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ABSTRACT 

 

In the last decade the increase in efficiency and decrease in cost of new 

sequencing techniques led to a growing amount of genomic sequences in public 

databases. With this huge volume of sequences being generated from high-

throughput sequencing projects, the requirement for providing accurate and 

detailed genome annotations has never been greater. Structural genome annotation 

is the process of identifying structural features in a DNA sequence and classifying 

them based on their biological role. Computer programs are increasingly used to 

perform structural annotation since they meet the high-throughput demands of 

genome sequencing projects even if they are less accurate than manual gene 

-

confidence and quality. 

The aim of this project is to meet the need of producing fast and accurate genome 

annotation by applying available computational means to different experimental 

cases, depending on the biological knowledge achieved so far and the quality of 

starting data. The contribution of different methods used to produce the final 

annotation has been analyzed along with the evaluation of results for the 

completeness of the study. 

The results obtained showed that the complexity of eukaryotic genomes greatly 

affects the annotation process; a big fraction of the genes in a genome sequence 

can be found mostly by homology to other known genes or proteins and by the 

use of ab initio predictors and species-specific evidence. The integration of 

multiple sources of annotation greatly improved the accuracy of the final genome 

annotations, anyway being not error free.  Quality assessment of results and 

filtering of low confidence sequences together with manual revision are always 

required to achieve higher accuracy.

 

 



 

INTRODUCTION

Genome annotation  in 2nd generation sequencing era 

In response to the increasing demand of complete genome and transcriptome 

 higher throughput and 

lower sequencing costs compared to their prior ones1-3. Indeed, with the release of 

Illumina Genome Analyzer in 2005, the use of short-read massively-parallel 

sequencing took sequencing runs from producing 84 kilobase (kb) per run to 1 

Gigabase (Gb) per run, revolutionizing sequencing capabilities and launching the 

-

fallen so dramatically that a single laboratory can afford to sequence large 

genomes in a relatively short time and researchers can analyze thousands to tens 

of thousands of samples in a single year. Indeed by 2014, the sequencing rate 

climbed to 1.8 Terabases (Tb) per run whereas, before NGS, the genome 

sequencing projects were massive in terms of time and costs, involving several 

research groups. As a matter of fact, the first human genome published in 2001 

required 15 years to sequence and cost nearly 3 billion dollars in contrast to the 

recently released instruments, sequencing over 45 human genomes in a single day 

for approximately 1000 dollars each.

Although sequencing has become easy in many ways, genome annotation has 

become more challenging. Indeed, before NGS the genome sequencing projects 

were undertaken by consortia, such as  the C. elegans Sequencing Consortium and 

the Arabidopsis Genome Initiative. In these cases the annotation process was 

performed on deeply-studied organisms, which genomes were reconstructed from 

the assembly of random cosmid clones with long inserts, YACs,  fosmids4, large-

insert Bacterial Artificial Chromosomes (BAC), phages, Transformation-

competent Artificial Chromosome libraries (TAC) and Inverse Polymerase Chain 



Reaction (IPCR) products derived from genomic DNA5. In the NGS era, the 

shorter read length of second-generation sequencing platforms (50 250 bp, 

depending on the platform) prevents current genome assemblies from fully 

attaining the contiguity of classic genome shotgun assemblies, while the exotic 

nature of many recently sequenced genomes complicates the already challenging 

gene annotation11. Indeed, whereas the first genome projects could  recur to large 

numbers of pre-existing gene models, the contents of today's genomes are often 

terra incognita. This makes it difficult to train, optimize and configure gene 

prediction and annotation tools17. Anyway, the exponential accumulation of 

genomic sequences in public databases requires fast, accurate and detailed 

annotations of an increasing amount of gene products. The availability of such 

resources of data, bioinformatics techniques as well as high throughput computing 

with limited manual annotation enhances the need of reducing the growing gap 

between the number of sequences and annotations7. Despite significant 

improvements, the accurate identification and structural elucidation of protein 

coding genes remains challenging. While automatically generated annotations are 

-

evaluating annotation confidence and quality. 

Structural annotation of eukaryotic genomes  

 

Main concepts 

By genome annotation we commonly refer to the process of identifying 

structural features on the genome sequence and determining their biological 

function. The annotation process is composed of two main steps: (1) structural 

annotation and (2) functional annotation. In the first step, known classes of 

elements encoded by the genome sequence are identified and properly labeled, 

- , and many 

others.  The latter step describes the biological meaning of the identified elements 

as part of a certain process. In this thesis I will focus on the structural annotation 

of eukaryotic genomes, in particular of fungal and plant genomes. 



Eukaryotic genomes vary from tens Megabases to several Gigabases involving a 

much more complex organization compared to prokaryotic genomes, which are 

small in size lacking introns and repetitive regions.

Fungal, plant and animal genomes contain similar numbers of protein coding 

genes and average coding sequence lengths, which range from 1.3 and 1.9 kb. In 

general, higher eukaryotes, as plants and animals, show lower gene densities with 

respect to their genome size and consecutively are characterized by longer 

intergenic regions, on average 3.9 kb in Arabidopsis and 3.3 kb in maize, as 

opposed to a range of 80-150 bp in many ascomycetes. 

Lower eukaryotes, such as fungal genomes, display coding densities ranging from 

37% to 61% with tipically few and short introns. Intron densities in fungi range 

averagely from 5-6 introns per gene in basidiomycetes such as Cryptococcus 

neoformans (Loftus et al. 2005), to  1-2 introns per gene for many sequenced 

ascomycetes (e.g. Neurospora crassa, Magnaporthe oryzae) (Galagan et al. 2003; 

Borkovich et al. 2004; Dean et al. 2005), to <300 introns in total in the 

hemiascomycete yeast Saccharomyces cerevisae (Goffeau et al. 1996). An 

exception to the rule is the basidiomycete C. neoformans possessing an unusual 

wide range of intron sizes,  from 68 bp  to 35 bp, where the shorter are the most 

represented8. 

Fungal genomes are relatively densely populated with genes, which are 

characterized by a significant variation in exon-intron structure. For example, 

fungal introns contain several short sequences required to perform an efficient 

P 6. 

Regarding plants, intron lengths are generally higher. In tomato Solanum 

lycopersicum, the median intron length is 264 bp with an intron density of 3 

introns per gene, whereas in Arabidopsis thaliana and rice is shorter (100 bp and 

145 bp, respectively).  

Given the significant differences in the characteristics of exons and introns 

between lower and higher eukaryotes, the training of gene prediction tools on 

organism-specific data is paramount8. The relatively simple gene structures of 



most fungi facilitate accurate gene prediction. Gene prediction in fungi has relied 

heavily on the de novo gene prediction as the majority of fungal species lack 

significant EST data. On the other hand, plants can usually rely on EST data or 

full-length cDNAs, a powerful resource in gene prediction. We described how the 

genome size affects the gene structure all alone, but several additional factors 

related to recombination rate, expression level and effective population size, are 

involved as well. 

Repetitive, or interspersed, elements are an important feature of eukaryotic 

genomes, and indeed account for a large proportion of the variation in genome 

size. The repetitive DNA fraction may represent a high proportion of a particular 

genome and abundance of repetitive sequences correlates with genome size 

explaining the differences in genomic DNA contents of different species8. 

The  typical  repeat  content of  fungal  genomes ranges  between  3%  and  64%, 

often increasing  the  difficulties  in achieving an  highly contiguous assembly8. 

The majority of the repeat sequences are associated with mobile genetic elements, 

copies or remnants of retrotransposons or DNA transposons, likely concentrated 

in few chromosomes that are rich in genes related to pathogenicity. High levels of 

repetitiveness are also found in plant genomes, i.e. transposable elements cover 

>80% of the maize genome9. A major class, the retroelements, encode the proteins 

necessary for their own reverse transcription and integration, and sometimes 

represent the 50% of the genome9. 

The process of genome annotation is focused mainly on the detection and 

annotation of repetitive regions and protein-coding genes, although recently there 

has been an increased interest in other functional elements, such as non-coding 

RNAs. The techniques used for annotating repeats, non-coding RNAs and protein-

coding genes are distinct and will be described hereafter10.

 

 

 

 



Computational strategies 

 

Repeat identification and masking 

The identification and masking of repetitive regions is usually performed as the 

first step of genome annotation, in order to exclude repetitive regions during the 

gene annotation phase and try to avoid the introduction of biases in the following 

analyses11.

Repeats occur in all shapes and sizes: they can be widely interspersed repeats, 

tandem repeats or nested repeats, they may comprise just two copies or millions of 

copies, and they can range in size from 1 2 bases (mono- and di-nucleotide 

repeats) to hundreds of thousands of bases9 (Table 1). Well-characterized repeats 

are sometimes separated into two classes: 

 

 short tandem repeats, also called micro- and mini-satellites; 

 interspersed repeats, called short interspersed nuclear elements (SINEs) 

and long interspersed nuclear elements (LINEs).

 

as few as two copies or many thousands of copies. Centromeres and telomeres are 

largely comprised of tandem repeats.  

Interspersed repeats are identical or nearly identical DNA sequences which occur 

in the genome every hundreds, thousands or even millions of nucleotides9. 

Repeats can be spread out through the genome by mechanisms such as 

transposition. Short interspersed nuclear elements (SINEs) are repetitive DNA 

elements typically of 100 300 bp in length, while long interspersed nuclear 

elements (LINEs) are typically larger of 300 bp; both SINEs and LINEs spread 

throughout the whole genome. Repeats can also take the form of large-scale 

segmental duplications, such as those found on some human chromosomes and 

even whole-genome duplication, such as in the Arabidopsis thaliana genome9.  



Table 1. Classes of repeats in eukaryotic genomes. 

The tools used to identify repeats are distinct from those used to identify protein 

coding genes. Available tools for repeat identification generally fall into two 

classes: homology-based tools and de novo tools. Repeats are often poorly 

conserved and their accurate detection is usually increased when users create a de 

novo repeat library for their own genome of interest. However, de novo tools 

identify repeated sequences  not just mobile elements  so their outputs can 

include members of highly conserved protein-coding gene families, such as 

histones and tubulins, in addition to transposon sequences. Users must, therefore, 

carefully post-process the outputs of these tools to remove protein-coding 

sequences. Moreover, a high level of fragmentation in the genome assembly may 

cause the absence of sequence contiguity, shortening the scaffold length and even 

losing information11. Repeats are interesting in and of themselves, and the life 

cycles and phylogenetic histories of these elements are growing areas of research. 

Adequate repeat annotation should thus be a part of every genome annotation 

project11. 

 

Several repeats library annotation pipelines and protocols have been developed. 

As an example, REPET pipeline allows the identification and annotation of 

Transposable Elements (TEs) through two main phases: TEdenovo and TEannot. 

Briefly, the first one performs self-alignment of the genome and clustering to 

obtain an initial repeat consensus. In the second phase, the draft repeat consensus 

is used to mask the genome, followed by detection of SSRs and final repeats 

annotation export. In the repeat detection phase, REPET can be fed with custom 

Repeat class Repeat type Length (bp) 

Minisatellite, microsatellite or satellite Tandem 2-100 

SINE Interspersed 100-300 

DNA transposons Interspersed 200-2,000 

LTR retrotransposon Interspersed 200-5,000 

LINE Interspersed 500-8,000 

rDNA (16S,18S,5.8S and 28S) Tandem 2,000-43,000 

Segmental duplications and other classes Tandem or Interspersed 1,000-100,000 



set of repeats and can check for the presence of potential host genes (potential 

species-specific genes). 

Another software which includes a repeat detection tool is MAKER, which is 

bundled with a repeat library creation protocol, which is combination of 

structural-based and homology-based approach, used to maximize the opportunity 

for repeat collection:  

1. MITEs (Miniature Inverted Repeat Transposable Elements);

2. LTR (Long Terminal Repeat) retrotransposons;

3. Collection of repetitive sequences by RepeatModeler; 

4. Exclusion of gene fragments.

Firstly, MITEs are collected using MITE-Hunter81 with all default parameters; 

then LTR retrotransposons are collected using LTRharvest82 and filtered by 

LTRdigest82 (tool from the GenomeTools suite) and other custom programs. In 

plants, LTR retrotransposons represent the largest genomic percentage of all 

repeats, increasing the  importance of collecting this type of elements with high 

confidence. Secondly, the TE sequences containing significant gaps (more than 50 

Ns) are excluded from the analysis, since even after the above procedures, a 

considerable amounts of false positives could be generated. 

