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Abstract

In this thesis we intend to introduce a new theoretical framework that
will allow us to de�ne a new set of balance sheet mathematical models.
The elements of this class will enable their user to produce a dynamical
representation of an entire balance sheet through �nite di�erence linear
systems characterized by the possibility to be presented as a function with
a closed form formula. In the �rst chapter after a historical introduction
about the long and close relationship between mathematics and account-
ing, with special regard to the link be- tween the balance sheet modeling
and linear algebra, we will focus on the in depth mathematical analy-
sis, present in literature, of the double- entry book-keeping tool. As a
matter of fact, to this day, the double entry bookkeeping system can be
considered as the reference mathematical theoretical framework of the ac-
counting practice and thinking. The result of this analysis, combined with
the results already present in literature about the dynamic representation
of the balance sheet through �rst order �nite di�erence linear systems, will
enable us to introduce a new idea relating to a vector speci�cally built to
describe the link between a single accounting item and the liquidity. We
called it brick-vector since we can build a balance sheet model merging
into an algebraic system the brick-vectors of all the accounting items cho-
sen for our modelization. The brick-vector concept, combined with the
theoretical framework previously introduced, will allow us to reach a new
modelization presenting the aforementioned characteristics, i.e. a dynamic
representation of an entire balance sheet, constituted by accounting items
of our choosing, that can also be presented through a closed form formula.
We think these peculiar traits can turn this class of models into an agile
tool useful for di�erent applications in several areas of research. As a
matter of fact we presume they will enable the researcher to exploit both
the possibilities o�ered by an algorithmic implementation of the model as
well as the possibilities presented by pure mathematics through its closed
form formula. In order to start applying this class of models we close
the �rst chapter presenting an averaging procedure (based on the con-
cept of functional mean according to Chisini) that allows us to reduce the
impact of the inevitably high number of variables that a balance sheet
model time series brings with itself. In the second chapter we intend to
show some of the possibilities o�ered by the brick vector formalization
applying it to the problem of the cash �ow risk assessment. Firstly we
present a medium �rm balance sheet model and we explore its closed form
solution. Then we perform on the model our Chisini averaging procedure
during which we present its relative mathematical shape. Finally after
the introduction of a sensitivity analysis, in order to show some of the
descriptive capabilities of the model, we apply it to the problem of cash
�ow risk assessment. We present the approaches proposed so far toward
the issue of the computation of CFaR (Cash Flow at Risk) and then we
propose our new methodology. It has the goal to overcome some of the
main shortcomings of the previous approaches through the creation of a
link between the accounting data, summarizing the �rm's business struc-
ture, and some macroeconomic drivers of particular importance. We end
the chapter presenting a case study relating to Alitalia airlines where we
apply the model to its balance sheet data and we perform our CFaR eval-
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uation. In the third chapter we intend to keep on exploring the potential
of the brick vector formalization applying it to the problem of the liquid-
ity risk assessment in the banking sector. After an introduction to the
issue of liquidity risk as well as that of the bank's balance sheet modeling
we present a commercial bank balance sheet model. Then we show its
closed form solution and we perform our averaging procedure. We display
the commercial bank balance sheet model evolution through a simulation
aiming to portray the behavior of medium sized Italian commercial bank.
Finally we discuss the problem of the liquidity risk assessment and we
propose a new liquidity risk measure, tailored on the issue of funding liq-
uidity, which is based on the CFaR methodology presented in the previous
chapter. We called this new measure FLaR (Funding Liquidity at Risk)
and through its medium-term time perspective it is meant to complement
the role performed by the LaR (Liquidity at Risk) instrument in a short-
term temporal perspective. We close the chapter presenting some future
possible developments in the application of the brick vector framework to
the liquidity risk assessment issue. Finally we conclude our thesis review-
ing its content in relation to its goal to try to bridge the gap between the
accounting �eld and other research areas of the economic science as well
as the world of economic theory with that of economic practice.

Keywords: Balance sheet, Mathematical model, Di�erence equation system,

Closed form solution, Dynamical balance sheet model, Cash Flow, Liquidity,

Risk, CFaR, LaR.
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Introduction

When we started this research several years ago, we wanted to create a Bud-
geting Model that could work in a dynamic framework capable of providing
information about the �nancial position, income, assets and liabilities of an
enterprise. Using the results obtained by Castagnoli et al. (1995), which rep-
resented the principal accounting items of a balance sheet through di�erence
equations, we decided to describe an entire balance sheet by means of a set of
di�erence equations. Then this single attempt led to a comprehensive mathe-
matical framework having the aim of formalizing balance sheet models according
to the need felt by the researcher.

In order to achieve that goal we started from the analysis of the historical
relationship between mathematics and accounting, so to understand not only
which one is the current mathematical framework of the accounting practice
as well as its motifs, but also to obtain a thorough knowledge of the previous
attemps at accounting formalization, as well as their results. This historical
relationship is part of the stream of accounting research that in the English
speaking academia is referred to as analytical accounting, dealing with the for-
malization of the accounting �eld. Unfortunately the di�erent lines of research
that we identi�ed didn't seem, to this day, to have a strong and lasting impact
on the accounting world both the academic one as well as the practitioner one
(see Mattesich (2000), (2005)). As a matter of fact one of the many reasons
of complaint among the accounting world about accounting research is related
to the existence of a huge gap between the academic research and the account-
ing practice (see ACCA (2010), Guthrie et al. (2011), Laughlin et al. (2011),
Unerman et al. (2009)). One of the main hopes, related to the research we are
presenting, is that of contributing to the lessening of the aforementioned gap as
well as to the possible creation of a link between the accounting �eld, with all
its capability of providing descriptive data, and other areas of research in the
economic and �nancial academic world.

Given the previous conditions we identi�ed, as the current mathematical
framework of the accounting discipline, the one implied by the double entry
book keeping system whose best formalization attempts (see Ellerman (1984))
identify its foundations on two principles. The former dealing with the group
of couples of positive numbers associated to the Debit and Credit shape of the
system, while the latter related to the encoding of the transactions into the
Balance Sheet equation.
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Our mathematical framework moves from the mutation of the two aforemen-
tioned characteristics in order to focus on the streams of wealth in and out of
the �rm associated with the transaction records. In so doing it tries to achieve
a formalization that not only can be implemented via computer but can also be
presented in pure mathematical shape through a closed form formula. In order
to achieve that goal we will introduce a new concept, that of a vector dealing
with the relationship between an accounting item and the liquidity item. We
called it brick vector since upon it we can build any balance sheet modelization
that we are in the need of building. The �nal model will be a simple combina-
tion of the brick vectors related to the accounting items we choose to be present
in our system. Once we have achieved the formalization we intended, with its
closed form formula, given the high number of variables and parameters involved
in any balance sheet model, we will brie�y address the problem of the modeliza-
tion of the time series related to those variables and parameters. So we will
present an averaging procedure, coherent with Chisini's de�nition (see Iurato
2012), in order to achieve the simplest possible shape for our modelizations.

Once the modelization theory is fully presented we will give two examples of
its feasible applications, examples that we intended as a hint of the possibilities
implicit in this mathematical framework. Since the liquidity item plays such a
key role in the brick vector approach we thought reasonable to start applying
it to cash �ow related issues. Firstly we will present the modelization of an
industrial �rm balance sheet and we will use it to produce a new approach to
the cash �ow at risk (CFaR) measure. The CFaR moves from the Value at
Risk measure (VaR) and it is intended to be applied to industrial �rms in order
to assess the probability distribution of their cash �ow generating capability.
To this day three main approaches have been proposed but none of them has
still gained general consensus (see Yan 2014, Andrn 2005, RiskMetrics 1999,
Stein 2001). After presenting those approaches, with their main critical issues,
we will introduce our CFaR measure, which tries to link the historical balance
sheet data, via the Chisini-like averaging procedure, to some macro variables
(about which there is a relative general consensus on how to model them). Our
CFaR approach will be proposed through an application to a real life case study,
namely the last seven years of the Alitalia company balance sheet, before its
default.

The second example on which we will apply our new mathematical frame-
work will be about the construction of a formalization for a commercial bank
balance sheet that we will use to present a measure of Liquidity distress. The
problem of risk related to liquidity in the case of a bank, given the inner workings
of the �nancial sector, takes very speci�c and complex features. The develop-
ment of modelling bank liquidity has thus been rather slow despite bankers
ranking liquidity risk as one of the top �ve risks to consider (DCSFI 2010). As
recently as 2007 Fiedler (2007) argued about the lack of a sophisticated method
to capture a bank's liquidity position. The topic has raised in importance and
urgency after the 2007/2008 �nancial crisis. Nonetheless the management of
the liquidity risk is handled internally by each banking �rm according to pri-
vate models and approaches (see Castagna et al. 2013, Matz et al. 2006). Even
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the regulator position, enforced through stress testing exercises coherently with
the Basel III regulations, is not free of diverse shortcomings pointed out in re-
cent literature, especially for their static approach (see Halaj 2016, Henry et
al. 2013, RTF 2015). Here we just want to propose, through a simulation, an
approach to the liquidity probability distribution measurement, tailored to the
issue of funding liquidity risk, that in a dynamic fashion could be able to relate
the history of the balance sheet dynamics to one or more important stochastic
macroeconomic factors.

Finally we conclude the present work remarking our hope that the mathe-
matical framework we have developed could present itself as a useful and agile
tool to bring together the expertise of the accounting �eld (as well as the huge
amount of economic and �nancial data present in the balance sheet which re-
mains the most informative instrument in the economic practice) with the world
of the economic and �nancial scienti�c research.
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Chapter 1

A New Mathematical

Framework for the Balance

Sheet Dynamic Modeling

1.1 Introduction

Through the present work we intend to introduce a new theoretical math-
ematical framework that enables us to de�ne a family of models aiming to
describe the balance sheet dynamically. The representation, that this class of
models wants to introduce, presents the following features: it aims to a modeliza-
tion of the entire balance sheet, it wants to model the balance sheet dynamically,
it uses the mathematical tool of the linear �nite di�erence system of the �rst
order, and more importantly it aspires to be a mathematical modelization that
can be presented as a function with a closed form formula.

In order to introduce such new theoretical framework it is important to start
from the study of the long and close relationship between mathematics and
accounting. We think this should be done for two main reasons. The �rst one
is to show the streams of research, with their related literature, from which our
new theoretical framework stems out. There has been a good deal of research
aiming to the mathematical formalization of the accounting discipline, to the
use of matrix algebra in order to describe the evolution of the balance sheet as
an a�ne transformation as well as to the modelization of the accounting practice
through the use of information technology, among many other instances. The
mathematical framework we intend to present has the objective to move from
those works with the hope of providing a formalization that could be felt as
useful primarily for being at the same time utilizable via computer as well as

6



via pure mathematics.
But there's a second reason for which we think it is important to analyze, as

much as we can here, the history of accounting and mathematics, a more general
and signi�cant one. Because, apart from giving the notion of the many brilliant
attempts made through the course of history at employing the mathematical
technology at disposal of the researchers in order to improve the accounting �eld
and the economic knowledge of the �rm in general, it is signi�cant to review
this history in order to get the idea of the evolution of the general theoretical
framework through which scholars and researchers have seen the accounting
discipline. Because that framework represents the lenses through which scholars
and practitioners see accounting, talk about it and more importantly think
about it. And it is interesting to notice that while on the one hand academia
complains about the existence of a gap between the research world and the
practitioner world, on the other hand, although there has been a tumultuous
change in the way accounting is thought and practiced in the last �fty years
(especially because of IT), from a mathematical point of view the theoretical
framework is still the one of the double-entry book-keeping system, introduced
�ve hundred years ago. Here we do not enter into the discussion about the
reasons at the core of this condition, we just want to convey the idea of why we
think a sound analysis of the history of the relationship between mathematics
and accounting represents the foundation of a work like the one that we are
presenting. Naturally we can just propose a summary of this analysis, presenting
only the aspects of such review that are more related to the modelization that
we intend to pursue. We have divided this history into two parts, the �rst one
from ancient times to the 20th century and the second one from the 20th century
to the present day.

1.1.1 History of accounting and mathematics from ancient
times to the 20th century

The relationship between mathematics and bookkeeping or accounting is ancient
and more than once, especially in antiquity, proved itself to be very close and
very deep indeed.

As a matter of fact the �rst known formalized accounting system is consid-
ered by many to be the precursor of the writing of abstract counting and even of
writing itself. We are talking about the Sumerian �token system� based on clay
tokens representing individual assets and their impressions on clay envelopes as
an inseparable depiction of the corresponding equity (Mattessich 2000), estab-
lished by the Sumerians even before what is considered as the actual dawn of
their civilization.

Another example of accounting giving an essential contribution to mathe-
matics (Colebrook 1973) was the idea and justi�cation of using not only positive
but also negative numbers, by Indian mathematicians as Brahamagupta, in the
7th century, or Bhaskara, in the 12th century, in order to devise a mathematical
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formalization for the accounting practice. They considered debt claims (or deb-
its) as positive items and liabilities (or credits) as negative claims and so they
were the �rst to conceive negative numerals as legitimate mathematical notions,
hudreds of years before the Europeans. Actually ancient Indian mathematics
not seldom found itself closely linked to the accounting discipline developing bril-
liant sophisticated ideas much ahead of their times, as for example the notion
of purchasing power �uctuations that can be found in Kautilia's Arthasastra as
early as in the IV century B.C.

And we de�nitely must not forget that the decimal system, one of the great-
est, if not the greatest scienti�c development of the XIII century western world,
a product of the Indian mathematical genius delivered to us through the cul-
tural mediation of the Arab world, was introduced and spread through Europe
for accounting purposes. The great Fibonacci's �Liber Abaci� (1202) itself was
also a treatise on bookkeeping and accounting, that probably relied on some
preceding Arab text (Antonini 1996) at a time when the Arab scienti�c culture
was conveying much of the Indian tradition on the �eld.

So it is not surprising that the �rst published treatise on double entry book-
keeping (�Particularis de computis et scripturis�) appeared in a mathematical
text. Naturally we refer to Luca Pacioli's famous �Summa de Arithmetica,
geometria, proportioni et proportionalità� (Part I, Section 9, Treatise 11) pub-
lished in 1494. There Pacioli presents, not in a theoretical way but in a very
practical one, a new method for taking record in the accounting books of every
economic and/or �nancial transaction into which a �rm can be involved. We
will see an in depth analysis of the mathematical features and implications of
the double entry theoretical framework in the next section. Here we would like
to underline how successful such method has proved to be over the course of the
last �ve hundred years. Today it still represents the framework into which prac-
titioner accountants, everywhere in the world, develop their work, be it through
the help of accounting software or be it still through the use of a simple pen and
a paper sheet. It has come to represent the universal language through which
every accountant in the world thinks and speaks about any �rm, and from a
mathematical point of view it is an arithmetic language.

For what we have seen so far in classical and medieval times, without for-
getting the Indian and Arab world as well as during the Renaissance, it was
arithmetic that dominated the scene. From the 16th century onwards valua-
tion issues, based on discounted debts annuity methods and present value ap-
proaches, occasionally touched the accounting discipline (Mattessich 2005), as
in the work of Stevin (also deemed as the inventor of the income statement) or
in some of the work by Leibniz.

But for centuries the major mathematical aspects of accounting were limited
to arithmetic. Finally in the 19th century algebra started to play an increasingly
important role in the academic teaching of bookkeeping and in conveying di�er-
ent classi�cation schemes. It was mainly in the 19th century that algebra was
employed to express more general accounting relations starting a minor revolu-
tion that may be di�cult to comprehend by modern accountants and scholars.
The di�erences between the algebraic relations that were debated at the time

8



may seem to us so simplistic that they border on the trivial, yet accounting
academia of the 19th century didn't see it that way. An example of this atti-
tude can be traced back to the many theories of accounts classes that �ourished
during that period and the harsh controversies that they sparkled. Many au-
thors tried to prove that their classi�cation scheme was better than the others
or even the only correct one. Usually these schemes were presented in the form
of simple algebraic equations, each one a variation or re-arrangement of the
equilibrium equation (expressing that the value of all assets (or debits) equal
the value of all equities (credits)). So from a mathematical point of view as well
as from a contemporary mindset standpoint, these schemes would all be consid-
ered equivalent one to the other (Mattessich 2000). While one author pleaded
for the equation: �Assets = Liabilities + Owner's Equity�, his opponent would
argue in favor of the mathematically equivalent relation: �Assets - Liabilities
= Owner's Equity� , intending to emphasize a di�erent kind of classi�cation
and introducing an extra-mathematical element that a mathematician may �nd
trivial as for him the two equations are equivalent. Actually in this debate we
could see an early, still timid, example of the issue of the relationship between
the mathematical information and the economic information contained in the
balance sheet, an issue that we will have to examine when we will present dif-
ferences and similarities between the mathematical framework we are proposing
and the one implied by the double entry book keeping system.

Another important innovation, for the scope of the present work, introduced
in the 19th century by several accounting scholars, on the topic of the mod-
elization of the accounting theory and practice, is the use of matrices. Although
their use was substantially di�erent from the employment of matrix algebra
we are going to do in the mathematical framework we are about to present, we
think it's important to mention at least the original contributions by August De
Morgan and Giovanni Rossi. De Morgan (1846) was the �rst to introduce the
idea of an accounting matrix and Rossi (1889) o�ered, in his book on the dou-
ble entry chessboard, dozens of examples in which accounting matrices played a
decisive role but neither he nor de Morgan used formally matrix algebra. Rossi
did suggest that the accounting matrix (�lo scacchiere a schede� as he called
it) could be converted into a sophisticated computing device. This might be
regarded as an anticipation of the computerized spreadsheets though Rossi, like
Charles Babbage (1791-1871) the inventor of the �rst theoretical 'digital' com-
puter, had a mechanical device in mind instead of an electronic one. Rossi
pointed at the future of computerized accounting spreadsheets which developed
into a fundamental branch of analytical accounting.

For the sake of completeness we feel compelled to mention another couple
of developments occurred in the 19th century. They represent remarkable steps
forward with regard to some of the most important issues of the history of
analytical accounting in general and of the relationship between accounting and
mathematics in particular. Although they do not deal with the speci�c task of
modelling the balance sheet through the use of mathematical tools such as a�ne
transformations or �rst order �nite di�erence systems. The �rst one is the use of
compound interest calculations that began to be felt of high importance in the
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insurance business of the time. The other was the reappearance of the present
value concept. As an example Seicht (1970) points out that the application of
the present value approach (the kapitaltheoretische Bilanz) played an important
role in the German Railway Statutes of 1863 and subsequent legislations.

Anyway although the classi�cation algebraic schemes of the 19th and early
20th century as well as the impact of in�ation calculations and of present value
approaches1 helped to improve the spread of algebraic thinking in accounting,
until the �rst half of the 20th century systematic mathematical models were
rarely used. During the �rst half of the new century even the present value
approach was by no means readily accepted for accounting purposes. An illus-
tration of such attitude can be seen in the ideas of the great scholar Schmalen-
bach who rejected the present value approach for statement presentation and
admitted it only for the evaluation of �rms in special cases, like assessments or
liquidations and only outside the balance sheet. However some voices at the
time were in favor of employing present values in accounting such as Canning
(1929), Zappa (1937) and more importantly Preinreich (1933, 1936, 1937, 1938,
1939), who produced a series of brilliantly original publications that were un-
fortunately neglected at the time until they were rediscovered towards the end
of the century. Indeed Gabriel Preinreich may be considered a precursor with
regard to several of the issues, including the clean surplus theory, that modern
analytical accounting tackled in the second half of the 20th century, a period
through which the relationship between mathematics and accounting �ourished
as never before.

1.1.2 History of accounting and mathematics through the
20th century until now

The second half of the 20th century introduced a great variety of mathematical
approaches and techniques to the study �eld of accounting. We will divide this
enormous research work into four main areas and we shall brie�y address each
one of them, starting from the ones less relevant to the scope of our work and
ending with those which show the closest relation towards it.

The �rst area of research that can be identi�ed deals with the statistical
methods, particularly sampling techniques that were introduced to accounting
and auditing. The application of statistical sampling methods to accounting
and particularly to auditing (audit risk models) has become one of the most
successful mathematical tools of the public accounting profession. It is impor-
tant to underline that while for the other areas of research that tried to merge
mathematics and accounting the results have been quite limited, mostly due
to a resistance from the practitioner world to employ new ideas that require

1In Austria, Germany and France as well as in America by Sweeney.
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a challenging mathematical culture, this stream of research proved to be spec-
tacularly successful, particularly as far as auditing is concerned. The pioneer
in this �eld has been Laurence Vance (1950), yet his work has been eclipsed
by more sophisticated sampling techniques as presented in such texts as True-
blood and Cyert (1954), Trueblood and Cooper (1955), Cyert and Trueblood
(1957), Stringer (1961), Arkin (1984) and many others, as well as in research
papers like Ijiri and Kaplan (1971). To those e�orts might be added the in-
numerable empirical accounting publications employing hypotheses testing and
other statistical techniques that are indispensable to pursue this kind of direc-
tion. However we think it should be underlined that while the foundations of
hypotheses testing are mathematical, so still analytical, the application of those
tools is on the contrary inductive-empirical. So if those works, in theory, are still
dealing with an aspect of the relationship between mathematics and accounting,
in essence they fall beyond the very analytical nature of mathematics and more
importantly beyond that part of the accounting theory, referred to as analytical
accounting, that explores the rigorous formalization of the �eld, often (but not
always) through mathematics.

The second area of research concerns the employment and development of the
present value approach and its evolution into the clean surplus theory. During
the second half of the century the in�uence of economics and the emergence of
�nance as a subject independent of accounting gave a decisive boost to a further
exploration of the present value approach for accounting theory and practice, in-
cluding statement presentation. The �synthetic balance sheet� theory of Albach
(1965) and the �capital-theoretic balance sheet� theory of Seicht (1970) were the
two major comprehensive accounting theories, both based on the present value
approach, coming out of the continental Europe academic environment. In the
English speaking academic world, the American paper by Alexander (1948) as
well as the one by Corbin (1962) promoted the present value approach and
gained wide notoriety. Moreover Gordon (1960) �rst and Peasnell (1982) later
took up Preinreich's ideas and developed them into the theory of clean surplus.
However the major breakthrough in this area came with a series of publications
by Ohlson, Feltham and others. The notion of clean surplus refers to an income
derived from a comparison of the book value of a �rm's owners' equity at the
beginning of the accounting period with the �rm's value at the end of this pe-
riod (eliminating new investments or withdrawals by owners). It results from
the all-inclusive income statement where total sum of all the annual earnings,
from the �rm birth to its liquidation, equals the total sum of all annual incomes
of the �rm's lifetime. It can be expressed by the following equation which is a
simpli�ed version of the �modern clean surplus theory� as presented by Ohlson
(1995) and Feltham and Ohlson (1995).

Clean surplus relation (CSR):

Bookvalue(t) = Bookvalue(t− 1) + income(t)− dividends(t) (1.1.1)
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The conventional current operating income does not provide such a clean
surplus (or �income�), because the sum of all the annual income �gures do not
necessarily add up to the �rm's life-time earnings. Those �not clean� income
statements exclude many kind of extraordinary items (like capital and non-
operating gains or losses, residuals from past periods, etc.) relegating them
to separate surplus statements and they allow income smoothing over several
accounting periods revealing the long-term pro�t trend. A second notion con-
stitutes the cornerstone of this theory, that of the residual income (also called
�excess income� or �abnormal earnings�). It is de�ned, under the CSR, as the
net income minus a capital charge, which equals the riskless interest rate i.
According to Christensen and Feltham (2003).

Residual Incom Relation (RIR):

Marketvalue(t) = Bookvalue(t) + All future �residual income� discounted at rate i (1.1.2)

Hence the residual income can be regarded as the di�erence between the
�rm's income and the cost of capital. This theory can be seen as an elegant
extension, in several directions, of the present value approach in determining the
value of a �rm and its shares. However the original clean surplus relation (CSR)
as shown above still has an important limitation. Its income or dividends refer
to future expectations and not to the past �gures of accounting statements. To
overcome this problem Ohlson and Feltham extended the theory in several ways,
of which the most important was to relate past �gures to future expectations.
They created a linear information dynamics by adding to the right hand side of
the RIR equation a set of stochastic variables and error terms that imposed a
series of restrictions (as risk neutrality of investors) and linearity assumptions
about the probabilistic time series behaviour of abnormal earnings and of in-
formation about other than abnormal earnings (for example innovations). Such
a modi�cation, apart from being an example of the use of more sophisticated
stochastic mathematical tools, attempts to project accounting �gures of the past
into the future. To what extent these or similar regressions will prove satisfac-
tory has still to be fully tested empirically. There are many analytical as well as
empirical attempts to develop su�ciently accurate means of predicting future
earnings, being such prediction pivotal for any modern value theory of the �rm.
The extended clean surplus theory of Feltham and Ohlson has de�nitely been
one of the most popular among the many attempts. Even commercial variations
of this model have been widely marketed showing an interest that goes beyond
academia. One of the ultimate goals and hopes of our present work is that
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of building a new mathematical framework for the balance sheet modelization
capable of stimulating the �ourishing of new ideas about issues such as future
earnings prediction and �rm valuation, with special regard to the link between
the �rm accounting items dynamics and their most signi�cant macroeconomic
drivers.

