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Coalition formation typically involves the coming together of multiple, heterogeneous, agents to achieve both
their individual and collective goals. In this paper, we focus on a special case of coalition formation known
as Graph-Constrained Coalition Formation (GCCF) whereby a network connecting the agents constrains
the formation of coalitions. We focus on this type of problem given that in many real-world applications,
agents may be connected by a communication network or only trust certain peers in their social network.
We propose a novel representation of this problem based on the concept of edge contraction, which allows
us to model the search space induced by the GCCF problem as a rooted tree. Then, we propose an anytime
solution algorithm (CFSS), which is particularly efficient when applied to a general class of characteristic
functions called m+a functions. Moreover, we show how CFSS can be efficiently parallelised to solve GCCF
using a non-redundant partition of the search space. We benchmark CFSS on both synthetic and realistic
scenarios, using a real-world dataset consisting of the energy consumption of a large number of households
in the UK. Our results show that, in the best case, the serial version of CFSS is 4 orders of magnitude faster
than the state of the art, while the parallel version is 9.44 times faster than the serial version on a 12-
core machine. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality
guarantees for very large systems of agents (i.e., with more than 2700 agents).
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1. INTRODUCTION
Coalition Formation (CF) is one of the key approaches to establishing collaborations
in multi-agent systems. It involves the coming together of multiple, possibly heteroge-
neous, agents in order to achieve either their individual or collective goals, whenever
they cannot do so on their own. Building upon the seminal work of Shehory and Kraus
[1998], Sandholm et al. [1999] identify the key computational tasks involved in the
CF process: (i) coalitional value calculation: defining a characteristic function which,
given a coalition as an argument, provides its coalitional value; (ii) coalition structure
generation (CSG): finding a partition of the set of agents (into disjoint coalitions) that
maximises the sum of the values of the chosen coalitions; and (iii) payment computa-
tion: finding the transfer or payment to each agent to ensure it is fairly rewarded for
its contribution to its coalition.
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On the one hand, typical CF approaches assume that the values of all the coalitions
are stored in memory, allowing to read each value in constant time. However, this
assumption makes the size of the input of the CSG and payment computation prob-
lems exponential, as the entire set of coalitions (whose size is 2n for n agents) must be
mapped to a value. On the other hand, CSG and payment computation are combinato-
rial in nature and most existing solutions do not scale well with the number of agents.
In this paper, we focus on the CSG problem to provide solutions that can be applied to
real-world problems, which usually involve hundreds or thousands of agents.

The computational complexity of the CSG problem is due to the size of its search
space,1 which contains every possible subset of agents as a potential coalition. How-
ever, in many real-world applications, there are constraints that may limit the forma-
tion of some coalitions [Rahwan et al. 2011]. Specifically, we focus on a specific type of
constraints that encodes synergies or relationships among the agents and that can be
expressed by a graph [Myerson 1977], where nodes represent agents and edges encode
the relationships between the agents. In this setting, edges enable connected agents
to form a coalition and a coalition is considered feasible only if its members represent
the vertices of a connected subgraph. Such constraints are present in several real-
world scenarios, such as social or trust constraints (e.g., energy consumers who prefer
to group with their friends and relatives in forming energy cooperatives [Hampshire
County Council 2014]), physical constraints (e.g., emergency responders may join spe-
cific teams in disaster scenarios where only certain routes are available), or communi-
cation constraints (e.g., non-overlapping communication loci or energy limitations for
sending messages across a network from one agent to another). Hereafter, we shall
refer to the CF problem where coalitions are encoded by means of graphs as Graph-
Constrained Coalition Formation (GCCF). It is important to note that the addition of
these constraints does not lower the complexity of the problem. In particular, Voice
et al. [2012a] show that the GCCF problem remains NP-complete.

In this work, we are primarily interested in developing CSG solutions for GCCF
that are deployable in real-world scenarios involving hundreds or thousands of agents,
such as collective energy purchasing [Vinyals et al. 2012; Farinelli et al. 2013] and
ridesharing [Bistaffa et al. 2015]. Notice that, since the computation of an optimal
solution is often infeasible for large-scale systems, our CSG algorithm should be able
to provide anytime approximate solutions with good quality guarantees. Moreover, the
memory requirements should scale well with the number of agents.

In this context, the works by Voice et al. [2012a; 2012b] represent the state of the
art for GCCF. However, there are some drawbacks that hinder their applicability.
Voice et al. [2012a] make assumptions that do not hold in most real-world applica-
tions (see Section 2.1.4), whereas the memory requirements of the approach in [Voice
et al. 2012b] grow exponentially in the number of agents, hence limiting the scalability.

To overcome these drawbacks, in this paper we propose CFSS (Coalition Formation
for Sparse Synergies), the first approach for GCCF that computes anytime solutions
with theoretical quality guarantees for large systems (i.e., more than 2700 agents). As
recently noticed in a survey on CSG by Rahwan et al. [2015], previous approaches in
the CF literature have been either applied to small-scale synthetic scenarios, or, in the
case of heuristic approaches, cannot provide any theoretical guarantees on the quality
of their solutions. Moreover, we provide P-CFSS, a parallelised version of CFSS that
exploits multi-core CPUs. Finally, we identify a general class of closed-form functions,
denoted as m + a, for which we provide upper bounds, allowing for coalitional values
to be computed online (i.e., their storage can be avoided).

1A set of n agents can be partitioned in Ω(( n
ln(n)

)n) ways, i.e. the nth Bell number [Berend and Tassa 2010].
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In more detail, this paper advances2 the state of the art in the following ways:

(1) We provide a new representation for GCCF which, by using edge contractions on
the graph, can efficiently build a search tree where each node is a feasible coalition
structure, while avoiding redundancy (i.e., each solution appears only once).

(2) We identify a general class of characteristic functions, i.e., m + a functions, which
are expressive enough to represent a wide range of real-world GCCF problems.

(3) We propose CFSS, a branch and bound algorithm that, when applied to CF with
m + a functions, can solve the CSG problem for GCCF and can provide anytime
approximate solutions with good quality guarantees.

(4) We propose P-CFSS, a parallel version of CFSS that is up to 9.44 times faster than
the serial version on a 12-core machine.

The rest of the paper is organised as follows. Section 2 discusses the relationship be-
tween our work and the existing literature, and Section 3 formally defines GCCF. Sec-
tion 4 explains how we generate our search space, and Section 6 details the domains
used to benchmark CFSS, our branch and bound approach described in Section 5, and
Section 7 discusses our empirical evaluation. Finally, Section 8 concludes the paper.

2. RELATED WORK
In this section we elaborate on related work in the areas of CF (Section 2.1), team
formation (Section 2.2), graph theory (Section 2.3) and optimisation (Section 2.4).

2.1. Coalition Formation
2.1.1. Classic CSG algorithms. A number of algorithms have been developed to solve

CSG for the general CF problem where all coalitions can be formed (i.e., non-GCCF).
These range from mixed-integer programming to branch and bound techniques [Rah-
wan et al. 2009] through Dynamic Programming (DP) [Rahwan and Jennings 2008b].
In particular, Sandholm et al. [1999] and Dang and Jennings [2004] focused on provid-
ing anytime solutions with quality guarantees. However, their solutions do not scale
(growing in O(nn)) and, as discussed by Voice et al. [2012b], they cannot be employed
to solve CSG for GCCF, since assigning artificially low values (such as −∞) to in-
feasible coalitions would not be suitable for assessing valid bounds. Finally, Rahwan
et al. [2008a; 2009; 2012] developed IDP-IP∗, the state of the art algorithm for classic
CSG. However, IDP-IP∗ is limited to tens of agents (30 at most) due to its memory
requirements (i.e., Θ (2n)), as such approaches need to store all coalition values.

