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Abstract

We consider a reaction-di�usion equation on a network subjected

to dynamic boundary conditions, with time delayed behaviour, also

allowing for multiplicative Gaussian noise perturbations. Exploiting

semigroup theory, we rewrite the aforementioned stochastic problem

as an abstract stochastic partial di�erential equation taking values in

a suitable product Hilbert space, for which we prove the existence and

uniqueness of a mild solution. Eventually, a stochastic optimal control

application is studied.
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1 Introduction

Recent years have seen an increasing attention to the study of di�usion
problems on networks, especially in connection with the theory of stochastic
processes. In fact, there is a broad area of possible applications where the
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mathematical use of graphs and random dynamics stated on them, play a
crucial role, as in the case, e.g., of quantum mechanics, see, e.g. [36], the
books [24, 31] and references therein; in neurobiology, as an example concern-
ing the study of stochastic system of the FitzHugh-Nagumo type, see, e.g.,
[1, 2, 3, 8, 10]; or in �nance, see, e.g., [6, 14, 15, 26] and references therein,
particularly in the light of numerical applications, see, e.g., [18]

Concerning the aforementioned ambit, a possible approach which has
shown to be particularly useful, is to introduce a suitable in�nite dimen-
sional space of functions that takes into account the underlying graph domain
and then tackle the di�usion problem exploiting both functional analytic
tools and in�nite dimensional analysis. This technique had led to a system-
atic study of Stochastic Partial Di�erential Equations (SPDEs) on networks,
showing that it is in general possible to rewrite a di�usion problem de�ned
on a network in a general abstract form, see, e.g., [8, 10, 11, 19], and the
monograph [33] for a detailed introduction to the subject.

One of the main issues that appears in rewriting the initial problem into
an operatorial abstract setting, is to choose the right boundary conditions
(BC), that the di�usion problem has to satisfy. In order to overcome the
latter, a systematic study of abstract SPDE equipped with di�erent possible
BC has been carried up during last years. The typical conditions when one
has to deal with di�usion problems governed by a second order di�erential
operator are the so-call generalized Kirchho� conditions, see, e.g., [32]. Nev-
ertheless rather recently, di�erent types of general BC has been proposed,
such as non-local BC, allowing for non-local interaction of non-adjacent ver-
tex of the graph, see, e.g., [10, 19], or dynamic BC, see, e.g., [8, 34], or also
mixed type BC, allowing for both static and dynamic non-local boundary
conditions, see, e.g., [13].

In the present work we consider a new type of non-local BC. In fact,
in any of the aforementioned works, only non-local spatial BC have been
considered, while we will focus our attention on boundary conditions which
are non-local in time. We refer to [27, 28, 29, 37], and references therein,
for concrete applications that can be potentially studied in the light of the
approach that we develop in our work.

In particular, our study exploits the theory of delay equations, see, e.g.,
[4, 5], so that we will lift the time-delayed boundary conditions to have values
in a suitable in�nite dimensional path space, showing that the corresponding
di�erential operator does in fact generate a strongly continuous semigroup
on an appropriate space of paths.

The work is structured as follows: in Sec. 2 we will introduce the setting
and the main notations; in Sec. 3, exploiting the theory of delay operators,
we will introduce the in�nite dimensional product space we will work in, also
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showing that we can rewrite our equation as an in�nite dimensional problem
where the di�erential operator generates a strongly continuous semigroup,
this immediately lead to the wellposedeness of the abstract Cauchy prob-
lem; in Sec. 4 we will introduce a stochastic multiplicative perturbation of
Brownian type, showing the existence and uniqueness of a mild solution, in
a suitable sense, under rather mild assumptions on the coe�cients; �nally,
in Sec. 5, we provide an application of the developed theory to a stochastic
optimal control problem.

2 General framework

Let us consider a �nite, connected network identi�ed with a �nite graph
composed by n ∈ N vertices v1, . . . , vn, and by m ∈ N edges e1, . . . , em
which are assumed to be normalized on the interval [0, 1]. Moreover, we
will assume that on the nodes v1, . . . , vn of G are endowed with dynamic
boundary conditions to be speci�ed later on.

We would like to recall that in [11, 13, 19], a di�usion problem has been
considered, stated on a �nite graph, where the boundary conditions exhibit
non-local behaviour, namely what happens on a given node also depends
on the state of the remaining nodes, even without a direct connection. In
the present work, we will consider a di�erent type of non-local condition,
studying a di�usion on a �nite graph where the boundary conditions, at a
given time, are a�ected by the present value of the state equation on each
nodes, as well as by the past values of the underlying dynamic.

In particular we exploiting the semigroup theory, see, e.g. [21] for a
detailed introduction to semigroup theory and [33] to what concerns its ap-
plication on networks, to show how to rephrase our main problem as an
abstract Cauchy problem, so that the well posedness of the solution will be
linked to the fact that a certain matrix operator generates a C0−semigroup
on a suitable, in�nite dimensional, space.

In what follows we will employ the following notation: we will use the
Latin letter i, j, k = 1, . . . ,m, m ∈ N+, to denote the edges, hence ui it will
be a function on the edge ei, i = 1, . . . ,m; while we will use Greek letters
α, β, γ = 1, . . . , n, n ∈ N+, to denote the vertexes, consequently dα it will be
a function evaluated at the node vα, α = 1, . . . , n.

To describe the graph structure we use the so-called incidence matrix

Φ = (φα,i)(n+1)×m, de�ned as Φ := Φ+−Φ−, where Φ+ =
(
φ+
α,i

)
(n+1)×m, resp.

Φ− =
(
φ−α,i
)

(n+1)×m, is the incoming incidence matrix, resp. the outgoing

incidence matrix. Let us note that φ+
α,i, resp. φ

−
α,i, takes value 1 whenever
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the vertex vα is the initial point, resp. the terminal point, of the edge ei, and
0 otherwise, that is it holds

φ+
α,i =

{
1 vα = ei(0) ,

0 otherwise
, φ−α,i =

{
1 vα = ei(1) ,

0 otherwise
,

moreover, if |φα,i| = 1, the edge ei is called incident to the vertex vα and
accordingly, we de�ne

Γ(vα) = {i ∈ {1, . . . ,m} : |φαi| = 1} ,

as the set of incident edges to the vertex vα.
Taking into consideration the above introduced notations, we state the

following di�usion problem on the �nite and connected graph G



u̇j(t, x) =
(
cju
′
j

)′
(t, x) , t ≥ 0 , x ∈ (0, 1) , j = 1, . . . ,m ,

uj(t, vα) = ul(t, vα) =: dα(t) , t ≥ 0 , l, j ∈ Γ(vα) , j = 1, . . . ,m ,

ḋα(t) = −
∑m
j=1 φjαu

′
j(t, vα) + bαd

α(t) +
∫ 0

−r d
α(t+ θ)µ(dθ) , t ≥ 0 , α = 1, . . . , n ,

uj(0, x) = u0j (x) , x ∈ (0, 1) , j = 1, . . . ,m ,

dα(0) = d0α , α = 1, . . . , n ,

dα(θ) = η0α(θ) , θ ∈ [−r, 0] , α = 1, . . . , n .