The third area of research refers to the attempts made to axiomatize ac-
counting, using set-theory and similar mathematical devices in order to attain
rigorous formulations of the accounting principles. It all started in the 1950s
and early 1960s when the relationship among mathematics and accounting took
a new direction bringing to a lot of attempts to rebuild the accounting disci-
pline on more rigorous foundations, given the dissatisfaction with the traditional
framework of accounting rules and loosely connected principles. At a time when
related disciplines (such as economics, �nance, operations research etc.) reached
for more sophisticated mathematical methods and tools, young scholars felt the
need for a more analytical and systematic approach in the construction of a
conceptual framework for business accounting. This direction was actually pur-
sued by two groups that partly competed and partly cooperated with each other.
The �rst group engaged in an approach that could be quali�ed as �postulational�
since although it aimed at founding the accounting discipline on a limited and
sound number of hypotheses and postulates, it tended to avoid rigorous math-
ematical concepts. The other group instead followed a line of thought that can
be de�ned as axiomatic since it sought a more rigorous methodology with clear
assumptions, mathematical theorems and corresponding proofs. It is revealing
of an attitude still present today how the approach of this last group was heav-
ily attacked, at the time, for being too mathematically sophisticated while in
comparison to the more recent trends of stochastic-analytical accounting, those
earlier applications of mathematical concepts were relatively moderate. The
�rst group, composed by scholars like Moonitz (1961), Sprouse (1962), Givens
(1966), got its impetus from Chambers (1955, 1957,1966), while the second
one, Winborne (1962) and especially Ijiri (1965, 1967, 1971, 1975), have been
stimulated by experiments in Mattessich (1957, 1964).

Although some publications, as Ze� (1982) or Slaymaker (1996) and oth-
ers, indicate that some of those endeavours may ultimately have in�uenced
the Financial Accounting Standards Board, those conceptualizations were oc-
casionally criticized (as Archer (1993)) and experienced quite limited academic
success. This may be attributed, on the one hand to the fact that the founda-
tions of such conceptual frameworks were probably not formulated rigorously
enough, while on the other to the fact that those mathematical and axiomatic
accounting formalizations were probably premature at a time when practition-
ers were not even ready for the much less demanding mathematics of in�ation
accounting (Mattessich (1995)). Axiomatization and related analytical e�orts
resumed in America and Great Britain in the late 1970s, as in Orbach (1978)
and Tippet (1978), and continued in general into the 1980s, 1990s, and even
beyond, though by that time this area no longer occupied centre-stage. Anyway
it is important to underline that on a purely theoretical level the second (the
mathematical) approach in�uenced a wide range of scholars worldwide in exam-
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ining in a fairly rigorous way the foundations of several aspects of the accounting
�eld. The present work, apart from borrowing some of the speci�c concepts of
the axiomatization literature, can be considered to be in line with that trend.

The fourth area of research is very important for the scope of our work, since
it concerns the use of accounting matrices that led to computerized spreadsheets,
and more importantly the application of matrix algebra to the accounting theory
and practice. Broadly speaking we could divide this area of research into two
paths, which anyway in more than one occasion happened to overlap. The
�rst one is represented by the use of matrices in order to formalize and present
the practice of the accounting work, coherently with the double-entry book-
keeping system, so that it could be e�ciently processed through computerized
spreadsheets and a relationship between accounting and the new emerging �eld
of information technology could be established. The second path consists in the
attempt by some scholars to describe the �rm dynamics and in particular the
balance sheet dynamics through the use of matrix algebra both theoretically and
via computer. As for the �rst path, as we have previously hinted, accounting
matrices were already known in the 19th century in a way that sometimes seemed
to anticipate the use of information technology, but the �rst suggestion of an
electronic spreadsheet applied for accounting purposes is represented by the
seminal work by Mattessich (1961) on budgeting models and system simulations.
The subsequent elaboration of this idea consisted in presenting as a prototype
a mathematical budget model of an entire �rm, in Mattessich (1964), as well as
a complete computer program (with sub-budgets for cash �ows, labour costs,
material costs, purchases, sales, overhead expenses with proper allocations, as
well as a projected income statement and balance sheet). That is universally
considered the �rst example of an electronic spreadsheet (wrote in Fortran IV)
and more importantly the forerunner of such best-selling spreadsheet programs
for personal computer such as VisiCalc, SuperCalc, Lotus 1-2-3 and Excel.

It is important to notice that although the use of computers allows to reach
the goal of system simulation, in this �rst branch of research matrix algebra
is not used for the modelization of the �rm dynamics in a mathematical way.
Through the use of information technology the objective of presenting the �rm
in a dynamic way is obtained, but there is still no mathematically formalized de-
scription of its accounting dynamics. This is one of the most important byprod-
ucts of the second path of research in this area, especially with respect to the
scope of the present work.

Matrix algebra seems to have been used �rst in macro-accounting by Leon-
tie� (1951) and later by Fuerst (1955), then in cost accounting by two Germans
Pichler (1953) and Wenke (1956, 1959) and in general accounting theory by
Mattessich (1957, 1964). Subsequently a �ood of pertinent publications in the
application of matrix algebra, linear and non-linear programming and other
mathematical techniques appeared as in Rosenblatt (1957,1960). Among the
books in this area the following must be emphasized: Ijiri's (1965) dissertation
on goal-oriented models and the publications by William and Gri�n (1964) and
Corcoran (1968).

For the scope of the present research it is de�nitely important also to cite,
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the aforementioned Mattessich aside, the work by Butterworth (1972) for his
modelization of the �rm balance sheet in a dynamic way, the work by Melse
(2006) as well as the work by Tippet (2000) that not only describes the �rm
balance sheet through a �nite di�erence system of the �rst order but also models
its dynamics with the aid of stochastic mathematical tools.

Lastly we think particularly compelled to address the work by Arya et al.
(2004) for its links to the bases of the framework that we are about to introduce.
In his work, gathering especially from Mattessich and Ijiri, he and his colleagues
prove that it is possible to model the evolution of a balance sheet through a linear
�nite di�erence system and then they draw a parallel between the linear algebra
modelization and the double-entry bookkeeping framework in order to establish
an algebraic interpretation of the error checking capability of the double-entry
bookkeeping system.

1.1.3 History of accounting and mathematics: some re-
marks and conclusions.

Our mathematical framework moves from a linear algebra interpretation of the
balance sheet dynamics in line to that devised by Arya, but instead of looking
at the similarities between the linear algebra description and the double entry
bookkeeping approach, it starts to build from the di�erences between the two,
analyzing the reasons behind those di�erences.

In order to do that we have to begin from a thorough scrutiny of the double-
entry bookkeeping system from a mathematical point of view. In our summary
of the history of mathematics and accounting naturally we had to leave out a lot
of research areas, among those we didn't address the attempts to mathematically
analyze the double entry bookkeeping system but we made that choice only
because we are going to do it in the next section.

Before that we would like to close this section with a couple of remarks on
the results of all this research through history and the general state of analytical
accounting, remarks that we think should guide us in the way we conduct and
present our research work.

The �rst thing to notice when we talk about accounting research in general,
it is the existence of a universally perceived gap between the scienti�c world of
academia and the practitioner world as well as general feeling that accounting
research is too self-referential (see Unerman et al. (2009)). So it is not surprising
that even a giant like Mattessich (2005) has an uncertain attitude when he is
called to assess the state of analytical accounting as a whole, today.

The case of the research area on axiomatization is emblematic since the pos-
tulational approach failed because it wasn't rigorous enough while the second
approach failed because it was perceived by many as using too much mathemat-
ics.
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Moreover the case of the research area about the use of statistical tools and
the sampling techniques, which is an example of success, gives us the idea that
it is important to present a research which proposes something felt as useful and
attempts to formalize it using the most accessible mathematical tools capable
of delivering the result.

As a matter of fact the work from another area of research, that we had
to leave out of our history summary, the one trying to merge agency theory
and accounting, that has given results which are by many regarded as some
of the most formidable intellectual achievements in the analytical accounting
�eld, by many others has received wide critiques. Because it is a line of work
that is felt more as �economics of accounting� than accounting in the traditional
meaning, since it requires considerable prerequisites of mathematics, �nance
and economics and so it is inaccessible not only to the majority of practitioners
but also to many accounting academics (Mattessich (2005)).

So, as we can see, another general problem of the accounting research is
that, especially when it uses mathematical tools, it often tries to reach goals
into other areas of the economic science beyond what are strictly felt by the
accounting community as the �eld's boundaries.

Basically we can assess that the relationship between mathematics and ac-
counting, very close and deep in ancient times, in the last �fty years, though
still fruitful, has produced mixed results. If on the one hand it has proved to
be very lively, sparkling ideas in many di�erent directions, on the other hand it
has encountered several obstacles, in part due to shortcomings in the accounting
research itself, in part due to the lack of a widespread advanced mathematical
culture which would be required in order to comply with the mathematical tools
that this relationship has come to imply.

Consequently to this day no new general mathematical framework can been
deemed as established beyond the one implied by the double entry book keeping
system, so in order to present a new one we should start from an analysis of the
main double entry mathematical features. Finally this historic review seems to
advise us on some of the characteristics that our new mathematical framework
should possess: that of presenting itself as useful as it can, with special regard
to its possible links with other areas of the economic research, while trying to
retain the simplest mathematical shape capable of delivering the desired results.
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1.2 The theoretical mathematical framework of

the double entry bookkeeping system

In order to try to establish a new theoretical framework for the balance sheet
modeling, it is important to start from the analysis of the current theoretical
mathematical framework into which the balance sheet is written and thought,
namely the double entry bookkeeping system. This mathematical analysis will
have to tell us the reasons behind the main features of the double entry approach
and the goals that the double entry approach reaches through these character-
istics. We think this should be done to understand which one of those features
could be modi�ed so that our new mathematical modelization could reach its
own goals. So let's start from this analysis and more generally from a history of
the encounters between mathematics and the double entry book-keeping system.

1.2.1 Mathematical analysis of the double entry book-
keeping system

A revealing example of the problematic attitude between the accounting aca-
demical world and the mathematical one can be represented by the history of
the mathematical analysis of the double entry bookkeeping system. To this day
it is little known in mathematics and it is even virtually unknown in accounting
that the double entry system is based on a mathematical construction of under-
graduate algebra, the group of di�erences, in which the integers are represented
as equivalence classes of ordered pairs of natural numbers. The T-accounts of
double entry bookkeeping are precisely the ordered pairs of the group of dif-
ferences construction. With the exception of a paragraph by D.E. Littlewood,
until the fundamental work by Ellerman (1984) unfortunately even to this day
not widely known, there is not a single mathematics book which notes that
this construction is the theoretical basis of a mathematical technique applied,
everyday everywhere, in the mundane world of business for over �ve centuries.
And even though that construction is standard fare in an undergraduate modern
algebra course, it is a relevant thing to notice that its connection with double
entry bookkeeping is totally absent in the accounting literature.

Through the course of history the encounters between mathematics and dou-
ble have been so sparse that the highlights can be easily speci�ed. A description
of double entry bookkeeping was �rst published by the Italian mathematician
Luca Pacioli in 1494. The method had been developed in Italy during the four-
teenth century. Although Pacioli's system was governed by precise rules, his
presentation was in practical and non-mathematical form. Let's keep in mind

17



that as an abstract mathematical construction the group of di�erences seems
to have been �rst published by Sir William Rowan Hamilton in 1837. He made
no mention of bookkeeping although accountants, at the time, had been using
an intuitive algebra of the ordered pairs, by them called T-accounts, for about
four centuries.

Arthur Cayley (1821-1895) was one of the few later mathematicians who
wrote about double entry bookkeeping. In the year before his death he published
a small pamphlet entitled �The Principles of Book-keeping by Double Entry� in
which he wrote:

�The Principles of Book-keeping by Double Entry constitute a theory which
is mathematically by no means uninteresting: it is in fact like Euclid's theory
of ratios an absolutely perfect one, and it is only its extreme simplicity which
prevents it from being as interesting as it would otherwise be.�

In the pamphlet, Cayley did not present a mathematical formulation, but
only described double entry bookkeeping in the practical informal terms fa-
miliar to Cayley from his fourteen years of work as a lawyer. However, in his
presidential address to the British Association for Advancement of Science, Cay-
ley hinted that the �notion of a negative magnitude� is �used in a very re�ned
manner in bookkeeping by double entry�.

Another brief but insightful observation was made in a semi popular work
by D. E. Littlewood in which he noted that the ordered pairs in the group of
di�erences construction function like the debit and credit balances in a bank
account:

�The bank account associates two totals with each customer's account, the
total of moneys credited and the total of moneys withdrawn. The net balance
is then regarded as the same if, for example, the credit amounts of ¿102 and
the debit ¿100, as if the credit was ¿52 and the debit ¿50. If the debit exceeds
the credit the balance is negative.

This model is adopted in the de�nition of signed integers. Consider pairs of
cardinal numbers (a, b) in which the �rst number corresponds to debit, and the
second to the credit. A de�nition of equality is adopted such that (a, b) = (c,
d) if and only if a + d = b + c. �

Some modern accounting theorists believe that the mathematical treatment
of the double entry bookkeeping must involve transaction matrices. This is not
totally correct, since this transaction matrices represent only a good formal way
of representation for the transactions described otherwise through double entry
bookkeeping. As a matter of fact the presentation of transactions involving
scalars can be facilitated using a square array or table of scalars usually called
�transaction matrix�. These transaction tables were �rst used by the English
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mathematician August DeMorgan and have been popularized through history
in the ways we presented in the previous section.

Transaction tables have, however in a way, retarded the development of a
mathematical formulation of double entry bookkeeping. We will see shortly that
double entry bookkeeping lives in group theory, not in matrix algebra. As we
will see onward in this work matrix algebra is the best mathematical tool in
order to describe the balance sheet dynamics, not the mathematical essence of
double entry bookkeeping. And the seminal work that thoroughly analyzed the
double entry bookkeeping system through the instrument of group theory is the
1984 work by Ellerman: �The mathematics of Double Entry Bookkeeping�. His
analysis revolves around two main ideas.

1.2.1.1 The double entry bookkeeping system and the Pacioli group

The �rst cornerstone of a mathematical formalization of the double entry book-
keeping system, according to Ellerman, is the acknowledgement that the double
entry is based on the construction of the integers (positive and negative) as
equivalence classes of ordered pairs of natural numbers (so only positive).

The ordered pairs of this construction correspond to the T-accounts of the
double entry bookkeeping, the left hand entry in an ordered pair corresponds
to the debit side of the T-account and the right hand to the credit side.

We can borrow the notation [d//c] from Pacioli himself as the transposition

of the following T-account
Debits Credits
d c

, and we can start to show how

the algebraic structure of an additive group can easily be built over the set of
those ordered couples provided of an equivalence relation. Since the label T-
account will be used lately in speci�c accounting contexts, as long as we are
dealing with the algebraic structure of this set of ordered couples we will refer
to the elements of this set as T-terms.

As last preliminary remark we would like to stress the fact that the numbers
in the ordered pairs, in the T-terms, are all positive numbers, in the original
idea of the double entry they would have been all natural numbers.

We can de�ne the sum between two T-terms [a//b] and [e//f ]as follows:

[a//b] + [e//f ] = [(a+ e)//(b+ f)] (1.2.1)

The result is internal to the original set, since the two numbers (a+e) and
(b+f ) will be positive numbers, and it carries the algebraic properties of the
usual sum.
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With a sum described as above it is easy to verify that [0//0] can be de�ned
as the zero T-term since adding it to any T-term makes no di�erence. Formally
speaking:

[a//b] + [0//0] = [0//0] + [a//b] = [a//b] (1.2.2)

An equivalence relation between two T-terms is de�ned by Ellerman in the
following way: [a//b]R[e//f ] if and only if the cross sums, a+f = b+e, namely
the sums of a couple debit with the other credit and vice-versa, are equal.

This de�nition represents one of the features at the core of the double entry
mathematical formalization since basically it states that two T-terms, or two
T-accounts in the accounting application, are equivalent if they represent the
same amount of wealth �owing into the account, or away from it, depending on
which side of the equilibrium equation the account is located

[a//b]R[e//f ] iff (a− b) = (e− f) or (b− a) = (f − e) (1.2.3)

This equivalence relation is compatible with the addition de�ned above in
the sense that if [a//b]R[A//B]and [e//f ]R[E//F ] then also the respective sums
are equivalent, namely [(a+ e)//(b+ f)]R[(A+ E)//(B + F )].

The last step in order to de�ne an additive group on the set of ordered pairs
provided of the above equivalence relation, that we will call the Pacioli group,
is of course to verify the existence of an inverse term for every T-term in the
set. The numbers occurring in a T-term can never be negative, but we can still
de�ne the negative of a T-term without negative numbers. Hence we de�ne the
negative or inverse of a T-term[a//b] as its reverse [b//a] since the result of the
sum of the two terms is a zero T-term, namely:

[a//b] + [b//a] = [(a+ b)//(b+ a)]R[0//0] (1.2.4)

And this completes the de�nition of the ordered pairs construction of the
integers from the natural numbers, following Ellerman, we call this group of
ordered couples the Pacioli group.
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As a matter of fact there is a one to one relationship between the classes
of ordered pairs in the Pacioli group and the integers (positive and negative),
as well as, if we allow the elements of the couples (a, b, e, f, etc. etc. ) to
be positive real numbers there would be a one to one relationship between the
classes of ordered pairs and the real numbers (positive and negative). So we
can see that the Pacioli group can be interpreted as a way of expressing positive
and negative numbers, only through the use of positive quantities.

1.2.1.2 The double entry bookkeeping system and the equilibrium
equation of the balance sheet

The second cornerstone of the in depth analysis performed by Ellerman on
the double entry bookkeeping system is represented by the formalization of
the relationship between the Pacioli group and the balance sheet equilibrium
equation, starting from the realization that the double entry method uses the
Pacioli group to perform additive algebraic operations on equations.

We start the analysis of this relationship by describing a method through
which we can translate or encode equations into the Pacioli group. We call zero-
term a T-term that is equal to the zero T-term [0//0], so that basically [b//b], for
every b, will be a zero-term. The translation of equations into the Pacioli group is
very simple: equations between nonnegative numbers correspond to zero-terms.
As a matter of fact, given any equation where all numbers are nonnegative such
as a + ..... + b = e + ..... + f we encode each left-hand-side number as a debit
balance T-term such as [a//0], we encode every right-hand-side number as a
credit balance [0//e]and we sum them all. With this translation the original
equation holds if and only if the result is a zero-term, in the case of our example
the equation holds if and only if [a//0]+ ........+[b//0]+ [0//e]+ ..........+[0//f ]
is a zero-term.

In double entry bookkeeping, transactions must be recorded in such a way as
to maintain the truth of the equilibrium equation, or the balance sheet equation:

Assets = Liabilities+NetWorth (1.2.5)

Namely transactions must be recorded by valid algebraic operations which
transform equations into equations. In the Pacioli group we have just seen that
an equation translates into a zero-term, so a valid algebraic operation of that
sort would be an operation that transforms zero-terms (equations) into zero-
terms (equations). But there is only one such operation: add a zero-term. Thus
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a transaction must be represented by a zero-term to be added to the zero-term
representing the balance sheet equation.

In bookkeeping the double entry principle is that each transaction must
be recorded with equal debits and credits. The mathematical basis for this
principle is that transactions are represented by zero-terms so the debits must
equal the credits (in every transaction) since a zero-term is a translation of
an equation. More speci�cally the zero-terms arising as the representation of
equations, as the balance sheet equation or the pro�t and loss equation, will
be called equational zero-terms, while the zero-terms arising from transactions
will be called transactional zero-terms. The additive algebraic operations on an
equation will work according to the following scheme:

(original equational zero− term)+(transactional zero− term) = (final equational zero− term)
(1.2.6)

Actually there are situations in which an equational zero term is translated
into a transactional zero term, since once that scheme is used with respect to
the pro�t and loss equation (dealing with one speci�c period) the �nal equation
will give us pieces of information to be used as transactional zero-terms in
the scheme of the balance sheet equational zero term (which will give us the
economic history of the �rm).

The last thing to specify is how to reverse the translation process, how to
decode zero-terms into equations. An equational zero term is a sum of T-terms,
it is not itself an equation with a left and right hand side. Indeed the T-terms
can be shu�ed around in any order. To decode a zero-term into an equation,
one can use any criterion one wishes to divide the T-terms into two sets, left
(L) and right (R), and then construct an equation according to the following
principles: if a T-term is in the set L, for example [a//b], then decode it as the
number (a− b) on the left-hand side of the equation, while if [a//b] is in the set
R, decode it as (b − a) on the right-hand side of the equation. This procedure
will always produce a valid equation given a zero-term.

Naturally in bookkeeping the T-accounts in the �nal equational zero-term
would be put in the sets L and R according to the side of the initial balance
sheet equation from which the accounts were originally encoded.

The last thing to underline about this second main feature of the double
entry bookkeeping method is that while the �rst one, seen before, allowed to
describe positive and negative quantities in terms only of positive numbers, in
the case of the zero-terms or the equivalent equations into or from which they are
translated, they provide an instant checking for the validity of the transaction
they are referring to, as we are going to see in this next section.
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1.2.2 Conclusions and remarks on the main features of
the double entry bookkeeping system mathematical
framework

The two main features of the double entry bookkeeping system mathemati-
cal framework, that Ellerman has identi�ed, are probably at the basis of the
method's success. As a matter of fact they give to the employer of the system
two very useful bene�ts, especially from the point of view of the historical period
in which it was invented as well as, at least, the �rst four centuries of its use.

The Pacioli group gives the opportunity to express the whole accounting of
the �rm, positive as well as negative �ows of wealth, only through the use of
positive numbers, which especially in the 15th century when the system was
devised, was de�nitely a good thing. Let's see more in detail this characteristic
with a very simple exempli�cation. We have a balance sheet where the simplest
of the balance sheet equations is updated:

Assets = Liabilities+NetWorth (1.2.7)

and where we do not have temporary or �ow accounts such as revenues
or expenses, so basically we do not have a pro�t and loss statement. In this
situation we will have only three accounting items, namely Assets, Liabilities
and NetWorth, to which T-terms will refer, and that when they have attached
the accounting labels Assets, etc., can properly be called T-accounts. It is the
position of the account in the all-positive equation above that identi�es the
account as a left-hand side (LHS) or debit-balance account or as a right-hand
side (RHS) or credit-balance account. Now in general debiting any x to an
account means adding the debit T-term [x//0] to the T-account, while crediting
x to an account means adding the credit T-term [0//x]to the T-account.

It is a common mistake of non-accountants to think that debit means neg-
ative. But it all depends if the account is a LHS account or a RHS account,
which, as in our case, can be easily assessed looking at the balance sheet equa-
tion. As a matter of fact to debit an account does not necessarily mean to
subtract from the balance in the account, that is only true for credit-balance
accounts, debiting a debit-balance account, like in our case Assets, means adding
to the account's balance.

The second feature of the double entry bookkeeping system, the fact that the
zero-term representation of the balance sheet equilibrium equation gives a quick
check of the plausibility of the transaction, for each transaction, is even more
important. It remains very useful today in the everyday accounting practice,
and it was de�nitely more so in a period when there were no computers or
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electronic calculators, especially in relation to the recording of a high number
of transactions.

Of course this checking opportunity would be present in any kind of transac-
tion recording method that would be based on updating a complete accounting
equation. The double entry system is a system of recording transactions and
its feature relating to the zero-term encoding of equations makes it immediate
after some practice. For example if, in relation to the above balance sheet, an
event was formulated as the transaction of adding 200 $ to both Liabilities and
NetWorth, some thought would be required to see that this formulation of a
business event could not possibly be correct and much more would be required
for a multiple entry transaction in an accounting system with a lot of accounts.
Yet the check is immediate in the double entry system, Liabilities and NetWorth
are both credit-balance accounts so the proposed transaction is a double credit
transaction in violation of the double entry principle.

1.3 From the double entry bookkeeping system

to a linear algebra modelization of the bal-

ance sheet dynamics

So far we have seen the characteristics of the double entry bookkeeping system
mathematical framework, now let's approach the linear algebra modelization of
the balance sheet dynamics and establish how the features previously discussed
can be modi�ed in order to achieve di�erent goals.

We can summarize this approach presenting an example in line with a work of
Arya et al. (2004) in which he states, among other things, that the dynamics of
a balance sheet representation can be modeled through an a�ne transformation.

