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Abstract of the Dissertation

A Journey Into State-Space Models

by: Alain Julio Mbebi

Supervisor: Prof. Marco Minozzo

This thesis is concerned with the modelling of time series driven by unobservable

processes using state space models. New models and methodologies are proposed

and applied on a variety of real life examples arising from �nance and economics.

The dissertation is comprised of six chapters. The �rst chapter motivates the thesis,

provides the objectives and discusses the outline of the dissertation contents. In

the second chapter, we de�ne the concept of state space modelling, review some

popular �ltering procedures and recall some important de�nitions, properties and

mathematical concepts that will be used in the subsequent chapters. In Chapter

three, we propose a new state-space model that accounts for asymmetry, relaxing

the assumption of normality and exploiting the close skew-normal distribution which

is more �exible and extends the Gaussian distribution. By allowing a stationary

autoregressive structure in the state equation, and a close skew-normal distributed

measurement error, we also construct a skewed version of the well known Kalman

�lter. Then in Chapter four, we adapt the robust �ltering methodology of Calvet,

Czellar and Ronchetti (2015, �Robust Filtering�, Journal of the American Statistical

Association) to build a robust �lter with Student-t observation density that provides

accurate state inference accounting for outliers and misspeci�cation; this for both

�nite and in�nite state-space models. In the �fth chapter, we provide the foundations

for the construction of stochastic volatility models with close skew-normal errors in

the observation equation. The summary of the thesis, future works and possible

extensions appear in Chapter six.
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Sommario

Questa tesi riguarda la modellizzazione di serie storiche generate da processi latenti,

utilizzando modelli �state-space�. Vengono proposti nuovi modelli e metodologie per

poi applicarli ad una varietà di casi tipici presenti in �nanza ed economia. La tesi è

suddivisa in sei capitoli. Il primo capitolo presenta le motivazioni della ricerca, i suoi

obiettivi e la presentazione dei contenuti. Il secondo capitolo approfondisce il con-

cetto di modelli �state-space�, riporta e discute le procedure di �ltraggio più comuni,

e chiarisce alcune de�nizioni, proprietà e concetti matematici che verranno usati nei

capitoli successivi. Nel Capitolo 3 viene proposto un nuovo modello �state-space� per

tener conto delle asimmetrie (�skewness�) nelle osservazioni, nel quale l'assunzione

di normalità non è più necessaria. La distribuzione normale viene, infatti, sostituita

con la distribuzione �close skew-normal� che è più �essibile ed include la distribuzione

normale. Imponendo una struttura auto-regressiva all'equazione di stato e un er-

rore di misura distribuito secondo una �close skew-normal�, si costruisce una versione

�skewed� del noto �ltro di Kalman. Quindi, nel Capitolo 4 si considera la metodolo-

gia di �ltraggio robusta proposta da Calvet, Czellar and Ronchetti (2015, �Robust

Filtering�, Journal of the American Statistical Association) con una distribuzione t

di Student per ottenere previsioni accurate che tengono conto di valori anomali e di

errori di speci�cazione, sia per i modelli ��nite state-space� sia �in�nite state-space�.

Il Capitolo 5 presenta i fondamenti per la costruzione di modelli a volatilità stocas-

tica con errori �close skew-normal� nelle osservazioni. In�ne, il Capitolo 6 riassume il

contributo della tesi e discute possibili future estensioni della ricerca.
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1. General Introduction

1.1 Motivation and objectives

In state-space models and especially in the Kalman �ltering literature, it has been extensively

assumed that, the variables of interest or the uncertainties we are modelling are normally dis-

tributed. In this quest, researchers will usually try to �t models into data by matching the �rst

and the second moments or co-moments, to the expense of skewness which is often neglected.

When this doesn't work, some transformations are applied on the data and on the model to

achieve respectively normality and linearity.

This widely used normality assumption can be explained by the following reasons: First, a Gaussian

process is completely determined by its mean and covariance functions. Thus, for model �tting,

one only has to specify the �rst two moments. Second, the easiness to solve the prediction

problem. In fact, it is well known that the best predictor of a Gaussian process at an unobserved

location is simply a linear function of the observed values. Last but not least, the Kalman �lter

which is built on the normal and linear assumptions is available on several computing software

and ready to be implemented.

However, in the context of sophisticated random phenomena and especially in the �nancial and

economics sectors, where data usually have fat tails and exhibits skewness, symmetric distributions

like the Gaussian will no longer be accurate options while modelling these kinds of data. Hence, the

need of quite �exible distributions and models is required. Provided these arguments, the following

natural questions may be asked. How valid is the assumption of normality? Which consequences

can we face when �tting data into a Normal distribution? Given the clear evidence of skewness

at di�erent scale of macroeconomics data, how can the state-space model be modi�ed in order

to account for skewness? Since it is well known that when �tting data with a two parameters

distribution and its n-parameters counterpart (n > 2), the latter usually provides a better �t.

Is there not any other distributions that can be an alternative option while maintaining the nice

properties of the Normal distribution? Moreover, instead of transforming the data to handle
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outliers and misspeci�cation, couldn't we build a model immunized against them? Shading light

to these questions will constitute the corner stone of this thesis.

1.2 Thesis outline

In the second Chapter, we set a general background of the thesis by introducing some key

mathematical concepts and de�nitions that will constantly appear in the text, this followed by a

brief overview of the general state-space model and the description of some associated �ltering

mechanisms along with some examples.

One of the key concept we rely on in this thesis is asymmetry. Recently, some attempts to in-

corporate skewness in the ssm and to build the so-called skewed Kalman �lter have been made.

Unfortunately, some of these contributions su�er from important issues such as the skewness

vanishing after several iterations and the poor characterization of the �ltering densities. In Chap-

ter 3, after revisiting these contributions and proving our statement, we study and propose a

new variant of Kalman �lter which overcomes the above mentioned drawbacks, and accounts

for asymmetry. We then develop procedures and algorithms for prediction, �ltering and esti-

mation using closed skew-normal distributions (csn), whose Gaussian distributions are special

cases. Precisely, by allowing a stationary autoregressive structure in the state equation, and a

csn distributed measurement error we develop a robust modelling approach for high-dimensional

multimodal data.

In Chapter 4, for both �nite and in�nite state-space models, we build a robust �lter with Student-t

observation density and provide accurate state inference accounting for outliers and misspeci�-

cation. We then use simulation to compare the performance of the proposed �lter with 3 other

�lters, namely the Gaussian �lter, the robust Gaussian �lter of (Calvet et al., 2015) and the

Student-t �lter. We further apply our theoretical results on the unobserved component model

with stochastic volatility (UCSV) of (Stock and Watson, 2007).

Chapter 5 builds the foundation to new types of stochastic volatility models that takes into

consideration skewness. The development of this chapter starts by using moment generating
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functions of a csn random variable to �nd the necessary zero-mean and unit-variance conditions

and construct a stochastic volatility model with csn errors in the returns equation.



2. Background Settings

In this chapter, we set a general background of the thesis by introducing some key

mathematical concepts and de�nitions that will constantly appear in the text, this will

be followed by a brief overview of the general state-space model and the description

of some associated �ltering mechanisms.

2.1 Introduction

The crucial need for studying, analysing and monitoring sequential information arising in several

areas of engineering and science, and from various types of problems has been one of the most

challenging issues over the past two centuries. In order to handle these concerns, time series

analysis has become a key tool to deal with data that are usually a time series, generated by

a dynamical system, or a sequence generated by a univariate spatial process such as biological

sequences. In this quest and by relying on statistical modelling techniques, some of the main

goals of time series analysis are to understand and reveal the dynamic driving the observed time

series and to forecast future events. Thus, the requirement of an appropriate time series model

that takes into account the essential feature of the observed data.

Often, two main types of analysis are considered, the o�ine analysis, which corresponds to the

case where all the data have already been collected and the online analysis, where the data

arrive in real-time and are dealt with as they become available. As already mentioned, in time

series analysis and especially in the online case, one common task is the prediction of future

observations, conditional of all available observations up to the time point t of interest which will

be denoted by y1:t = yt = (y1, · · · , yt). Throughout this thesis, the notations y1:t and yt refer to

the same thing and will therefore be used interchangeably when there is no ambiguity regarding

the starting value of t. Moreover, we only deal with discrete-time valued processes, hence t is

always an integer.

With the fact that the future state of the system can generally be characterized by uncertainty,

15
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the computation of the best guess is usually required and of course one would like to know how

con�dent we are regarding this guess. This can be achieved by computing over future observations

(in term of time horizon h > 0), the probability f(yt+h|y1:t). Not always, but it may happen that

the researcher can control the system under investigation, this is the case for some application in

engineering where some inputs are incorporated in the model. In this speci�c case, the predictions

of future outcomes of the system are a function of the inputs as well. For instance, if we let u1:t

be the past inputs and ut+1:t+h the h-periods ahead inputs, then the prediction can be computed

with the following probability f(yt+h|u1:t+h, y1:t).

In what can be called classical time series analysis, predictions are computed with linear models

such as the autoregressive integrated moving average (ARIMA) model and the autoregressive

moving average with exogenous terms (ARMAX) models among others, see (Hamilton, 1994)

for detailed explanations. These classical approaches, however present some drawbacks. For

example, in order to make predictions about the future, one would like a model where there is

no restriction on how far we can go back in the past to gain inside information, which is not

the case for the above mentioned models where the prediction of the future must be based on a

�nite time horizon into the past. Other challenges we face are the di�culty to incorporate prior

knowledge into the model and handling multivariate variables.

One possible way of overcoming these drawbacks is the use of dynamic (linear or nonlinear)

models that views the process one would like to analyse as driven by another variable, which

this time is unobservable. In this framework and as it will be our case, what is often under

consideration are partially observed dynamic systems driven by probability density functions, with

one or more latent processes changing and interacting over time where only part of them or their

linear transformations are observed. This methodology has been extensively applied to several

real life examples arising from �nancial, engineering and biological sectors among others.

For example, the mortality curve in insurance that describes how the mortality rate as a function

of age changes over time and the implied volatility as a function of time to maturity and the

option's strike price in the �nancial sector. As for the example of observed process driven by

another latent process, one can consider for instance the observed interest rate curve that can

be driven by the unobserved curvature and level processes.
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Furthermore, noises are incorporated in the observed and unobserved variables to take into consid-

eration the potentially corrupted and misrepresented nature of the processes of interest. Provided

that such information are observed or collected over time, that their behaviour follows a given

dynamic and that one has the appropriate model's representation, analysing and forecasting these

data can become very convenient. This convenience is mainly due to the utilization of what is also

known as the state-space model (ssm) representation and its related �ltering procedure. That is,

the Kalman �lter when under linear and Normal assumptions and the particle �lter otherwise.

In state-space modelling, it is generally assumed that the observations are generated from an

underlying hidden state of the system that evolves in time, and as a probable function of the

inputs. In the online framework, the goal is to infer the hidden state given the observations up to

the time period of interest. In other terms, if the latent state at time t is designated by xt, then

the goal will be to compute the belief state of the system de�ned as f(xt|yt, ut). The belief state

is a very important notion since it can be viewed as a su�cient statistic for prediction, (Åström,

1965). Meaning that, there is no need to carry around the previous information, and the Bayes'

rule can be used to recursively update the belief state.

With their ability to deal in a simple manner with univariate and multivariate variables and to

incorporate prior knowledge into the model, it has been proved that in many aspects, ssm are

better options than the classical time series tools, (West and Harrison, 1997; Harvey, 1990; Aoki,

2013; Durbin and Koopman, 2012). For instance, it is usually the case that we want to estimate

some variables (hidden) but that cannot be measured. ssm o�er the possibility to embed them

in the model, thus generating models much closer to the real nature of the phenomenon under

scrutiny (Pearl, 2000).

2.2 Notations and de�nitions

First of all, let us point out that, all de�nitions and properties in this section are borrowed from

(Grimmett and Stirzaker, 2001; Roussas, 2003; Cappé et al., 2005). We start by recalling a

de�nition of a random variable (r.v). Simply speaking, one can de�ne a r.v as a random number

which is an outcome of a random experiment. Note however that, if the random experiment is
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characterized by a probability space (Ω,F ,P), then a random variable can be formally de�ned

as a measurable function f : Ω → R. Here Ω called the sample space, is the set of all possible

outcomes of the experiment, F , is σ-�eld or a collection of subsets of Ω and the notion of

measurability stands for the fact that for every Borel set B ⊂ F , it is true that f−1(B) ∈ F .

De�nition 2.2.1 (Stochastic process). Let T be an arbitrary set that is sometimes called the

index set and let (Ω,F ,P) represent a probability space. Then any collection of random variables

X = {Xt : t ∈ T} de�ned on the same probability space (Ω,F ,P) is called a stochastic process

indexed in T .

De�nition 2.2.2 (Realization). For a given outcome ω ∈ Ω, any collection t 7→ Xt(ω) that is

de�ned on the index set T and takes values in R is known as realization or sample path of the

stochastic process X at ω.

This means that, for any outcome ω ∈ Ω, we have a corresponding trajectory or realization

of the stochastic process. With respect to the nature of T , several types of processes can be

encountered. For example, if T ∈
{
Rd,Zd,Nd

}
for d ≥ 2, then the process will be called random

�eld. If instead as in this thesis, T ∈ {N,Z}, we talk about processes in discrete time. One

should also recall that, the expressions random function, process, random process some times

refer to stochastic process and so will be the case here.

De�nition 2.2.3 (Kernel). Let (X,X ) and (Y,Y) be two measurable spaces. We say that a

function Q : X × Y → [0,∞] is an unnormalized transition kernel from (X,X ) to (Y,Y) if the

following holds

(i) for all x ∈ X,Q(x, .) is a positive measure on (Y,Y),

(ii) for all A ∈ Y , the function x 7→ Q(x,A) is measurable.

If Q(x, Y ) = 1 for all x ∈ X, then Q is called a transition kernel, or simply a kernel. If X = Y

and Q(x,X) = 1 for all x ∈ X, then Q becomes a special case referred to as a Markov transition

kernel on (X,X ).
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De�nition 2.2.4 (Stationary process). A stochastic process {Xk} is said to be stationary if its

�nite-dimensional distributions are translation invariant, meaning that, if for all k, n ≥ 1 and all

n1, · · · , nk, the distribution of the random vector (Xn1+n, · · · , Xnk+n) does not depend on n.

2.3 Stochastic simulation and Markov chain Monte Carlo

A Markov chain can be de�ned as a random process or a chain of random events having the

property that the future state depends only upon the current state of the process and not on the

entire past history of the process. One known example of a Markov chain that can help better

understand this concept is the famous "drunkard's walk". Imagine a drunk person who can move

only right or left on the road and with equal probability. One can see that, the drunk's next

position after moving right or left will depend only on his current position and not on any of his

previous positions.

A simple question based on the above example could be the following: Assuming that the road

on which the drunker is walking on is constituted by small squares, among those squares, which

one are more visited than the others? A possible approach to answer this question is to de�ne the

length of the experiment and put the drunk at the same position repeatedly after each run and

count the number of times he lands on each square. By doing so, we will be able to know which

squares he visited the most. The type of experiment described above is known in the literature

as Monte Carlo Simulation.

This term was set as the angular stone in simulation techniques in the 1940s by physicists working

at that time on the nuclear weapon project in the Los Alamos Laboratory. The initial spark came

from Stan Ulam, who while recovering from a surgery, wanted to compute the probability of a

game of solitaire being successful. Instead of working out this complicated combinatorial problem

analytically, he suggested to simply play out a certain (many) numbers of this game and record

the outcome of each. The complicated system could then be approximated with a statistical

sample.

The insights of the rapidly growing literature of the �ve last decades around MCMC have been
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very helpful to solve some di�cult problems in various areas such as Bayesian inference, compu-

tational �nance and especially when multi-dimensional integrals calculation are involved. MCMC

simulation is a well-known methodology for producing samples from a recognised posterior distri-

bution for hidden variables, where the distribution is very complex, that is, it is not evident how

to sample from it (Smith and Roberts, 1993). The aim of this section is to review and illustrate

the use of Monte Carlo simulations and then brie�y describe some MCMC methods.

2.3.1 Monte Carlo simulation

It happens very often to deal with complex problem in applied sciences. This is where numerical

solutions are required, because most of those problems cannot be solved analytically. Notice

that, not all numerical methods are always e�cient, especially when it comes to high dimensional

computations. For example, in numerical integration, the quadrature method require that the

approximation of the integral is done by partitioning the integration domain into a set of discrete

volumes. Thus, obtain the integral by summing the values of the weighted function. Nevertheless,

as this result is simply an estimate, it can be proved that the magnitude of the error increases

with respect to the dimension of the integral. Instead, Monte Carlo method can be used to sort

out this problem of dimensionality.

The use of Monte Carlo methods requires to �rst put the quantity we would like to compute

into the form of an expected value. Speci�cally, suppose we wish to estimate the expectation

of g(X) with respect to a probability distribution function f . Let us denote this expectation

by µ = Efg(X). The problem is that µ is generally not tractable analytically, that is the

sum or the integral that needs to be computed in order to achieve this is very complicated.

A Monte Carlo approach which will provide an estimate of µ is based on the following steps:

Simulate N pseudo-random values X1, X2, · · · , XN iid from f , then simply take the average of

g(X1), g(X2), · · · , g(XN) to estimate µ. Thus,

µ̂N =
1

N

N∑
i=1

g(Xi) (2.3.1)

This is known as the Monte Carlo approximation of µ (Geyer, 2011). It can be shown that as
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the sample size gets large, the estimate µ̂N converges to the real value µ.

More formally, let us consider a function h(x) that can be decomposed as a product of a probability

density function p(x) and another function f(x) de�ned on (a, b). Now suppose we want to

evaluate

J =

∫ b

a

h(x)dx (2.3.2)

From the above assumptions, the integral J can be de�ned as the expectation of f(x) with

respect to the density p(x). That is

J =

∫ b

a

f(x)p(x)dx = Ep(x)[f(x)] (2.3.3)

Moreover, suppose that by any mean we are able to generate a large set of random variables

x1, x2, · · · , xn from p(x), then J can be approximated by:

J ' 1

n

n∑
i=1

f(xi) (2.3.4)

This quantity is referred to as the Monte Carlo integration. This method is often used in Bayesian

analysis to estimate posterior or marginal distribution. For example, let us consider the following

integral,

I(y) =

∫
f(y|x)p(x)dx

From the above mathematical formulation, one can approximate I(y) by

Î(y) ' 1

n

n∑
i=1

f(y|xi) (2.3.5)

Where xi are drawn from p(x). Following the setting of (Geyer, 2011) we end up with the
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estimated Monte Carlo standard error de�ned by:

SE2[Î(y)] =
1

n

(
1

n− 1

n∑
i=1

(f(y|xi)− Î(y))2

)
. (2.3.6)

Nevertheless, some related questions on this topic need to be clari�ed. When and how does the

convergence in Monte Carlo methods take place? How enough is the approximation precise? The

following theorems from stochastic analysis (Evans, 2012) will provide their explanation.

Theorem 2.3.1 (Strong Law of Large Numbers). Let X1, X2, · · · be a sequence of i.i.d and

integrable random variables having the same expected value µ and the same variance σ2. Then

P

(
lim

n→+∞

X1 +X2 + · · ·+Xn

n
= µ

)
= 1 (2.3.7)

Note that, this is useless if there is no way of evaluating the quantity

εn = E(X1)− 1

n
(X1 +X2 + · · ·+Xn) ,

meaning that, the random variable X1 has to be integrable.

Theorem 2.3.2 (Central Limit Theorem). LetX1, X2, · · · be a sequence of i.i.d random variables

having the same expected value µ < ∞ and the same variance σ2 < ∞ for i = 1, 2, · · · . Then

for all −∞ < a < b < +∞ we have:

lim
n→+∞

P

(
σ√
n
a ≤ εn ≤

σ√
n
b

)
=

1√
2π

∫ b

a

exp(−x
2

2
)dx (2.3.8)

That is

√
n

σ
εn converges in distribution to the reduced centred Gaussian distribution. For practical

implementation, we often forget the limit step and replace εn by a centred Gaussian distribution

having
σ2

n
as variance.

This shows how important is to know the magnitude of σ2 since the error is strongly connected

with σ.
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Remark 2.3.1. It is important to notice that, the Central Limit Theorem (CLT) plays a key

role here, in the sense that it never permits to the user to bound the error, this simply because

the support of the Gaussian is the entire R set. Usually the error in the Monte Carlo setting is

characterized by the standard deviation of εn which is
σ√
n
. This means that, the error decreases

with respect to the variance, and it is the reason why numerous methods for convergence im-

provement in the Monte Carlo framework focus on reducing the variance (Lapeyre et al., 2003;

Glasserman, 2010). The convergence rate in this method is de�ned by
1√
n

which holds almost

surely in all dimensions.

2.3.1.1 Example in �nance

We are now applying Monte Carlo methods to compute the expected present value of a payo� of

a call option. Recalling that the payo� of the call option (for the option holder) is given by

g(S,K) = [S(T )−K]+ := max(S(T )−K, 0)

where S is the price of the underlying asset at the maturity time T and K is the strike price.

As in (Elliott and Kopp, 2006), it can be shown that the fair price of an European contingent

claim is simply the discounted expected value of its payo� at the maturity. Under the risk-neutral

measure Q, the option's actual value will be given by

EQ[exp(−rT )[(S(T )−K)+]

where r is a constant interest rate and exp(−rT ) is the discount factor. The following Black-

Scholes (Black and Scholes, 1973) model characterize the dynamic of the stock price.

dS(t)

S(t)
= rdt+ σdW (t) (2.3.9)

Here σ andW are respectively the volatility of the stock price and the standard Brownian motion.

A further assumption is that the rate of return on the stock is set to be equal to the interest rate.
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The solution of the stochastic di�erential equation (2.3.9) at maturity time T is

S(T ) = S(0) exp
(
(r − 1

2
σ2)T + σW (T )

)
' S(0) exp

(
(r − 1

2
σ2)T + σ

√
(T )φ(0, 1)

)
,

with S(0) the initial price of the stock and φ(0, 1), the standard Normal distribution.

Proof. Starting from Equation (2.3.9) we can write,

∫ t

0

[
dS(z)

S(z)

]
dz = rt + σW(t), (2.3.10)

with W (0) = 0 by convention.

Applying Itô's formula on U(t, x) = log x leads to

d(log(S(t))) =
1

S(t)
d(S(t))− 1

2S(t)2

(
σ2S(t)2dt

)
,

=
dS(t)

S(t)
− 1

2
σ2dt.

Thus,

dS(t)

S(t)
= d(log(S(t))) +

1

2
σ2dt. (2.3.11)

Using Equations (2.3.11) and (2.3.10), we obtain

log(
S(t)

S(0)
) +

1

2
σ2t = rt+ σW (t),

then

logS(t) = (rt− 1

2
σ2t) + σW (t) + logS(0)

that is,

S(0) = S(0) exp

[
(rt− 1

2
σ2t) + σW (t)

]
;
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Recalling that, for a standard Brownian motion W and for all s < t

W (t)−W (s) ∼ φ(0, t− s),

we have

W (t)−W (0) ∼ φ(0, t).

Since W (0) = 0 by hypothesis,

W (t) ∼ φ(0, t).

Setting t = T , we complete the proof and write

S(t) = S(0) exp

[
(rt− 1

2
σ2t) + σ

√
(T )φ(0, 1)

]
. (2.3.12)

Equation (2.3.9) tells us that the stock price is lognormally distributed, therefore,

EQ
[
exp

(
− rT [S(T )−K]+

)]
=

1√
2πT

∫
R
[S(0) exp(σy − σ2T

2
) exp(−rT )K]+ exp(−Y

2

2T
)dy.

Now, drawing a sequence of independent Normal distribution φ1, φ2, · · · , φn, we can approximate

EQ
[
exp(−rt)[S(T )−K]+

]
by

1

n

n∑
i=1

exp(−rt)[SiT −K]+,

where

SiT = S(0) exp

(
(r − 1

2
)T + σ

√
Tφi

)
i=1,··· ,n

.

Figure 2.1 represents the plot of the prices obtained by the Monte Carlo method (in red) compared

with the true price (in blue) which is 27.66. We set S(0) = 100, the maturity date is 2, the strike

price K = 80, the volatility σ = 0.1 and the interest rate r = 0.05.