(1)

where µ ∈M([−r, 0]) andM([−r, 0]) is the set of Borel measure on [−r, 0],
being r > 0 a �nite constant. Before state the main assumptions concerning
the terms appearing in (1), let us make the following

Remark 2.1. We would like to underline that the approach we are going to
develop can be generalized, exploiting the same techniques, to the case where
only 0 < n0 < n nodes have dynamics conditions, whereas the remaining
n − n0 nodes exhibit standard Kirchho� type conditions. Since our interest
mainly concerns the study of dynamic boundary conditions, and to consider
a mixed boundary type conditions does not a�ect neither the approach nor
the �nal result, for the sake of simplicity we will assume that all the n nodes
composing the graph are endowed with dynamic boundary conditions.

With respect to the de�nition of the terms we have introduced in (1), in
order to consider the di�usion problem on G , we assume the following to
hold

Assumptions 2.2. (i) for any j = 1, . . . ,m, the function cj ∈ C1([0, 1]), while
c(x) > 0 for a.a. x ∈ [0, 1];
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(ii) for any α = 1, . . . , n, we have that bα ≤ 0, moreover there exists at least
one α ∈ {1, . . . , n}, such that bα < 0.

The typical approach concerning the study of delay di�erential equations
consists in lifting the underlying process, which originally takes values in a
�nite dimensional space, to a suitable in�nite dimensional path space, usually
the space of square integrable Lebesgue functions or the space of continuous
functions.

In particular, we consider the following Hilbert spaces

X2 :=
(
L2([0, 1])

)m
, Z2 := L2([−r, 0];Rn) ,

X 2 := X2 × Rn , E2 := X 2 × Z2 ,

equipped with the standard graph norms and scalar products. Since we
are interested in applying the aforementioned lifting procedure to rewrite
the dynamic of the Rn−valued process d as it takes values in an in�nite
dimensional space, we introduce the notion of segment. In particular, we
consider the process d : [−r, T ] → Rn, and, for any t ≥ 0, we de�ne the
segment as

dt : [−r, 0]→ Rn , [−r, 0] 3 θ 7→ dt(θ) := d(t+ θ) ∈ Rn . (2)

As it is standard in dealing with delay equation, we denote by d(t) the present
Rn−value of the process d, whereas dt stands for the segment of the process
d, i.e. dt = (d(t+ θ))θ∈[−r,0]. More precisely, we have

u(t) := (u1(t), . . . , um(t))T ∈ X2 ,

d(t) :=
(
d1(t), . . . , dn(t)

)T ∈ Rn ,

dt :=
(
d1
t , . . . , d

n
t

)T ∈ Z2 .

Exploiting latter notations, we can rewrite the system (1), as follows

u̇(t) = Amu(t) , t ∈ [0, T ] ,

ḋ(t) = Cu(t) + Φdt +Bd(t) , t ∈ [0, T ] ,

ḋt = Aθdt , t ∈ [0, T ] ,

Lu(t) = d(t) ,

u(0) = u0 ∈ X2 , d0 = η ∈ Z2 , d(0) = d0 ∈ Rn ,

(3)

where Am is the di�erential operator de�ned by

Amu(t, x) =


∂
∂x

(
cj(x) ∂

∂x
u1(t, x)

)
0 0

0
. . . 0

0 0 ∂
∂x

(
cm(x) ∂

∂x
um(t, x)

)
 ,
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and such that Am : D(Am) ⊂ X2 → X2, with domain

D(A) :=
{
u ∈

(
H2([0, 1])

)m
: ∃d ∈ Rn : Lu = d

}
,

where L : (H1([0, 1]))
m → Rn is the following boundary evaluation operator

Lu(t, x) :=
(
d1(t), . . . , dn(t)

)T
, dα(t) := uj(t, vα) , j ∈ Γ(vα) .

We underline that the operator (A,D(A)) just de�ned, generates a C0−semigroup
on the space X2, see, e.g., [8, 19, 32]. Moreover, in writing system (3), we
also made use of the so-called feedback operator C : D(A) → Rn, which is
de�ned as follows

Cu(t, x) :=

(
−

m∑
j=1

φj1u
′
j(t, v1), . . . ,−

m∑
j=1

φjnu
′
j(t, vn)

)T

,

furthermore, we have set B to be the following n× n diagonal matrix

B =

 b1 0 0

0
. . . 0

0 0 bn

 ,

where bα, α = 1, . . . , n, satisfy assumptions 2.2; also the operator

Φ : C([−r, 0];Rn)→ Rn , (4)

de�ned by

Φ(η) =

∫ 0

−r
η(θ)µ(dθ) , (5)

where µ is a measure of bounded variation. Notice that a particular case
of the present situation is the discrete delay case, that is µ = δx0 , being δx0
the Dirac measure centred at x0 ∈ [−r, 0). Eventually, we have denoted by
Aθ : D(Aθ) ⊂ Z2 → Z2, the linear di�erential operator de�ned by

Aθη :=
∂

∂θ
η(θ) , D(Aθ) = {η ∈ H1([−r, 0];Rn) : η(0) = d0} ,

where the derivative ∂
∂θ

has to be intended as the weak distributional deriva-
tive in Z2.

Remark 2.3. A particular case of the setting introduced above is given by
choosing the so-called continuous delay operator Φdt =

∫ 0

−r d
u(t + θ)µ(dθ),

which ensures that (1) satis�es the aforementioned assumptions. Another



On the in�nitesimal generator 7

possible choice is represented by the discrete delay operator Φdt = du(t− r),
which is obtained by the previous one taking µ = δ−r, where δ−r is the Dirac
delta centered at −r. In what follows we do not specify the particular form
of the delay operator, in order to prove our results in the general case of a
bounded linear operator Φ.

