of the lesion on their use 

with a three-way ANOVA for repeated measures. The analysis showed that mice used the 

sequential strategy depending on the procedure and on the interaction between procedure and the 

number of open/baited arms [procedure (F1, 25=168.851; p<0.0001); number of open arms (F2, 

50=26.061; p<0.0001); procedure x number of open arms (F2, 50=131.325; p<0.0001)]. 

Hippocampus lesion impaired the use of the sequential strategy depending on the procedure and 

on the number of open/baited arms [treatment (F2, 25=8.601; p=0.0014); procedure x treatment 

(F2, 25=11.758; p=0.0003); number of open arms x treatment (F4, 50=5.380; p=0.0011); procedure 

x number of open arms x treatment (F4, 50=12.647; p<0.0001)] (Figure 5.7.4.A). Based on these 

findings showing that during the confinement procedure animals do not rely on the sequential 

strategy, we focused the analysis on the no - confinement procedure, separately analysing the 

results for the two hippocampal lesioned groups. The sequential strategy developed differently in 

the two groups depending on the number of open/baited arms [treatment (F1, 14=5.022; 

p=0.0421), number of open arms (F2, 28=89.072; p<0.0001), number of open arms x treatment 

(F2, 28=4.781; p=0.0164)]. Duncan post - hoc analysis revealed that both control and dorsal 

hippocampus lesioned mice used the sequential strategy more when the number of open/baited 

arms is 6 and 8, as compared to 3 open/baited arms. Dorsal hippocampus mice were impaired in 

the use of the sequential strategy as compared to control only when animals were confronted 

with 8 open/baited arms (Figure 5.7.4.B). A similar impairment was observed for the ventral 

hippocampus lesioned animals [treatment (F1, 18=22.262; p=0.0002), number of open arms (F2, 

36=59.663; p<0.0001), number of open arms x treatment (F2, 36=20.875; p<0.0001)]. Duncan 

post - hoc analysis showed, however, that ventral hippocampus lesioned mice were impaired in 

the use of the sequential strategy at both 6 and 8 open/baited arms. This analysis suggests that: 1. 

The use of the sequential strategy depends on the procedure; 2. Hippocampus lesion does not 

affect the use of the sequential strategy in the confinement procedure; 3. In the no - confinement 

procedure the use of the sequential strategy increases with the increase of the number of 

open/baited arms; 4. Both the dorsal and the ventral hippocampus lesion impaired the use of the 

sequential strategy, but the effect was more evident after the ventral lesion in high memory load 

conditions (Figure 5.7.4.C). As concerning the alternating strategy, a first observation is that we 
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found score 0 when only 3 arms were open/baited. The three-way ANOVA for the score of the 

alternating strategy for the control, dorsal and ventral hippocampus lesioned mice showed that 

the three groups differently used the alternating strategy depending on the procedure 

(confinement/no - confinement used) and on the number of open/baited arms [treatment 

(F2,25=10.561;p=0.0005), procedure (F1,25=55.891;p<0.0001), procedure x treatment 

(F1,25=6.069;p=0.0071), number of open arms (F2,50=252.415;p<0.0001), number of open arms x 

treatment (F4,50=6.877;p=0.0002), procedure x number of open arms (F2,50=22.522;p<0.0001)] 

(Figure 5.2.E) (Figure 5.7.4.D). To dissociate the effects of the dorsal and the ventral 

hippocampus lesion, we performed a three- way ANOVA for repeated measures for each of the 

two groups as compared to the control group. The three-way ANOVA between control and 

dorsal hippocampus lesioned mice showed that the use of the alternating strategy was different 

between the two experimental groups depending on and on the number of open/baited arms 

[treatment (F1,14=5.582;p=0.0332); procedure (F1,14=66.802;p<0.0001), number of open arms 