In the top panel of Figure (2.1), the number of iteration is 300, we can see that the Monte Carlo

price starts �uctuating a lot at the beginning of the iterations before showing a slow convergence
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to the true price when the number of iterations approaches 250. Since we could not make a

clear conclusion concerning the obtained price, we increased the number of iterations to 1000

and obtained the bottom panel of Figure (2.1), where we can see that the price obtained with

the Monte Carlo method has the same behaviour as in Figure (2.1) when the number of iteration

is ranging between 1 and almost 300, whereas the Monte Carlo price starts converging to the

true price when the number of iteration is above 300.
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Figure 2.1: Convergence of Monte Carlo methods for the evaluation of an European call option.
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2.3.1.2 Markov chain Monte Carlo methods

Before starting our investigation of the theory of MCMC, a quick tour on Markov chains is

required. Let us denote by Xt the value taken by a random variable at time t, and let us call

the set of possible values of Xt the state-space. If the transition probabilities between di�erent

values in the state-space depend only upon the current state of the random variable, then it is

said to be a Markov process. That is, the conditional probability of Xn given the past variables

depends only upon Xn−1.

These random variables can be seen as evolving over time, with a transition probability depending

on the current state of the chain. It is possible for a Markov chain to have a stationary distribution.

Intuitively, that is, if in the starting state the chain has a stationary distribution, then in the next

state, the distribution of chain will still be stationary. In the case of MCMC, we want the

stationary distribution to be the posterior. However, in order for the stationary distribution to

be unique, no matter where the chain starts, the following properties (Robert and Casella, 2010)

must hold.

Property 2.3.1 (Irreducibility). First of all, we say that state i communicate with state j (they

are accessible from each other), if there exists n > 0 such that, the probability of moving from i

to j is not zero. Then a Markov chain is said to be irreducible if all states communicate between

them, that is, the chain has only one communication class (class of equivalence). Clearly the

communication relation is an equivalence relation over the state-space.

In other words,

∃n s.t P (Xn = j|X0 = i) > 0 (2.3.13)

Property 2.3.2 (Aperiodicity). The period of the state i denoted di, is the biggest integer

dividing all n ≥ 1 such that, the probability of moving from state i to itself in n steps is strictly

positive. When di = 1, the state is aperiodic, and when all the states are aperiodic, so is the

chain.

With these two properties, the Markov Chain is ensured to have a stationary distribution. This
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is very important when Markov chains are used as a simulation tools. In practise, the stationary

is very useful, in the sense that, the distribution of Xn converges to the stationary distribution

as n gets larger.

Remark 2.3.2. When the state-space is �nite and written x1, x2, · · · , xn, we can link the prob-

ability of transition to a matrix formulation as follows:

P (Xn = xj|Xn−1 = xi) = pij, with i = 1, · · · , n and j = 1, · · · , n. Reversely this does

not hold when the state-space is countably in�nite which is the case of major part of Markov

chain in the MCMC framework. Now let us denote by πj(n) the probability that the chain is in

the state j at the step n and π(n) the row vector of the state-space probabilities at step n. That

is, πj(n) = P (Xn = xj).

The following known in the literature as the Chapman-Kolomogrov equation, usually de-

scribes the chain's evolution.

πi(n+ 1) = P (Xn+1 = xi) =
∑
k

pkiπk(n) (2.3.14)

This is simply the sum over the probability of being in a particular state at the current step

and the transition probability from that state into the state xi (Dagpunar, 2007). An other key

concept into the theory of Markov chains is the deductibility which holds when there exists a

positive integer smijij ∀i, j where smij = P (Xn+m = xj|Xn = xi) characterize the probability that

the process is in state j given that it started in state i n steps ago. That is, it is always possible

to go from one state to any other no mater how many steps it takes. Therefore, the above

Chapman-Kolomogrov equation can be written into a matrix form as π(n + 1) = π(n)S.

smij is the ij th element of S (Geyer, 2011) and (Walsh, 2004). Finally, more information about

other concepts such as reversibility which plays an important role when it comes to simplify the

asymptotic variance estimation and the central limit theorem (CLT) for the Markov chain can be

seen in (Geyer, 2011) and (Rubinstein and Kroese, 2011).
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2.3.1.3 Metropolis-Hastings algorithm

Monte Carlo methods are used for analysing Bayesian distributions in high dimension. They are

helpful for either generating samples like θ1, θ2, · · · from a given probability distribution p(θ), or

estimating expectations of a function under the same probability distribution, or both. They are

generally preferred when the number of parameters to be estimated is large enough as well as when

we are in high dimension. When combined with Markov chain, the aim become to construct a

Markov chain whose equilibrium distribution is the target distribution of interest(MacKay, 2003).

The probability distribution p(θ) also called the target density, is complex enough by assumption.

That is, computing expectations from it by deterministic methods is not feasible, and this is

where Monte Carlo methods are helpful. The accuracy of the Monte Carlo estimate depends only

on the variance and not on the dimensionality of the space sampled (MacKay, 2003), (Geweke,

1991). Since there is a possibility for the normalizing constant to be unknown or known but in

high dimensional space, sampling from p(θ) can become a very painful task. This is because

there is no trivial method that can help to sample from p(θ) without listing most of the possible

states and obtaining an accurate estimates.

When applying Monte Carlo integration techniques, the common problem encountered is how

to draw samples from some complex probability distribution p(θ) (Metropolis and Ulam, 1949),

(Hastings, 1970) and (Metropolis et al., 1953). Solving such a problem has always been one of

the main task of MCMC methods.

The general idea in the MCMC setting is to build a transition kernel of an ergodic1 Markov chain

with the desired invariant distribution, and then simulate the chain for many steps, so that it

reaches the equilibrium. The states that have been sampled after the convergence of the chain

will then have the same distribution as our distribution of interest (target).

The Metropolis-Hastings algorithm (MH) is often used when dealing with high-dimensional prob-

lems. This method consists of de�ning the probability of transition from a state θi to a state

θi+1. Thus it is a Markov process in which a sequence of θ1, θ2, · · · is generated. The probability
1Su�cient condition for the existence of the stationary distribution π(x) independent of the initial probability at
the starting state that is, a Markov chain satisfy the stationarity, irreducibility, and aperiodicity conditions
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distribution of each trial θi+1 appears to depend only on the distribution of θi. Since we are

looking for a sample which is independent from the starting condition, it is very important to run

the chain for a su�cient long time horizon to avoid the dependence for successive samples.

The MH algorithm can be de�ned as an adaptation of a random walk based on the acceptance

rejection rule to converge to the target distribution. One of the requirement of this algorithm

is that, the proposal distribution has to be given in a very speci�c way, it is then recommended

to use prior knowledge to achieve this.

To see how the MH algorithm works, let us assume that the variable that we want to sample

is θ and the target distribution is p(θ). Furthermore, we suppose that the current state of the

Markov chain is θn, the potential candidate is θ
′
after n iterations and the proposal distribution

is q(θ
′|θn) which depends only upon the current state θn from Markov chain's de�nition. The

next step is to generate a candidate from the proposal, then compute p(θn) and p(θ
′
). After this,

accept the candidate with probability min {1, α}. That is, the new state after the update is θ
′

with probability α or θn with probability 1−α (Geyer, 2011). Where α knowing as the Hasting

ratio is de�ned by:

α =
p(θ

′
)q(θ

′|θn)

p(θn)q(θn|θ′)
(2.3.15)

Finally repeat the process several times, until the convergence of the generated Markov chain is

achieved. The Metropolis-Hastings algorithm can be summarise as follow:

1. Initialize θ(0)

2. Set i← 1

3. Simulate a candidate θ
′ ∼ q(.|θi−1)

4. Compute the quantity

α = min

{
1,

p(θ
′
)

p(θi−1)

q(θi−1|θ′)
q(θ′|θi−1)

}
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5. Accept θ
′
with probability α, that is,

θi =

θ
′
, with probability α.

θi−1, otherwise.
(2.3.16)

6. Increment i, i← i+ 1 and return to step 3.

Moreover, when the proposed distribution q(θ
′
, θ) is symmetric, meaning that,

q(θ
′
, θ) = q(θ

′
, θ), we talk about the Metropolis algorithm and one just have to replace α in the

step 4 of the MH algorithm by:

α = min

{
1,

p(θ
′
)

p(θi−1)

}
,

and the Metropolis algorithm will follow the steps below:

1. Initialize θ(0)

2. Set i← 1

3. Simulate a candidate θ
′ ∼ q(.|θi−1)

4. Compute the quantity

α = min

{
1,

p(θ
′
)

p(θi−1)

}

5. Accept θ
′
with probability α, that is,

θi =

θ
′
, with probability α.

θi−1, otherwise.
(2.3.17)

In practise, an uniform distribution over [0, 1] can be used.

6. Increment i, i← i+ 1 and return to step 3.
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Remark 2.3.3. Given a �good� burn-in period, the chain should move towards the stationary

distribution (or in some cases, the distribution we want to simulate). The burn-in period depends

on the initial value chosen and the behaviour of the proposal q. The most used proposal is the

n-dimensional Gaussian density centered at the current point and having Σ as the covariance

matrix. In this case, the Hasting ratio becomes α =
p(θ

′
)

p(θn)
. On one side, the sampler will move

very slowly and sample only a small local region around the starting position if the variances are

too small. On the other side if the variances are very big the sampler will propose points which are

far away from the high density regions of the distribution leading to high rejection rates (Gelman

et al., 2011). Therefore an important consideration need to be given when setting the elements

in the covariance matrix.

In the following we are applying2 the Metropolis algorithm on the standard Normal distribution

with proposal, the uniform distribution. Recall that the probability density function of the standard

Normal distribution can be written as

f(x) =
exp(−x2/2)√

2π
(2.3.18)

We can see in �gure (2.2) below that, as the number of iterations get larger, the Metropolis

sampler converges to the true pdf.

2.3.1.4 The Gibbs sampler algorithm

Known as a special case of Metropolis-Hastings algorithm, the Gibbs Sampler algorithm helps

to generate samples from a joint probability distribution, under the condition that the joint dis-

tribution is unknown but the conditional distribution with respect to each parameter is known

(Gelfand and Smith, 1990). The samples generated can then be used for some statistical es-

timation. One should notice that for a well accurate estimation, the samples generated must

be as many as possible and the assumption on the complete information about the conditional

distributions makes this method sometimes useless in practise (Martinez and Martinez, 2001).

2The R code used to implement this algorithm has been inspired by the slides "An introduction to Bayesian
statistics and MCMC algoritm" of Alessandra Guglielmi.
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Figure 2.2: Convergence of Metropolis sampler when approximating the standard Normal distribution

using the uniform distribution as proposal and with 10000 iterations

.

The acceptance probability is one, that is the Gibbs sampler always accepts the candidate point.

In practise this is how it works. Let (x, y) be a bivariate parameter, and assume that we want to

evaluate the joint distribution p(x, y) or the marginal densities p(y) and p(x). The idea behind

the sampler is that, we can easily consider the conditional p(x|y) or p(y|x) instead of obtaining

the joint p(x, y). The sampler begin with one initial value y0 for y and after generating a random

variable from p(x|y = y0) we obtain x0. The next step is to use x0 to draw the new y1 from

p(y|x = x0). That is

xi ∼ p(x|y = yi−1) and yi ∼ p(y|x = xi−1) (2.3.19)

After m iterations, we end up with a sequence of m inputs where each one represents a vector

with two elements (xi, yj) where 1 < i, j < m.
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2.4 State-space models and the �ltering problem

Modern time series analysis has been greatly impacted during the last century with the advent

of the Kalman �lter, its several extensions and generalizations such as the Gaussian quadrature

Kalman �lter (Ito and Xiong, 2000), the extended Kalman �lter (Jazwinski, 1970; West et al.,

1985), the unscented Kalman �lter (Julier and Uhlmann, 1997; Van Der Merwe et al., 2000)

and the Gaussian sum �lter (Alspach and Sorenson, 1972). This impact provided a new and

sophisticated tool to study and estimate intricate dynamics and helped to shade light to the big

family of dynamic models by drawing a great attention from practitioners and researchers from

a broad range of �elds, see (Harvey, 1990; West et al., 1985; West and Harrison, 1997) among

others.

Represented in a state-space form, the usually stressful study of some complex dynamic systems

will become very �exible. Moreover, the state-space structure provides the ability to handle a

broad range of linear and many non-linear time series models, such as the autoregressive integrated

moving average (ARIMA) models, the unobserved component models and the regression models

with changing coe�cients, to list just few. A state-space model consists of two main parts. That

is, a hidden state xt and the observation variable yt, sometimes identi�ed as state and observation

equations.

The main idea driving the state-space representation of a given system is that behind the observed

time series, we have the underlying unobservable process which evolves with time and re�ects

the structure of the system. The state equation will then characterize the dynamics of the state

variables while the observation equation will link the observed processes to the latent ones.

In some of its representations, the state process can incorporate seasonality, trend, regression

parts with an error term and cycle. These type of models linking the time observed variable

to several and di�erent components which are themselves often modelled as individual random

walks, are regrouped into the subfamily of structural time series models.

In order to be properly characterized, all ssm should specify the state transition function f(xt|xt−1, ut),

the prior f(x0) and the observation function f(yt|xt, ut), where for the purpose of our intended

application and without any loss of generality we will omit the control variable ut. We then
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end up with a model speci�ed by the state transition function f(xt|xt−1) and the observation

function f(yt|xt). It is further supposed that we are under �rst-order Markov assumption, that is,

f(xt|x1:t−1) = f(xt|xt−1). Note that whenever this is not the case, there is a workaround which

consist of augmenting the state-space and make it �rst-order Markov. Simply speaking, supposed

we have a third-order Markov system, then one can rede�ne the new state as x̃t = (xt, xt−1, xt−2).

In the same way, the observations are assumed to be conditionally �rst-order Markov. That is,

f(yt|yt−1, xt) = f(yt|xt, yt−1),

which trough out this thesis and only for simplicity purposes, will be de�ned by the following

assumption

f(yt|yt−1, xt) = f(yt|xt).

In order to be able to model in�nitely long data, we also assume that the model is time-invariant

and in the case where parameters are time-varying, they will be treated as supplementary random

processes and added to the model.

It is also quite usual that the model admits unknown parameters and their impact on the system

is not the least. In fact, the interaction of the state process with the observation and the

covariance structure of the error terms depend on them. This is why for accuracy and e�ciency,

the parameters together with the state process have to be estimated from the observations.

One common procedure from which one can obtain maximum likelihood estimates (MLE) of

the parameters is to employ the Kalman �lter (KF) (Kalman, 1960, 1963) which is a recursive

mechanism that estimates the hidden components at time index t, given the available information

up to the same t.

Despite the fact that the KF was originally designed for works in physics and engineering �elds,

the �nance and economics communities were facing issues that could have been handled by the

KF. Still, its usage has to wait until early 1980 with the seminal contribution of (Harvey, 1981).

To list just few, other contributions of KF and ssm in �nance and economics are (Meinhold and

Singpurwalla, 1983) who provided the statistical understanding of the KF by using a Bayesian
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formulation and some well-known results in multivariate statistics and illustrated it for quality

control. (Clark, 1987), who by using Kalman �ltering and smoothing techniques, successfully

decomposed quarterly data on industrial production and de�ated gross national product in the

United States from 1947 through 1985 into independent nonstationary trend and stationary cycle

components. (Stock and Watson, 1988), who used a dynamic factor analysis to implicitly de�nes

a variable that can be thought of as the overall state of the economy. By using data from

1959-1987, they estimated the unobserved process and provided a formal rationalization for the

traditional methodology used to develop the coincident index. For formalism, let us represent by

Yt an n × 1 observable variable evolving with time and driven by a k × 1 hidden state variable

Xt satisfying the following Assumptions (2.4.1) and (2.4.2).

Assumption 2.4.1. Xt is a Markov chain

Assumption 2.4.2. Conditionally on Xt, the Yt's are independent and Yt depends on Xt only.

Consequently for t > 0, a ssm can be entirely characterized by the initial distribution f(x0) and

the conditional densities f(xt|xt−1) and f(yt|xt) leading to the joint density in Equation (2.4.1)

below

f(xt, yt) = f(x0)
t∏
i=1

f(xi|xi−1)f(yi|xi), (2.4.1)

from which one can obtain by marginalization or conditioning any other distributions he may be

interested in.

2.4.1 Linear Gaussian state-space models and the Kalman �lter

Also called dynamic linear model, the linear Gaussian ssm can be obtained from the above setting

by considering a Normal prior distribution x0 ∼ Nn(m0, C0) and the pair of observation Equation

(2.4.2) and the state Equation (2.4.3) below

Yt = FtXt + εt, εt ∼ N(0, Qt), (2.4.2)

Xt = GtXt−1 + ηt, ηt ∼ N(0, Ht). (2.4.3)
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Here εt and ηt are assu two independent Normal random vectors with mean zero and known

positive de�nite covariance matrices Qt and Ht respectively and independent of x0. Whereas

Ft and Gt are two known system matrices of respective dimensions n × n and k × n. With

Yt|Xt ∼ N(FtXt, Qt) and Xt|Xt−1 ∼ N(GtXt−1, Ht) it can be easily proved that the linear

Gaussian ssm ful�ls Assumptions (2.4.1) and (2.4.2). Moreover, the error terms in the observation

and state equations assumed to be serially uncorrelated and for all lags, they are uncorrelated with

each other. Once a dynamic system is written in state-space form, the goal of the researcher is to

infer on the latent variables or to make predictions of the next observations based on the available

data up to time t, which can be achieve in the linear Gaussian case via the KF as we will explain

later. The estimation of the state can be done by simply computing the conditional densities

f(Xl|Y t), with t the time period of interest, the following cases are generally encountered.3

Filtering: The inference regarding the state process up to time t is the concern, l = t and it is

assumed that the information arrive sequentially in time.

Smoothing: Sometimes called backward analysis, it is concerned with estimating the state

process given the observation and l < t.

Prediction: This is similar to smoothing except that, we are looking forward, that is l > t.

It is important to point out that, although these concept are dealing with the state process, they

can be reverted by marginalizing the state and turn the interest to the observation. For example,

after computing f(Xt+l|Y t) and by marginalizing Xt+l, one can indeed obtain f(Yt+l|Y t) if

interested in. Before moving to the next section, it is important to recall the following propositions

from (Petris et al., 2009), that summarizes the �ltering, smoothing and forecasting recursions for

a general ssm satisfying Assumptions (2.4.1) and (2.4.2).

Proposition 2.4.1 (Filtering recursions). The one-step-ahead predictive density for the states

can be obtained from the �ltering density f(Xt−1|Y t−1) as

f(Xt|Y t−1) =

∫
f(Xt|Xt−1)f(Xt−1|Y t−1)dXt−1. (2.4.4)

3Most of the results in this part will be given without any proof and are borrowed from (Petris et al., 2009).
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By marginalization, one can derive the one-step-ahead predictive density for the observations from

Equation (2.4.4) as

f(Yt|Y t−1) =

∫
f(Yt|Xt)f(Xt|Y t−1)dXt. (2.4.5)

Finally, using the Bayes' rule, the �ltering density is obtained from Equations (2.4.4) and (2.4.5)

as

f(Xt|Y t) =
f(Yt|Xt)f(Xt|Y t−1)

f(Yt|Y t−1)
. (2.4.6)

Proposition 2.4.2 (Smoothing recursions). Given t < l and Y l, the backward transition prob-

abilities of the collection of all state processes up to time l are de�ned by

f(Xt|Xt+1, Y
l) =

f(Xt+1|Xt)f(Xt|Y t)

f(Xt+1|Y t)
. (2.4.7)

Starting from f(Xl|Y l), the smoothing distributions of Xt conditionally on Y l can be derived

from the backward recursion in t described by Equation (2.4.8) below

f(Xt|Y h) = f(Xt|Y t)

∫
f(Xt+1|Xt)f(Xt|Y t)

f(Xt+1|Y t)
f(Xt+1|Y l)dXt+1. (2.4.8)

Proposition 2.4.3 (Forecasting recursion). For l > 0, the l-steps-ahead forecast distribution of

the state is de�ned by

f(Xt+l|Y t) =

∫
f(Xt+l|Xt+l−1)f(Xt+l−1|Y t)dXt+l−1. (2.4.9)

By marginalization, l-steps-ahead forecast distribution of the observation can be obtained from

Equation (2.4.9) as

f(Yt+l|Y t) =

∫
f(Yt+l|Xt+l)f(Xt+l|Y t)dXt+l. (2.4.10)

In the linear Gaussian case, the �ltering and smoothing recursions above become the famous

Kalman �lter and smoother and are available in more clear, simple and elegant forms. This is
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due to the fact that the Normal distribution is entirely characterized by its �rst two moments and

the integrals intervening in the recursions will be analytically tractable. We omit to recall them

here as they can easily be derived and we refer the reader to (Petris et al., 2009) for proofs and

extensive explanations.

2.4.2 Particle �ltering techniques

We recall that, one of the most important goal when dealing with data analysis and especially

when real-world examples are considered, is the estimation of some unknown quantities provided

that we have at our disposal some observations. In most cases, prior information regarding the

phenomenon under investigation is available. Given the availability of this information, prior

distributions for the unknown quantities and likelihood functions linking these quantities to the

data can be formulated.

In this process, the Bayes' theorem is used to obtain the posterior distribution on which, the

inference of the unknown quantities will be based. Most of the time, the data become available

sequentially in time, giving rise to the concern of how to perform online inference. That is,

inferring on the unknown quantities as the observations become available. For example, the

volatility of some �nancial instruments can be estimated online using stock market data.

Among the wide range of approaches used to solve the �ltering problem in state-space models,

particle �ltering techniques have a well established reputation. If one were to consider particle

�lters as one side of a given coin, then the other side will certainly be the Monte Carlo techniques

whose existence date back to the 1950s (Hammersley and Morton, 1954). Due to the degeneracy

problems and the lack of computational power at the time, these methods were often overlooked.

With the introduction of the bootstrap �lter of (Gordon et al., 1993) and more e�cient resam-

pling schemes, the scienti�c production in this area and related ones has been compelling. No

surprise that particle �lters have been routinely applied to a broad range of �elds, such as target

tracking (Ristic et al., 2004), economics (Kim et al., 1998; Johannes et al., 2009), neuroscience

(Salimpour and Soltanian-Zadeh, 2009), biochemical networks (Djuric and Bugallo, 2009) and

signal processing (Arulampalam et al., 2002) to list a few.
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It is worth noticing that, before the vulgarization and the extensive use of particle �ltering tech-

niques, the Kalman �lter which is optimal under the normality and the linearity assumptions, was

the standard solution to the �ltering problem. When these two assumptions are violated, one of

its variants, namely, the extended Kalman �lter and the unscented Kalman �lter can be used.

However, this versatility presents some drawbacks and fails to give e�cient estimates when highly

non linear and/or non-Gaussian situations are considered.

In order to account for the limitations presented by the Kalman �lter and its variants, particle

�ltering methods were then introduced. Unlike other previously mentioned �ltering solutions,

particle �lters can be applied under more general settings, making this approach very �exible and

with the constant development of computing power, the future of particle �ltering is even more

promising.

This algorithm is a very powerful tool for non standard state-space models and it is even more

attractive when dealing with online problems. Nowadays the storage limit that we usually face

in data analysis is a big concern and in this respect, it is important to point out that sequential

techniques are viable remedies to this issue. In fact, they o�er the advantage of not having to

store all the data. For detailed explanations regarding particle �lters and their applications, we

refer the reader to (Doucet et al., 2000, 2001), (Ristic et al., 2004), (Pollock, 2010), (Doucet

and Johansen, 2009) and references hereafter.

The key concept in particle �ltering is to sequentially update a given distribution using importance

sampling algorithms in conjunction with the Bayesian methodology. More precisely, the marginal

density of the unobserved process is approximated provided that we have at our disposal a set of

available information, a measurement model, the initial estimates of the state probability density

function and a non-linear state process model. Importance sampling is then used at each time

index to approximate the distribution with a set of discrete values, also known as particles, each

particle associated to a corresponding weight. One of the property of this Monte Carlo method

is that, the particle �lter representation of the posterior probability density function will converge

to the true one as the sample size increases.

With the introduction of the bootstrap �lter by (Gordon et al., 1993), particle �ltering techniques

became the appropriate tool for estimating general state-space models. Although this can be
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considered as the seminal paper for online estimation, its construction was mainly motivated

by the great works on importance sampling of (Müller, 1991) and (Smith and Gelfand, 1992).

This is one of the reason why the bootstrap �lter is sometimes de�ned as a mixture of sequential

importance sampling and resampling procedures. Let us also point out that, all �ltering algorithms

having the same basis are regrouped under the label of Sequential Monte Carlo methods (SMC).