Summing up the previously introduced notation, we can rewrite equation
(3) more compactly, namely{

u̇(t) = Au(t) , t ∈ [0, T ] ,

u(0) = u0 ∈ E2 ,
(6)

where u(t) := (u(t), d(t), dt)
T , u0 := (u0, d

0, η) ∈ E2, and the operator A is
de�ned as

A :=

 Am 0 0
C B Φ
0 0 Aθ

 , (7)

with domain D(A) := D(Am)×D(Aθ). We will show later that the matrix
operator (A, D(A)) in equation (7), generates a C0−semigroup on the Hilbert
space E2, which implies the wellposedness as well as the uniqueness of the
solution, in a suitable sense, for the equation (6).

3 On the in�nitesimal generator

The present section will be mainly dedicated to the study of the operator
de�ned in equation (7), aiming at proving that it generates a C0−semigroup.
For the sake of completeness, we recall that the operator A generates a
strongly continuous semigroup in the case that no delay on the boundary
is taken into account. In fact, according to the notation introduced within
section 2, if we consider the operator

Aa :=

(
Am 0
C B

)
, (8)

with domain

D(Aa) :=
{
u = (u, d) ∈ X 2 : u ∈ D(Am) , uj(vα) = dα j ∈ Γ(vα)

}
, (9)

then we have the following result.

Proposition 3.1. Let assumptions 2.2 hold true, then the operator (Aa, D(Aa))
is self-adjoint, dissipative and has compact resolvent. In particular Aa gen-

erates an analytic C0−semigroup of contractions on the Hilbert space X 2.
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Moreover, the semigroup (Ta(t))t≥0, generated by Aa, is uniformly exponen-

tially stable.

Proof. A proof of the claim can be found in [8, Prop. 2.4], as well as in
[34, Cor 3.4], nevertheless we give a sketch of it to better clarify the type
of methods involved. We consider the sesquilinear form a : Va × Va → R,
de�ned, for any u = (u, d), v = (v, h) ∈ X 2, by

a(u,v) =
m∑
j=1

∫ 1

0

cj(x)u′j(x)v′j(x)dx+
n∑

α=1

bαd
αhα . (10)

and with dense domain Va ⊂ X 2 de�ned as follows

Va :=
{
u = (u, d) ∈ X 2 : u ∈

(
H1(0, 1)

)m
,

uj(vα) = dα , α = 1, . . . , n , j ∈ Γ(vα)} .

Exploiting [34, Lemma 3.2], it can be shown that the form a is symmetric,
closed, continuous and positive, then, by [34, Lemma 3.3], it is associated to
the operator (Aa, D(Aa)), and the result follows by using classical results on
sesquilinear forms, see, e.g., [35].

Using the operator de�ned in (8)�(9), and exploiting a well known per-
turbation result, it is possible to show that the operator (A, D(A)) generates
a C0−semigroup. We will �rst prove that the diagonal operator de�ned as

A0 :=

(
Aa 0
0 Aθ

)
, D(A0) = D(A) , (11)

generates a C0−semigroup on the Hilbert space E2.

Theorem 3.2. Let assumptions 2.2 hold true, then the matrix operator

(A0, D(A0)), de�ned in equation (11), generates a C0−semigroup given by

T0(t) =

 Ta(t) 0

0
0 Tt T0(t)

 , (12)

where Ta is the C0−semigroup generated by (Aa, D(Aa)), see equations (8)-
(9), T0(t) is the nilpotent left-shift semigroup

(T0(t)η) (θ) :=

{
η(t+ θ) t+ θ ≤ 0 ,

0 t+ θ > 0 ,
, η ∈ Z2 , (13)
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and Tt : Rn → Z2 is de�ned by

(Ttd) (θ) :=

{
e(t+θ)Bd −t < θ ≤ 0 ,

0 −r ≤ θ ≤ −t ,
, d ∈ Rn , (14)

e(t+θ)B being the semigroup generated by the �nite dimensional n× n matrix

B, as follows

etB :=
∞∑
i=0

(tB)i

i!
.

Proof. From the strong continuity of Ta and T0(t) and exploiting the equation
(14), we have that the semigroup T0(t), see equation (12), is strongly contin-
uous. Hence, we can compute the resolvent for the semigroup (12), showing
that the corresponding generator is given by (11). To what concerns the
resolvent of the operator A0, namely R(λ,A0), we thus have

R(λ,A0)X =

∫ ∞
0

e−λtT0(t)Xdt , λ ∈ C , X ∈ E2 .

Let us take u := (u, d) ∈ D(Aa) and η ∈ H1([−r, 0];Rn), such that the
following holds

(λ− Aa) (u, d)T = (v, dv)T , (v, h)T ∈ X 2 , (15)

λη − η′ = ζ , η(0) = d , ζ ∈ Z2 , , (16)

then a solution to equation (16) is given by

η(θ) = eλθ
(
d+

∫ 0

θ

e−λtζ(t)dt

)
.

Moreover, if we indicate with A0
θ the in�nitesimal generator of the nilpotent

left shift, namely

A0
θη = η′ D(A0

θ) = {η ∈ H1([−r, 0];Rn) : η(0) = 0} ,
we have that its resolvent is given by(

R(λ,A0
θ)ζ
)

(θ) = eλθ
∫ 0

θ

e−λtζ(t)dt ,

see, e.g., [21], therefore, taking Y = (v, h, ζ)T , the resolvent for A0 reads as
follows

R(λ,A0)Y =
(
R(λ,Aa)(v, h), eλθR(λ,B)h+R(λ,A0

θ)ζ
)T

=

=

 R(λ,Aa) 0

0
0 eλθR(λ,B) R(λ,A0

θ)(t)

Y .
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Summing up, the result follows noticing that∫ ∞
0

e−λt (Ttd) (θ)dt =

∫ ∞
−θ

e−λte(t+θ)Bd(t)dt =

= eλθ
∫ ∞

0

e(t+θ)Bd(t)dt = eλθR(λ,B) ,

so that, we have

R(λ,A0) =

∫ ∞
0

e−λtT0(t)dt ,

which implies that the semigroup (T0(t))t≥0, de�ned in equation (12), is gen-
erated by (A0, D(A0)) in (11).

In what follows we prove that the matrix operator (A, D(A)) (7) generates
a C0−semigroup on the Hilbert space E2, exploiting a perturbation approach.
In particular, we exploit �rstly the Miyadera-Voigt perturbation theorem, see,
e.g., [21, Cor. III.3.16], which states the following

Theorem 3.3. Let (G,D(G)) be the generator of a strongly continuous semi-

group (S(t))t≥0, de�ned on a Banach space X, and letK ∈ L ((D(G), ‖ · ‖G) ;X).
Assume that there exist constants t0 > 0 and 0 ≤ q < 1, such that∫ t0

0

‖KS(t)x‖dt ≤ q‖x‖ , ∀x ∈ D(G) . (17)

Then (G+K,D(G)) generates a strongly continuous semigroup (U(t))t≥0 on

X, which satis�es

U(t)x = S(t)x+

∫ t

0

S(t− s)KU(s)xds , (18)

and ∫ t0

0

‖KU(t)x‖dt ≤ q

1− q
‖x‖ , ∀x ∈ D(G) , t ≥ 0 .