Let's consider a balance sheet that has all its accounting items at zero at
the beginning of the period and then is subjected to the following transactions.
Equipment is purchased for $80, let the depreciation expense be $20, the stock
is sold for $100, and cash revenue is $30.

The Balance sheet at the end of the period will be the following:

Assets Liabilities
Cash 50 Acc.Depreciation 20
Equipment 80 Capital Stock 100

Income 10
Assets 130 Liabilities+ Equity 130
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We are in an accounting situation that can be modeled as follows. We can
de�ne a Balance sheet vector with the above accounting items, each one having
value 0 at the beginning of the period

[Cash0, Equipment0, Acc.Depreciation0, Capital Stock0] = [0, 0, 0, 0 ] (1.3.1)

and we can de�ne a vector of transactions
−→
C1(expressing the transactions

taking place from the time step 0 to the time step 1) with values as above
(equipment purchased for $80, depreciation expense of $20, stock sold for $100,
cash revenue of $30) namely

−→
C1 =

[
ca1, cb1, cc1, cd1

]
=
[

80, 20, 100, 30
]

(1.3.2)

So at the end of the accounting period the Balance sheet vector will be:



Cash1 = −(Cash0 + ca1) + (Acc.Depreciation0 + cc1)+

+(Capital Stock0 + cd1) =

= −(0 + ca1) + (0 + cc1) + 0 + (cd1) =

= −80 + 10 + 30 = 50

Equipment1 = (Cash0 + ca1) = (0 + ca1) = 80

Acc.Depreciation1 = (Equipment0 + cb1) = (0 + cb1) = 20

Capital Stock1 = (Acc.Depreciation0 + cc1) = (0 + cc1) = 100

(1.3.3)

Naturally a system of �rst order linear di�erence equations can be expressed
through a matrix representation. So considering the Balance sheet vector at the
beginning of the period and the vector of transactions de�ned above, through
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the action of the following accounting matrix the Balance sheet vector at the
end of the accounting period will be:

 Cash1

Equipment1
Acc.Depreciation1

Capital Stock1

 =

 −1 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0


 0 + 80

0 + 20
0 + 100
0 + 30

 =

 50
80
20
100

 (1.3.4)

Basically we have just established that we can generally formalize the dy-
namics of the balance sheet mathematically as follows:

Sn = f(Sn−1, Cn) (1.3.5)

where Sn is the vector of the balance sheet items at time n, Cnrepresents
the vector of the economic and �nancial transactions occurring (or recorded)
between time (n − 1) and time n, and f is a linear a�ne function on both
arguments.

Expressing the function above through a matrix representation, applied to
the previous example, we will have:

 Cashn
Equipmentn
Acc.Depreciationn
Capital Stockn

 =

 m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4


 Cashn−1 + can

Equipmentn−1 + cbn
Acc.Depreciationn−1 + ccn
Capital Stockn−1 + cdn


(1.3.6)

In the example above we have built the balance sheet vector using only
four accounting items, but in general we could theoretically choose as much
accounting items as we need for the particular formalization that we have in
mind.

Now the �rst thing that we have to underline, in the formalization that
we have just presented, is that we have already modi�ed one of the two main
characteristics of the double entry mathematical framework, and rightfully so,
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namely the equilibrium balance sheet equation. As we have seen in the previ-
ous section the motivations behind the double entry framework can be seen as
useful in the everyday accounting practice, especially at the time when it was
devised, but here we are more interested in the mathematical possibility of the
formalization we are presenting, as well as its IT applications.

So when we de�ne the balance sheet vector, we do not present in the vector
every accounting item that can be found in an equilibrium equation because one
of the items, exactly because of the equation, is necessarily linearly dependent
on the others.

The item that we choose not to present is the NetWorth, since its value can
be devised at every moment summing up the values of all the accounting items
that are present in the balance sheet vector, taking into account their sign.

We chose not to present the NetWorth, among all the items that we could
have chosen, for a reason. The main purpose of the balance sheet is to record
and present an amount of information about the �rm, rightfully considered
important. And naturally from an economic perspective the information of the
net worth is of paramount importance but from a mathematical point of view is
the result of all the streams of wealth going in and out of the �rm. So if we track
the records of the accounting items related to those �ows of wealth we will have,
not only already the information with respect to the net worth, but hopefully
also a better mathematical description of the �rm accounting dynamics.

The same will happen for the vectors describing the economic and �nancial
transactions. Anytime we will build a system as a model of a balance sheet
we will try to formalize the elements of the transaction vector linking them to
accounting items, or aggregations of them, that will mostly be accounting items
relating to the pro�t and loss statement. Again the pro�t (or loss) item won't
be present, since it will be linearly dependent on the other transaction vector
elements values.

As for the other characteristic of the double entry bookkeeping framework,
meaning the fact of expressing every �ow of wealth positive or negative always
through the use of positive numbers, actually in the example above we did not
modify it completely, since we expressed streams of negative wealth through
positive numbers and then we subtracted them from the cash-�ow, but nothing
constraints us to simply represent every �ow of wealth going to the �rm through
a positive number and every stream of wealth going out of the �rm through a
negative number.

In this case the accounting item of the equilibrium equation that we choose
not to be present in our balance sheet modelization will be given by the ex-
act sum of all the other accounting items, since everyone will appear on the
summation with its proper sign.

Now the last aspect of this formalization that we should analyze is related
to the fundamental fact that one of our main goals is to express the value of the
balance sheet at time n through a closed form formula.

In order to get to a workable closed form formula for the balance sheet vector,
especially in the general case in which it is formed by a reasonably high number
of accounting items, the modelization shown above it is not useful. If we will
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be dealing with a balance sheet vector with k accounting items, we will have to
work with a k× k matrix, and in order to reach the closed form formula we will
have to multiply and sum several of this matrices.

Now let's analyze what is the meaning of the matrix elements, using again
the example above. If we multiply the matrix and take a look just at the �rst
equation of the resulting system:

Cashn = m1,1(Cashn−1 + can) +m1,2(Equipmentn−1 + cbn)+
+m1,3(Acc.Depreciationn−1 + ccn) +m1,4(Capital Stockn−1 + cdn)

.........................................................

.........................................................
(1.3.7)

we can realize that the element mi,j regulates the �ow of wealth (positive
or negative) from the accounting item of position j at time (n − 1), varied by
the transaction of position j (happened between time n− 1 and time n), to the
accounting item of position i.

Basically if we are in a situation where we have modeled the balance sheet
using only three accounting items:

we can see, for example, that the element m2,3 will regulate the �ow of
wealth, happening in the period, from the accounting item 3 to the accounting
item 2 (naturally if m2,3 assumes a negative value it will regulate a negative
�ow of wealth from item 3 to item 2):
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AccountingItem3 −→ AccountingItem2

and of course the element m3,2will regulate the �ow of wealth in the other
direction, namely the stream that during the time period will go from the ac-
counting item 2 to the accounting item 3:

AccountingItem3←− AccountingItem2

So if we could express all this streams of wealth in a simpler way, from a
mathematical standpoint, we could reach a modelization described by a system
with a mathematical shape that will enable us to present it in a closed form
formula as workable as possible.

We start from an idea expressed in the work by Ijiri (1965) on the axiom-
atization of the accounting discipline, the concept of u-measure. According to
this idea if we express, as it is normally done, the value of every accounting
item present in a balance sheet through money, speci�cally through a certain
currency, we can consider money, that currency, as the universal unit of measure-
ment of our balance sheet. Consequently we can identify a particular accounting
item that can operate as a mediator between any two accounting items, i.e. the
liquidity. Instead of having streams of wealth that directly move from one ac-
counting item to another, we can model the streams of wealth so that in the
same time period they all move accordingly to the following scheme: from the
starting account to the liquidity and from the liquidity to the ending account:
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so that basically all the accounting items will be connected one another only
through the liquidity item. If we consider a single �ow of wealth starting from
the item A and ending into the item B, during the time window that we are
facing, the fact that the modelization of this �ow of wealth is made so that it
passes through the liquidity item, since naturally it doesn't change the end result
but only the calculation process through which this end result is reached, can
be interpreted just as an evaluation procedure, coherently with the u-measure
concept seen above.

Once the modelization proceeds following the above principles it is clear how
it becomes of pivotal importance the way in which we formalize the relationship
of each accounting item with the liquidity. We called this formalization brick-
vector, since combining the brick-vectors relating to each and every accounting
item present in the balance sheet vector (other than the liquidity of course) we
can build the system that describes our balance sheet.

1.3.1 The concept of the brick-vector

For the reasons seen in the previous subsection the brick-vector will be the
atomic element upon which we will build the linear system that will model
the dynamics of the balance sheet we are interested in. Since every account
is connected to the others only through the liquidity item we can think the
liquidity as a sum of a number of sub-liquidities each one related to its speci�c
accounting item:

So that basically we can consider the brick-vector as the modelization of the
relationship between each account and its speci�c sub-liquidity.
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In the most general terms the brick-vector will assume the following shape,
where, for reasons seen before, the value of every accounting item and vector
variable will be expressed in money (so everything except the elements of the
array) :

[
LIn
In

]
=

[
(1− αn) βn
αn (1− βn)

] [
LIn−1 +ALIn
In−1 +AIn

]
+

[
PLIn
P In

]
(1.3.8)

In (1.3.8) Inwill be the value of a speci�c accounting item at time n , and
LIn will be the value of the sub-liquidity related to the account I at time n.
As we can see they depend on their values at time n − 1, and on a couple
of vectors describing the transactions happened in the time window between

n − 1 and n, the vector
−→
A and the vector

−→
P . The di�erence between the two

vectors is that on
−→
A the accounting matrix acts immediately, while the vector−→

P represents transactions whose values we want to put on certain accounts on
which the accounting matrix will operate its redistribution e�ect the next time
step. Naturally the variable AIn will represent the value of the transactions in
−→
A that it is due to the account I, while ALIn will represent the one due to the
liquidity (via the sub-liquidity), and the same will happen with respect to the

vector
−→
P . Finally the parameters in the accounting matrix αn and βn regulate

the �ows of wealth between the item and the sub-liquidity and vice-versa. The
�rst parameter αn represents the percentage of wealth that (in the time window
between n−1 and n) goes from the sub-liquidity, augmented by the transaction
ALIn , to the account I, while βncarries out the same task for the �ow of wealth
going from the item I to the liquidity.

The shape seen above for the brick vector is the most general one, a lot of

times several of the above variables or parameters won't be needed and they will

simply carry the value zero. Let's see as example the shape of a brick-vector

describing the relationship between the Receivables from clients and its relative

sub-liquidity, for an industrial �rm:

[
LTn
Tn

]
=

[
1 ηn
0 (1− ηn)

] [
LTn−1 + 0
Tn−1 + Zn

]
(1.3.9)
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where T will be the accounting item modeling the Receivables from clients,
LT will be its sub-liquidity, Zn will be the variable representing the sales and
the parameter ηn will be the percentage of the past Receivables plus the sales,
happened in the time window, that are liquidated during that time window.

In this example we can see an important characteristic of the brick-vector
namely the fact that it allows to represent the �ows of wealth between the two
items in two di�erent ways, since in theory we could simply avoid the use of the
accounting matrix and express the event only through the transaction vector:

[
LTn
Tn

]
=

[
1 0
0 1

] [
LTn−1 + ZLTn
Tn−1 + ZTn

]
(1.3.10)

where in this example ZTn will be the part of the sales happened in the
accounting period which are not liquidated, while ZLTn will be the value of the
part of the sales in the accounting period that becomes cash-�ow. The choice
between the use of one of the two di�erent ways, or a mix of the two, for each
brick-vector (so for each accounting item), will naturally depend on what kind
of information we are interested in (or is at our disposal), combined with the
mathematical tools that the modelization will have to interact with, hence the
mathematical goals it is set to achieve.

An example of this kind of attitude could be even seen in the way we are
about to reach the aim of getting to a closed form formula for our balance sheet
vector at time n.

As a matter of fact the major shortcoming of the formalization (1.3.8) is that
in order to combine the vectors into a single balance sheet system we have to deal
with a number of extra-parameters (as much as the number of the brick-vectors),
at every time step. These extra parameters should weight the contribution of
each sub-liquidity on the total of the liquidity. This would happen in a situation
where in order to �nd a workable closed form solution one of the most serious
obstacles is represented by the sheer number of variables and parameters that
inevitably any balance sheet modelization brings with itself.

A solution would be once again represented by an attempt to limit the ways
through which the streams of wealth can travel between the accounting item and
its sub-liquidity. The previous problem arises from the parameter αn regulating
the �ow of wealth from the sub-liquidity to the accounting item. Then we should
try to �nd ways so that the only path through which the stream can happen,
in both directions, would be the one from the item to the sub-liquidity:
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The stream in the di�erent direction (from the sub-liquidity to the account)
then could be modeled in two di�erent ways. The �rst is to consider it always
as a �ow of wealth going from the account to the sub-liquidity but of negative
value, namely allowing βn to take negative values. The second is through the
use of the transaction vectors as seen in the example (1.3.10). In a situation
of that kind the brick vector would get the following pivotal upper triangular
general shape:

[
LIn
In

]
=

[
1 βn
0 (1− βn)

] [
LIn−1 +ALIn
In−1 +AIn

]
+

[
PLIn
P In

]
(1.3.11)

where βnwould be in the condition of assuming negative values. And where

the modelization of the vectors
−→
A and (or)

−→
P could be devised not only to

model accounting items, or aggregations of accounting items coming from the
pro�t and loss statement, but also a possible stream of wealth occurring from
the sub-liquidity to the account I.

1.4 An example of a balance sheet modelization

through a linear �nite di�erence system

Now following the theoretical mathematical framework that we have presented
so far we would like to build an example of a balance sheet modelization with its
closed form formula representation. Naturally, as we have already hinted before,
one of the greatest problems of the closed form setting is the high number of
variables that any balance sheet imply. In the last section of this chapter we
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will discuss brie�y some of the paths that we think this research should follow
in order to alleviate the impact of that issue. So every time someone should
approach a formalization according to the present framework, the �rst step
should always be a careful assessment of the accounting items to use (through
a work of aggregation of di�erent items). In every mathematical modelization
there is a heavy trade o� between the need for detail and the need for simplicity
but here more than ever.

So, in order to provide a �rst example and for the sake of clarity, we prefer
to develop one of the simplest formalizations allowed by our framework. One in
which the balance sheet vector will be represented only by three items: naturally
the liquidity L, then one accounting item for the assets other than the liquidity,
we will name it S , and one for the liabilities I. In this situation we will have
to develop only two brick vectors. The �rst will be the one expressing the
relationship between our assets account and the liquidity, and it will be de�ned
as follows:

[
LSn
Sn

]
=

[
1 πn
0 (1− πn)

] [
LSn−1 + 0
Sn−1 + Pn

]
(1.4.1)

where the variable Pnrepresents the aggregation of all the accounting items
and records in the pro�t and loss statement bringing a positive stream of wealth
from the outside world to the �rm and the parameter πnrepresents the percent-
age of that wealth that is turned into cash �ow in the time window considered.

The second one will be the brick vector representing the relationship between
the liabilities and the liquidity and it will take this form:

[
LIn
In

]
=

[
1 νn
0 (1− νn)

] [
LIn−1 + 0
In−1 +Nn

]
(1.4.2)

where in this case the variable Nn will represent the aggregation of all the
accounting items and records in the pro�t and loss statement bringing a negative
stream of wealth from the outside to the �rm, and the parameter νnwill be the
percentage of that negative wealth that is turned into negative cash-�ow in the
time window considered.

As we can see, in the formalizations (1.4.1) and (1.4.2) mathematically speak-
ing the �ow of wealth goes always from the accounting item to the liquidity.
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Simply, in the case of the liabilities I and of the variable N the values will
always be negative. This choice will also present the positive trait that it will
enable us to obtain the net worth just by summing up all the accounting items
in the balance sheet vector.

The closed form formula expressing the �rst brick-vector at time n will be
the following one:

{
LSn =

∑n
l=1 πl(

∏l−1
i=1(1− πi)S0) +

∑n
l=1 πl(

∑l
h=1 Ph(

∏l−1
j=h(1− πj)))

Sn =
∏n
i=1(1− πi)S0 +

∑n
h=1(

∏n
j=h(1− πj))Ph

(1.4.3)

while the second brick-vector will have at time n a closed form formula as
follows2:

{
LIn =

∑n
l=1 νl(

∏l−1
i=1(1− νi)I0) +

∑n
l=1 νl(

∑l
h=1Nh(

∏l−1
j=h(1− νj)))

In =
∏n
i=1(1− νi)I0 +

∑n
h=1(

∏n
j=h(1− νj))Nh

(1.4.4)

It is worth noting that the shape of the two formulas is exactly the same, as
it would have been expected since the systems from which they stem have the
same mathematical shape.

Now we combine the two brick-vectors into one single system expressing the
whole balance sheet vector at time n. The close form formulas of the items Sn
and In will be the same formulas seen in (1.4.3) and (1.4.4), while that of the
liquidity will be the sum of the formulas of the sub-liquidities in (1.4.3) and
(1.4.4):


Ln = LSn + LIn

Sn = Sn

In = In

(1.4.5)

2Everywhere will hold the convention that any time a > b we will have
∏b
a = 1 and

∑b
a = 0

.
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As we have previously stated, one of the inevitable problems of a mathe-
matical modelization of a balance sheet is the huge number of variables and
parameters that even the simplest of modelizations necessarily involves. The
framework related to the idea of the brick-vector makes no exception (and it
couldn't be otherwise) but it attempts to alleviate the consequences of this is-
sue by breaking down the �nal formula into smaller ones so that even the most
complex expression, the one of the liquidity, presents itself as a repetition of the
same general formula combined by the sum operation.

1.4.1 Remarks on the model presented and on its closed

form formula

Inevitably in a balance sheet formalization there is a heavy trade o� between
the need of detail and the need of a workable mathematical modelization. The
brick vector framework tries to mitigate this issue through the link constituted
by the Liquidity item whose closed form solution is represented by a summa-
tion of very similar formulas. Naturally this is not enough since, in the kind of
balance sheet modelizations that we have proposed so far, we are stuck, mathe-
matically speaking, with a dependency on the whole history of the �rm that we
are formalizing. So we have to device methods in order to reduce the impact of
this issue and in the next section we will discuss about that matter.

1.5 Time series modelizations and averaging pro-

cedure

As we have just seen the main problem for a workable shape of our balance
sheet modelization is constituted by the high number of variables implied by the
model. Since the number of items is chosen at the beginning of the formalization,
the only choice left to address this issue is to reduce the dependency of the
system on the time sequences of the variables and parameters involved in the
closed form formula. This aim can be achieved by a mathematical modelization
of those time series so that they are expressed by a function (on the time variable
or a recursive one). Here we will start discussing about the simplest functional
form that can be used for this purpose which is the constant one, equivalent to
an averaging procedure.
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1.5.1 An averaging procedure according to the Chisini
de�nition

In order to model the time series involved in our formalization, moving from the
premise that they are all constant in time, the �rst step will be to express the
closed form formulas seen above accordingly. Then we will try to replicate the
general value of the balance sheet vector at a certain time n (so that, in possible
model applications, we could project the future life of the �rm from that point
in time under the assumption that it is stationary). To operate this replication
method we will basically use for each and every brick vector an averaging process
according to the Chisini meaning of the term (Iurato 2012), namely we will look
for the constant value b such that:

g(b, b, ......, b) = g(a1, a2, ......an) (1.5.1)

although, technically speaking, in the brick vector case we will deal with a
couple of those functions g embedded in the closed form formula of the vector.
Let's look at this averaging method more in detail applying it to a brick vector.
It formalizes the Receivables from Clients in a possible model for an industrial
�rm and has the following shape:

[
LTn
Tn

]
=

[
1 ηn
0 (1− ηn)

] [
LTn−1 + 0
Tn−1 + Zn

]
(1.5.2)

where Zn represents the amount of sales sold by the �rm between the time
step n − 1 and the time step n and ηn is the weighted average percentage of
those sales that becomes cash-�ow in the period. Its closed form formula will
be:

{
LTn = LT0 +

∑n
l=1 ηl(

∏l−1
i=1(1− ηi)T0) +

∑n
l=1 ηl(

∑l
h=1 Zh(

∏l−1
j=h(1− ηj)))

Tn =
∏n
i=1(1− ηi)T0 +

∑n
h=1(

∏n
j=h(1− ηj))Zh

(1.5.3)
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When all the parameters ηi and the variables Zh are constant in time that
closed form formula takes the following shape:

{
LTn = LT0 + T0(1− (1− η)n) + Z[n− (1− η)( 1−(1−η)n

η )]

Tn = (1− η)nT0 + Z(1− η) (1−(1−η)n)
η

(1.5.4)

Now all that is left to do is to �nd the value of Z and the value of η that

give us the values of LTn and Tn, namely we have to solve the system above in

the variables Z and η . Their values will be the following, for Z it will simply

be:

Z̄ =

∑n
i=1 Zi
n

(1.5.5)

.

while for η we will have to plug the value of Z̄ in the expression of Tn so

that we will obtain the equation:

Tn = (1− η)nT0 + Z̄(1− η)
(1− (1− η)n)

η
(1.5.6)

which is an n-degree polynomial equation in η that can be solved, in order

to get the value η̄ we are looking for, only using standard numerical procedures.

1.5.2 The Chisini averaging procedure applied to the pre-
vious model

As we have just seen in the previous subsection, our Chisini-like averaging pro-
cedure will give us average values for the parameters and the variables of a brick

38



vector according to the shape we have chosen for it. For the model (1.4.5) they
will simply be the result of the following procedure. Starting from the �rst brick
vector, when all the parameters πi and the variables Ph are constant in time,
we will have that its closed form formula will take the following shape:

{
LSn = LS0 + S0(1− (1− π)n) + P [n− (1− π)( 1−(1−π)n

π )]

Sn = (1− π)nS0 + P (1− π) (1−(1−π)n)
π

(1.5.7)

Now all that is left to do is to �nd the value of P and the value of π that
give us the values of LSn and Pn, namely we have to solve the system above in
the variables P and π . Their values will be the following, for P it will simply
be:

P̄ =

∑n
i=1 Pi
n

(1.5.8)

.

while for π we will have to plug the value of P̄ in the expression of Sn so
that we will obtain the equation:

Sn = (1− π)nS0 + P̄ (1− π)
(1− (1− π)n)

π
(1.5.9)

which is an n-degree polynomial equation in π that can be solved, in order
to get the value π̄ we are looking for, only using standard numerical procedures.

For the second brick vector, when all the parameters νi and the variables Nh
are constant in time, we will have a closed form formula that takes the following
shape:

{
LIn = LI0 + I0(1− (1− ν)n) +N [n− (1− ν)( 1−(1−ν)n

ν )]

In = (1− ν)nI0 +N(1− ν) (1−(1−ν)n)
ν

(1.5.10)

Now we will have to �nd the value of N and the value of ν that will give
us the values of LIn and In so we will have to solve the system above in the
variables N and ν . Their values will be the following, for N it will be:
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N̄ =

∑n
i=1Ni
n

(1.5.11)

.

while for ν we will have to plug the value of N̄ in the expression of In so
that we will get the equation:

In = (1− ν)nS0 + N̄(1− ν)
(1− (1− ν)n)

ν
(1.5.12)

which is an n-degree polynomial equation in ν that can be solved, in order
to get the value ν̄ we are looking for, only using standard numerical procedures.

Finally the system will take the following form:


Ln = L0 + S0(1− (1− π)n) + P [n− (1− π)( 1−(1−π)n

π )]+

+I0(1− (1− ν)n) +N [n− (1− ν)( 1−(1−ν)n

ν )]

Sn = (1− π)nS0 + P (1− π) (1−(1−π)n)
π

In = (1− ν)nI0 +N(1− ν) (1−(1−ν)n)
ν

(1.5.13)

into which we can plug the values previously found of the parameters and
variables and this will enable us to obtain the value of the balance sheet at time
n.

1.6 Conclusions and remarks

In the present chapter we have introduced a new theoretical framework for the
mathematical interpretation of the balance sheet that allows to build a class of
models describing its evolution through the tool of the linear �rst order �nite
di�erence system. Moreover this framework is devised so that the modelizations
would possess the feature of not only being able to be implemented through the
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use of information technology but also being described by a closed form formula,
allowing the use of tools typical of pure mathematics.

We started from a summary of the history of the relationship between ac-
counting and mathematics, giving a particular attention to what has happened
in the last �fty years. Then we moved to an in depth analysis of the mathemat-
ical characteristics of the double-entry bookkeeping system, since it represents
the current theoretical framework under which the mathematical interpretation
of the balance sheet is implicitly done every day by the economic agents. It
could be described as the �lens� through which accountants, everywhere in the
world, deal with the balance sheet, speak of it, and more importantly think
about it.