Importance sampling is therefore a key concept that is worth being de�ned as we now do.

2.4.2.1 Importance sampling (IS)

Let us consider a state-space model in its general form de�ned by the observation equation

f(yt+1|yt) and the state equation f(xt+1|xt), where for simplicity and without any loss of gen-

erality, all parameters are assumed to be known. Furthermore, we also assume that the observed

process yt and the latent process xt are continuous and have discrete values at any time index of

interest. The interest here lies in computing and e�ciently estimate the �ltering density f(xt|yt)

where yt represents all available observations up to time t. One approach of studying the �ltering

density when the later is not analytically tractable is by using importance sampling (IS).

Importance sampling that can be de�ned as the art of choosing a good distribution from which

random variables can be simulated, forms the basis of SMC used in particle �ltering to provide

a solution to the recursion problem. Monte Carlo methods are a kind of stochastic integration

employed to approximate expectations by using the law of large numbers. That is, if we were to

compute the following integral,

I =

b∫
a

h(y)dy =

b∫
a

w(y)f(y)dy = E(w(Y )), (2.4.11)

where f(y) =
1

b− a
is the probability density function of the random variable Y following the

uniform distribution U(a, b) and w(y) = h(y)(b − a). Then by the law of large number (LLN),
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if N iid samples from U(a, b) are considered, then the integral I can be estimated by,

Î =
1

N

N∑
i=1

w(Yi)→ E(w(Y )) = I (2.4.12)

This technique works great if we are able to sample from the desired distribution also known as

the target distribution. Overcoming the inability to sample from the target distribution, motivated

the introduction of IS. In this case, the sampling is made from an other distribution known as

the proposal distribution and the integral is re-weighted using importance weights in order for the

true distribution to be targeted.

More precisely, let us assume one would like to compute the integral in Equation (2.4.13)

I =

∫
h(y)f(y)dy, (2.4.13)

where f is the probability density function associated to the random variable Y and h is some

function. Furthermore, if we put ourself into the situation where it is di�cult to draw samples

from the density f , then IS can be used to compute I by specifying a di�erent probability density

function q as the proposal density as we now do.

I =

∫
h(y)f(y)dy =

∫
h(y)

f(y)

q(y)
q(y)dy =

∫
h(y)f(y)

q(y)
q(y)dy, (2.4.14)

that is,

I = Ef [h(Y )] =

∫
h(y)f(y)

q(y)
q(y)dy = Eq

[
h(Y )f(Y )

q(Y )

]
. (2.4.15)

Given iid samples yi, i = {1, · · · , N} from q(y), the integral I can be estimated as

Î =
1

N

N∑
i=1

h(yi)f(yi)

q(yi)
→ Eq

[
h(Y )f(Y )

q(Y )

]
= I. (2.4.16)

In this process, one has to be careful in selecting the proposal as the standard error of Î can
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be in�nite when this selection is not done appropriately. One way of choosing g is by avoiding

the ratio f/g to be large. That is, the density g should have similar shape to f but with ticker

tail. Other important things to have in mind when selecting the proposal, are the ability to

sample from g, otherwise we will return to the initial issue, the variance of Î is minimized when

g(y) ∝ |f(y)| and g and f should have the same support (Pollock, 2010). This approach can be

very useful, especially in a Bayesian framework where a probability distribution is only known up

to a normalizing constant, IS can be used to provide a good approximation of the density and

reduces the computation time as there is no need to compute the normalizing constant.

2.4.2.2 Importance sampling in Bayesian framework

In Bayesian inference, the computation of posterior expectations of the form

E
[
g(x)|yt

]
=

∫
g(x)f(x|yt)dx (2.4.17)

is often needed. To achieve this, one can use Monte Carlo techniques to draw samples xi from

f(x|yt) and estimate the expectation as

E
[
g(x)|yt

]
≈ 1

N

N∑
i=1

g(x(i)), (2.4.18)

where f(x) is simply the posterior distribution. When it is impossible to draw samples from

f(x|yt) as it is often the case, IS is used to draw samples xi from an important distribution

π(x|yt) and computes the weights w(i) in such a way that,

E
[
g(x)|yt

]
≈

N∑
i=1

w(i)g(x(i)). (2.4.19)

Note that the derivation of IS will be based on the identity

E
[
g(x)|yt

]
=

∫
g(x)f(x|yt)dx

=

∫ [
g(x)

f(x|yt)
π(x|yt)

]
π(x|yt)dx, (2.4.20)
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from which Monte Carlo approximations are computed as

E
[
g(x)|yt

]
≈ 1

N

N∑
i=1

f(x(i)|yt)
π(x(i)|yt)

g(x(i)), (2.4.21)

where the importance weights w(i) are de�ned by the ratio

1

N

N∑
i=1

f(x(i)|yt)
π(x(i)|yt)

. (2.4.22)

Except in some simple cases, we often encounter the issue of computing the normalizing constant

of f(x(i)|yt). The way around this is to de�ne the unnormalized importance weights

w̃(i) =
f(yt|x(i))f(x(i))

π(x(i)|yt)
, (2.4.23)

then obtain their normalized version as w(i) =
w̃(i)∑
j

w̃(j)
and �nally the posterior expectation of

g(x) and the posterior pdf are respectively approximated by Equations (2.4.24) and (2.4.25)

below.

E
[
g(x)|yt

]
≈

N∑
i=1

w(i)g(x(i)), (2.4.24)

f(x|yt) ≈
N∑
i=1

w(i)δ(x− x(i)), (2.4.25)

where δ is the Dirac delta function. As stated before, IS is the basis to several sampling algorithms.

In what follows, we brie�y recall some of its extensions.

2.4.2.3 Sequential importance sampling (SIS)

When dealing with particle �ltering techniques, our interest often lies in the marginal or joint

distribution of the unobserved variables provided that, we have available all observations up
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to the time index t of interest. However, and as already mentioned, the normalizing constant

f(yt|yt−1) can be intractable. This intractability prohibits direct calculation and therefore IS shall

come at the rescue. We want to be able to update sequentially the posterior distribution at time

t without letting occur any modi�cation on the previously simulated states xt−1.

Now, let us assume the existence of an importance function q(xt|yt), from which samples can be

drawn easily and that our density of interest f(xt|yt) has the same support as q(xt|yt), that is,

f(xt|yt) > 0⇒ q(xt|yt) > 0.

Moreover and as in (Ristic et al., 2004), let us assume that the importance function is chosen in

such a way that it can be recursively updated in time when ever the next information becomes

available. Meaning that, the propagation of the current estimate to the next time period by

keeping the same past simulated trajectories xi, i = {1, · · · , t− 1} is guarantee. In order words,

we suppose the following to be true,

q(xt|yt) = q(xt−1|yt−1)q(xt|xt−1, yt).

What is known as the recursive problem will make the joint density available as follows

f(xt|yt) = f(yt|xt)
∫
f(xt−1|yt−1)

f(xt|xt−1)

f(yt|yt−1)
dxt−1,

= f(yt|xt)
∫
f(xt−1|yt−1)

f(xt|xt−1)q(xt−1|yt−1)q(xt|xt−1, yt)

f(yt|yt−1)q(xt−1|yt−1)q(xt|xt−1, yt)
dxt−1,

= f(xt|xt−1)

∫
f(xt−1|yt−1)q(xt−1|yt−1)

q(xt−1|yt−1)

f(xt|xt−1)q(xt|xt−1, yt)

f(yt|yt−1)q(xt|xt−1, yt)
dxt−1. (2.4.26)

Provided the existence of samples x(i)
t−1 drawn from the density f(xt−1|yt−1) with corresponding

weights w(i)
t−1, an approximation of the marginal density f(xt|yt) can be obtained via IS with

normalized weights w(i)
t de�ned by

w
(i)
t =

w̃
(i)
t

N∑
j=1

w̃
(j)
t

,



Section 2.4. State-space models and the �ltering problem Page 46

where w̃(i)
t represent the unnormalized weights and are de�ned as

w̃
(i)
t = w̃

(i)
t−1

f(yt|xt)f(xt|xt−1)

q(xt|xt−1, yt)
, for i = 1, · · · , N.

At time point t of interest, the �ltering density will then be approximated by the weighted set

of particles
{
w

(i)
t , x

(i)
t

}N
t
. With the fact that the transitional and the likelihood functions are

available and that we are able to draw samples from the importance function, the remaining com-

ponents we need to estimate the marginal density are generating initial particles and computing

iteratively the importance weights. This process describes the sequential importance sampling

algorithm of (Kong et al., 1994) as illustrated in Figure (2.3) and recalled in Algorithm (1) below.

Even though it is not possible, one will ideally wish to have as posterior distribution the importance

density function. For the type of importance function presented in the SIS algorithm, it can be

proved as in (Kong et al., 1994) that the variance of the importance weights increases at every

time step. Meaning that we will almost surely converge to single non-zero weight w(i) = 1,

while other weights being negligible after few iterations . As a consequence, the accuracy of the

estimate will become a major concern and a large amount of computational e�ort will be required

when updating particles with nearly zero weights. This phenomenon is referred as the degeneracy

problem which is a big issue in particle �ltering. Fortunately, this can be handled by increasing

the number of particles used (sometimes impractical) or by a combination of a resampling step

in the SIS algorithm and a good choice of the importance density (Gordon et al., 1993; Doucet

and Johansen, 2009).

2.4.2.4 Sequential importance resampling (SIR)

Originally introduced by (Gordon et al., 1993), the SIR as summarized in Algorithm (2) and

illustrated in Figure (2.4) can be obtain from the above SIS algorithm by simply adding some

steps in it. The key being resampling, which provides the tools to obtain approximation from

the target distribution by resampling N particles from the IS approximation (Douc et al., 2014).

Each particle is chosen with a probability proportional to its corresponding weight. In order words,

particles with smallest weights will have high probability to be removed, by doing so, we will end
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up with several copies of particles having bigger weight.

There are several techniques for implementing resampling, the strati�ed resampling which is

optimal when the variance is considered and the adaptive resampling among others. In the

adaptive case, the resampling is done when the number of e�ective samples neff ≈
1

N∑
i=1

(w
(i)
t )2

is

too small, (for instance N/10). Although resampling reduces considerably the degeneracy issue,

we have to keep in mind that it is done at the expense of additional issues such as, the interaction

occurring between simulated particles that create their statistical dependence and the fact that

particles obtained may not be diversi�ed. As illustrated by Figures (2.3) and (2.4), the following

summarize the SIS and SIR algorithms.
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Algorithm 1: Sequential Importance Sampling
Initialization: At time index t = 0

1 for i← 1 to N do

2 Draw samples x(i)
0 from the prior distribution f(x0);

3 Compute the unnormalized weights as:

w̃
(i)
0 = f(y0|x(i)

0 )

Compute the normalized weights as:

w
(i)
0 =

w̃
(i)
0

N∑
j=1

w̃
(j)
0

4 end
Iteration :

5 for t← 1 to T do
6 for i← 1 to N do

7 Draw samples x(i)
t from q(xt|x(i)

t−1, y0:t) and set x(i)
0:t = (x

(i)
0:t−1, x

i
t);

8 Compute the unnormalized weights as:

w̃
(i)
t = w̃

(i)
t−1

f(yt|x(i)
t )f(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, y0:t)

Compute the normalized weights as:

w
(i)
t =

w̃
(i)
t

N∑
j=1

w̃
(j)
t

9 end

10 end

Return :
{
x

(i)
t , w

(i)
t

}N
i=1

, t = 0, · · · , T
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Algorithm 2: Sequential Importance Resampling
Initialization: At time index t = 0

1 for i← 1 to N do

2 Draw samples x(i)
0 from the prior distribution f(x0);

3 Compute the unnormalized weights as:

w̃
(i)
0 = f(y0|x(i)

0 )

Compute the normalized weights as:

w
(i)
0 =

w̃
(i)
0

N∑
j=1

w̃
(j)
0

4 end
Iteration :

5 for t← 1 to T do
6 for i← 1 to N do

7 Resample x̃(i)
t−1 from

{
x

(i)
t−1

}N
i=1

with probability
{
w

(i)
t−1

}N
i=1

and set{
x

(i)
t−1, w

(i)
t−1

}N
i=1

=

{
x̃

(i)
t−1,

1

N

}N
i=1

;

8 Compute the unnormalized weights as:

w̃
(i)
t =

f(yt|x(i)
t )p(x

(i)
t )

q(x
(i)
t |x

(i)
0:t−1, y

t)

Compute the normalized weights as:

w
(i)
t =

w̃
(i)
t

N∑
j=1

w̃
(j)
t

9 end

10 end

Return :
{
x

(i)
t , w

(i)
t

}N
i=1

, t = 0, · · · , T



Section 2.4. State-space models and the �ltering problem Page 50

Figure 2.3: SIS illustration.

Figure 2.4: SIR illustration.



3. Kalman �lter with asymmetric

distributions

Mathematical models have been proposed and developed to model time observations

dynamics over the past two centuries, achieving remarkable gains. Among them, we

have the state-space models which can be seen as a subclass of graphical probabilistic

models describing from a probabilistic point of view, the dependence between the

state (latent) and the measurement (observed) variables. Till these days, the most

studied �ltering solution in the ssm framework is certainly the Kalman �lter. In order

to take into account more general applications and asymmetric distributions, some

attempts to incorporate skewed distributions in the ssm and to build the so-called

skewed Kalman �lter have been made recently in the literature. Unfortunately, some

of these contributions present considerable issues such as the skewness vanishing

after several iterations, a not e�cient characterization of the �ltering densities and

some errors. In this chapter, we study and propose a skewed Kalman �lter which

overcomes the above mentioned issues. We develop procedures and algorithms for

prediction, �ltering and estimation based on the closed skew-normal distributions, of

which Gaussian are simply special cases.

3.1 Introduction

During the last two centuries, several mathematical models have been proposed and developed

for the modelling of temporal observations achieving important and remarkable results. However,

this is not and can not be considered as the end of the road. This because, achieving e�cient

and accurate estimates of the key parameters, as well as adequate forecast, remains with these

models, a challenging task, especially in the cases of non-Gaussianity.

The widely used and so-called ssm that are the basis of this research, fall within the class of

the above mentioned models. Koller and Friedman (2009) de�ned the ssm as a class of proba-

51
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bilistic graphical models which describes the dependence between the state variable (latent) and

measured variable (observable).

The expression State-Space was originally used in engineering and was introduced by Rudol

Kalman, an electrical engineer Kalman (1960) who at that time worked at the research institute

for advanced studies in Baltimore, Maryland. It should be noted that to date, the most studied

and well de�ned discrete �ltering algorithm for ssm is known under the name of Kalman �lter.

An important feature of the Kalman �lter is that predictions of future values can be obtained with

an e�cient recursive algorithm that �nds application in various �elds such as physics, chemistry,

biology, engineering sciences and economics.

This model, however presents some lack of e�ciency, especially in the �nancial sector, but not

limited to where there is evidence that observations do not follow a Gaussian distribution. The

classic Kalman �lter which is built on the assumption of Gaussian observations, does not allow

to take into account characteristics such as asymmetry and kurtosis.

This chapter aims to construct and study a similar model but more general, with well-de�ned

statistical properties, which overcomes the limitations present in the classical Gaussian model.

To achieve this, we will use the closed skew-normal (csn) distributions of which the Gaussian

distribution is simply a special case. The model to be developed will also have to overcome the

limitations of current skewed Kalman �lters in the literature.

In the next section, we review some key properties and theorems of the csn distributions that

will be of great importance here. Section 3 revisits the skewed Kalman �lter of Naveau et al.

(2005) and show that their �ltering density does not follow a csn distribution which makes their

�lter incorrectly characterize. The description of the approach we intend to use, the presentation

of an example along with the parameters estimation of the model are done in Section 4. Some

concluding remarks appear in Section 5.
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3.2 Some important properties of csn distributions

Among the numerous candidates of asymmetric distributions that could be incorporated in our

model, we have the class of multivariate skew-normal distributions, which was originally proposed

by Azzalini and Dalla Valle (1996) as an extension of the class of Normal distributions. Many

studies have proven the appealing ease and convenience, when modelling the presence of skewness

with these distributions.

Let us recall the fact that, we would like to mimic as much as possible, the standard Kalman

�lter and keep almost the same properties if not all of them. This implies that, the choice

of the distribution in the above mentioned family is an important step in our study. More

precisely, we would like the chosen distribution, to be closed under summation, marginalization

and conditioning. Meaning for instance that, the sum or the conditional distribution of random

variables, belonging to the same subset of distributions, will remain in that same subset.

From the most recent developments in the literature and based on the above mentioned facts,

the perfect candidate in our opinion is certainly the csn. Moreover, it is of great importance

to notice that, the presence of additional parameters to be estimated and the possibility of the

independence structure between the csn and the Normal distribution in the multivariate setting,

make the csn even a more e�cient choice.

In addition, we can observe that, in order to obtain the right or left skewness in the csn distribution,

one can take the mean of the Gaussian density component and move the mass to the right or to

the left respectively. By performing this operation, we keep the tail comparable to the Normal

case while gaining �exibility, asymmetry and an easier parameters estimation compare to other

asymmetric distributions. Finally, because of the multivariate structure of the csn distributions,

the issue of the cross-correlation among the unobservable variables become easier to deal with.

In what follows and after recalling the de�nition of the csn distribution, we will provide some

important properties of the csn distribution that constitute the cornerstone in the implementation

of our model. Although we are using the notation from Flecher et al. (2009), González-Farías

et al. (2004b) and González-Farías et al. (2004a), we will mainly refer to theorems and properties

from the later one and lemmas from Kim et al. (2014a) .
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De�nition 3.2.1 (Multivariate close skew-normal pdf). A random vector X has a multivariate

csn distribution according to González-Farías et al. (2004a) if its probability density function is

given by:

f(x) =
1

Φmx(0; ν,∆ + ΓΣΓT )
φnx(x;µ,Σ)Φmx(Γ(x− µ); ν,∆); x ∈ Rnx , (3.2.1)

where µ ∈ Rnx is the location vector, ν ∈ Rmx , is the additional parameter allowing the closure

under conditioning, ∆ ∈ Rmx×mx is a covariance matrix insuring the closure under marginaliza-

tion, Σ ∈ Rnx×nx is the scale parameter and also a covariance matrix, Γ ∈ Rmx×nx regulate the

skewness, φnx(x;µ,Σ) and Φmx(x;µ,Σ) are respectively the Normal probability density function

(pdf) and cumulative density function (cdf) with mean vector µ and covariance matrix Σ.

Additionally, the presence of the Normal cdf Φmx(x;µ,Σ) governs the closure properties for the

joint and the sum of independent csn random vectors when mx ≥ 1. One can check without

any di�culties that, when Γ = 0 the csn distribution reduces to the Gaussian. The notation

X ∼ csnnx,mx(µ,Σ,Γ, ν,∆) is often used to denote that the random variable X has a pdf as in

Equation 3.2.1.

To illustrate some properties of the csn distributions, let us consider a univariate random variable

z with the following benchmark distribution z ∼ csn1,1(µ, σ, γ, ν, δ). By setting µ = 5, γ = 3

and ν = 0 while playing around with other parameters. As shown in Figure 3.1 below, we can

see that inducing high level of skewness in the model can be achieved by increase σ or decrease

δ while keeping other parameters unchanged. On the other hand, by decreasing the value of ν

while keeping all the other parameters �xed and with a high value of σ, we can see that bigger

ν induce more skewness. Therefore, the e�ect of ν on the skewness is as much important. In

the left panel, we �xed µ = 5, γ = 3 and ν = 0 for all cases. The density in orange corresponds

to (σ = 8, δ = 1.5), the blue density is the case where (σ = 4, δ = 1), the green one is when

(σ = 3, δ = 0.5), and the red density shows how the csn reduces to the Normal when γ = 0.

In the right panel, all parameters except of ν are constant with values µ = 5, σ = 6, γ = 1 and

δ = 1.5. When ν = 0, ν = −3 and ν = −12, we have respectively the orange, blue and green

density.
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Figure 3.1: Densities of the csn1,1(µ, σ, γ, ν, δ) distributions.

The following Theorems 3.2.1 and 3.2.2 characterize respectively, the closure properties of the

joint distribution and the sum of independent csn random vectors.

Theorem 3.2.1. If y1, · · · , yn are independent random vectors with yi ∼ csnpi,qi(µi,Σi, Di, νi,∆i)

then the joint distribution of y1, · · · , yn is Y = (y
′
1, · · · , y

′
n)
′ ∼ csnp†,q†(µ

†,Σ†, D†, ν†,∆†),

where p† =
n∑
i=1

pi, q† =
n∑
i=1

qi, µ† = (µ
′

1, · · · , µ
′

n)
′
, Σ† =

n⊕
i=1

Σi,

and D† =
n⊕
i=1

Di, ν† = (ν
′

1, · · · , ν
′

n)
′
, ∆† =

n⊕
i=1

∆i.

Theorem 3.2.2. If y1, · · · , yn are independent random vectors with yi ∼ csnp,qi(µi,Σi, Di, νi,∆i)
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then the distribution of the random vector Y =
n∑
i=1

yi is Y ∼ csnp,q?(µ
?,Σ?, D?, ν?,∆?),

where q? =
n∑
i=1

qi, µ? =
n∑
i=1

µi, ,Σ? =
n∑
i=1

Σi, D† = (Σ1D
′

1, · · · ,ΣnD
′

n)
′
, ν? = (ν

′

1, · · · , ν
′

n)
′
,

and

∆? = ∆† +D†Σ†D†
′ −

[
n⊕
i=1

(DiΣi)

](
n∑
i=1

Σi

)−1 [ n⊕
i=1

(ΣiD
′

i)

]

∆†, D† and Σ† are de�ned as in Theorem 3.2.1.

The following lemma given by Naveau et al. (2005) and used in Kim et al. (2014a) is another

important tool that we will need to describe the observations process as the sum of independent

Gaussian and csn processes.

Lemma 3.2.1. Let y ∼ csnny ,my(µ,Σ,Γ, ν,∆) and z ∼ Nny(ψ,Ω) independent of y, then the

process y+z ∼ csnny ,my(µy+z,Σy+z,Γy+z, ν,∆y+z), where µy+z = µ+ψ,Σy+z = Σ+Ω,Γy+z =

ΓΣΣ−1
y+z and ∆y+z = ∆ + (Γ− Γy+z)ΣΓ

′
.

3.3 The skewed Kalman �lter of Naveau et al. (2005)

A look into the literature of time series modelling shows a considerable part of probabilistic models

that derived from stochastic dynamic linear models, sometimes referred as ssm. The interest in

the use of ssm for time series modelling has grown tremendously in the recent years. See for

example West et al. (1985), Gamerman and Migon (1993), Migon et al. (2005), Durbin and

Koopman (2012) and references hereafter, among others.

In the ssm framework, an observed time series is seen as the result or output of a dynamic system

perturbed by random �uctuations. While providing signi�cant �exibilities, analysis with ssm often

presents issues related to estimation and forecasting. These issues can be addressed by using a

recursive algorithm that calculates the conditional density of the future observable variable given
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the latent variable and the information available up to the time period of interest. This is basically

the reason why the Bayesian approach is particularly suitable for this purpose.

In the literature, some algorithms used to estimate ssm su�er from computational issues, due

to the use of all past observations, to estimate the current or future state of the system. On

the contrary, the Kalman �lter, uses recursively the last prediction made and corrected with the

new measurement to obtain predictions a-priori and a-posteriori of the state of the system. This

iteration of the forecast and the correction is primarily based on Bayes' formula.

As a matter of fact, di�culties arise in the case of data which have characteristics that can not

be traced back to a Normal distribution. In this case, how can the Kalman �lter be extended

in order to overcome the limitations induced from the assumption of normality and at the same

time, without losing the well behaving characteristics of the standard �lter? One possible answer

to this question can be given by the use of a more general statistical distribution that includes

the Gaussian distribution as a special case. In this chapter, we intend to use of the closed skew-

normal distributions (csn) which in addition of having many of the properties of the Gaussian

distribution allow for greater �exibility regarding the skewness of the observations.

As mentioned early, in the recent past years, some skewed Kalman �lter have been proposed in

the literature. But it is still unclear how the marginal conditional densities of the state variables

given the observations was characterized. The problem is that their �ltering procedure is entirely

based on that assumption. In what follows, we will have a look into it and see how valid their

assumption is.