To overcome the intractability due to such memory requirements, a number of
works [Ohta et al. 2009; Ueda et al. 2011; Tran-Thanh et al. 2013] have examined
alternative function representations, which allow to reduce the computational com-
plexity of the associated CF problems. Unfortunately, their models may not be able to
capture the realistic nature of functions such as the collective energy purchasing one
we consider here. On the one hand, this function cannot be concisely expressed as a
MC network, as its MC network would require an exponential amount of memory with
respect to the number of agents. On the other hand, the concepts of agent types/skills
imply that it is possible to fully characterise the contribution of each agent on the ba-
sis of a small set of features, in order to achieve the conciseness of the representation.
However, in our scenario each agent is associated to its own energy consumption pro-
file, resulting in a number of types/skills equal to the number of agents. Hence, we
do not compare against these works, since we are interested in developing techniques
that can handle complex functions such as the collective energy purchasing function.

2This paper subsumes the work of Bistaffa et al. [2014b] and the non-archival work of Bistaffa et al. [2014a].
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2.1.2. CSG algorithms based on heuristics. Very few heuristic solutions to the CSG prob-
lem have been developed over the last few years. For example, Sen and Dutta [2000]
propose a solution based on genetic algorithms, Dos Santos and Bazzan [2012] pro-
pose an approach based on swarm intelligence (the bee clustering algorithm) for task
allocation in the RoboCup Rescue domain, and Farinelli et al. [2013] propose an ap-
proach based on hierarchical clustering. Meta-heuristic approaches to CSG have also
been investigated, for example Keinanen [2009] proposes a CSG algorithm based on
Simulated Annealing, while Di Mauro et al. [2010] use a stochastic local search ap-
proach (GRASP) to iteratively build a coalition structure of high quality. Even if these
approaches are not able to provide any guarantees on the solution quality, they can
compute solutions for large numbers of agents. Hence, in Section 7.5 we compare CFSS
against C-Link, since it is the most recent heuristic approach for CSG and it has been
tested using the collective energy purchasing function, which we also consider.

2.1.3. Constrained CF. The works discussed above focus on unconstrained CF and can-
not be directly used in contexts where constraints of various types may limit the for-
mation of some coalitions. In this respect, Shehory and Kraus [1998] first introduced
the idea, arising in many realistic scenarios, of restricting the maximum cardinality
k of the coalitions in CSG, highlighting that, even though this constraint lowers the
number of coalitions from exponential, i.e., 2n, to polynomial, i.e., O

(
nk
)
, the prob-

lem remains NP-hard. Therefore, the authors propose an approximate algorithm with
quality guarantees, which, however, can be used if all O

(
nk
)

coalitions are valid.
On the other hand, Rahwan et al. [2011] developed a model of Constrained Coalition

Formation (CCF), differing from standard CF due to the presence of constraints that
forbid the formation of certain coalitions. However, authors provide an algorithm for
optimal CSG only for Basic CCF (BCCF) games, which cannot be used to represent
every GCCF problem, as shown in Section A.1 of the Appendix.

Finally, in a recent work, Iwasaki et al. [2015] proposed an approach to check the
non-emptiness of the core when the grand coalition does not form, hence effectively
addressing a CSG problem. Notice that, even though such an approach is tested on
1000 agents, the authors assume that the number of feasible coalitions is less than
10000. This assumption is not reasonable for large-scale scenarios we are interested to
solve. For the sake of comparison, the number of feasible coalitions with 50 agents and
m = 1 (i.e., the simplest network topology we consider in our tests) is ∼ 150 billions,
thus severely limiting the scalability of such an approach on large-scale scenarios due
to its memory requirements.

2.1.4. State of the art algorithms for GCCF. Voice et al. [2012a; 2012b] were the first to
propose algorithms for the GCCF problem. However, there are some drawbacks that
hinder their applicability. First, [Voice et al. 2012a] can only be applied to character-
istic functions fulfilling the independence of disconnected members (IDM) property.
The IDM property requires that, given two disconnected agents i and j, the presence
of agent i does not affect the marginal contribution of agent j to a coalition. This as-
sumption is rather strong for real-world applications. As noticed by Shehory and Kraus
[1998] considering task allocation, the addition of a new agent to a coalition could re-
sult in intra-coalition coordination and communication costs, which increase with the
size of the coalition. Hence, realistic functions capturing such costs (such as the ones
in Section 6.1) do not satisfy the IDM property, hence this approach cannot be applied.
Second, the DyCE algorithm [Voice et al. 2012b] uses DP to find the optimal coalition
structure by progressively splitting the current solution into its best partition. DyCE is
not an anytime algorithm and requires an exponential amount of memory in the num-
ber of agents (i.e., Θ (2n)). Hence, the scalability of this approach is limited to systems
consisting of tens of agents (around 30).
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2.2. Team formation
The problem of forming groups of agents has also been widely studied in the context of
Team Formation, in which several formal definitions of such problem have been pro-
posed. As an example, Gaston and desJardins [2005] devise a heuristic to modify the
graph connecting the agents based on local autonomous reasoning, without consider-
ing any concept of global optimal solution. The problem studied by Lappas et al. [2009]
focuses on finding a single group of agents who possess a given set of skills, so as to
minimise the communication cost within such a group. Marcolino et al. [2013] focus on
forming a single group of agents that has the maximum strength in the set of world
states. Finally, Liemhetcharat and Veloso [2014] are interested in modelling the values
of the characteristic function, based on observations of the agents. In this paper, we ad-
dress the specific group formation problem in which groups must form a partition (into
disjoint coalitions) of a given set of agents, with the objective of maximising the sum
of the coalitional values. Such problem is equivalent to the complete set partitioning
problem [Yun Yeh 1986], i.e., the standard definition adopted in the CF literature.

2.3. Graph theory techniques
Our approach enumerates all the feasible partitions of the set of agents by means of
the edge contraction operation, a graph theoretic technique known for its application in
the algorithm to solve the Min-Cut problem [Karger 1993]. Edge contraction has never
been employed in CF [Rahwan et al. 2015], hence we aim at investigating its use in
this paper. In this context, the problem of enumerating all the connected subgraphs
(corresponding to feasible coalitions in GCCF scenarios) of a given graph has been
studied in a number of works [Voice et al. 2012b; Skibski et al. 2014]. Nonetheless, such
algorithms can only be used to enumerate feasible coalitions, and cannot be applied
to enumerate feasible coalition structures (as CFSS does), which are sets of disjoint
feasible coalitions that collectively cover the entire set of agents.

2.4. Submodular-supermodular decomposition
Submodular functions have been widely studied in the optimisation literature [Schri-
jver 2003] in virtue of their natural diminishing returns property, which makes them
suitable for many applications [Nemhauser et al. 1978; Narayanan 1997]. Moreover,
Shekhovtsov et al. [2006; 2008] focused on general functions that can be decomposed
as the sum of supermodular and submodular components, exploiting such a property
to achieve better results in the solution of several optimisation problems.

While this approach is similar to the decomposition we propose in Section 6.1, our
result holds for superadditive and subadditive functions (cf. Definition 4), which are
weaker (i.e., more general) properties with respect to supermodularity and submodu-
larity. In fact, it is easy to show that supermodularity (resp. submodularity) implies
superadditivity (resp. subadditivity), but the converse is not true [Schrijver 2003].

