Modular structure of brain functional networks: breaking the resolution limit by Surprise

Carlo Nicolini, Angelo Bifone

Supplementary Materials

Community	Density	$ E_c $	$ V_c $
0	0.122457	2486	202
1	0.311761	4167	164
2	0.321541	4090	160
3	0.342825	2131	112

Table S1:	Modu	larity (Coactivation
-----------	------	----------	--------------

Table S2: Modularity Resting state

Community	Density	$ E_c $	$ V_c $
0	0.154097	3545	215
1	0.109951	1674	175
2	0.489336	5323	148
3	0.671313	3323	100

Community	Density	$ E_c $	$ V_c $
0	0.491261	3626	122
1	0.482883	2948	111
2	0.553282	1298	69
3	0.388811	834	66
4	0.573077	447	40
5	0.458128	186	29
6	0.442029	122	24
7	0.394737	75	20
8	0.452632	86	20
9	0.397661	68	19
10	0.415205	71	19
11	0.379085	58	18
12	0.541667	65	16

Table S3: Surprise Coactivation

Table S4: Surprise Resting State

Community	Density	$ E_c $	$ V_c $
0	0.653183	4586	119
1	0.755375	3162	92
2	0.543101	2224	91
3	0.495277	367	39
4	0.560317	353	36
5	0.616756	346	34
6	0.513228	194	28
7	0.525362	145	24
8	0.601307	92	18
9	0.454545	30	12
10	0.583333	21	9
11	0.678571	19	8
12	0.607143	17	8

Table S5: Abbreviation of brain regions.

Region	on Abbreviatio	
ACG	Anterior Cingulate Gyrus	
CAL	Calcarine	
CAU	Caudate	
CUN	Cuneus	
DCG	Median cingulate and paracingulate gyri	
FFG	Fusiform Gyrs	
HES	Heschl Gyrus	
HIP	Hippocampus	
IFGoperc	Inferior Frontal Gyrus, opercular part	
IFGtriang	Inferior Frontal Gyrus, triangular part	
INS	Insula	
IOG	Inferior Occipital Gyrus	
IPL	Inferior Parietal Gyrus	
ITG	Inferior Temporal Gyrus	
LING	Lingual Gyrus	
MFG	Middle Frontal Gyrus	
MOG	Middle Occipital Gyrus	
MTG	Middle Temporal Gyrus	
ORBinf	Inferior Frontal Gyrus, orbital part	
ORBmid	Middle Frontal Gyrus, orbital part	
ORBsup	Superior Frontal Gyrus, orbital part	
ORBsupmed	Superior Frontal Gyrus, medial orbital	
PAL	Globus Pallidum	
PCG	Posterior cingulate Gyrus	
PCL	Paracentra Lobule	
PCUN	Precuneus	
PHG	Parahippocampal Gyrus	
PoCG	Postcentral Gyrus	
PreCG	Precentral Gyrus	
PUT	Putamen	
REC	Rectus	
ROL	Rolandic Operculum	
SFG	Superior Frontal Gyrus	
SFGmed	Superior Frontal Gyrus, medial part	
SMA	Supplementary Motor Area	
SMG	Supramarginal Gyrus	
SOG	Supranarginar Gyrus Superior Occipital Gyrus	
SPG	Superior Parietal Gyrus	
STG	Superior Temporal Gyrus	
THA	Superior Temporal Gyrus Thalamus	
TPOmid	Temporal Pole, Middle temporal Gyrus	
TPOsup	Temporal Pole, Superior temporal Gyrus	

Algorithm 1: Pseudocode of the Surprise maximization algorithm.