(F2,28=198.911;p<0.0001); procedure x number of open arms (F2,28=22.745;p<0.0001)]. This 

effect was due to differences in the use of alternating strategy by the two experimental groups 

whose use also depended on the number of open/baited arms [treatment (F1, 14=4.485; p=0.0450); 

number of open arms (F2, 28=42.479; p<0.0001); number of open arms x treatment (F2, 28=2.890; 

p=0.0723)]. Duncan post - hoc analysis showed that dorsal hippocampus lesioned mice used the 

alternating strategy more than control mice, and this effect was evidenced by a significant 

increase in the score when switching to 6 and 8 open/baited arms (Figure 5.7.4.E). We found 

different results analysing the score of the alternating strategy for control and ventral 

hippocampus lesioned mice, indeed the three-way ANOVA showed that the use of the strategy 

was different between the two experimental groups depending on the procedure and on the 

number of open/baited arms [treatment (F1,18=16.924;p=0.0007); procedure 

(F1,18=38.664;p<0.0001); procedure x treatment (F1,18=12.336;p=0.0025); number of open arms 

(F 2,36=168.308;p<0.0001); number of open arms x treatment (F2,36=11.498;p=0.0001); procedure 

x number of open arms (F2,36=14.676;p<0.0001); procedure x number of open arms x treatment 

(F2,36=3.395;p=0.0446)]. In the confinement procedure animals with ventral hippocampus lesion 

used the alternating strategy more than the control group, independently on the number of open 

/baited arms [treatment (F1, 20=6.657; p=0.0179); number of open arms (F2, 40=164.653; 

p<0.0001); number of open arms x treatment (F2, 40=1.586; p=0.2173)]. In the no - confinment 

procedure the increase in the use of the alternating strategy as compared to the control group was 

better evidenced [treatment (F1, 18=18.752; p<0.0001); number of open arms (F2, 36=51.160; 

p<0.0001); number of open arms x treatment (F2, 36=12.999; p<0.0001)]. Duncan post - hoc 

analysis showed that ventral hippocampus lesioned mice used more the alternating strategy than 
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control mice at both 6 and 8 open/baited arms. All together these data suggest that: 1. The 

alternating strategy is predominatly used by control mice during the confinement procedure, and 

much less during the no - confinement procedure; 2. The use of alternating strategy is not 

depedent on the number of arms open/baited; 3. Ventral hippocampus lesion increases the use of 

the alternating strategy; this effect was much more evident in the no - confinement procedure 

and with an high number of open/baited arms (Figure 5.7.4.F).  
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       6. Discussion 

 

Traditionally WM was associated with dopaminergic fronto - striatal network, but recent 

evidence shows that the hippocampus has a role in WM in HML conditions. The WMC refers to 

the amount of the information that one can retain for a short period (from sec to minutes). The 

aim of this work was to study the role of dorsal and ventral hippocampus in WMC in CD1 mice 

using a neurotoxic selective dorsal and ventral hippocampal lesion approach. To study spatial 

WMC, we tested control and lesioned mice in a WMC version of the eight arms radial maze 

task; when the use of egocentric strategies was prevented by the use of a confinement procedure, 

both lesioned groups were impaired in WMC in HML conditions. Removal of confinement 

allowed control mice to switch to the use of the sequential strategy, which lowered the memory 

load, and consequently the number of errors independently on the number of arms 

opened/baited. In this condition, lesion of the ventral, but not of the dorsal hippocampus, 

impaired performance as it impaired the use of the sequential strategy. In conclusion, our results 

suggest a complementary role of the dorsal and ventral hippocampus in mediating allocentric 

spatial WMC, and a dissociation between the two subregions in mediating egocentric WMC and 

object WMC. Our data suggest that the dorsal and the ventral hippocampus regulate WMC by 

processing allocentric and egocentric spatial information, respectively. The ventral hippocampus 

is more involved in mediating the acquisition of egocentric strategies to solve the task. In 

contrast, only the dorsal part regulates WMC for objects.  