3. GCCF PROBLEM DEFINITION
The Coalition Structure Generation (CSG) problem [Sandholm et al. 1999; Shehory
and Kraus 1998] takes as input a finite set of n agents A and a characteristic function
v : 2A → R, that maps each coalition C ∈ 2A to its value, describing how much collec-
tive payoff a set of players can gain by forming a coalition. A coalition structure CS is
a partition of the set of agents into disjoint coalitions. The set of all coalition structures
is Π(A). The value of a coalition structure CS is assessed as the sum of the values of
its composing coalitions, i.e.,

V (CS) =
∑
C∈CS

v(C). (1)
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CSG aims at identifying CS∗, the most valuable coalition structure, i.e., CS∗ =
arg maxCS∈Π(A) V (CS). Graphs have been used in different scenarios to encode syn-
ergies, coordination among players, possible collaborations or cooperation structures
[Myerson 1977; Voice et al. 2012b; Meir et al. 2012]. Myerson [1977] and Demange
[2004] pioneered the study of graphs to model cooperation structures. Given an undi-
rected graphG = (A, E), where E ⊆ A×A is a set of edges between agents, representing
the relationships between them, Myerson considers a coalition C to be feasible if all of
their members are connected in the subgraph of G induced by C. That is, for each pair
of players from a, b ∈ C there is a path in G that connects them without going out of C.
Thus, given a graph G the set of feasible coalitions is

FC(G) = {C ⊆ A | The subgraph induced by C on G is connected}.
A Graph-Constrained Coalition Formation (GCCF) problem is a CSG problem together
with a graph G, in which a coalition C is considered feasible if C ∈ FC(G). Moreover, a
coalition structure CS is considered feasible if each of its coalitions is feasible, i.e.,

CS(G) = {CS ∈ Π(A) | CS ⊆ FC(G)}.
A GCCF problem aims at identifying the most valuable coalition structure, defined as
CS∗ = arg maxCS∈CS(G) V (CS).

In the next section, we propose a novel representation of the GCCF problem based
on the concept of edge contraction.

4. A GENERAL ALGORITHM FOR GCCF
We now present a general algorithm to solve GCCF by showing that all feasible coali-
tion structures induced by G can be modelled as the nodes of a search tree in which
each feasible coalition structure is represented only once. Specifically, we first detail
how we use edge contractions to represent the GCCF problem and then we provide a
depth-first approach to build and traverse the search tree to find the optimal solution.

4.1. Generating feasible coalition structures via edge contractions
In this section we show that each CS ∈ CS(G) can be represented by a corresponding
graph GCS = (V,F), where V ⊆ 2A and F ⊆ V × V, i.e., each node u ∈ V represents
a particular coalition. Notice that in the initial graph G = (A, E) each vertex u ∈
A represents a single agent, and hence, G can be seen as the representation of the
feasible coalition structure formed by all the singletons.
In what follows, we will show that, for each CS ∈ CS(G), the corresponding GCS can
be obtained as the contraction of a set of edges of G, and that each contraction of a set
of edges of G represents a feasible coalition structure CS ∈ CS(G). In more detail, let
us define an edge contraction as follows.

DEFINITION 1. Given a graph G = (V,F), where V ⊆ 2A and F ⊆ V × V, and an
edge e = (u, v) ∈ F , the result of the contraction of e is a graph G′ obtained by removing
e and the corresponding vertices u and v, and adding a new vertex w = u∪ v. Moreover,
each edge incident to either u or v in G will become incident to w in G′, merging the
parallel edges (i.e., the edges that are incident to the same two vertices) that may result.

Intuitively, one edge contraction represents the merging of the coalitions associated
to the incident vertices. Figure 1 shows the contraction of the edge ({A} , {C}), which
results in a new vertex {A,C} connected to vertex {B}. Notice that edge contraction is
a commutative operation (i.e., first contracting e and then e′ results in the same graph
as first contracting e′ and then e). Hence, we can define the contraction of a set of edges
as the result of contracting each of the edges of the set in any given order.
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{A}

{B}

{C}

(a) Before contraction

{A,C} {B}

(b) After contraction

Fig. 1: Example of an edge contraction (the dashed edge is contracted).

{A}

{B}

{C}

{D}

{F}

(a) Before contraction

{B}{A,C}{D}

{F}

(b) After contraction

Fig. 2: Example of a 2-coloured edge contraction (the dashed edge is contracted).

Remark 4.1. Given a graph G, the graph G′ resulting from the contraction of any
set of edges of G represents a feasible coalition structure, where coalitions correspond
to the vertices of G′.

Remark 4.2. Given a graph G, any feasible coalition structure CS can be generated
by contracting a set of edges of G.

Thus, a possible way of listing all feasible coalition structures is to list the contraction
of every subset of edges of the initial graph. However, notice that the number of sub-
sets of edges is larger than the number of feasible coalition structures over the graph.
For example, in the triangle graph in Figure 1a, the number of subsets of edges is
2|E| = 23 = 8, but the number of feasible coalition structures is 5 (i.e., {A} {B} {C},
{A,B} {C}, {A,C} {B}, {A} {B,C} and {A,B,C}). This redundancy is due to the fact
that the contraction of any two or three edges leads to the same coalition structure,
i.e., the grand coalition A = {A,B,C}. Thus, we need a way to avoid listing feasible
coalition structures more than once. To avoid such redundancies, we mark each edge
of the graph to keep track of the edges that have been contracted so far. Notice that
there are only two different alternative actions for each edge: either we contract it, or
we do not. If we decide to contract an edge, it will be removed from the graph in all the
subtree rooted in the current node, but if we decide not to contract it, we have to mark
such edge to make sure that we do not contract it in the future steps of the algorithm.
To represent such marking, we will use the notion of 2-coloured graph.

DEFINITION 2. A 2-coloured graph Gc = (V,F , c) is composed of a set of vertices
V ⊆ 2A and a set of edges F ⊆ V × V, as well as a function c : F → {red, green} that
assigns a colour (red or green) to each edge of the graph.

In our case, a red edge means that a previous decision not to contract that edge was
made. On the one hand, green edges can be still contracted. Figure 2a shows an exam-
ple of a 2-colour graph in which edge ({A} , {D}) is coloured in red (dotted line). Hence,
in any subsequent step of the algorithm it is impossible to contract it. On the other
hand, all other edges in such graph can still be contracted. In a 2-coloured graph, we
define a green edge contraction (e.g., dashed line in Figure 2a) as follows.
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Algorithm 1 SOLVEGCCF(Gc)

1: best← Gc, F ← ∅ . Initialise solution with singletons and search frontier F with empty stack
2: F.PUSH(Gc) . Push Gc as the first node to visit
3: while F 6= ∅ do . Search loop
4: node← F.POP() . Get current node
5: if V (node) > V (best) then . Check function value
6: best← node . Update current best solution
7: F.PUSH(CHILDREN (node)) . Update frontier F

8: return best . Return optimal solution

Algorithm 2 CHILDREN(Gc)

1: G′ ← Gc, Ch← ∅ . Initialise graph G′ with Gc and empty set of children
2: for all e ∈ Gc : c (e) = green do . For all green edges
3: Ch← Ch ∪ {GREENEDGECONTRACTION (G′, e)}
4: Mark edge e with colour red in G′

5: return Ch . Return the set of children

DEFINITION 3. Given a 2-coloured graph G = (V,F , c) and a green edge e ∈ F , the
result of the contraction of e is a new graph G′ obtained by performing the contraction of
e on G. Whenever two parallel edges are merged into a single one, the resulting edge is
coloured in red if at least one of them is red-coloured, and it is green-coloured otherwise.

The rationale behind marking parallel edges in this way is that, whenever we mark
an edge e = (u, v) to be red, we want the agents in u and v to be in separate coalitions,
hence whenever we merge some edges with e we must mark the new edge as red to
be sure that future edge contractions will not generate a coalition that contains both
the agents corresponding to nodes u and v. For example, note that in Figure 2 the red
edge ({A} , {D}) (dotted in the figure) and the green edge ({D} , {C}) are merged as a
consequence of the contraction of edge ({A} , {C}), resulting in an edge ({D} , {A,C})
marked in red. In this way, we enforce that any possible contraction in the new graph
will keep agents A and D in separate coalitions.

Having defined how we can use the edge contraction operation to generate feasi-
ble coalition structures, we now provide a way to generate the whole search space of
feasible coalition structures.