Retrotransposons are frequently nested with each other or inserted by other 

elements. When unidentified, misclassification may occur along with other 

complications. To properly detect retrotransposones, LTR sequences from 

candidate elements are used to mask the putative internal regions. The detection 

of LTR sequences in the internal regions defines the case of elements nested with 

other insertions.

The last step implies the exclusion of potential gene fragments from the final 

library by searching against a plant protein database, which does not store proteins 

from transposons. 

 

After it has been created, a repeat library can be used in conjunction with tools 

like RepeatMasker12, which uses BLAST13 and crossmatch to identify stretches of 



sequence in a target genome that are homologous to known repeats, and/or 

RepeatRunner, which integrates RepeatMasker with BLASTX13 to search a 

database of repeat encoded proteins (e.g., reverse transcriptases) providing a 

comprehensive way of identi  action 

transforms every nucleotid  or, in some cases, to a 

  soft mask . 

Masking repeated regions helps the downstream sequence alignment and gene 

prediction tools to recognized these regions as repeats. The failure of properly 

masking repeats can be the reason of reduced accuracy in the final annotation. 

Unmasked repeats can seed millions of spurious BLAST alignments, producing 

false evidence for gene annotations11. Furthermore, many transposon  Open 

Reading Frames (ORFs) are mistaken for true host genes by gene predictors, 

causing portions of transposon  ORFs to be considered as additional exons to 

gene predictions, extensively corrupting the final gene annotations. In conclusion, 

good repeat masking has been proven to be crucial for the accurate annotation of 

protein-coding genes11.

Non-coding RNAs annotation 

Non-coding RNAs (ncRNAs), also known as the secret regulators of the cells, 

have been discovered 20 years ago, but only recently the attention of the scientific 

community has been turned towards the structure and function of ncRNAs14. 

NcRNAs are classified as (1) infrastructural and (2) regulatory ncRNAs. 

Infrastructural ncRNAs seem to have a housekeeping role in translation and 

splicing and include RNA components like ribosomal, transfer and small nuclear 

RNAs15. Regulatory ncRNAs are more interesting from an epigenetic point of 

view as they are involved in the modification of other RNAs. Non-coding RNA 

genes include RNAs, such as small nuclear (snRNAs), small nucleolar (snoRNAs)  

and telomere-associated RNAs (TERC, TERRA); while do not include small 

ncRNAs, such as microRNAs (miRNAs), endogenous small interfering (endo-

siRNAs) that participate in RNA interference (RNAi), Piwi-associated (piRNAs) 

and long non-coding RNAs15.



Many of the newly identified ncRNAs have not been functionally characterized 

yet, raising the possibility those component are non-functional, the reason why 

 in the last few years, likely to be 

products of spurious transcription16.

The heterogeneity and poorly conserved nature of many ncRNA genes present a 

major challenge in annotation pipelines. Indeed, unlike protein-encoding genes, 

ncRNAs are usually not well-conserved at the primary sequence level and even 

when they are, nucleotide homologies are not as easily detected as protein 

homologies11. 

A common approach to identify ncRNA genes involves the detection of conserved 

secondary structures and motives, for example using Infernal and Rfam database, 

to triage and classify the genes depending on primary and secondary sequence 

similarities. The analysis of RNA sequencing (RNA-seq) greatly improves 

ncRNAs identification. In particular, miRNAs can be directly identified using 

specialized RNA preps and sequencing protocols. Despite such sophisticated tools 

and techniques, distinguishing between bona fide ncRNA genes, spurious 

transcription and poorly conserved protein-encoding genes producing small 

peptides is still difficult to accomplish, especially if long intergenic non-coding 

RNAs (lincRNAs) and expressed pseudogenes are involved11. 

Although advancing rapidly ncRNA annotation is cutting edge showing 

accuracies generally much lower than their protein-coding counterparts11. Indeed, 

ncRNAs annotation is still in its infancy compared with protein-coding gene 

annotation, but it is. Current annotation pipelines in some cases also allow the 

integration of ncRNAs annotations.

 

Protein coding gene annotation   

The protein-coding gene annotation, the important step of genome annotation, 

usually integrates various resources to compute consensus gene structures. The 

typical gene structure of  eukaryotic genes  consist of exonic regions alternated by 

17. 



In vertebrate organims, genes are typically characterized by several exons and the 

precise identification of internal coding exons represent the most delicate step in 

gene-prediction algorithms. 

 are often wrongly used as 

synonyms. With a few exceptions, gene predictors identify for each gene the most 

likely Coding Sequence (CDS) with no mentioning of Untranslated Regions 

(UTRs) or any alternative splicing18. Gene annotations, conversely, might include 

UTRs, alternative splice isoforms and have attributes such as evidence trails. 

Gene annotation is, thus, a far more complex task than gene prediction. 

A pipeline for genome annotation must not only deal with heterogeneous types of 

evidence in the form of the expressed sequence tags (ESTs), RNA-seq data, 

protein homologies and gene predictions, but it must also synthesize all of these 

data into coherent gene models and produce an output that describes its results in 

sufficient detail for these outputs to become suitable inputs to genome browsers 

and annotation databases11. 

The information used to annotate genes comes generally from three types of 

analysis: (i) ab initio gene finding programs, which are runs on the DNA sequence 

to predict protein-coding genes; (ii) alignments of cDNAs and expressed sequence 

tags (ESTs), if available, from the same or related species; and (iii) alignments of 

the translated DNA sequence to known proteins. 

The abundance of the different types of evidence depends on the organism, but for 

less well-studied species cDNA and ESTs evidences are often missing19. 

Depending on the available type of data, the computational gene structural 

annotation is usually carried out by using an extrinsic and/or intrinsic approach. 

The extrinsic approach is homology-based, meaning that the genome annotation 

occurs using information coming from proteins of related species, or species-

specific data, like ESTs and RNA-seq data. The intrinsic approach refers to ab 

initio gene prediction, which recognizes coding sequences using Hidden Markov 

Model (HMM) profiles and other functional elements based on intrinsic properties 

of the genome. The latter approach is generally used for de novo genome 

annotation, while the combination of extrinsic and intrinsic approach can solve 



borderline cases, where the previous available information is partial and too 

incomplete to totally rely on it.

Extrinsic approach 

After the repeat masking step, most of the genome annotation pipelines perform 

protein, ESTs and RNA-seq data alignment to the genome assembly. These 

sequences generally include previously identified transcripts or ESTs from the 

organism whose genome is being annotated and/or sequences from other 

organisms; generally, these are restricted to proteins, as these retain substantial 

sequence similarity over much greater periods of evolutionary time than 

nucleotide sequences do11. 

UniProtKB SwissProt (http://www.uniprot.org/) is an excellent core resource for 

protein sequences. As SwissProt is restricted to few highly curated proteins, it is 

advisable to supplement this database with the proteomes of related, previously 

annotated genomes. Frequently, BLAST and BLAT are used to identify 

approximate regions of homology rapidly. These alignments are usually filtered to 

identify and to remove marginal alignments on the basis of metrics such as 

percent identity or coverage. After filtering of the protein alignments, highly 

similar sequences identified by BLAST and BLAT are realigned to the target 

genome using more sophisticated tools in order to obtain greater precision at exon 

boundaries11. 

therefore the edges of its sequence alignments are only approximations of exon 

boundaries. For this reason splice-site-aware alignment algorithms, such as 

Splign20, sim4cc21 and Exonerate22, are often used to realign matching and highly 

similar ESTs, mRNAs and proteins to the genomic input sequence. Although 

these programs take more time to run, they provide the annotation pipeline with 

much improved information about splice sites and exon boundaries. 

The alignment of gene models onto the genome in study 

could be also used to transfer the annotation from the first to the latter one, based 

on the hypothesis to have high levels of homology between the two organisms. 



The transfer of annotation can be used between any closely related species, either 

to transfer annotations between successive versions of a draft genome, or also to 

annotate new strains or species.   

To face with the diminishing annotation resources available for each new 

sequenced genome and the need for more rapid annotation of new sequences, 

various annotation transfer strategies have been developed.  

They are based simply on the sequence homology between closely related species 

or even to the synteny information which could aid the transfer of gene 

coordinates. As an example, The map2assembly script bundled with MAKER24 

uses BLASTN and Exonerate to map transcripts from a reference genome onto the 

new genome and refine the alignment to reliably transfer the structural annotation 

from one genome to another. This approach has been used to map maize reference 

transcripts onto the genome and to re-annotate a 22 Mb region of the Zea mays 

(maize). 

On the other hand, RATT23 (Rapid Annotation Transfer Tool) transfers 

annotations from a high-quality reference to a new genome on the basis of 

conserved synteny. In RATT, positional data based on conserved synteny and 

similarity between a reference and query are used to infer orthology, and hence 

function, more accurately. Furthermore, as genes differ in their underlying 

sequence between strains, the program refines all genes features in a correction 

step, to take into account changes to start and stop codons, length or the presence 

of internal stop codons23. 

Of all forms of evidence that could be used to be aligned on the new genome, 

cDNAs and RNA-seq data provide copious evidence for better delimitation of 

exons, splice sites and alternatively spliced exons. However, these data could be 

difficult to use because of their large size and complexity11. 

Currently, RNA-seq reads are usually handled in two ways. They can be 

assembled de novo  that is, genome-independent approach  using tools such 

as ABySS25, SOAPdenovo-Trans26 and Trinity27; the resulting transcripts are then 

realigned to the genome in the same way as ESTs. Alternatively, the RNA-seq 

data can be directly aligned to the genome using tools such as TopHat228, 



GSNAP29 followed by the assembly of alignments into transcripts using tools 

such as Cufflinks31 or Scripture30. 

Several annotation pipelines are now compatible with RNA-seq data: these 

include PASA32, which uses inchworm outputs, EVidence Modeler33, and 

MAKER34, which can operate directly from Cufflinks outputs or can use 

preassembled RNA-seq data. Another way to use RNA-  ab 

initio predictors and will be discussed in next paragraph.  

Intrinsic approach 

When gene predictors first became available in the 1990s they revolutionized 

genome analyses because they provided a fast and easy means to identify genes in 

assembled DNA sequences11.

These tools are often referred to as ab initio gene predictors because they use 

mathematical models rather than external evidence (such as EST and protein 

alignments) to identify genes and to determine their intron exon structures. The 

great advantage of ab initio gene predictors for annotation is that, in principle, 

they need no external evidence but the genome itself to identify a gene. However, 

these tools have some practical limitations from an annotation perspective.  

For instance, most gene predictors find the single most likely CDS and do not 

report UTRs or alternatively spliced transcripts. Training is also an issue; ab initio 

gene predictors use organism-specific genomic traits, such as codon frequencies 

and distributions of intron exon lengths, to distinguish genes from intergenic 

regions and to determine intron exon structures. Most gene predictors come with 

pre-calculated parameter files that contain such information for a few classic 

genomes, such as Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis 

thaliana, humans and mice11. 

However, unless the genome is very closely related to an organism for which pre-

compiled parameter files are available, the gene predictor needs to be trained on 

the genome that is under study, as even closely related organisms can differ with 

respect to intron lengths, codon usage and GC content11. 

Gene finding in smaller eukaryotes tends to be more accurate because of their 

smaller introns and greater gene density, and gene finders for bacteria, archaea 



and viruses are very accurate, predicting >99% of protein-coding genes correctly 

for most genomes. All of these methods assume that the DNA sequence is 

(mostly) correct, and certain types of errors will lead to erroneous gene 

predictions. In particular, any sequencing error that introduces an in-frame stop 

codon is likely to result in a mistaken gene prediction, because ab initio methods 

organize their searches around open reading frames. 

Given enough training data, the gene-level sensitivity of ab initio tools could 

approach 100%; however, the accuracy of the predicted intron exon structures is 

usually much lower, ~60 70%. It is also important to understand that the use of 

large numbers of pre-existing, high-quality gene models and near base-perfect 

genome assemblies is preferable to produce highly accurate gene predictions; but 

such data sets are rarely available for newly sequenced genomes11.

