
SFIDE: challenges towards synchronous interaction
in e-learning

Michele Albrigo (michele.albrigo@univr.it), Roberto Burro (roberto@psico.univr.it), Olga Forlani
(olga.forlani@univr.it), Franco Bersani (franco.bersani@univr.it), Corrado Ferreri (corrado.ferreri@univr.it),

Giovanni Michele Bianco (giovanni.bianco@univr.it)
University of Verona - Italy

Abstract - History of the development of a synchronous tool
for e-learning, with University of Verona in the unusual role of
services provider.

I. Introduction

Recently, the University of Verona has been deploying
several initiatives that involve e-learning methodologies.
Almost all of them are related to internal courses that, at
different levels, apply remote and synchronous/asynchronous
learning. We discussed some features of those e-learning tools
in other papers [1,2].

Starting from mid 2006, our University has been
experiencing an interesting and challenging e-learning
initiative that doesn't involve classical academic courses. The
initiative is aimed to provide learning courses deployed in the
whole regional area, whose goal is training bricklayers. This
appeared for us as a real challenge for several reason: it
involves at the same time the seven cities of the Veneto
region, classes are located in high schools, teachers often do
their activity from their private offices, bricklayers aren't very
familiar with PCs and software in general, not only with e-
learning tools. Teachers work in presence, so synchronous
tools and video streaming were needed, but they also asked for
feedback tools, so asynchronous methodologies needed to be
implemented, we had to provide this service to train over 1200
bricklayers and, finally, this had to be an inexpensive project,
with less than a 50.000 euro budget.

At the same time, this project was very exciting: the
University could open its "boundaries" to the territory, thus
facing the major criticism in Italy, i.e. the "auto referentiality"
of the academic world. As a second point, we had to work
with different ISPs, different QoS, different speeds and
different ACLs, since the schools weren't required to use some
kind of dedicated connectivity for the project.

For these and other reasons, this initiative has been named
"SFIDE", an acronym that stands for "Sviluppo della
Formazione Individuale a Distanza in Edilizia" (development
of individual remote learning for building trade), but the
italian word "sfide" also means "challenges".

Our board were impressed about our optimistic view: they
kept asking us whether we were aware of the risks. Nothing

existed, and exists at the moment in Italy, that could be
compared to the SFIDE project, so we could not take
advantage of other experiences. We only were confident on
our e-learning framework: Moodle.

This paper tells the SFIDE project "story". SFIDE is still
working, and we are asked to enlarge its scope to other
activities.

II. Initial analysis

The initial requirements were based on the contractor's
experience on a similar platform during the previous year.
They expected to be able to show lessons on a shared
blackboard, where users could interact easily with basic
instruments like a drawing pen and text boxes. Users should
also be able to interact with the teacher (with an audio/video
channel) and between them, with a text chat. This interface
would have been used for two different kind of classes, a low-
level one, with no application sharing involved, and a higher
level one, which would have used application sharing to allow
teachers, tutors and students to interact over an AutoCAD
session.

After a first analysis of the available software, we decided
to implement our own solution: this allowed us more
flexibility over the contractor's requirements, and posed no
strict limits on the number of clients (which is very important
to extend the live-class usage to other courses and projects).

A. Requested features
During the development of the application, a number of

other feature requests emerged. To allow interaction between
the teacher and the tutors (and the help-desk operator), a
second chat channel has been created, separated from the main
one, and not shown to students. Group of students are now
monitored, in order to know how many of them are connected
from each site, and to know from which site each student
connects. Teachers are now able to send pop-ups to single
students or to the whole class. Teachers and tutors also wanted
to avoid multiple connections from a single account, resulting
in some users being listed two times in the live-class, so
connections had to have an inactivity timeout, some keep-alive
dialogue and an upper limit on number.