Following the ideas by Ellerman (1984) we identi�ed two main features of the
double-entry mathematical framework, which are linked to the two main rea-
sons behind its overwhelming success and di�usion over the last �ve centuries.
The use only of positive numbers to describe streams of wealth both positive
and negative, and the automatic checking capability of the correctness of each
transaction record, coherently with the fundamental balance sheet equilibrium
equation. Both characteristics appeared to be of pivotal importance in a condi-
tion where the accounting work would need to be done by the largest number
of agents, sometimes with the smallest possible training, without the use of any
sort of calculator. Such as the world in which the double entry system was de-
vised that, as far as those traits are concerned, remained nearly unaltered until
�fty years ago.

Of course everything changes in a situation like ours where the accounting
procedures need to be modeled in order to achieve mathematical purposes so
that the model obtained can be used, via computer or pure mathematics, in the
most di�erent areas of the accounting and economic research such as corporate
�nance, budgeting simulation or risk management, just to name a few.

So, starting from the idea of formalizing the dynamics of the balance sheet
through linear a�ne transformations and matrix algebra, we decided to change
the features discussed above, in order to model the balance sheet as a system.
Consequently linear dependence among the items cannot be allowed, and in
order to follow as closely as possible the streams of wealth in and out of the
�rm (as well as among di�erent accounting items), the use of negative values
may become important.

In order to achieve the goal of expressing the value of the system at time n
through a closed form formula, we attempted to model the �ow of wealth among
the accounting items through the introduction of the brick-vector concept and
then we presented the reasons behind the need to model the �ows of wealth
within the brick-vector itself in di�erent ways. This completed the introduction
of our theoretical mathematical framework. Finally we gave the example of one
simple model built according to our approach, one of the in�nite number of
models belonging to the set of systems that can be de�ned coherently with this
work.

As we have stated more than once during this chapter, one of the main goals
(if not the main goal of this work) is to reach a class of models that not only can
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be expressed through a closed form formula but that can be expressed through
a workable one. Of course this would be the main problem of any balance sheet
formalization since the evolution of the balance sheet depends on a huge number
of variables, especially when the number n of time steps increases. Naturally this
is a trait that can't be avoided by any formalization. What our formalization
tries to do about that issue is to break down the problem into smaller ones,
through the brick-vector concept, and then combine them in a simple way so
that the most complex formula (the one of the liquidity) will be a summation of
sub-formulas (the ones of the sub-liquidities) all having roughly the same shape.

The present thesis, as in general the brick vector formalization, would like
to provide an attempt at linking the accounting �eld more closely to di�erent
areas of research, such as corporate �nance, �nance engineering, risk manage-
ment, corporate risk management etc. In order to foster employments of that
sort we had to try to overcome what we think is the most problematic issue
of this formalization namely its dependency on a high number of variables and
parameters. This matter can be alleviated through an appropriate modelization
of the time series of those variables and parameters. So that at this stage of our
theory these variables and parameters should be seen mainly as a template on
which to develop further formalizations. Here we proposed the mathematically
simplest possible one, in which all the variables and parameters are constant
in time, through an averaging procedure coherent with the functional average
de�nition by Chisini. In this case a desirable next step for the present research
would be a modelization of the sequences according to a linear function, for ex-
ample an autoregressive of the �rst order for the variables while the parameters
continue to be constant. Naturally in such a situation there would de�nitely be
the need to address the issue of a stochastic de�nition of the modelization we
have presented. The problem just discussed intertwines with the direction that
we intend to pursue with the present research, namely the use of the proposed
models in cases of budgeting simulation, cash �ow at risk, optimization etc. In
cases such as these we hope this modelization could result to be useful not only
for its possible IT implementations but also because of its pure mathematical
shape.

Actually we hope that this mathematical framework and its class of models
could prove to be useful in several areas of research, starting from the risk
management area as well as the corporate �nance �eld. With proper time
series modelizations and proper averaging procedures, we hope the model could
produce a good proxy of the dynamics of the main accounting items linked,
through the time series modelizations, to the main macroeconomic drivers of the
most important accounts. This would prove particularly useful in a situation
where, as for the clean surplus theory, the major problem of the analytical
accounting research, as well as its applications, seems to be the linking of future
projections of the values of the accounting items to their past values, which are
the accounting data in our possession.

Another remark we want to convey about the present work is instead related
to the relatively simple shape that we have chosen for the brick vector. We think
that a relatively simple template (on which to operate in a second moment for
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more details or constructions) could result more appropriate in an attempt to
bridge the gap between the world of the accounting academia and the world of
the accounting practice. Finally we hope that the broad spectrum of models and
formalizations that this theoretical mathematical framework allows could give
space to researchers from di�erent academic paths, especially from accounting
and �nance, to come together for, on the one hand, having a more fruitful use
of the incredible amount of data which constitutes the essence of the accounting
discipline, and on the other hand, reaching a more integrated approach thanks
to the deep mathematical methods that �elds like the �nancial one can o�er.
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Chapter 2

A Dynamic Model for Cash

Flow at Risk

In this second chapter we introduce a new quantitative instrument for a �rm,
in line with the brick vector framework previously seen, to integrate the set of
information available from its accounting records. We start from the building
up of a quantitative model based on accounting data that is able to represent
and simulate the relevant dynamics related to the company. This application is
based on the idea of representing the dynamics of a balance sheet using a math-
ematical formalization inspired by that of Butterworth (1972), Melse (2006),
Cooke and Tippet (2000). Then we de�ne a new risk measure based on the
Cash-Flow-at-Risk (CFaR) measure, tailored on our new balance sheet model-
ing approach, which takes full advantage of its focus on the liquidity process.
CFaR is an extension of Value-at-Risk (VaR): while the latter focuses on market
risk by forecasting changes in the overall value of an asset or portfolio, CFaR
deals with variations in cash �ow during a given period. In addition, we will
show a concrete application of the CFaR in a case study based on a real data
set, in order to illustrate the potentiality of the new measure in providing risk
management information.

This work represents the follow up of Arya et al. (2004) and Girardi et al.
(2010) who created a �exible and dynamic budgeting model capable of provid-
ing information about the �nancial position, cash �ow, assets and liabilities of
a generic industrial �rm. By analyzing the dynamics of the �nancial statement,
Girardi et al. (2010) formalized the dynamics of the principal balance sheet
items, using a set of di�erence equations. The goal of their research was to cre-
ate a dynamic mathematical model capable of formalizing the cash �ow budget
of a �rm, by showing the evolution of the main accounting items a�ecting the
liquidity, in the spirit of (Mattessich 1961). With appropriate inputs in time
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series form, the model is then able to calculate, at any period, the liquidity level
and the value of key accounting items a�ecting the cash �ows. The budgeting
approach of Girardi et al. (2010) can be considered as the starting point for our
new class of models. In fact, their formalization can be extended by considering
further balance sheet items, in order to analyze di�erent �rms, according to the
brick vector framework. This can be considered as a �rst attempt to create a
uni�ed framework for the �rm analysis, in line with Ohlson (1983), who linked
variations in the �nancial statement and other information variables to the un-
derlying equity price, and also with Cooke and Tippet (2000), who extended the
analysis of Ohlson (1983) to a stochastic framework. It is important to remark
that the new direction introduced by Girardi et al. (2010) follows the need,
suggested by Black (1980, 1993), to provide a conventional interplay between
the income statement and the balance sheet, as the latter is not capable in itself
to give enough information about the real �rm's value.

In order to build up a dynamic budgeting model, one has to provide a math-
ematical formalism for the dynamics of the balance sheet, which involves the
analysis of both the double entry book-keeping procedures previously seen as
well as the relationship with the income statement. More generally, one has to
introduce some mathematical techniques into the �eld of accounting. During
the last decades, many economists and accountants have worked to �nd such
formalism, see e.g. Butterworth (1972), Melse (2006), Ohlson (1983), Cooke and
Tippet (2000) and a great variety of mathematical approaches and techniques
have been introduced in the accounting literature. However, a clear and com-
plete approach has not yet been provided, partly because people were mostly
interested in speci�c goals, thus giving only a partial picture of the topic. The
work on matrix representation of accounting introduced by Mattessich more
than �ve decades ago, see e.g. Mattessich (1957, 1958, 1961), was a fundamen-
tal source of inspiration for us. The accounting measurement proposed by Ijiri
(1965), who stressed the importance of cash as a building block for measuring all
relevant quantities in the entire balance sheet, and the results of Melse (2006),
who de�ned the fundamental accounting relations in a temporal perspective,
were also crucial for our research. In particular, the latter work represents an
essential step in order to abstract the accounting system from merely a tool to
the level of a general purpose system for strategic planning and management
control, in line with Leitch and Chen (1999).

Let us now introduce the mathematical formalism of the dynamics of the
relevant accounting items presented in the balance sheet. We assume that the
balance sheet at time n = 1, 2, .. can be represented as a vector S, containing the
state variables, which evolves according to the following linear-a�ne dynamics:

Sn = Mn(Sn−1 + Cn) + Fn, (2.0.1)

where the accounting (square real) matrix M re�ects the linear transition be-
tween times n−1 and n, while C,F are the vectors of economic/�nancial trans-
actions in the period [n− 1, n] (note that the presence of C is quite redundant
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in the dynamics of S: however, as it denotes the purely economic transactions
carried out in the reference period, we prefer to include explicitly its presence
in the equation in order to obtain a system with more information power).

The system (2.0.1) should involve a parsimonious number of (observable)
variables, like in Girardi et al. (2010), who used six state variables that can
be found in the balance sheet. In this chapter, we will adopt their approach
in the particular case where the parameters of the system (2.0.1) are constant.
Under this assumption, we shall see that the liquidity process can be explicitly
determined by the previous system, using the averaging procedure discussed in
chapter one, and we will be able to investigate its properties. More generally,
the constant parameter assumption is also motivated by the possibility to get
additional information on the dynamic structure of the balance sheet, especially
in a forecast perspective. Note that this assumption does not restrain the dy-
namic nature of the model: in fact, the parameter set is calibrated on real data
in order to perfectly replicate the results of the general model that has been
previously introduced and investigated by Girardi (2010). We will accomplish
this task with a two step procedure. The �rst step consists in dividing the
general case into a system of di�erence equations involving the balance sheet
and the liquidity process (positive or negative and without active interests),
namely into what we have de�ned in the previous chapter as brick vectors. We
shall see that this formalism will allow us to get some crucial information for
our analysis. In the second step, we will provide a closed form solution for the
di�erence equation system and we will focus on a special version of the general
solution by applying the notion of average parameter in the sense of Chisini
(1929) (see also de Finetti and Mura (1995)). In other words, we look for the
constant parameters that replicate the behavior of the balance sheet for a given
time horizon n = 1, 2, ... We then perform a sensitivity analysis with respect to
the relevant parameters, in order to test the stability of the liquidity process.
This is of course extremely important in view of the sustainability of the �rm.
In this perspective, our approach represents a �rst attempt in the computation
of a new measure of CFaR, which is de�ned as the maximum shortfall of cash
the �rm is willing to tolerate with a given con�dence level (see Andrn et al.
(2005), Yan et al. (2014)). This new measure combines the bottom-up VaR ap-
proach of Riskmetrics and the exposure-based CFaR approach (see e.g. Andrn
et al. (2005)), as we consider how the company exposure, in terms of liquidity
risk, is a�ected by some macroeconomic variables dynamics. We �rst estimate,
from the past �nancial statements, the average dynamic of the main account-
ing items, then we forecast the dynamics of the macroeconomic variables by
simulating multiple paths. Finally, we bring all together and we simulate the
cash �ow statement by considering both the average dynamics and the multiple
paths of the macroeconomic variables, thus evaluating the cash �ow at risk.

We emphasize that our representation provides a natural relationship be-
tween the �rm supply chain and the liquidity �ow. In fact we will show that
the model gives a great information about the internal processes of the �rm
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with the possibility to analyze separately the needs of operating, investing and
�nancing liquidity, in the spirit of what suggested by e.g. Tsai (2008, 2011).

2.1 The model

In order to give �rstly an intuition and introduce the reader into the topic,
we begin by providing a stylized example, inspired by Arya et al. (2004) and
rearranged in order to better �t to the modelization we are about to propose
and to a more realistic situation, of a balance sheet whose evolution can be
expressed by mean of an a�ne transformation as in (2.0.1).

Consider a �rm that at time n = 0 starts with an initial capital stock of $80
divided in cash for $40 and equipment for $40. During the �rst �nancial year it
purchases equipment for $40, with an accumulated depreciation expense of $20,
and it sells stock for $20. The cash revenue is $30, so that the total income is
$101. Now we consider the typical representation of the balance sheet at the
beginning and at the end of the period. The balance sheet at the beginning can
be represented as follows:

Assets (n = 0) Liabilities+ Equities (n = 0)

Cash $40 Depreciation $0
Equipment $40 Equity $80

Total Asset $80 Total Liabilities+ Equity $80

At the end n = 1 we have the following situation:

Assets (n = 1) Liabilities+ Equities (n = 1)

Cash $50 Depreciation $20
Equipment $80 Equity $110

Total Assets $130 Total Liabilities+ Equity $130

where the equity at time n = 1 includes the income.
In order to describe the dynamic of the balance sheet, we then introduce the

balance sheet vector S as

S =


L
K
DD&A
E

,
where L denotes the liquidity (cash or cash equivalent), K stands for the

�xed asset (tangible and intangible assets, in our example equipment), DD&A

1The income corresponds to the di�erence between the revenue ($30) and the depreciation
($20).
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for depreciation, depletion and amortization (that is the variation of asset value
due to their use), while E denotes the equity or the stock.

We can now write the balance sheet at time n = 1 as the result of a matrix
transformation:

S1 =

 1 −1 0 1/4
0 2 0 0
0 0 1 0
0 0 0 100/80



 $40

$40
$0
$80

+

 $0
$0
$0
$0


+

 $30
$0
$20
$10

=

 $50
$80
$20
$110

 .

Therefore, the evolution of the balance sheet vector can be written as

S1 =


1 −1 0 1/4
0 2 0 0
0 0 1 0
0 0 0 100/80

 (S0 + C1) + F1

where the initial vector of S is given by

S0 = ($40, $40, $0, $80)
>
.

The economic transactions occurred in the accounting period [0, 1] are included

in the (trivial) vector C1 = ($0, $0, $0, $0)>, while F1 = ($30, $0, $20, $10)
>
.

The previous matrix representation (2.0.1) is a �exible and parsimonious tool
in order to catch the general features of the evolution of the balance sheet. Of
course the dimension of the state variable vector S is crucial for the model to be
e�cient: in the general model we are going to introduce in the next subsection,
we will need to increase the dimension of the balance sheet vector from four to
six, however we shall show that the system still remains fully tractable.

2.2 Model Speci�cation

Motivated by the previous example, in this section we provide an analytical
overview of the dynamics of the accounting items, specifying their contribution
in generating cash �ows. Following Girardi (2010), and in order to keep the
model parsimonious, we assume that the balance sheet can be fully explained
through a six-dimensional vector S of accounting items as follows:

Sn = (Ln, Tn, Rn,Kn, Dn, Bn)>, (2.2.1)

where
• Ln = Cash and Cash equivalent (bank and post o�ce accounts, cheques,
cash on hand);
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• Tn = Account Receivables (from Trade, Subsidiaries, Associated compa-
nies and other);

• Rn = Inventory (Work in process WIP, Finished Goods);

• Kn = Tangible and Financial Fixed assets (PPE and other, Financial
Assets);

• Dn = Account Payables (Trade accounts and other payables);

• Bn = Financial Debt (long-term and short-term).

In the balance sheet evolution there will be some accounting and �nancial vari-
ables that are typically random and can be modelled as (discrete time) stochastic
processes. They include the following items:

• Zn = Revenues (revenues from sales and other income );

• Gn = Costs (raw materials, service expenses, lease and rental costs, em-
ployee expenses);

• En = Principal repayments;

• An = Amortization;

• Xn = Total Non-Operating Income/Expenses plus Financial Income.

These items are generally exogenous, and the model is able to well represent
di�erent types of (industrial) companies according to the functional form of the
corresponding dynamic equations. Of course, for �rms working in the �nan-
cial/banking industry, we should adapt the model in order to consider the cash
�ows due to the �nancial assets and �nancial yields.

In the following we shall introduce the dynamics of the state variables of the
balance sheet vector S. Let us begin with T , the outstanding trade receivables.
At any time n, a �xed proportion ηn ≥ 0 of outstanding trade receivables
(including the sales denoted by the process Zn) are settled immediately and
transformed in liquidity (i.e. in cash, or cash equivalents), while the remaining
proportion (1−ηn) is postponed to the subsequent period, so that the dynamics
of the outstanding receivables from clients is given by the following di�erence
equation:

Tn = (1− ηn)(Tn−1 + Zn), (2.2.2)

where Tn−1 are the outstanding trade receivables at the beginning of the period
[n− 1, n] 2. In particular, the part of outstanding receivables transformed into

2The percentage ηn of receivables settled immediately is usually computed as a weighted
average of the earnings in the period [n − 1, n], denoted by Fn, with weight η1n, and the
outstanding credits at the beginning of the period (that is, Tn−1), with weight η2n. In formulas,

ηn =
η1nTn−1+η

2
nFn

Tn−1+Fn
. In other words, ηn can be written as the percentage of receivables from

clients at time n− 1 and the earnings from the n-th period received at time n.
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liquidity is given by ηn(Tn−1 +Zn). We emphasize that at this stage we do not
make any assumption on the stochastic process Z describing the sales. However,
observe that Zn is stochastic and exogenous, while ηn is a parameter depending
on the characteristics of the customers.

Let us now consider the inventories R. We denote with Vn the unitary
average value of unsold inventories, while Qn denotes the amount of unsold
inventories at time n and ∆Qn = Qn − Qn−1, so that the di�erence equation
satis�ed by the unsold inventories reads as follows:

Rn = φnRn−1 + ∆QnVn, (2.2.3)

where φn ≥ 0 represents the ratio between the unitary value of unsold inventories
at times n− 1 and n, that is

φn =
Vn
Vn−1

. (2.2.4)

Here we assume that inventories can not generate liquidity. Typically, φn (or
Vn and Vn−1) depends on both business decisions and the market trend, while
∆Qn can be considered as exogenous as it depends on the production cycle.

Let us now consider the evolution of the �xed assets K. We denote with γn
the percentage of the part of liquidity, relative to the value of the assets, used
to pay the acquisition of new assets and with An the depreciation cost, so that

Kn = (1 + γn)Kn−1 −An. (2.2.5)

Here Kn and An depend on business decisions, while γn is the rate of change
in assets, typically negative.

The evolution of trade/operating payables D is parametrized by ωn
3, rep-

resenting the proportion of the debt that is settled at each period and by Gn,
denoting the total costs occurred in the period, so that

Dn = (1− ωn)(Dn−1 −Gn). (2.2.6)

Then, the part of trade/operating payables transformed into liquidity is given
by ωn(Dn−1 − Gn). Here, Gn depends on the cost structure of the �rm, while
ωn is the rate of change in the payables, typically positive.

Finally, the �nancial debt (including both short and long-term borrowings)
B, evolves according to

Bn = Bn−1 − En, (2.2.7)

where En represents the repayment of the principal, i.e. the capital mortgage
reimbursed from �nancial payables (if negative), or new external �nancing (if

3As for the parameter ηn, also ωn can be computed as a weighted average ωn =
ω1
nTn−1+ω

2
nFn

Tn−1+Fn
, with weights given by debt a time n − 1 and costs faced in the n-th period

that are liquidated at time n.
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positive). Typically, En depends on the company and mostly on the choice of
the lenders. Note however that we assume that interest expenses are systemat-
ically paid at the end of each period.

Now we have all the ingredients to write the di�erence equation describing
the evolution of the liquidity process L, which involves all previous quantities
(but the inventories R), in line with Girardi (2010):

Ln = Ln−1 + ηn(Tn−1 + Zn)− γnKn−1 + ωn(Dn−1 −Gn) + dnBn−1 − En +Xn (2.2.8)

where dn represents the rate of (passive) interest for loans and Xn is the
liquidity variation (plus or minus) due to extra-ordinary transactions4.

Remark: In the presence of a signi�cant income tax, it could be necessary
to include a tax rate, together with the positive gross and net income processes
in the system. In this case one should introduce the net liquidity process that
is related to (2.2.8) through (Net Liquidity)n = Ln−Taxesn. We do not enter
into details as it is not the main focus of the paper, however we emphasize that
our framework is �exible enough to easily include also taxation.

Summing up the equations (2.2.2)-(2.2.8), we can write the evolution of the
balance sheet vector S by the following system of di�erence equations:



Ln = Ln−1 + ηn(Tn−1 + Zn)− γnKn−1 + ωn(Dn−1 −Gn) + dnBn−1 − En +Xn
Tn = (1− ηn)(Tn−1 + Zn)

Rn = φnRn−1 + ∆QnVn
Kn = (1 + γn)Kn−1 − An
Dn = (1− ωn)(Dn−1 −Gn)

Bn = Bn−1 − En,

(2.2.9)

which is easily seen to be of the form (2.0.1), with the transition matrix Mn

given by

Mn =


1 ηn 0 −γn ωn dn
0 1− ηn 0 0 0 0
0 0 φn 0 0 0
0 0 0 1 + γn 0 0
0 0 0 0 1− ωn 0
0 0 0 0 0 1


once the transaction vector C is de�ned as C = (0, Z, 0, 0,−G, 0)> and the
vector F is de�ned by F = (−E +X, 0, (∆Q)V,−A, 0,−E)>.

4The absence of active interests on the liquidity process can be considered to be restric-
tive only for large �nancial �rms. Of course, this assumption could be easily removed by
introducing a speci�c variable relative to �nancial investments and related active interests.
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2.3 Description of the system equations in the

brick vector framework

As we have already hinted in section 1.5 of the previous chapter, one of
the greatest problems of any balance sheet modelization is the high number
of variables that it inevitably implies. So every time someone would approach
a modelization according to the brick vector framework the �rst step should
always be a careful assessment of the accounting items to use since, as always
for mathematical modelizations, there is a heavy trade o� between the need for
detail and the need for simplicity. As far as a general outlook on this matter
could be of help, we tend to think that, especially in the case of industrial �rms,
a good point of balance can be represented by the model we have introduced in
the previous paragraph (in line with Girardi et al. (2010), following Mattessich
(1961)) where we decided to choose the next accounting items for the balance
sheet vector:

1. Ln Current Liquidity;

2. Tn Receivables from Clients;

3. Rn Inventory;

4. Kn Fixed Assets;

5. Dn Payables to Suppliers;

6. Bn Financial Payables.

and employing mainly the vector
−→
A and rarely the vector

−→
P 5we tried to

reach a sound formalization for the interpretation of the variables in the transac-
tion vector as aggregations of accounts taken from the pro�t and loss statement.

In this case the brick-vectors will have the shape that we are about to present.
For the Receivables from Clients we will have:

[
LTn
Tn

]
=

[
1 ηn
0 (1− ηn)

] [
LTn−1 + 0
Tn−1 + Zn

]
(2.3.1)

where Zn represents the amount of sales sold by the �rm between the time
step n − 1 and the time step n and ηn is the weighted average percentage of

5See section 1.3.1 in the previous chapter.
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those sales that becomes cash-�ow in the period. For the Inventory the brick
vector will present this simple form:

[
LRn
Rn

]
=

[
1 0
0 φn

] [
LRn−1 + 0

Rn−1 + ∆Qn · Vn

]
(2.3.2)

where ∆Qn = Qn − Qn−1 is the variation in inventory between n − 1 and
n, while Vn is average unit evaluation of inventory at time n and φn = Vn

Vn−1
is

ratio between unit values of inventory at dates n and n − 1. The brick vector
relative to the Fixed Assets instead will be as follows:

[
LKn
Kn

]
=

[
1 −γn
0 (1 + γn)

] [
LKn−1

Kn−1

]
+

[
0
−An

]
(2.3.3)

whose parameter γn will be the percentage of new investments in tangible
�xed assets and the variable Anis the value of amortization between time n− 1
and time n. Relatively to the Payables to Suppliers Item its brick vector will
be the following:

[
LDn
Dn

]
=

[
1 ωn
0 (1− ωn)

] [
LDn−1

Dn−1 +Gn

]
(2.3.4)

and in the above formulas ωn will be the weighted average percentage of
payments in the period n , while Gn will be the costs in the period n expressed
through a negative number, since they represent a stream of wealth from the
�rm to the outside world. Finally the brick vector Bn relative to the Financial
Payables will be:
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[
LBn
Bn

]
=

[
1 dn
0 1

] [
LBn−1

Bn−1

]
+

[
En
En

]
(2.3.5)

where dn is the rate of interest on the Financial Payables and En represents
the amount of capital repaid about the existing loans (if positive), or new loans
from third parties (if negative). In this situation usually B0will be di�erent
from zero and it will have a negative value since it will represent the �nancial
debt at the beginning of the life of the �rm.