Fig. 5.7.4. Sequential and alternating strategies in the training phase in the confinement / no – confinement 

procedure of the working memory capacity radial maze task. 

(A) Score of the sequential strategy in control, dorsal and ventral hp lesioned mice in the confinement/no – 

confinement procedure at 3, 6 and 8 open/baited arms. (B) Score of the sequential strategy for control and dorsal hp 

lesioned mice in the confinement/no – confinement procedure at 3, 6 and 8 open/baited arms. # p<0.05 8 vs 6 

open/baited arms within group, within procedure; ° p <0.05 dorsal hp lesioned mice vs control, Duncan post – hoc 

analysis. (C) Score of the sequential strategy for control and ventral hp lesioned mice in the confinement/no – 

confinement procedure at 3, 6 and 8 open/baited arms. * p<0.05 8 and 6 vs 3 open/baited arms within group, within 

procedure; ° p<0.05 ventral hp lesioned mice vs control, Duncan post – hoc analysis. (D) Score of the alternating 

strategy for control, dorsal and ventral hp lesioned mice in the confinement/no – confinement procedure at 3, 6 and 8 

open/baited arms. Data are expressed as mean ± SEM. (E) Score of the alternating strategy for control and dorsal hp 

lesioned mice in the confinement/no - confinement procedure at 3, 6 and 8 open/baited arms. #p<0.05 8 vs 6 

open/baited arms within group, within procedure. Duncan post – hoc analysis. (F) Score of the alternating strategy for 

control and ventral hp lesioned mice in the confinement/no – confinement procedure at 3, 6 and 8 open/baited arms. 

# p<0.05 8 vs 6 open/baited arms within group, within procedure; °p <0.05 ventral hp lesioned mice vs control. 

Duncan post – hoc analysis. 
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 6.1. Role of the dorsal and ventral hippocampus in anxiety 

 

Ventral hippocampus is defined as a “hot hippocampus”linked to emotion and to responses to 

stress and whose dysfunction leads to affective disorder as depression (Fanselow and Dong 

2010). Here we performed the elevated plus maze, a test widely used in literature to assess the 

effect of dorsal and ventral lesion on anxiety. Our results showed that the dorsal hippocampus 

lesion did not affect behavior in this task; this result is in agreement with studies in literature 

showing that dorsal hippocampus through its connection with the enthorinal cortex, receives 

information from the visual, auditory and somatosensorial cortices (Moser and Moser 1998), and 

it is more involved in spatial learning, than in emotional processing. In line with previous lesion 

studies in rats using the same task, ventral hippocampus lesioned animals spend more time in the 

open arms, as animals receiving an anxiolytic drugs (Kjelstrup, Tuvnes et al. 2002). The ventral 

hippocampus is connected with amygdalar nuclei essential components of the Pavlovian fear 

conditioning and with caudate-medial (shell) nucleus accumbens, which has an important role in 

motivation and reward processing and hypothalamus (Fanselow and Dong 2010). Due to the 

nature of its connection, here we confirm that the ventral hippocampus is more involved in 

emotional processing.  

 

6.2. Role of the dorsal and ventral hippocampus in object WM capacity 

 

Recognition memory is defined as the capacity to recognize a previously encountered item as 

familiar and depends on the integrity of the medial temporal lobe (Squire et al, 2007). One of the 

most common task used to test object recognition memory is the NOR. When animals are 

exposed to a novel and a familiar object they spent more time exploring the novel object than the 

familiar one. Damage limited to the hippocampus are sufficient to produce an impairment in 

recognition memory in humans (Squire, Wixted et al. 2007), while in the rat there is less 

agreement about the involvement of the hippocampus, because recognition memory impairments 

could depend on the lesion size and on the length of the retention delay used in the tasks 