In the skewed Kalman �lter of Naveau et al. (2005), at time index t = 1, 2, . . ., Equations 3.3.1

respectively 3.3.2 below, characterize a vector of observations Yt as a function of the unobserved

states Xt respectively, the state of the system which follows an autoregressive process.{
Yt = FtXt + εt (3.3.1)

Xt = GtXt−1 + ηt, (3.3.2)

where Ft, Gt are scalar matrices and εt, ηt additive noises. For clari�cations, Equations 3.3.1 and

3.3.2 correspond respectively to Equations 3 and 4 in the above mentioned paper.
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In order to simplify the computations, we will be restraining ourselves to the scalar (1-dimension)

form of Equations 3.3.1 and 3.3.2, which are then rewritten as yt = ftxt+εt and xt = gtxt−1 +ηt

respectively.

From their Lemma 2, one way to obtain the closure property under summation, is to consider

both error terms (εt and ηt) to be normally and independently distributed. Thus, for the skewed

Kalman �lter in their Paragraph 3.1 we chose, εt ∼ N (µε;σ
2
ε) and ηt ∼ N (µη;σ

2
η) independent

and identically distributed (iid). Furthermore, for simplicity and without any loss of generality,

we allow parameters to take the following values: µε = 0, µη = 0, ψ0 = 0, η0 = 0, Ω0 =

ω2
0, D0 = α and ∆0 = 1. In this speci�c part, we will be computing some marginal and

conditional densities with appropriate parameters, the aim being to ease our analysis. Based on

our assumptions, the initial distribution of the state equation can be written as follows.

x0 ∼ csn1,1(ψ0,Ω0, D0, ν0,∆0),

∼ csn1,1(0, ω2
0, α, 0, 1).

Thus, the probability density function (pdf) of x0 becomes

f(x0) =
1

Φ(0; ν0,∆0 +D0Ω0DT
0 )
φ(x0;ψ0,Ω0)Φ(D0(x0 − ψ0); ν0,∆0),

=
1

Φ(0; 0, 1 + α2ω2
0)
φ(x0; 0, ω2

0)Φ(αx0; 0, 1)

and from the de�nition of the general multivariate skew-normal density (GMSN) Gupta et al.

(2004a), we haveX0 ∼ GMSN1,1(0, ω2
0, α,0 , 1) = SN1,1(0, ω2

0, α,0 , 1) = 2φ(x0;ω2
0)Φ(αx0ω

−1
0 ).

Their proposition 3 on pages 385-386 then becomes,

Proposition 3.3.1. Suppose x0 ∼ csn1,1(ψ0,Ω0, D0, ν0,∆0), if εt ∼ N (µε;σ
2
ε) iid and ηt ∼

N (µη;σ
2
η) iid, then x1 ∼ csn1,1(ψ1,Ω1, D1, ν1,∆1) and y1 ∼ csn1,1(µ1,Γ1, E1, γ1,Θ1).

Where

ψ1 = g1ψ0 + µη = 0,

Ω1 = g1Ω0g
T
1 = g2

1ω
2
0 + σ2

η,
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D1 = D0Ω0g
T
1 Ω−1

1 =
αω2

0g1

g2
1ω

2
0 + σ2

η

,

ν1 = ν0 = 0,

∆1 = ∆0 + (D0 −D1g1)Ω1D
T
0 = 1 +

(
α− αω2

0g1

g2
1ω

2
0 + σ2

η

g1

)(
g2

1ω
2
0 + σ2

η

)
α

= 1 +
α(g2

1ω
2
0 + σ2

η)− g2
1ω

2
0 + σ2

η

g2
1ω

2
0 + σ2

η

= 1 + α

[
g2

1ω
2
0 + σ2

η − g2
1ω

2
0

]
g2

1ω
2
0 + σ2

η

(g2
1ω

2
0 + σ2

η)α = 1 + α2σ2
η.

The density of x1 is then,

f(x1) =
1

Φ(0; ν1,∆1 +D1Ω1DT
1 )
φ(x1;ψ1,Ω1)Φ(D1(x1 − ψ1); ν1,∆1), (3.3.3)

which can be rewritten as

f(x1) =

φ
(
x1; 0, (g2

1ω
2
0 + σ2

η)
)

Φ

((
αω2

0g1

g2
1ω

2
0 + σ2

η

x1

)
; 0, (1 + α2σ2

η)

)
Φ

(
0; 0, (1 + α2σ2

η) +

(
αω2

0g1

g2
1ω

2
0 + σ2

η

)2

(g2
1ω

2
0 + σ2

η)

) . (3.3.4)

When t = 1, Equation 3.3.1 becomes y1 = f1x1 + ε1. This implies that, y1|x1 ∼ N (f1x1, σ
2
ε).

That is,

f(y1|x1) =
1√

2πσ2
ε

exp

{
− 1

2σ2
ε

(y1 − f1x1)2

}
= φ(y1; f1x1, σ

2
ε). (3.3.5)

Now, let us recall that if y1 and x1 are realizations of two random variables, then from the Bayes'

rule their joint density is de�ned by f(x1, y1) = f(y1|x1)f(x1) and the following holds,

f(x1, y1) = φ(y1; f1x1, σ
2
ε)

φ
(
x1; 0, (g2

1ω
2
0 + σ2

η)
)

Φ

((
αω2

0g1

g2
1ω

2
0 + σ2

η

x1

)
; 0, (1 + α2σ2

η)

)
Φ

(
0; 0, (1 + α2σ2

η) +

(
αω2

0g1

g2
1ω

2
0 + σ2

η

)2

(g2
1ω

2
0 + σ2

η)

) .

(3.3.6)
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From their Proposition 3 again, we also have that y1 ∼ csn1,1(µ1,Γ1, E1, γ1,Θ1), or equivalently

f(y1) =
1

Φ(0; γ1,Θ1 + E1Γ1ET
1 )
φ(y1;µ1,Γ1)Φ(E1(y1 − µ1); γ1,Θ1),

with

µ1 = f1ψ1 + µε = 0,

Γ1 = f1Ω1f
T
1 = f 2

1 (g2
1ω

2
0 + σ2

η + σ2
ε),

E1 = D1Ω1f
T
1 Γ−1

1 =
αω2

0g1f1

f 2
1 (g2

1ω
2
0 + σ2

η) + σ2
ε

,

γ1 = ν1 = 0,

Θ1 = ∆1 + (D1 − E1f1)Ω1D
T
1 =

(
1 + α2σ2

η

)
+

(αω2
0g1)

2(
g2

1ω
2
0 + σ2

η

) (
f 2

1 (g2
1ω

2
0 + σ2

η) + σ2
ε

) ,

and the density of y1 is given by

f(y1) =
φ(y1; 0,Γ1)Φ(E1y1; 0,Θ1)

Φ(0; 0,Θ1 + E1Γ1ET
1 )

(3.3.7)

From the Bayes' rule, we have f(x1|y1) =
f(x1, y1)

f(y1)
=
f(y1|x1)f(x1)

f(y1)
, which implies,

f(x1|y1) = φ(y1; f1x1, σ
2
ε)
φ(x1; 0,Ω1)Φ(D1x1; 0,∆1)

Φ(0; 0,∆1 +D1Ω1DT
1 )

Φ(0; 0,Θ1 + E1Γ1E
T
1 )

φ(y1; 0,Γ1)Φ(E1y1; 0,Θ1)
. (3.3.8)

The fact that the product of the two Normal densities φ(y1; f1x1, σ
2
ε) and φ(x1; 0,Ω1) of the

dependent variables y1 and x1 respectively is not a Normal pdf, contradicts the de�nition of a

csn pdf. Therefore, the density in Equation 3.3.8 is clearly not csn. This is a contradiction with

respect to their Proposition 7 and proves our statement regarding the wrong characterization

of their �ltering density. Another way to see this is by using Proposition 7 on Page 391 of the

same paper, and by applying our 1-dimensional setting, we have the following. Suppose that

the initial state vector x0 of the system composed by Equations 3.3.1 and 3.3.2 is such that
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x0 ∼ csn1,1(ψ0,Ω0, D0, ν0,∆0) and that εt ∼ N (µε;σ
2
ε) iid and ηt ∼ N (µη;σ

2
η) iid.

Then, without loss of generality, we can assume that at t = 0, y0 = 0 and therefore x0|y0 = x0

holds. From their Proposition 7, we obtain the following: ψ̂0 = 0, Ω̂0 = ω2
0, D̂0 = α, ν̂0 =

0, ∆̂0 = 1. We then obtain the parameters of the posterior (�ltering) distribution of x1 de�ned

by

(x1|y1) ∼ csn1,1(ψ̂1, Ω̂1, D̂1, ν̂1, ∆̂1), (3.3.9)

where

ψ̂1 = g1ψ̂0 + µη + Ω̃1f1(σ2
ε + f 2

1 Ω̃1)−1
{
y1 − f1(g1ψ̂0 + µη)− µε

}
=

f1y1(g2
1ω

2
0 + σ2

η)

σ2
ε + f 2

1 (g2
1ω

2
0 + σ2

η)
,

Ω̃1 = g1Ω̂0g
T
1 + ση = g2

1ω
2
0 + σ2

η,

Ω̂1 = Ω̃1 − Ω̃1f
T
1 (σε + ftΩ̃1f

T
1 )−1f1Ω̃1 = (g2

1ω
2
0 + σ2

η)

{
1− f 2

1

σ2
ε + f 2

1 (g2
1ω

2
0 + σ2

η)

}
,

D̂1 = D̂0Ω̂0g
T
1 Ω̃−1

1 =
αω2

0g1

g2
1ω

2
0 + σ2

η

,

ν̂1 = ν̂0 = 0,

∆̂1 = ∆̂0 + (D̂0 − D̂1g1)Ω̂0D̂0 = 1 +
α2ω2

0σ
2
η

g2
1ω

2
0 + σ2

η

.

Comparing the two �ltering densities f(x1|y1) from Equations 3.3.8 and 3.3.9 will show the

problem. Perhaps a di�erent assumption on these densities would have provided results with

better performance.

3.4 The closed skew-normal state-space model

From now on, we work under the following state-space model{
Yt = HtXt + εt (3.4.1)

Xt = ΦtXt−1 + ηt, (3.4.2)
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where t ∈ {1, . . . , N} represents the time index, Yt ∈ Rny the vector of observations, Xt ∈ Rnx

the unobservable state vector, Ht ∈ Rnx×ny and Φt ∈ Rnx×nx two known matrices. εt ∼

csnny ,my(µε,Σε,Γε, νε,∆ε) iid and independent of ηt ∼ Nnx(0,Ση) iid for all t. Furthermore, let

us assume that Xt ∈ Rnx is a stationary vector autoregressive process of order 1 (VAR(1)) where

this latter assumption is the particularity and novelty of the model we are proposing.

To simplify the computations and without any loss of generality, we consider the univariate

situation (lower case letters) of all processes in Equations 3.4.1 and 3.4.2 above. Notice that,

with similar arguments and after some simple computations, the multivariate generalization of

our results can easily be derived.

We then assume that the error terms εt are independent and identically distributed as closed skew-

normal (iid.csn) and ηt are independent and identically distributed as Normal (iid.N) distribution

with appropriate dimension. Moreover, the ηt are independent of xt and the series x1, x2, . . . , xt is

stationary and since it is an AR(1) process, we consider the fact that stationarity holds if |φ| < 1.

In the case in which |φ| < 1, let us set Bxt = xt−1 with B the lag operator. We can then write

xt = φBxt+ηt and using a geometric series, the following moving average (MA) expansion holds

xt = ηt + φηt−1 + φ2ηt−2 + φ3ηt−3 + · · · . For this MA(∞) process we have,

E(xt) = E(ηt + φηt−1 + φ2ηt−2 + · · · )

= E(ηt) + φE(ηt−1) + φ2E(ηt−2) + · · · = 0.

By independence of the errors and values of xt, its variance denoted Var(xt) is obtained as

Var(xt) = Var(φxt−1 + ηt) = Var(φxt−1) + Var(ηt) = φ2Var(xt−1) + σ2
η.

The fact that Var(xt) = Var(xt−1) = σ2 by stationarity, leads to σ2 =
σ2
η

1− φ2
. The series xt

is marginally distributed as a Normal with mean 0 and variance σ2, ∀t = 0,±1,±2, . . .. To

conclude with the characterization of xt, let us look at the autocorrelation function (ACF).
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xt = φxt−1 + ηt =⇒ xt−h − xt = φxt−hxt−1 + xt−hηt,

=⇒ E(xt−hxt−1) = E(φxt−hxt−1) + E(xt−hηt),

=⇒ γk = φγk−1.

Indicating with γk the kth order covariance of xt, we can write

γ0 = Var(xt) =
σ2
η

1− φ2
,

we obtain

γ1 = φγ0,

γ2 = φγ1 = φ(φγ0) = φ2γ0,

γ3 = φγ2 = φ(φ2γ0) = φ3γ0,

...

γh = φhγ0 = φh
σ2
η

1− φ2
.

Hence, for I = {· · · − 2,−1, 0, 1, 2, · · · }, the covariance and the correlation of {xt}t∈I at two

di�erent lags are respectively given by

Cov(xt, xt−h) =
φhσ2

η

1− φ2
, and Corr(xt, xt−h) = ρh =

Cov(xt, xt−h)
Var(xt)

, for h = 1, 2, . . . .

Since from stationarity, the product of the standard deviation (SD) of xt at two di�erent lags will

give the variance, we can write,

SD(xt)SD(xt−h) = SD2(xt) = Var(xt),

which implies,

ρh = Corr(xt, xt−h) = φh
Var(xt)
Var(xt)

= φh.
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Now, for all t let us recall the measurement Equation 3.4.1. We are interested in de�ning

the distribution of {yt}t=0,1,2,···. Before going to the computations, a detour into their proper

characterisation is required. We know that it is always possible to derive the Normal distribution

from the csn by letting the parameter governing the skewness or the skewness dimension to be

equal to zero. From Lemma 3.2.1 and since εt ∼ csn1,1(µε,Σε,Γε, νε,∆ε), yt which is a sum

of a csn and a Gaussian processes will be distributed as a csn with appropriate dimension and

parameters. Having made this clear, we can now compute some simple examples (one dimension)

in order to easily generalize the result in the multivariate setting. For nx = my = ny = 1 and

t = 0, we have

y0 = (x0 + ε0) ∼ csn1,1(µy0 ,Σy0 ,Γy0 , νy0 ,∆y0),

where µy0 = µε, Σy0 = Σε + σ2, Γy0 = ΓεΣε(Σε + σ2)−1, νy0 = νε and ∆y0 = ∆ε +
Γ2
εΣεσ

2

Σε + σ2

We know that, xt has a stationary distribution (xt ∼ N(0, σ2)) and εt ∼ csn1,1(µε,Σε,Γε, νε,∆ε)

iid. Then for all t, yt has a stationary distribution as well, and this distribution is csn1,1(µy0 ,Σy0 ,Γy0 , νy0 ,∆y0).

With these information, we can now state the following proposition.

Proposition 3.4.1. Under the model composed by both Equations 3.4.1 and 3.4.2, if the noises

εt, respectively ηt are iid csn1,1(µε,Σε,Γε, νε,∆ε, ) random variables, respectively a Gaussian

random variable with mean 0, and variance σ2
η and as assumed before, the process xt ∼ N(0, σ2)

is stationary AR(1). Then for t = 0, 1, 2, . . . , the observations yt are stationary and distributed

as yt ∼ csn1,1(µyt ,Σyt , Dyt , νyt ,∆yt), with parameters satisfying the following relationships µyt =

µε, Σyt = Σε + σ2, Γyt = ΓεΣε(Σε + σ2)−1, νyt = νε and ∆yt = ∆ε +
Γ2
εΣεσ

2

Σε + σ2
.

We will now look at the �nite-dimensional marginal distribution of {yt}t=0,1,2,...,n. By considering
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a given n with values in {1, 2, 3, . . . , } Equation 3.4.1 can be rewritten as



y1

y2

y3

...

yn


=



x1

x2

x3

...

xn


+



ε1

ε2

ε3

...

εn


Let us start with n = 2 and then generalize the result.y1

y2

 =

x1

x2

+

ε1

ε2


d
=

N2

(0

0

)
,

 σ2 φσ2

φσ2 σ2

+

csn2,2

(µε
µε

)
,

Σε 0

0 Σε

 ,

Γε 0

0 Γε

 ,

(
νε
νε

)
,

∆ε 0

0 ∆ε



Using Lemma 3.2.1 we can then write

y1

y2

 ∼ csn2,2(µy12 ,Σy12 ,Γy12 , νy12 ,∆y12) where,

µy12 =

(
µε
µε

)
, Σy12 =

σ2 + Σε φσ2

φσ2 σ2 + Σε

 ,

Γy12 =
ΓεΣε

(σ2 + Σε)2 − (φσ2)2

σ2 + Σε −φσ2

−φσ2 σ2 + Σε

 , νy12 =

νε
νε

 ,

∆y12 =

∆ε + Γε −
(ΓεΣε)

2(σ2 + Σε)

(σ2 + Σε)2 − (σ2φ)2

(ΓεΣε)
2φσ2

(σ2 + Σε)2 − (φσ2)2

(ΓεΣε)
2φσ2

(σ2 + Σε)2 − (φσ2)2
∆ε + Γε −

(ΓεΣε)
2(σ2 + Σε)

(σ2 + Σε)2 − (σ2φ)2

 .

So, for any set of two indexes i and j, the resulting vector

yi
yj

 ∼ csn2,2(µyij ,Σyij , Dyij , νyij ,∆yij)

with parameters de�ned as above.
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From this, we can then construct and de�ne the joint distribution for any set of indexes {1, 2, 3, · · · , n}.

The following proposition characterizes a vector Xt = x1, x2, . . . , xn as a csn distribution with

appropriate parameters.

Proposition 3.4.2. Let us consider a given n with values in {1, 2, 3, · · · }, a given set of indexes

t = {1, 2, . . . , n}, the noise ηt a Gaussian random variable with mean 0 and variance σ2
η. As

demonstrated before, all xt de�ned by Equation 3.4.2 follow the stationary distribution xt ∼

N(0, σ2) and the distribution of Xt which is the joint distribution of all xt can be written as

Xt =



x1

x2

x3

...

xt


∼ csnt,t


0t×1, σ

2



1 φ φ2 · · · φt−1

φ 1 φ · · · φt−2

φ2 φ 1 · · · φt−3

...
...

...
. . .

...

φt−1 φt−2 φt−3 · · · 1


,0t×t,0t×1,1t×t


,

where σ2 =
σ2
η

1− φ2
, 0i×j and 1i×j are i× j matrices of 0 and 1, respectively.

This proposition can easily be generalised for the multivariate situation.

We now want to evaluate the distribution of the state vector conditional on the set of all available

information (observations), at each time index. That is, f(xt|Y t), where Y t = (y1, y2, . . . , yt)

represents the set of all available information up to time t. These data are assumed to be

conditionally independent, given the state variable at the indicated time step. The �ltering

problem will then consist on characterizing, the distribution of the states given all the available

information. Moreover, the likelihood for the data can be de�ned as f(Y t|Xt) and from Equation

3.4.1, we can see that there is a linear relationship between the observations and the state

variables.

As stated before, the csn distribution is an extension or generalization of the Gaussian distribution

and as such, it has numerous properties similar to the Gaussian one. Another of these properties

which will be the key of what follows is that, the csn distribution is conjugate. Meaning that, if

the prior probability density function f(Xt) and the likelihood f(Y t|Xt) are both distributed as a

csn and if in addition, there is a linear relation in the likelihood, then the posterior pdf f(Xt|Y t)
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will also be distributed as a csn with appropriate dimension and parameters. The reader can refer

to Karimi et al. (2010) and Rezaie et al. (2014) for more information about this. For convenience

and later use, we will now present the following Proposition 3.4.3 which describes the �ltering

density and is simply a particular case of the above mentioned proposition.

Proposition 3.4.3. If the prior pdf for the state variables is Xt ∼ Nnx(µx,Σx) and the like-

lihood is Y t|Xt ∼ csnny ,my(HXt + µy|x,Σy|x,Γy|x, vy|x,∆y|x), then the posterior of the state

variables is Xt|Yt ∼ csnnx,mx|y(µx|y,Σx|y,Γx|y, vx|y,∆x|y). The skewness dimension parameter of

the posterior pdf is mx|y = mx +my and for the others we have:

µx|y = µx + ΣxH
′
[HΣxH

′
+ Σy|x]

−1(Y t −Hµx − µy|x),

Σx|y = Σx − ΣxH
′
[HΣxH

′
+ Σy|x]

−1HΣx,

Γx|y =
[
−
[
Γy|xΣy|x

]
[HΣxH

′
+ Σy|x]

−1HΣx

]
Σ−1
x|y,

νx|y =
[
−νy|x

]
+
[
Γy|xΣy|x

]
[HΣxH

′
+ Σy|x]

−1(Y t −Hµx − µy|x),

∆x|y =
[
∆y|x + Γy|xΣy|xΓ

′

y|x

]
−
[
Γy|xΣy|x

]
[HΣxH

′
+ Σy|x]

−1
[
Γy|xΣy|x

]′
− Γx|yΣx|yΓ

′

x|y.

When looking at (Y t−Hµx− µy|x), which can be considered as the innovation, we obtain as in

Rezaie et al. (2014) a Gaussian and a Skewed Kalman gains de�ned respectively by

KGaussian = ΣxH
′
[HΣxH

′
+ Σy|x]

−1 and (3.4.3)

KSkewed =
[
Γy|xΣy|x

]
[HΣxH

′
+ Σy|x]

−1 (3.4.4)

The fact that mx = 0 in the present situation implies (mx|y = my) and it is worth noticing that

the skewness dimension of the posterior distribution is considerably reduced compared to previous

approaches in the literature. This will be very valuable in handling the updating scheme and the

computational cost of the parameters' estimation.