Let us now to consider the operator matrix

A1 :=

 0 0 0
0 0 Φ
0 0 0

 ∈ L (D(A0), E2
)
,

where Φ is the delay operator de�ned in equation (4). Exploiting Theorem
3.3 we show that, under a suitable assumption on Φ, the matrix operator
A = A0 +A1 generates a C0−semigroup on E2.
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Theorem 3.4. Let assumptions 2.2 hold true, then the operator (A, D(A))
de�ned in equation (7), generates a strongly continuous semigroup.

Proof. The result follows applying the Miyadera-Voigt perturbation theorem

3.3, together with the assumption for the delay operator Φ to be bounded,
see equation (4), therefore the perturbation operator A1 is bounded. In fact,
from the boundness of Φ, we have that, for X = (u, d, η)T , it holds∫ t0

0

|A1T0(t)X| dt =

∫ t0

0

|Φ (Ttd+ T0(t)η)| dt .

Thus, following [5, Example 3.1 (b)] we have that, denoting in what follow
by |µ| the positive Borel measure de�ned by the total variation of the measure
µ,∫ t

0

|Φ (Tsd+ T0(s)η)| ds =

∫ t

0

∣∣∣∣∫ −s
−r

η(s+ θ)µ(dθ) +

∫ 0

−s

(
e(s+θ)Bd

)
µ(dθ)

∣∣∣∣ ds ≤
≤
∫ t

0

∫ −s
−r
|η(s+ θ)| |µ|(dθ)ds+

∫ t

0

∫ 0

−s

∣∣e(s+θ)Bd
∣∣ |µ|(dθ)ds ≤

≤
∫ 0

−t

∫ 0

θ

|η(s)| ds|µ|(dθ) +

∫ −t
−r

∫ t+θ

θ

|η(s)| ds|µ|(dθ) +

∫ t

0

sup
s∈[0,r]

∣∣esB∣∣ |d||µ|ds .
Denoting now by

K := sup
s∈[0,r]

∣∣esB∣∣ ,
we have∫ 0

−t

∫ 0

θ

|η(s)| ds|µ|(dθ) +

∫ −t
−r

∫ t+θ

θ

|η(s)| ds|µ|(dθ) +

∫ t

0

K|d||µ|ds ≤

≤
∫ 0

−t

√
−θ ‖η‖2 |µ|(dθ) +

∫ −t
−r

√
t ‖η‖2 |µ|(dθ) + tK|d||µ| ≤

≤
∫ 0

−r

√
t ‖η‖2 |µ|(dθ) + tK|d||µ| =

(√
t‖η‖2 + tK|d|

)
|µ| .

Choosing thus t0 small enough such that

q :=
√
t0K|µ| < 1 ,

we have that ∫ t0

0

‖Φ (Ttd+ T0(t)η) ‖dt ≤ q‖(η, d)‖ ,

choosing thus t0 such that equation (17) is satis�ed, the claim therefore
follows.
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We note that Theorem3.4 holds for more general type of delay operators,
namely taking into consideration weaker assumptions on its de�nition. In
fact, by the result contained in [4, Th. 1.17], we have that (A, D(A)), de�ned
in equation (7), generates a strongly continuous semigroup for a general
operator

Φ : H1([−r, 0];Rn)→ Rn ,

provided that there exist t0 > 0 and 0 < q < 1 such that∫ t0

0

‖Φ(Stu + T0(t)η)‖dt ≤ q‖(u, η)‖ .

Remark 3.5. The Miyadera-Voigt perturbation theorem 3.3 implies that the
perturbed semigroup (T (t))t≥0 is given in terms of the Dyson�Phillips series

T (t)x =
∞∑
n=0

T n(t)x , (19)

where each operator T n(t)x is de�ned inductively as

T 0(t)x := T0(t)x ,

and

T n(t)x :=

∫ t

0

T n−1(t− s)A1T0(s)xds . (20)

4 The perturbed stochastic problem

In the present section we study the system de�ned in (1) perturbed
by a multiplicative Gaussian noise. We will carry out our analysis with
respect to the following standard, complete and �ltered probability space(
Ω,F , (Ft)t≥0 ,P

)
, then we de�ne the following system



u̇j(t, x) =
(
cju
′
j

)′
(t, x) + gj(t, x, uj(t, x))Ẇ 1

j (t, x) ,

t ≥ 0 , x ∈ (0, 1) , j = 1, . . . ,m ,

uj(t, vα) = ul(t, vα) =: dα(t) , t ≥ 0 , l, j ∈ Γ(vi) , j = 1, . . . ,m ,

ḋα(t) = −
∑m
j=1 φjαu

′
j(t, vα) + bαd

α(t) +
∫ 0

−r d
α(t+ θ)µ(dθ) + g̃α(t, dα(t), dαt )Ẇ 2

α(t, vα) ,

t ≥ 0 , α = 1, . . . , n ,

uj(0, x) = u0j (x) , x ∈ (0, 1) , j = 1, . . . ,m ,

dα(0) = d0α , α = 1, . . . , n ,

dα(θ) = η0α(θ) , θ ∈ [−r, 0] , α = 1, . . . , n .

(21)
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whereW 1
j andW

2
α, j = 1, . . . ,m, α = 1, . . . , n0, are independent Ft−adapted

space time Wiener processes to be speci�ed in a while, and Ẇ indicates the
formal time derivative. In particular W 1

j , j = 1, . . . ,m, is a space time
Wiener process taking values in L2(0, 1), consequently we denote by W 1 =
(W 1

1 , . . . ,W
1
m) a space time Wiener process with values in X2 := (L2(0, 1)

m
.

Similarly, we have that each W 2
α, α = 1, . . . , n, is a space time Wiener pro-

cess with values in R, so that we denote byW 2 = (W 2
1 , . . . ,W

2
n) the standard

Wiener process with values in Rn. Eventually, we indicate byW := (W 1,W 2)
a standard space time Wiener process with values in X 2 := X2 × Rn.