In case of the absence of pre-existing reference gene models, the alignments of 

ESTs, RNA-seq and protein sequences to a genome can be used to train gene 

predictors. This process is often referred to as evidence-driven gene prediction. 

Evidence-driven gene prediction has great potential to improve the quality of gene 

prediction in newly sequenced genomes, but in practice it can be difficult to use. 

ESTs, RNA-seq or protein data can be used to identify exon boundaries 

unambiguously: first they must be aligned to the genome, splice sites must be 

identified, and the assembled evidence must be post-processed before a synopsis 

of these data can be passed to the gene finder. As an example, the MAKER 

pipeline34 provides a simplified process for training the predictors AUGUSTUS 

and SNAP using the EST, protein and mRNA-seq alignments that MAKER has 

produced.

In practice, this work requires a lot of specialized software and it is one of the 

main obstacles that genome annotation pipelines attempt to overcome11. 



Figure 1. Most popular ab initio and evidence-drivable gene predictors. 

 

In recent years various tools able to manage evidence-driven prediction have been 

developed (Figure 1). AUGUSTUS51 and SNAP50 (Semi-HMM-based Nucleic 

Acid Parser) gene prediction tools are based on generalized Hidden Markov 

Models (gHMMs). AUGUSTUS also integrates together an accurate method for 

modeling the intron length distribution and includes a training procedure to first 

create the parameters for the species and a windowed weight array matrix 

(WWAM). It is able to perform also an optimization step to increase the 

prediction accuracy by a few percent points51.  

SNAP is one of the simplest and most lightweight ab initio predictors currently 

available and it is also provided with a training module that makes it easily 

adaptable to different organisms so that the gHMM parameters are adjusted in a 

species-specific manner.  

Twinscan86 is also a system based on gHMMs for predicting gene-structure in 

eukaryotic genomic sequences and combines the information from predicted 

coding regions and splice sites with conservation measurements between the 



target sequence and sequences from a closely related genome. Twinscan is 

bundled with a training utility, which makes use of BLAST and BLAT alignments 

to derive conservation sequences.  

GeneMark is a family of gene prediction programs as the eukaryotic gene 

predictor GeneMark-ES53 and GeneMark-ET52, the semi-supervised version of 

GeneMark-ES. GeneMark-ES53 is an ab initio gene finding tool based on HMMs 

which performs unsupervised self-

but the genomic sequence to be trained. GeneMark-ET instead uses mapped RNA-

seq reads or transcripts evidence to improve training. GeneMark-ET has an 

--

design enables the algorithm to work equally well for species with the kinds of 

variations in splicing mechanisms seen in the fungal phyla Ascomycota, 

Basidiomycota, and Zygomycota54. In this case the HMM model underlying the ab 

initio algorithm takes also into account for introns possessing conserved BP sites, 

as there is existing evidence of a significant role of the fungal BP sites in 

splicing6. The model consists in an enhanced intron sub-model that accommodates 

intron sequences with and without BP sites.  

Geneid55 is one of the first de novo predictors that became available (1992), and 

differently from the previous ones, it is based on the recognition of signals on a 

genomic sequence using Position Weight Arrays (PWAs). The program is 

distributed with an official training guide that permits an accurate modeling of 

coding and non-coding regions, as well as CDS and splice sites, starting from a 

training set of gene models.

In short, the program first calculates each possible k-mer probability to occur in 

the CDS region compared with a non-coding region (the intron). A different 

procedure is performed for the Start, Acceptor and Donor signals. The genomic 

sequence is scanned for instances of canonical sites ( ATG , AG , GT ) and 

the program will try to determine whether the surrounding sequence is more likely 

to be found in the presence of a real signal rather than being a random occurrence. 

Geneid determines this by comparing the surrounding region with the available 

PWAs, which is calculated during the training.  



The PWM is calculated by first comparing the sequences of real signals with all 

the sequences of false signals and then is used to create an initial version (un-

optimized) of geneid parameter file. Geneid has included, as for AUGUSTUS, an 

optimization step. This step is performed by taking the training sequences and 

geneid predictions done 

on the training data are compared with the training annotations themselves in 

order to finally choose the best combination of weight factors to optimize 

prediction accuracy. 

Automated genome annotation and quality assessment 

Manual annotation is an expensive and time-consuming process. To make this 

process faster, several automated annotation pipelines have been developed with 

the purpose to integrate existing software tools into one package that produces 

database-ready genome annotations in a relatively short time. 

The simplest form of automated annotation is to run a battery of different gene 

finders on the genome and then to use a 'chooser algorithm' to select the single 

prediction whose intron exon structure best represents the consensus of the 

models from among the overlapping predictions that define each putative gene 

locus11. This is the process used for example by Jigsaw35, EVidenceModeler33 and 

GLEAN36. 

Other popular and much refined approach is to feed the alignment evidence to the 

gene predictors at run time (that is, evidence-driven prediction) to improve the 

accuracy of the prediction process. This is the process used by PASA32, Gnomon37 

and MAKER34. 

Classification and prioritization of annotations for later manual review is a crucial 

step of the genome annotation process. A classification scheme requires that each 

annotation be tagged with information describing the type of evidence that 

supports each gene model. The pipeline of MAKER4 in particular does so together 

 able 

to identify and mask repetitive elements in the genome, to align ESTs and protein 



evidence, and to produce ab initio gene predictions inferring five and three prime 

UTRs (Figure 2). 

Figure 2. The MAKER annotation pipeline workflow.

 

as to the location of probable introns, exons, and coding regions. It actively 

modifies the resulting predictions to include features like UTRs that can be 

inferred from EST or mRNA alignments. In this way, it guides the behavior of ab 

initio prediction programs using experimental evidence to produce improved 

models. MAKER then takes the entire pool of ab initio and evidence informed 

gene predictions, updates features such as 5' and 3' UTRs based on EST evidence, 

tries to determine alternative splice forms where EST data permits, produces 

quality control metrics for each gene model (these are included in the output), and 

then chooses  from among all the gene model possibilities the one that best 

matches the evidence. This is done using a modified sensitivity/specificity 

distance metric34. At the end the pipeline integrates all the evidences to produce 

final gene annotations with quality control statistics that help prioritize genes for 

downstream review and manual curation24.   



 

The assessment of the quality of an annotation is fundamental in an automated 

genome annotation process. The gene predictions have to be possibly checked to 

avoid the creation of artifacts. Indeed, even the best gene predictors and genome 

annotation pipelines rarely exceed accuracies of 80% at the exon level11, meaning 

that most gene annotations contain at least one mis-annotated exon.  

Figure 3. Statistical metrics used to evaluate the best matches between evidence and prediction.

The commonly used metrics for measuring the accuracy of gene prediction are 

sensitivity and specificity (Figure 3). Sensitivity (SN) is the fraction of the test set 

that is predicted by the gene predictor. To be more precise, SN = TP / (TP + FN), 

where TP is true positives and FN is false negatives. By contrast, specificity (SP) 

is the fraction of the prediction overlapping the reference feature: for example, SP 

= TP / (TP + FP), where FP is false positives11. At the nucleotide level, TP is the 

number of exonic nucleotides in the reference gene model, FN is the number of 

these that are not included in the prediction, and FP is the number of exonic 

nucleotides in the prediction that are not found in the reference gene model. At the 

exon level, SN is the number of correct exons in the prediction divided by the 



number of exons in the reference gene model, and SP is the number of correct 

exons in the prediction divided by the number of exons in the prediction49. 

Eval49 is a flexible tool for analyzing the performance of gene-structure prediction 

programs as it provides summaries and graphical distributions for many statistics 

describing any set of annotations, regardless of their source. It compares sets of 

predictions to standard annotations and to one another using standard statistical 

measures as previously described; it calculates sensitivity and specificity for any 

portion of a gene model, such as genes, transcripts or exons each time relative to a 

reference annotation.  

In addition to the quality control of gene prediction also the quality of the final 

gene models should be checked. In this sense, MAKER has introduced a measure 

of the congruence between a gene annotation and its supporting evidence, called 

the Annotation Edit Distance (AED)34. AED is calculated as AED = 1  AC 

where AC = (SN + SP) / 2, where SN and SP are calculated respect to the union of 

the aligned evidences (Figure 4). 

Figure 4. Example of calculation of AED measure by MAKER.

An AED of 0 indicates the perfect agreement between the annotation and its 

supporting evidence, whereas an AED of 1 indicates a complete lack of evidence 

support for the annotation11. 



MAKER also generates the Quality Index (QI) metric for each annotated gene 

model. Quality index is a nine-dimensional summary of a transcript's key features 

and how they are supported by the data gathered by MAKER's compute 

pipeline57. 

2 provides a key for the QI data fields. 

Position Definition

1

2 Fraction of splice sites confirmed by an EST/mRNA-seq alignment

3 Fraction of exons that match an EST/mRNA-seq alignment

4 Fraction of exons that overlap EST/mRNA-seq or protein alignments

5 Fraction of splice sites confirmed by ab initio gene prediction

6 Fraction of exons that overlap an ab initio gene prediction

7 Number of exons in the mRNA

8

9 Length of the protein sequence produced by the mRNA

Table 2. MAKER quality index summary (adapted from Cantarel et al., 2008).

 

Over the years, there have been various contests aimed at assessing gene 

annotation accuracy11. These contests have played an important part in improving 

the power and accuracy of gene prediction. However, less progress has been made 

regarding genome annotations. 

sequenced today. One of the most used way to assess the quality of obtained 

annotation is to check the homology with other sequence present in public 

databases or to check if the CEGs are represented in the gene space. Moreover, 

just because a gene predictor does well on one genome is no guarantee of a good 

performance on the next34. 

Assessing annotation quality in the absence of reference genome annotations is a 

difficult problem. Experimental verification is one solution, but few projects have 

the resources to carry this out on a large scale.



AIM OF THESIS

 

The purpose of this thesis was to meet the need to produce fast and accurate 

annotations on complex genomes such as the eukaryotic ones. Working on 

different experimental cases, different annotation strategies have been 

implemented tailored to each specific case,  by integrating available software tools 

and evidence with quality control statistics. 

The analyses have been conducted on three different cases: 

 The annotation of a genome with closely related and well-characterized 

reference,  

 The annotation of a genome with a close but phylogenetically distinct 

reference,  

 The annotation of a genome with no reported reference.  

The contribution of the different methods used was analyzed along with the 

evaluation of results obtained, also by the comparison with published data, 

focusing particularly on protein coding genes. The relevance of available data and 

computational means in the process of genome annotation will be discussed as 

well as the open issues in genome annotation process.



EXPERIMENTAL CASES

 

Annotation of a genome with a closely related reference

 

Background 

The genus Fusarium represents the most important group of fungal plant 

pathogens, causing various diseases on nearly every economically important plant 

species. Members of the Fusarium oxysporum species complex exhibit 

extraordinary genetic plasticity and cause some of the most destructive and 

intractable diseases across a diverse spectrum of hosts, including many 

economically important crops, such as bananas, cotton, canola, melons, and 

tomatoes38. 

Fusarium comparative genomics has revealed that horizontal chromosome 

transfer introduces host-specific pathogenicity among members of this species 

complex and is responsible for the broad host range and the strong host specificity 

revealed by the members within the F. oxysporum species complex as well as for 

some of the most destructive and intractable plant diseases38. 

F. oxysporum f. sp. melonis (FOM) is a fungal pathogen that causes Fusarium wilt 

disease on melon (Cucumis melo). Risser et al. (1976) divided FOM into four 

races (races 0, 1, 2 and 1,2) based on the reaction to inoculation of three melon 

different cultivars. Recent studies show that F. oxysporum sp. melonis and the 

reference F. oxysporum sp.lycopersici (FOL) are closely related at evolutionary 

level at the point of creating a separated clade on a Fusarium strains phylogenetic 

tree39 (Figure 4).



Figure 4. Phylogenetic tree of Fusarium genus by Kwiatos et al. Front. Microbiol. 2015.

An important finding is that the genus Fusarium has a core genome that is shared 

among all strains and covers approximately 60% of the entire genomic sequence. 

The Fusarium genomes consist of a core region with approximately 9,000 genes 

considered to be orthologous due to high sequence similarity and conserved gene 

order40. 