For simplicity purpose, let us assume that εt ∼ csn1,1(0,Σε,Γε, 0, 1). Having these ingredients

and by applying Proposition 3.4.3 we have the following.
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For t = 1 our state-space model can be written as follows

 y1 = x1 + ε1

x1 = φx0 + η1

We know from Proposition 3.4.1 that y1 will be distributed as a csn and so does (y1|x1) ∼

csn1,1(x1,Σε,Γε, 0, 1) and the posterior model f(x1 | y1) with respect to the Bayesian closed

skew-normal inversion (BCSNI) Karimi et al. (2010) is given by:

f(x1|y1) ∼ csn1,1(µx1|y1 ,Σx1|y1 ,Γx1|y1 , νx1|y1 ,∆x1|y1) (3.4.5)

Where,

µx1|y1 =
σ2

σ2 + Σε

y1

Σx1|y1 =
σ2

σ2 + Σε

Σε

Γx1|y1 = −Γε

νx1|y1 =
ΓεΣε

σ2 + Σε

y1

∆x1|y1 = 1 +
σ2ΓεΣε(1 + Γε)

σ2 + Σε

Now let us look at the conditional marginal distribution f(x2 | y1, y2).

 y1 = x1 + ε1

y2 = x2 + ε2

Which can be rewritten as y1

y2

 =

x1

x2

+

ε1

ε2

 (3.4.6)
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We know that,x1

x2

 ∼ csn2,0

0

0

 ,

 σ2 φσ2

φσ2 σ2

 ,

0 0

0 0

 ,

0

0

 ,

1 0

0 1


and ε1

ε2

 ∼ csn2,2

µε
µε

 ,

Σε 0

0 Σε

 ,

Dε 0

0 Dε

 ,

νε
νε

 ,

∆ε 0

0 ∆ε

 ,

thus, x1

x2

 ∣∣∣∣∣
y1

y2

 ∼ csn2,2

(
µx12|y12 ,Σx12|y12 ,Γx12|y12 , νx12|y12 ,∆x12|y12

)
,

with

µx12|y12 = µx12 + Σx12 [Σx12 + Σε12 ]
−1

y1

y2


=

0

0

+
1

(σ2 + Σε)2 − (φσ2)2

σ4 + σ2Σε − φ2σ4 φσ2Σε

φσ2Σε σ4 + σ2Σε − φ2σ4

y1

y2


=

1

(σ2 + Σε)2 − (φσ2)2

y1(σ4 + σ2Σε − φ2σ4) + y2(φσ2Σε)

y1(φσ2Σε) + y2(σ4 + σ2Σε − φ2σ4)

 . (3.4.7)

Finally, we have that

µx2|y12 = (0, 1)µx12|y12

=
1

(σ2 + Σε)2 − (φσ2)2

[
y1(φσ2Σε) + y2(σ4 + σ2Σε − φ2σ4)

]
(3.4.8)

By setting

A =
(σ4 + σ2Σε − φ2σ4)(σ2) + (φσ2Σε)(φσ

2)

(σ2 + Σε)2 − (φσ2)2

B =
(φσ2Σε)(σ

2) + (σ4 + σ2Σε − φ2σ4)(φσ2)

(σ2 + Σε)2 − (φσ2)2

C =
−(DεΣε)(σ

4 + σ2Σε − φ2σ4)

(σ2 + Σε)2 − (φσ2)2
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and D =
−(DεΣε)(φσ

2Σε)

(σ2 + Σε)2 − (φσ2)2
,

we have

Σx12|y12 = Σx12 − Σx12 [Σx12 + Σε12 ]
−1 Σx12

=

 σ2 − A φσ2 −B

φσ2 −B σ2 − A

 ,

which implies

Σx2|y12 = (0, 1)Σx12|y12

0

1


= σ2 − A

= σ2 − (σ4 + σ2Σε − φ2σ4)(σ2) + (φσ2Σε)(φσ
2)

(σ2 + Σε)2 − (φσ2)2

=
σ2

(σ2 + Σε)2 − (φσ2)2

[
σ2Σε(1− φ2) + Σ2

ε

]
(3.4.9)

Γx12|y12 =
[
−Γε12Σε12 [Σx12 + Σε12 ]

−1 Σx12

]
Σ−1
x12|y12

=
ΓεΣε

[(σ2 + Σε)2 − (φσ2)2][(σ2 − A)2 − (φσ2 −B)2]

×

(σ2 + Σε)(σ
2 − A)− φσ2(B − φσ2) (σ2 + Σε)(B − φσ2)− φσ2(σ2 − A)

(σ2 + Σε)(B − φσ2)− φσ2(σ2 − A) (σ2 + Σε)(σ
2 − A)− φσ2(B − φσ2)


(3.4.10)

Yields,

Γx2|y12 = Γx12|y12Σx12|y12

0

1

(0, 1)Σx12|y12

0

1

−1

(3.4.11)



Section 3.4. The closed skew-normal state-space model Page 71

νx12|y12 = νx2|y12 = Γε12Σε12 [Σx12 + Σε12 ]
−1

y1

y2


=

ΓεΣε 0

0 ΓεΣε

 1

(σ2 + Σ)2 − (φσ2)2

σ2 + Σε −φσ2

−φσ2 σ2 + Σε

y1

y2


=

ΓεΣε

(σ2 + Σε)2 − (φσ2)2

 (σ2 + Σε)y1 − φσ2y2

−φσ2y1 + (σ2 + Σε)y2

 (3.4.12)

Finally,

∆x12|y12 = I2 + Γε12Σε12Γ
′

ε12
− Γε12Σε12 [Σx12 + Σε12 ]

−1[Γε12Σε12 ]
′

=
1

(σ2 + Σε)2 − (φσ2)2

E F

F E

 (3.4.13)

where

E = ((σ2 + Σε)
2 − (φσ2)2)(1 + Γ2

εΣε)− (ΓεΣε)
2(σ2 + Σε) and F = (ΓεΣε)

2φσ2

and we then obtain

∆x2|y12 =∆x12|y12 + Γx12|y12Σx12|y12Γ
′

x12|y12

− Γx12|y12Σx12|y12

0

1

(0, 1)Σx12|y12

0

1

−1

(0, 1)Σx12|y12Γ
′

x12|y12 (3.4.14)

We then conclude that,

f(x2|y1, y2) ∼ csn1,2(µx2|y12 ,Σx2|y12 ,Γx2|y12 , νx2|y12 ,∆x2|y12) (3.4.15)

and as the computations can show, except from µ and ν, where we there exists an updating

procedure, the other parameters do not depend on data.
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3.5 Model estimation: The maximum likelihood ap-

proach

In this section, the model estimation will be conducted based on data generated from a bench-

mark model with true parameters (σε = 2, γε = 8, ση =
√

2 and φ = 0.7). Before proceed-

ing, let us recall the ssm de�ned by the observation equation yt = xt + εt and the state

equation xt = φxt−1 + ηt, where εt ∼ csn1,1(µε,Σε,Γε, νε,∆ε) and xt ∼ N(0, σ2). More-

over, if we let the parameters linked to the state process xt and (yt|xt) be Λ := {ση, φ} and

Θ := {µε,Σε,Γε, νε,∆ε} respectively, then we can de�ne the parameters vector as ψ = {Θ,Λ}.

Now, let 0 represents the null vector, In the n × n identity matrix, Σx the variance-covariance

matrix of the state process, Σε an n×n diagonal matrix with entries σε and Γε an n×n diagonal

matrix with entries γε. The marginal likelihood is then distributed as

Yn d
= [Nn(0,Σx)] + [csnn,n(0,Σε,Γε,0, In)] (3.5.1)

∼ [csnn,n(µY ,ΣY ,ΓY , νY ,∆Y )] , (3.5.2)

where

µY = 0, νY = 0, ΣY = Σx + Σε, ΓY = ΓεΣε(Σx + Σε)
−1, ∆Y = In + (Γε − ΓY )ΣεΓ

′

ε

and d
= stands for, distributed as. The marginal likelihood is then written in closed form as

L(Ψ;Yn) =
1

Φn(0;0,∆Y + ΓY ΣY Γ
′
Y )
× φn(Yn;0,ΣY )× Φn(ΓY Y

n;0,∆Y )

=
1

(2π)n/2|ΣY |1/2
exp

{
−1

2
(Yn)

′
Σ−1
Y (Yn)

}
× (2π)n/2|∆Y + ΓY ΣY Γ

′

Y )|1/2

×
y1∫

−∞

· · ·
yn∫
−∞

1

(2π)n/2|∆Y |1/2
exp

{
−1

2
(ΓYZ)

′
∆−1
Y (ΓYZ)

}
dz1 · · · dzn, (3.5.3)

where |A| is simply the determinant of the square matrix A. Taking out some constant that do

not depend on parameters, we �nally have that
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−2 logL(Ψ;Yn) = − log |∆Y + ΓY ΣY Γ
′

Y |+ log |ΣY |+ (Yn)
′
Σ−1
Y (Yn) + log |∆Y |

− 2 log

y1∫
−∞

· · ·
yn∫
−∞

exp

{
−1

2
(ΓYZ)

′
∆−1
Y (ΓYZ)

}
dz1 · · · dzn (3.5.4)

In many statistics problems, such as the one under investigation in this chapter, one usually

encounters issue is that of numerically evaluating the n-dimensional Gaussian distribution func-

tion. To tackle this problem, several solutions have been proposed in the literature for various

(relatively small) values of n, see for instance the contributions of Donnelly (1973) and Cox and

Wermuth (1991) among others. As our application require big values of n, we follow the approach

proposed by Genz (1992) where three successive transformations are used to transform the initial

multidimensional integral into an integral over a unit hypercube with constant limits. Detailed

explanations on these transformations and the algorithm can be found in the above mentioned

reference where as for the purpose of this study, we implemented the same algorithm via the R

software.

A �rst attempt on estimating the above likelihood led to several computational issues such as

the singularity of covariance matrices when the sample size goes above 100, and the high time

consumption required to generate data from a multivariate csn distribution. Additionally, even

with relaxed assumptions on parameters such as the ones leading to the skew-normal density of

Azzalini and Capitanio (1999), we end up with the same conclusion as the authors that called

for an alternative estimation method rather than the maximum likelihood estimation procedure

which leads to several statistical issues. Moreover, given that for large sample, the evaluation

of multivariate Gaussian cdf is computationally costly, a simple reformulation of the likelihood

function is most desirable.

3.5.1 Reformulation of the likelihood function

In the following, we will reformulate the likelihood function to allow for simple and fast simulation

from the csn distribution which will also contribute to make feasible and reliable the maximum
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likelihood estimation technique by overcoming the above mentioned drawbacks.

To proceed, we invite the reader to make a brief detour to linear algebra and especially to the

following two properties of symmetric positive semi-de�nite matrices (PSD). It is well known that

any real symmetric matrix A ∈ Rn×n can always be rewritten as A = UΛU
′
, with U a full rank

orthogonal matrix with columns the eigenvectors of A, and Λ a diagonal matrix with entries the

eigenvalues of the matrix A. Second, the eigenvalues of any PSD matrix A are all non negative.

By using the �rst property also known as the eigendecomposition, we have that the square root

of any PSD matrix A can always be computed as

A = UΛU
′
= (UΛ1/2U

′
)(UΛ1/2U

′
) = SS,

where S = UΛ1/2U
′
is the square root of A. In fact if A is PSD, the existence and the uniqueness

of the PSD matrix denoted A1/2 such that (A1/2)2 = A can be found in appropriate graduate

text book of linear algebra.

Now, let y1, . . . , yn be a set normally distributed random variables with expected values µ1, . . . , µn

and covariance matrix Σ ∈ Sn++, where Sn++ is the space of symmetric positive-de�nite matrices

of dimension n× n de�ned by

Σ =


σ2

11 · · · σ2
1n

...
. . .

...

σ2
n1 · · · σ2

nn

 , σ2
ij = Cov(yi, yj) and σ2

ii = Var(yi).

Then, the pdf of the random vector denoted Y = [y1, . . . , yn]
′
is de�ned as

f(Y ) =
1√

(2π)n|Σ|
exp

{
−1

2
(Y − µ)

′
Σ−1(Y − µ)

}
(3.5.5)

This means that, if we have a pdf of the form described in Equation (3.5.5), then by a suitable
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change of variables, one sees that the new random vector Z = Σ−1/2(Y − µ) has pdf

f(Z) =
1√

(2π)n
exp

{
−1

2
(Z)

′
(Z)

}
=

1√
2π

exp

{
−1

2
z1

2

}
× . . .× 1√

2π
exp

{
−1

2
zn

2

}
(3.5.6)

and the components of the random vector Z are independent and normally distributed with mean

0 and variance 1. It is important to see that, the random vector Y can be recovered by simply

noticing that Y = µ + Σ1/2Z which is more convenient if one wants to generate sample from

Y . Finally, by taking out some constants that do not depend on parameters and using the above

properties and transformations, the log-likelihood in Equation (3.5.4) becomes without loss of

generality

L(Ψ;Yn) = −1

2

n∑
t=1

(
Σ
−1/2
Y Y n

)
[t] +

n∑
t=1

log

 (∆
−1/2
Y ΓY Y

n)[t]∫
−∞

exp

{
−1

2
z2

}
dz

 , (3.5.7)

or equivalently,

−2L(Ψ;Yn) =
n∑
t=1

(
Σ
−1/2
Y Y n

)
[t]− 2

n∑
t=1

log Φ1

(
(∆
−1/2
Y ΓY Y

n)[t]; 0, 1
)
, (3.5.8)

where V [t] represents the tth component of the vector V .

De�nition (3.5.1) below is the result of applying the above transformation to the de�nition of the

csn density.

De�nition 3.5.1 (Alternative representation of the multivariate close skew-normal pdf). If a

random vector X has a multivariate csn distribution according to González-Farías et al. (2004a),

then under the same assumption as in De�nition (3.2.1), its pdf de�ned by Equation (3.2.1) can

equivalently be represented as

f(x) =
1

Φmx(−(∆ + ΓΣΓT )−1/2;0, Imx)
φnx(Σ

−1/2(X − µ);0, Inx) (3.5.9)
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× Φmx(∆
−1/2(Γ(x− µ)− ν);0, Imx). (3.5.10)

It is important to notice that we do not intend to substitute the original de�nition but instead

we are o�ering an alternative representation for fast and more friendly computation, as the latest

has a well-behaving structure allowing for factorization of multivariate Normal pdf and cdf as

product of standard univariate Normal pdf and cdf respectively.

Corollary 3.5.1. With parameters' transformation as in de�nition (3.5.1) above, the elements of

the vector X will then be independent as a consequence of the diagonal structure of the covariance

matrices.

This corollary can be very useful when it comes to the parameters estimation of the csn density in

general. The independence structure of the random vector it o�ers constitutes the key ingredient

for an alternative method to estimate the parameters of the csn likelihood by using the weighted

method of moment of Flecher et al. (2009), where the authors demonstrated that their method

seems to outperform the mle for small sample sizes in the univariate case. It would have been

interesting to compare their results with ours in the csn-ssm framework, but we leave it for future

studies.

3.5.2 Estimation results

Based on simulation studies conducted with the R software on a laptop operating under Ubuntu

14.04.5 LTS, with the following properties (Processor: 8x Intel(R) Core(TM) i7-2670QM, CPU @

2.20GHz, Memory: 4G), Tables (3.1) and (3.2) below were obtained and summarize our �ndings.

For both tables, we used the alternative representation in Equation (3.5.9).

Parameters σε γε ση φ

True values 2 8
√

2 0.7
Estimates 1.6 7.6 1.226555 0.5

Table 3.1: Parameter estimates of a csn likelihood via the optimx package and the "L-BFGS-B" method

and sample size N = 400.
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Parameters σε γε ση φ

True values 2 8
√

2 0.7
Estimates 1.7 7.8 1.584982 0.6

Table 3.2: This table summarizes the parameter estimates of a csn likelihood via the optimx package

and the "L-BFGS-B" method and sample size N = 1000.

One can see that, as the sample size becomes larger, the estimates converge to their true values.

It is worth noticing that, we �rst ran a grid-search algorithm around the parameters and then

supplied the obtained estimates as initial values for the mle routine. We did this because the plot

of the likelihood function presents local maxima and depending on the starting values, relatively

di�erent estimates were obtained. To avoid the search to stuck into these local maxima, we

suggest to �rst search the parameters regions via the grid-search method and then use the best

set of obtained estimates as starting value. In Figure (3.2) below, the curve in red, blue, green

and orange correspond respectively to the case where all parameters are keep �xed except for

σε, γε, ση and φ respectively.

−1.0 −0.5 0.0 0.5 1.0

−
2

0
0

−
1

0
0

0
1

0
0

2
0

0

L(σε)
L(γε)
L(ση)
L(φ)

Figure 3.2: Likelihood of the closed skew-normal state-space model as a function of one parameter.
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3.6 Concluding remarks

The so called skew Kalman �lter (SKF) which we derived from a state-space model with closed

skew-normal innovations in the measurement equation combined with a stationary autoregressive

state process was introduced. Given that the Normal distribution is a special case of the csn

distribution and that after a suitable transformation, one can recover the linear Gaussian ssm

from our model, the proposed approach can be considered as a simple generalization of the

Kalman �lter.

For simulation and estimation purpose, we proposed a suitable reformulation of the csn likelihood

function, making independent the observed data. The independence structure presented by these

data allow for a factorization of the multivariate csn density as a product of univariate ones

and leading to the parameter estimation via the maximum likelihood technique which in the

present context, is proven to be computationally not costly, e�cient and overcomes some of the

drawbacks presented in Azzalini and Capitanio (1999).

Moreover, taking into account the fact that we wanted a model that can account for skewness,

the present ssm representation is more practical as the skewness is not fading away when the

sample size increase as shown by tables (3.1) and (3.2). Note that, this is not the case with some

existing models. Also, compare to the existing representations in the literature such as the skew

Kalman �lter of Naveau et al. (2005), the skewness dimension for the observation and �ltering

densities is considerably reduce by at least half, this makes the estimation even faster and reliable

compare to theirs.

Since by making use of BCSNI we ended with a posterior, likelihood and �ltering densities within

the csn family and analytically tractable, we can additionally say that the ultimate goal of mimick-

ing as much as possible the Gaussian ssm was achieved up to a certain extend. For more general

applications, some numerical challenges encountered in the current study along with other es-

timation techniques such as the method of weighted moment of Flecher et al. (2009) required

further studies.



4. Robust Student-t state-space

model

4.1 Introduction

For many problems from time-series analysis and related areas, the estimation of the state of the

system evolving with time by employing available and noisy measurements provided by the system

is usually required. With the same idea, this chapter makes use of discrete-time formulation of

state-space model to characterize dynamical systems.

In state-space modelling framework, the attention is generally focussed on the state equation as

it contains all important information needed to describe the system under consideration. For in-

stance, in problems related to econometrics applications, this could be related to some economics

indicators such as in�ation and interest rates among others. Where the measurement equation

represents noisy observations linked to the state vector. Compare to standard and traditional ap-

proaches in time-series analysis, one shall notice that this techniques o�ers considerable insights

and can appear to be more convenient when it comes to handle nonlinear and/or non-Gaussian

variables and multivariate observations.

A key property for situations evolving with time, is the ability to reformulate many of their

recursive techniques as general solution of prediction, smoothing and �ltering problems; making

the �exibility, the suitability as well as the usefulness of state-space models not arguable any

more (Härdle et al., 2000). In the second half of the 19C and especially with the seminal paper

by (Kalman, 1960), these models back then started to o�er new perspectives to tackle many

unsolved/non-well solved problems in several �elds. The interesting future which was glimpsed

in these models and the need to make them more reliable, led to the study of their statistical

properties which has received a considerable attention in the recent years; with contributions such

as (Diderrich, 1985; Harrison and Stevens, 1976; West et al., 1985; Gamerman and Migon, 1993;

Migon et al., 2005; Durbin and Koopman, 2012), and references hereafter in this chapter.

79
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An inside look into a box containing mathematical algorithms which combine simplicity and

optimality, and that can solve state-space models will show the Kalman �lter in a prominent

position. But it is unfortunate that this prominence holds only under speci�c assumptions such

as the linearity of the model and the normality of the error terms driving the model.

An important feature of the Kalman and related �lters also known as classical solutions to the

�ltering problem is that, their methodologies are mostly based on the moment of second order

of the underlying distribution. Despite this appealing property, the quality of the �lter depends

strongly on the assumptions governing the model. This means that, even a small departure from

these assumptions will have a considerable impact on the �lter's quality or e�ciency. Depending

on where the perturbation or deviation occurs, di�erent impacts can be encountered.

For instance, let us assume that the error term in the observation equation of our favourite state-

space model is contaminated and that this error and the state process are independent. As result,

we will end up with signi�cantly bias values of single observations. On a di�erent perspective,

if we assume instead that, the contamination has occurred in the state equation via its error

term, even if the e�ect may diminish on time, depending on the magnitude and the time horizon,

the value of the state at the moment when the contamination has occurred and all subsequent

states will be erroneous and so will be the related observations as the state process enter the

observation equation. These are sometimes referred in the literature as additive and innovation

outliers respectively. For detailed readings concerning this matter, see for instance (Fox, 1972)

and (Ruckdeschel, 2000).

While standard �ltering solutions are easy to implement, they do not always provide viable so-

lutions, and especially when it comes to more general and non-linear systems. An alternative

solution which is the one used in this chapter is the particle �lter. The speci�city of this approach

which consists on representing the �ltering density by a system of particles, resides in the fact

that the entire probability density function is estimated instead of parametrized as in the stan-

dard solutions. It can be proved that, there is always a possibility to characterised any non-linear

system by using particle �lter given that we have at our disposal a su�cient large number of

particles.

The wide range of applicability of this powerful recursive algorithm and the need of models
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immunized against misspeci�cation and outliers, motivated the need for counter-measures such

as robustness. Before continuing, it is perhaps very important to state a clear di�erence between

the widely used concept of robustness in the state-space model literature and the one we are

using.

In state-space modelling, Robustness usually refers to the ability of the distribution on which the

inference is based, to explain up to a certain extend, the true state and measurement equation.

Whereas in the present case, we follow the idea of (Calvet et al., 2015) who succeeded to

mimic the methodology of robust statistic and adapted it to sequential �ltering. In this speci�c

framework, the �lter is consider to be robust if "the relative error in the state distribution caused

by misspeci�cation is uniformly bounded by a linear function of the perturbation size". Simply

speaking, this is the ability of the model to handle the sensitivity of the �lter due to the presence

of little misspeci�cation of the underlying model, to outliers in the observation process and to the

possible occurrence of some contaminations at the instant just before the time period of interest.

The non-robustness of the Kalman �lter and as explained in (Meinhold and Singpurwalla, 1989)

can also be due to the fact that, the function describing the mean of the state process is not

bounded and its variance is independent of the observations. Consequently, the inference of the

state will greatly be impacted if an outlier occurs in the observation.

In the paper of (Calvet et al., 2015) that inspired us, a mechanism describing how to robustify

the entire �ltering density along with the robust particle �lter algorithm has been provided and

the Gaussian case implemented. In this chapter, we are concerned with following their steps and

construct a robust state-space model allowing for Student-t error in the measurement equation.

The goal being to take into consideration fat tails behaviour and therefore, a more general model.

The remaining of the chapter is organized as follows. In section 2, after recalling some key

de�nitions and propositions, we will construct the robust Student-t �ltering density. In section 3,

we apply the theoretical results to the linear Gaussian model and to the unobserved component

model with Stochastic volatility (UCSV) of (Stock and Watson, 2007). Then, in order to locate

our �lter with existing ones, we conduct some diagnostics checking and compare the performance

of our robust Student-t �lter with three other �lters. Namely, the standard Gaussian, the standard

Student-t and the robust Gaussian �lter. Some concluding remarks and possible extensions appear
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in section 4.

4.2 On the robusti�cation of a �ltering density

In its simple form and given a time index t ∈ N, a state-space model establishes a temporal

relationship between a sequence of available information (observations) Yt = y1, y2, . . . , yt and a

set of latent variables x1, x2, . . . , xt via the following two mechanisms.

yt = xt + εt and (4.2.1)

xt = xt−1 + ηt. (4.2.2)

Equations (4.2.1) and (4.2.2) are usually referred as observation and state equations respectively.

εt and ηt are their respective associated error terms which are assumed to be independently

distributed. Without any loss of generality, the model under investigation in this chapter charac-

terizes the observation and the sate equations by the conditional observation density f(yt|xt, Yt−1)

and a Markov process xt in the set X with kernel ρ(xt|xt−1) respectively.

Our concern is estimating the quantity g(xt|Yt), also known as the �ltering density. Given the

observation density f(yt|xt, Yt−1) and with the use of Bayes' rule, the �ltering density can then

be rewritten as g(xt|yt, Yt−1) ∝ f(yt|xt, Yt−1)g(xt|Yt−1). Before proceeding and in order to make

things clear, it is worth making a brief detour into the paper by (Calvet et al., 2015). The goal

being to recall some crucial assumptions, de�nitions and propositions from which the construction

of our robust �ltering density will be organized.

4.2.1 Background settings from (Calvet et al., 2015)

Let η ∈ J represent the perturbation size where J is a non-degenerate interval of the real

line containing zero, f(·|xt, Yt−1) the non-contaminated density and fcont(·|xt, Yt−1, η) the con-

taminated probability density function (pdf). By assuming that at any given time t, the noisy
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measurement yt sampled from the contaminated pdf is made available, it can be proved that,

lim
η→0

fcont(·|xt, Yt−1, η)→ f(·|xt, Yt−1). (4.2.3)

That is, the two densities become closer and closer as the perturbation size tends to zero. From

the above mentioned contaminated pdf and using the Bayes' rule, the contaminated �ltering

density is obtained as

gcont(xt|yt, Yt−1, η) ∝ fcont(yt|xt, Yt−1, η)gcont(xt|Yt−1, η) (4.2.4)

It is important to notice that, before the time period t of interest, if no outliers have occurred, then

in conjunction with the relation in Equation (4.2.3) one can easily prove that the contaminated

�ltering density becomes the non-contaminated one. Since gcont(xt|yt, Yt−1, η) and g(xt|yt, Yt−1)

are available, simple analysis can be conducted in order to measure the impact of the contami-

nation and to quantify the quality of the estimation when studying the �ltering density. Thanks

to (Calvet et al., 2015), this can be done with the following Equation (4.2.5), that computes the

relative error between the non-contaminated and the true (contaminated) �ltering densities.

| log g(xt|yt, Yt−1)− log gcont(xt|yt, Yt−1, η)| (4.2.5)

For convenience and later use, we now recall the following.

De�nition 4.2.1 (Robustness of the �ltering density). The �ltering density is said to be robust

with respect to a family of contaminations fcont if there exists a constant c1 ∈ R+ such that

| log g(xt|yt, Yt−1)− log gcont(xt|yt, Yt−1, η)| ≤ c1|η| (4.2.6)

for all xt ∈ X , yt ∈ Rp, Yt−1 ∈ R(t−1)p and η ∈ J .

In order words, a �lter is said to be robust whenever any linear function of perturbation size is

bounded below by Equation (4.2.5).