Now if we combine the previous brick vectors we will obtain the following
system:



Ln

Cn

Rn

Kn

Dn

Dfn


=



1 ηn 0 −γn ωn dn

0 1− ηn 0 0 0 0

0 0 φn 0 0 0

0 0 0 1 + γn 0 0

0 0 0 0 1− ωn 0

0 0 0 0 0 1


×

×




Ln−1

Cn−1

Rn−1

Kn−1

Dn−1

Dfn−1

+


0
Zn

∆Qn · Vn
0
Gn
0




+


En +Xn

0
0
−An

0
En

 (2.3.6)

where we have added in the �rst position of the vector ~P the variable
Xnrepresenting extraordinary �nancings/dividends plus taxes happened between
the time step n− 1 and the time step n.

2.4 Solution in Closed Form

As we have seen in the �rst chapter a closed form solution can be obtained
easily for the balance sheet system by developing the closed form formula of
each brick vector and then combine them. The procedure will be as follows.
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2.4.1 Brick vectors

The equation (2.2.8) describing the time evolution of the liquidity process has
been disentangled as a sum of di�erent terms associated to sub-models6 for the
liquidity. This decomposition can be formally written as follows:

Ln = L0 + LTn + LRn + LKn + LDn + LB,Xn ,

with initial condition LT0 = LR0 = LK0 = LD0 = LB0 = 0, where:

• LTn denotes the liquidity coming from the outstanding trade receivables
T , typically generating positive cash �ows;

• LRn denotes the liquidity coming from the inventories: as we assumed no
direct impact on the liquidity process it turns out that LRn satis�es a trivial
equation and it does not generate any cash �ow;

• LKn denotes the liquidity coming from the �uctuations of the balance sheet
properties, which can be positive or negative;

• LDn denotes the liquidity coming from the variation of the payables to
suppliers, which typically generates negative cash �ows (for example in
the case of non-performing loans);

• LB,Xn denoted the liquidity coming from the �nancial business and it can
generate positive or negative cash �ows7.

The previous decomposition gives us the possibility to calculate separately each
class of sub-liquidity terms, namely each brick vector, as we are going to do in
the next subsections.

2.4.2 Brick vector 1: Liquidity from Operating Cash Flows
(in�ows only)

Let us consider the liquidity coming from the evolution of the outstanding trade
receivables, also called operating cash �ows, which represents the positive core
business of the liquidity evolution. Denoting with LTn this term, we can introduce
the following sub-model:{

LTn = LTn−1 + ηn(Tn−1 + Zn)

Tn = (1− ηn)(Tn−1 + Zn).
(2.4.1)

This system describes the evolution of the part of liquidity coming from
sales and credits that are immediately available (as cash or cash equivalents),
together with receivables which will be available in the future. In order to solve

6Another way to indicate the brick vectors.
7We decided to apply the vector X to the brick vector LBbut we could have easily decom-

posed the liquidity in this fashion Ln −Xn = L0 + LTn + LRn + LKn + LDn + LBn
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the system, let us consider the second equation which admits the following
solution:

Tn =

n−1∏
i=0

(1− ηn−i)T0 +

n−1∑
h=0

(
h∏
i=0

(1− ηn−i)Zn−h

)
, (2.4.2)

while the dynamics of LTn gives

LTn =

n−1∑
h=0

ηn−hZn−h +

n−1∑
j=0

ηn−jTn−1−j . (2.4.3)

Now we plug the expression (2.4.2) into (2.4.3) and we arrive to the closed form
solution for the liquidity coming from the operating cash �ows 8:

LTn =

n−1∑
h=0

ηn−hZn−h+

+

n−1∑
j=0

ηn−j

[
n−2−j∏
i=0

(1− ηn−1−i−j)T0 +

n−j−2∑
h=0

(
h∏
i=0

(1− ηn−1−j−i)

)
Zn−1−h−j

]

It is useful for the sequel to get some recursive relations for the sub-models.
For the positive core business system, it is easily seen that summing up the
equations we obtain

LTn + Tn − (LTn−1 + Tn−1) = Zn, (2.4.4)

from which we deduce

LTn + Tn − (LT0 + T0) =
n∑
i=1

Zi, (2.4.5)

meaning that in the positive core business, between two periods the di�erence
in value is due only to earning from sales, in line with any basic principle of
cash �ow statement, see e.g. Mulford and Comiskey (2005).

2.4.3 Brick vector 2: Liquidity from Inventories (no direct
�ows)

We saw that unsold inventories have no direct impact on the liquidity process.
However, it is important to notice that they have anyway an indirect impact as

8We use hereafter the convention that
∏b
a = 1 and

∑b
a = 0 whenever a > b, then for j =

n−1 we have
∏n−2−j
i=0 (1−ηn−1−i−j) = 1 and

∑n−j−2
h=0 (

∏h
i=0(1−ηn−1−j−i))Zn−1−i−h] = 0.
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they can a�ect the possible future borrowings. In fact, unsold inventories can be
considered as additional guarantees for external �nancings. We shall investigate
this crucial aspect in future research. For the moment, we limit to associate a
trivial sub-model to the part of liquidity coming from the inventories. Denoting
with LRn this term, we obtain the following system:{

LRn = 0

Rn = φnRn−1 + ∆QnVn,
(2.4.6)

which admits the following solution:

LRn = LR0 ,

Rn =

n−1∏
i=0

(φn−i)R0 +

n−1∑
h=1

[
h−1∏
i=0

(φn−i)∆Qn−hVn−h

]
+ ∆QnVn.

2.4.4 Brick vector 3: Liquidity from Investing Cash Flows
(in�ows/out�ows)

Let us now consider the part of liquidity LKn coming from the �uctuations of
the balance sheet properties, which can be positive or negative:{

LKn = LKn−1 − γnKn−1

Kn = (1 + γn)Kn−1 −An.
(2.4.7)

To solve this system, we develop the equation for Kn
9:

Kn =

n−1∏
i=0

(1 + γn−i)K0 −
n−1∑
i=1

i−1∏
j=0

(1 + γn−j)An−i

−An,
while the dynamics for LKn gives

LKn = −γ1K0 −
n−1∑
i=1

γi+1Ki.

Assuming that for i = 1 we have
∑i−1
h=1

(∏i−1
j=0(1 + γn−j)An−h

)
= 0, we obtain

LKn = −γ1K0 −
n−1∑
i=1

γi+1

 i−1∏
h=0

(1 + γi−h)K0 −
i−1∑
h=1

(

h−1∏
j=0

(1 + γi−j)Ai−h)−Ai

 .
9We use the convention that for n = 1 we have

∑n−1
i=1 [

∏i
j=0(1 + γn−j)An−i] = 0 and∑n−1

i=1 γi+1Ki = 0.
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Let us now consider the recursive relation coming from the system de�ning LKn :
we have

LKn +Kn − (LKn−1 +Kn−1) = −An, (2.4.8)

so that

LKn +Kn − (LK0 +K0) = −
n∑
i=1

Ai,

meaning that the di�erence in value between two periods are given only by
mortgages, according to the basic rules of cash �ow statement, see e.g. Mulford
and Comiskey (2005).

2.4.5 Brick vector 4: Liquidity from Payables to Suppliers
(out�ows only)

Consider now the liquidity LDn coming from the variation of the payables to
suppliers, that is the sub-model describing the impact of the costs in both
current and future liquidity:{

LDn = LDn−1 + ωn(Dn−1 −Gn)

Dn = (1− ωn)(Dn−1 −Gn).
(2.4.9)

Also in this case the solution is simple: from the dynamics of the debt (2.2.6)
we get

Dn =

n−1∏
i=0

(1− ωn−i)D0 −
n−1∑
h=0

(

h∏
i=0

(1− ωn−i))Gn−h,

while for the corresponding liquidity LDn we have

LDn =

n−1∑
j=0

ωn−jDn−1−j −
n−1∑
h=0

ωn−hGn−h.

Replacing the expression of Dn gives us:

LDn =

n−1∑
j=0

ωn−j [

n−2−j∏
i=0

(1− ωn−1−i−j)D0+

−
n−2−j∑
h=0

(

h∏
i=0

(1− ωn−1−j−i))Gn−1−h−j ]−
n−1∑
h=0

ωn−hGn−h

Finally, the recursive relation driving the system for LDn is

LDn +Dn − (LDn−1 −Dn−1) = −Gn, (2.4.10)

that is

LDn +Dn − (LD0 +D0) = −
n∑
i=1

Gi,
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which states that the di�erence in value between two times is only given by
costs occurred in that period. This is also in line with the basic principles of
cash �ow statement, see e.g. Mulford and Comiskey (2005).

2.4.6 Brick vector 5: Liquidity from Financing Cash Flows
(in�ows/out�ows)

We consider now LB,Xn , that is the part of the liquidity coming from the �nancial
business plus the total non operating income/expenses. We obtain the following
system: {

LB,Xn = LB,Xn−1 + dnBn−1 − En +Xn

Bn = Bn−1 − En.
(2.4.11)

From the dynamics of Bn, given in (2.2.7), we obtain

Bn = B0 −
n∑
h=1

Eh,

and

LB,Xn =

n∑
i=1

diBi−1 +

n∑
i=1

(−Ei +Xi).

Replacing in LB,Xn the expression of Bn yields

LB,Xn =

n∑
i=1

di(B0 −
i−1∑
j=1

Ej) +

n∑
i=1

(−Ei +Xi).
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2.5 Model Speci�cation with Constant Parame-

ters

In this section we will apply the averaging procedure we have discussed in the
�rst chapter and we will focus on the special case where all the parameters in
the accounting matrix M in (2.0.1) and the major exogenous items (such as
∆Q,Z and X) are constant, i.e. we consider the system (2.2.9) in the following
speci�cation:



Ln = Ln−1 + η(Tn−1 + Z)− γKn−1 + ω(Dn−1 −G) + dBn−1 − E +X

Tn = (1− η)(Tn−1 + Z)

Rn = Rn−1 + ∆Q · V
Kn = (1 + γ)Kn−1 −A
Dn = (1− ω)(Dn−1 −G)

Bn = Bn−1 − E,
(2.5.1)

with a given initial condition (L0, T0, R0,K0, D0, B0)10 where L0 = 0 as well as
all the decomposed liquidity items.

In the constant parameters case the solution for the sub-models simplify
greatly as well as the recursive relations: we brie�y illustrate the results below.
The �rst sub-model associated with the system (2.4.1) becomes:{

LTn = T0(1− (1− η)n) + Z
(
n− (1− η)( 1−(1−η)n

η )
)

Tn = (1− η)nT0 + Z(1− η) (1−(1−η)n)
η ,

while the recursive relation (2.4.4) reads

LTn + Tn − (LTn−1 + Tn−1) = Z,

from which we deduce

LTn + Tn − (LT0 + T0) = nZ. (2.5.2)

For the second sub-model associated with the system (2.4.6) we have

Rn = R0 + n∆Q · V (2.5.3)

and, of course, LRn = LR0 .
For the third sub-model related to (2.4.7), we obtain{

LKn = K0 (1− (1 + γ)n)−A
(
n+ 1−(1+γ)n

γ

)
Kn = (1 + γ)nK0 + 1−(1+γ)n

γ A,
(2.5.4)

10Note that in the steady state scenario we are considering, we have φ = 1.
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while the recursive relation (2.4.8) reads

LKn +Kn − (LKn−1 +Kn−1) = −A,

which leads to
LKn +Kn − (LK0 +K0) = −nA. (2.5.5)

For the forth sub-model, related to (2.4.9), we get

LDn = (1− (1− ω)n)D0 −
(
n− (1− ω)(

1− (1− ω)n

ω
)

)
G,

which leads to

Dn = (1− ω)nD0 − (1− ω)
(1− (1− ω)n)

ω
G. (2.5.6)

The recursive relation (2.4.10) becomes

LDn +Dn − (LDn−1 −Dn−1) = −G,

from which it follows

LDn + Tn − (LD0 +D0) = −nG. (2.5.7)

Finally, for the �fth sub-model, associated with (2.4.11), we get{
LB,Xn = ndB0 − dn(n−1)

2 E + n(−E +X)

Bn = B0 − nE.
(2.5.8)

2.5.1 Parameter Averaging

We now focus on the main result of the paper, namely the interpretation of the
constant parameters as averages in the sense of Chisini (1929). We will use the
recursive relations we found in the previous subsection in order to apply the
de�nition of mean given by Chisini to the constant parameter setting. That
is, the average parameters can be obtained by equating the constant-parameter
recursive system with the result coming from the general model with general
parameters. The average parameters obviously depend on the choice for the
time interval [0, n].
Let us now investigate separately any sub-model.

2.5.1.1 Operating Cash Flows

According to the average in the sense of Chisini, we are looking for the constant
sales process Z and the constant parameter η that replicate, at a given �xed
time horizon [0, n], the behavior of the sub-model with general parameter ηn
and general sales process Zn

11. Note that this assumption is not equivalent to

11For sake of notational simplicity we skip the obvious dependence of Z and η on the time
window n.
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assume that the system is stationary. As we can also equate the di�erences
of the sub-models, we use the recursive relation (2.5.2) and we arrive to the
following equation:

nZ =

n∑
i=1

Zi

from which we can then de�ne the Chisini mean value Z as

Z =

∑n
i=1 Zi
n

Now we plug this value in the equation de�ning the receivables Tn and we deduce
the corresponding average value for η that replicates the value of the liquidity
in the sub-model:

Tn = (1− η)nT0 + Z(1− η)(
1− (1− η)n

η
).

This is a polynomial equation in η that can be solved using standard numerical
procedures.

2.5.1.2 Inventories

From (2.5.3) and assuming that unsold inventories are equi-distributed along
time, i.e.

∆Q =

∑n
i=1 ∆Qi
n

we can determine the average value for V :

V =
Rn −R0∑n
i=1 ∆Qi

. (2.5.9)

2.5.1.3 Investing Cash Flow (In�ows/Out�ows)

From the expression (2.5.3) , giving LKn , we get immediately

nA =

n∑
i=1

Ai,

that is

A =

∑n
i=1Ai
n

,

and replacing this value in the expression de�ning Kn we get

Kn = (1 + γ)nK0 +
1− (1 + γ)n

γ
A

which is a polynomial implicitly giving the average parameter γ.
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2.5.1.4 Payables to Suppliers (Out�ows)

From (2.5.7) it follows immediately

nG =

n∑
i=1

Gi

that is

G =

∑n
i=1Gi
n

.

Again, we replace this value into the expression (2.5.6) giving Dn and obtain
the following polynomial equation de�ning the average parameter ω:

Dn = (1− ω)nD0 − (1− ω)
(1− (1− ω)n)

ω
G.

2.5.1.5 Financing Cash Flows (In�ows/Cash�ows)

Assuming that minus and plus values are equi-distributed along time, i.e.

nX =

n∑
i=1

Xi,

and using relations (2.5.8) , we obtain the following average parameters:

E =
B0 −Bn

n
,

d =
2(LB,Xn +B0 −Bn − nX)

(n+ 1)B0 + (n− 1)Bn
.

In conclusion, we provided explicit expressions for the constant parameters repli-
cating the behavior of the balance sheet at a �xed time n, in terms of observable
quantities involving past �nancial statements. In the next subsection, we per-
form a sensitivity analysis in order to capture the relevance of each parameter
and their impact on the �uctuations of the liquidity process.

2.6 Sensitivity Analysis

In this section we investigate the sensitivity of the liquidity process with respect
to the average parameters. This study is important for two reasons: �rst, this
allows us to understand the impact of the physical supply chain and the �rm
structure on the cash �ows, in line with Tsai (2011). Secondly, it naturally
opens the door to the Cash-Flow-at-Risk approach that we shall introduce in
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the next section.
We �rst consider the parameters associated to the percentage η of receivables
that are converted immediately in liquidity and the amount Z of earning from
sales giving the liquidity from operating cash �ows LTn . We set the following
ranges for the parameters:

T0 = 100, n = 10, Z ∈ [0, 100], η ∈ (0, 1].

Figure 2.6.1: Dependence of the liquidity LTn from Operating Cash Flows as a
function of Z and η.

Figure 2.6.1 shows that the liquidity process has a linear dependence only
on Z but not on η. The liquidity LTn is highly sensitive when η is small, and this
e�ect is more relevant for high values of Z. That is, a small positive variation
of the in�ows has a strong positive impact on the liquidity generated by credits
when η ∈ [0.01, 0.5]. The e�ect is less relevant when η is greater. This is
intuitive because when η is close to one, almost all receivables are converted
immediately in liquidity, so that the income policy becomes less relevant.
Let us now consider the sensitivity of the liquidity process LDn with respect
to the percentage of debt payments (ω) and current costs (G). We use the
expression giving LDn with the following values of the parameters:

D0 = 100, n = 10, G ∈ [0, 100], ω ∈ (0, 1].

Figure 2.6.2 shows a similar dependence of the liquidity with respect to the
previous case. In fact, while the dependence is linear in G, we observe a non
linear behavior with respect to ω. The impact on liquidity is similar to the one
in η but in the opposite way: a positive high variation on the payment policy
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Figure 2.6.2: Dependence of the liquidity LDn as a function of ω and G.

has a strong negative impact on the liquidity, mostly for ω ∈ [0.01, 0.5], while
this e�ect is less evident for ω close to one. Again, this is intuitive because
when ω is close to one all the debt is immediately subtracted from the current
liquidity.
We now proceed our analysis by assuming that

• Costs (G) are linear a�ne functions of earnings, i.e. G = λZ + Y , where
λ ∈ [0, 1) and Y represent �xed costs;

• ω is a linear function of η, i.e. ω = ξη for some ξ ∈ R.

We consider the following set of parameters:

T0 = D0 = 100, n = 10, Z ∈ [50, 150], η ∈ (0, 1], G = 0.5Z + 10, ω = 0.7η.

Assuming that earnings are always greater than costs (meaning that the
�rm has a sustainable economic structure), we see from Figure 2.6.3 that the
liquidity process is always positive, as expected. This scenario remains stable
when taking ξ = 1: the only di�erence relies on the fact that now the liquidity
could reach lower values, as results from Figure 2.6.4

Now we consider a di�erent scenario and assume that η is strictly less than
ω, but we still assume that earnings are greater than costs. For example, we
consider the range η ∈ (0, 0.4] and we take ξ = 2.5, in order to satisfy the
constraint ω ∈ [0, 1]. In this case Figure 2.6.5 shows a completely di�erent
behavior, as the liquidity can even become negative.

This is not surprising as η < ω means that payments are settled quicker
than earnings, and for low values of Z it is not possible to absorb �xed costs:
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Figure 2.6.3: Dependence of the liquidity LDn as a function of Z and η under
the assumption that G = λZ + Y and ω = ξη with λ = 0.5, Y = 10, ξ = 0.7.

Figure 2.6.4: Dependence of the liquidity LDn as a function of Z and η under
the assumption that G = λZ + Y and ω = ξη with λ = 0.5, Y = 10, ξ = 1.
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Figure 2.6.5: Dependence of the liquidity LDn as a function of Z and η under
the assumption that G = λZ+Y and ω = ξη with η ∈ (0, 0.4], Y = 10, ξ = 2.5.

in other words, the �rm has no more a sustainable structure.
Last, but not least, we focus on the relation between �nancing costs and the
corresponding liquidity. We assume that the average parameters of the �nancial
business lead to a situation which is well described in Figure 2.6.5. Moreover, we
assume that the level of �nancing, if positive, is proportional to the di�erence
LTn − LDn , that is

E = max [α(LTn − LDn ), 0],

where α denotes the proportionality coe�cient. Let us consider the following
values:

T0 = D0 = 100, n = 10, Z ∈ [50, 150],

η ∈ (0, 0.4], G = 0.5Z + 10, ω = 2.5η, α = 1.

We obtain the situation described in Figure 2.6.6 : the level of �nancing is
proportional to the ability of the �rm to generate liquidity, while it is zero when
the liquidity associated to credits is less than the (negative) liquidity associated
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Figure 2.6.6: Dependence of the liquidity LDn as a function of Z and η under the
assumption that G = λZ + Y and ω = ξη with η ∈ (0, 0.4], Y = 10, ω = 2.5η,
ξ = 2.5, α = 1.

to payments. Of course, in this case it is also possible to �nd the corresponding
average passive interest rate d.

2.7 Cash Flow at Risk

Cash Flow at Risk (CFaR) determines the maximum shortfall of cash the �rm is
willing to tolerate with a given con�dence level. CFaR is calculated in the same
way as VaR, but on cash �ow rather than value. Following Shimko (1998) and
Yan et al. (2014), in absence of liquidity risk CFaR has been viewed as to be
equivalent to VaR as soon as �nancial institutions are not particularly interested
in cash �ows over decades, in fact any gain or loss in value immediately a�ects
reported earnings and cash �ow. This is no more true in thin markets or in
presence of liquidity risk, where it may happen that a well-capitalized bank
would be forced into bankruptcy, because illiquid markets would not allow banks
to transfer marketable securities into cash in time. In this perspective, CFaR
can be more useful than VaR in terms of measuring liquidity risk. Despite VaR
being a method to determine capital requirements for absorbing investment
loss, it has nothing to do with estimating su�cient cash holdings for �nancial
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institutions. Besides, VaR typically computes over days or weeks, whereas CFaR
is measured over quarters or years. We refer to Wiedemann et al. (2003), Stein
et al. (2001b), Andren et al. (2005), Andren et al. (2010), Yan et al. (2014)
for a detailed explanation of the CFaR methodology, as well as for a review of
related literature.

2.7.1 Methods for computing Cash-Flow-at-Risk

Since the last �nancial crisis, �rms faced a liquidity distress when borrowing
proved to be much more expensive than ever before. The calculation of the
single risk statistics requires a forecast of the probability distribution of the
cash �ow at some future point in time.

There are di�erent methods to simulate such distribution. The �rst method,
employed by RiskMetrics (1999) in line with the VaR, is a bottom-up approach,
and consists in assuming that production volumes, prices and costs are the key
factors that determine the future cash �ows. The distribution of the conditional
value of cash �ow can be calculated by random prices and rates generating their
own variance-covariance matrix. This method doesn't seem to be suitable for
capturing the macroeconomic e�ects that can also have an impact on the future
cash �ows, see e.g. Andren et al. (2005).

The second method is a top-down approach, see e.g. Stein et al. (2001a) :
this is based on the assumption that total cash �ow volatility is the ultimate
variable of interest, so that one estimates such volatility from historical cash
�ows of a company (when such data exist), or from data taken from clustering
of similar �rms. Of course, this method shares the same shortcomings of the
rating models, where the representative �rm can have a very di�erent behavior
than any other element of the same class.

Given the limitations of both bottom-up and top-down methods, Andren
et al. (2005) use a third approach, called exposure-based CFaR. After a com-
prehensive assessment on the cash �ow risk factors that should be fully con-
sidered, this approach estimates a �rm's cash �ow volatility dealing with its
own macroeconomic exposure, by allowing for a fundamental analysis of the
company's exposure to changes in the macro economy.

2.7.2 Our CFaR Approach

The methodology we are introducing here combines the bottom-up approach
of RiskMetrics (1999) and the exposure-based CFaR approach of Andren et
al. (2005): we evaluate how a cash �ow of the company can be a�ected by
changes in no value-adding macroeconomic variables, i.e. variables that are
not directly connected with the core business of the company. This technique
leads to a rigorous valuation of cash �ows, based on both the dynamics of the
main accounting items and the main macroeconomic variables. The �rst step
of our approach consists in estimating, from the past �nancial statements, a
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set of average parameters and variables that describe the dynamics of the main
accounting items, according to the dynamic de�nition of the liquidity process
of the company.

The previous section highlighted the possibility to investigate the sensibility
of the cash �ows on the average parameters, which re�ect the fundamental
quantities of the �nancial statement that are speci�c of the �rm. In this respect,
thanks to our dynamic model we are improving the CFaR approach of Andren
et al. (2005), as we are able to explain endogenously such sensibilities instead of
using a regression analysis on external (macro or micro economic) risk factors.

The second step consists in forecasting the dynamics of the macroeconomic
variables that mainly a�ect the �nancial statement, by simulating multiple
paths. At this stage we limit ourselves to consider just no adding-value variables,
but it could be possible to imagine a more complete scenario analysis involving
also adding-value variables like for example sales, earnings, etc.. Finally, we
bring all together and we simulate the cash �ow statement considering both the
average dynamics and the macroeconomic variables, thus evaluating the dis-
tribution of Cash Flow at Risk. At this point, we can evaluate the CFaR as
any risk measure such as VaR or expected shortfall by introducing a particular
con�dence level.