On the other hand, the unique sequences, designated as lineage-specific (LS) 

regions, are a substantial fraction (40%) of the genome assembly. The LS regions 

include four entire chromosomes (chromosomes 3, 6, 14 and 15) and small parts 

of chromosome 1 and 241. 

These regions contain more than 74% of the identifiable transposable elements 

(TEs) in the FOL genome, including 95% of all DNA transposons and about 28% 

of the entire FOL reference genome was identified as repetitive including many 

retro-elements, LINEs and SINEs and DNA transposons as well as several large 

segmental duplications41.

Materials 

The genome of isolate FOM1018 has been previously sequenced with Illumina 

GAIIx and Illumina HiSeq 1000 (Illumina Inc, San Diego, CA) generating one 

standard 100 paired-end and three mate-pair libraries with different fragment sizes 

(5, 8, 10 kb) resulting in an average of 140X coverage. Scaffolding has been done 

using mate-pair reads and genome assembly performed with SOAPdenovo242 



obtaining a 52.9 Mb genome assembly divided in 4,658 scaffolds with N50 length 

of 3.59 Mb.

Due to the inability to resolve part of repeated sequences, the FOM1018 genome 

is ~8 Mb shorter than the published reference for the species Fusarium oxysporum 

sp. lycopersici (FOL) which has a genome of ~61 Mb and 15 chromosomes41. 

Comparison of FOM1018 genome with that of the FOL 4287 reference sequence  

(assembly ASM14995v2) using MUMmer43 

chromosomes are mostly co-linear and syntenic between the two formae specialis. 

As an example, Figure 5 shows an example of the perfect 1-to-1 correspondence 

between FOM1018 scaffold 4655 and F. oxysporum sp. lycopersici chromosome 

8. 

 
Figure 5. MUMmer plot of the aligment of FOM1018 assembly on FOL chromosomes.

On the other hand, many scaffolds were short and highly-fragmented (rows reach 

in blue and red dots in Figure 5). Based on the MUMmer alignment of the 

genomes, the average percent identity of the nucleotides was ~ 95%. Among a 

total of 4,658 scaffolds, 4,095 had scaffold length between 200bp and 1kb. 



Approximately half of the shorter scaffolds (1,860), amounting to ~ 0.94 Mb 

(1.8% of FOM1018 reference genome. 

 

Methods

The procedure adopted for the generation of the final annotation was the 

following: 

Figure 6. Diagram of procedure adopted for FOM1018 genome annotation. 

 Repeat masking of the genome and detection of putative non-coding 

RNAs

The repeat masking of the genome has been performed using REPET software 

ver. 2.244. Simultaneously with the masking of the genome, REPET was fed also 

with the set of repeats (both nucleotides and aminoacidic sequences) of RepBase 

database (ver. 18.08)45.  During the repeat detection phase REPET also checks for 

the presence of potential host genes (potential FOM genes). These bases were not 

masked in the genome for being potentially related to protein coding genes.  

Repeat masked genome

Alignment on genome

RNAseq data

Ab initio prediction

External evidences

Combiner tool 

Final annotation

Transcriptome 
assembly



In order to detect non-coding RNA sequences in the genome, sequence 

similarities were inferred using the reference-based method Infernal46 ver. 1.1 

using the covariance model of Rfam database47 of ncRNA families release 12.0.  

In Rfam database each RNA family is represented by a multiple sequence 

 

that alignment. Infernal builds a profile from a structurally annotated multiple 

sequence alignment of an RNA family with a position-specific scoring system for 

substitutions, insertions, and deletions. Positions in the profile that are base-paired 

in the consensus secondary structure of the alignment are modeled as dependent 

structure, in addition to the primary sequence, of the family being modeled46.  

The output of Infernal search was then converted to Generic Feature Format 3 

(GFF3) file using a custom script. GFF files are plain text, 9 column, tab-

delimited files which are frequently used as standard schema to for data exchange 

and representation of genomic data.

The repeat library was then fed to MAKER ver. 2.31.7, which first run 

RepeatMasker to identify all classes of repeats that match entries both in the 

RepBase repeat library and in the REPET library. Next MAKER uses 

RepeatRunner to identify transposable elements and viral proteins using the 

RepeatRunner protein database. 

Complex repeats are hard-masked to remove this sequences from any further 

consideration at any later point of the annotation process, whereas simple repeats 

are soft-masked to prevent alignment programs such as BLAST from seedling any 

new alignments in the soft-masked region. 

Anyway alignments that begin in a nearby (non-masked) region of the genome 

may extend into the soft-masked region since low-complexity regions are found 

within many real genes.

 

 Transfer of FOL cDNAs on FOM genome

The information obtained with the synteny analysis confirmed the strong 

similarity between the two genomes of FOM1018 and FOL, so it was decided to 

transfer the gene annotation of FOL to FOM1018. To transfer FOL cDNAs to 



FOM1018 genome was used the map2assembly script bundled with MAKER24. 

The script performs a BLASTN search onto the genome and only alignments of 

cDNA nucleotide sequences with default values 70% of identity, 70% coverage, 

e-value of 1E-10 and bit score greater than 40 are retained. The script then refines 

the alignment using Exonerate with 20% maximal score threshold, cleans the hits 

and clusters them into transcripts for annotations choosing the best ones. This step 

produced a standardized GFF3 annotation file of gene models for FOM1018. 

 Training dataset selection and ab initio prediction

The transferred gene models were re-aligned on FOM genome and those gene 

models having 100% identity and coverage based on GMAP48 alignment were 

selected. The resulting gene models were filtered for having a predicted protein 

starting with a methionine and for the presence full ORF and canonical splice sites 

using  the VALIDATE_GTF.pl script of software Eval49. 

VALIDATE_GTF.pl is a flexible Perl script that checks if the annotation file of a 

gene model contains errors. It can detect most common syntactic errors, such as 

including the stop codon within the CDS annotation. It can also detect semantic 

errors, such as annotated coding sequence that contains stop codons spanning 

splice sites. The gene models passing this filters were selected and used as dataset 

for the training of ab initio predictors. 

To improve the sensitivity and specificity of the annotation, multiple gene 

predictors were used, in particular gHMMs based predictors SNAP and 

AUGUSTUS, GeneMark-ET and geneid.

For all predictors but GeneMark, the training procedure was undertaken by 

randomly selecting 90% of dataset for the training and the remaining 10% as test-

set; this procedure was repeated ten times to perform 10-fold cross-validation. 

Eval was used at the end of each run to compare the predictions with the test-set 

and evaluating the performance of ab initio predictors.

The parameter was left 

to the default value of 1000, to indicate that 1000 flanking bases for each gene 

model will be considered for training and testing.



GeneMark-ET was trained by using as input the file of intron coordinates of the 

high quality gene models and the soft masked genome FASTA file. The training 

was  specifically designed for fungal 

genomes.   

SNAP, AUGUSTUS and GeneMark prediction was run insid  MAKER whereas 

Geneid prediction was run outside  

file of geneid predictions was given in input to MAKER in order to be used 

together with other evidences to produce final consensus gene annotation. 

 

 External evidences selection and alignment

In order to produce an evidence support to ab initio prediction, a database of 

135,770 proteins comprising Swissprot Fungi curated database and proteins of 

other 7 fungi as external evidences to align onto FOM1018 genome was provided 

to MAKER (see Results). The choice of such organisms was inspired by the paper 

of Ma et al. (2010)41, which outlines the phylogenetic relationships of Fusarium 

species in relation to other ascomycete fungi. Only protein alignments with 

default minimum of 70% coverage, 50% identity, e-value of 1E-06 were retained. 
56. 

 Final annotation generation and quality assessment 

To produce the final annotation, MAKER was supplemented with the masked 

genome assembly and evidence alignments, the ncRNAs annotation, the SNAP 

and GeneMark-ET HMMs, the FOL transferred gene models, the AUGUSTUS 

model for the species and the geneid predictions.

MAKER parameter for extending evidence clusters to gene predictors was set as 

200 bases, as gene finders require flanking sequence on either side of a gene to 

correctly find start and stop locations. This option also affects how close evidence 

islands must be before clustering together, this means that increasing this value 

can capture exons missing from the evidence; while decreasing this value can help 

decrease gene mergers in organisms with high gene density. The parameter has 

been set to a maximum of 200 in relation to the short intergenic distances in fungi.  



The maximum length for the splitting of hits was set to 100 (that is the expected 

maximum intron size for evidence alignments), because of the similar value for 

intergenic distance and intron length in the 7 Fungi proteomes given as external 

evidence support. Also the identification of monoexonic genes was allowed. 

To assess the quality of final annotation the MAKER AED and QI measures were 

used. Another approach that was followed was to search similarity against Pfam 

database58 with Hmmer ver. 3.1b159 with an e-value cut-off of 1E-07 and to 

annotate GO-terms, Enzyme codes and relative pathways using Blast2GO suite60 

with default parameters. Apollo61 ver. 2.0 was used to examine the correctness 

and perform a visual inspection of the annotations.

Results and discussion

Due to the high fragmentation of part of the assembly, REPET was able to 

identify only 0.54 Mb of repeats (1% of total repeat content) in regions 

corresponding to Fusarium non-syntenic chromosomes, in contrast to the 

identified 12.91 Mb (20% of repetitive content) on the published FOL reference 

genome41 (Table 3). Indeed it was expected that the presence of such high 

fragmentation could have caused problems for repeat annotation and loss of 

information. 

The fraction of FOM1018 repeats corresponding to the core genome41 was instead 

comparable with the one of the reference FOL, that is 3.99 Mb (7.5 % of total 

repeat content) compared to the 4.30 Mb of FOL (7% of total repeat content). 

The biggest fraction of repeats belongs to DNA transposons, comprising a good 

quantity of TIR elements (2.1 Mb) but also to retrotransposons such as LTRs (2.6 

Mb) and LINEs (0.35 Mb), in line with results obtained with FOL41 (Table 3). 



 FOL  FOM1018 

assembly length (Mb)  61.47  52.93  

  
Repeats in core regions 
(Mb)  

 
4.30 (7%)  

 
3.99 (7.5 %)  

Repeats in LS-regions (Mb)  12.91 (21%)  0.54 (1 %)  

total masked (Mb) (%)  17.21 (28%)  4.53 (8,5%) 

Table 3. Summary statistics of repetitive content of FOM1018 genome compared with FOL.

 Non-coding RNAs annotation was done using the Infernal homology-based 

approach since no small RNA-seq data sets were available to eventually provide 

evidence to support de novo ncRNA annotations.

The analysis resulted in the identification of 314 tRNAs in FOM1018, slightly 

higher but in line with the number of tRNAs identified in FOL (Table 4). Also the 

number of small non coding RNAs is similar whereas in FOM1018 have been 

also identified 77 5S_rRNAs, which have not been previously identified in FOL. 

Based on the literature, 61 rRNA were identified also in Fusarium oxysporum sp. 

melonis isolate NRRL 2640438 and this data confirmed the results of FOM1018. 

FOL FOM1018

tRNA 268 314

5S_rRNA - 77

snRNA 27 25

Table 4. Results of the analysis in Rfam database and comparison with FOL.

The soft masked genome of FOM1018 was used to transfer FOL gene models in 

order not to annotate genes in repetitive regions.  

The map2assembly script bundled with MAKER was able to reliably transfer a 

total of 14,469 gene models upon 17,977 FOL cDNAs onto FOM genome (Table 

5).



Total FOL cDNAs 19,777

Transferred on FOM1018 with 1 match 13,598 

Transferred on FOM1018 with > 1 match 527 

Non-transferred genes 3,852 

Table 5. Statistics of FOL transferred gene models on FOM1018 genome.

A percentage of ~ 35% of transferred gene models had an AED = 0.00 that means 

that such gene models are identical on FOM1018 respect to FOL.

Among the genes reliably transferred, 527 had more than one locus on FOM1018 

genome. This could be due to the presence of fragmentation and redundancy of 

some regions. Some real proteins contain low-complexity regions and if the 

program is left to align to a low-complexity region, spurious alignments would be 

produced. 

Even if given a soft-

extend through low-complexity regions. This could have produced some spurious 

alignments but it is just a small proportion of overall alignments and the majority 

of gene models are of a good quality. 