De�nition 4.2.2 (Conditional means). If f(yt|Yt−1) =
∫
X
f(yt|xt, Yt−1)g(xt|, Yt−1)dxt, for every
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xt and t ≥ 1,

µt =

∫
Rp

yf(y|Yt−1)dy, (4.2.7)

µ(xt) =

∫
Rp

yf(y|xt, Yt−1)dy. (4.2.8)

Let us consider the observation y∗t sampled from the non-contaminated density f(·|xt, Yt−1), η the

parameter driving the perturbation and ut ∈ Rp a disturbance. Then, yt = y∗t +ηut characterizes

the contamination dynamic. Every time the term disturbance is used, the reader should refer to

one of the following.

De�nition 4.2.3 (Point-mass disturbance). Assuming that the disturbance is characterized by

ut = y∗t − µt, with µt de�ned as in Equation (4.2.7) leads to the following contaminated obser-

vation yt = y∗t + η(y∗t − ut), which provides the contaminated observation density as

fcont(yt|xt, Yt−1; η) = (1 + η)−pf [(1 + η)−1(yt + ηut)|xt, Yt−1], (4.2.9)

with η ∈ [η,+∞) and the negative constant η > −1.

De�nition 4.2.4 (Continuous disturbance). If instead, disturbances ut with conditional density

ξ(·|y∗t , Yt−1) are considered. Then, for all xt ∈ X , yt ∈ Rp, Yt−1 ∈ R(t−1)p and η ∈ R, one obtains

the following contaminated observation density

fcont(yt|xt, Yt−1; η) =

∫
Rp

f(yt − ηut|xt, Yt−1)ξ(ut|yt − ηut, Yt−1)dut, (4.2.10)

It is important to point out that, the existence of Equation (4.2.10), is subject to Assumption

(4.2.1) below. Whereas more details on how (4.2.10) is derivation can be found in the online

Appendix of (Calvet et al., 2015).

Assumption 4.2.1. The conditional pdf of the continuous disturbance ut holds for E(ut|Yt−1) =

0 and ξ(ut|y∗t , Yt−1) = 0 given that ‖ut‖ > ‖y∗t − E(y∗t |Yt−1)‖ is satis�ed. Moreover, it should



Section 4.2. On the robusti�cation of a �ltering density Page 85

exist a nonnegative constant c2 such that,∣∣∣∣u′t∂ log ξ

∂y∗t
(ut|y∗t , Yt−1)

∣∣∣∣ ≤ c2 (4.2.11)

for all ut ∈ Rp, yt ∈ Rp and Yt−1 ∈ R(t−1)p.

We now recall the following assumption that provides the framework under which Proposition

(4.2.1) below holds.

Assumption 4.2.2. For every time index t, observation yt ∈ Rp, state process xt and past

observations Yt−1, the observation density f(yt|xt, Yt−1) is strictly positive and twice continuously

di�erentiable with respect to yt.

Proposition 4.2.1 (Su�cient condition for robustness). Assume that there exists c ∈ R+ such

that ∥∥∥∥∂ log f(yt|xt, Yt−1)

∂yt

∥∥∥∥‖yt − µt‖ ≤ c, (4.2.12)

for all xt, yt and Yt−1. Then the �lter is robust to point-mass disturbances and to continuous

disturbances that satisfy Assumption (4.2.1).

One can easily see the link between Proposition (4.2.1), inequality in De�nition (4.2.1) and the

two types of above mentioned disturbances. In fact, Inequality (4.2.6) will be valid in the case

of point-mass disturbances if c1 = 2c/(1 + η) and for all η ∈ [η,+∞), where as for continuous

disturbances, if c1 = 2(c+ c2) and all η ∈ R.

Given Assumption (4.2.2) and as we will see in the next section, the construction of a robust

�lter requires solving Inequality (4.2.12), provided the validity of the additional Assumption (4.2.3)

below.

Assumption 4.2.3 (Critical region). For all xt, Yt−1, z ∈ Rp and every c ∈ R+, the critical

region

{
y ∈ Rp s.t.

∥∥∥∥∂ log f(y|xt, Yt−1)

∂y

∥∥∥∥‖y − E(yt|Yt−1)‖ = c

}
, (4.2.13)
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intersects the segment [µ(xt), z] �nitely many times.

Proposition 4.2.2 (Robusti�ed observation density). Let us consider the following function

G(y) = h c
‖y−µt‖

[
∂ log f(y|xt, Yt−1)

∂y

]
, (4.2.14)

where hτ (z) = zmin(1; τ/‖z‖) is the multivariate Huber function and c ∈ R+ is a tuning

constant. Then under Assumptions (4.2.2) and (4.2.3), the function

f̃(yt|xt, Yt−1) = f [µ(xt)|xt, Yt−1] exp

(∫ 1

0

G[yt(s)]
′
[yt − µ(xt)]ds

)
(4.2.15)

belongs to C1(Rp) and satis�es the su�cient condition for robustness for every yt ∈ Rp.

4.2.2 Robusti�cation of a univariate Student-t density

With all these ingredients, we simply need to place ourselves into a state-space model framework

and consider the observation equation from a Student-t distribution with ν degrees of freedom.

That is,

f(yt|xt) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

(
1 +

(yt − xt)2

ν

)− 1
2

(ν+1)

. (4.2.16)

We only have to replace accordingly the observation density in (4.2.12) with the Student-t and

solve it for equality in order to �nd the critical roots. Given the position of µ(xt), the value of c

and with respect to the roots, a di�erent value of the observation density will be provided. All

this will then leads to a speci�c (robust) �ltering density.

As pointed out in (Calvet et al., 2015), Assumption (4.2.3) is satis�ed by many models such

as the Student's t-distributions. This is one of the motivation driving the use of this particular

distribution in the current chapter.
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To ease our computations, let us make these further settings,

A =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν
.

Equation (4.2.16) can then be rewritten as f(yt|xt) = A

(
1 +

(yt − xt)2

ν

)− 1
2

(ν+1)

, which implies

that

log f(yt|xt) = log

[
A

(
1 +

(yt − xt)2

ν

)− 1
2

(ν+1)
]

= logA− 1

2
(ν + 1) log

(
1 +

(yt − xt)2

ν

)
. (4.2.17)

Yields

∂ log f(yt|xt)
∂yt

= −(ν + 1)
yt − xt

ν + (yt − xt)2
(4.2.18)

In order to �nd the critical roots, we need to check when the su�cient condition for robustness as

de�ned in Calvet et al. (2015), will hold as equality. As we now do, this implies solving Equation

(4.2.19) below. ∥∥∥∥∂ log f(yt|xt, Yt−1)

∂yt

∥∥∥∥‖yt − µt‖ = c (4.2.19)

ie.

∣∣∣∣− (ν + 1)
yt − xt

ν + (yt − xt)2

∣∣∣∣|yt − µt| = c

ie. (ν + 1)|(yt − xt)(yt − µt)| = c(ν + (yt − xt)2)

(ν + 1)(yt − xt)(yt − µt) = c(ν + (yt − xt)2)) if (yt < xt, yt < µt) or (yt > xt, yt > µt)

−(ν + 1)(yt − xt)(yt − µt) = c(ν + (yt − xt)2)) if (yt < xt, yt > µt) or (yt > xt, yt < µt)

which implies respectively Equations (4.2.20) and (4.2.21) below.

y2
t (ν + 1− c) + yt(2cxt − (xt + µt)(ν + 1)) + xtµt(ν + 1)− cx2

t − cν = 0 (4.2.20)
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y2
t (−ν − 1− c) + yt(2cxt + (xt + µt)(ν + 1))− xtµt(ν + 1)− cx2

t − cν = 0(4.2.21)

In what follows, Equations (4.2.20) and (4.2.21) will be referred as case 1 and case 2 respectively.

4.2.3 Condition on c in order for case 1 to admit two distinct roots

The discriminant ∆1 with respect to the variable yt is de�ned as follows:

∆1 = [(2cxt − (xt + µt)(ν + 1))]2 − 4[(ν + 1− c)][xtµt(ν + 1)− cx2
t − cν]

= [(ν + 1)(xt − µt)]2 + 4cν(ν + 1− c) (4.2.22)

Now as a function of c,∆1(c) > 0 if and only if ν + 1 > c and c belongs to

(
4ν(ν + 1)−

√
[4ν(ν + 1)]2 + 16ν[(ν + 1)(xt − µt)]2

8ν
,
4ν(ν + 1) +

√
[4ν(ν + 1)]2 + 16ν[(ν + 1)(xt − µt)]2

8ν

)

Since c ∈ R+ and
4ν(ν + 1)−

√
[4ν(ν + 1)]2 + 16ν[(ν + 1)(xt − µt)]2

8ν
< 0, we conclude

that, case 1 has two distinct roots if

c ∈

(
0, c1 =

4ν(ν + 1) +
√

[4ν(ν + 1)]2 + 16ν[(ν + 1)(xt − µt)]2
8ν

)
(4.2.23)

4.2.4 Condition on c in order for case 2 to admit two distinct roots

The discriminant ∆2 with respect to the variable yt is de�ned as follows:

∆2 = [(2cxt + (xt + µt)(ν + 1))]2 − 4[(ν + 1 + c)][xtµt(ν + 1) + cx2
t + cν]

= [(ν + 1)(xt − µt)]2 − 4cν(ν + 1 + c) (4.2.24)
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This implies that as a function of c,∆2(c) > 0 if and only if c belongs to the interval

(
−4ν(ν + 1)−

√
[4ν(ν + 1)]2 + 16ν[(ν + 1)(xt − µt)]2

8ν
,
−4ν(ν + 1) +

√
[4ν(ν + 1)]2 + 16ν[(ν + 1)(xt − µt)]2

8ν

)

Given the fact that c ∈ R+ and
−4ν(ν + 1)−

√
[4ν(ν + 1)]2 + 16ν[(ν + 1)(xt − µt)]2

8ν
< 0,

we state that, case 2 has two distinct roots if

c ∈

(
0, c2 =

−4ν(ν + 1) +
√

[4ν(ν + 1)]2 + 16ν[(ν + 1)(xt − µt)]2
8ν

)
(4.2.25)

The reader can easily check that c1 > c2, condition that will play an important role later.

Therefore, if c > c2, we are in the situation where (yt < xt, yt < µt) or (yt > xt, yt > µt) and

equation (4.2.19) has two distinct solutions y∗− and y∗+ satisfying y∗− < xt, µt < y∗+, ∀(xt, µt)

and de�ned by

y∗− =
(xt + µt)(ν + 1)− 2cxt −

√
[(ν + 1)(xt − µt)]2 + 4cν(ν + 1− c)

2(ν + 1− c)
(4.2.26)

and

y∗+ =
(xt + µt)(ν + 1)− 2cxt +

√
[(ν + 1)(xt − µt)]2 + 4cν(ν + 1− c)

2(ν + 1− c)
(4.2.27)

Otherwise, we are in the situation where (yt < xt, yt > µt) or (yt > xt, yt < µt) and we have

the following two additional solutions z∗− and z∗+

z∗− =
(xt + µt)(ν + 1) + 2cxt −

√
[(ν + 1)(xt − µt)]2 − 4cν(ν + 1 + c)

2(ν + 1 + c)
(4.2.28)

z∗+ =
(xt + µt)(ν + 1) + 2cxt +

√
[(ν + 1)(xt − µt)]2 − 4cν(ν + 1 + c)

2(ν + 1 + c)
(4.2.29)
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and the following will holdy
∗
− < xt < z∗− < z∗+ < µt < y∗+ if xt < µt

y∗− < µt < z∗− < z∗+ < xt < y∗+ if xt > µt

(4.2.30)

4.2.5 Robusti�ed Student-t observation density

In this section, we intend to "Huberize" the derivative of the log-observation density computed

previously, its integration will provide us with the robust Student density. Equation (4.2.14)

implies

G(y) = h c
‖y−µt‖

[
∂ log f(y|xt, Yt−1)

∂y

]

= −(ν + 1)
y−xt

ν + (y − xt)2
min

1;

c
|y−µt|∣∣∣∣− (ν + 1)

y−xt
ν + (y − xt)2

∣∣∣∣


= max

{
−(ν + 1)

y − xt
ν + (y − xt)2

;− c(y − xt)
|(y − µt)(y − xt)|

}
(4.2.31)

We can then de�ne the followings functions

G1(y) = −(ν + 1)
y − xt

ν + (y − xt)2
(4.2.32)

and

G2(y) =


− c

y − µt
, if (yt < xt, yt < µt) or (yt > xt, yt > µt).

c

y − µt
, otherwise.

(4.2.33)

The robusti�ed density Calvet et al. (2015) is de�ned by

f̃(yt|xt, Yt−1) = f [µ(xt)|xt, Yt−1] exp

{∫ 1

0

[yt − µ(xt)]
′
G[µ(xt) + s(yt − µ(xt))]ds

}
(4.2.34)

In order to determine which of G1(y) or G2(y) is the maximum in each interval, one can choose

to evaluate the two functions at µ(xt) = xt, then alternate the maximum in the next interval.
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It is easy to check that f(µ(xt)|xt, Yt−1) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

. For simplicity, let f(y) represents the

Student-t observation density evaluated at y.

The robusti�ed density f̃(yt|xt, Yt−1), as de�ned by equation (4.2.34) will be characterized as

follows.

4.2.5.1 When c > c2

f̃(yt|xt, Yt−1) =


D1,t(xt)|yt − µt|−c if yt < y∗−

f(yt) if yt ∈ [y∗−, y
∗
+)

D2,t(xt)|yt − µt|−c if yt ≥ y∗+

(4.2.35)

Now, let B1,t(xt) denotes the normalizing constant of the density in (4.2.35) and F (y) the

Student cdf evaluated at y, then

B1,t(xt) =

[ ∫
R
f̃(y|xt, Yt−1)dy

]−1

and we can write

B−1
1,t (xt) =

|y∗+ − µt|f(y∗+)− |y∗− − µt|f(y∗−)

c− 1
+ F (y∗+)− F (y∗−) (4.2.36)

4.2.5.2 When c ≤ c2 and xt < µt

f̃(yt|xt, Yt−1) =



C1,t(xt)|yt − µt|−c if yt < y∗−

f(yt) if yt ∈ [y∗−, z
∗
−)

C2,t(xt)|yt − µt|c if yt ∈ [z∗−, z
∗
+)

C3,t(xt)f(yt) if yt ∈ [z∗+, y
∗
+)

C4,t(xt)|yt − µt|−c if yt ≥ y∗+

(4.2.37)
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and the normalizing constant B2,t(xt) de�ned as follows

B2,t(xt) =

[ ∫
R
f̃(y|xt, Yt−1)dy

]−1

with

B−1
2,t (xt) =

f(y∗−)|y∗− − µt|
c− 1

+ F (z∗−)− F (y∗−) + f(z∗−)

[
|z∗+ − µt|
|z∗− − µt|

]c
×

×
{
|z∗+ − µt|
c+ 1

+
F (y∗+)− F (z∗+)

f(z∗+)
+
|y∗+ − µt|f(y∗+)

f(z∗+)(c− 1)

}
(4.2.38)

4.2.5.3 When c ≤ c2 and xt > µt

f̃(yt|xt, Yt−1) =



E4,t(xt)|yt − µt|−c if yt < y∗−

E3,t(xt)f(yt) if yt ∈ [y∗−, z
∗
−)

E2,t(xt)|yt − µt|c if yt ∈ [z∗−, z
∗
+)

f(yt) if yt ∈ [z∗+, y
∗
+)

E1,t(xt)|yt − µt|−c if yt ≥ y∗+

(4.2.39)

and the normalizing constant B3,t(xt) de�ned by

B3,t(xt) =

[ ∫
R
f̃(y|xt, Yt−1)dy

]−1

Where,

B−1
3,t (xt) =

f(y∗+)|y∗+ − µt|
c− 1

+ F (y∗+)− F (z∗+) +
f(z∗+)

c+ 1

{
|z∗+ − µt| −

[
|z∗− − µt|
|z∗+ − µt|

]c
|z∗− − µt|

}
+

+
f(z∗+)

f(z∗−)(|z∗+ − µt||z∗− − µt|)c

[
F (z∗−)− F (y∗−)−

f(y∗−)|y∗− − µt|
c− 1

]
(4.2.40)

Figure (4.1) shows the behaviour of the robusti�ed Student-t observation density for various

values of c. The left and the right panels correspond respectively to the case when µ(xt) > µt

and µ(xt) < µt. Just like in the Gaussian case presented in Calvet et al. (2015), the robusti�ed
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density converges to the original observation density as the constant c becomes larger. This means

that decreasing values of the tuning constant c leads to an increase strength of the robusti�cation.

µ(xt) > µt

c=2

c=4

c=10

µ(xt) < µt

c=2

c=4

c=10

Figure 4.1: Robusti�ed Student-t observation density.

4.3 Application and analysis

In this part, we are going to implement the theoretical results and conduct some statistical

analysis. Since we would like to compare the performance of our robust �ltering density with

exiting models, we choose for application the the linear Gaussian ssm and the UCSV. We will

then proceed with some comparison between the standard model in (Stock and Watson, 2007)

(GPF), the robust Gaussian particle �lter (RGPF) (Calvet et al., 2015), the standard Student-t

particle �lter (SSPF) and the proposed robust Student-t particle �lter (RSPF). The availability

of conditional and robust �ltering density suggests to use the maximum likelihood approach

combined with the particle �lter technique for parameter estimation.

However, it is well known that when using the particle �lter, the resampling step is the most costly

computationally speaking. The combination of theMalmquist ordered statistics (Cappé et al.,

2005) and the robust �ltering density will considerably decrease the time usually needed. The

MSE and the empirical rejection frequency will be computed and compared for all methods in

order to state the e�ciency of ours.
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4.3.1 The linear Gaussian ssm

The linear Gaussian ssm considered is de�ned by Equation (4.3.1) below.

yt = axt + εt

xt = φxt−1 + ηt,

(4.3.1)

where yt, xt ∈ Rp, εt ∼ N(0, 1) for the Gaussian case and εt ∼ t(ν, 1) for the Student-t

case, ηt ∼ N(0, 1), and εt and ηt are independent. For the simulations, we use the point-mass

disturbance with 5% contamination of size η = 10, we further set a = 0.4 and φ = 0.9.

In tables (4.1) and (4.2), we report respectively the empirical rejection frequency and the the

mean squared error (MSE) of the forecast observation for the Normal linear model with 500

observations. For the uncontaminated series as well as under 5% contamination, the robust

Student-t model has the best performance both in terms of rejection frequency and the MSE,

followed by the robust Gaussian model.

Models No contamination 5% contamination
Gaussian 159 157
Student-t 145 143

Robust Gaussian 81 84
Robust Student-t 50 52

Table 4.1: Empirical rejection frequency of the 90% prediction band for the Normal linear model

Models No contamination 5% contamination
Gaussian 3337.166 3172.259
Student-t 3478.01 3277.573

Robust Gaussian 2858.989 2776.012
Robust Student-t 2794.055 2764.348

Table 4.2: Mean squared error of the forecast observations for the Normal linear model



Section 4.3. Application and analysis Page 95

4.3.2 The UCSV model

In this section, all the analysis will be conducted under the assumption that there is no contami-

nation and we consider the UCSV model de�ned as follows,

πt = τt + ηt, ηt ∼ N(0, σηt )

τt = τt−1 + εt, εt ∼ N(0, σεt )

log(σηt ) = log(σηt−1) + νηt , νηt ∼ N(0, γ1)

log(σεt ) = log(σεt−1) + νεt , νεt ∼ N(0, γ2)

(4.3.2)

Figure (4.2) represents the �ltered mean of the state processes x1(t), x2(t), x3(t) using the 4

particle �lters. That is, the GPF in red, the SSPF in blue, the RGPF in green and the RSPF

in orange using B=30000 particles. The left panel correspond to the case where the truncation

constant c = 5.1413 and the degree of freedom for the Student-t and robust Student-t �ltering

densities ν = 5. The middle panel is for c = 10 and ν = 10, where as the right panel is for

c = 20 and ν = 20.

Figure (4.3) depicts the prediction interval using the GPF in red, the SSPF in blue, the RGPF

in green and RSPF in orange with 30000 particles. The left panel correspond to the case where

c = 5.1413 and ν = 5. The middle panel is for c = 10 and ν = 10 and the right one is for

c = 20 and ν = 20. Table (4.3) reports the proportion of time the data yt fall outside the 90%

prediction bands, using the GPF, the SSPF, the RGPF and RSPF with sample B=30000.

Figure (4.4) describes the observations forecast using the 4 particle �lters with various values

of the tuning constant c and with 30000 particles. For (c = 5.1413 ν = 5), (c = 10 ν = 10)

and (c = 20 ν = 20), we have respectively the left, the middle and the right panel. Table (4.4)

reports the mean squared error for the forecasted data using the GPF, the SSPF, the RGPF and

the RSPF.

Figure (4.5) represents the likelihood function using the 4 particle �lters and with various values

of c. Namely, the G (red), S (blue), RG (green) and the RS (orange) with 30000 particles. For

(c = 5.1413 ν = 5), (c = 10 ν = 10) and (c = 20 ν = 20), we have respectively the left, the
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middle and the right panel. Table (4.5) provides the parameter's estimate with the likelihood

method via grid-search using the GPF, the SSPF, the RGPF and the RSPF. In parentheses are

provided the optimized values.

When looking at Figure (4.2), independently of the values of c and ν, one can see that for all

cases in the �rst row which corresponds to the process x1(t), all the �ltered means are in a

close neighbourhood of the data. The Gaussian, the robust Gaussian and the Student-t �ltered

mean all together match perfectly with the data. When the tuning constant c and the degree

of freedom ν increase simultaneously all the �ltered means are still in the neighbourhood of the

data but, robust Student-t becomes the less viable option. The Gaussian, the robust Gaussian

and the Student-t �ltered mean still match the data and have apparently similar performance.

In the top row of the prediction intervals presented by Figure (4.3), the �rst part of the hidden

state x1(t) show that the prediction intervals obtained with all particle �lters methods contain

best the data. For all values of ν and c, the robust Student-t has the wider prediction interval.

This may suggest it as the best �lter as it is more probable for future observations to be contained

in that interval.

As c and ν increase the Gaussian, the robust Gaussian and the Student-t prediction intervals

become similar and best option compare to the robust Student-t prediction interval. We can

observe that the three intervals have an apparent similar performance, this because as ν increases,

the SSPF converges to the Gaussian and as c increases, the robust Gaussian converges to the

Gaussian. Therefore, they will perform almost equally if we were to consider even bigger values

of ν and c.

The empirical rejection frequency which we de�ne as the failure rate or the percentage of data

outside the prediction interval presented in Table (4.3) con�rm these �ndings. The accuracy of

the RSPF depends on the degree of robustness. That is, for smaller value of the tuning constant

c, the RSPF outperforms the SSPF, GPF and RGPF and reaches 60% rejection frequency for

mild robusti�cation.

Additionally, we can see that for whatever values of c and ν the failure rate of the Gaussian

particle �lter doesn't change. This is in line with the theory as the GPF is neither a function of ν
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nor c. As expected, even if their performance is not that di�erent, the SSPF outperform the GPF

and the RGPF. When c and ν increase the accuracy of these three �lters becomes similar, this

result is theoretically supported by the fact that the Student-t density converges to the Normal

one for increasing degree of freedom.

The mean squared error of the forecast observations in Table (4.4) shows that for all four �lters

and for all values of c and ν, the robust Student-t is the less accurate, the forecast observations

in Figure (4.4) con�rms the accuracy of the RSPF for smaller values of c compare to the other

three counterparts. Similar to what discussed earlier, Table (4.4) con�rms the convergence of

the robust Gaussian and robust Student-t when c and ν increase.