2.8 A Case Study: Alitalia - Italian Air Lines

In order to illustrate in a concrete case the approach introduced so far, we
apply our methodology to �Alitalia - Linee Aeree Italiane S.p.A.�, the former
�ag company that declared bankruptcy in 2008. Alitalia transported passengers
and cargos throughout the world since 1947 and its services included the typical
activities carried out by airline companies such as �ight and ground operations,
marketing, business strategies, and sales. Alitalia's shares were traded in the
�Borsa Italiana� stock market till 2008 and it has reported only one year of pro�t
(1998) since its foundation in 1946, while it reported net losses of more than 3.7
billion euros between 1999 and 2008.

We examined the consolidated �nancial statements of Alitalia concerning the
�scal years from 2000 to 2007, that is till the last �nancial year before the de-
fault12 and we aggregate the sum of the exposures in the usual accounting items
involving the 6-dimensional vector Sn =(Ln, Tn, Rn, Kn, Dn, Bn). together
with the realization of the exogenous risk factors (Zn, Gn, En, An, Xn).

Here below we show the values corresponding to the starting point 2000 and
200713:

12All the data refer to the �rm annual �nancial statements.
13Values are in thousands euro.

70



2000

L00 = 91, 913
T00 = 1, 340, 520
R00 = 231, 440
K00 = 2, 326, 504
D00 = 1, 186, 800
B00 = 989, 087

2007

L07 = 329, 532
T07 = 666, 935
R07 = 41, 100
K07 = 2, 009, 487
D07 = 1, 183, 873
B07 = 1, 534, 181

Using the formulae presented in Section 2.5 we get the average parameters
η, γ, ω, d and the average processes V,Z,G,E,A,X replicating the values of the
accounting items on the whole time window [2000,2007] 14.

Parameters : η u 0.88; γ u −0.14; ω u 0.81; d u 0.10

V ariables : V u 27, 191; Z u 4, 929, 159; G u 4, 894, 454;

E u 77, 870; A u 359, 379; X u 14, 889.

By analyzing the series of the �nancial statement, we realize a high degree
of sensitivity of cash �ows with respect to the payables and to �nancial debt. In
particular, we observe that the main (non value adding) macroeconomic vari-
ables a�ecting the cash �ows are the cost for raw materials (aviation gasoline)
and the interest rate on �nancial debt. In fact, Figure 2.8.1 shows that the 16%
of the total cost of production was composed in average by gasoline, while Fig-
ure 2.8.2 shows that about the 8% of the total debt of Alitalia was constituted
by the passive interest rate.

The previous analysis gives us the ingredients to investigate the sensitivity of
the cash �ows with respect to the �uctuations of the macroeconomic variables.
For simplicity, we consider the crude oil as a proxy for the price of gasoline, and
we model its evolution by a geometric Brownian motion (see e.g. Mostafei et
al. (2013)), while the (passive) interest rate dynamics is assumed to follow a
mean reverting (Vasicek) process, see e.g. Bjork (1998). Of course one can allow
for more sophisticated stochastic models that �t better the mean reversion and
the peculiarities of these macroeconomic variables: in this case study we limit
ourselves to simple models that are anyway su�cient to illustrate our CFaR
based methodology. Considering the daily Euribor interest rate and the daily
Brent prices (CL3) from 2000 to 2007 we estimated the following parameters:

14Here V embeds the value of ∆Q.
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Figure 2.8.1: Impact of the aviation gasoline on the total cost of production for
Alitalia during the period [2000,2007].

Figure 2.8.2: Impact of the passive interest rate debt over the total debt of
Alitalia during the period [2000,2007].
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Oil market

Oil price : euro 90, 09
Drift : 17.31
V olatility : 31.38%

Interest rate market

Interest rate : 4.745%
Mean reversion : 3.8%
Equilibriumrate : 2.8%
V olatility : 3.73%

The correlation between the Euribor and the Brent has been estimated in
ρ = 5.19%. Then, using a MonteCarlo approach, we simulated 105 paths for
both di�usions and for each path we estimated the total cash �ow.

We measured the impact of the oil price on the total cost through a linear
regression and we found the following relation:

∆cost = 0, 8966 ∗∆oil − 0, 1167, (2.8.1)

with a R2 = 0, 7386. Whereas for the passive interest rate, we evaluated an
average spread over the Euribor from the accounting data (assumed to be around
5.6% in line with the CDS market).

Finally, we evaluated the Cash �ow at Risk (CFaR), that is the amount of
potential cash �ow decrease, associated to one and two years, and we found
the values (in thousands of euros) described in the Figures 2.8.3 and 2.8.4,
respectively.

Figure 2.8.3: Cash Flow at Risk for the Alitalia company with 1 year horizon.
In the y axis there are thousands of Euros. In the x axis the corresponding
probability.

For example, there is about 22% probability that the liquidity process will
go below zero in 2008, thus giving a strong negative message about the distress
of the company. This probability is dramatically larger (about 50%) when pro-
jecting the simulation in two years. Moreover, there is about 10% probability
that the liquidity in 2008 will be greater than the one in 2007 (around $ 370
millions), thus con�rming that the �rm tends to burn �nancial resources. Over-
all, the previous results show the high degree of sensitivity of the �rm cash �ow
to relatively small variations of the macro variables, and, what is more, they
reveal the fragility of the �nancial structure of Alitalia.
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Figure 2.8.4: Cash Flow at Risk for the Alitalia company with 2 years horizon.
In the y axis there are thousands of Euros. In the x axis the corresponding
probability.

2.9 Conclusion

We presented a general framework that allows to compute a liquidity risk mea-
sure for unlisted �rms, namely the Cash Flow at Risk, just by using the in-
formation coming from the balance sheets and some related macroeconomic
variables. A case study based on real data highlighted the great �exibility of
the approach, which leads to straight and clear conclusions on the �nancial sta-
bility of the �rm. Notice that during the analyzed period [2000, 2007], Alitalia
received two �nancial supports from the Italian Government that avoided its
default. Although in our dynamic model this information is already included,
the fragility of the �nancial structure appears in its full evidence through our
CFaR measure when adopting the model in order to predict default. In this
sense, in our projections we implicitly include in the balance sheet a future (av-
erage) income from the Government according to the past accounting data and
we observe the evolution of the �rm. However, one could also reverse things and
try to look for the �nancial support policy to apply in order to reach some target
level for the liquidity of the �rm in the future. Of course, this opens the door
to new promising credit risk models that we are going to di�usely investigate in
the future. At this stage, our main purpose is to convince the reader about the
applicability of the proposed accounting model to general corporate problems
and in particular risk management analysis.
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Chapter 3

A Commercial Bank Balance

Sheet Model for Liquidity

Risk Measurement

3.1 Introduction

In this chapter we will apply the brick vector framework to a possible modeliza-
tion of a commercial bank balance sheet and then we will use this formalization
to introduce a new measure of Liquidity distress. The problem of modeling a
bank balance sheet presents very speci�c and complex features in itself (see Ha-
laj 2013, 2016) and the issue of liquidity risk assessment in the case of a �nancial
�rm even more so. Banks' balance sheets vary their composition according to
market conditions implied by a growth of credit and debt in the economy as
well as valuation changes but also bank's own strategic actions. The regula-
tory regime imposes on banks the need to retain su�cient amount of capital to
endure shocks and enough liquid assets to meet obligations in the majority of
plausible future scenarios. For example it de�nes rigid limits to the expansion
of the balance sheet as well as the concentration of exposures over a certain
capital base and liquidity bu�ers. All these conditions make the handling of
banks' balance sheets a challenging task in general and consequently also chal-
lenging from a modeling perspective. Nonetheless practitioners and the research
community have been seeking for the right framework to e�ectively model the
balance sheet according to its sensitivity to the market conditions (see Balasub-
ramanyan et al. 2013, Birge et al. 2013, Halaj 2013). With the present work
we hope to provide the preliminary stage of a new approach more rooted in the
data stemming from the accounting records.

As far as the liquidity risk assessment is concerned, even though liquid-
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ity management is a core activity of the banking business, it has not received
much attention in the last decades mainly because liquidity wasn't perceived as
scarce. Unfortunately this idea proved to be utterly wrong during the global
�nancial crisis of 2008 where the consequences of this preconception manifested
in the most ominous way. Both �nancial regulators and academic researchers
realized that the worst �nancial crisis since 1929 was primarily due to liquid-
ity issues. However, still to this day, simple unsophisticated reports constitute
the standard fare for banks' liquidity management disclosing, such as statisti-
cally calculating the funding gap between assets and liabilities under di�erent
maturity ladders, or listing funding channels which banks can put forward with-
out having to hold virtually any test on the quality of those resources in crisis
situations. In fact the development of bank liquidity modelling proved to be
rather slow, despite bankers feeling liquidity risk as one of the top �ve risks to
consider (DCSFI 2010) in the �nancial business. Di�erently from other kinds
of risk, as credit or market risk where the use of advanced methodology is the
common standard, Fiedler (Fiedler 2007) complains about the lack of any sort
of sophisticated technique in order to summarize a bank's liquidity position by
testing if it will have su�cient cash to pay future bills. This is partially due
to the fact that researchers typically have chosen Value at Risk (VaR) as the
basis for the management of risk in the �nancial sector, leaving Cash-Flow at
Risk (CFaR) as the proper tool to assess risk management among non-�nancial
�rms. As a matter of fact there is an argument that a �nancial �rm's VaR
represents also its CFaR (in so being a measure of its liquidity risk probability),
since the portfolio holdings (see Shimko 1998) are marked-to-market by �nan-
cial �rms. But VaR unlike liquidity related risk measures, will capture only a
small part of the bank's total risk exposure, since it doesn't tackle the hazard
linked to the underlying commercial cash-�ow. More importantly it cannot fully
take into account the volatility pertaining to the liquidity and in so doing VaR
doesn't represent an e�cient and satisfactory tool to manage and assess liquid-
ity risk. Therefore the banking sector, as well as the risk management academic
research world, should develop more advanced liquidity models to control its
related hazard. Banks face a serious liquidity risk when their net cash �ows
cannot meet their liabilities as they fall due. But taking market liquidity for
granted, �nancial institutions proved to be not particularly interested in cash
�ow issues over the last decades. Shimko, among others, argued that a bank's
VaR is also its Liquidity risk measure since banks' marked-to-market portfolios
can be converted into cash at short notice and any change of its value imme-
diately a�ects reported earnings and cash �ow. However this argument doesn't
hold in 'thin' markets and challenges fundamental accounting principles. In
conditions of moderately illiquid markets assets would become less marketable
and would not be readily converted into cash (Lippman and McCall 1986). A
liquidity crisis, di�erently by other crisis, can make the markets become even
thinner, possibly for months or years. A well-capitalized bank could be forced
into bankruptcy because very illiquid markets would not allow banks to turn
marketable securities into cash on time. In addition, under accounting theory,
for a bank that has to make contractual payments during a particular period,
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the drying up of cash �ow income might put the bank at risk of default, even
though its net worth remains relatively stable. Moreover returns on a bank's
assets and liabilities (or Net incomes), as the key VaR matrix, cannot provide
an accurate picture of the bank's current cash holding without taking account
of non-cash expense items, while variations in a bank's pro�t and loss might
not always capture the changes in liquidity especially during stressed periods.
In the study of those assessments LaR (Liquidity at Risk) would be more useful
than VaR, in terms of measuring liquidity risk, since the latter has nothing to
do with estimating cash holdings for �nancial institutions.

The aforementioned issues pertaining the relationship between VaR and liq-
uidity have very deep consequences when they intertwine with the work of the
�nancial regulatory bodies since VaR-based capital adequacy measures have
been increasingly adopted in the last twenty years by regulators and supervi-
sors. As a matter of fact the Basel Committee on Banking Supervision in 1995
allowed commercial banks, subject to certain safeguards, to use their own inter-
nal VaR estimates to determine their capital requirements for market risk under
an amendment to the Basel Capital Accord (Holton 2002). In later years, espe-
cially after the 2008 �nancial crisis, the various shortcomings of that approach
have been fully realized and the need for a speci�c liquidity risk assessment has
been acutely perceived by the �nancial regulatory bodies. Nowadays solvency
and liquidity limits are modelled in a 'worst case scenario' manner. It means
that the only admissible strategies, employed by the banks, are those that guar-
antee with a very high probability that the bank remains solvent and liquid.
This methodology for the risk measurement, as well as its limits, is re�ected
in the existent regulatory regime both in the solvency context, by the VaR
concept (Basel II VaR capital constraint or measurement of banks' economic
capital), and in the liquidity context, whose risk assessment is instead left to
stress testing exercises (LaR internal models of banks' cash-�ow distributions
are not mandatory although usually performed for inner purposes) (see Matz
et al. 2006, Castagnoli et al. 2013). The main shortcoming of the current
approach is related to the fact that the banks' balance sheet natural tendency
to evolve dynamically proves to be particularly problematic for �nancial an-
alysts and banking regulators. A usual static balance sheet assumption, as
taken for the stress testing exercises enforced on the European banking sector
by the ECB, may be valid only in some very special cases of shocks of the low
magnitude and in relatively short periods (especially in instances where it is
reasonable to assume that an adjustment may need time for preparation and
coordination of actions by the management of the bank). Those implicit limits
of the stress testing exercises have been pointed out in works such as those by
Henry (2013) and RTF (2015). One of the most relevant aspects of the rela-
tionship between investment strategies and funding conditions, which is one of
the most sensible issue pertaining the current regulation, deals with the e�ec-
tiveness of the liquidity management both by the bank leadership as well as by
the macro policies enforced on those leadership by the regulator. As we have
seen risk based capital regulation has a strong and well established position in
the traditional banking regulation while this is not the case for liquidity rules
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imposed on banks. In the Basel II framework it has been decided to uphold a
form of code of good practice rather than well-de�ned liquidity indicators and
benchmarks. Such an approach was justi�ed by the belief that setting liquidity
limits based on very aggregate supervisory data cannot be an e�ective tool to
control banks liquidity conditions. Contrary to solvency measures, aggregation
for liquidity purposes delivers a very imprecise picture. Therefore Basel II as far
as liquidity standards were concerned decided only to plead with the banking
sector to start the development of internal liquidity management systems sat-
isfying some high level principles. Basel III departed from that approach and
imposed minimal liquidity ratios (short-term Liquidity Coverage Ratio (LCR)
and longer-term Net Stable Funding Ratio (NSFR)). This regulation has been
devised in order to attempt to address the causes of the crisis erupted in 2007
and it tries to capture the characteristics of the balance sheet items that are felt
as particularly important from a liquidity perspective (e.g. stability of funding
sources, generally expected haircuts on certain asset classes or operational rela-
tionships with customers). Nonetheless the LCR and the NSFR liquidity rules
simplify the liquidity risk measurement issue and cannot replace a fully-�edged
statistical, stochastic and/or behavioural approach to cash management, col-
lateral management and sustainability of funding sources. The LaR approach
attempts to overcome at least in part those issues and its philosophy is similar
to that of the VaR used for the solvency regulations (Matz et al. 2006). Its aim
is to limit bank's exposure to the liquidity risk by allowing for taking only those
liquidity positions that with high probability ensure that the bank can meet its
obligations in the near future. It does that starting from the assessment of a
probability distribution for the liquidity in the next future as VaR does for the
value of the bank portfolio. There is no general consensus on the most e�ective
way to compute a LaR measure and every banking �rm approaches this task
through internal models and for its own purposes. As we have seen this hap-
pens mainly because the regulator enforces only tests founded on static balance
sheet ratios although the limits of this methodology have been not seldom mat-
ter of debate in the last years. With the LaR approach that we are about to
present we propose a �rst step on a possible path that tries to address three of
the limitations that we have seen to be perceived in the regulations and in the
academic work stemming from the regulatory debate. The �rst one is the lack
of a dynamic perspective in the current liquidity risk assessment methodology
with the consequences brie�y mentioned above. The second is the absence of a
liquidity risk measurement with a quarterly or yearly perspective relating specif-
ically to funding liquidity issues, since Lar as well as VaR is generally assumed
to compute only over days or weeks.

The third one concerns a characteristic of the bank balance sheet dynamic
models proposed so far (Halaj 2016, Birge et al. 2013) which inevitably present
a very high level of aggregation on the accounting items. The brick vector frame-
work allows in principle to select the level of aggregation (in the accounting items
of the model) that the researcher deems more appropriate for his purposes and in
the next section we will propose what we think is a model presenting a suitable
trade-o� between the need of detail and the need of mathematical tractability.
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In the past bank balance sheet problems have been remarkably tackled with
methodologies of optimal portfolio choice with transaction costs (see Davis and
Norman 1990), but the theory of portfolio choice with transaction costs eas-
ily produces computationally intractable problems. Here we want to propose,
through a simulation, a �rst approach to the liquidity probability distribution
measurement that, in a dynamic fashion and with a convenient mathematical
tractability, could be able to relate the history of the balance sheet dynamics
and the accounting data to some macroeconomic factors deemed of particular
importance for the bank's business structure.

3.2 A proposal for the balance sheet dynamical

modelization of a commercial bank

The proposition for a balance sheet formalization we will now present is
about a commercial bank and in the case of this model, inspired by works like
that of Halay (see Halaj 2013, 2016, Birge et al. 2013), we intend to propose
its closed form solution as well. Naturally in this case the problem of the high
number of parameters and variables in the formalization presents itself once
more, and the goal of �nding an equilibrium between the need of detail and
that of mathematical tractability constitutes a delicate task. With this aim in
mind we decided to choose for our model the following accounting Items, in
accordance with the IFRS1 principles :

1. Cn Current Liquidity;

2. Ln Loans and receivables towards clients;

3. Tn Loans and receivables towards banks;

4. Sn Securities portfolio;

5. Kn Fixed assets;

6. Y n Deposits from clients;

7. HnDeposits from banks;

8. On Financial liabilities;

9. DnAccount Payables.

1International Financial Reporting Standards
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Now we will present how to build each one of the eight brick vectors that will
constitute our bank balance sheet model. The �rst one Ln will be represent-
ing the �Loans and receivables towards clients� constituted by non-derivatives
�nancial assets with �xed or determinable repayment scheme2:

[
CLn
Ln

]
=

[
1 [ρln(1− πn)]
0 (1− πn)

] [
CLn−1 −∆ln
Ln−1 + ∆ln

]
(3.2.1)

where πn is the weighted average of the percentage of defaulted loans between
time n− 1 and n, ρln is the weighted average interest rate collected from Loans
and ∆ln will be the variation on the Loans Item in the period3.

The second brick vector deals with Tn the Loans and receivables towards
banks, central bank included. This item considers interbank positions including
loans and receivables towards banks and minimum reserves on central bank. It
takes this shape:

[
CTn
Tn

]
=

[
1 [ρtn]
0 1

] [
CTn−1 −∆tn
Tn−1 + ∆tn

]
(3.2.2)

in this vector ρtnwill be the weighted average of the interest rate paid to our
bank on this kind of loans while ∆tnwill be the increment in the period of this
asset.

The variable Securities Sn includes all the �nancial assets, except loans,
considering both Held for trading and Held to maturity4.

[
CSn
Sn

]
=

[
1 (ρsn − αn · P̄n

¯Pn−1
)

0 (1 + αn) · P̄n
¯Pn−1

] [
CSn−1

Sn−1

]
(3.2.3)

2This type of asset can be both long term and short term.
3Di�erence between new loans and principal payments from time step n − 1 to time step

n among the not defaulted loans
4The liquidity, generated by this item, may arrive from buying and selling stocks or from

the coupons and dividends
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The parameter φn = P̄n
P̄n−1

acts the revaluation procedure of the securities

according to the adopted accounting principles since P̄n will be the weighted
average of the prices of all the securities in the balance sheet at time n. Then,
while ρsn will deal with the interests or dividends generated by the securities, the
parameter αnwill describe the increase or decrease of investments on securities.

The next brick vector will be the one about Kn the �xed assets and it will
have the same dynamics seen in the case of the industrial �rm, namely:

[
LKn

Kn

]
=

[
1 −γn
0 (1 + γn)

] [
LKn−1

Kn−1

]
+

[
0
−An

]
(3.2.4)

so the parameters will have the exact same meaning previously seen in chap-
ter 2. All the brick vectors presented until now will be on the credit side of
the balance sheet so according to the brick vector theory expressed in the �rst
chapter all the external variables will be expressed through the use of positive
numbers. On the contrary the four brick vectors we are about to propose will
be on the debit side of the balance sheet, consequently the external variables
in their formalization will be expressed by default through the use of negative
numbers.

The brick vector Y n dealing with the account representing deposits from
clients will be formalized as follows:

[
LYn
Yn

]
=

[
1 θyn
0 1

] [
LYn−1 −∆yn
Yn−1 + ∆yn

]
(3.2.5)

where θynwill be the deposits interest rate (the weighted average as usual)
paid by our bank to its clients and ∆yn will be the variation of this item in the
period between n− 1 and n, namely new deposits by clients in the bank5.

The accounting item Hndescribing the debts towards other banks can be
modeled basically as the item Yn just seen above. It takes this shape:

5∆yn will be negative by default, namely if the deposits will increase in the period, while
it will be positive if the clients will withdraw their money from the bank
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[
LHn

Hn

]
=

[
1 θhn
0 1

] [
LHn−1 −∆hn
Hn−1 + ∆hn

]
(3.2.6)

in this case θhnwill be the deposit interest rate paid by our bank to other
banks and ∆hnwill represent the variation of this item in the period with the
same conventions about its sign discussed above.

The item related to the �nancial liabilities On considers di�erent securities,
both listed and non-listed, and other �nancing lines with contractual repayment
plans (mainly bonds issued by our bank). It takes this shape:

[
LOn
On

]
=

[
1 (θon + βn)
0 (1− βn)

] [
LOn−1

On−1

]
(3.2.7)

and in this brick vector θonwill be the weighted average of the interest rates
paid by our bank on these �nancial liabilities, while βn will regulate the increase
or decrease of this item6. Finally we will have the brick vector dealing with the
account payables Dn which will be very similar to the one in the model of the
small/medium industrial �rm:

[
LDn

Dn

]
=

[
1 ωn
0 (1− ωn)

] [
LDn−1

Dn−1 +Gn

]
(3.2.8)

As seen in the previous chapter, in the formulas above ωn will be the weighted
average percentage of payments in the period n , while Gn will be the costs in
the period n expressed through a negative number according to the brick vector
theory7.

6βn will be positive if there is a decrease while it will be negative in the case of an increase
(if for example new bonds are issued)

7This is the only di�erence with the industrial �rm model presented in the previous chapter
where we expressed Gn by default through the use of positive numbers. This is due to the fact
that we chose to keep on using the double-entry book keeping framework convention according
to which any item, be it an asset or a liability, is reported by default through the use positive
numbers. In the commercial bank case we decided to follow the brick vector theory to its full
extent.
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Now the last step will obviously be the combination of all the brick vectors
just presented, which will happen according to the principles seen in the previous
chapters:



Cn = (CLn + CTn + CSn + CKn + CY n + CHn + COn + CDn) +Xn

Ln = Ln
Tn = Tn
Sn = Sn
Kn = Kn

Y n = Yn
Hn = Hn

On = On
Dn = Dn

(3.2.9)

where the value of each variable is the one in the relative brick vector de-
�ned until now. As seen before the variable Xn represents the extraordinary
�nancings/dividends plus taxes happened between the time step n− 1 and the
time step n.

