Lattice dynamics and anharmonicity of CaZrF_{6} from Raman spectroscopy and ab initio calculations

a Department of Physics and Astronomy, University of Padova, Padova, Italy
${ }^{\mathrm{b}}$ Department of Computer Science, University of Verona, Verona, Italy
${ }^{\text {c }}$ Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, China

H I G H L I G H T S

- A Raman and $a b$ initio study of the lattice dynamics of CaZrF_{6} was performed.
- All the Raman-active modes expected on the basis of the group theory were identified.
- The temperature-dependence of the CaZrF_{6} Raman frequencies follows an unusual trend.
- Explicit anharmonicity dominates for both $\mathrm{F}_{2 \mathrm{~g}}$ and A_{g} Raman modes.
- The NTE of CaZrF_{6} cannot be accurately predicted by the quasiharmonic approximation.

A R T I C L E I N F O

Article history:

Received 18 January 2016
Received in revised form
23 May 2016
Accepted 30 May 2016
Available online 7 June 2016

Keywords:

Thermal expansion
Raman spectroscopy and scattering
Lattice dynamics
Anharmonicity

GRAPHICALABSTRACT

Abstract

Very recently it has been found that CaZrF_{6} exhibits a very large and isotropic negative thermal expansion (NTE), even greater than the current most popular NTE materials. In this work, the vibrational dynamics of CaZrF_{6} has been investigated by temperature-dependent Raman spectroscopy combined with $a b$ initio calculations. As expected on the basis of the group theory for CaZrF_{6}, three Raman-active modes were identified: the $F_{2 g}$ mode peaked at about $236 \mathrm{~cm}^{-1}$, the E_{g} mode at around $550-555 \mathrm{~cm}^{-1}$, and the A_{g} mode peaked at about $637 \mathrm{~cm}^{-1}$. The temperature dependence of their frequencies follows an unusual trend: the $\mathrm{F}_{2 \mathrm{~g}}$ mode, due to bending vibrations of fluorine atoms in the linear $\mathrm{Ca}-\mathrm{F}-\mathrm{Zr}$ chain, is hardened with increasing temperature, while the A_{g} mode, corresponding to $\mathrm{Ca}-\mathrm{F}-\mathrm{Zr}$ bond stretching vibrations, is softened. We explain this anomalous behavior by separating implicit and explicit anharmonicity for both $\mathrm{F}_{2 g}$ and A_{g} modes. In fact, cubic anharmonicity (three-phonon processes) is observed to dominate the higher-frequency A_{g} phonon-mode, quartic anharmonicity (four-phonon processes) is found to dominate the lower-frequency $\mathrm{F}_{2 g}$ phonon-mode. As a result, the large NTE of CaZrF_{6} cannot be accurately predicted through the quasi-harmonic approximation.

© 2016 Elsevier B.V. All rights reserved.

[^0]
1. Introduction

Most materials expand upon heating. In the last two decades, after the discovery of materials that display strong negative thermal expansion (NTE) over wide temperature ranges, such as ZrW_{2}
$\mathrm{O}_{8}, \mathrm{Zn}(\mathrm{CN})_{2}$, metal-organic frameworks and more recently ScF_{3} [1-6], the interest in NTE has rapidly increased. NTE phenomenon is known to arise from a range of different physical mechanisms, such as ferroelectricity and magnetic transitions [7-9], valence transitions in the case of intermetallic and fulleride materials [10,11], low-energy vibrational modes for open-framework solids [12-15]. In particular, it is now accepted that the mechanism driving NTE in the framework structures involves transverse vibrational displacement of the central linking atom [13-16], but a general understanding of the physical origin of NTE (and related phenomena) is still lacking.

Very recently it has been discovered that CaZrF_{6} displays a very large and isotropic NTE (up to $-18 \times 10^{-6} \mathrm{~K}^{-1}$ at 100 K) [18], even greater than the current most popular NTE materials like $\mathrm{ZrW}_{2} \mathrm{O}_{8}$ or ScF_{3}. In addition, the NTE temperature range of CaZrF_{6} ranges from below $10 \mathrm{~K}-1173 \mathrm{~K}$ or even higher, thus making this material until now the one with the largest NTE temperature range. Besides this, CaZrF_{6} is transparent over a wide wavelength range, can be fabricated in ceramic form and handled in air, thus being beneficial for the design of controlled thermal expansion materials and for technological applications.