(Broadbent, Squire et al. 2004). Beason-Held (Beason-Held, Rosene et al. 1999) demonstrated 

that ibotenate hippocampal lesion in monkeys impaired both the delayed nonmatching to sample 

task performance and the delayed recognition span task, in which is required to the animals to 

identify a novel object in an increasing array of previously presented familiar stimuli. In a 

previous study we have modified the NOR to study object memory capacity, by increasing the 

number of different objects the animals had to explore during the study phase; using this task we 
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have previously showed that CD1 naïve male mice can discriminate up to 6 different objects (in 

the 6-DOT), and that selective lesion of the dorsal hippocampus reduced the memory capacity 

from 6 to 4 (Sannino, Russo et al. 2012). Using this task we have replicated these findings and 

expanded on them by showing that lesion of the ventral hippocampus does not affect memory 

capacity at 1 min delay. This can suggest that ventral hippocampus lesioned mice could use their 

intact dorsal hippocampus region to solve the task. Thus, we can conclude that not all the 

hippocampus is involved in object working memory capacity load, but only its dorsal region 

(Sannino, Russo et al. 2012). 

 

6.3. Role of the dorsal and ventral hippocampus in spatial LTM 

 

Morris water maze was performed to verify if the lesion in the dorsal and ventral hippocampus 

resulted in a functional damage in the same hippocampal areas classically studied in spatial LTM 

test (Moser, Moser et al. 1993, Moser 1995). Morris water maze is classically used to test spatial 

LTM in rodents (Morris 1984). In our study, we used a modified version of the protocol of the 

Morris water maze previously described (Ferretti, Sargolini et al. 2007) in which mice were 

trained with a massive training of four sessions of three trials per session in one single day. In 

our protocol, mice performed six sessions of three trials and the next day they performed the 

probe test. Our data show both lesioned groups were impaired in the acquisition of the task. In 

particular, dorsal hippocampus lesioned mice were impaired during both training and testing 

where they did not remember neither the target quadrant nor the precise location of the platform. 

These results are in agreement with previous finding using the same or a different procedures 

(Moser, Moser et al. 1993). Ventral hippocampus lesioned mice were also impaired, but the 

deficit was less severe as they reduced the latency to reach the platform in the two last sessions 

compared to the very first session. However, in the probe test ventral hippocampus lesioned mice 

as well as dorsal hippocampus lesioned mice did not remember neither the quadrant in which the 

platform is located nor the precise localization of the platform as indicated in the entries in the 

annulus. Our data suggest an involvement of both dorsal and ventral hippocampus in mediating 

spatial LTM. While the role of the dorsal hippocampus in spatial LTM has been consistently 

reported, studies on the contribute of the ventral portion to this type of memory has given 

conflicting results. Factors as the amount of training and the extend of the lesion have been 

suggested to modulate the effects of ventral hippocampus lesion on spatial memory in the water 

maze. Distributed training across 8 days could attenuate the difference between dorsal and 

ventral hippocampus lesion (de Hoz, Knox et al. 2003). Furthermore, lesion in the ventral 
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hippocampus major to the 30-50% of the total hippocampal volume are necessary to induce a 

learning deficit in the water maze (Moser, Moser et al. 1993). Taken together our results are 

consistent with these findings showing that extended lesion of the ventral hippocampus (more 

than 50% of the total hippocampus) impair water maze performance in a massive procedure. 

 

6.4. Role of the dorsal and ventral hippocampus in spatial WM capacity 

 

The eight arms radial maze designed by Olton and Samuelson in 1976 was classically used to 

test spatial memory in rodents. In their original experiments, rats were placed in the center of the 

radial maze from where they had to retrieve food placed at the end of every arms. They observed 

that rats quickly learned to retrieve food from every arm usually entering in seven of eight arms 

before entering a previously visited arm. They evaluated the percentage of correct response 