Based on results obtained with the transfer of annotation, a more reliable dataset 

for the training of ab inito predictors was produced. The 13,598 transcripts 

representing uniquely transferred gene models, obtained with MAKER, were re-

aligned on FOM genome using GMAP.

A total of 11,462 gene models mapped with GMAP 100% coverage and identity 

back to FOM1018 genome. After filtering the quality of the transcripts with a 

custom script (see Methods) a final high quality dataset of 4,573 gene models was 

obtained. A total of 6,889 ilters due mostly to problems in 

the annotation file of the gene model but also the FASTA file for predicted protein 

encoded (see EVALUATE_GTF.pl specifications in Introduction). Ab initio 

predictors parameter files were obtained with the 10-fold cross-validation using  

the high quality dataset of 4,573 gene models and their performance was 

evaluated (Table 6). 



AUGUSTUS SNAP Geneid

Gene Sensitivity 49.05% 38.69% 41.79%

Gene Specificity 56.01% 31.26% 40.66%

Exon Sensitivity 62.57% 53.39% 60.11%

Exon Specificity 71.34% 50.82% 60.26%

Nucleotide Sensitivity 93.51% 95.28% 97.18%

Nucleotide Specificity 100.00% 88.70% 90.53%

Table 6. Average sensitivity and specificity measures obtained with the training of gene predictors.

Both AUGUSTUS and geneid show good performance in terms of nucleotide and 

exon sensitivity and specificity. Gene sensitivity has in general lower values but 

in line with those obtained in other publications34.

The proteins and of 7 fungi and SwissProt fungi were aligned on FOM1018 

genome using MAKER4 (Table 7). Among all these external evidences, about   ~ 

60% aligned onto the FOM1018 genome with the parameters described in 

Methods.

Source # proteins #aligned on FOM1018 

SWISSPROT 31,315 9,446

FOL 4827 17,696 15,224 

FOM 26406 26,719 24,132 

F.Verticilloides 14,185 12,261 

F.Graminearum 13,313 9,797 

P.tritici-repentis 12,169 3,086 

A.Nidulans 10,534 3,368 

N.Crassa 9,839 3,895 

TOTAL 135,770 81,209 

Table 7. External evidences aligned on FOM1018 genome.

After generation of all source of evidence, MAKER was run to produce the final 

annotation, which contained 18,689 gene models and the same number of 



transcripts.  Compared with the number of FOL genes, the number of FOM1018 

gene models is slightly higher (Table 8). The main structural parameters such as 

the mean intergenic distance and the mean gene length are generally in line with 

those of FOL, even if the median intergenic distance is a bit lower. This could be 

due to the higher number of genes in a smaller assembly respect to the reference 

FOL or to potential gene fusions in the dataset that could be checked with the 

functional annotation and the manual curation; although the mean gene length is 

1,323 bp and this fact could possibly exclude the second hypothesis. Mean exon 

and intron length are similar but the proportion of monoexonic genes is 10% 

higher. This could be a case of multi-exonic gene not splitted by the gene 

predictor and retained as monoexonic due to the absence of an evidence support 

such as a fungal protein or ESTs or RNA-seq data or maybe FOM1018 could have 

an higher proportion of monoexonic genes respect to its reference. Among 6,428 

monoexonic genes, 2,229 ( ~ 35%) have an AED=1, which means no evidence 

support. This also should be investigated in manual curation and functional 

annotation phase. Among all gene models, 1,803 have at least one annotated UTR. 

STRUCTURAL 
FEATURES

FOL FOM1018

Number of genes: 17,696 18,689

Mean intergenic distance: -201 -108.50

Median intergenic distance: 1,054 802

Mean gene length: 1,345 1,323.54

Mean Exon length: 497 487.15

Mean intron length: 100 116.85

Mean number of exons: 2.70 2.71

Monoexonic: 4,392 6,428

% monoexonic: 24.81% 34.40%

Monoexonic mean length: 1,094 854.98

Table 8. Summary structural statistics of FOM1018 final annotation and comparison with FOL.



 

This final dataset of 18,689 then, comprises both low- and high-quality gene 

models, which can be first - but not absolutely - distinguished using the AED 

quality measures provided by MAKER itself

More than 85% of gene models have an AED <= 0.5 (Figure 7) which is a 

standard cut-off to evaluate the quality of the gene model34. Moreover, more than 

15,900 gene models (85% of total) result to be supported by any type of evidence 

(AED <1), meaning that almost every gene model with an AED <1 has an AED 

<= 0.5 (Table 9).  

 

 

 

 

 

 

 

Figure 7. AED graph of FOM1018 gene models.



Source ALL AED <1

AUGUSTUS 1,524 1,236

SNAP 3,943 3,266

GeneMark-ET 9,159 9,159

Geneid 2,929 1,420

FOL gene models 1,134 849

TOTAL 18,689 15,930

Table 9. Statistics of gene models and AED values in MAKER annotation. 

Analysis of MAKER QI indicates that 13,416 gene models are fully overlapping 

an external evidence and 16,090 gene models overlap completely an ab initio gene 

prediction. 

Indeed most of genes are supported by all type of evidence, such as predictions, 

external evidences and FOL genes. In Figure 8, 13,312 (71.2%) genes are 

supported either by transcript evidence and/or protein evidence, while 13,029 

(69.7%) genes are supported by all three kinds of evidence. Most of genes, 18,406 

(98.5%) are supported by de novo predictions and the 85.5% of them (15,973) are 

supported by FOL genes and protein evidence. 



Figure 8. Venn diagram for sources of evidence for FOM1018 gene models. The different colors 
indicate various sources of evidence, and the numbers are the number of gene models supported by 

each kinds of evidence.

 

A good fraction of genes (18,168 - 97% of total) has at least one hit in NCBI non-

redundant database, and 10,484 genes have at least one InterPro domain 

annotated. 

Among all gene models, 2,907 have an AED=1  and among them 2,229 are 

monoexonic, as said before  meaning that MAKER annotation has no 

experimental support for them. These low quality gene models may be artifacts or 

orphan genes and need to be further analyzed in detail; to get a first idea the 

BLAST results were checked, observing that 2,564 genes (83.5% of genes with 

AED=1) have at least one hit in NCBI non-redundant database even if the 

More in-

even if, based on this results, the quality of the overall annotation can be 

considered as good.

 

 

 



Annotation of a genome with a close but phylogenetically  

distinct reference 

Background

The genus Solanum ranks among the largest of plant genera and includes several 

cultivated crops of regional or worldwide significance including potato (Solanum 

tuberosum) which is the most important non-cereal food crop worldwide. Abiotic 

stress factors such as cold, heat, drought, and salinity have a significant effect on 

cultivated potato, affecting yield, tuber quality, and market value (Wang-Pruski 

and Schofield, 2012). To improve resistance to these adverse environmental 

factors, potato breeders can exploit the 200 tuber-bearing Solanum species 

native to South, Central, and North America63.

Solanum commersonii is a tuber-bearing wild potato species native to Central and 

South America. Analyses of chloroplast genome restriction sites and nitrate 

reductase gene sequence confirmed that S. commersonii is phylogenetically 

distinct from cultivated potato (Rodriguez and Spooner 2009) and this distinction 

is confirmed also by the phylogenetic analysis done by Fajardo and Sponeer in 

2011 when they divided 29 diploid Solanum species in 4 sister clades by using 

used conserved orthologous set (COSII) nuclear loci (Figure 9). 



Figure 9. Extract of maximum likelihood phylogram of Solanum series Conicibaccata (Fajardo and 

Spooner, Systematic Botany 2011). S.chacoense alias S.commersonii. 

 

Consistent with these analyses, S. commersonii and S. tuberosum are sexually 

incompatible and have been assigned different endosperm balance numbers 

(EBNs) (Johnston et al., 1980), with S. commersonii reported as 1 EBN and S. 

tuberosum reported as 4 EBN. Despite being genetically isolated from cultivated 

potato, S. commersonii has garnered significant research interest since it possesses 

resistance traits  and particularly attractive is its freezing tolerance and capacity to 

cold acclimate (i.e., ability to increase cold tolerance after exposure to low, non-

freezing temperatures). By contrast, the cultivated potato is classified as sensitive 

to low temperatures and is unable to cold acclimate (Palta and Simon, 1993). 

Materials 

The draft genome sequence of the wild potato species S. commersonii  PI 243503 

has been sequenced with Illumina HiSeq 1000 (Illumina Inc, San Diego, CA) 

from six 100 paired-end libraries with different fragment sizes (400, 450, 550 and 

700 bp) and three mate-pair libraries with different fragment sizes (3,5,10 kb) 

obtaining roughly 105x coverage. The genome assembly was performed using the 

S. tuberosum genome sequence published in 2011 as a reference63, obtaining a 

total assembly length of 830 Mb with an N50 scsffold length of 44,3 kb.



Preliminary analyses on genome assembly reported S. commersonii has a total of 

9,894,571 reliable single-nucleotide polymorphisms (SNPs) among 662,040,919 

reliable genome bases, yielding a SNP frequency of 1.49%.

The generation of RNA-seq dataset has been done starting from 100 paired-end 

sequencing libraries obtained from RNA of four different tissues, and sequencing 

with Illumina HiSeq1000 (Illumina Inc, San Diego, CA), obtaining a total of 

~16,8 Gb (Table 10).

Tissue Sequenced  fragments 

(100x2)

flower 36,323,578

root 46,372,066

tuber 49,885,340

leaf 35,855,731

Table 10. Summary statistics of S. commersonii RNA-seq data.

 

 

 

 

 

 

 

 

 

 

 

 



Methods

The procedure adopted for the generation of the final annotation was the 

following: 

 

Figure 10. Diagram of strategy adopted for S. commersonii genome annotation. 

 Repeat masking of the genome and detection of putative non-coding 

RNAs

Annotation of repeats and protein coding genes was performed using the 

MAKER34 pipeline ver. 2.27. In particular, repeats were annotated and masked on 

S. commersonii genome assembly using RepeatMasker ver. 3.2.8 with the 

Solanaceae repeats database and RepeatRunner with the database of TE-encoded 

proteins, both included into MAKER installation34. For the genome annotation 

The repeated fraction was also evaluated by graph-based clustering of repetitive 

elements in unassembled reads using the RepeatExplorer Web server64 and by 

analysis of k-mer content using Jellyfish and GCE software (Liu et al., 2012). 

Putative SINEs were identified using the SINE-Finder tool65 and were used to 

search against published SINE sequences of S.  tuberosum and other Solanaceae 

using FASTA (E- -10)65.

Repeat masked genome

Alignment on genome

RNAseq data

Ab initio prediction

External evidences

Combiner tool 

Final annotation

Transcriptome 
assembly



Different E-value thresholds at increasing stringency were tested without 

significant differences. Members of each family detected in S. commersonii were 

aligned with MUSCLE66, and consensus sequences were calculated.

NcRNAs were identified using cmscan (E- -10) from Infernal ver. 1.1 

against the database of covariate models of Rfam 11.0 and lncRNAs were 

identified using the approach described by Boerner and McGinnis (2012). Non-

coding transcripts were BLAST searched as well against a database of plant 

mature miRNA sequences in miRBase (http://www.mirbase.org/) to identify 

homologous miRNAs. 

 RNA-seq data analysis

For the creation of a more reliable dataset, raw sequencing reads from RNA-seq 

experiments performed on root, flower, tuber, and leaf samples were checked for 

quality using FastQC67 ver. 0.10.1. Trimming and removal of adapters were 

performed with CutAdapt68 ver. 1.5.2 and FASTX Toolkit69 ver. 0.0.13.2.

Trimmed reads were then mapped against the S. commersonii genome sequence 

with TopHat13 ver. 2.0.11. Duplicated reads were removed with Picard Tools ver. 

1.110 (http://picard.sourceforge.net) and the resulting files were used to annotate 

new transcripts with Cufflinks31 ver. 2.2.0 removing the isoforms contained in 

other isoforms and creating a new annotation file comprising those isoforms 

 as reported by Cuffmerge31.

Filtered RNA-seq reads were also de novo assembled into contigs using Trinity27 

release 2013/02/25 setting minimum contig length parameter equal to 200 bp and 

requiring at least two independent reads covering each contig.  