From the structural point of view, CaZrF_{6} consists of cornershared CaF_{6} and ZrF_{6} octahedra (Fig. 1) and maintains a high symmetry (space group, Fm-3m) among the whole temperature range. In sharp contrast with $\mathrm{ZrW}_{2} \mathrm{O}_{8}$, no phase transition takes place in CaZrF_{6}. Besides, the metal atoms both locate in the special crystallographic sites ($\mathrm{Ca}(0,0,0)$ and $\mathrm{Zr}(0.5,0.5,0.5)$) and all the fluorine atoms share the same chemical environment. The prevailing NTE characteristic and its high cubic symmetry structure enable CaZrF_{6} to be an excellent candidate for the study of NTE mechanism, whose knowledge would facilitate the development of specifically tailored materials based on a priori knowledge rather than empirical or casual procedures.

Because very limited information are available concerning the vibrational properties of CaZrF_{6} and, even better, about its NTE mechanism, in this work we aim to investigate the lattice dynamics of CaZrF_{6} by temperature-dependent Raman scattering combined

Fig. 1. Sketch of the crystal structure of CaZrF_{6} [17]: gray and green octahedra are ZrF_{6} and CaF_{6} units, respectively, cyan spheres are fluorine atoms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
with $a b$ initio calculations. Raman spectroscopy only probes zone center modes thus providing a limited view of the lattice dynamics, nevertheless we can get new insights into the vibrational dynamics of CaZrF_{6} related to the NTE.

2. Experimental and computational details

The compound of CaZrF_{6} was prepared by a solid state synthesis method. The precursors of high purity (99.99\%) CaF_{2} and ZrF_{4} powders, were mixed with equal molar ratio. Then the mixture was pressed into a small pellet with diameter of $\sim 5 \mathrm{~mm}$ and then sandwiched into $\mathrm{NH}_{4} \mathrm{~F}$ powder to be pressed into a bigger one with diameter of $\sim 10 \mathrm{~mm}$. The pellet was loaded into Cu tube with two ends sealed and transferred to a muffle furnace immediately, followed by heating them at $700^{\circ} \mathrm{C}$ for 1 h , before they were slowly decreased to room temperature. Lab X-ray powder diffraction (XRD) data of CaZrF_{6} was collected at room temperature, operating at 40 kV and 40 mA with $\mathrm{Cu} \mathrm{K} \alpha_{1 / 2}$ radiation (PANalytical, PW 3040X'Pert Pro). The XRD data shows that the main phase is CaZrF_{6} with an extremely tiny amount of ZrO_{2} impurities in monoclinic phase (Fig. 2). Structural refinement gives a lattice parameter of $8.4630 \AA$ with fluorine cell position $x=0.2366$, in agreement with Hancock et al. [18].

Unpolarized micro-Raman spectra were collected in backscattering geometry from CaZrF_{6} sample using a triple monochromator (Horiba-Jobin Yvon, model T64000), set in double-subtractive/ single configuration, and equipped with holographic gratings having 1800 lines $/ \mathrm{mm}$. The Raman spectra were excited by the 514.5 nm laser line focused onto a spot of about $2 \mu \mathrm{~m}$ in size through the lens of a $50 \times$ microscope objective ($\mathrm{NA}=0.5$). The laser power on the sample surface was kept below 10 mW , and the scattered radiation, filtered by the fore double monochromator, was detected at the spectrograph output by a charge-coupleddevice detector with 1024×256 pixels, cooled by liquid nitrogen. The spectral resolution was better than $0.6 \mathrm{~cm}^{-1} /$ pixel while an accurate wave-number calibration of the spectrometer was achieved based on the emission lines of a Ne spectral lamp. The temperature dependence of the Raman spectra of CaZrF_{6} was investigated in the temperature range between room temperature and $200^{\circ} \mathrm{C}$ with the use of an electric heating plate.
$A b$ initio calculations based on density functional theory in the framework of local density approximation have been performed to calculate the Raman active vibrational modes of CaZrF_{6}. This