(entering in arms before re - entering in an arm previously visited); this represented the first 

approach to study spatial WM in rodents. In our study we introduced a new version of the radial 

maze (Olivito, 2016), in which the WM load was increased by increasing the number of open 

and baited arms, from 3 (low memory load condition), to 6 (intermediate memory load 

condition) and 8 (high memory load condition) in order to evaluate spatial WMC. As well as in 

the previous study, in which we have used inbred C57BL/J mice (Olivito, 2016), control animals 

increased the number of errors when the number of baited/open arms was increased, suggesting 

that this behavioral procedure can be used to tap WMC. Previous findings suggesting that to 

solve the task mice can use the visual cues present in the environment, thus creating a spatial 

map (Tolman 1948), which establishes a relation between the localization of the reward and the 

spatial stimuli (allocentric strategy). In addition, the importance of the allocentric strategy was 

defined in a study by Dudchendko in 1997 (Dudchenko, Goodridge et al. 1997), who trained rats 

in an eight arms radial maze, dividing them in three groups “clear” in which rats were brought 

into the maze in a clear container which allow them to see the external environment, an“opaque 

group” in which rats were brougth into the maze in an opaque container which did not allow 

them to see the external environemnt and a third group called “opaque + disorientating” in which 

rats were brought to the apparatus in an opaque container and also were disorientated moving the 

box in which they were contained. This study showed that rats in the clear group performed 

better because they could see the cue in the room which were in the same fixed location relative 

to the reward arms creating a spatial map (Dudchenko, Goodridge et al. 1997). But mice can 

solve the task also using a simple egocentric sequential strategy (a response learning based on 
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stimulus - response associations), as demonstrated by Olton in 1977 (Olton 1977). Thus, to 

prevent the development of the sequential strategy, we introduced a confinement procedure first 

introduced by Olton et al in 1977 (Olton 1977) and then studied by Dubreuil in 2003 (Dubreuil, 

Tixier et al. 2003). We confined mice in the center of the apparatus for 5 sec between arm 

choices. This procedure efficiently prevented the use of the sequential strategy in control mice. It 

must be said, however, that this procedure also increased the delay, as previously argued by 

Dubrueil (Dubreuil, Tixier et al. 2003). Although, this difference in the delay might account for 

some of the differences between the confinement and the no-confinment procedures, it does 

likely not account for the difference in the use of egocentric strategy. Indeed, in a previous study 

(Dubreuil, Tixier et al. 2003) using three different delays of confinement, 0, 5 and 10 sec, it was 

shown that even a confinement of 0 sec was sufficient to reduce the use of the sequential 

strategy. During the confinement procedure control animals used the alternating strategy. In our 

study we found that in the confinement procedure the number of errors was memory load-

dependent in all three experimental groups; the impairment induced by hippocampal lesion was 

also memory load dependent. Both subregions are involved in spatial WM, but the effect is 

memory load dependent as it was significant only when all 8 arms were open. When animals 

were allowed to switch to the no - confinment procedure the number of errors dramatically 

dropped, likely due to the use of the sequential strategy. When switching to the no - confinement 

procedure mice with dorsal hippocampus lesion reduced the number of errors as well as control 

animals. In contrast, ventral hippocampus lesioned mice were impaired also in the confinement 

procedure. These data suggested that the ventral hippocampus is involved in the acquisition of 

the sequential strategy; accordingly, previous findings showed c-fos activation in the ventral 

CA1 subfield in animals trained to use an egocentric strategy in a starmaze task (Fouquet, 

Babayan et al. 2013). In addition, electrophysiological studies suggested that in ventral 

hippocampus cells respond to nonspatial information (Royer, Sirota et al. 2010), and ventral 

CA3 cells are more sensitive to locate maze cues than extramaze landmarks (Olton 1979, 

Thompson and Best 1989), and that the nonspatial factors that affect the firing of CA3 ventral 

hippocampus cells are more strongly correlated by the reward and emotional features (Royer, 