 

 External evidences alignment

evidences to align onto S. commersonii genome together with the curated 

SwissProt plants protein database (see Results). 

Assembled contigs and selected external evidences have been then aligned on S. 

commersonii genome using MAKER with BLAST and EXONERATE and default 

parameters defined by the authors.



 Ab initio gene prediction

Ab initio prediction of protein coding genes was performed using AUGUSTUS51, 

SNAP50 and GeneMark-ES53. SNAP50 training procedure undertaken was indeed a 

formalization of the steps described in the MAKER tutorial. Briefly, a first 

iteration of MAKER was run using repeats, previously established evidence and 

default parameters of BLAST and Exonerate. MAKER GFF of derived gene 

models then has been converted to ZFF format with the script bundled with 

. This scripts generates the ZFF format file and a FASTA 

file with the coordinates of gene models that can be referenced against. These will 

be used to train SNAP.

 program (included in SNAP) was left 

to the default value of 1000 flanking bases. The final HMM file has been given in 

input to the second iteration of MAKER for the gene prediction.

GeneMark-ES53 was chosen as it performs self-

training sets but the genome FASTA file. Indeed the training of S. commersonii 

was performed using randomly selected scaffolds covering about 40 Mbps of S. 

commersonii genome, in accordance with author's instructions53.  

 Final annotation generation and quality assessment

The final annotation was generated using MAKER pipeline integrating the RNA-

seq data and external evidences. In total, two MAKER annotation iterations were 

carried out, the first one to build a dataset of genes for ab initio prediction and the 

second one to build final annotation.

Gene models with an AED higher than 0.5 were discarded from the final 

annotation (for further details about AED measure see Introduction). 

Predicted ORFs were aligned against the NCBI Non Redundant (NR) database 

retrieved on 06/2012 with BLAST13 (BlastP, e-value < 10-5) and functionally 

annotated by automatic annotations performed with Blast2GO60. 



Results and discussion

Roughly 383 Mb of repetitive sequences were identified, accounting for 44.5% of 

the assembly of the S. commersonii genome. Analysis of k-mer distribution in 

unassembled reads estimated 51.3% of the genome as non-repetitive and graph-

based clustering with RepeatExplorer detected a fraction of repeated sequences 

equal to 36% of the total genome (data not shown). Although these data are not 

conclusive, they suggest that, compared with potato (Potato Genome Sequencing 

Consortium, 2011), S.commersonii might have a lower amount of repetitive DNA 

(44.5% versus 55%), which might predict different genome dynamics in these two 

species since their separation from a common ancestor. 

The repetitive fraction of S.commersonii genome is dominated by long terminal 

repeat-retrotranspons (LTR-RTs) (34%) with lower levels of several other repeat 

types (Figure 11). Characterization of SINE families allowed annotating 1,925 

SINEs with significant similarity to families previously described in S. tuberosum 

and in other Solanaceae (Wenke et al., 2011; Seibt et al., 2012). 

Figure 11. Repetitive Sequence Annotation in the Draft Genome of S. commersonii. (A) Classification 
of repetitive sequences in S. commersonii.(B) Comparison of transposable element lengths between S. 

commersonii and S. tuberosum63.



The comparison between S. commersonii and other Solanaceous species showed 

differences in terms of repetitive sequences. In a comprehensive review of the first 

50 sequenced plant genomes, Michael and Jackson (2013) reported that genome 

repetitive content ranged from 3% (Utricularia gibba) to 85% (Zea mays). 

Compared with potato (55%) and tomato (63%), S. commersonii showed a lower 

amount of repetitive DNA (44.5% of the assembly). As in other Solanaceae 

species, there were many more Ty3-gypsy type than Ty1-copia type LTR-RTs 

identified in S. commersonii, suggesting that the former elements have been 

somewhat more successful in colonizing and persisting in Solanaceae genomes. 

LTR-RTs play a substantial role in genome size variation, and the lower 

frequency of TEs in S. commersonii may contribute to its smaller assembly size as 

well as underline the occurrence of different evolutionary dynamics63. 

Also ~21,000 S. commersonii ncRNAs were identified. Emerging evidence has 

revealed that ncRNAs are major products of the plant transcriptome (Rymarquis 

et al., 2008) and that they may have significant regulatory importance, especially 

during stress situations (Matsui et al., 2013). 

A large number of transcripts (20,994) with no apparent coding capacity were 

predicted in S. commersonii. These ncRNAs comprised a diverse group of 

transcripts, including 40 among tRNAs and rRNAs, 18,882 long noncoding RNAs 

(lncRNAs), and 1703 putative microRNA (miRNA) precursors (Figure 12).  

Figure 12. NcRNAs classes in S. commersonii.63



A key step toward understanding the biological functions of the predicted 

miRNAs was achieved through the identification of 4,437 target sites. According 

to GO term classification, 22% (976) of the target genes are involved in cold 

response and 10 are potential regulators of transcripts annotated as responsive to 

cold.

The RNA-seq data filtering procedure resulted in a total 11,7 Gb of data that will 

be used to create support for ab initio predictions (Table 11).

Tissue Sequenced fragments (100x2) Filtered fragments (100x2) 

flower 36,323,578 26,058,003

root  46,372,066 35,519,519

tuber  49,885,340 22,704,705

leaf  35,855,731 32,935,569

Table 11. Statistics of filtering of S. commersonii RNA-seq data.

 

The reference-based assembly of the transcriptome from leaf, flower, root and 

tuber samples produced 68,208 transcripts (Table 12) with an N50 length of 

2,100, slightly higher than S. tuberosum (N50 length of 1,862 bp). 

Number of contigs 68,208

Total assembly length (bp) 114,251,410

Average length of contigs (bp) 1,675.04

Minimum length of contigs (bp) 39

Maximum length of contigs (bp) 16,995

N50 length (bp) 2,100

Number of contigs >= 100bp 68,196

Average length of contigs >= 100bp 1,675.32

N50 length of contigs >= 100bp 2,100

Table 12. Statistics of S. commersonii reference-based transcriptome assembly.



The de novo assembly of RNA-seq filtered reads resulted in a total of 117,816 

contigs with more than 96% mapping on S. commersonii genome (Table 13).

Table 13. Summary statistics of de novo assembled S. commersonii contigs.

The N50 length of the contigs was 1,887 bp, in line with the one of S. tuberosum 

PGSC v3.4 annotated transcripts (1,862 bp). The first MAKER iteration was run 

using selected ESTs and protein evidence (Table 14) producing a starting dataset 

of 79,627 gene models that have subsequentially used for the training of SNAP 

and AUGUSTUS.  

Selected external evidences aligned to S. commersonii genome with an average 

rate of ~62% and an overall alignment rate of  ~58% (Table 14).  

 

 

 

 

 

 

 

 

 



Species Source # sequences # aligned sequences

A.Thaliana TAIR10 Proteins 35,386 28,492 

S. Tuberosum PGSC v.3.4 Proteins 56,218 52,990 

S. Lycopersicum ITAG 2.3 Proteins 34,727 31,263 

Swiss-Prot Plants 13/04/2013  

Proteins 

36,104 31,531 

S. commersonii NCBI ESTs 548,500 124,272 

S. Tuberosum NCBI ESTs 250,127 59,611 

S. Lycopersicum NCBI ESTs 298,306 74,280 

S. commersonii RNA-seq contigs 117,816 83,567 

TOTAL 1,377,184 486,006 

Table 14. External evidences used as support to S. commersonii gene predictions.

The GFF3 annotation derived from reference-based assembly and the FASTA file 

of de novo assembled contigs were aligned on S. commersonii genome together 

with other external evidences and trained ab initio predictors in a second iteration 

of MAKER. 

Figure 13. AED cumulative curve of S. commersonii 1st and 2nd MAKER iterations.



Genes 

ng the final S. commersonii 

annotation (Table 15). 

S.commersonii complete S.commersonii filtered

# genes 70,097 37,662

#mRNAs 72,088 39,493

mRNA mean length 933.6 1,346.3

Exon mean length 221.0 239.4

Intron mean length 588.6 603.0

Mean n. of exon 4.22 5.62

N. of monoexonic 14,022 5,782

% monoexonic 19.45% 14.64%

This filtering procedure has been applied to obtain a final catalogue of high 

quality gene models and to exclude from the final annotation putative artifacts, 

pseudogenes and/or orphan genes.

The final gene annotation was composed by 37,662 protein-coding genes. 

Considering this numbers, fewer genes were predicted in S. commersonii than in 

potato (~39,000) (Figure 14), but the wild species has more predicted genes than 

tomato (34,727) and other Solanaceae (Figure 15).

Table 15. Summary statistics of S. commersonii complete and filtered gene annotation.



Figure 14. Summary statistics of S.commersonii genes and comparison with S. tuberosum. On the top 
are compared the number of genes and mRNAs, below structural features are compared63.

Even though the number of genes found in S. commersonii was lower to that 

reported for S. tuberosum, the number of transcripts differed a lot between the two 

species. Indeed S. commersonii  had 39,493 alternative isoforms, which was lower 

respect to the 56,218 isoforms annotated in potato (Figure 13). This might 

highlight the presence of more prominent alternative splicing activities in potato 

than in S. commersonii63. This is consistent with observations by the Potato 

Genome Sequencing Consortium (2011) that 25% of potato genes encoded two or 

more isoforms, indicative of more functional variation than is represented by the 

gene set alone. 



Figure 15. Summary statistics of S. commersonii gene features and comparison with other Solanaceae. 
On the top are compared the number of genes and the number of transcripts. Below CDS and mRNA 

lengths are compared63.

 

A number of 13,996 genes (~37% of total) are supported by all sources of 

evidence (Figure 16). A number of ~22,000 genes (~58% of total) are supported 

either by transcript evidence, protein evidence and ab initio predictors while 7,670 

(20.4% of total) are supported solely by ab initio predictors and proteins. No 

genes are supported solely by ESTs or RNA-seq or ab initio predictors. In 

general, few genes are supported by solely 2 out the 4 sources of evidence except 

from the pairing of de novo and protein supported gene models (Figure 16). 



Figure 16. Venn diagram for sources of evidence for S. commersonii gene annotation.

Of predicted S. commersonii genes, 30,477 (~85.5%) predicted protein-coding 

genes had significant BLAST similarity to protein-coding genes from other 

organisms in the nonredundant NCBI database. Nearly 20,500 S. commersonii 

genes were assigned to Gene Ontology (GO) terms, and more than 4,900 proteins 

were annotated with a four-digit EC number (Figure 17). 

Figure 17. Functional annotation of S. commersonii transcriptome.63



These results imply that more than 85% of S. commersonii gene models have a 

putative corresponding gene of another species annotated in NCBI database and 

that more than 24% of the predicted proteome of S. commersonii may have an 

enzymatic function, thus increasing the reliability of the annotation produced 

automatically.

 

 

 



Annotation of a genome with no reported reference

Background

Eggplant (Solanum melongena L. 2n = 2x = 24, projected genome size 1.1 Gbp) 

belongs to the economically important family of the Solanaceae, which also 

includes a number of other important crops like tomato, potato, pepper and 

tobacco. Genomic studies in the Solanaceae family resulted firstly in the 

availability of the genome  sequence of tomato70 (Tomato Genome 

Consortium)  and potato71, followed in 2014 by chili pepper72. 

Figure 18. Phylogeny of the Solanaceae (solgenomics.net).

Genomic studies on eggplant so far were mainly focused on the development of 

intra-specific73-74 as well as inter-specific75-76 maps. Fukuoka et al. (2010) 

developed a set of  16,245 unigenes while Barchi et al. (2011) made available a 

very first set of SNP markers for the species, obtained by combining the so-called 

- 77 method with Illumina DNA sequencing. 

Finally, a first draft of the genome sequence has been recently released, although 



only 12% of its sequence was anchored to the genetic map78. An high quality 

reference genome for S. melongena is not yet available. 

Materials

The genome annotation procedure started with the production of an high quality S. 

melongena genome assembly obtained from sequencing at >150x coverage of 3 

Illumina standard libraries and 5 mate pair libraries with different insert sizes 

(respectively 400, 500, 600 bp and 3.4, 5, 6.5, 7.8, 10 kb). The assembly obtained 

was filtered by masking the sequences potentially deriving from contaminants and 

removing the sequences shorter than 1Kbp, leading to a final genome of 1.28Gb 

with N50 length of 641Kb.  