In what follows we require both the assumptions stated in 2.2, as well as
the following

Assumptions 4.1. (i) The functions

gj : [0, T ]× [0, 1]× R→ R , j = 1, . . . ,m ,

are measurable, bounded and uniformly Lipschitz with respect to the
third component, namely there exist Cj > 0 and Kj > 0, such that, for
any (t, x, y1) ∈ [0, T ] × [0, 1] × R and (t, x, y2) ∈ [0, T ] × [0, 1] × R, it
holds

|gj(t, x, y1)| ≤ Cj , |gj(t, x, y1)− gj(t, x, y2)| ≤ Kj|y1 − y2| ;

(ii) The functions

g̃α : [0, T ]× R× Z2 → R , α = 1, . . . , n0 ,

are measurable, bounded and uniformly Lipschitz with respect to the
second component, namely there exist Cα > 0 and Kα > 0, such that,
for any (t, u, η) ∈ [0, T ]×R×Z2 and (t, v, ζ) ∈ [0, T ]×R×Z2, it holds

|g̃α(t, u, η)| ≤ Cα , |g̃α(t, u, η)− g̃α(t, v, ζ)| ≤ Kα(|u− v|n + |η− ζ|Z2) .

Using previously introduced notations, the problem in (21) can be rewrit-
ten as the following abstract in�nite dimensional Cauchy problem{

dX(t) = AX(t)dt+G(t,X(t))dW (t) , t ≥ 0 ,

u(0) = u0 ∈ E2 ,
(22)

where A is the operator introduced in (7), the map G is de�ned as the
following application

G : [0, T ]× E2 → L(X 2; E2) ,
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being L(X 2; E2) the space of linear and bounded operator from X 2 to E2,
equipped with standard norm | · |L, other terms are intended such as they
have been de�ned within Sec. 3, andW = (W 1,W 2) is a X 2−valued standard
Brownian motion.

In particular, if X = (u, η)T = (u, y, η) ∈ E2, and v = (v, z) ∈ X 2, then
G is de�ned as

G(t,X)v = (σ1(t, u)v, σ2(t, y, η)z, 0)T , (23)

with

(σ1(t, u)v) (x) = (g1(t, x, u1(t, x)), . . . , gm(t, x, um(t, x)))T ,

σ2(t, y, η)z = (g̃1(t, y1, η)z1, . . . , g̃n(t, yn, η)zn)T .

Our next step concerns how to obtain a mild solution to equation (22),
namely a solution de�ned in the following sense

De�nition 4.1.1. We will say that X is mild solution to equation (22) if it is
a mean square continuous E2−valued process, adapted to the �ltration gen-
erated by W , such that, for any t ≥ 0, we have that X ∈ L2 (Ω, C([0, T ]; E2))
and it holds

X(t) = T (t)X0 +

∫ t

0

T (t− s)G(s,X(s))dW (s) , t ≥ 0 . (24)

In general, in order to guarantee the existence and uniqueness of a mild
solution to equation (22), we have to require that

G : [0, T ]× E2 → L2(X 2; E2) ,

being L2(X 2; E2) the space ofHilbert-Schmidt operator from X 2 to E2 equipped
with its standard norm denoted as | · |HS, see, e.g., [16, Appendix C]. Never-
theless , when dealing with a di�usion problem where the leading term is a
second order di�erential operator, it is enough to require that G takes value
in L(X 2; E2) since, in this particular case, the map G inherits the needed
regularity from the analytic semigroup generated by the second order dif-
ferential operator. On the other hand, if we consider a delay operator then,
due to the presence of the �rst order di�erential operator Aθ, the operator A,
de�ned in equation (7), does not generate an analytic semigroup on the space
E2. The latter suggests that it seems reasonable to require G to take values
in L2(X 2; E2), in order to have both existence and uniqueness for a solution
to equation (22). In what follows, we will show that, since Aa generates an
analytic semigroup, and exploiting the particular form for G in equation (23),
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we have that T (t)G(s,X) belongs to L2(X 2; E2), hence, by assumptions 4.1
on the functions g and g̃, the existence and uniqueness of a mild solution to
equation (22) follows.

The next result will be later used in order to show the existence and
uniqueness of a mild solution to equation (22).

Proposition 4.2. Let assumptions 2.2�4.1 hold true, then the map G :
[0, T ]× E2 → L(X 2, E2), de�ned in equation (23), satis�es:

(i) for any u ∈ X 2 the map G(·, ·)u : [0, T ]× E2 → E2, is measurable;

(ii) for any T > 0, there exists a constantM > 0, such that for any t ∈ [0, T ]
and s ∈ [0, T ], and for any X, Y ∈ E2, it holds

|T (t)G(s,X)|HS ≤Mt−
1
4 (1 + |X|E2) , (25)

|T (t)G(s,X)− T (t)G(s,Y)|HS ≤Mt−
1
4 |X−Y|E2 , (26)

|G(s,X)|L ≤M(1 + |X|E2) . (27)

Proof. Point (i) and (27) in point (ii), immediately follow from assumptions
4.1.

Let {φ̃i}∞i=1, resp. {φi}∞i=1, resp. {ei}ni=1, resp. {ψi}∞i=1, be an orthonormal
basis in X 2, resp. in X2, resp. in Rn, resp. in Z2.

Let us thus �rst consider the unperturbed semigroup T0 given in equation
(12), and let us show that

|T0(t)G(s,X)|HS ≤Mt−
1
4 (1 + |X|E2) ,

for a suitable constant M .
Exploiting the explicit form for G, see equation (23), we have that

|T0(t)G(s,X)|2HS =
∑
j,k∈N

〈
Ta(t)(σ1(s, u), σ2(s, du, η))φ̃j, φ̃k

〉
X 2

+

+
n∑
i=1

∑
k∈N

〈Ttσ2(s, du, η)ej, ψk〉Z2 .

(28)
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Since Ta is self-adjoint and by [7, Prop. 10], we have that∑
j,k∈N

〈
Ta(t)(σ1(s, u), σ2(s, du, η))φ̃j, φ̃k

〉
X 2

=

=
∑
j,k∈N

〈
(σ1(s, u), σ2(s, du))φ̃j, Ta(t)φ̃k

〉
X 2
≤

≤ ‖(σ1(s, u), σ2(s, du))‖L(X 2)|Ta(t)|L2(X 2) ≤ |G(s,X)|L(X 2;E2)|Ta(t)|L2(X 2) ≤
≤Mt−

1
2 (1 + |X|E2) .