4.2. Generating the entire search space
Given the green edge contraction operation defined above, we can generate each feasi-
ble coalition structure only once. In more detail, at each point of the generation process,
each red edge indicates that it has been discarded for contraction from that point on-
wards, and hence its vertices cannot be joined. Observe that the way we defined green
edge contraction guarantees that the information in red edges is always preserved.
Thus, given a 2-coloured graph, its children can be readily assessed as follows: for
each edge in the graph, we generate the graph that results from contracting that edge.
Moreover, we colour the selected edge in red so that it cannot be contracted again in
subsequent edge contractions. Algorithm 1 implements the depth-first3 generation and
traversal of our search tree, in which each feasible coalition structure is evaluated by
means of the characteristic function and compared with the best (i.e., the one with the
highest value) coalition structure so far, hence computing the optimal solution.

3The DFS strategy allows us to traverse the entire tree with polynomial memory requirements, since at
each stage of the search we only need to store the ancestors of the current node.
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{A}
{B}

{C}
{D}

{A,B}
{C}

{D}

{A,B,C}

{D}

{A,B,C,D}

{A,B}

{C,D}

{A,B,D}

{C}

{B}
{C}

{A,D}
{A}

{B,C}

{D}

{A,D}

{B,C}

{A}

{B,C,D}

{A}
{B}

{C,D}

{B}

{A,C,D}

Fig. 3: Search tree for a square graph.

As an example, Figure 3 shows the search tree generated starting from a square graph,
highlighting each generation step with labels on the edges. We now prove that Algo-
rithm 1 visits all feasible coalition structures and each of them is visited only once.

PROPOSITION 4.3. Given Gc, the tree generated by Algorithm 1 rooted at Gc con-
tains all the coalition structures compatible with Gc, each appearing only once.

SKETCH OF PROOF. By induction on the number of green edges. Full proof is pro-
vided in the Online Appendix.

PROPOSITION 4.4. The complexity of Algorithm 1 is O(|CS(G)| · |E|).
PROOF. There is a bijection between CS(G) and the nodes visited by Algorithm 1, by

direct application of Proposition 4.3 to G with all green edges. The creation of each new
node yields a GREENEDGECONTRACTION(G, e) operation, whose complexity is O(|E|)
(Definition 3). Hence, the complexity of creating the search tree is O(|CS(G)| · |E|).4

Notice that, even for sparse graphs, the number of feasible coalition structures can
be very large, as, in general, the GCCF problem is NP-complete [Voice et al. 2012a].
Hence, in the next section we propose a branch and bound technique that helps prune
significant parts of the search space, allowing us to compute the optimal solution for
any GCCF problem based on an m + a function by generating only a minimal portion
of the solution space (i.e., less than 0.32% in our experiments in Section 7.2).

In addition, such a bounding technique is employed in the approximate version of
our approach, which can compute solutions with quality guarantees for large-scale
systems. It is important to note that, in contrast with the optimal version, our approx-
imate approach is not characterised by the above discussed exponential complexity, as
the search for the solution is executed only for a given time budget (see Section 5.2).

5. A GENERAL BRANCH AND BOUND ALGORITHM FORm+ a FUNCTIONS
We now describe CFSS (Coalition Formation for Sparse Synergies), our branch and
bound approach to GCCF when applied to the family of m+ a characteristic functions.

DEFINITION 4. Given a graph G, a function v : FC(G) → R is superadditive (resp.
subadditive) if the value of the union of disjoint coalitions is no less (resp. no greater)
than the sum of the coalitions’ separate values, i.e., v(S ∪ T ) ≥ (resp. ≤) v(S) + v(T ) for
all S, T ⊆ A such that S ∩ T = ∅.

4Notice that, since Coalition Structure Generation (CSG) is a particular case of GCCF (i.e., CSG is a GCCF
problem with a complete graph), |CS(G)| can be, in the worst case, equivalent to the nth Bell number, i.e.,
Ω(( n

ln(n)
)n) [Berend and Tassa 2010], where n is the number of agents. Nonetheless, in the problems we

consider G is sparse and, hence, CS(G) contains a lower number of feasible coalition structures.
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We also define such properties for the function V : CS(G)→ R defined in Equation 1.

DEFINITION 5. Given a graph G, a function V : CS(G) → R defined according to
Equation 1 is superadditive (resp. subadditive) if the underlying function v : FC(G) →
R is superadditive (resp. subadditive).

DEFINITION 6. Given a graphG, V : CS(G)→R is anm+a function if it is the sum of
a superadditive (i.e., monotonic increasing) function V + : CS(G)→R and a subadditive
(i.e., antimonotonic) function V − : CS(G)→R.

This family is interesting because it allows us to provide an upper bound that underlies
our branch and bound strategy, so as to prune significant portions of the search space
and have a computationally affordable solution algorithm. We provide a technique to
compute an upper bound for the value assumed by the characteristic function in every
coalition structure of the subtree ST (CSi) rooted at a given coalition structure CSi. In
order to explain how to compute such an upper bound, we first define the element CSi.

DEFINITION 7. Given a feasible coalition structure CSi represented by a 2-coloured
graph Gc, we define CSi as the coalition structure obtained by removing all red edges
from Gc and then contracting all the remaining green edges. Intuitively, CSi represents
the connected components in the graph after the removal of all red edges.

THEOREM 5.1. Given an m+a function V : CS(G)→ R, then M (CSi) = V − (CSi)+
V +

(
CSi

)
is an upper bound for the value assumed by such function in every coalition

structure of the subtree ST (CSi) rooted at CSi, i.e.,

M (CSi) = V − (CSi) + V +
(
CSi

)
≥ max{V (CSj) | CSj ∈ ST (CSi)}. (2)

SKETCH OF PROOF. V − (CSi) (resp. V +
(
CSi

)
) is an upper bound for the subaddi-

tive (resp. superadditive) component, hence M (CSi) is an upper bound for the charac-
teristic function. Full proof is provided in the Online Appendix.

Remark 5.2. Given CSi represented by a 2-coloured graph Gc = (V,F , c), it is pos-
sible to compute a more precise upper bound for the edge sum with coordination cost
function (see Section 6.1.2) by replacing V +

(
CSi

)
with

∑
e∈F :c(e)=green w

+(e).

Building upon Theorem 5.1, we can efficiently assess an upper bound for the value of
the characteristic function in any subtree and prune it, if such a value is smaller than
the value of the best solution found so far. Algorithm 3 implements CFSS, our branch
and bound approach to solve the GCCF problem.

We remark that Algorithm 3 is correct and complete, i.e., it computes the optimal
solution regardless of the order in which the children of the current node are visited,
namely the operation of the CHILDREN function. However, such an order has a strong
influence on the performance of CFSS (as shown in Section 7.3), since it can be used

Algorithm 3 CFSS(Gc)

1: best← Gc, F ← ∅ . Initialise solution with singletons and search frontier F with empty stack
2: F.PUSH(Gc) . Push Gc as the first node to visit
3: while F 6= ∅ do . Branch and bound loop
4: node← F.POP() . Get current node
5: if M(node) > V (best) then . Check bound value
6: if V (node) > V (best) then best← node . Update current best solution
7: F.PUSH(CHILDREN (node)) . Update frontier F

8: return best . Return optimal solution
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Fig. 4. Example of a partition with a cut-set of 3 edges.

to compute an upper bound that better resembles the characteristic function (hence
improving the effectiveness of the branch and bound pruning).

5.1. Edge ordering heuristic
In this section we propose a heuristic to define a total ordering among the edges of a
graph G, in order to guide the traversal of the search tree. This results in a significant
speed-up of the algorithm, by means of an improvement of the upper bound. In partic-
ular, we notice that the value of M (CSi) = V − (CSi) + V +

(
CSi

)
is heavily influenced

by the value of V +
(
CSi

)
. In fact, it is possible that CSi = {A} (i.e., the grand coali-

tion), when CSi contains enough green edges to connect all the nodes of the graph G.
This results in a poor bound, since V + is a superadditive function and it reaches its
maximum value for A.