In order to annotate the assembled genome, based on the fact that no or few 

available data of S. melongena are present in public databases, also stranded 

RNA-Seq samples from 19 tissues were sequenced. 

Also a dataset of 111 genes ( ), composed either by 

manually curated S. melongena CDS or from flcDNA alignments, were used as 

high quality gene set in the genome annotation process for the evaluation of the 

quality of annotation since it was too small as dataset to be used as evidence for 

gene annotation.

 

 

 

 

 

 

 

 

 

 



Methods

The genome annotation strategy for S. melongena assembly is the following: 

 

Figure 19. Diagram of strategy adopted for S. melongena genome annotation. 

 

 Repeat masking of the genome and detection of putative non-coding 

sequences

The annotation strategy was based on first identification and masking of repetitive 

sequences and other non coding sequences on genome. 

A repeat library for S. melongena was created following the custom advanced 

protocol suggested for MAKER80 ver. 2.31.3, a combination of structural-based 

and homology-based approach is used to maximize the opportunity for repeat 

collection (see Introduction). 

The final repeat library has been fed to MAKER which run RepeatMasker 

together with the Solanaceae repeat library and RepeatRunner.

In order to detect non-coding RNA sequences in the genome, sequence 

similarities were inferred using the reference-based method Infernal46 ver. 1.1 

using the covariance model of Rfam database47 release 12.0. The analysis of 

ribosomal regions was performed with RNAmmer83. 



 RNA-seq data de novo assembly and training dataset selection

Raw sequencing reads from RNA-seq experiments were checked for quality using 

FastQC67 ver. 0.10.1, trimming and removal of adapters were performed with 

CutAdapt68 ver. 1.5.2 and FASTX Toolkit69 ver. 0.0.13.2.

RNA-Seq reads from the different 19 samples analyzed stages then were aligned 

against the reconstructed genome using the Tuxedo suite13. The TopHat program 

was used with the options "--b2-very-fast" and for each library was specified the 

average insert size and its standard deviation as estimated during library 

preparation, while the GFF of repetitive sequences identified by RepeatMasker 

was provided with the "-M" option. The alignments in BAM format were then 

analyzed by the Cuffmerge program with default parameters.

RNA-Seq assemblies were constructed separately for each of all the samples 

using the de novo pipeline of Velvet-Oases84 ver. 0.2.08 and subsequently merged 

using EvidentialGene85 er. 2013.07.27 pipeline. EvidentialGene 

allowed removing redundancy among samples and selecting high quality 

transcripts. To get a first impression about the completeness of the assembled 

transcriptome, the dataset was analyzed with CEGMA79.

To define a first set of transcript assemblies that could be used to train gene 

predictors reliably, the de novo assembled transcriptome was compared with the 

proteomes of  other four species  N. benthamiana, S. lycopersicum, S. tuberosum 

and A. thaliana - retaining only sequences with over 50% identity and 99% 

reciprocal coverage. The strict parameters ensured that only conserved sequences 

were retained and minimized the risk of including gene fusions in our assemblies.  

In following analyses, these parameters have been used to define high-quality 

conserved transcripts independently of genome-related quality measures (such as 

AED, cDNA length, or similar).

The resulting sequences were aligned against the masked genome using MAKER, 

increasing its default parameters to include only alignments with 95% identity, 

95% coverage and 70% of the Exonerate score threshold. In this first iteration, 

MAKER was used to assign a CDS to multiexonic aligned assemblies. The 



alignments have been subsequently filtered to remove any BLAST alignment with 

an intron longer than 10 kbps, to minimize the chance of gene fusions.

The predicted models were compared again with the four original proteomes, and 

only those that matched again the original criteria  50% identity and 99% 

reciprocal coverage  were selected, in order to eliminate any potential artifact 

introduced by the alignment. 

Gene matching the control gene set were further removed from the training 

dataset to avoid bias in the annotation quality evaluation. 

 External evidences alignment

In order to annotate the coding genes of S. melongena, publicly available 

evidences for S. melongena with other ESTs and protein resources available for 

related species, such as S. torvum, lycopersicum and tuberosum, were pooled 

together (see Results).

Also eggplant ESTs and RNA-Seq assemblies were aligned to the assembled 

genome and those with 95% of identity, 95% coverage, and 70% of Exonerate 

maximal score threshold were retained56. On the other hand ESTs and proteins of 

other species have been aligned with a minimum of 70% coverage, 50% identity, 

and 70% of Exonerate maximal score threshold. The alignments have been 

subsequently filtered to remove any BLAST alignment with an intron longer than 

10 kbps, to minimize the chance of gene fusions. 

 Ab initio predictors training and gene prediction

The obtained dataset of refined gene models were used for the first round of 

training of five ab initio predictors: SNAP, AUGUSTUS, GeneMark-ET, geneid 

and Twinscan.

SNAP training has been 

value of 1000 flanking bases for training and testing. AUGUSTUS has been 

trained using the S. melongena genome to create the final model for the species. 

GeneMark-ET was trained using as input the file of intron coordinates from 

Tophat and Cufflinks of the training dataset and the soft masked genome FASTA 

file. 



Geneid training has been optimized using the 10-fold cross-validation procedure 

to estimate the accuracy of each choice of exon weight factor (ewf) and oligo 

weight factor (owf). The best combination of exon weight factor and exon factor 

was then selected as final.

TwinScan86 was trained using the utilities provided together with the tool, which 

make use of BLAST and BLAT alignments to derive conservation sequences. 

Sequence conservation was calculated with MEGABLAST using as reference the 

tomato genome sequence release ITAG2.4. Also the S. melongena masked 

genome sequence has been provided to the programme. The parameter estimation 

for TwinScan was made using iParameterEstimation87, a configurable maximum 

likelihood parameter estimation package for gHMMs. It points to an annotation 

set (the training examples), a gHMM file (the parameter definitions), and one or 

more feature map files. At the end 

parameters files were created for the training. These are all either probabilities, 

log scores, or log-odds ratios of probabilities, depending on what is expected by 

iscan, and indicated by the gHMM file.

For AUGUSTUS, geneid and Twinscan, the training has been optimized manually 

by using a 10-fold cross validation to assess the sensitivity and specificity at the 

gene, exon and nucleotide levels. The 111 control genes dataset has been used as 

test-set to estimate the performance of the gene predictors.

Geneid and Twinscan gene predictions were run outside MAKER, since the 

given to MAKER together with the other evidences to be used to produce final 

consensus gene annotation.

 Final annotation generation and quality assessment

Every form of evidence at the end was integrated in MAKER to produce the final 

annotation. The quality of annotation has been evaluated using MAKER AED 

quality measure, comparison with other published annotations and the 111 S. 

melongena control genes dataset. 



Results and discussion

The repeat content analysis identified 56.12% of the genome as repetitive (Table 

16) with LTR Gypsy/DIRS1 being the most abundant repeat class as these 

transposons alone covered about 314 Mb of the genome. 

Type Number Bases % of genome 

Simple repeats 7,444 2,990,912 0.23 

LINE/SINE 173,292 46,064,916 3.57 

DNA 
transposons 

368,644 77,027,848 5.98 

Unclassified 188,245 33,213,758 2.58 

LTR 1,047,883 573,711,377 44.55 

TOTAL  722,670,286 56.12 

Table 16. Summary statistics of S. melongena genome repetitive content.

 

This percentage is slightly lower but in line to that present in other Solanaceae 

like tomato (63.28%) and potato (62.20%). 

Based on the homology to known miRNAs of 13 species with different 

evolutionary relationships, 168 different Solanum melongena miRNAs from 45 

families were predicted from the search against miRBase. 

A total of 905 ribosomal regions on 557 different scaffolds were detected with 

RNAmmer: 91 of 18S rRNA, 56 of 28S rRNA, and 758 of 8S rRNA (Table 17).

Table 17. Summary statistics of ncRNAs annotation.



 

The search in Rfam non-coding RNA families database resulted in the 

identification of 2,856 tRNAs in line with other sequenced plants71 but much 

more for example respect to tomato ITAG 2.4 annotation (886). 

 

RNA-Seq samples from 19 tissues were sequenced obtaining on average ~19,4 

millions of reads per sample (Figure 20).

Figure 20. Summary statistics of the sequencing of S. melongena RNA-seq samples.

In order to reconstruct transcripts and both use them as evidence for annotation as 

well as for the raining of ab initio predictors, the filtered RNA-seq reads have 

been de novo assembled, producing 39,408 main isoforms (each corresponding to 

a gene) and 87,836 alternative isoforms. The de novo assembled transcripts 

obtained for each RNA-seq sample have been pooled together an clustered with 

EvideltialGene in order to reduce the redundancy of the dataset (Table 18). 



«Main isoform» 
set

«Alternative 
isoform» set

Filtered reliable 
sequences

Number of sequences 39,408 87,836 14,353

Maximum length 4,997 3,761 12,179

Minimum length 40 40 188

Average 316.73 278.2 1,658.58

Median 242 226 1,978

Sequences with complete 
ORFs 26,082 38,524 - 

Table 18. Summary of clustered de novoassembled transcripts. Statistics of both main isoforms and 
alterative isoforms clustering sets are reported.

The assembled transcriptome of S. melongena and other Solanaceae was checked 

at first for Core Eukaryotic Genes (CEGs) to get a final list of those CEGs 

actually present in the transcriptome, their degree of completeness and the 

paralogy. The analysis shows that almost the entire dataset could be traced on the 

eggplant transcriptome (Figure 21).

 

Figure 21. CEGMA analysis on Solanaceae transcriptomes.

 

The predicted aminoacidic sequences from the S. melongena de novo assembled 

transcriptome have been aligned to the four proteomes of Solanaceae and filtered 



based on a 50% cut-off on identity and 99% reciprocal coverage with the 

proteomes, obtaining therefore a final set of 14,353 sequences (Table 18). 

The resulting 14,353 transcripts have been then aligned to the genome assembly 

of S. melongena using MAKER software without any gene predictor, just setting 

identity and coverage cut-offs of 95%. In addition, the repeats and the ncRNAs 

annotation files have been included in the program run. MAKER used all these 

evidences to infer gene models directly and at the end predicted 8,751 gene 

models that are located in 1,217 scaffolds (Table 19).  

 

Program # gene models # scaffolds

Blastn 12,035 1,425

Exonerate 12,529 1,403

MAKER 8,751 1,217

Table 19. Results of first run of MAKER with S. melongena transcriptome. 

In order to check the 8,751 gene models predicted by MAKER, also 104 manually 

curated control gene models and 49 full-length cDNA sequences have been 

aligned to the S.melongena genome assembly using MAKER with the same 

parameter used for the RNA-seq dataset. Out of the 153 control genes, MAKER  

at the end of its run predicted 110 gene models on 83 scaffold (Table 20).  

 

Program # gene models # scaffolds

Blastn 133 104

Exonerate 133 104

MAKER 110 83

Table 20. Results of MAKER run with S. melongena control genes.

 



Among this 111 gene models, 102 are derived from manually curated control 

genes and the remaining 9 from the full-length cDNAs. These genes will be used 

for the evaluation of the training of ab initio predictors. Of the 8,751 gene models, 

70 matched the control gene set and were removed from the training dataset to 

avoid bias in the annotation quality evaluation.

MAKER was used in conjunction with predictions from geneid and TwinScan and 

the parameters files resulting from the training of SNAP, AUGUSTUS and 

GeneMark-ET (see Methods) to obtain a first iteration of the genome annotation 

(Table 21). The selected 8,681 gene models that passed the quality filters (see 

Methods) were used to perform a second round of training for ab initio gene 

predictors. While a marked improvement for geneid was observed, the other two 

gene predictors maintained a similar accuracy in the second round. 