(29)

Concerning the second term in the right hand side of equation (28), we
have that the following holds for any ei

(Ttei) =

{
(0, . . . , 0, e(t+θ)bi , 0, . . . , 0) , −t < θ < 0 ,

0 , −r ≤ θ ≤ −t ,
(30)

hence, by assumptions 4.1, we also obtain

〈Ttσ2(s, du, η)ei, ψk〉Z2 =

∫ 0

−t
e(t+θ)biσ2(s, du, η)ψkdθ <∞ ,

which implies that the second sum on the right hand side of (28) is �nite.
Moreover, because Rn is �nite dimensional and L2(Rn;Z2) = L(Rn;Z2), from
equations (28)�(29), we immediately have that the following holds

|T0(t)G(s,X)|HS ≤Mt−
1
4 (1 + |X|E2) . (31)

In order to prove the claim for the perturbed semigroup (T (t))t≥0 let us
consider Theorem 3.3 so that (T (t))t≥0 is given by equation (18); in particular
we have

T (t)G(s,X)v = T0(t)G(s,X)v +

∫ t

0

T0(t− s)ΦT (s)G(s,X)vds . (32)

Let us denote in what follows for short

T (t)G(s,X) =

 S1(t)
S2(t)
S3(t)

 = S(t) . (33)
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Using therefore the particular form for the delay operator given in equa-
tion (5) together with equations (31)�(32), we obtain for q > 0 and t ≥ 0,

|T0(q)S(t)|HS ≤M(t+ q)−
1
4 (1 + |X|E2)+

+

∣∣∣∣∫ t

0

T0(t− s+ q)

∫ 0

−r
S(s+ θ)µ(dθ)ds

∣∣∣∣
HS

≤

≤M(t+ q)−
1
4 (1 + |X|E2)+

+ |µ| sup
θ∈[−r,0]

∫ t

0

|T0(t− s+ q)S(s+ θ)|HS ds ,

where |µ| is the total variation of the measure µ.
Thus, from above equation, for a �xed time T̃ ∈ [0, T ], we have for

t+ q ≤ T̃ ,

sup
t+q≤T̃

q
1
4 |T0(q)S(t)|HS ≤M(1 + |X|E2)+

+ |µ| sup
t+q≤T̃

q
1
4 |T0(q)S(t)|HS

∫ t

0

(t− s)−
1
4ds .

(34)

As regard |T0(q)S(t)|HS appearing in the right hand side of equation (34),
denoting for short

T0(q)S(t) =

 V1(q)
V2(q)
V3(q)

 ,

it immediately follows from the computation above that∣∣∣∣∣∣T0(q)

 S1(t)
S2(t)

0

∣∣∣∣∣∣
HS

<∞ ;

noticing thus that from the property of the delay semigroup it holds(
V3(q)

)
(θ) =

(
V2(q + θ)1[{q+θ≥0}]

)
θ∈[−r,0]

,

we immediately have that ∣∣V3(q)
∣∣
L2(X 2;Z2)

<∞ ,

and we can therefore conclude that

|T0(q)S(t)|HS =

∣∣∣∣∣∣
 V1(q)
V2(q)
V3(q)

∣∣∣∣∣∣
HS

<∞ ,
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and thus the right hand side in equation (34) is �nite.
We can therefore choose T̃ independent ofX and s, such that the following

holds
sup
t+q≤T̃

q
1
4 |T0(q)S(t)|HS ≤ M̃(1 + |X|E2) , (35)

with M̃ a suitable constant. Therefore, from equations (34)�(35), from equa-
tion (32) we thus have for all t ∈ (0, T̃ ],

|T (t)G(s,X)|HS ≤Mt−
1
4 (1 + |X|E2) + M̃

(∫ t

0

(t− s)−
1
4ds

)
(1 + |X|E2) ;

we thus immediately have that, for all t ∈ (0, T̃ ],

|T (t)G(s,X)|HS ≤ M̄t−
1
4 (1 + |X|E2) , (36)

with M̄ a given constant. Then, by the semigroup property for (T (t))t≥0, we
can extend estimate (36) for all t ∈ [0, T ].

Finally, the proof of the inequality (26) in (ii) proceeds the same way as
the latter one.

Summing up previous results, we are now in position to state the following

Theorem 4.3. Let assumptions 2.2�4.1 hold true, then there exists a unique

mild solution, in the sense of De�nition 5.1.1, to equation (22).

Proof. The result follows by [17, Th. 5.3.1], see also [19], together with
proposition 4.2.

4.1 Existence and uniqueness for the non-linear equa-

tion

The present subsection is devoted to the generalisation of the existence
and uniqueness of a mild solution, see Th. 4.3, to the abstract formulation,
see eq. (22), of the problem stated by eq. (21). In particular we shall
consider the addition of a non-linear Lipschitz perturbation. The notation
used in what follows is as in previous sections.

We will thus focus on the following non-linear stochastic dynamic bound-
ary value problem
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

u̇j(t, x) =
(
cju
′
j

)′
(t, x) + fj(t, x, uj(t, x)) + gj(t, x, uj(t, x))Ẇ 1

j (t, x) ,

t ≥ 0 , x ∈ (0, 1) , j = 1, . . . ,m ,

uj(t, vα) = ul(t, vα) =: dα(t) , t ≥ 0 , l, j ∈ Γ(vi) , j = 1, . . . ,m ,

ḋα(t) = −
∑m
j=1 φjαu

′
j(t, vα) + bαd

α(t) +
∫ 0

−r d
α(t+ θ)µ(dθ) + g̃α(t, dα(t), dαt )Ẇ 2

α(t, vα) ,

t ≥ 0 , α = 1, . . . , n ,

uj(0, x) = u0j (x) , x ∈ (0, 1) , j = 1, . . . ,m ,

dα(0) = d0α , α = 1, . . . , n ,

dα(θ) = η0α(θ) , θ ∈ [−r, 0] , α = 1, . . . , n .

(37)

In what follows, besides assumptions 2.2 and 4.1 and in order to deal with
functions fj appearing in eq. (37), we also require the following

Assumptions 4.4. The functions

fj : [0, T ]× [0, 1]× R→ R , j = 1, . . . ,m ,

are measurable mappings, bounded and uniformly Lipschitz continuous with
respect to the third component, namely, for j = 1, . . . ,m, there exist positive
constants Cj and Kj, such that, for any (t, x, y1) ∈ [0, T ]× [0, 1]×R and any
(t, x, y2) ∈ [0, T ]× [0, 1]× R, it holds

|fj(t, x, y1)| ≤ Cj , |fj(t, x, y1)− fj(t, x, y2)| ≤ Kj|y1 − y2| .