FAGSO(G)

1 $S \leftarrow 0 \triangleright$ Initialize Surprise to 0 2 $D \leftarrow \emptyset \triangleright$ Initialize disjoint set forest for each vertex v in V[G]3 do Make-Set(v) 4 $E' \leftarrow \text{SORT-JACCARD}(E) \triangleright$ Sort edges in decreasing order by Jaccard index 5for each $edge(u, v) \in E'$, \triangleright Taken in decreasing order by Jaccard index 67**do if** FIND-SET $(u) \neq$ FIND-SET(v)8 then if $SURPRISE(G, D \cup \{(u, v)\}) > S$ 9 $D \leftarrow D \cup \{(u, v)\}$ 10 $UNION(U,V) \triangleright$ Merge the communities u and v belong $S = SURPRISE(G, D) \vartriangleright Update \ current \ Surprise$ 11 12 return DMAKE-SET(x) $1 \quad p[x] \leftarrow x$ 2 $rank[x] \leftarrow 0$ Link(x, y)1 **if** rank[x] > rank[y] $\mathbf{2}$ then $p[y] \leftarrow x$ 3 else $p[x] \leftarrow y$ if rank[x] = rank[y]4 5then $rank[y] \leftarrow rank[y] + 1$ UNION(x, y)1 LINK(FIND-SET(x),FIND-SET(y))FIND-Set(x)if $x \neq p[x]$ 1 2then $p[x] \leftarrow \text{FIND-SET}(p[x])$ 3 return p[x]SURPRISE(G, D)1 $m_{\xi} \leftarrow 0 \vartriangleright Number \ of \ intracluster \ edges$ 2 $p_{\xi} \leftarrow 0 \vartriangleright Number \ of \ intracluster \ pairs \ of \ vertices$ $\begin{array}{l} 3 \quad m \leftarrow |E[G]| \vartriangleright \textit{Number of edges} \\ 4 \quad p \leftarrow \binom{|V[G]|}{2} \vartriangleright \textit{Number of pairs of vertices} \end{array}$ for each g in CONNECTED-COMPONENTS-SUBGRAPHS(D, G)5 $\begin{array}{c} 6 & \mathbf{do} \ m_{\xi} \leftarrow m_{\xi} + |E[g]| \\ 7 & p_{\xi} \leftarrow p_{\xi} + \binom{|V[g]|}{2} \\ 8 & \mathbf{return} - \log_{10} \left(\sum_{i=m_{\zeta}}^{m} \frac{\binom{p_{\xi}}{i} \binom{p-p_{\xi}}{m-i}}{\binom{p}{m}} \right) \end{array}$

Table S6: Normalized Mutual Information between partitions of the coactivation network with Newman's Modularity, Infomap, Reichardt and Bornholdt and Surprise. We used the Fagso algorithm for Surprise maximization, the igraph implementation of Infomap, the Brain Connectivity Toolbox implementation for RB (community_louvain.m function) and modularity_und.m for Modularity. For each method the best solution over 100 repetitions was used to calculate NMI.

		Coactivation		
NMI	Modularity	Surprise	Infomap	RB $\gamma = 1.75$
Modularity	1.00	0.61	0.56	0.61
Surprise	0.61	1.00	0.54	0.62
Infomap	0.56	0.54	1.00	0.59
RB $\gamma = 1.75$	0.59	0.61	0.59	1.00

Table S7: Normalized Mutual Information between partitions of the Resting state network with Newman's Modularity, Infomap, Reichardt and Bornholdt and Surprise. We used the Fagso algorithm for Surprise maximization, the igraph implementation of Infomap, the Brain Connectivity Toolbox implementation for RB (community_louvain.m function) and modularity_und.m for Modularity. For each method the best solution over 100 repetitions was used to calculate NMI.

		Resting State		
NMI	Modularity	Surprise	Infomap	RB $\gamma = 1.75$
Modularity	1.00	0.52	0.70	0.66
Surprise	0.52	1.00	0.53	0.58
Infomap	0.70	0.53	1.00	0.68
RB $\gamma = 1.75$	0.66	0.58	0.68	1.00

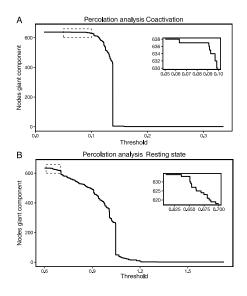


Figure S1: Percolation analysis for the coactivation matrix (A) and resting state matrix (B).