On the other hand, if red edges form a cut-set for the 2-coloured graph, the
procedure in Definition 7 results in a coalition structure CSi = {C1, C2}, as Fig-
ure 4 shows. In this case, our bounding technique produces a lower upper bound
M (CSi) = V − (CSi) + v+ (C1) + v+ (C2), since v+ (·) is superadditive and, therefore,
v+ (C1) + v+ (C2) ≤ v+ (A) . Notice that, having an upper bound that provides a lower
overestimation of the characteristic function is crucial for the performance of CFSS, as
the condition at line 5 in Algorithm 3 would be verified less often, hence allowing us
to prune bigger portions of the search space. Also, it easy to see that when the value
of the characteristic function increases in a non-linear way with respect to the size of
the coalitions (such as the functions we consider in this paper), the more C1 and C2

are closer to a bisection of A (i.e., the more |C1| and |C2| are close to |A|/2), the more
pronounced such improvement is.

Following this observation, it is preferable to visit the edges that produce a cut of the
graph in the first steps of the algorithm, since they will result in the above-explained
improvement once such edges are marked in red. Henceforth, we define a total order-
ing among the edges of G, producing an ordered graph Go by means of Algorithm 4.
Intuitively, such algorithm computes small5 cut-sets by means of the routine CUT(G),
which outputs the subgraphs G1 = (V1,F1) and G2 = (V2,F2) resulting from the cut,
and the cut-set F ′. Once the cut-set has been found, we label its edges as the first
ones in the ordered graph, recursively applying such procedure for all the subsequent
subgraphs resulting at each partitioning, until every edge has been ordered.

Remark 5.3. In the worst-case, Algorithm 4 makes |E| calls to CUT, whose complex-
ity is O(|E|) [Karypis and Kumar 1998]. Hence, its worst-case complexity is O(|E|2).

In addition to this edge ordering heuristic, our bounding technique can be employed to
provide anytime approximate solutions, as shown in the next section.

5To traverse the minimum number of edges necessary to partition the graph, we need the smallest cut-set.
Unfortunately, such a problem (known as the Minimum Bisection problem) is a well known NP-complete
problem [Garey and Johnson 1990]. However, our heuristic does not need an optimal solution, since if a
suboptimal cut-set (i.e., bigger than the optimal one) is used, our algorithm will still partition the graph in
a higher number of steps, resulting in a slightly smaller improvement. Therefore, we adopt an approximate
algorithm implemented with the METIS graph partitioning library [Karypis and Kumar 1998].
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Algorithm 4 ORDER(G)

1: i← 1, Go ← G, Q← ∅ . Initialise edge counter, ordered graph, and empty queue
2: Q.PUSH(G) . Push G as the first graph to partition
3: while Q 6= ∅ do . Partitioning loop
4: 〈G1, G2,F ′〉 ← CUT (Q.POP()) . Partition current graph
5: Label in Go each edge ∈ F ′ from i to i + |F ′| − 1
6: i← i + |F ′| . Increase edge counter
7: if |V1| > 1 then . If the first subgraph has at least 2 nodes...
8: Q.PUSH(G1) . ... enqueue it
9: if |V2| > 1 then . If the second subgraph has at least 2 nodes...

10: Q.PUSH(G2) . ... enqueue it
11: return Go . Return ordered graph

5.2. Anytime approximate properties
Theorem 5.1 can be directly applied to compute an overall bound of an m+ a function,
with anytime properties. More precisely, let us consider frontier F in Algorithm 3.
When we expand frontier F (Line 9) we keep track of the highest value of V (·) in the
visited nodes. Hence, given a frontier F , the bound B(F ) is defined as

B(F ) = max{V (best) , max
CS∈F

M(CS)} (3)

Thus, B(F ) is the maximum between the values assumed by V (·) inside the frontier
(i.e., V (best)) and an estimated upper bound outside of it (i.e., maxCS∈F M (CS)). No-
tice that since each M (CS) is an overestimation of the value of V (·) in the correspond-
ing subtree, such a maximisation provides a valid upper bound for V (·) in the portion
of search space not visited yet. Furthermore, the quality of B(F ) can only be improved
by expanding frontier F . More formally, if F ′ is such an expansion, then

B (F ) ≥ B (F ′) ≥ max{V (CS) | CS ∈ CS (G)}. (4)

This can be easily verified using the definition of M(·). In fact, each bound resulting
from the children of a substituted node u ∈ F must be less or equal to M(u) and, hence,
Inequality 4 holds. Intuitively, the larger the search space explored, the better is the
bound provided. Finally, notice that the fastest way to compute a bound for V (·) is to
consider a frontier formed exclusively by the root (i.e., the coalition structure formed
by all singletons). Assessing this bound has the same time complexity of computing M ,
i.e., O(|E|), and its quality can be satisfactory, as shown in Section 7.4.

After the discussion of our branch and bound algorithm for m + a functions, in the
next section we discuss some scenarios in which GCCF can be applied, and, in partic-
ular, we present three m+ a functions that will be used to evaluate our approach.

6. APPLICATIONS FOR GCCF
As previously discussed, GCCF is a well known model in cooperative game theory that
can be applied to several realistic scenarios. In what follows, we focus on two real-
world scenarios, namely social ridesharing and collective energy purchasing, that can
be modelled as GCCF problems.

In the ridesharing domain, Ma et al. [2013] adopted an heuristic approach in order
to increase the potential passenger coverage of a fleet of taxis, while decreasing the
total travel mileage of the system. Later on, Bistaffa et al. [2015] tackled the optimisa-
tion problem of arranging one-time shared rides among a set of commuters connected
through a social network, with the objective of minimising the overall travel cost. Un-
like Ma et al. [2013], Bistaffa et al. [2015] explicitly consider coalitions, showing that
such a scenario can be modelled as a GCCF problem where the set of feasible coalitions
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is restricted by the social network. Intuitively, each group of agents that travel in the
same car is mapped to a feasible coalition, whose coalitional value is defined as the
total travel cost of that particular car, i.e., the cost of driving through its passengers’
pick-up and destination points. Bistaffa et al. [2015] show that the adoption of the
GCCF model in this scenario leads to a cost reduction of up to −36.22% when applied
to realistic datasets for both spatial and social data.

In the collective energy purchasing scenario [Vinyals et al. 2012], each agent is char-
acterised by an energy consumption profile that represents its energy consumption
throughout a day. A profile records the energy consumption of a household at fixed
intervals (every half hour in our case). The characteristic function of a coalition of
agents is the total cost that the group would incur if they bought energy as a collec-
tive in two different markets: the spot market, a short term market (e.g., half hourly,
hourly) intended for small amounts of energy; and the forward market, a long term
one in which larger amounts of energy (spanning weeks and months) can be bought at
cheaper prices [Vinyals et al. 2012]. In the edge sum with coordination cost scenario,
every edge is associated to a value that represents how well (or bad) those agents
perform together, or the cost of completing a coordination task in a robotic environ-
ment [Dasgupta et al. 2012]. In the coalition size with distance cost scenario, the for-
mation of coalitions favours bigger groups and maximises the similarity of the opinion
among their members. Such application could be employed to cluster public opinion,
or to detect the presence of “virtual coalitions” among members of a parliament based
on their recorded votes (e.g., the votes by the Democratic and the Republican parties).

In addition to such practical motivations, these three scenarios are particularly in-
teresting as they are modelled by characteristic functions part of a large family of
functions, i.e., m+ a functions. In what follows, we discuss the properties of such func-
tions, showing how they can be exploited to significantly speed-up the solution of the
associated GCCF problem (see Section 5).

6.1. Benchmarkm+ a functions
We now present three benchmark functions for GCCF, namely the collective energy
purchasing function, the edge sum with coordination cost function and the coalition
size with distance cost function. In particular, we are interested in their characterisa-
tion as m+a functions, showing that they can be seen as the sums of the superadditive
and the subadditive parts [Owen 1995]. Such characteristic functions are particularly
interesting as they enable an efficient bounding technique to prune part of the search
space during the execution of our branch and bound algorithm, presented in Section 5.