Fig. 2. X-ray diffraction pattern of CaZrF_{6} with a tiny amount of ZrO_{2} impurity marked by red arrows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
represents an invaluable help for the assignment of the observed Raman modes. The CRYSTAL-14 package was used in the present calculations, a periodic ab initio code that uses a Gaussian-type basis set to represent the crystalline orbitals [19]. All-electron basis sets were employed, with 86-511d3G contraction (one s, four sp, and one d shell) for calcium [20], 97-636121 contraction (one s, three sp, one d, one sp, and two d shells) for zirconium [21], and with 7-311G contraction (one s and three sp shells) for fluorine [22]. Pure density functional theory calculations have been carried out using von Barth-Hedin [23] exchange and correlation functionals. The Brillouin zone was sampled by a $12 \times 12 \times 12$ Monkhorst-Pack k -points mesh [24], while the truncation criteria for bi-electronic integrals (Coulomb and exchange series), controlled by five parameters, was set to default values (777714). In order to ensure good convergence, the self-consistent-field convergence threshold on total energy was set to 10^{-8} Hartree for geometry optimization, to 10^{-10} Hartree for frequency calculation. The vibrational frequencies at the Γ-point of the Brillouin zone were calculated in the harmonic approximation by diagonalizing the mass-weight Hessian matrix, whose (i, j) element is defined as $W_{i j}=H_{i j} / M_{i} M_{i}$, with M_{i} and M_{j} masses of the i th and j th atoms, respectively. A more detailed description of the computational aspects can be found in the refs. [19,25,26].

3. Results and discussion

On the basis of the group factor analysis, 21 optical modes of CaZrF_{6} at the Γ-point of the Brillouin zone are expected, with the
following irreducible representation of the normal vibrational modes:
$3 F_{1 u}+1 F_{2 u}+1 F_{2 g}+1 F_{1 g}+1 E_{g}+1 A_{g}$
where the $F_{1 u}, F_{2 u}, F_{1 g}$ and $F_{2 g}$ modes are triple degenerated, the E_{g} mode is double degenerated. The three modes $F_{2 g}, E_{g}$ and A_{g} are Raman active, whereas the three $F_{1 u}$ modes are infrared active and the remaining $F_{1 u}$ and $F_{1 g}$ modes are inactive (silent). In order to discriminate the Raman $F_{2 g}, E_{g}$ and A_{g} modes, it would be necessary to control the polarization direction of the incident and scattered light with respect to the crystallographic axes. However this is impossible in our powder sample because no crystallographic axis can be identified. Accordingly, for the assignment of the observed Raman modes, we have calculated the vibrational frequency of the Raman-active modes through ab initio quantum-mechanical methods (see below).

The unpolarized Raman spectrum collected in our CaZrF_{6} sample at room temperature is shown in the top panel of Fig. 3. Two intense Raman bands are observed at about 236 and $637 \mathrm{~cm}^{-1}$, as well as a broad band at about $550-555 \mathrm{~cm}^{-1}$. Moreover, we notice a set of weak Raman bands at $\sim 179,191,324,348,384$, and $475 \mathrm{~cm}^{-1}$, marked by asterisk in the top panel of Fig. 3, which correspond to the Raman peak positions of monoclinic ZrO_{2} [27,28], tiny impurity in the sample previously detected by x-ray diffraction (Fig. 2). In this regard, under direct optical inspection of a color camera interfaced to the microscope objective used to collect the scattered radiation, we have identified in the sample a grain of ZrO_{2} impurity

 grain of ZrO_{2} impurity identified in the sample (middle panel and picture on the right side) iii) CaZrF_{6} after partial removal of the ZrO_{2} Raman contribution (bottom panel).

Table 1
Observed and calculated vibrational frequencies of $\mathrm{CaZrF}_{6}\left(\mathrm{in} \mathrm{cm}^{-1}\right)$ at the Γ-point of Brillouin zone. The Grüneisen parameters $\gamma_{i}=-V / \omega_{i}\left(\partial \omega_{i} / \partial V\right)$ of each vibrational mode were calculated by pressure-dependent $a b$ initio calculations (see text).

Modes	Expt.	Theory	γ_{i}
Raman modes			
$\mathrm{F}_{2 g}$	236	251	-0.36
E_{g}	~ 550	529	1.69
$\mathrm{~A}_{g}$	637	637	1.26
Infrared modes			
$\mathrm{F}(1) 1 u$	193	-1.83	
$\mathrm{~F}(2) 1 u$	313	2.10	
$\mathrm{~F}(3) 1 u$	542	1.68	
Silent modes			
$\mathrm{F}_{1 g}$	41	-34.9	
$\mathrm{~F}_{2 u}$		117	-3.41

(picture in Fig. 3) whose Raman spectrum is reported in the middle panel of Fig. 3. Then, after proper normalization, the Raman contribution of ZrO_{2} has been subtracted, thus obtaining the Raman spectrum of CaZrF_{6} shown in bottom panel of Fig. 3.