Proceeding similarly to what is seen in Sec. 4, we reformulate equation
(37) as an abstract Cauchy problem as follows{

dX(t) = [AX(t) + F (t,X)] dt+G(t,X(t))dW (t) , t ≥ 0 ,

X(0) = X0 ∈ E2 ,
(38)

where F : [0, T ]× E2 → E2 , and such that

F (t,X) = (f(t, u), 0, 0)T , being X = (u, y, η) ∈ E2, (39)

with
(f(t, u)) (x) = (f1(t, x, u1(t, x)), . . . , fm(t, x, um(t, x)))T .

The following result provides the existence and uniqueness of a mild solution

to equation (38).
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Theorem 4.5. Let assumptions 2.2, 4.1 and 4.4, hold true. Then, there

exists a unique mild solution, in the sense of the De�nition 5.1.1, to equation

(38).

Proof. It is enough to show that the map F de�ned in equation (39) is
Lipschitz continuous on the Hilbert space E2. In fact, assumptions 4.4 imply
that

|F (t,X)−F (t,Y)|E2 = |f(t, u)−f(t, v)|X2 ≤ K|u−v|X2 ≤ |X−Y|E2 , (40)

for anyX = (u, y, η)T and anyY = (v, z, ζ)T ∈ E2. Then, exploiting equation
(40), together with Proposition 4.2, the existence of a unique mild solution
is a direct application of [17, Th. 5.3.1], see also [19].

5 Application to stochastic optimal control

The present section is mainly devoted to the study and characterization
of the stochastic optimal control associated to a general non-linear system of
the form


dXz(t) = [AXz(t) + F (t,Xz) +G(t,Xz(t))R(t,Xz(t), z(t))] dt+

+G(t,Xz(t))dW (t) ,

Xz(t0) = X0 ∈ E2 ,

(41)

where, besides having used the notations de�ned along previous sections,
we denote by z the control, while we use the notation Xz, to indicate the
explicit dependence of the processX ∈ E2, from the control z. In what follows
we exploit the results contained in [23], where a general characterization of
stochastic optimal control problem in in�nite dimension is given by means of
a forward-backward-SDE approach. Therefore, the control problem de�ned
by equation (41), is to be understood in the weak sense, see also, e.g., [19, 22].

As stated in [23], we �rst �x t0 ≥ 0 and X0 ∈ E2, then an Admissible

Control System (ACS) is given by U =
(
Ω,F , (Ft)t≥0 ,P, (W (t))t≥0 , z

)
, where

�

(
Ω,F , (Ft)t≥0 ,P

)
is a complete probability space, where the �ltration

(Ft)t≥0 satis�es the usual assumptions;

� (W (t))t≥0 is a Ft−adapted Wiener process taking values in E2;



Application to stochastic optimal control 21

� z is a process taking values in the space Z, predictable with respect to
the �ltration (Ft)t≥0, and such that z(t) ∈ Z P−a.s., for almost any
t ∈ [t0, T ], being Z a suitable domain of Z.

To each ACS, we associate the mild solution Xz ∈ C([t0, T ];L2(Ω; E2)) to
the abstract equation (41). Consequently, we can introduce the functional
cost

J(t0,X0,U) = E
∫ T

t0

l (t,Xz(t), z(t)) dt+ Eϕ(Xz(T )) , (42)

where the function l, resp. ϕ, denotes the running cost, resp. the terminal

cost. Our goal is to minimize the functional J over all admissible control
system. If a minimizing ACS for the functional J exits, then it is called
optimal control.

Throughout this section we will make use of the assumptions 2.2, 4.1, and
4.4, moreover we will also assume the following

Assumptions 5.1. (i) the map R : [0, T ] × E2 × Z → E2 is measurable and
it satis�es

|R(t,X, z)−R(t,X, z)|E2 ≤ CR(1 + |X|E2 + |Y|E2)m|X−Y|E2 ,
|R(t,X, z)|E2 ≤ CR ;

for some CR > 0 and m ≥ 0;

(ii) the map l : [0, T ]× E2 ×Z → R ∪ {+∞} is measurable and it satis�es

|l(t,X, z)− l(t,X, z)| ≤ Cl(1 + |X|E2 + |Y|E2)m|X−Y|E2 ,
|l(t, 0, z)|E2 ≥ −C ,
inf
z∈Z

l(t, 0, z) ≤ Cl ;

for some C > 0, Cl ≥ 0 and m ≥ 0;

(iii) the map ϕ : E2 → R satis�es

|ϕ(X)− ϕ(Y)| ≤ Cϕ(1 + |X|E2 + |Y|E2)m|X−Y|E2 .

for some Cϕ > 0 and m ≥ 0.

Under assumptions 2.2, 4.1, 4.4, and 5.1, we can construct, see [23], an
ACS as follows.

Exploiting the fact that R is bounded we can therefore apply Girsanov

theorem, so that we have, ∀ζ ∈ Z, there exists a probability measure Pζ ,
such that

W ζ(t) := W (t)−
∫ t∧T

t0∧t
R(s,X(s), ζ)ds ,
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is a Wiener process. Then, we may rewrite equation (41) in terms of the new
Wiener process W ζ(t) and we consider the uncontrolled equation{

dX(t) = [AX(t) + F (t,X)] dt+G(t,X(t))dW ζ(t) , t ≥ 0 ,

X(0) = X0 ∈ E2 ;
(43)

from Theorem 4.5, we have that there exists a unique mild solution to equa-
tion (43).

Consequently, ∀t ∈ [0, T ], and ∀(X,Y) ∈ E2 × E2, we de�ne the Hamil-
tonian function related to the aforementioned problem, as follows

ψ(t,X,Y) := − inf
z∈Z
{l(t,X, z) + YR(t,X, z)} ,

Γ(t,X,Y) := {z ∈ Z : ψ(t,X,Y) + l(t,X, z) + vR(t,X, z) = 0} ,
(44)

where we would underline that the set Γ(t,X, w) is a (possibly empty) subset
of Z, while the function ψ satis�es assumptions 5.1.

Within the present setting, we can apply [23, Th. 5.1] to write the
Hamilton-Jacobi-Bellman (HJB) equation associated to the problem stated
by (41) together with (42). In particular, we have{

∂w(t,X)
∂t

+ Ltw(t,X) = ψ(t,X,∇w(t,X)G(t,X)) ,

w(T,X) = ϕ(X) ,
(45)

where

Ltw(X) :=
1

2
Tr
[
G(t,X)G(t,X)∗∇2w(X)

]
+ 〈AX,∇w(X)〉E2 ,

is the in�nitesimal generator of the equation (41), while Tr stands for the
trace, and G∗ is the adjoint of G.

In what follows we exploit the following de�nition, see, e.g., [23, Def. 5.1].