6.1.1. Collective energy purchasing. In the collective energy purchasing scenario,
Farinelli et al. [2013] proposed the characteristic function

v (C) =
∑T

t=1
qtS (C) · pS + T · qF (C) · pF︸ ︷︷ ︸

energy(C)

+κ (C) ,

where T = 48 is the number of energy measurements in each profile, pS ∈ R− and pF ∈
R− represent the unit prices of energy in the spot and forward market respectively,
qF : FC(G) → R− stands for the time unit amount of electricity to buy in the forward
market and qtS : FC(G)→ R− for the amount to buy in the spot market at time slot t.6
energy : FC(G)→ R− represents the total energy cost.

6Unit prices (whose values are reported in Section 7) are negative numbers, i.e., they belong to the set
R− = {i ∈ R | i ≤ 0}, to reflect the direction of payments. Thus, the values of the characteristic function are
negative as well, hence they represent costs that, maintaining the maximisation task, we aim to minimise.
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Finally, κ : FC(G) → R− stands for a coalition management cost that depends on
the size of the coalition and captures the intuition that larger coalitions are harder
to manage. The definition of this cost depends on several low level issues (e.g., the
capacity of the power networks connecting the customers in the groups, legal fees, and
other costs associated to group contracts, etc.), hence a precise definition of this term
goes beyond the scope of this paper. Following Farinelli et al. [2013] we use κ(C) =
−|C|γ with γ > 1 to introduce a non-linear element that penalises the formation of
larger coalitions. Hence, the collective energy purchasing function is defined as

V (CS) =
∑

C∈CS

[∑T

t=1
qtS (C) · pS + T · qF (C) · pF

]
︸ ︷︷ ︸

V +(CS)

+
∑

C∈CS
κ (C)︸ ︷︷ ︸

V −(CS)

.

PROPOSITION 6.1. The collective energy purchasing function is m+ a.

SKETCH OF PROOF. The cost of the energy necessary to fulfil the aggregated con-
sumption profiles of the coalitions, i.e., V + (CS), is clearly superadditive, while the
sum of the coalition management costs, i.e., V − (CS), is subadditive, as they increase
when coalition sizes increase. Full proof is provided in the Online Appendix.

6.1.2. Edge sum with coordination cost. In the edge sum with coordination cost function
every edge of G is mapped to a real value by a function w : E → R [Deng and Papadim-
itriou 1994]. Each coalitional value is the sum of the weights of the edges among its
members. In order to have a better description of the management and communication
costs in larger coalitions, we also introduce a penalising factor κ (C),7 with the same
definition given in the previous section. Hence, we define this function as

v (C) =
∑

e∈edges(C)
w(e) + κ (C) , (5)

where the function edges : FC(G)→ 2E provides the set of all the edges connecting any
two members of a given coalition C, i.e., edges (C) = {(v1, v2) ∈ E | v1 ∈ C and v2 ∈ C}.
In order to characterise this scenario with an m+a function, we rewrite Equation 5 as

v (C) =
∑

e∈edges(C)

[
w+(e) + w−(e)

]
+ κ (C) ,

where w+(e) =

{
w(e), if w(e) ≥ 0,
0, otherwise, w−(e) =

{
w(e), if w(e) < 0,
0, otherwise.

In other words,
∑
e∈edges(C) w

+(e) represents the sum of all the positive weights of the
edges in edges (C), while

∑
e∈edges(C) w

−(e) represents the sum of the negative ones.
The edge sum with coordination cost function is then defined as

V (CS) =
∑

C∈CS

[∑
e∈edges(C)

w+(e)

]
︸ ︷︷ ︸

V +(CS)

+
∑

C∈CS

[∑
e∈edges(C)

w−(e) + κ (C)

]
︸ ︷︷ ︸

V −(CS)

.

PROPOSITION 6.2. The edge sum with coordination cost function is m+ a.

7Such penalising factor makes the edge sum with coordination cost function to violate the IDM property (cf.
Section 2.1.4), therefore the approach proposed by Voice et al. [2012a] cannot be used.
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SKETCH OF PROOF. It is easy to verify that V + (CS), i.e., the sum of all positive
edges, is superadditive, while the sum of the negative ones, i.e., V − (CS), is subaddi-
tive. Full proof is provided in the Online Appendix.

6.1.3. Coalition size with distance cost. The coalition size with distance cost can be mod-
elled evaluating each coalition C with the function

v (C) = |C|α −
∑

(i,j)∈C×C
d (i, j) , (6)

where α ≥ 1, and d : A × A → R+ is a function that measures the distance between
the opinions of agent i and agent j. From Equation 6 it follows that the input of our
problem has size N2, where N is the total number of agents, since we must know the
distances between each pair or agents. The coalition size with distance cost function of
a coalition structure CS is then defined as

V (CS) =
∑

C∈CS
|C|α︸ ︷︷ ︸

V +(CS)

+
∑

C∈CS

[
−
∑

(i,j)∈C×C
d (i, j)

]
︸ ︷︷ ︸

V −(CS)

.

PROPOSITION 6.3. The coalition size with distance cost function is m+ a.

PROOF. On the one hand, it is easy to verify that v+(C) = |C|α is a superadditive
function, assuming that α ≥ 1. On the other hand, v−(C) = −

∑
(i,j)∈C×C d (i, j) is sub-

additive, since v−(C1∪C2) = v−(C1)+v−(C2)−
∑
i∈C1,j∈C2

d (i, j) ≤ v−(C1)+v−(C2).

These functions will be used in our experimental evaluation in the next section.

7. EMPIRICAL EVALUATION
The main goals of our empirical evaluation of CFSS are:

(1) To evaluate its runtime performance with respect to DyCE considering a variety
of graphs, both realistic (i.e., subgraphs of the Twitter network) and synthetic (i.e.,
scale-free networks). Additional experiments on community networks and a de-
tailed discussion on these network topologies are in the Online Appendix.

(2) To evaluate the effectiveness of our bounding technique.
(3) To evaluate the anytime performance and guarantees that our approach can pro-

vide when scaling to very large numbers of agents (i.e., more than 2700).
(4) To compare the quality of our approximate solutions with the ones computed by

C-Link [Farinelli et al. 2013] on large-scale instances.
(5) To evaluate the speed-up that can be obtained by using multi-core machines.
(6) To evaluate the speed-up produced by our edge ordering heuristic.

Following Voice et al. [2012b], we consider scale-free networks generated with the
Barabási-Albert model with m ∈ {1, 2, 3}. This parameter determines the sparsity of
the graph, as every newly added node is connected, on average, to m existing nodes. It
is easy to verify that the average degree of a scale-free network is ∼ 2 ·m. We compare
our approach with DyCE in our three reference domains, measuring the runtime in
seconds. In our characteristic functions we use the following parameters:

— Following Farinelli et al. [2013], in the collective energy purchasing function we set
pS=−80 and pF=−70. The consumption data is provided by a realistic dataset, com-
prising the measurements collected over a month from 2732 households in the UK.

— In the edge sum with coordination cost function we assigned a uniformly distributed
random weight within [−10, 10] to each edge.

— Following Farinelli et al. [2013], in both the above scenarios we considered γ = 1.3.
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— In the coalition size with distance cost function we assigned a uniformly distributed
random value within [0, 100] to each distance between a pair of different agents (with
d(i, i) = 0), and we considered α = 2.2, motivated by the remarks in Section 7.4.

We conducted an additional set of experiments in which the graph G is a subgraph
of a large crawl of the Twitter social graph. Specifically, such dataset is a graph with
41.6 million nodes and 1.4 billion edges published as part of the work by Kwak et al.
[2010]. We obtain G by means of a standard algorithm [Russell 2013] to extract a
subgraph from a larger graph, i.e., a breadth-first traversal starting from a random
node of the whole graph, adding each node and the corresponding arcs to G, until the
desired number of nodes is reached.