2.2.1 The closed form formula of the commercial bank model

Now we will provide the closed form formula of the system just seen above
and using the brick vector framework we will start from presenting the close
form formula of each brick vector. One important thing to underline is that for
every formula that we are about to write the following convention will stand,
that any time a > b we will have

∏b
a = 1 and

∑b
a = 0 for any product and any

summation. The �rst brick vector than will take the following shape:


CLn = CL0 +

∑n
l=1[ρll(1− πl)((

∏l−1
i=1(1− πi))L0)]+

+
∑n
l=1[ρll(1− πl)[

∑l
h=1 ∆lh(

∏l−1
j=h(1− πj))]]−

∑n
l=1 ∆ll

Ln =
∏n
i=1(1− πi)L0 +

∑n
h=1(

∏n
j=h(1− πj))∆lh

(3.2.10)

while the second one will be such as:
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
CTn = CT0 +

∑n
l=1[ρtl(T0)]+

+
∑n
l=1[ρtl(

∑l
h=1 ∆th)]−

∑n
l=1 ∆tl

Tn = T0 +
∑n
h=1 ∆th

(3.2.11)

The brick vector relating to the securities Sn will be expressed by the fol-
lowing formula:

{
CSn = CS0 +

∑n
l=1[(ρsl − αl · P̄ l

¯P l−1
)((
∏l−1
i=1((1 + αi) · P̄ i

¯P i−1
))S0)]

Sn = [
∏n
i=1((1 + αi) · P̄ i

¯P i−1
)]S0

(3.2.12)

while the brick vector for the �xed assets will be:

{
CKn = −

∑n
l=1 γl(

∏l−1
i=1(1 + γi)K0) +

∑n
l=1 γl(

∑l−1
h=1Ah(

∏l−1
j=h+1(1 + γj)))

Kn =
∏n
i=1(1 + γi)K0 −

∑n
h=1(

∏n
j=h+1(1 + γj))Ah

(3.2.13)

The �fth brick vector relating to the Y n deposits from clients will have the
next formula:


CYn = CY0 +

∑n
l=1(θyl)Y0+

+
∑n
l=1[(θyl)[

∑l
h=1 ∆yh]]−

∑n
l=1 ∆yl

Yn = Y0 +
∑n
h=1 ∆yh

(3.2.14)

which is virtually the same as the one of the brick vector of the item
Hndescribing the debts towards other banks:
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
CHn = CH0 +

∑n
l=1(θhl)H0+

+
∑n
l=1[(θhl)[

∑l
h=1 ∆hh]]−

∑n
l=1 ∆hl

Hn = H0 +
∑n
h=1 ∆hh

(3.2.15)

Then we have the formula relating to the brick vector of the On Bonds/Loans
item which will be:

{
COn = CO0 +

∑n
l=1[(θol + βl)((

∏l−1
i=1(1− βi))O0)]

On = [
∏n
i=1(1− βi)]O0

(3.2.16)

Finally we will have the formula relating to the brick vector of the item
dealing with the Dn costs:

{
LDn =

∑n
l=1 ωl(

∏l−1
i=1(1− ωi)D0) +

∑n
l=1 ωl(

∑l
h=1Gh(

∏l−1
j=h(1− ωj)))

Dn =
∏n
i=1(1− ωi)D0 +

∑n
h=1(

∏n
j=h(1− ωj))Gh

(3.2.17)

Then naturally we can combine all the brick vectors in order to obtain a
balance sheet model system, which will be as the next one:



Cn = (CLn + CTn + CSn + CKn + CY n + CHn + COn + CDn) +
∑n
h=1Xh

Ln = Ln
Tn = Tn
Sn = Sn
Kn = Kn

Y n = Yn
Hn = Hn
On = On
Dn = Dn

(3.2.18)

85



where the value of each variable is the one in the relative brick vector de-
�ned until now. As usual the variable Xh represents the extraordinary �nanc-
ings/dividends plus taxes happened between the time step h − 1 and the time
step h.

3.2.1 The Chisini averaging procedure applied to the com-
mercial bank model

As we have just seen in the previous chapters our Chisini like averaging pro-
cedure, applied to brick vectors, will naturally give us average values for the
parameters and the variables according to the shape of the brick vector it-self.
So now let's have a look at the results of this procedure once we apply it to
the commercial bank model we have proposed in the previous section. The
�rst brick vector, with all its parameters and variables constant, will take the
following shape:


CLn = CL0 + (ρl) (1−π)

π [1− (1− π)n]L0+

+(ρl) (1−π)
π (∆l)[n− (1−π)[1−(1−π)n]

π ]− n(∆l)

Ln = (1− π)nL0 + (∆l)(1− π)[ [1−(1−π)n]
π ]

(3.2.19)

where, taking the parameter π as exogenous, we will have for the parameter
ρl and the variable ∆l the following solutions:

∆l = Ln−(1−π)nL0

(1−π)[
[1−(1−π)n]

π ]

ρl = CLn−CL0+n(∆l)
(1−π)
π [1−(1−π)n]L0+

(1−π)
π (∆l)[n− (1−π)[1−(1−π)n]

π ]

(3.2.20)

For the second brick vector of the model we will have the next closed form
formula, for the case of everything constant:
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{
CTn = CT0 + (ρt)n[T0 + (n+1)(∆t)

2 ]− n(∆t)

Tn = T0 + n(∆t)
(3.2.21)

and the variable ∆t and the parameter ρt will be as follows:

{
∆t = Tn−T0

n

ρt = (CTn−CT0)+(Tn−T0)

nT0+
(n+1)

2 (Tn−T0)

(3.2.22)

The brick vector relating to the securities Sn will be expressed by the follow-

ing formula, where we note φ = n

√
(
∏n
h=1

P̄h
¯Ph−1

) and the value of this parameter

will be exogenous:

{
CSn = CS0 + (ρ− α · φ)S0[ 1−[(1+α)·(φ)]n

1−[(1+α)·(φ)] ]

Sn = [(1 + α) · (φ)]n · S0

(3.2.23)

while the parameter α and the parameter ρ will be expressed by the next
formulas, remembering that the value of φwill be considered as exogenous:


α =

(
n
√

(SnS0
)

φ

)
− 1

ρs = [
(CSn−CS0)

(
1− n
√

(SnS0
)
)

(S0−Sn) ] + αφ

(3.2.24)

The brick vector for the �xed assets will be:

{
CKn = K0[1− (1 + γ)n]−A[n+ 1−(1+γ)n

γ ]

Kn = (1 + γ)nK0 +A[ 1−(1+γ)n

γ ]
(3.2.25)
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and we will have

Ā =

∑n
i=1Ai
n

(3.2.26)

,

then replacing this value in the expression de�ning Kn we get

Kn = (1 + γ)nK0 − [
1− (1 + γ)n

γ
]Ā (3.2.27)

which is a polynomial equation giving the average valueγ̄ of the parameter

γ through standard numerical procedures.

The �fth brick vector relating to the Y n deposits from clients, in the case of
everything constant, will have the next formula:


CYn = CY0 − n(∆y)+

+n(θy)[Y0 + (n+1)
2 ∆y]

Yn = Y0 + n(∆y)

(3.2.28)

that will give us the following expressions for the average values ∆y and θy
of the variable ∆y and the parameter θy :

{
∆y = Yn−Y0

n

θy = (CYn−CY0)+(Yn−Y0)

nY0+
(n+1)

2 (Yn−Y0)

(3.2.29)

The brick vector just seen behaves virtually identically as the one of the item
Hndescribing the deposits from other banks:
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
CHn = CH0 − n(∆h)+

+n(θh)[H0 + (n+1)
2 ∆h]

Hn = H0 + n(∆h)

(3.2.30)

this situation will give us the following expressions for the average values ∆h
and θh of the variable ∆h and the parameter θh :

{
∆h = Hn−H0

n

θh = (CHn−CH0)+(Hn−H0)

nH0+
(n+1)

2 (Hn−H0)

(3.2.31)

Then we have the formula relating to the brick vector of the On Bonds/Loans
item which will be:

{
COn = CO0 +

[
((θo) + β)(O0)[ 1−(1−β)n

β ]
]

On = (1− β)nO0

(3.2.32)

that, for the average values β and θo of the parameters β and θo , will give
us the following formulas :


β = 1−

[
n

√
(OnO0

)
]

θo =
(COn−CO0)·

{
1−
[
n
√

(OnO0
)
]}

(O0−On) −
{

1−
[
n

√
(OnO0

)
]} (3.2.33)

Finally we will have the formula relating to the brick vector of the item
dealing with the Dn costs:

{
LDn = (1− (1− ω)n)D0 + [n− (1− ω)( 1−(1−ω)n

ω )]G

Dn = (1− ω)nD0 + (1− ω) (1−(1−ω)n)
ω G

(3.2.34)
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that will give us:

Ḡ =

∑n
i=1Gi
n

(3.2.35)

.

and again, we replace this value into the expression giving Dn and obtain
the following polynomial equation de�ning the average value ω̄ of the parameter
ω:

Dn = (1− ω)nD0 + (1− ω)
(1− (1− ω)n)

ω
Ḡ (3.2.36)

value that as usual in cases such as this one must be pursued through stan-
dard numerical methods. Naturally in the case of the variableXn of the external
vector of the combined system, its averaging procedure will simply be given by
the formula X =

∑n
h=1Xh.

3.3 Simulation of the model behaviour

Now we will present an eight-year evolution of a simulated balance sheet of
a commercial bank according to the previous model. We would like to point
out that the data that we are about to present are in line with that of a real
medium size commercial bank of the north west of Italy (a Banca Popolare)
e�ectively managed. We prefer to present them as a simulation since in the case
of the commercial bank balance sheet model we do not possess critical pieces of
information, that were not equally important in the case of the industrial �rm
balance sheet model, as the ones regarding securities portfolio composition,
management credit policy as well as other relevant management policies. As
far as the new LaR8 measure we want to propose is concerned, those pieces of
information are fully available to the bank management as well as the regulatory
bodies. With regard to their interactions with our model, they could also be
mathematically inferred by the accounting information that a listed bank has to
provide to the public as well as other econometric data, but their exact de�nition
would require a double checking procedure that at this stage of our research goes
beyond the scope of the present work. Consequently we prefer to present the

8Liquidity at Risk
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following data as a simulated bank although we feel the need to underline the
fact that they will exhibit a behaviour in line with that of a real bank with the
characteristics discussed above. We will present �rstly each one of the brick
vectors constituting the model then the balance sheet in its entirety9. The �rst
brick vector will evolve as the following:

Year 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

Accounting Items
∆CL(n) -148.681 -1.926.173 1.890.075 -1.098.984 -1.806.643 -1.199.478 -1.118.893
L(n) 23.996.543 23.211.925 20.843.557 22.390.951 20.606.832 18.247.861 16.711.080 14.936.103
Parameters and Variables
∆l(n) 929.466 2.842.080 -1.034.847 1.964.691 2.567.120 1.814.667 1.791.704
ρl(n) 0,0325 0,0394 0,0410 0,0386 0,0369 0,0337 0,0402
π 0,006 0,020 0,024 0,008 0,010 0,015 0,0010

As we can see, remembering equation (3.2.1), these data will represent the
evolution of the brick vector describing Ln the loans and receivables towards
clients. According to the brick vector theory put forward in the �rst chapter
we can see how, being this accounting item on the credit side of the balance
sheet equation, it will be expressed through the use of positive numbers. We
refer to the second paragraph of this chapter for the accounting interpretation
of the parameters and variables constituting this brick vector as well as the
others we will present later. We would like to underline the fact that instead
of the liquidity generated from the item we calculated the delta of that liq-
uidity ∆CL(n) = [CL(n) − CL(n − 1)] since we don't know the brick vector
decomposition of the general liquidity C(0) in the starting year (2008) of the
balance sheet time series. This doesn't invalidate the mathematical tractability
of our model since we can retrieve information about the parameters and the
variables through balance sheet data. The accounting technical details about
the procedures required in order to obtain those pieces of information and to
double-check them go beyond the scope of the present work. Here we intend
primarily to focus on the mathematical aspects of the formalization of the bal-
ance sheet we have provided as well as on its possible applications. Coherently
with our mathematical framework we can perform the Chisini averaging proce-
dure discussed in the previous chapters applying (3.2.20), that will give us the
following values:

∆l ρl π

1.469.044 0,0345449 0,0085918

9The data are expressed in thousands of Euros.
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It is important to notice that we consider π as an exogenous parameter so
in the equations (3.2.20) giving the average values ∆l and ρl we decided to use
as π the geometric mean of the values of π in the time series.

The second brick vector, dealing with the accounting item Tn describing
loans and receivables towards other banks (Central Bank included), will move
accordingly with (3.2.2) following the next dynamics:

Year 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

Accounting Items
∆CT (n) 119.129 401.859 381.629 359.749 -714.495 -159.105 -154.037
T (n) 980.339 1.088.388 1.481.714 1.855.235 2.200.794 1.465.507 1.294.214 1.117.463

Parameters and Variables
∆t(n) -108.049 -393.326 -373.521 -345.559 735.287 171.293 176.751
ρt(n) 0,0113 0,0078 0,0055 0,0076 0,0094 0,0083 0,0176

As we can see the item is quite stable and more importantly it has a much
lower impact on the assets side of the bank's balance sheet than the previous
one. This is coherent on the one hand with the business model of the kind of
bank we are representing and on the other hand with the fact that we have
chosen a time series which evolves after the 2007 �nancial crisis (see Castagna
et al. 2013). On the brick vector data we can perform our averaging procedure
through which we get the following results:

∆t ρt

-19589,14 0,0134

Looking at the mean value ∆t of the variable ∆t it is interesting to notice
that on average the loans towards other banks in the time frame we consider
have decreased.

The third brick vector deals with the accounting item Sn describing our
bank's portfolio of securities, it will evolve following (3.2.3) and its dynamic
will be the next one:

Year 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

Accounting Items
∆CS(n) 756.408 -2.168.676 -1.875.466 -1.447.125 -89.246 163.183 730.591
S(n) 8.180.458 8.837.235 6.540.905 4.535.466 2.889.312 2.907.376 2.991.053 3.585.207
Parameters
α(n) -0,08 0,34 0,42 0,51 0,04 -0,05 -0,18
ρs(n) 0,00508 0,00905 0,01220 0,02909 0,00998 0,00721 0,01882
ϕ(n) 1,0062 1,0105 1,0165 1,0398 0,9531 1,0194 1,0192
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The Sn item has a much broader impact than the previous one on the total
assets, although not comparable with the importance of Ln, since as we will
see in detail later its weight on the balance sheet assets side in the time win-
dow considered range between 11% and 24%. Looking at the time series of the
parameter ϕ 10 we can notice that it expresses a volatility that it is not compa-
rable with that of any real market index in the time frame examined, this could
be due to the portfolio composition or to the accounting evaluation principles
that the management opted for. The Chisini procedure will provide us with the
following values for the mean parameters:

α ρs ϕ

0,1151 0,0092 1,0089

As for the case of the �rst brick vector we consider one of the three param-
eters as exogenous11, that parameter is ϕ and in the equations (3.2.23), giving
the average values α and ρs, we decided to use as ϕ the geometric mean of the
values of ϕ in the time series.

For the last item in the asset side of the balance sheet, among the ones used
in our modelization, the one Kn describing the �xed assets, the data we present
will evolve as represented by the following table:

Year 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

Accounting Items
∆CK(n) -87.686 -123.679 -41.452 -28.998 -23.104 -12.675 -11.031
K(n) 346.426 275.875 167.299 149.317 143.750 142.493 150.343 157.836

Parameters and Variables
A(n) 17.135 15.103 23.470 23.431 21.847 20.525 18.524
γ(n) 0,32 0,74 0,28 0,20 0,16 0,08 0,07

Naturally the brick vector observes equation (3.2.4) and the averaging pro-
cess will give us these values:

A γ

20005 0,22

through the use of equations (3.2.25) and (3.2.26) as well as the standard
numerical procedures implied by equation (3.2.27).

10See the second paragraph of this chapter for its �nancial interpretation
11Since we have only two equations, from a mathematical standpoint we have to
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From the following brick vector onward we will deal with items which reside
on the liabilities side of the balance sheet and accordingly with the brick vector
theory put forward in the �rst chapter they will be expressed through the use
of negative numbers12. The �rst brick vector of the liabilities, representing the
�fth brick vector of our bank balance sheet model, is the one relating to the
item Y n describing the evolution of the deposits from clients. It will behave,
according to (3.2.5), as follows:

Year 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

Accounting Items
∆CY (n) 689.111 5.277.168 115.237 2.527.316 747.266 1.025.261 625.706
Y (n) -27.647.209 -26.810.842 -21.280.780 -20.844.527 -17.984.401 -17.035.101 -15.896.505 -15.094.791

Parameters and Variables
∆y(n) -836.367 -5.530.061 -436.253 -2.860.126 -949.300 -1.138.596 -801.714
θy(n) 0,00533 0,00943 0,01508 0,01597 0,01123 0,00665 0,01107

We will see in detail in the next paragraph that it represents the main
component of the total liabilities, as we can sense from a quick comparison of
the magnitude of this item with the ones of the items presented so far. The
average values of this brick vector parameters and variables will be the next
ones:

∆y θy

-1.793.202 0,009914

resulting from the application of (3.2.29). We think it is worth noting that,
coherently with the item time series, the averaged ∆y tells us that the deposits,
on average, increase in the time frame considered. The negative value of ∆y
describing this growth depends on the fact that the item is on the liabilities side
of the balance sheet.

The second brick vector among the liabilities, representing the sixth brick
vector of our bank balance sheet model, is the one relating to the item Hn

describing the evolution of the deposits from other banks (including the Central
Bank) accordingly with equation (3.2.6). It will evolve as the following:

Year 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

Accounting Items
∆CH(n) -18.306 -1.392.757 -155.451 96.300 1.382.176 2.222 380.185
H(n) -2.302.136 -2.314.035 -3.692.634 -3.826.808 -3.693.891 -2.276.296 -2.260.274 -1.857.018

Parameters and Variables
∆h(n) 11.899 1.378.599 134.174 -132.917 -1.417.595 -16.022 -403.256
θh(n) 0,00278 0,00612 0,00576 0,00957 0,00959 0,00606 0,01021

12Since these items are on the debit side of the balance sheet equation
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This item is quite stable and more importantly it has a much lower impact
on the liabilities side of the bank balance sheet than the Yn one. As for its
counterpart in the assets side, the account Tn, its behaviour is coherent on the
one hand with the business model of the kind of bank we are representing and
on the other hand with the fact that we are dealing with a scenario post 2007
�nancial crisis (see Castagna et al. 2013). On the brick vector data we can
perform our averaging procedure through which we get the following results:

∆h θh

-63.588 0,0102

Looking at the mean value ∆h of the variable ∆h (keeping in mind our brick
vector theory convention on the signs of the variables) it is interesting to notice
that on average the deposits from other banks, in the time frame we consider,
have increased.

The third brick vector among the liabilities, representing the seventh brick
vector of our bank balance sheet model, is the one relating to the item On
describing the behaviour of the �nancial liabilities (mainly securities issued by
our bank). It will move according to the next path:

Year 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

Accounting Items
∆CO(n) -316.656 460.096 -81.779 92.249 645.104 271.319 -131.158
O(n) -3.229.895 -3.462.334 -2.910.945 -2.904.347 -2.727.109 -2.022.593 -1.697.022 -1.778.726

Parameters
β(n) 0,067 -0,189 -0,002 -0,065 -0,348 -0,192 0,046
θo(n) 0,024 0,031 0,030 0,031 0,029 0,032 0,028

Applying our averaging procedure to those brick vector data we get the following
results:

β θo

-0,089 0,031

We would like to underline the fact that, keeping in mind the brick vector
equation (3.2.7), a negative parameter β stands for an increase in the �nancial
liabilities item (e.g. the bank is issuing new securities) , as we can see looking
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at the value of the averaged parameter whose result is coherent with the item
time series.

The fourth brick vector among the liabilities, representing the last brick
vector of our bank balance sheet model, is the one relating to the item Dn

describing the evolution of the Account Payables. It will evolve as the following:

Year 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

Accounting Items
∆CD(n) -513.002 -357.529 -227.839 -464.488 -144.083 -89.598 -324.092
D(n) -678.166 -722.835 -668.480 -578.961 -727.637 -557.740 -335.095 -360.656

Parameters and Variables
G(n) -468.333 -411.884 -317.358 -315.812 -313.980 -312.243 -298.531
ω(n) 0,43 0,33 0,25 0,45 0,17 0,14 0,49

Naturally the brick vector observes equation (3.2.8) and the averaging process
will give us the next values:

G ω

-348.305 0,33

through the use of equations (3.2.34) and (3.2.35) as well as the standard nu-
merical procedures implied by equation (3.2.36).

Finally we can present the evolution the system describing our entire balance
sheet model using (3.2.18) rearranged in the following way:



Cn = Cn−1 + (∆CLn + ∆CTn + ∆CSn + ∆CKn + ∆CY n + ∆CHn + ∆COn + ∆CDn)
Ln = Ln
Tn = Tn
Sn = Sn
Kn = Kn

Y n = Yn
Hn = Hn
On = On
Dn = Dn

(3.3.1)

that will give us these results
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Year 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

C 769.719 289.401 119.092 114.139 78.120 81.144 80.016 82.745
L 23.996.543 23.211.925 20.843.557 22.390.951 20.606.832 18.247.861 16.711.080 14.936.103
T 980.339 1.088.388 1.481.714 1.855.235 2.200.794 1.465.507 1.294.214 1.117.463
S 8.180.458 8.837.235 6.540.905 4.535.466 2.889.312 2.907.376 2.991.053 3.585.207
K 346.426 275.875 167.299 149.316 143.750 142.493 150.343 157.836
Y -27.647.209 -26.810.842 -21.280.780 -20.844.527 -17.984.401 -17.035.101 -15.896.505 -15.094.791
H -2.302.136 -2.314.035 -3.692.634 -3.826.808 -3.693.891 -2.276.296 -2.260.274 -1.857.018
O -3.229.895 -3.462.334 -2.910.945 -2.904.347 -2.727.109 -2.022.593 -1.697.022 -1.778.726
D -678.166 -722.835 -668.480 -578.961 -727.637 -557.740 -335.095 -360.656

The last thing we think it is important to present, about this simulation
concerning our commercial bank balance sheet model behaviour, is a checking of
the results brought us by our averaging procedures. So if we recall the dynamic
of our balance sheet formalization where the Chisini averaging procedure has
been applied, i.e.

−→
Sn = M ∗ [

−−−→
Sn−1 +

−→
A ] +

−→
P

and we consider as S0the balance sheet vector at the end of year 2008, namely

−→
S0 =



C0

L0

T0

S0

K0

Y0

H0

O0

D0


=



82.745
14.936.103
1.117.463
3.585.207
157.836

−15.094.791
−1.857.018
−1.778.726
−360.656



having as vector
−→
A the values of the averaged variables belonging to the

anticipated vector
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−→
A =



(−∆l −∆t−∆y −∆h)
∆l
∆t
0
0

∆y
∆h
0
G


=



407.336
1.469.043
−19.589

0
0

−1.793.202
−63.588

0
−348.305



and as vector
−→
P the values of the averaged pertaining variables

−→
P =



X
0
0
0

(−A)
0
0
0
0


=



0
0
0
0

−20.005
0
0
0
0



if we apply the matrix M of the values of the averaged parameters

M =



1 ρl(1− π) ρt (ρs− αϕ) −γ θy θh (θo+ β) ω
0 (1− π) 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 (1 + α)ϕ 0 0 0 0 0
0 0 0 0 (1 + γ) 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 (1− β) 0
0 0 0 0 0 0 0 0 (1− ω)


=

=



1 0, 0342 0, 0134 −0, 1069 −0, 2150 0, 0099 0, 0101 −0, 0575 0, 3328
0 0, 9914 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1, 1250 0 0 0 0 0
0 0 0 0 1, 2150 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1, 0889 0
0 0 0 0 0 0 0 0 0, 6671



and we reiterate the procedure for seven times, we obtain the following values
for the balance sheet vector at the end of the year 2015
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−→
S7 =



C7

L7

T7

S7

K7

Y7

H7

O7

D7


=



769.720
23.996.543

980.339
8.180.458
346.426

−27.647.209
−2.302.136
−3.229.895
−678.167



values that match nearly perfectly those of our simulated balance sheet at
time 31/12/2015, except for a couple of minor discrepancies13 given by approx-
imations in the calculation procedures.

3.4 A proposal for a new LaR measure applied

to the simulated bank balance sheet

The last �nancial crisis has revealed shortcomings in risk management, with
special regard to the management of liquidity risk, that have imperiled the
�nancial service industry and the economy at large. Since then banks and
regulators have begun to pay close attention to the concept of liquidity risk and
undertook signi�cant changes under the so-called Basel III framework. In order
to address the aforementioned concept we have to start from a general de�nition
of the term liquidity. The idea of liquidity represents a much broader notion
than that of cash �ow that we have encountered in the previous chapter and
there is still some debate over its proper bounds. It has been said that �liquidity
is easier to recognize than de�ne� (Crockett 2008) and that it can be an elusive
concept. Generally speaking liquidity is about having access to cash �ow when
you need it (Armstrong et al. 2008) and in the case of the �nancial sector a
speci�c notion has been proposed, namely that it represents the capacity of a
bank to fund increases in assets and meet obligations as they come due, without
incurring unacceptable losses14 (Basel Commettee 2008a). Here we will refer to
the uni�ed and consistent approach to the concept of �nancial liquidity and
liquidity risk proposed by Nikolau (Nikolau 2009) which has become a standard
fare in liquidity risk related literature. Nikolau identi�es three main types of
liquidity, pertaining to the liquidity analysis of the �nancial system, as well
as their respective risks: central bank liquidity, market liquidity and funding
liquidity.