Theoretical calculations help to assign the observed Raman peaks of CaZrF_{6} and to gain further insight into its vibrational properties. First of all, geometry optimization was performed leading to the cell parameter $a=8.4260 \AA$ and to the fluorine cell position $x=0.2389$. These structural parameters, which differ from the experimental values less than 1.0%, have been employed in the subsequent frequency calculation. Table 1 shows the predicted vibrational frequencies of CaZrF_{6} at the Γ-point of the Brillouin zone. To the best of our knowledge, no experimental data are available for both Raman and infrared vibrational modes of CaZrF_{6}, with the exception of the present Raman study. Thanks to the direct comparison between calculated and experimental frequencies (see Table 1), we can identify the Raman bands of CaZrF_{6} shown in Fig. 3. Specifically, the Raman band observed at $\sim 236 \mathrm{~cm}^{-1}$ is assigned to the $\mathrm{F}_{2 \mathrm{~g}}$ symmetry mode, the band at $\sim 550 \mathrm{~cm}^{-1}$ corresponds to the E_{g} symmetry mode, the band at $\sim 637 \mathrm{~cm}^{-1}$ is the A_{g} symmetry mode. From the eigenvectors analysis (Fig. 4), the $\mathrm{F}_{2 g}$ vibrational mode corresponds to bending vibrations of fluorine atoms perpendicular to the linear $\mathrm{Zr}-\mathrm{F}-\mathrm{Ca}$ bonds, leading to twisting of the ZrF_{6} and CaF_{6} octahedra. Instead the E_{g} and A_{g} vibrational modes correspond, respectively, to the asymmetric and symmetric stretching of the $\mathrm{Zr}-\mathrm{F}$ and $\mathrm{Ca}-\mathrm{F}$ bonds in the ZrF_{6} and CaF_{6}
octahedra. In particular, the A_{g} mode is a breathing mode, as depicted in Fig. 4.

Temperature dependence of vibrational modes plays a key role for the negative thermal expansion of CaZrF_{6}. For that reason, we have investigated the temperature dependence of the frequency of the $\mathrm{F}_{2 \mathrm{~g}}$ and A_{g} modes in the Raman spectra of CaZrF_{6}, from room temperature to about $200^{\circ} \mathrm{C}$. The same quantitative analysis cannot be done for the E_{g} Raman band because of its broadening and weak intensity.

The top panel of Fig. 5 shows the Raman shift of the $\mathrm{F}_{2 g}$ and A_{g} vibrational bands at three selected temperatures, while the bottom panel of the same figure shows the resulting temperature dependence of the vibrational frequencies. It is surprising to observe that the $\mathrm{F}_{2 \mathrm{~g}}$ mode, which is due to transverse vibrations and hence should be related to NTE, shows anomalous phonon hardening with increasing temperature. On the contrary the A_{g} mode, assigned to stretching vibrations, undergoes a phonon softening with temperature. This is exactly the opposite of what one would expect, since the transverse vibrations (here the $\mathrm{F}_{2 \mathrm{~g}}$ mode), responsible for NTE, should display phonon softening with contracting crystal lattice, i.e., with temperature increasing.

To explain this anomalous behavior, we need to consider that the temperature dependent shift $\Delta \omega(T)$ of phonon frequency at constant pressure has two different contributions [29-31]: i) phonon frequency change $\Delta \omega_{\text {vol }}(T)$ due to volume expansion, which is the "quasi-harmonic" contribution also called "implicit" anharmonicity, and ii) "explicit" or "true" anharmonic contribution $\Delta \omega_{\text {anh }}(T)$, which is the pure-temperature effect due to anharmonic phonon-phonon interactions, arising from cubic, quartic, and higher-order anharmonic terms in the interatomic potential. Therefore

$$
\begin{equation*}
\Delta \omega(T)=\Delta \omega_{v o l}(T)+\Delta \omega_{a n h}(T) \tag{2}
\end{equation*}
$$