2010). It has also been demonstrated that ventral hippocampus has a role in temporal order 

memory, the capacity to distinguish between two spatial localization visited at different points in 

the time (Wong, Howland et al. 2007). This could also explain the major role of the ventral 

hippocampus in the sequential strategy, which requires remembering a succession of actions.We 

therefore asked wether ventral hippocampus lesioned mice relyed on a different spatial strategy 

to solve the task, and analized the use of the alternating strategy. Alternating strategy which is 

defined in Dubreuil in 2003 (Dubreuil, Tixier et al. 2003) as entering in two arms separated by 
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one arm. He found that mice confined for 0 sec increased the use of alternating strategy 

compared to sequential one. Alternating strategy was predomintaly used by control and dorsal 

hippocampus lesioned mice during the confinement procedure, with 6 and 8 arms, and prontly 

abandoned in the no – confinement procedure when they could switch to the sequential one. This 

strategy shift was not observed in ventral hippocampus lesioned mice which continued to use the 

alternating strategy also in the no – confinement procedure. This finding suggests that the 

impairment in the use of the sequential strategy might be due to either an impairment in 

egocentric WM, but also in behavioral switching: switching from alternating to sequential 

depending on the task demand. To address this question we are testing another experimental 

group in the no - confinement not preceded by the confinement procedure. Finally, our results 

suggest that both dorsal and ventral hippocampus are involved in spatial WM in HML conditions 

with dorsal hippocampus selectively involved in allocentric spatial WM, and the ventral 

hippocampus involved in both allocentric and egocentric spatial WM.  

 

 7. General conclusions 

 

The data we presented in this study are important in elucidating the distinct role of dorsal and 

ventral hippocampus in working memory capacity. Our data suggest that both dorsal and ventral 

hippocampus are impaired in spatial WM. Previous findings reported that the hippocampus is 

involved in spatial WM in the radial maze, even when a single arm is open/baited. This is not 

consistent with our findings showing a memory capacity-dependent role of both subregions. This 

difference might be due to the fact that in these previous study a total hippocampal damage was 

performed, that might have had additive negative effects on the performance (Dubreuil, Tixier et 

al. 2003). A similar overlapping role between the two subregions is observed for spatial LTM. 

These behavioral findings are also consistent with electrophysiological evidence (Poucet, 

Thinus-Blanc, 1994) showing that place cells are also present in the ventral hippocampus, and 

their positional firing patterns are characterised by place fields, as the dorsal place cells. All 

together, these findings suggest that the hippocampus could act as a unitary structure along its 

septo-temporal axis in processing allocentric spatial information, and that in condition of low 

memory load a spearing of one of the subregions can compensate for the dysfunction of the other 

part. In contrast, in conditions of high memory load the whole hippocampus is recruited in the 

task. Our study confirm previous findings suggesting an interesting dissociation between the two 

subregions in processing egocentric spatial information; our findings expand on these previous 

evidence showing that the impairment in the use of the sequential strategy is memory load 
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dependent. This suggests that the ventral hippocampus might be recruited into egocentric tasks 

only in condition of long sequences of actions. Electrophysiological studies suggested that in 

ventral hippocampus cells respond to nonspatial information (Royer, Sirota et al. 2010), and 

ventral CA3 cells are more sensitive to locate maze cues than extramaze landmarks (Olton 1979, 

Thompson and Best 1989), and that the nonspatial factors that affect the firing of CA3 ventral 

hippocampus cells are more strongly correlated by the reward and emotional features (Royer, 

2010. The role of the ventral hippocampus in processing action-related egocentric information is 

in line with its connections with the limbic system, and its role in modulating emotional memory 

and behavior. The ventral hippocampus projects to the striatum, and through this pathway, it 

might control action selection. In contrast, only the dorsal part regulates WMC for objects 

(Sannino, Russo et al. 2012). WM impairment are at the base of several human disorders as well 

as schizophrenia and schizophrenia – spectrum disorders or autism spectrum disorders. 

Understanding the neural mechanisms at the base of WM and WMC could be important in 

contributing to the investigation of these kind of cognitive human deficits. 
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