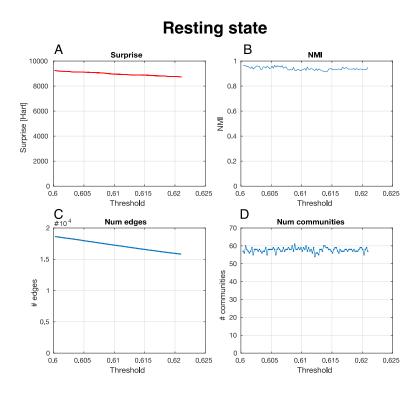


Figure S2: Different Resting State networks were generated varying the binarization threshold in a range that changed the number of edges up to the 15th quantile of the edge weight distribution. This corresponds to threshold ranges of 0.015-0.03 for the co-activation network, and 0.60-0.62 for the resting state network. The resulting networks were partitioned by Susprise maximization. The value of Surprise, the Normalized Mutual Information between the resulting optimal partitions, the number of edges and the number of communities are reported in panel A, B, C and D, respectively.

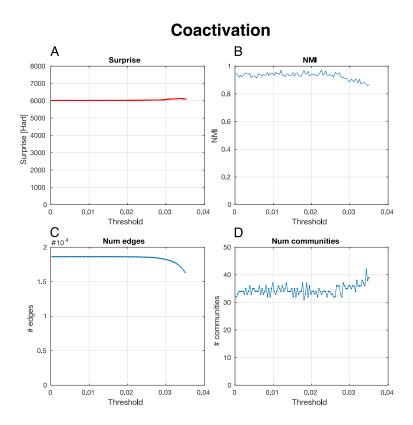


Figure S3: Different coactivation networks were generated varying the binarization threshold in a range that changed the number of edges up to the 15th quantile of the edge weight distribution. This corresponds to threshold ranges of 0.015-0.03 for the co-activation network, and 0.60-62 for the resting state network. The resulting networks were partitioned by Susprise maximization. The value of Surprise, the Normalized Mutual Information between the resulting optimal partitions, the number of edges and the number of communities are reported in panel A, B, C and D, respectively.

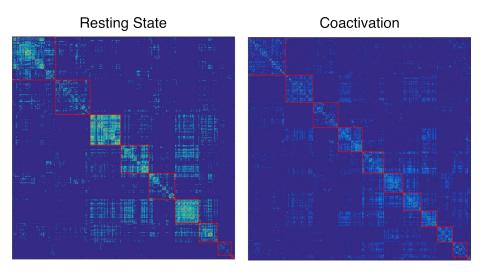


Figure S4: Partitions obtained with multiresolution Modularity (Reichardt and Bornholdt method) for a value of the resolution parameter $\gamma = 1.75$ for the coactivation and resting state networks. Increasing the resolution parameter improves detection of smaller modules, but breaks up larger ones, thus resulting in relatively homogenous size distributions.

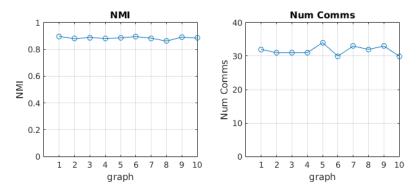


Figure S5: Assessment of the effects of experimental error on the community structure of the resting state network. Ten different graphs were generated by adding noise to the off-diagonal elements of the adjacency matrix prior to the binarization procedure. The amplitude of noise was chosen to randomly perturb 10% of the edges after binarization. Surprise maximization was applied to the resulting graphs. In the left panel, we report the Normalized Mutual Information (NMI) between the optimal partitions of each of the ten perturbed networks and that of the original resting state network. The number of communities retrieved by FAGSO in each of the perturbed networks is reported in the right panel. The graphs show that the partitions of the "noisy" graphs are consistent and similar to those of the unperturbed network, with NMI scores close to 1 and almost constant numbers of communities. These results demonstrate that Surprise maximization can retrieve the network's community structure even in the presence of substantial noise in the data.