The Third Advanced International Conference on Telecommunications (AICT'07)
0-7695-2843-0/07 $20.00 © 2007

B. Environment requirements
The live class itself is integrated in a widespread LCMS,

the open source project Moodle. At first, the interaction
between the live-class and Moodle is quite loose, this poses no
problems at all on the server side. The live-class interaction is
entirely browser based, so, on the client side, requirements are
quite general: a browser with Flash support, an audio output
device, and a web-cam (otherwise no video interaction will be
possible). On the server side, since interaction between the
live-class and the Moodle server is really low, there are no
specific requirements. Our setup consists of two physical
servers, one for Moodle and one for the Flash Media Server.
Once their requirements are met, there are no other specific
requirements. The live-class will be seen as a resource in a
Moodle course, blending it with the course in which it's
contained. There's no real perception of the two different
environments from a user's point of view.

III. Development

A. Initial analysis
Any analysis for the development of the synchronous

module, the live-class, had usability and platform
independence of the final product as its main target. The
combination of Flash Media Server (FMS2, a server platform
to create multimedia applications and audio/video streaming to
and from flash clients) with ActionScript (AC, an ECMAS
syntax scripting language for flash player applications'
development) seemed to be one of the possible choices to
implement what we've been asked. Distributing a Flash
platform allows a consistent experience between different
browsing platforms and an easy integration with any other
web interface. Having the same possibilities of a stand-alone
application while being entirely online largely justifies the
choices we made.

B. Two programming levels
FMS2 bounds the development on two different levels:

client-side and server-side. Some functionalities are allowed
only in one of the two levels, while others can be used on
both. It's up to the developer to find the right combination
between the two sides of the development, accordingly to the
application that must be created. In our live-class, most of the
time has been devoted to the client side interface, to share the
load between the client workstation and to lessen the load on
the server.

Server side actionscript (SSA)
Server side programming is specifically used to control

and manage accesses to the platform, SSA manages login
procedures, determines how many simultaneous login and

manages users' disconnections. The server side software does
many other things, but most of them are entirely managed by
the client side actionscript.

Client side actionscript (CSA)
CSA uses some methods and properties to remotely

control FMS2's functionalities. There are 2 important
structures at the core of the live-class functionalities:

• streaming object (StO)
• remote shared object (RSO)
StO is a one-way connection between the client's Flash

player and FMS2 or between two different servers. All of the
live-class interfaces access two different streaming channels
that route and share over the RTMP protocol the output from
multimedia peripherals (e.g. web-cam and microphone). Any
stream management operation is initialized by CSA. The
single clients connected to FMS2 speak to each other via RSO,
i.e. a single instance's shared data on the server. The live-class
is based on two different RSO types, volatile and persistent
ones; both of them can activate information sharing from a
disconnected state: they stop using connection bandwidth
when there's nothing more to do on the client-server-clients
path. When a user event occurs on the live-class interface, an
event is triggered (e.g. clicking a mouse button, or moving the
mouse over some areas) on FMS2, which sends a
synchronization signal to one or more RSOs. To better
understand this, the example below (fig. 1) shows a possible
scenario where two clients, C1 and C2, connect to the same
RSO1. For each connecting client, FMS2 activates the "clear"
function. When, on the next step, C1 modifies a property x on
RSO1, e.g. setting it to the value of 5, FMS2 sends a
synchronization signal both to C1 and C2, where it says that x
value has changed (there's no synchronization if x is equal to
x).

FIG.1: SHARED OBJECT FLOW

The Third Advanced International Conference on Telecommunications (AICT'07)
0-7695-2843-0/07 $20.00 © 2007

Consequently, FMS2 behaves as a variable synchronizer,
and its variables are read or written by the client live-class and
by the CSA. When a user triggers an event on the live-class,
the linked functions activates or deactivates, accordingly to the
specific RSO that has been modified, in its properties, by
previous events.

C. Interface structure
Live-class web interface has been designed assembling

different graphical elements on various layers. Flash allows
the creation of movie clips on a frame-by-frame basis: each
frame is associated to a specific function. In our live-class, the
main movie-clip has the following structure:

• frame 1: connects the web platform with the live-
class and directs different user levels towards different
frames
• frame 2: implements the teacher interface, the one

with most functionalities and that allows more intervention
on RSOs and StOs.
• frame 3: implements the student interface
• frame 4: implements the tutor interface
• frame 5: implements the controller interface
• frame 6: implements the help-desk interface
• frame 7: implements the interface for denied access

For each type of user, a single interface is allowed. Each
frame of the main movie clip contains lower level movie clips,
each of whom links directly with the live-class functions.