13Their order of magnitude is of one unit in the last digit of the Current Liquidity item and
the Account Payables item

14Currently much of the debate surrounding the liquidity concept revolves around term
�unacceptable�.
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Central bank liquidity can be de�ned as the ability of the central bank to
supply to the �nancial system the liquidity needed and the risk associated to
this notion, although in theory not equal to zero, is normally assumed as prac-
tically non-existent. A totally di�erent story is the one about the concept of
market liquidity which a number of di�erent studies de�ne as the ability to
trade an asset at short notice, at low cost and with little impact on its price. It
incorporates (Fernandez 1999) the key elements of volume, time and transaction
costs so that it relates to depth15 , tightness16 and resiliency17 of the market.
Its related risk can be generally de�ned as the inability to trade at a fair price
with immediacy and among the three kinds of liquidity, with their related risk,
is the one about which literature is more abundant. An in depth analysis of
this kind of risk is beyond the scope of the present work, here we deem im-
portant to underline two key aspects among its features. First of all market
liquidity risk is in most cases low and stable, it is rare and episodic (see Pastor
and Staumbaugh 2003) and its episodic nature results from downward spirals
due to mutually reinforcing funding and market illiquidity (see Brunnemeier
and Pedersen 2005, 2007) so that it is deeply related to the funding liquidity
risk. Secondly it is signi�cant to notice that even in its very own de�nition it is
implied a short-term time perspective on the issue of liquidity risk. This is of
primary importance since due to the complex nature of the liquidity and liquid-
ity risk concepts, as well as the deep linkages between the three di�erent kinds
of liquidity, the problem needs to be addressed from di�erent temporal points of
view (see Neu and Vogt 2012), one short-term and the other more medium long-
term. This can be seen also in the approach followed by the regulatory bodies
since in December 2009 the BCBS18 has proposed two new global measures for
managing liquidity risk. They have become the internationally adopted pillars
of new liquidity regulations and re�ect the two aforementioned time perspec-
tives. Moving from the previous qualitative (Basel II regulations) towards a
more quantitative approach, the Basel III international regulatory framework
has devised measures based on two liquidity ratios: a stressed 1-month liquidity
coverage ratio (LCR) and a structural (more than 1 year) net stable funding
ratio (NSFR) (see Castagna et al. 2013). The �rst ratio has been conceived
to immunize banks against short-term liquidity shocks while the latter limits
the re�nancing risk and the maturity transformation in funding (see the BIS19

document �International framework for liquidity risk measurement, standards
and monitoring� from December 2009 and the update from July 2010).

This double approach on the time perspective is also implicit in the de�ni-
tion of the di�erent kinds of liquidity and liquidity risk. So if market liquidity
and its associated risk are concepts more focused on the short-term, funding

15A market is deep when a large number of transactions can occur without a�ecting the
price i.e. the number of buyers and sellers is large.

16A market is tight when transaction prices do not diverge from mid-market prices.
17A market is resilient when price �uctuations from trades and imbalances in order �ows

are quickly adjusted.
18Basel Commettee on Banking Supervision
19Bank for International Settlements
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liquidity and its relative risk are more related to a medium long-term point of
view. Nikolau de�nes funding liquidity as the ability of solvent institutions to
make agreed upon payments in a timely fashion (see Drehmann and Nikolau
2008). In practice funding liquidity, being a �ow concept, can be understood in
terms of a budget constraint, namely an entity is liquid as long as its in�ows are
bigger or equal to its out�ows. In its determination it is of primary importance
to de�ne the liquidity sources available to the �nancial �rm we are analysing.
In the case of banks the sources can be classi�ed (see Nikolau 2009) into four
categories: the depositors, the market20, the interbank market and �nally the
central bank. Funding liquidity risk, according to the IMF (2008), captures the
inability of a �nancial intermediary to service their liabilities as they fall due.
Typically funding liquidity risk depends on the availability of the four liquidity
sources mentioned above and the consequent ability to satisfy the budget con-
straint over a certain period of time. Measuring funding liquidity risk is not a
trivial task and academic evidence on the properties of funding liquidity risk, to
this day, is meager (Nikolau 2009). In most cases practitioners construct funding
liquidity ratios, as proxies for funding liquidity risk, that reveal di�erent aspects
in the availability of funds within a given time horizon. They can be produced
through static balance sheet analysis or by dynamic stress testing techniques
and scenario analysis. In general the probability of becoming illiquid is typi-
cally measured for a given period ahead and can di�er signi�cantly according
to the length of the period (Matz and Neu 2006, Drehmann and Nikolau 2008).
Within this framework we think the CFaR approach we presented in the previ-
ous chapter can represent the basis for a new dynamic liquidity risk measure,
tailored on the funding liquidity issue and its implicit medium/long-term time
perspective. The LaR measure, being in many respects a byproduct of VaR,
has a short-term temporal point of view since generally it computes only over
days or weeks. On the other hand the CFaR necessarily implies a medium-term
temporal perspective for the simple fact that it is measured over �scal years or
at least semesters. Moreover the LaR measure, as in the VaR case, presents a
purely quantitative top-down approach, in a situation where both practitioners
and the academic community think that in the occurrence of the last �nancial
crisis deep problems originated from banks' reliance on purely quantitative ap-
proaches which lacked business judgment (see Castagna et al. 2013). In the
case of liquidity risk qualitative business judgement turns out to be crucial,
and during the 2007 �nancial crisis an emphasis on quantitative probabilistic
methods compromised the capacity of risk management to perceive the implicit
liquidity risk in their banks' business models (see Neu and Vogt 2012). Con-
sequently we think that our CFaR approach, stemming from a balance sheet
analysis, may hopefully represent the �rst step of a methodology that merges a
quantitative perspective with a more business structure oriented point of view.
Naturally we have to reshape our CFaR approach in order to serve the purpose
of the funding liquidity risk assessment issue, and in this spirit we will refer to

20A bank can sell its assets or generate liquidity through securitization, loan syndication
and the secondary market for loans.
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this new Liquidity at Risk measure as Funding Liquidity at Risk or FLaR. To
reach our goal, �rstly we have to focus on the stochastic modelization of some
macroeconomic drivers able to describe the four categories of banks' liquidity
sources that we have previously identi�ed. At this stage of our research the full
extent of a stochastic modelization as the one just proposed goes beyond the
scope of the present work. Here we just want to introduce the proposal of a new
liquidity risk measure, to highlight the new ground of possibilities laid down by
the mathematical formalization we presented in the �rst chapter. Consequently
we will choose only one macroeconomic driver related to the funding source we
can detect as the most important, accordingly with a balance sheet analysis.
The following table describes the weights of each item on the total assets or the
total liabilities21 during the course of the time frame we considered:

Anno 31/12/2015 31/12/2014 31/12/2013 31/12/2012 31/12/2011 31/12/2010 31/12/2009 31/12/2008

Assets
Weight of L on the total assets 0,70 0,69 0,71 0,77 0,80 0,80 0,79 0,75
Weight of T on the total assets 0,03 0,03 0,05 0,06 0,08 0,06 0,06 0,06
Weight of S on the total assets 0,24 0,26 0,22 0,16 0,11 0,13 0,14 0,18
Weight of K on the total assets 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01

Liabilities
Weight of Y on the total liabilities 0,82 0,80 0,75 0,74 0,72 0,78 0,79 0,79
Weight of H on the total liabilities 0,07 0,07 0,13 0,14 0,15 0,10 0,11 0,10
Weight of O on the total liabilities 0,10 0,10 0,10 0,10 0,11 0,09 0,08 0,09
Weight of D on the total liabilities 0,02 0,02 0,02 0,02 0,03 0,03 0,02 0,02

As we can infer from the analysis in the above table, the main source of
funding for our bank is represented by the item Y describing the deposits from
clients, whose weight on the total liabilities ranges from 72% in 2011 to 82%
in 2015. The interbank market source and the central bank source combined,
represented by the item H describing the deposits from other banks, range from
a weight of 7% to 15% on the total liabilities. Finally the market source, mainly
described22 by the item O reporting the �nancial liabilities, varies between 8%
and 10%. We can conclude that our bank, since, di�erently from bigger institu-
tions, its market exposure is contained, presents a business model that we could
describe as a classic banking business model, based on the management of the
temporal mismatch between deposits and loans.

Given the importance of the deposits from clients in its funding policy we de-
cided to stochastically model a macroeconomic driver that could expose the sen-
sibility of the balance sheet structure (representing our bank's business model)
to changes in the environment that could a�ect this funding source, namely the
value of the averaged interest rate θy paid on the deposits.

The interest rate dynamics is assumed to follow a mean reverting (Vasicek)
process, see e.g. Bjork (1998). We considered the six-month Euribor inter-
est rate from 2009 to 2015 and through a MLE23 procedure we estimated the
following parameters:

21Depending on the side of the balance sheet equation where it belongs
22Actually also the item S plays a varying role
23Maximum likelihood estimation
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Interest rate market

Interest rate : −0.04%
Mean reversion : 187.8%
Equilibriumrate : 0.81%
V olatility : 1.23%

On our 2009-2015 Euribor time series we performed the following statistics:

Sample statistics:

Mean 0,0082
Volatility 0,0064

and since the approximated value of our averaged parameter was θy = 0, 0100
we assumed a spread over the Euribor of 0, 0018. Then, using a MonteCarlo
approach, we simulated 5000 paths for the di�usion process representing θy and
for each path24 we estimated the future value of the Current Liquidity item
associated to one and two years. Coherently with the balance sheet time series
we proposed, representing an e�ectively and cautiously managed bank, although
there's a very high probability, around 58, 5%, that in the year 2016 our bank
will deplete its Current Liquidity reserves, as we can see in the next chart

24Using the median of each path from a time standpoint
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in a one year perspective the bank's balance sheet structure appears really
solid. As a matter of fact our FLaR measure tells us that there's only a 1%
probability that the current liquidity reserves will fall under 332.650 thousands
of Euros (FLaR1% = 332.650) at the end of 2016, and a 5% probability that
they will fall under 458.460 thousands of Euros (FLaR5% = 458.460) , as we
can see through the following chart

The situation changes in a two-year time frame since as we can see with the
aid of the next chart
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our bank is in a situation where there is 10, 06% probability that its Cur-
rent Liquidity reserves will fall below zero at the end of 2017. In the time
window considered the management would have di�erent options to respond
to the situation, not lastly by putting into action the funding liquidity contin-
gency plan that it is required to devise and test periodically by the regulatory
bodies. This kind of scenario analysis could imply a possible further path of
development for the FLaR measure in order to propose a dynamic stress testing
approach, once the measure would be more properly de�ned. As we have stated
before here we just wanted to propose a new liquidity risk measure referring
to a medium/long-term time perspective, never tackled before in a dynamic
manner, mainly in order to highlight the scienti�c prospects given by the brick
vector mathematical accounting formalization, which is the central topic of the
present work. In the ensuing chapter conclusion we will brie�y discuss some
plausible paths of development for the FLaR measure, possibly in light of the
opportunities o�ered by the brick vector framework.

3.5 Conclusions and remarks

In this chapter after presenting some of the main issues concerning the topic of
liquidity and liquidity risk management, we tried to show how the brick vector
mathematical framework could make a contribution in order to confront the
issue. Firstly we presented a commercial bank balance sheet model, devised in
accordance with the IFRS25 accounting principles, as well as the model shape
once the Chisini averaging procedure is performed. Secondly we displayed a
simulation of the model behaviour deeply rooted in real balance sheet data so

25International Financial Reporting Standards

105



that we could regard our example as in line with the performance of an Ital-
ian medium commercial bank, e�ectively and cautiously managed in the time
frame considered. Finally we proposed a new liquidity risk measure, the FLaR
(Funding Liquidity at Risk), speci�cally tailored on the funding liquidity issue
and its medium/long-term temporal perspective. We have seen how the regula-
tors as well as the banking world pay a speci�c attention on the addressing of
the liquidity risk topic from two di�erent temporal perspectives, one short-term,
through the implementation of the LCR26, and the other long-term, through the
NSFR27. The LaR measure can be considered as a version of VaR speci�cally
moulded for the liquidity problem, given that it is basically a VaR performed
on the time series of the various in�ows and out�ows. Consequently it is repre-
sentative of a short term point of view as well as a purely quantitative top-down
approach. So we deemed �t to propose a CFaR version speci�cally tailored
on the liquidity topic, since the CFaR measure is medium/long-term oriented
as it is the problem of the funding liquidity risk assessment. We named this
version FLaR (Funding Liquidity at Risk) and we believe that its bottom-up
approach can be suitable for the speci�c challenges presented by the funding
liquidity issue. Moreover we believe that the FLaR measure can be an ex-
ample of the contributions that the brick vector mathematical framework can
provide to various areas of research in the �nance �eld, through its ability to
merge accounting data insights with the formalization of mathematical �nance.
Therefore we would like to close the present chapter discussing interesting plau-
sible further developments that we think our research could pursue concerning
the FLaR measure, as well as the linkages that some of this developments could
have with the possibilities o�ered by the accounting formalization presented in
the �rst part of the present thesis.

Primarily we believe that our research should explore the stochastic mod-
elization of di�erent macro-drivers in order to achieve the FLaR full potential in
describing funding liquidity risk. In so doing we should �nd a way to take into
account simultaneously the four primary sources of funding liquidity identi�ed
in the previous paragraph. This is particularly true in the case of a banking
business model like the one developed by the international banking system in the
last decades, that presents a balance sheet exposure to market instruments not
comparable with previous standards. In this regard the simulation we presented
is indicative of a more classical banking business model, principally focused on
maturity transformation. In order to achieve this goal the primary obstacle
would de�nitely be the stochastic modelization of a synthetic macroeconomic
driver that could represent a proxy for the source of funding liquidity repre-
sented by the market. That's because it should subsume a lot of the concepts,
well de�ned in literature, concerning the deep relationship between funding liq-
uidity risk and market liquidity risk. It should take into account the three
main dimensions regarding the idea of market liquidity risk, namely market
depth, tightness and resilience, and reshape them through a funding liquidity

26Liquidity coverage ratio
27Net stable funding ratio
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centered perspective. In this regard the brick vector framework could result as
particularly helpful since theoretically it is able to formalize any balance sheet
reclassi�cation, and the pursue of the aforementioned endeavour with all prob-
ability would imply a balance sheet reclassi�cation speci�cally designed for the
purpose.

This descriptive capability would de�nitely prove useful in the case of what
we think should be the second path that our future research on the FLaR
measure could take. The NSFR is de�ned as the ratio between Available Stable
Funding over Required Stable Funding and naturally its outcome has to be
greater than one28 . What must be assumed as Required Stable Funding is
de�ned by the regulator and it represents the major component of the stress
testing exercise element embedded in the funding liquidity measure implied by
the ratio. On the other hand the numerator of the fraction, the Available Stable
Funding, is basically a weighted balance sheet reclassi�cation according to rules
and weights (ranging from 100% to 0%) de�ned by the regulator. We have
previously discussed how both the LCR and the NSFR are static measures and
how, not only in the academic world, this feature raises concerns, on the one
hand about the reliability of the ratios as proper stress testing exercises and on
the other hand about their possible pro-cyclical e�ects at the macro level. To
put it simply, as an old adage of the banking sector says: �A lack of liquidity can
kill a bank quickly whereas too much liquidity can kill a bank slowly� and it can
kill the whole economic environment as well. In this situation we could think
to try to use the dynamic nature of the brick vector mathematical framework
in order to make the NSFR a dynamic measure. Moreover we could use the
FlaR approach on the reclassi�ed balance sheet on the numerator of the ratio to
assess the bank's probability of passing the stress testing exercise, in relation to
its exposure to some macro-drivers felt as crucial for the management decision
making process.

Finally we hope that both the FLaR approach and especially the brick vector
framework could be felt as having potential for contributions to established
braches of research such as the ones dealing with stress testing exercises or
asset-liabilities management. Possibly even in cases where an issue is felt to
be better addressed through the lens of an optimization procedure applied to a
mathematical model deeply rooted in the economic underlyings of the banking
�rm.

28Greater than 100% since it is expressed as a percentage.
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Conclusion

Nowadays one of the most interesting challenges in the economic research is
related to the establishing of new informative frameworks enabling us not only
to better comprehend key subjects of the modern economic system but that
will also integrate with other models or informative systems already present in
literature. For that reason we developed a new mathematical framework for
the creation of accounting models that tries to represent the �rm and the �rm's
dynamics through the most important source of information of an enterprise,
namely the balance sheet. Moreover we decided to create this mathematical
modeling framework because the accounting research world considers itself and
is believed to be not enough properly integrated with other economic research
�elds. At the same time given that most of the �nancial/economic applications
use data coming from balance sheets, this instrument certainly plays a key role
in the economic environment.

In order to create this framework we started from underlining, in the account-
ing history and literature, the many attempts at providing a mathematical for-
malization of the transaction recording procedures. We classi�ed the attempts
made in the last �fty years into four main research strands that have not led
to a completely de�ned framework because of the many reasons we thoroughly
summarized in the �rst chapter of the present work. Therefore we identi�ed
the current mathematical framework as the one implied by the double-entry
bookkeeping system and we analyzed its main mathematical features, as well as
their relationship with the accounting practice. Modifying those characteristics
in order to obtain a dynamic �nite di�erence system description of the balance
sheet we arrived at our new mathematical framework for the accounting �eld
(that we named brick vector mathematical framework). Finally we closed the
�rst chapter discussing the problem of the inevitable high number of parame-
ters and variables that a balance sheet modelization implies, and we started to
address the issue proposing an averaging procedure on the balance sheet time
series, inspired by the Chisini concept of functional average.

In the second chapter we started to show how we think the brick vector
mathematical framework could result useful in bringing together accounting
data economic insights with the research opportunities o�ered by established
mathematical modelization approaches, present in other economic research ar-
eas. Given the key role that the liquidity accounting item plays in the brick
vector concept, we decided to apply the framework to the issue of determining
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a risk measure for the Cash Flow generation capability of an industrial �rm.
So we created an industrial �rm balance sheet model and, after a review of the
main attempts at estimating a CFaR (Cash-Flow at Risk) measure with their
relative shortcomings, we proposed our CFaR approach and we applied it to a
case study. In so doing we touched the subject of how our method could limit
the shortcomings of previous approaches, because of its roots stemming from
an holistic view of the �rm's accounting data summarizing its general economic
exposure.

In the third and �nal chapter we decided to show the potential utility of the
brick vector framework through its application to a problem that, after the last
�nancial crisis, has become poignant to the �nancial sector, i.e. the assessment
of liquidity risk. So we created a commercial bank balance sheet model coherent
with the IFRS accounting standards and we simulated its behaviour, o�ering
an example in line with the data of a medium sized Italian commercial bank
e�ectively managed. Finally we proposed a new risk measure for the assess-
ment of the funding liquidity risk (coherently we named it FLaR) discussing
how its dynamic approach, its long-term time perspective and its link to the
banking �rm's accounting data could contribute to the general debate on the
issue of liquidity risk. Then we concluded the chapter presenting some possible
future paths of research on the liquidity risk assessment topic, concerning the
FLaR measure and how the brick vector framework could result useful in their
development.

We hope that in the course of the present thesis we resulted convincing
in proving what we consider to be the main point of this work, namely how
the new mathematical framework that we have devised could result useful in
several areas of the economic research, because of its inherent potentials to
merge informative accounting data with mathematical modeling, the real world
of economic practice with the academic world of economic science.

In so doing giving a contribution to stimulate new approaches in the account-
ing research towards the development of tools that could be more informative
towards the economic and �nancial research world as well as the general public,
as it is requested by many in the accounting academic community.

But here we would like to close the present work discussing some main issues
relating to the mathematical formalization aspect of the brick vector framework.
Namely the fundamental general matter of the growing use of mathematical
models by the �nancial world and the academic community as well as their
reliance on the statistical science.

One of the major shortcomings of the CFaR top-down approaches, as well
as the exposure-based methodology, lies in the lack of a number of data that
could be perceived as statistically signi�cant. This, we think, depends on a
fundamental di�erence between a �rm of industrial nature and a purely �nancial
�rm, for example a hedge fund. The �rst one must possess a business structure
while the other mainly implements investment strategies. This implies a major
dissimilarity between the time horizon embedded in the two kinds of economic
activity, since the business structure of a production �rm must be assessed
in a medium long-term perspective (quarterly, yearly or even more) while the
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investment strategies of a purely �nancial �rm have to be revaluated, at least
partially, on a daily basis. Therefore the use of statistical instruments are not
as signi�cant as they are in the �nancial world when it comes to the CFaR
assessment of production �rms. Even if we had a number of data statistically
signi�cant, for example if we had access to a century long balance sheet data
time series or we had Cash Flow data collected on a daily basis, they would most
likely be not as signi�cant as they would be in a �nancial context. In the �rst
case because in a decades long balance sheet time series most of the data would
no more be in any way indicative of the business environment in which the �rm is
operating at the moment. In the second case because the data would most likely
be tainted by exogenous noise producing shocks (for example seasonality) that
would add useless or even damaging information to the purpose of capturing
the �rm's business structure. We think that this business structure is expressed
in a synthetic way by the information carried by the balance sheet, which as
a matter of fact, it is used in the real economic world, among other things,
in order to signal just that. So our CFaR method, rooted in the accounting
data, has the aim to create a tool that allows for a quantitative approach on
top of qualitative analyses of real economic data, in a �eld, the Cash Flow risk
assessment of production �rms, where purely quantitative techniques are faced
with the limits discussed above.

The liquidity risk assessment issue, on the other hand, presents very spe-
ci�c features, because, in light of what we have just expressed, we could look
at the banking �rm as having some sort of double nature, especially since the
distinction between investment banking and commercial banking has been fad-
ing. So the banking enterprise shows the traits of a purely �nancial �rm, which
implements investment strategies and is more focused on a short-term tempo-
ral perspective, but at the same time can't be lacking a business model, whose
structure implies a medium long-term approach. Hence the double temporal
perspective needed to address the liquidity risk issue, which is expressed also in
the two liquidity ratios that are in the process of being enforced by the regula-
tors: the liquidity coverage ratio, more short-term sighted, and the net stable
funding ratio, more long-term oriented, as we have amply discussed in chapter
three. The proposal of a FLaR measure, whose approach is deeply linked to our
CFaR methodology, has the aspiration to provide a fresh point of view, in the
liquidity risk assessment debate, presenting all the characteristics just discussed
above for the CFaR. Especially since we �nd ourselves in a point in time where
concerns are expressed, both in the academic and the practitioner world, about
an increasingly over-reliance on quantitative models by the �nancial environ-
ment at large.

Those concerns have a long history, since they have closely followed the de-
velopment of quantitative �nance in a period, the last thirty years, where it
has completely reshaped the �nancial world, becoming the dominant force in
the �eld nonetheless. An example of that attitude can be seen in the criti-
cism that surrounded VaR since it started to move from trading desks into the
public eye in 1994 thanks to the publication by J.P. Morgan of their variance-
covariance methodology, still to this day the most employed method to compute
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the measure. In a famous 1997 debate Nassim Taleb set out the major points
of contention and among other things he declared that VaR was in the end
charlatanism because it claimed to estimate the risk of rare events, which is
impossible. Later he popularized the concept in his famous 2007 book �The
Black Swan: The Impact of the Highly Improbable�.

The main problem with the top-down models we use relates to the fact that
they all rely in one way or another on the central limit theorem (as well as on the
assumption that the best predictor of our future is our past). At the same time
we know that in the economic and �nancial arena unlikely events are much more
common than what our models would predict according to their assumptions
based on the Gaussian distribution, the well know fat tails argument.

Moreover this spreading reliance on mathematical and statistical models29

have led in recent years to the awareness, in the risk management community,
of the growing importance of model risk management. Model risk is de�ned as
the risk of loss that could result from the use or misuse of mathematical models.
One of the acknowledged sources of model risk is the complexity of the model
itself, leading to an incorrect identi�cation of its risk factors because of the
di�cult task of becoming aware of the hidden hypotheses implied by the model.
This factor is often cited as an example of unrecognized risk in relation to the
problems experienced by the owners of mortgage backed securities portfolios
during the 2007 �nancial crisis.

Our brick vector framework would like to be seen as an attempt to mitigate
the issue since its last goal is to try to incorporate some business judgement
into our mathematical models.

On an even broader perspective the problem of the relationship between
mathematical formalization and the real world a�ects the economic science as
a whole, the issue has always been debated but again the last �nancial crisis
made it more poignant30. The economists didn't fully realize the importance of
�nance and �nanciers put too much faith in the models produced by economists.
Moreover the rational agent hypothesis implied by the concept of homo economi-
cus is increasingly struggling to describe an economic environment always more
complex because of globalization and the digital revolution. Many argue that
we should try to merge well established economic theories with the most press-
ing results coming from the behavioural economics school, in order to take more
into account man's herd behaviour. Naturally the open question relates to the
issue of how to do that.

More in general it is widely felt that academia and the economic sciences
should try to �nd ways to incorporate aspects of the real world into their math-
ematical formalizations and we hope that the present work could be perceived
as a contribution, be it small or not, towards that goal.

29In an article of the February of this year Crespo et al., senior McKinsey analysts, report
that the number of models rises 10 to 25 percent annually in large institutions

30A summary of the evolution of this discussion in the last years can be found in the article
�What's wrong with �nance�, The Economist, (May 1 of 2015).
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