For an isotropic system, equation (2) in differential form becomes

$$
\begin{equation*}
\left(\frac{\partial \omega_{i}}{\partial T}\right)_{p}=\left(\frac{\partial \omega_{i}}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p}+\left(\frac{\partial \omega_{i}}{\partial T}\right)_{V} \tag{3}
\end{equation*}
$$

which can also be written as

Fig. 4. Eigenvectors of the triple-degenerate $\mathrm{F}_{2 g}$ mode, of the double-degenerate E_{g} mode, and of the A_{g} mode (gray, green and cyan spheres represent Zr , Ca and F atoms, respectively). The $\mathrm{F}_{2 g}$ mode corresponds to bending vibrations of fluorine atoms perpendicular to the $\mathrm{Zr}-\mathrm{F}-\mathrm{Ca}$ bonds, leading to twisting of the ZrF_{6} and CaF_{6} octahedra. The E_{g} and A_{g} modes are, respectively, asymmetric and symmetric stretching of the $\mathrm{Zr}-\mathrm{F}$ and $\mathrm{Ca}-\mathrm{F}$ bonds in the ZrF_{6} and CaF_{6} octahedra. In particular, the A_{g} mode corresponds to a breathing mode. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Top panel: Raman shift of the $\mathrm{F}_{2 g}$ and A_{g} vibrational bands at three selected temperatures. Bottom panel: temperature dependence of the vibrational frequency of the $\mathrm{F}_{2 g}$ and A_{g} modes.
$\frac{1}{\omega_{i}}\left(\frac{\partial \omega_{i}}{\partial T}\right)_{p}=-\alpha \gamma_{i}+\frac{1}{\omega_{i}}\left(\frac{\partial \omega_{i}}{\partial T}\right)_{V}$
where α is the coefficient of linear thermal expansion and γ_{i} is the isothermal Grüneisen parameter for the vibrational mode ω_{j}. The term on the left-hand side of equation (4) gives the temperaturedependent frequency shift due to the total anharmonicity, as measured by temperature-dependent Raman spectra of Fig. 5. The first term on the right-hand side is the implicit anharmonicity due to volume contribution and can be determined from pressuredependent frequency measurements and thermal expansion. The second term on the right-hand side is the explicit/true anharmonicity and cannot be determined experimentally. The temperature
dependence of the $\mathrm{F}_{2 g}$ and A_{g} Raman modes shown in Fig. 5 is the result of the balance between implicit and explicit anharmonicity.

In order to separate implicit and explicit anharmonicity for the $\mathrm{F}_{2 \mathrm{~g}}$ and A_{g} modes, we have calculated the total anharmonicity (Table 2) from the temperature-dependence of the Raman frequencies shown in the bottom panel of Fig. 5. The implicit anharmonicity has instead been estimated by thermal expansion ($\alpha \simeq-11.5 \times 10^{-6} \mathrm{~K}^{-1}$ at $300 \mathrm{~K}[18]$) and Grüneisen parameters γ_{i}, the latter obtained by pressure-dependent $a b$ initio calculations performed in the pressure range from 0 to 300 MPa , corresponding to a reduction in lattice constant of about 0.15%. The resulting Grüneisen parameters for each vibrational modes at the Brillouin zone center are listed in the last column of Table 1, while the implicit anharmonic contribution of the $\mathrm{F}_{2 g}$ and A_{g} Raman-active modes are reported in Table 2.

Firstly we find negative Grüneisen parameters for the lowerfrequency modes (Table 1), in particular for the lowest-frequency $F_{1 g}$ symmetry mode corresponding to rigid rotation of CaF_{6} and ZrF_{6} octahedra around Ca and Zr , respectively, whose Grüneisen parameter is about -35 . These findings are in agreement with the work of Hancock and co-workers [18] in which the most strongly negative Grüneisen parameters were associated with modes below $\sim 150 \mathrm{~cm}^{-1}$; furthermore, the large negative Grüneisen parameter of the $F_{1 g}$ mode indicates that rigid unit mode (RUM) mechanism [33,34] strongly contributes to the NTE in CaZrF_{6}. Note that typically the RUMs are optically active modes, like in $\mathrm{ZrW}_{2} \mathrm{O}_{8}$ [31,32], whereas in CaZrF_{6} RUMs are silent due to the higher crystal symmetry. The linear thermal expansion coefficient α of CaZrF_{6} at room temperature, calculated from the Grüneisen parameters listed in Table 1 (the reported value [18] of bulk modulus $B=37 \mathrm{GPa}$ is used in the calculation), is $\sim-2.3 \times 10^{-5} \mathrm{~K}^{-1}$ versus an experimental value of $\sim-11.5 \times 10^{-6} \mathrm{~K}^{-1}$ [18]. Obviously there is an inherent limit in this thermal expansion calculation since the modes in Table 1 are only a fraction of the entire Brillouin zone.