  AUGUSTUS TwinScan Geneid

First 
iteration

Second 
iteration

First 
iteration

Second 
iteration

First 
iteration

Second 
iteration

Gene
Sensitivity 55,56% 57,41% 54,05% 55,86% 32,43% 42,34%

Specificity 38,96% 40,00% 49,59% 47,33% 21,43% 24,10%

Exon
Sensitivity 91,33% 92,16% 84,26% 86,44% 76,26% 76,39%

Specificity 79,62% 79,57% 85,30% 85,04% 71,87% 69,85%

Nucleotide 
Sensitivity 98,22% 98,30% 91,35% 97,47% 93,56% 94,44%

Specificity 84,62% 84,83% 90,63% 82,64% 85,17% 88,91%

Table 21. Summary of estimated accuracy of the gene predictors, measured against the 111 control 
genes. For each iteration of the prediction software are reported sensitivity, specificity and F-Score at 

Gene, Exon and nucleotide levels.

Gene prediction for geneid and TwinScan resulted in 263,859 non-unique gene 

models with an N50 length respectively of 3,270 bp and 1,347 bp that will entirely 

be fed to MAKER and integrated with the other gene predictions to produce the 

final consensus annotation (Table 22).

 

 

 



 Geneid TwinScan 

Number of gene models 93,935 169,924 

Maximum transcript length (bp) 79,281 58,764 

Minimum transcript length (bp) 3 3 

Mean transcript length (bp) 1,443.80 799 

N50 transcript length (bp) 3,270.0 1,347 

Table 22. Summary statistics of geneid and TwinScan gene predictions. 

 

Selected external evidences have been aligned to S. melongena genome obtaining 

an average alignment rate of ~53% and an overall alignment rate of ~37% (Table 

23). 

Species Evidence type Source and date of 
retrieval 

#total 
sequences 

# aligned 
sequences 

Solanum melongena RNA-Seq de novo Internal data 127,117 87,652 

Solanum melongena TopHat junctions Internal data 307,611 34,270 

Solanum melongena Sanger ESTs NCBI (2014/06/03) 98,087 90,892 

Solanum torvum Sanger ESTs NCBI (2014/06/03) 28,743 21,148 

Solanum lycopersicum Sanger ESTs NCBI (2014/06/03) 300,359 116,850 

Solanum lycopersicum Predicted proteins ITAG 2.4 34,725 25,649 

Solanum tuberosum Sanger ESTs NCBI (2014/06/03) 250,128 92,448 

Solanum tuberosum Predicted proteins ITAG 1 35,004 28,870 

Nicothiana 
benthamiana 

Sanger ESTs NCBI (2014/06/03) 21,749 5,156 

Nicothiana 
benthamiana 

Predicted proteins Niben genome v. 0.4.4 76,379 44,577 

Capsicum annuum Sanger ESTs NCBI (2014/06/03) 118,651 32,835 

Capsicum annuum Predicted proteins Pepper annotation v. 1.55 34,899 29,184 

SwissProt Plants Proteins Uniprot (2014/05/30) 37,494 25,493 

Ricinus communis Predicted proteins JCVI 31,452 14,811 

Arabidopsis thaliana Predicted proteins TAIR10 35,386 17,145 

Table 23. Table of external evidences used to create support to ab initio gene predictions for S. 
melongena.

 



The final MAKER annotation produced 48,412 transcripts in 44,618 gene loci. 

This dataset comprises both low- and high-quality gene models, which can be 

distinguished using the AED  quality measures provided by MAKER itself. Since 

the AED score indicates its congruence with available evidence at its genomic 

locus, the feasibility of using such a measure to flag reliable gene models was 

investigated. 

Therefore the whole S. melongena proteome was compared with the four 

reference solanaceous proteomes to identify highly conserved sequences. 

 

Figure 22. AED curve of S. melongena gene models.

 

For the final annotation, gene models  with an AED of 0.48 or lower were 

retained, as 99% of the transcripts with a clear ortholog in another  proteome 

(50% identity or higher, 99% or higher reciprocal BLASTP coverage, length ratio  

between 99% and 101%) had an AED equal or lower than this threshold (Figure 

22).

The final annotation contained 43,579 transcripts in 39,921 loci, comparable with 

the tomato and potato annotations, but greatly better than the one recently 

published (Table 24, Figure 23).



The gene annotation was performed on the previously repeat masked 23,039 

scaffolds with length > 1 kbp. Shorter (non informative) sequences have been 

excluded as suggested by the authors of MAKER4,34,80.

Eggplant
Tomato 
ITAG2.4

Potato ITAG1

Number of genes 39.921 34.725 35.004

Number of mRNAs 43.579 34.725 35.004

Mean intergenic distance 6.972,87 8.760,20 5.092,15

Mean mRNA length 1.393,33 1.204,36 1.070,27

Mean CDS length 1.203,30 1.031,36 1.070,27

Mean Exon length 287,8 261,38 246,86

Mean intron length 647,79 539,41 598,21

Average number of exons 4,84 4,61 4,34

Average number of CDS exons 4,64 4,53 4,34

Monoexonic 10.943 8.508 10.344

Monoexonic Percentage 25,11% 24% 29%

Table 24. Summary S. melongena annotation compared to other solanaceous crops (S. lycopersicum and 
S.tuberosum). 



Figure 23. Comparison of the Eggplant MAKER annotation with the annotations of other Solanaceae. 

On the top the number of genes and transcripts are compared. Below average CDS and mRNA length 

are compared.

The comparison of structural features between S. melongena and other 

Solanaceae showed that eggplant had some annotated alternative isoforms respect 

to the other plants and that it had the longest average mRNA length, but in means 

of number of genes and lengths the final results are in line with other published 

plant annotations (Figure 23). 



Figure 24. Venn diagram for sources of evidence for S. melongena gene annotation.

Most of annotated genes (93,8 %) are supported by reliable evidence, such as 

transcripts or proteins, RNA-seq data or ab initio predictors. A number of 18,138 

genes (45.4% of total) are supported by all sources of evidence (Figure 24), while 

3,133 (7.8% of total) are supported either by transcript evidence or protein 

evid

evidence or ab initio predictors.

Finally, a quality assessment based on the 111 manually curated control genes 

also supported the general reliability of the final annotation: the majority of 

control genes (79, or 71.2%) are reconstructed  correctly or exhibit minor 

discrepancies (14 transcripts, or 12.61%). 

 

 

 

 

 

 



 
Description Count Percentage

Avg AED 
against 

reference

Perfect
Perfect  concordance  between  reference and 
prediction.

72 64,86% 0

Supported
Reference  and  prediction  disagree,  but the 
available evidence indicates that the predicted 
model might be correct.

7 6,31% 0,11

Unclear
Evidence  in  the  region  does  not  allow 
discerningwhether the reference or the 
prediction is correct.

11 9,91% 0,1

Wrong 
(minor)

The predicted model is incorrect, but the 
difference is small (AED <= 0.05)

14 12,61% 0,025

Wrong
The  predicted  model  is  incorrect,  with 
significant differences

7 6,31% 0,1662

Total  111 100% 0,03

Table 25. Annotation assessment with control genes. The 111 control gene were compared to the 
respective Maker gene models and the concordance of the structures was used to assess the quality of 
the annotation pipeline results.

 

Only in 21 cases, the prediction has been confirmed as incorrect by evidence 

alignment, although in most cases the discrepancy is very limited, as 14 of such 

gene models have an AED score lower than 0.05 (Table 25).  

 

Figure 25. Manual revision of AROA_SOLLC control gene. Discrepancies are indicated by red arrows; 
red bars indicate congruence on exon boundaries. 

 

For example, in one case the discrepancy arises from the alignment of a N. 

benthamiana protein with an enlarged exon, which prompted MAKER to try to 

reconcile this evidence with the available gene predictions (Figure 25).  

The origin of the discrepancies seems to be the locus-specific and cannot be 

solved by using automatic filters, therefore, even if results show a good overall 

annotation quality, manual review would be always preferable. 



CONCLUSIONS 

Second Generation Sequencing technologies have revolutionized completely 

genome projects, reducing sequencing costs and diminishing the time necessary to 

obtain a complete genome, thus giving the opportunity to access whole genome 

sequencing data easily but on the other hand increasing the demand for rapid and 

accurate genome annotation.

In this PhD project the automated structural annotation of three different 

eukaryotic genomes has been performed in order to first annotate a species with a 

published reference genome annotation; the second experimental case regarded a 

species with a close but phylogenetically distinct reference and the third case 

regarded a species with any close reference genome annotation. 

In the first case it has been experimented the transfer of a closely related genome 

annotation to a new sequenced genome in order to reliably annotate a good 

portion of protein coding genes in a relatively short time, followed by ab initio 

prediction of the remaining portion of protein coding genes driven by a refined 

high quality dataset of gene models derived from transferred reference gene 

models and supported by other organisms evidence. 

When experimenting the case of a close but phylogenetically distinct reference 

genome, the transfer of the reference annotation has not been considered a reliable 

choice. So it has been decided to perform de novo genome annotation and to 

produce RNA-seq data in order to support the ab initio predictions together with 

the external evidences. 

The results produced by the two experimental cases strongly influenced the 

strategy defined for the third case, the one about the annotation of a genome with 

no reported reference. Since no reference annotation can be transferred, also here 

the genome annotation strategy was based completely on a de novo approach. 

In this case RNA-seq data has been produced not only to support ab initio 

prediction but also obtain an high quality dataset to drive 

the gene prediction. To this purpose, several external evidences have been 

selected not only to support gene predictions but also to filter the RNA-seq data to 

produce an high quality gene set and to improve the accuracy of final annotation. 



The results obtained in this work show that, as expected, the complexity of 

eukaryotic genomes greatly influences the annotation process (e.g., the presence 

of repetitive regions, overlaps, duplications, etc.) but demonstrated that also in 

case of fragmented assemblies - although being aware of losing part of the 

information - it is possible to perform the automated genome annotation. 

After the identification of repeats and other non-coding sequences, a big fraction 

of the genes in a genome sequence can be found by homology to other known 

genes or proteins and refined using RNA-seq evidence and/or ab initio predictors. 

This fraction is supposed to increase as more genomes get sequenced and 

annotated. 

Furthermore, the accuracy of de novo predictions is expected to increase since de 

novo gene finders for annotating protein-coding genes in complex genomes are 

constantly improving10.

On the other hand, RNA-seq data could be helpful since a major limitation of 

using ab initio gene finders is the inability to investigate the biological 

phenomenon of alternative splicing. Even if the exons within a novel gene region 

are precisely predicted, there is currently no precise computational method to 

determine which exons should be included in the transcript.  

Choosing a weight for ab initio prediction and RNA-seq data is difficult89. A 

particular de novo gene prediction might be especially strong, on the basis of its 

conservation pattern and splice sites, whereas a cDNA alignment in the same 

locus might be weak owing to unusual splice sites or multiple mismatches near 

the splice sites or even heterozygosity. 

Gene finders per se are hugely inaccurate and finding novel genes from a purely 

ab initio approach is still a major challenge, while species-specific data may help 

with this issue. 

RNA-seq technology allows a more accurate annotation of exon-intron 

boundaries, the detection of UTR regions  not possible for de novo gene 

predictors  and helps the detection of alternative splicing isoforms.  

RNA-seq is a powerful tool, even if covering all transcriptome landscape for a 

species would be very expensive and time-consuming task since it is impossible to 

do this with one sequencing run. 



but results obtained 

suggest that the integration of multiple sources of annotation greatly improves the 

accuracy of the final annotation. 

Each method has its own advantages, and it is clear that there are genes that can 

be found by each method may not be found by the other. For example, recently 

evolved genes are difficult to find using extrinsic, homology-based methods, and 

genes that are missing common features or that do not fit common profiles of 

genes are difficult to find using ab initio methods8.

In conclusion, in some ways cheap sequencing has complicated genome 

annotation. The fragmented assemblies and complex nature of many of the current 

genome-sequencing projects are part of the reason that this is so, but it is the ever-

widening scope of annotation that is presenting the greatest challenges5.  

Genome annotation has moved beyond merely identifying protein-coding genes to 

include an ever-greater emphasis on the annotation of transposons, regulatory 

regions, pseudo-genes and ncRNAs5.  

Annotation quality control and management are also increasingly becoming 

bottlenecks. The process of genome annotation is not error free; manual curation 

is still required as is the periodic update to old genome annotations, since 

incorrect and incomplete annotations poison every experiment that makes use of 

them. 

In today's genomics-driven world, as long as tools and sequencing technologies 

continue to develop, providing fast and accurate and up-to-date annotations is 

simply a must.  
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