Moreover, we implemented a multi-threaded version of CFSS, namely P-CFSS (i.e.,
Parallel CFSS), and we analysed the speed-up of P-CFSS using Amdahl’s law [Amdahl
1967], as it provides the maximum theoretical speed-up that can be achieved. All our
results refer to the average value over 20 repetitions for each experiment. CFSS8 and
C-Link are implemented in C, while we used the DyCE implementation provided by
its authors. We run our tests on a machine with a 3.40GHz CPU and 32 GB of memory.

7.1. DyCE vs CFSS: runtime comparison
In our experiments using scale-free networks, CFSS outperforms DyCE when coalition
values are shaped by the above-described benchmark functions (as shown in Figures
6a, 6b and 6c). Specifically, for the edge sum with coordination cost function, CFSS
outperforms DyCE by 4 orders of magnitude on networks with average connectivity
(i.e., for m = 2), and by 3 orders of magnitude on networks with higher connectivity
(i.e., for m = 3). Most probably this is due to the fact that the upper bound we adopt in
this case closely resembles the function, allowing us to prune significant portions of the
search space (see Section 7.2 for a more detailed discussion). In the collective energy
purchasing scenario with 30 agents and m = 2, CFSS is 4.7 times faster than DyCE,
and it is at least 2 orders of magnitude faster form = 1. However, DyCE is significantly
faster (44 times) than CFSS for m = 3. The adoption of the coalition size with distance
cost function produces a similar behaviour, with a performance improvement for our
method. In fact, CFSS is 17 times faster than DyCE for m = 2, and only 3 times slower
for m = 3. On the other hand, the runtime of DyCE equals the previous case, since
this approach is not sensitive to the values of the characteristic function. In our tests
using subgraphs of the Twitter network, CFSS is at least four orders of magnitude
faster than DyCE when solving instances with 30 agents (the biggest instances that
DyCE can solve), and it can scale up to 45 agents. These results confirm the very good
performance of CFSS when considering sparse networks. In fact, the average degree
of these subgraphs is comparable with the one of a scale-free network with 1 < m < 2.
In all our tests, we increased the number of agents until the execution time reached
105 seconds. Notice that, in general, DyCE cannot scale over 30 agents (due to its
exponential memory requirements), while CFSS does not have such limitation, hence
it is possible to reach instances with thousands of agents, as shown in Section 7.4.

CFSS (m = 1) CFSS (m = 2) CFSS (m = 3)

DyCE (m = 1) DyCE (m = 2) DyCE (m = 3)

Fig. 5: Legend for scale-free networks.

8Our implementation of CFSS is publicly available at https://github.com/filippobistaffa/CFSS.
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(a) Edge sum with coordination cost,
scale-free networks.
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(b) Collective energy purchasing,
scale-free networks.

15 20 25 30 35 40 45 50
10−3

10−2

10−1

100

101

102

103

104

105

106

105 s limit

DyCE limit

Number of agents

E
xe

cu
ti

on
ti

m
e

(s
)

(c) Coalition size with distance cost,
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Fig. 6: Runtime to compute the optimal solution.

7.2. Bounding technique effectiveness
Here we compare the number of configurations explored by CFSS w.r.t. the entire
search space, i.e., the one explored by Algorithm 1, to measure of the number of search
nodes pruned by our bounding technique. We consider n = 30, adopting scale-free net-
works with m = 2. When the coalitional values are provided by the collective energy
purchasing function, CFSS can compute the optimal solution exploring a number of
configurations which is, on average, 0.32% of the entire search space. We measured
a similar value in the coalition size with distance cost scenario (i.e., 0.28%). In the
edge sum with coordination cost scenario (which allows a more precise upper bound,
as explained in Remark 5.2), only 0.0045% of the entire search space is explored.

7.3. Edge ordering heuristic
The above table shows the speed-up obtained by using the ordering heuristic described
in Section 5.1 and considering the collective energy purchasing and the coalition size
with distance cost functions. Even though our heuristic is applicable also in the edge
sum with coordination cost scenario, such function has not been included in this anal-
ysis since, as stated in Remark 5.2, it allows an ad-hoc bounding method that is more
effective than the general one. Our experiments show a clear benefit in the adoption of
such a heuristic, producing a maximum performance gain of 843% in the first scenario
and 338% in the second one. Across all experimental scenarios, such a heuristic allows
an average speed-up of 295% considering both domains.
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Characteristic function Minimum Average Maximum
Collective energy purchasing 176% 367% 843%

Coalition size with distance cost 136% 222% 338%

7.4. Anytime approximate performance
We evaluate the performance of the approximate version of CFSS on instances with
thousands of agents considering the Performance Ratio (PR) [Ausiello et al. 2012], a
standard measure to evaluate approximate algorithms defined as the ratio between
the approximate solution and the optimal one on a given instance I. As computing
the optimal solution for such large instances is not possible, we define the Maximum
Performance Ratio (MPR) as the ratio between the approximate solution and the upper
bound on the optimal solution defined in Equation 3.

DEFINITION 8. Given an instance I, an approximate solution Approx(I) and an
upper bound on the optimal solution as Bound(I), we define the Maximum Performance
Ratio MPR(I) = max

(
Approx(I)
Bound(I) ,

Bound(I)
Approx(I)

)
.

MPR(I) represents an upper bound of the PR on the instance I. The MPR provides an
important quality guarantee on the approximate solution Approx(I), since Approx(I)
cannot be worse than by a factor of MPR(I) w.r.t. the optimal solution.

7.4.1. Collective energy purchasing. Figure 7a shows the value of the MPR in the col-
lective energy purchasing scenario, using n ∈ {100, 500, 1000, 1500, 2000, 2732}, adopting
scale-free networks with m = 4 and Twitter subgraphs as network topologies, and con-
sidering a time budget of 100 seconds. Other values for m show a similar behaviour
(not reported here). We plot the average and the standard error of the mean over 20
repetitions. It is clear that the network topology does not impact the quality guarantees
of our approach, hence we only adopt scale-free networks in the following experiments.
In contrast, the MPR is heavily influenced by the nature of the characteristic function,
as clarified later in this section. In addition, the results show that, for 100 agents,
the provided bound is only 4.7% higher than the solution found within the time limit,
reaching a maximum of +11.65% when the entire dataset is considered, i.e., with 2732
agents. Such small decrease is due to the fact that, for bigger instances, it is possible
to explore a smaller part of the search space in the considered time budget, leaving a
bigger portion to the estimation of the bound. Nonetheless, in this experiment CFSS
provides a MPR of at most 1.12 and thus solutions that are at least 88% of the optimal.
This confirms the effectiveness of this bounding technique when applied to the energy
domain, which allows us to provide solutions and quality guarantees for problems in-
volving a very large number of agents. In our tests, the bound is assessed at the root,
without any frontier expansion, so it can be computed almost instantly, thus devoting
all the available runtime to the search for a solution. This choice is further motivated
by the fact that, in this scenario, the bound improves of a negligible value in the first
levels of the search tree, due to the particular definition of the characteristic function.
More precisely, if we consider a frontier formed by the children of the root, in each of
them the bound of V −(·) will improve by a factor of 2γ − 2 ≈ 1.5 (i.e., the difference
between the coalition management cost of the new coalition and the ones of the two
merged singletons). On the other hand, the bound of V +(·) will remain constant: in
fact, since we are taking the maximum (i.e., the worst) bound at the frontier (as shown
in Equation 3), the result of this maximisation will still be equal to v+(A), because in
at least one of the children nodes the computation of CS will result in joining all the
agents together. In this case, it is not worth to expand the frontier from the root, since
the gain would be insignificant w.r.t. the additional computational cost.
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Fig. 7: Maximum Performance Ratio (MPR) in the considered domains.