Finally, in Table (4.5) we have the parameter estimate and the optimized values in parentheses

produced with the likelihood method. This estimation which is also in accordance with the

theoretical results, suggests that the robust Gaussian, the robust Student-t and the Student-

t �lters converge respectively to the Gaussian, the Student-t and the Gaussian �lters when c

increases.

c = 5.1413, ν = 5 c = 10, ν = 10 c = 20, ν = 20
Gaussian 30% 30% 30%
Student-t 29% 30% 29%

Robust Gaussian 32% 30% 30%
Robust Student-t 16% 35% 60%

Table 4.3: Empirical rejection frequency of the 90% prediction band for the UCSV

c = 5.1413, ν = 5 c = 10, ν = 10 c = 20, ν = 20
Gaussian 750.426 750.426 750.426
Student-t 762.2935 756.9334 754.2368

Robust Gaussian 762.626 760.6836 755.7935
Robust Student-t 1460.192 1640.807 2359.121

Table 4.4: Mean squared error of the forecast observation for the UCSV
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γ c = 5.1413, ν = 5 c = 10, ν = 10 c = 20, ν = 20
Gaussian 0.46 (-424.5036) 0.43 (-424.0915) 0.46 (-424.1451)
Student-t 0.95 (-1583.547) 0.93 (-1550.909) 0.46 (-1650.1)

Robust Gaussian 0.39 (-424.925) 0.47 (-424.4674) 0.42 (-424.243)
Robust Student-t 0.87 (-1642.791) 0.54 (-1626.151) 0.65 (26875.27)

Table 4.5: Parameter estimate via the likelihood for the UCSV
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Figure 4.4: Forecast observations using the 4 particle �lters for the UCSV
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Figure 4.5: Likelihood function using the 4 particle �lters for the UCSV
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4.4 Concluding remarks

In this chapter, we proposed and constructed a robust Student-t state-space model which under

no contamination can be used as a viable alternative to the often used linear Gaussian approach

and achieve remarkably well than the robust Gaussian �lter proposed by Calvet et al. (2015). We

proved that the obtained robust density belongs to the Student-t family and in term of e�ciency,

under contamination the results obtained with the simulated model are better than in the standard

Student-t case which is naturally robust. By using the robusti�ed density, we were able to derive

a recursive procedure to obtain all �nite marginal and conditional distributions, and therefore the

likelihood function. From simulations conducted on the Gaussian linear model, we proved that

the proposed method is robust, accurate and e�cient compare to the models where standard

assumptions are made. By applying our theoretical results on the US in�ation data from 1947 to

2013, we were able estimate the parameter in the UCSV and our model performed well.

As for the question "why has the U.S. in�ation become harder to forecast?" by (Stock and

Watson, 2007), it is well known that, obtaining perfect accuracy when forecasting in�ation is hard

to achieve. Such an imperfection can be explained by the following non exhaustive phenomenons.

The presence of some external shocks that for example can be originated from the occurrence

of a jump in the world oil or energy prices can have a severe impact on the world's economy.

The fact that, the available measurements of in�ation are usually direct or indirect consequences

of important amount of pricing decisions. The error committed and sometimes the omission

of some information when computing the consumer price index. The importation prices can

become very volatile due to some �uctuation in the exchange rate. Recurrent policy changes

by central banks on the interest rate when they realize that the in�ation target will not be met

on a given time horizon. One can indeed see that, most if not all of these facts are somehow

related to the occurrence of outliers or misspeci�cation. The foregoing and clear evidence suggest

that for a relatively good in�ation forecast, the need of mathematical models that can take into

consideration the above mentioned issues is most desirable. We suggest that in the framework

of state-space modelling, the use of robust �ltering density and di�erent time index for in�ation

data are potential way out.
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Finally and as suggested by the computed MSE forecast,there is a price to pay when robustifying

a �ltering density and this price is even higher when robustifying a naturally robust model such as

the Student-t. One then has to be willing to cope with this cost in the search of robustness. For

further research and in order to simultaneously reduce this cost and achieve robustness, it can

be interesting look at the construction of the robust �ltering density using other robust function

and study their statistical properties.



Section 4.5. Appendix: Detailed computations for the robust �ltering density Page 103

4.5 Appendix: Detailed computations for the robust �l-

tering density

4.5.1 When c > c2 and given the position of yt, let us compute

f̃(yt|xt, Yt−1) and denote it by Ii(yt)

It is easy to check that f(µ(xt)|xt, Yt−1) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

. Moreover, let f(y) represents the Student-

t observation density evaluated at y. Thus,
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 |y∗− − µt|c|yt − µt|−c
= f(y∗−)|y∗− − µt|c|yt − µt|−c

= D1,t(xt)|yt − µt|−c, where D1,t(xt) = f(y∗−)|y∗− − µt|c (4.5.1)

If yt ∈ [y∗−, y
∗
+)

I2(yt) =
Γ(ν+1

2
)

Γ(ν
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If yt ≥ y∗+
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Then,

f̃(yt|xt, Yt−1) =


D1,t(xt)|yt − µt|−c if yt < y∗−

f(yt) if yt ∈ [y∗−, y
∗
+)

D2,t(xt)|yt − µt|−c if yt ≥ y∗+

(4.5.4)

4.5.2 Computation of the normalizing constant B1,t(xt)

We know that
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4.5.3 When c ≤ c2 and y∗− < xt < z∗− < z∗+ < µt < y∗+ ie. xt < µt let

us compute f̃(yt|xt, Yt−1) and denote it by Ji(yt)
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{∣∣∣∣ν + (z∗− − xt)2

ν + (xt − xt)2

∣∣∣∣
−(ν+1)

2
∣∣∣∣ yt − µtz∗− − µt

∣∣∣∣c
}

=

 Γ(ν+1
2

)

Γ(ν
2
)
√
πν

(
1 +

(z∗− − xt)2

ν

)−(ν+1)
2

 |z∗− − µt|−c|yt − µt|c
= f(z∗−)|z∗− − µt|−c|yt − µt|c

= C2,t(xt)|yt − µt|c, where C2,t(xt) = f(z∗−)|z∗− − µt|−c (4.5.8)

If yt ∈ [z∗+, y
∗
+)

J4(yt) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{∫ yt

µ(xt)

G(y)dy

}
=

Γ(ν+1
2

)

Γ(ν
2
)
√
πν

exp

{∫ z∗−

µ(xt)

G1(y)dy +

∫ z∗+

z∗−

G2(y)dy +

∫ yt

z∗+

G1(y)dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
−
∫ z∗−

µ(xt)

(ν + 1)
y − xt

ν + (y − xt)2
dy +

∫ z∗+

z∗−

c

y − µt
dy −

∫ yt

z∗+

(ν + 1)
y − xt

ν + (y − xt)2
dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
−(ν + 1)

2

[
log |ν + (y − xt)2|

]z∗−
µ(xt)

}
×

exp

{
+c

[
log |y − µt|

]z∗+
z∗−

− (ν + 1)

2

[
log |ν + (y − xt)2|

]yt
z∗+

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
log

∣∣∣∣ν + (z∗− − xt)2

ν + (xt − xt)2

∣∣∣∣
−(ν+1)

2

+ log

∣∣∣∣z∗+ − µtz∗− − µt

∣∣∣∣c + log

∣∣∣∣ ν + (yt − xt)2

ν + (z∗+ − xt)2

∣∣∣∣
−(ν+1)

2

}

=

[
C2,t(xt)|z∗+ − µt|c/f(z∗+)

]
f(yt)

= C3,t(xt)f(yt), where C3,t(xt) = C2,t(xt)|z∗+ − µt|c/f(z∗+) (4.5.9)
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If yt ≥ y∗+

J5(yt) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{∫ yt

µ(xt)

G(y)dy

}
=

Γ(ν+1
2

)

Γ(ν
2
)
√
πν

exp

{∫ z∗−

µ(xt)

G1(y)dy +

∫ z∗+

z∗−

G2(y)dy +

∫ y∗+

z∗+

G1(y)dy +

∫ yt

y∗+

G2(y)dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
−
∫ z∗−

µ(xt)

(ν + 1)
y − xt

ν + (y − xt)2
dy

}
×

exp

{∫ z∗+

z∗−

c

y − µt
dy −

∫ y∗+

z∗+

(ν + 1)
y − xt

ν + (y − xt)2
dy −

∫ yt

y∗+

c

y − µt
dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
−(ν + 1)

2

[
log |ν + (y − xt)2|

]z∗−
µ(xt)

+ c

[
log |y − µt|

]z∗+
z∗−

}
×

exp

{
−(ν + 1)

2

[
log |ν + (y − xt)2|

]y∗+
z∗+

− c
[

log |y − µt|
]yt
y∗+

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
log

∣∣∣∣ν + (z∗− − xt)2

ν + (xt − xt)2

∣∣∣∣
−(ν+1)

2

+ log

∣∣∣∣z∗+ − µtz∗− − µt

∣∣∣∣c
}
×

exp

{
log

∣∣∣∣ν + (y∗+ − xt)2

ν + (z∗+ − xt)2

∣∣∣∣
−(ν+1)

2

+ log

∣∣∣∣ yt − µty∗+ − µt

∣∣∣∣−c
}

= C3,t(xt)|y∗+ − µt|cf(y∗+)|yt − µt|−c

= C4,t(xt)|yt − µt|−c, where C4,t(xt) = C3,t(xt)|y∗+ − µt|cf(y∗+) (4.5.10)

That is,

f̃(yt|xt, Yt−1) =



C1,t(xt)|yt − µt|−c if yt < y∗−

f(yt) if yt ∈ [y∗−, z
∗
−)

C2,t(xt)|yt − µt|c if yt ∈ [z∗−, z
∗
+)

C3,t(xt)f(yt) if yt ∈ [z∗+, y
∗
+)

C4,t(xt)|yt − µt|−c if yt ≥ y∗+

(4.5.11)
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4.5.4 Computation of the normalizing constant B2,t(xt)

B2,t(xt) =

[ ∫
R
f̃(y|xt, Yt−1)dy

]−1

This implies that,

B−1
2,t (xt) =

∫ y∗−

−∞
J1(y)dy +

∫ z∗−

y∗−

J2(y)dy +

∫ z∗+

z∗−

J3(y)dy +

∫ y∗+

z∗+

J4(y)dy +

∫ +∞

y∗+

J5(y)dy

= C1,t(xt)

∫ y∗−

−∞
|y − µt|−cdy +

∫ z∗−

y∗−

f(y)dy +

+C2,t(xt)

∫ z∗+

z∗−

|y − µt|cdy + C3,t(xt)

∫ y∗+

z∗+

f(y)dy + C4,t(xt)

∫ +∞

y∗+

|y − µt|−cdy

=
f(y∗−)|y∗− − µt|

c− 1
+ F (z∗−)− F (y∗−) + f(z∗−)

[
|z∗+ − µt|
|z∗− − µt|

]c
×

×
{
|z∗+ − µt|
c+ 1

+
F (y∗+)− F (z∗+)

f(z∗+)
+
|y∗+ − µt|f(y∗+)

f(z∗+)(c− 1)

}
(4.5.12)

4.5.5 When c ≤ c2 and y∗− < µt < z∗− < z∗+ < xt < y∗+ ie. xt > µt let

us compute f̃(yt|xt, Yt−1) and denote it by Ki(yt)

If yt < y∗−

K1(yt) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{∫ yt

µ(xt)

G(y)dy

}
=

Γ(ν+1
2

)

Γ(ν
2
)
√
πν

exp

{
−
∫ y∗−

yt

G2(y)dy −
∫ z∗−

y∗−

G1(y)dy −
∫ z∗+

z∗−

G2(y)dy −
∫ µ(xt)

z∗+

G1(y)dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{∫ y∗−

yt

c

y − µt
dy +

∫ z∗−

y∗−

(ν + 1)
y − xt

ν + (y − xt)2
dy

}
×

exp

{
+

∫ z∗+

z∗−

c

y − µt
dy +

∫ µ(xt)

z∗+

(ν + 1)
y − xt

ν + (y − xt)2
dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
log

∣∣∣∣y∗− − µtyt − µt

∣∣∣∣c + log

∣∣∣∣ν + (z∗− − xt)2

ν + (y∗− − xt)2

∣∣∣∣
(ν+1)

2

}
×

exp

{
log

∣∣∣∣z∗+ − µtz∗− − µt

∣∣∣∣c + log

∣∣∣∣ ν + (xt − xt)2

ν + (z∗+ − xt)2

∣∣∣∣
(ν+1)

2

}
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= E3,t(xt)|y∗− − µt|cf(y∗−)|yt − µt|−c

= E4,t(xt)|yt − µt|−c, where E4,t(xt) = E3,t(xt)|y∗− − µt|cf(y∗−) (4.5.13)

If yt ∈ [y∗−, z
∗
−)

K2(yt) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{∫ yt

µ(xt)

G(y)dy

}
=

Γ(ν+1
2

)

Γ(ν
2
)
√
πν

exp

{
−
∫ z∗−

yt

G1(y)dy −
∫ z∗+

z∗−

G2(y)dy −
∫ µ(xt)

z∗+

G1(y)dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{∫ z∗−

yt

(ν + 1)
y − xt

ν + (y − xt)2
dy +

∫ z∗+

z∗−

c

y − µt
dy +

∫ µ(xt)

z∗+

(ν + 1)
y − xt

ν + (y − xt)2
dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
(ν + 1)

2

[
log |ν + (y − xt)2|

]z∗−
yt

}
×

exp

{
+c

[
log |y − µt|

]z∗+
z∗−

+
(ν + 1)

2

[
log |ν + (y − xt)2|

]µ(xt)

z∗+

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
log

∣∣∣∣ν + (z∗− − xt)2

ν + (yt − xt)2

∣∣∣∣
(ν+1)

2

+ log

∣∣∣∣z∗+ − µtz∗− − µt

∣∣∣∣c + log

∣∣∣∣ ν + (xt − xt)2

ν + (z∗+ − xt)2

∣∣∣∣
(ν+1)

2

}

=

[
E2,t(xt)|z∗− − µt|−c/f(z∗−)

]
f(yt)

= E3,t(xt)f(yt), where E3,t(xt) = E2,t(xt)|z∗− − µt|−c/f(z∗−) (4.5.14)

If yt ∈ [z∗−, z
∗
+)

K3(yt) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{∫ yt

µ(xt)

G(y)dy

}
=

Γ(ν+1
2

)

Γ(ν
2
)
√
πν

exp

{
−
∫ z∗+

yt

G2(y)dy −
∫ µ(xt)

z∗+

G1(y)dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
−
∫ z∗+

yt

c

y − µt
dy +

∫ µ(xt)

z∗+

(ν + 1)
y − xt

ν + (y − xt)2
dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
−c
[

log |y − µt|
]z∗+
yt

+
(ν + 1)

2

[
log |ν + (y − xt)2|

]µ(xt)

z∗+

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
log

∣∣∣∣z∗+ − µtyt − µt

∣∣∣∣−c log

∣∣∣∣ ν + (xt − xt)2

ν + (z∗+ − xt)2

∣∣∣∣
(ν+1)

2

}
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=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

{∣∣∣∣z∗+ − µtyt − µt

∣∣∣∣−c∣∣∣∣ ν

ν + (z∗+ − xt)2

∣∣∣∣
(ν+1)

2

}

=

 Γ(ν+1
2

)

Γ(ν
2
)
√
πν

(
1 +

(z∗+ − xt)2

ν

)−(ν+1)
2

 |z∗+ − µt|−c|yt − µt|c
= f(z∗+)|z∗+ − µt|−c|yt − µt|c

= E2,t(xt)|yt − µt|c, where E2,t(xt) = f(z∗+)|z∗+ − µt|−c (4.5.15)

If yt ∈ [z∗+, y
∗
+)

K4(yt) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{∫ yt

µ(xt)

G(y)dy

}
=

Γ(ν+1
2

)

Γ(ν
2
)
√
πν

exp

{∫ yt

µ(xt)

G1(y)dy

}
=

Γ(ν+1
2

)

Γ(ν
2
)
√
πν

exp

{∫ yt

µ(xt)

−(ν + 1)
yt − xt

ν + (y − xt)2
dy

}
=

Γ(ν+1
2

)

Γ(ν
2
)
√
πν

exp

{
−(ν + 1)

2

[
log |ν + (y − xt)2|

]yt
µ(xt)

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
log

∣∣∣∣ν + (yt − xt)2

ν + (xt − xt)2

∣∣∣∣
−(ν+1)

2

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

(
1 +

(yt − xt)2

ν

)− 1
2

(ν+1)

= f(yt) (4.5.16)

If yt ≥ y∗+

K5(yt) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{∫ yt

µ(xt)

G(y)dy

}
=

Γ(ν+1
2

)

Γ(ν
2
)
√
πν

exp

{∫ y∗+

µ(xt)

G1(y)dy +

∫ yt

y∗+

G2(y)dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
−
∫ y∗+

µ(xt)

(ν + 1)
y − xt

ν + (y − xt)2
dy −

∫ yt

y∗+

c

y − µt
dy

}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
−(ν + 1)

2

[
log |ν + (y − xt)2|

]y∗+
µ(xt)

− c
[

log |y − µt|
]yt
y∗+

}
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=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

exp

{
log

∣∣∣∣ν + (y∗+ − xt)2

ν + (xt − xt)2

∣∣∣∣
−(ν+1)

2

+ log

∣∣∣∣ yt − µty∗+ − µt

∣∣∣∣−c
}

=
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

{∣∣∣∣ν + (y∗+ − xt)2

ν

∣∣∣∣
−(ν+1)

2
∣∣∣∣ yt − µty∗+ − µt

∣∣∣∣−c
}

=

 Γ(ν+1
2

)

Γ(ν
2
)
√
πν

(
1 +

(y∗+ − xt)2

ν

)−(ν+1)
2

 |y∗+ − µt|c|yt − µt|−c
= f(y∗+)|y∗+ − µt|c|yt − µt|−c

= E1,t(xt)|yt − µt|−c, where E1,t(xt) = f(y∗+)|y∗+ − µt|c (4.5.17)

4.5.6 Computation of the normalizing constant B3,t(xt)

B3,t(xt) =

[ ∫
R
f̃(y|xt, Yt−1)dy

]−1

This implies,

B−1
3,t (xt) =

∫ y∗−

−∞
K1(y)dy +

∫ z∗−

y∗−

K2(y)dy +

∫ z∗+

z∗−

K3(y)dy +

∫ y∗+

z∗+

K4(y)dy +

∫ +∞

y∗+

K5(y)dy

= E4,t(xt)

∫ y∗−

−∞
|y − µt|−cdy + E3,t(xt)

∫ z∗−

y∗−

f(y)dy +

+E2,t(xt)

∫ z∗+

z∗−

|y − µt|cdy +

∫ y∗+

z∗+

f(y)dy + E1,t(xt)

∫ +∞

y∗+

|y − µt|−cdy

=
f(y∗+)|y∗+ − µt|

c− 1
+ F (y∗+)− F (z∗+) +

f(z∗+)

c+ 1

{
|z∗+ − µt| −

[
|z∗− − µt|
|z∗+ − µt|

]c
|z∗− − µt|

}
+

+
f(z∗+)

f(z∗−)(|z∗+ − µt||z∗− − µt|)c

[
F (z∗−)− F (y∗−)−

f(y∗−)|y∗− − µt|
c− 1

]
(4.5.18)



5. Stochastic volatility models with

close skew-normal errors

Markov chain Monte Carlo (MCMC) is a well-known methodology for producing

samples from a recognised posterior distribution for hidden variables, where the dis-

tribution is very complex, that is, it is not evident how to sample from it. MCMC

methods are often used in practise as a rescue, when the computation is not accessible

with deterministic methods.These powerful stochastic calculus techniques have many

applications in a wide range of area such as physics, chemistry, biology, engineering

sciences and economics among others. In this chapter, we used MCMC methods to

approximate parameter of discrete time stochastic volatility models with csn error in

the observation equation.

5.1 Introduction

The seek to �nd models that can explain in better way, the dynamics of observed stock prices

has been one of the main task for �nancial mathematicians over the last four decades. The

cornerstone of these models was the Black-Scholes-Merton model postulated in early 1970's.

This model built its reputation and success around the fact that, option hedging and pricing are

easily done from it. As pointed out in (Black, 1975) soon after the publication of what can

be consider as the turning point paper for option pricing (Black and Scholes, 1973), this ease

however presents some drawbacks such as, the inconsistency of the constant volatility assumption

which is not in line with the real �nancial markets data. This simply because, volatility can be a

function of the underlying price level and thus a�ected by the changes in the price level.

One of the evidence of these weaknesses is probably the occurrence of market crashes that

these dynamics sometimes fail to predict. The most memorable in our opinion being the one of

October 1987 also known as the Black Monday. The catastrophic impacts and revelations of such

113
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phenomenons, quickly incited many experts in the �nance area to explore the possibilities of new

statistical models very close to the reality, and in which volatility and co-dependence between

variables is allowed to �uctuate over time rather than remaining constant. That is, models that

can take into consideration more complex characteristics and stylized facts such as, the excess

kurtosis and skewness exhibited by stock returns and the presence of jumps in stock prices to list

just few; among these type of models, we have the so called stochastic volatility model (SV).

When it comes to modelling and predicting time varying volatility on �nancial markets, assessing

or managing risk and pricing asset, SV models can be very useful and even considered as essential

tools. In �nancial economics and �nancial mathematics, the continuous time framework is mostly

used to model SV. This because, it captures in the best way the empirical features of asset markets

such as derivative pricing. It allows for the computation of internally consistent model implications

across all sampling and return horizon, like the very complex dynamic of volatilities and its non

observable nature.

However, taking into account the fact that data are discrete time observations, equal consideration

can be given to discrete time setting of SV in practise. The basic economic motivations of SV

models can be derived from the mixture of distribution hypothesis (MDH) as postulated by (Clark,

1973) and stating that, asset return volatility is driven by its own stochastic process updated by

an unobservable innovation. Hypothesis that is not in line with the autoregressive conditional

heteroskedasticity (ARCH) setting.

Recently, there has been an increasing interest in modelling the volatility of high frequency

�nancial data using two well known and competing approaches. The generalized autoregressive

conditional heteroskedasticity (GARCH) type models (Bollerslev, 1986) and the SV models. Each

of these models presenting speci�c features, as we now recall.

In the GARCH speci�cation, a single error term is assumed, the variance is conditionally deter-

ministic given past observations, the parameters explaining persistence and kurtosis are closely

linked, (Carnero et al., 2004). Were as in the SV framework, the presence of two errors processes

is assumed, there is an unpredictable component of the conditional variance at time-t. Moreover,

parameters explaining the persistence and the kurtosis can be modelled independently and the

volatility is modelled as a latent variable. SV models are close to the models often used in �nan-
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cial theory to represent the behaviour of �nancial prices, their statistical properties are easy to

derive and the empirical irregularities usually observed in �nancial time series are better captured,

(Danielsson, 1994; Kim et al., 1998). This makes the SV model more �exible in �tting data than

the popular GARCH.

Although SV models are intuitively prevalent, their empirical application has been limited. Mainly

because of di�culties related to their estimation and the intractability of the likelihood function,

all these leading to the need of numerical methods that are known to be computationally costly,

issues that can e�ciently be handled nowadays. Thanks to the availability of more sophisticated

simulation methods, recent and considerable increase of computers' power and the advanced

development of e�cient sampling techniques.

Among the above mentioned simulation methods, we have the simulated maximum likelihood, the

method of simulated moments and the Markov chain Monte Carlo (MCMC) methods (Jacquier

et al., 2002). The existence of these powerful tools and the need to take into account more

general speci�cities such as, occurrence of jumps and leverage e�ects, make SV models suitable

candidates to study �nancial return.

The main purpose of this chapter is to revisit discrete-time SV models, by providing some of their

most important characteristics and study their implementation via MCMC based on Bayesian

statistical inference. The remainder of the chapter develops as follows. The next section brie�y

reviews the notion of volatility as the measure of risk and presents some key speci�cations of

GARCH type models along with an application. Section 3 reviews the stochastic volatility models,

whereas a description of MCMC methods applied on SV is done in section 4. Section 5, considers

the SV model with csn distributed error in the observation equation and some concluding remarks

appear in section 5.
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5.2 Univariate volatility models

5.2.1 Volatility as a measure of risk and stylized facts

Dealing with enormous amounts of data recorded over time is a common issue in �nancial markets.

Prices of various �nancial products such as stocks are some examples. From their initial value and

in a random way, the �uctuations of stock prices are not constant functions of time parameters.

Since there is possibility for stock prices to fall below their initial values, volatility can simply be

de�ned as the magnitude of price change. Thus, interpreting volatility as a measure of risk is

straightforward.

Volatility which is certainly the most used measured of risk in �nance, is usually treated as latent

variable and can only be inferred from another observable variable. One can �nd trivial to say that,

lower volatility induces less risk on the asset since there is less price �uctuation. Nevertheless,

and as pointed out in (Danielsson, 2011), in the presence of returns with fat tail densities, there

is a possibility of overlooking some extreme values of return leading to a misrepresentation of the

real data.

As we will be dealing with �nancial returns, we now recall some of their important characteristics

highlighted in (Danielsson, 2011) and (Cai, 2008).

1. Non-linearity dependence: When returns series move in the same way over time, we

say that they are linearly dependent. However this is not true with �nancial returns, as

they have the tendency to move independently and the behaviour of each individual return

depends on the conditions in the market, this is the reason why �nancial returns are said

to be non-linearly dependent.

2. Fat tails: Usually, returns are assumed to be normally distributed, assumption that does

not hold with real data, that exhibit fat tails.