Secondly, the explicit/true anharmonicity of the $F_{2 g}$ and A_{g} Raman-active modes of CaZrF_{6} has been determined by equation (4). As reported in Table 2, for both the $F_{2 g}$ and A_{g} modes the explicit anharmonic contribution is dominant over the implicit one. In addition, because the cubic anharmonic term leads to a decrease in frequency and, on the contrary, the quartic anharmonic term produces an increase in frequency [29,30], we can infer that cubic anharmonicity (i.e., three-phonon scattering processes) is dominant in the A_{g} phonon-mode, while the quartic anharmonicity (i.e., four-phonon scattering processes) is dominant in the $F_{2 g}$ phononmode. We should mention here that also in cubic ScF_{3}, which has the same ReO_{3}-type connectivity of CaZrF_{6}, there are a substantial number of modes with dominant quartic anharmonicty that accounts for phonon stiffening with temperature and for a significant part of the NTE [35,36]. As a result, the (negative) thermal expansion of CaZrF_{6} cannot be fully explained in the framework of quasiharmonic approximation.

4. Conclusions

The vibrational dynamics of NTE material CaZrF_{6} has been

Table 2

Anharmonic contributions (in $10^{-5} \mathrm{~K}^{-1}$) to the $\mathrm{F}_{2 g}$ and A_{g} vibrational modes of CaZrF_{6}. The total anharmonicity has been determined from the temperature-dependence of the Raman frequencies shown in Fig. 5, the implicit anharmonicity has been estimated by pressure-dependent ab initio calculations and thermal expansion. The resulting explicit anharmonicty, separated using Eq. (4), indicates cubic anharmonicity (three-phonon processes) for the A_{g} mode and quartic anharmonicity (four-phonon processes) for the $\mathrm{F}_{2 g}$ mode.

Modes	Total anharmonicity $1 / \omega_{i}\left(\partial \omega_{i} / \partial T\right)_{p}$	Implicit anharmonicity $-\alpha \gamma_{i}$	Explicit anharmonicity $1 / \omega_{i}\left(\partial \omega_{i} / \partial T\right)_{V}$
$\mathrm{~F}_{2 g}$	6.18	-0.42	6.60
$\mathrm{~A}_{g}$	-3.81	1.45	-5.26

investigated by temperature-dependent Raman spectroscopy and $a b$ initio calculations. The three expected Raman-active modes for CaZrF_{6} have been reported for the first time. More interestingly, the vibrational frequency of the $\mathrm{F}_{2 g}$ and A_{g} Raman modes, related to Ca-F-Zr bending and stretching vibrations, respectively, exhibit an anomalous dependence on temperature - exactly the opposite of what one would expect from the quasi-harmonic approximation. In order to shed light on this issue, we have separated implicit and explicit anharmonicity by means of pressure-dependent $a b$ initio calculations. We have found out that explicit anharmonicity dominates over implicit anharmonicity, and the lower-frequency $\mathrm{F}_{2} g$ mode has significant quartic anharmonicity, while the higherfrequency A_{g} mode has significant cubic anharmonicity. The strong contribution of the explicit anharmonicity indicates that the large NTE of CaZrF_{6} cannot be accurately predicted through the quasi-harmonic approximation.