7.4.2. Edge sum with coordination cost. We further evaluate the scalability of our ap-
proach by considering Twitter subgraphs as network topologies, and the edge sum with
coordination cost function, which allows to generate coalitional values for instances
with any number of agents. Such a function can be either positive or negative (in con-
trast with the collective energy purchasing one, which is always negative to represent
its nature of cost). Hence, it is possible that Approx(I) is negative and Bound(I) is pos-
itive, resulting in a negative MPR. In order to avoid this unreasonable behaviour, here
we consider MPR(I) = Bound(I)−LB(I)

Approx(I)−LB(I) , where LB(I) is a lower bound on the charac-
teristic function considering the instance I. Notice that it is always possible to compute
LB(I) for the edge sum with coordination cost function as LB(I) = V −(A).

Figure 7b shows that, on our machine, CFSS can scale up to instances with 30000
agents, providing solutions with a MPR of 1.127 (at least 89% of the optimal).

7.4.3. Coalition size with distance cost. The MPR exhibits a different behaviour when con-
sidering the coalition size with distance cost function, being heavily influenced by the
value of the α exponent. Figure 7c shows how the MPR varies significantly with respect
to α ∈ [2, 3], growing up to 41825.6 for α = 2.4 and then falling down to 1.13 for α = 2.7,
with a tendency to 1 when increasing this exponent. This behaviour can be explained
by reasoning about the structure of the characteristic function. Up to α = 2.4, the sub-
additive component (i.e., −

∑
C∈CS

∑
(i,j)∈C×C d (i, j)) dominates the superadditive one

(i.e.,
∑
C∈CS |C|α), hence the search for a solution is not able to find any coalition struc-

ture better than the initial one (i.e., the coalition structure with all singletons, which
is probably the optimal one). Nonetheless, the MPR keeps growing when we increase
α, since it equals Nα

N = Nα−1, i.e., the bound computed at the root (i.e., V +(A) = Nα)
divided by the value of the initial solution (i.e., N ). On the other hand, when α is
sufficiently large (i.e., for α = 2.5), this behaviour is inverted, because V +(·) has a
greater impact and the entire characteristic function tends to become superadditive.
Thus, coalition structures closer to the grand coalition represent good solutions, which
explains why the MPR tends to 1 when we increase α. These remarks motivate us to
study the impact of α also on the optimal algorithm. Figure 8 displays the runtime
needed to find the optimal solution on random instances with 25 agents on scale-free
networks with m = 2, showing that the performance of CFSS decreases when we in-
crease α from 2 to 3. The value of the bound provided by Equation 2 is larger when α
grows, hence its quality decreases, producing a less effective bounding technique and,
thus, a higher runtime. To summarise, the adoption of a bigger α in the coalition size
with distance cost function negatively impacts the performance of our approach when
computing optimal solutions, while improving approximate solutions as α grows. This
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motivates our choice of defining α = 2.2 in the previous experiments, as it represents a
good value to benchmark CFSS. In fact, it is big enough to avoid excessively low run-
times in the optimal version, but it does not exceed the 2.4 boundary, beyond which
the quality guarantees it provides are extremely good (i.e., the MPR tends to 1).

7.5. CFSS vs C-Link: solution quality comparison
We further evaluate the approximate performance of CFSS by comparing it against
C-Link [Farinelli et al. 2013], an heuristic approach to solve CSG based on hier-
archical clustering. We chose C-Link among the other approaches discussed in Sec-
tion 2.1.2 because it is the most recent one and it has also been tested using the collec-
tive energy purchasing function by its authors. Here we adopt the same experimental
setting discussed in the previous section, i.e., we consider scale-free networks with
n∈{100, 500, 1000, 1500, 2000, 2732} and m=4 (generating 20 random repetitions of each
experiment), and we adopt the collective energy purchasing characteristic function.
We solve each instance with C-Link (adopting the best heuristic proposed by Farinelli
et al. [2013], i.e., Gain-Link) and then we run CFSS on the same instance with a time
budget equal to C-Link’s runtime. Figure 9 shows the average and the standard error
of the mean of the ratio between the value of the solution computed by C-Link and the
one computed by CFSS. Since we consider solutions with negative values, when such
ratio is > 1 the solution computed by C-Link is better (i.e., has a lower cost) than the
one computed by CFSS. Our results show that, even though C-Link can compute bet-
ter solutions, the quality of our solutions is worse only by 3% for 100 agents. When we
consider the entire dataset (i.e., with 2732 agents) the quality of our solutions is still
within the 9% w.r.t. the counterpart. Notice that C-Link slightly outperforms CFSS.
This comes as no surprise since the fundamental difference between C-Link and CFSS
is that C-Link does a backtrack-free visit of the search graph adopting a greedy heuris-
tic to determine the choice at each step. In other words, C-Link explores only one path
of the search graph. On the other hand, CFSS does not employ any heuristic as it is
designed to execute a systematic visit of the search graph with backtracking. Notice
that we can easily include the C-Link’s greedy heuristic into CFSS to guide the visit of
the children nodes in the search. With C-Link’s heuristic, CFSS first explores the same
path explored by C-Link, and then, if given more time, continues the visit of the rest of
the search space by backtracking. Since we provide CFSS with a time budget equal to
C-Link’s runtime, if we employ C-Link’s heuristic then CFSS effectively becomes the
same algorithm as C-Link, and hence returns solutions of the same quality.

7.6. P-CFSS
Here we detail the parallelisation approach of the multi-threaded version of CFSS,
analysing the speed-up with respect to its serial version. Following Bader et al. [2005],
parallelisation is achieved by having different threads searching different branches
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of the search tree. The only required synchronisation point is the computation of the
current best solution that must be read and updated by every thread. In particular,
the distribution of the computational burden among the ta available threads is done
by considering the first i subtrees rooted in every node of the first generation (starting
from the left) and assigning each of them to tj threads (1 ≤ j ≤ i). The remaining
rightmost subtrees are computed by a team of ta −

∑i
j=1 tj threads using a dynamic

schedule.9 Parameters i and tj are arbitrarily set, since it is assumed (and verified
by an empirical analysis) that the distribution of the nodes over the search tree does
not significantly vary among different instances. More advanced techniques, such as
estimating the number of nodes in the search tree as suggested by Lelis et al. [2013],
will be considered in the future. We run P-CFSS on random instances with 27 agents
on scale-free networks with m = 2, using a machine with 2 Intel R© Xeon R© E5-2420
processors. The speed-up measured during these tests has been compared with the
maximum theoretical one provided by Amdahl’s Law, considering an estimated non-
parallelisable part of 6%, due to memory allocation and thread initialisation.

As can be seen in Figure 10, the actual speed-up follows the theoretical one up to 12
threads, the number of physical cores. After that, hyper-threading still provides some
improvement, reaching a final speed-up of 9.44 with all 24 threads active.

8. CONCLUSIONS
In this paper we considered the GCCF problem and proposed a branch and bound solu-
tion (the CFSS algorithm) that can be applied to a general class of functions (i.e., m+a
functions). Our empirical evaluation shows that CFSS outperforms DyCE, the state
of the art algorithm, when applied to three characteristic functions. Specifically, CFSS
is at least 3 orders of magnitude faster than DyCE in the first scenario, while solving
bigger instances for the remaining two. Moreover, the adoption of our edge ordering
heuristic provides a further speed-up of 296%. P-CFSS, the parallel version of CFSS,
achieves a speed-up of 944% on a 12-core machine, close to the maximum theoreti-
cal speed-up. Finally, our algorithm provides approximate solutions with good quality
guarantees (i.e., with a MPR of 1.12 in the worst case) for systems of unprecedented
scale (i.e., more than 2700 agents). Overall, our work is the first to show how coalition
formation techniques can start coping with real-world scenarios, opening the possi-
bility of employing coalition formation on practical applications, rather than purely
synthetic, small-scale environments.

Future work will look at applying our approach to other realistic scenarios (e.g., the
formation of team of experts connected by a social network [Lappas et al. 2009]) and
focusing on different multi-threading models (e.g., GPUs).

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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