3. Volatility clusters: This important notion explain the continuous cycle from periods with

high volatility to period with lower volatility and can be used to forecast future volatility.



Section 5.2. Univariate volatility models Page 117

In the following, an analysis of Google stock price returns will be conducted. Figure (5.1) rep-

resents the returns and the daily closing prices of Google stock, the period chosen is from 1st

January 2000 to 31st December 2012.
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Figure 5.1: Google returns and closing stock prices

Remark 5.2.1. It is important to notice that, the notion of volatility is usually categorised as

either unconditional or conditional. That is, σ the volatility computed over a period T of a returns

series yt with mean µ,

σ =

√√√√ T∑
t=1

(yt − µ)2 (5.2.1)

and the volatility σt computed over a speci�c time period and conditional on past information

respectively. In the latter case which will be our concern, for each time t, there is a given σt.

In what follows and unless explicitly speci�ed, every time volatility will be de�ned as σt, this will

implied conditional volatility.

5.2.2 The family of GARCH(p,q) models

Introduce in (Bollerslev, 1986), the GARCH model is the generalization of the ARCH model of

(Engle, 1982). These models have been widely used to study conditional volatility in time series

analysis and one of their main goal is to study the statistical properties of returns at time t given
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the set of available information up to time t− 1. The term heteroskedasticity appearing in both

ARCH and GARCH, characterises the fact that the variance is not constant.

Let the stochastic processes yt = µ+ σtεt characterize the returns. Where, µ is the mean of the

returns and the market shocks εt are iid normally distributed with mean zero and unit variance.

The normality assumption here is just to simplify the computation, in practise other distributions

can be used to de�ne these processes. We further assume that the mean is zero, implying that

yt = σtεt.

The estimation of volatility with GARCH model has been extensively done by many practitioners

and seems o�er realistic and meaningful insights on the data. Indeed, the model is very useful

for modelling the conditional variance and for capturing the e�ect of volatility on stock prices.

In its general form, the model is written as GARCH(p, q) and the volatility forecast at time t+ 1

which depends entirely on the set of previously available information is de�ned by

σ2
t+1 = w +

p∑
i=1

αiy
2
t+1−i +

q∑
j=1

βjσ
2
t+1−j, (5.2.2)

where σ2
t+1−j represents the history estimate of the variance, y2

t+1−i the square of history return

and w > 0, αi and βj the model's parameters. The most simple and used GARCH model is the

GARCH (1,1) and it is characterised by the following Equations (5.2.3) and (5.2.4).

yt = σtzt (5.2.3)

σ2
t = w + αy2

t−1 + βσ2
t−1. (5.2.4)

The parameters w, α and β can be used to illustrate the e�ectiveness of the model to capture the

e�ect of volatility clustering, by considering arbitrary values of these parameters in the calculation.

These parameters are plugged into Equation (5.2.4) to estimate the variance σ2
t from the returns

y2
t−1 and variances σ2

t−1. One of the advantages of using GARCH model is the possibility of

making accurate predictions of volatility in the short-term horizon.

In order to ensure that the volatility is strictly positive some constraints are usually imposed on
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αi and βj and as in (Nelson and Cao, 1992), for the GARCH(1,1) we require that α ≥ 0 and

β ≥ 0, leading to the following unconditional volatility.

σ2 = E(σ2
t )

= E(w + αy2
t−1 + βσ2

t−1)

= w + ασ2 + βσ2

=
w

1− α− β
.

α+β measure the persistence of volatility with respect to the time and one must have α+β < 1,

to insure the mean reverting to the variance in the long term and the covariance stationarity. As

α + β converges to 1, more the volatility is persistent over time. On the contrary, when α + β

tends to 0, more fast is the converge of volatility to the variance over long time horizon. Note

however that, in the conditional variance case, one can get rid of these restrictions.

5.2.3 Application to Google stock returns

In what follows, we will use the historical returns of Google stocks index to estimate the parameters

of the GARCH(1,1) via quasi-maximum likelihood estimation (QLM) approach. We assume that

these returns follow a normal distribution with zero mean and a variance σ2
t . Since the normal

assumption on the distribution of returns is not strict, the method can be applied on non-

normal data as well. Furthermore, as we are mainly interested on the volatility, if the zero mean

condition is not satis�ed by the returns, then the unconditional mean will be subtracted from

each observation in order to guaranty that µ ' 0.

Now, we recall that if a random variable Y ∼ N (µ, σ), then its density function is de�ned by,

f(y, µ;σ) =
1√

2πσ2
exp

{
−1

2

(y − µ)2

σ2

}
. (5.2.5)

Provided that iid-observations of size T are available, we obtain the following conditional likelihood
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function

L(µ, σt; y) =
T∏
t=1

f(yt, µ;σ)

=
T∏
t=1

1√
2πσ2

t

exp

{
−1

2

(yt − µ)2

σ2
t

}
, (5.2.6)

which leads to the following log-likelihood

ln(L) = −T
2

log(2π)− 1

2

T∑
t=1

{
log(σ2

t ) +
(yt − µ)2

σ2
t

}
. (5.2.7)

We then obtain the log-likelihood function for the GARCH(1,1) model, by plugging Equation

(5.2.4) into Equation (5.2.7). Yields,

ln(L) = −T
2

log(2π)− 1

2

T∑
t=2

{
log(w + αy2

t−1 + βσ2
t−1) +

y2
t

w + αy2
t−1 + βσ2

t−1

}
(5.2.8)

We will use R software and the GARCH(1,1) model will be �tted using Google's daily adjusted

closing stock prices from 1st January 2000 to 31st December 2012, downloaded from <http:

//finance.yahoo.com>. The QQ-plots help us to determine the type of distribution followed

by the returns. Then the Ljung-Box test for autocorrelation and the Jarque-Bera test for normality

are conducted. The Ljung-Box test summarised in Table (5.1) suggests that the returns are not

autocorrelated. Also, as suggested by the Jarque-Bera test in Table (5.1), the distribution of

returns is not normal.

Finally, the implementation of the model is done under the hypothesis that returns follow a

conditional fat tail distribution as suggested by the above performed tests. We chose the Student-t

density with one degree of freedom and the �tted equation is given by

σ2
t = 0.03154853 + 0.04158007y2

t−1 + 0.95384487σ2
t−1 (5.2.9)

<http://finance.yahoo.com>
<http://finance.yahoo.com>
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Ljung-Box test Jarque-Bera test
X-squared 0.4562 3871.821

df 2 2
p-value 0.8046 < 2.2e-16

Table 5.1: Ljung-Box and Jarque-Bera tests.

Figure 5.2: Normal QQ-plot of Google returns and density plots

5.3 Stochastic volatility models

First introduced in (Taylor, 1982), this model appears to be more �exible than the ARCH-type,

as it takes into account the randomness caused by the observations and the latent volatilities.

The standard SV model in the theoretical �nance literature, is usually characterized in term of

stochastic di�erential equation (SDE) given by,

dS(t) = σ(t).dW1(t)

d log σ2(t) = α + β log σ2(t)dt+ ηdW2(t).

(5.3.1)

In this setting, S(t) is the logarithm of asset price, σ2(t) the volatility, W1(t) and W2(t) two

Brownian motions. In empirical studies, the above continuous formulation is discretised using

the Euler-Maruyama approximation. That is, S(t + 1) − S(t) = Y (t), W1(t + 1) −W1(t) =

ut, W2(t+ 1)−W2(t) = νt, 1 + β = φ, log σ2(t) = ht and, α(1 + φ) = µ.
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We then obtain the so called standard SV model which is de�ned by Equation (5.3.2) below.

yt = σ(t)µt = exp(ht
2

)

ht+1 = µ+ φ(ht − µ) + ηνt.

(5.3.2)

Where yt represents the log-return (observations) at time t, ν is the standard deviation of the

log-volatility ht which by assumption is driven by an AR(1) process, with persistence parameter

φ < 1. νt ∼ iidN(0, σ2
η) and ut ∼ iidN(0, 1) are respectively, the volatility and the return shocks.

The independence condition of the two above mentioned Brownian motions will be equivalent to

the zero correlation of (ut, νt) for t = 1, · · · , T .

Remark 5.3.1. The condition on the persistence parameter |φ| < 1 in the SV models plays an

important role, in the sense that it ensures the stationary of the log-volatility process.

I turns out as in (Hautsch and Ou, 2008) that, the unconditional distribution of ht and the

kurtosis K(yt) are respectively given by

ht ∼ N (µ, σ2
h) with σ2

h =
σ2
η

1− φ
(5.3.3)

and

K(yt) =
E(y4

t )

E(y2
t )

2
= 3 exp(σ2

h) (5.3.4)

From Equation (5.3.4) above, one can see that if σ2
h > 0, then K(yt) > 3 provided that the

condition on the persistence parameter φ is satis�ed. The problem usually encounter with this

type of model, is the parameters estimation, since a direct computation of the likelihood function

is not possible, thus the need of other methods than the often used likelihood is required.

5.4 MCMC methods applied on SV models

One of the most important speci�city of SV models is the non correlation of the errors components

in the log-volatility and the mean equations. Due to the hard evaluation of the likelihood function
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which relies essentially on the computation of a high dimensional integral, this represents a

considerable issue when it comes to the estimation. This likelihood intractability can be explain

by the fact that the process characterising the variance is unobservable making the likelihood

function available only in the form of a very complicated multidimensional integral.

These drawbacks rise questions on the e�ciency and reliability of the QML and the method of

moments (MM); respectively because, the hight dimensional integral approximation is di�cult

when producing QML estimators and there is no way of knowing which moment we should use

for the MM estimation, since the score function is not available. One possible way to handle

these issues is the use of Bayesian inference techniques based on MCMC simulation algorithms

introduced in (Jacquier et al., 1994). In what follows, a quick overview of these methods will be

done along with a description of their implementation on SV.

5.4.1 Bayesian inference and MCMC algorithm for SV models

In statistical inference, two main approaches are often used. The maximum likelihood method

as seen in the parameters estimation of the GARCH model in the previous section, and the

Bayesian inference. In the latter, data are combined with prior belief in order to produce posterior

distributions that will be used for the inference.

Monte Carlo methods are used for analysing Bayesian distributions in high dimension. They are

helpful for either generating samples like θ1, θ2, · · · from a given probability distribution p(θ), or

estimating expectations of a function under the same probability distribution, or both (MacKay,

2003). They are generally preferred when the number of parameters to be estimated is large,

as well as when we are dealing with high dimensional problems. When combined with Markov

chain, the aim become to construct a Markov chain whose equilibrium distribution is the target

distribution of interest(MacKay, 2003).

The probability distribution p(θ) also called the target, is complex enough by assumption. That

is, computing expectations from it by deterministic methods is not feasible, thus, require Monte

Carlo methods. The accuracy of the Monte Carlo estimate depends only on the variance and

not on the dimensionality of the space sampled (MacKay, 2003; Geweke, 1991). Since there is a
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possibility for the normalizing constant to be unknown or known but in high dimensional space,

sampling from p(θ) can be cumbersome. This because, there is no trivial techniques that can

help to sample from p(θ) without simultaneously listing most of the possible states and obtaining

accurate estimates.

In Monte Carlo integration, the common di�culty encountered is how to draw samples from

some complex probability distributions. With early contributions of (Metropolis and Ulam, 1949),

(Hastings, 1970) and (Metropolis et al., 1953), solving such a problem has always been one of

the main task of MCMC methods.

The general purpose of MCMC settings is to build a transition kernel of an ergodic1 Markov chain

with the desired invariant distribution, and simulate the chain for many steps, so that it reaches

the equilibrium. The states sampled after the convergence of the chain will then have the same

distribution as the distribution of interest (target).

To estimate standard SV model and its many extensions, various MCMC methods such as the

Gibbs sampler and the family of Metropolis have been extensively used in the literature as well

as in practise, with key contributions of (Geman and Geman, 1984),(Gelfand and Smith, 1990)

and (Jacquier et al., 2002) among others.

5.4.2 Gibbs sampler for SV models

The aim when implementing the Gibbs sampler, is to make an approximation of the parameters'

posterior distributions such that, inference can be made using the �tted model by assuming that

the conditional distributions of one parameter given others is available. That is, fi(θi|θj 6=i, y, h)

for i, j = 1, 2, · · ·K are assumed known. Now, if we assume that it is possible to make draws

from each conditional distribution and set K = 3, then the following steps characterise the Gibbs

sampler.

1- Set initial values θ2,0 and θ3,0 for θ2 and θ3 respectively.

1Su�cient condition for the existence of the stationary distribution π(x) independent of the initial probability at
the starting state that is, a Markov chain satisfy the stationarity, irreducibility, and aperiodicity conditions
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2- Complete the Gibbs iteration.

(i) Draw randomly θ1,1 from f1(θ1|θ2,0, θ3,0, y, h)

(ii) Draw randomly θ2,1 from f2(θ2|θ1,1, θ3,0, y, h)

(iii) Draw randomly θ3,1 from f3(θ1,1|θ2,1, θ2,1, y, h)

3- Use θ1,1, θ2,1, θ3,1 as the new starting values and return to step 2 to complete another Gibbs

iteration that will produce new values θ1,2, θ2,2 and θ3,2. This is usually called the update

step .

4- Repeat this several times, say n and obtain a sequence of n samples, (θ1,1, θ2,1, θ3,1), · · · (θ1,n, θ2,n, θ3,n).

For large n and under some su�cient conditions, it is possible to show that, (θ1,n, θ2,n, θ3,n)

converges to a random draw from the joint distribution f(θ1, θ2, θ3|y, h). This realisation can

then be used for inference as it constitute a random sample from the joint posterior distribution

(Robert and Casella, 1999; Tsay, 2005). In practise and in order to achieve e�ciency, one can

chose n large enough and get rid of the �rst m draws (burn-in sample).

5.4.3 The Metropolis Hasting (MH) algorithm for SV model

The Metropolis-Hastings algorithm (MH) is often used when dealing with high-dimensional prob-

lems. This method consists of de�ning the transition probability from a state θi to a state θi+1.

Thus, it is a Markov process in which a sequence of θ1, θ2, · · · is generated. The probability

distribution of each trial θi+1 appears to depend only on the distribution of θi. Since we are

looking for a sample which is independent from the initial condition, it is very important to run

the chain for a su�cient long time horizon to avoid the dependence of successive samples.

The MH algorithm can be de�ned as an adaptation of a random walk based on the acceptance

rejection rule to converge to the target distribution. One of the requirement of this algorithm

is that, the proposal distribution has to be given in a very speci�c way, it is then recommended

to use prior knowledge to achieve this. The algorithm is e�cient when the conditional posterior

distribution is available at least, up to a normalisation constant (Metropolis and Ulam, 1949).
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To see how the MH algorithm works, let us assume that the variable that we want to sample is

θ and that the target distribution f(θ|y) contains a non easily tractable normalisation constant,

making direct sampling impossible or time consuming. Furthermore, we suppose that we have a

good approximation (proposal) of f(θ|y) from which we can generate random draws in a simple

way. The sequence of random draws from this approximated distribution will then converge to

f(θ|y) by de�nition.

Now let the current state of the Markov chain be θt, the potential candidate is θ
′
and the proposal

distribution is q(θ
′|θt) which depends only on the current state θt. The next step is to generate

a candidate from the proposal to compute f(θt) and f(θ
′
). Then, accept the candidate with

probability min {1, α}. That is, the new state after the update step is θ
′
with probability α or θt

with probability 1− α (Geyer, 2011). Where α knowing as the Hasting ratio is given by

α =
f(θ

′|y)q(θ
′|θt)

f(θt|y)q(θt|θ′)
(5.4.1)

Finally repeat the process several times, until the convergence of the generated Markov chain is

achieved. The following summarizes the MH algorithm for the SV models.

1) Initialize θ0 such that f(θ0|y) > 0

2) For t = 1, 2 · · · , set t← 1

3) Draw a candidate θ
′
from q(θt|θt−1)

4) Compute the quantity

α = min

{
1,

f(θ
′ |y)

f(θt−1|y)

q(θt−1|θ′)
q(θ′ |θt−1)

}

5) Accept θ
′
with probability α, that is,

θt =

θ
′
, with probability α.

θt−1, otherwise.
(5.4.2)
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6) Set t = t+ 1 and return to step 3.

Note that, when the proposed distribution q(θ
′
, θ) is symmetric, that is, q(θ

′|θ) = q(θ|θ′), we

talk about the Metropolis algorithm and one just have to set the formula of α in the step 4 of

the MH algorithm by

α = min

{
1,

f(θ
′ |y)

f(θt−1|y)

}

and given a �good� burn-in period, the chain or sequence θt should move towards the distribution

f(θ|y).

5.5 Close skew-normal SV model

We now discuss an extension of the SV in which the error terms in the observation equation

follow a csn distribution. Speci�cally, the model we call SV-csn is de�ned by equations (5.5.1)

and (5.5.2) below.

yt = exp(ht/2)εt, εt ∼ csn1,1(µε, σε, γε, νε, δε) (5.5.1)

ht = µ+ φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η) (5.5.2)

Before proceeding, let us recall the de�nition of the moment generating function (mgf) for the

csn random variable.

De�nition 5.5.1 (Multivariate Close Skew Normal mgf). A random vector X has a multivariate

csnm,m(µ,Σ,Γ, ν,∆) distribution according to (González-Farías et al., 2004a), if its mgf is given

by

Mx(t) =
Φm(ΓΣt; ν,∆ + ΓΣΓT )

Φm(0; ν,∆ + ΓΣΓT )
exp(tTµ+

1

2
tTΣt), t ∈ Rn, (5.5.3)

where Φm(·; ·, ·) represents the Gaussian cdf and V T the transpose of the vector V .
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In high dimensional problem, the multivariate Normal cdf is not tractable analytically. Thus, we

restrain ourself to the univariate processes X ∼ csn1,1(µ, σ, γ, ν, δ). If we further assume that

δ + γ2σ 6= 0, then from De�nition (5.5.1) one can easily derive the following.

E(X) = µ+

√
2

π

γσ√
δ + γ2σ

(5.5.4)

Var(X) = σ − 2

π

γ2σ2

δ + γ2σ
(5.5.5)

and

E(X − E(X))3 =
(

2− π

2

)(√ 2

π

)3(
γσ√
δ + γ2σ

)3

(5.5.6)

Now, in the SV-csn model, we assume that E(εt) = 0 and Var(εt) = 1 which from Equation

(5.5.4) and Equation (5.5.5) imply respectively

µε = −
√

2

π

γεσε√
δε + γ2

εσε
, (5.5.7)

and

σε = 1 + µ2
ε. (5.5.8)

We conclude the speci�cation of the proposed SV-csn by assuming that εt is independent of η at

all leads and lags. We also consider an AR(1) structure for ht with persistence parameter |φ| < 1

and we initialize the log-volatility with

h1 ∼ N

(
µ,

σ2
η

1− φ2

)
. (5.5.9)

With these restriction imposed on the parameters of εt, assuming that all prior are independent

and using the Bayes rule, we obtain the following full conditional posteriors.
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

p(σ2
η|y, h, µ, φ, µε, νε, δε, σε, γε) ∝ p(h|µ, φ, µε, νε, δε, σε, γε)p(σ2

η)

p(φ|y, h, µ, σ2
η, µε, νε, δε, σε, γε) ∝ p(h|µ, φ, µε, νε, δε, σε, γε)p(φ)

p(µ|y, h, σ2
η, φ, µε, νε, δε, σε, γε) ∝ p(h|µ, φ, µε, νε, δε, σε, γε)p(µ)

p(µε|y, h, σ2
η, φ, µ, νε, δε, σε, γε) ∝ p(h|µ, φ, µε, νε, δε, σε, γε)p(µε)

p(νε|y, h, σ2
η, φ, µ, µε, δε, σε, γε) ∝ p(h|µ, φ, µε, νε, δε, σε, γε)p(νε)

p(δε|y, h, σ2
η, φ, µ, µε, νε, σε, γε) ∝ p(h|µ, φ, µε, νε, δε, σε, γε)p(δε)

p(σε|y, h, δ2
η, φ, µ, µε, νε, δε, γε) ∝ p(h|µ, φ, µε, νε, δε, σε, γε)p(σε)

p(γε|y, h, δ2
η, φ, µ, µε, νε, σε, δε) ∝ p(h|µ, φ, µε, νε, δε, σε, γε)p(γε).

(5.5.10)

Finally, we assume that 

p(σ2
η ∼ IG(α1, β1)

p(φ) ∼ N(α2, β2)I(−1,1)(φ)

p(µ) ∼ N(α3, β3)

p(µε) ∼ N(α4, β4)

p(νε) ∼ N(α5, β5)

p(δε) ∼ IG(α6, β6)

p(σε) ∼ IG(α7, β7)

p(γε) ∼ N(α8, β8),

(5.5.11)

where IG(·, ·) is the inverse Gamma distribution.

Having all this, one can then proceed with the estimation. As far as this chapter is concerned,

we do not investigate this further and will be considered deeply in a near future.
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5.6 Concluding remarks

In this chapter, we presented some important characteristics of GARCH type models and estimated

the parameters with Google stock returns. We have brie�y reviewed simulation methods based

on MCMC algorithms such as Gibbs sampling and Metropolis-Hastings algorithm apply on SV

models. We then provided foundation for the construction of the so called SV-csn which is

an asymmetric SV allowing for csn errors in the observation equation. We de�ned all the full

conditional posteriors. In a near future, we intend to deeply study the statistical properties of

this model, estimate the parameters using Bayesian inference based on MCMC techniques and

provide some comparison with existing models.



6. Summary

This thesis has presented various methodologies that can be used to achieve accurate and e�cient

inference in linear, Gaussian and non-Gaussian state-space models, with results that can easily

be adapted to the nonlinear cases.

The contribution of this dissertation was threefold. First, we revisited some recent attempts to

incorporate skewness in state-space models and especially the skewed Kalman �lter by (Naveau

et al., 2005). We proved that their statement regarding the close skew-normal nature of the

�ltering density was not correct. Depending on the assumptions made, other contributions faced

challenges such as the explosion of skewness dimension and the skewness vanishing as the re-

cursion proceeds over many time steps. As a remedy, we proposed a new state-space model

that overcomes these limitations by relaxing the assumption of normality and exploiting the close

skew-normal distribution which is more �exible and extends the Gaussian distribution. This has

been achieved by allowing a stationary autoregressive structure in the state equation, and a csn

distributed measurement error. This structure allowed us to develop a skewed version of the well

known Kalman �lter and provided new procedures and algorithms for prediction, �ltering and

estimation that can be employed to analyse multivariate time series data where the symmetry

assumption can not be legitimately made. Moreover, with the proposed methodology we ob-

tained a csn1,n �ltering density which is a big improvement compared to the existing models in

the literature where these densities were csnn,2n or csnn,3n.

Second, we adapted the robust �ltering methodology of (Calvet et al., 2015) to build a robust �lter

with Student-t observation density that provides accurate state inference accounting for outliers

and misspeci�cation, this for both �nite and in�nite state-space models. With simulations, we

were able to compare the performance of the proposed robust Student-t �lter with the Gaussian

�lter, the robust Gaussian �lter of (Calvet et al., 2015) and the Student-t �lter. Furthermore,

we applied the theoretical �ndings on the unobserved component model with stochastic volatility

of (Stock and Watson, 2007) and showed that, the Student-t �lter performs well which is not

surprising given that the Student-t density is naturally robust. Regarding the robust version, one

can see that the price to pay when robustifying the �ltering density can be hight in the sense of
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MSE especially when no outliers have occurred.

Third, we laid the foundations for the construction of stochastic volatility models with csn errors

in the observation equation. Even though we did not explore this question in much details, we

believe that this approach should not be overlooked. The estimation of this model and the study

of its statistical properties need to be done in details, as this can be a good alternative for SV

models accounting for skewness.

However, for real life applications, as well as for interest in the state-space models, many other

features need to be investigated. For example the curse of dimensionality in the �ltering density

for the skewed Kalman �lter and the robusti�cation of such model. For further research, it might

be interesting to look at some techniques of dimension reduction such as the projection pursuit.

This can be a way out to construct the csn variant of the well known Gaussian AR, MA and

ARMA models. For the estimation part of the Kalman �lter with asymmetric distributions, it can

be interesting to look at the weighted method of moment of (Flecher et al., 2009) which can

lead to possibly more accurate estimate when combined with our methodology. Finally, in the

robusti�cation setting, it can be interesting to check the accuracy of the robust �ltering density

for naturally robust densities and investigate the use of other robust function.
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