De�nition 5.1.1. A function u : [0, T ] × X 2 → R is de�ned to be a mild
solution in the sense of generalized gradient, to equation (45) if the following
hold:

(i) there exists C > 0 and m ≥ 0 such that for any t ∈ [0, T ] and any u,
v ∈ X 2 it holds

|w(t,X)− w(t,Y)| ≤ C(1 + |X|E2 + |Y|E2)m|X−Y|E2 ,
|w(t, 0)| ≤ C ;
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(ii) for any 0 ≤ t ≤ T and X ∈ E2, we have that

w(t,X) = Pt,Tϕ(X)−
∫ T

t

Pt,sψ(s, ·, w(s, ·), ρ(s, ·))(X)ds ,

where ρ is an arbitrary element of the generalized directional gradient

∇Gw, as it has been de�ned in [23], while Pt,T is the Markov semigroup
generated by the forward process (41).

Remark 5.2. We would like to underline that, following the approach devel-
oped in [23], we do not need to require any di�erentiability properties for the
function F , G and w. In fact, the notion of gradient appearing in equation
(45), is to be understood in a weak sense, namely in terms of the generalized
directional gradient. In fact, in [23] the authors show that, if w is regular
enough, then ∇w coincides with the standard notion of gradient. The latter
implies that, in the present case, the generalized directional gradient coin-
cides with the Fréchet derivative, resp. with the Gâteaux derivative, if we
assume w to be Fréchet di�erentiable, resp. to be Gâteaux di�erentiable.

In the light of De�nition 5.1.1 and Remark 5.2, we have the following.

Proposition 5.3. Let us consider the optimal control problem de�ned by

(41) and (42), then the equation (45) provides the associated HJB problem.

Moreover, if assumptions 2.2, 4.1, 4.4, and 5.1 hold true, then we have that

the HJB equation (45) admits a unique mild solution, in the sense of the

de�nition 5.1.1.

Proof. The proof immediately follows exploiting [23, Th. 5.1].

As a direct consequence of Proposition 5.3, we provide a synthesis of the
optimal control problem, by the following

Theorem 5.4. Let assumptions 2.2, 4.1, 4.4, and 5.1 hold true. Let w be

a mild solution to the HJB equation (45), and chose ρ to be an element of

the generalized directional gradient ∇Gw. Then, for all ACS, we have that

J(t0,X0,U) ≥ w(t0,X0), and the equality holds if and only if the following

feedback law is satis�ed by z and uz

z(t) = Γ (t,Xz(t), G(t, ρ(t,Xz(t))) , P− a.s. for a.a. t ∈ [t0, T ] . (46)

Moreover, if there exists a measurable function γ : [0, T ]×E2×E2 → Z with

γ(t,X,Y) ∈ Γ(t,X,Y) , t ∈ [0, T ] , X , Y ∈ X 2 ,
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then there also exists, at least one ACS such that

z̄(t) = γ(t,Xz(t), ρ(t,Xz(t))) , P− a.s. for a.a. t ∈ [t0, T ] ,

where Xz̄ is a mild solution to equation
dXz(t) = [AXz(t) + F (t,Xz)] dt+

+ [G(t,Xz(t))R(t,Xz(t), γ(t,Xz(t), ρ(t,Xz(t))))] dt+

+G(t,Xz(t))dW (t) ,

Xz(t0) = X0 ∈ E2 ,

(47)

Proof. See [23, Th. 7.2].

Example 5.1 (The heat equation with controlled stochastic boundary condi-
tions on a graph). In what follows we model the heat equation over a �nite
graph G, considering local controlled dynamic boundary conditions, namely,
see 1, we have a total of m nodes, and n0 = n nodes equipped with dynamic
boundary conditions. We also assume that there is not a noise a�ecting the
heat equation, whereas we assume the boundary condition to be perturbed
by an additive Wiener process. Summing up, by means of the notations
introduced along previous sections, we deal with the following system



u̇j(t, x) = (cju
′
i)
′
(t, x) , t ≥ 0 , x ∈ (0, 1) , j = 1, . . . ,m ,

uj(t, vα) = ul(t, vα) =: dα(t) , t ≥ 0 , l, j ∈ Γ(vi) , j = 1, . . . ,m ,

ḋα(t) = −
∑m
j=1 φα,jcj(vα)u′j(t, vα) + 1

T

∫ 0

−T d
α(t+ θ)dθ + g̃α(t)

(
z(t) + Ẇ 2

α(t)
)
,

t ≥ 0 , α = 1, . . . , n ,

uj(0, x) = u0j (x) , x ∈ (0, 1) , j = 1, . . . ,m ,

dα(0) = d0α , α = 1, . . . , n .

(48)

Then, we rewrite the system (48), as an abstract Cauchy problem on the
Hilbert space X 2, as follows{

dX(t)z = AXz(t)dt+G(t,Xz(t)) (Rz(t) + dW (t)) , t ∈ [t0, T ] ,

Xz(t0) = X0 ∈ E2 ,
(49)

where R : Rn → E2 is the immersion of the boundary space Rn into the
product space E2. In the present setting the control z takes values in Rn,
while Z is a subset of Rn. Considering a cost functional of the form (42),
then Proposition 5.3 together with Theorem 5.5, imply the existence of, at
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least, one ACS for the HJB equation (45) associated with the stochastic
control problem (51)-(42). Consequently, the synthesis of the optimal control
problem, reads as follows

Theorem 5.5. Let assumptions 2.2, 4.1, 4.4, and 5.1 hold true. Let w be

a mild solution to the HJB equation (45), and choose ρ to be an element of

the generalized directional gradient ∇Gw. Then, for all ACS, we have that

J(t0,X0,U) ≥ w(t0,X0), and the equality holds if and only of the following

feedback law is satis�ed by z and Xz

z(t) = Γ (t,Xz(t), G(t, ρ(t,Xz(t))) , P− a.s. for a.a. t ∈ [t0, T ] . (50)

Moreover, if there exists a measurable function γ : [0, T ]×E2×E2 → Z with

γ(t,X,Y) ∈ Γ(t,X,Y) , t ∈ [0, T ] , X , Y ∈ E2 ,

then there also exists at least one ACS, such that

z̄(t) = γ(t,Xz(t), ρ(t,Xz(t))) , P− a.s. for a.a. t ∈ [t0, T ] .

Eventually, we have that Xz̄ is a mild solution to equation{
dX(t)z = AXz(t)dt+G(t,Xz(t)) (Rγ(t,Xz(t), ρ(t,Xz(t))) + dW (t)) , t ∈ [t0, T ] ,

Xz(t0) = X0 ∈ E2 .

(51)
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