References

[1] T.A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight, Science 272 (1996) 90.
[2] P. Badrinarayanan, M.I. Ahmad, M. Akinc, M.R. Kessler, Mater. Chem. Phys. 131 (2011) 12.
[3] A.L. Goodwin, C.J. Kepert, Phys. Rev. B 71 (2005) 140301 (R).
[4] K.W. Chapman, P.J. Chupas, C.J. Kepert, J. Am. Chem. Soc. 127 (2005) 15630.
[5] W. Zhou, H. Wu, T. Yildirim, J.R. Simpson, A.R.H. Walker, Phys. Rev. B 78 (2008) 054114.
[6] B.K. Greve, K.L. Martin, P.L. Lee, P.J. Chupas, K.W. Chapman, A.P. Wilkinson, J. Am. Chem. Soc. 132 (2010) 15496.
[7] J. Chen, K. Nittala, J.S. Forrester, J.L. Jones, J. Deng, R. Yu, X. Xing, J. Am. Chem. Soc. 133 (2011) 11114.
[8] J. Chen, L. Fan, Y. Ren, Z. Pan, J. Deng, R. Yu, X. Xing, Phys. Rev. Lett. 110 (2013) 115901.
[9] P. Mohn, Nature 400 (1999) 18.
[10] J.R. Salvador, F. Gu, T. Hogan, M.G. Kanatzidis, Nature 425 (2003) 702.
[11] J. Arvanitidis, K. Papagelis, S. Margadonna, K. Prassides, A.N. Fitch, Nature 425 (2003) 599.
[12] G. Ernst, C. Broholm, G.R. Kowach, A.P. Ramirez, Nature 396 (1998) 147.
[13] A. Sanson, F. Rocca, G. Dalba, P. Fornasini, R. Grisenti, M. Dapiaggi, G. Artioli, Phys. Rev. B 73 (2006) 214305.
[14] A. Sanson, Chem. Mater 26 (2014) 3716.
[15] J. Chen, L. Hu, J. Deng, X. Xing, Chem. Soc. Rev. 44 (2015) 3522.
[16] L. Wang, P.F. Yuan, F. Wang, Q. Sun, Z.X. Guo, E.J. Liang, Y. Jia, Mater. Chem. Phys. 148 (2014) 214.
[17] T.C. Ozawa, S.J. Kang, J. Appl. Cryst. 37 (2004) 679.
[18] J.C. Hancock, K.W. Chapman, G.J. Halder, C.R. Morelock, B.S. Kaplan, L.C. Gallington, A. Bongiorno, C. Han, S. Zhou, A.P. Wilkinson, Chem. Mater 27 (2015) 3912.
[19] R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. DArco, Y. Noel, M. Causa, M. Rerat, B. Kirtman, Int. J. Quantum Chem. 114 (2014) 1287.
[20] M. Catti, R. Dovesi, A. Pavese, V.R. Saunders, J. Phys. Cond. Matter 3 (1991) 4151.
[21] R. Dovesi et al., http://www.crystal.unito.it/Basis_ Sets/zirconium.html (unpublished).
[22] R. Nada, C.R.A. Catlow, C. Pisani, R. Orlando, Model. Simul. Mater. Sci. Eng. 1 (1993) 165.
[23] U. von Barth, L. Hedin, J. Phys. C. Solid State Phys. 5 (1972) 1629.
[24] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
[25] F. Pascale, C.M. Zicovich-Wilson, F.L. Gejo, B. Civalleri, R. Orlando, R. Dovesi, J. Comput, Chem. 25 (2004) 888.
[26] C.M. Zicovich-Wilson, F. Pascale, C. Roetti, V.R. Saunders, R. Orlando, R. Dovesi, J. Comput, Chem. 25 (2004) 1873.
[27] B.K. Kim, H. Hamaguchi, Phys. Stat. Sol.(b) 203 (1997) 557 (and references therein).
[28] P.E. Quintard, P. Barbéris, A.P. Mirgorodsky, T. Merle-Méjean, J. Am. Ceram. Soc. 85 (2002) 1745.
[29] G. Lucazeau, J. Raman Spectr. 34 (2003) 478.
[30] N.P. Salke, M.K. Gupta, R. Rao, R. Mittal, J. Deng, X. Xing, J. Appl. Phys. 117 (2015) 235902.
[31] T.R. Ravindran, A.K. Arora, T.A. Mary, Phys. Rev. B 67 (2003) 064301.
[32] T.R. Ravindran, A.K. Arora, T.A. Mary, J. Phys. Cond. Matter 13 (2001) 11573.
[33] J.Z. Tao, A.W. Sleight, J. Sol. State Chem. 173 (2003) 442.
[34] M.T. Dove, K.O. Trachenko, M.G. Tucker, D.A. Keen, Rev. Mineral. Geochem 39 (2000) 1.
[35] C.W. Li, X. Tang, J.A. Munõz, J.B. Keith, S.J. Tracy, D.L. Abernathy, B. Fultz, Phys. Rev. Lett. 107 (2011) 195504.
[36] P. Lazar, T. Bučko, J. Hafner, Phys. Rev. B 92 (2015) 224302.

[^0]: * Corresponding author.

 E-mail address: andrea.sanson@unipd.it (A. Sanson).