D. Moodle + live-class integration
Since the live-class must be integrated into Moodle, a

variable-passing page has been implemented, to allow
communication between a php application and swf. See figure
2 for a diagram about this interaction.

FIG. 2: MOODLE + LIVE-CLASS COMMUNICATION SCHEMA

User authentication relies entirely on Moodle, which
passes to live-class's swf the user-id, if access has been
granted to the live-class.

IV. Usage experience

The live-class application has been designed trying to
implement in the best possible way the requirements from its
users. This means that, on the basis of its users' experience
(teachers and tutors), an initial requirement analysis has been
performed, to define its main tools and the different user
categories and privileges, followed by a study on the effort
that should be made to implement them and the time this
would have taken.

A. Graphical User Interface
Basing on the analysis, we identified 5 different user

types, each of whom had to have its own graphical interface,
with the following tools, which are necessary to perform the
users' tasks.

• Blackboard: this is the main content-displaying area,
with tools to draw and write over slides.
• User list: like in a chat application, this area displays

the list of the users connected to the live-class. Special
users (teachers, tutors and help-desk operators) are marked
with graphical icons.
• Commands: some buttons and mini-interfaces that

allow (mainly to the teacher) to manage the lesson,
question students, activate hand-raising and some other
specific functions.
• Private chat: a separate chat channel, available only

to teachers, tutors and help-desk operators, to allow direct
communication to coordinate the lesson, and to quickly
solve configuration or network problems.
• Public chat: a chat channel where everybody can

write, used mainly by the students to interact with the
teacher when they aren't directly questioned by the teacher
himself.
• Quiz launch: is one of the tools available to the

teacher that allows him/her to evaluate students. Quizzes,
which are previously set up using Moodle, are sent to
students by the teacher. When the teacher launches the
quiz, the live-class opens a browser pop-up window on the
client computers, and answers are managed by Moodle
itself.
• Pop-up messages: another tool which allows the

teacher to send messages to all the students or to one
specific student.

To improve user-friendliness of the live-class application,
with the above mentioned tools we assembled many different
user interfaces, one for each of the following user levels:

• Teacher: this is the most privileged user, being the

The Third Advanced International Conference on Telecommunications (AICT'07)
0-7695-2843-0/07 $20.00 © 2007

one who manages the lesson. Teachers have all the
components and a command prompt that allows them to
direct the lesson, select one student, activate audio and
video and to give the student access to the blackboard.
Teachers can also decide which slide to show and, using
some editing tools, to launch quizzes previously defined,
or even set up some quick polls to the whole class or to
single students, or to send pop-up messages. See figure 3
for a relevant part of the teacher interface.
• Tutor and help-desk: tutors are in the same site of

students and represent the trade-union between the teacher,
the students and the help-desk. The latter oversees all the
lessons and can interact in real time to help tutors or
teachers if they have any problem. Help-desk can also do
some basic troubleshooting over client computers. Both
tutors and help-desk provide technical support so their
GUIs are quite similar. They can take part in the lesson but
they can't perform any action over the content of the
lessons.
• Students: they are the recipients of the lesson. In

SFIDE they are divided in groups, each of whom is in a
different city. Their interface displays all the components
and allows them to take part in the lesson. If questioned,
they can talk and they are displayed in one of the two
video channels, they can also interact using the blackboard
if the teacher allows them to do so. They can always
access the public chat channel.
• Controller: it's a special user, created to allow

coordinators to observe the on-line lesson. The GUI is the
same as students' one, but they aren't allowed any
interaction with the lesson, being only a passive observer.

B. Problems and Solutions
There's no better way than usage experience to evaluate

the effectiveness of an application. During the first four
months of activity, the live-class and Moodle system has been
evaluated and tested, collecting suggestions and requests from
the different classes of users. We sorted the problems into
three different categories:

• application problems: teachers complained about
some parts of the interface being too difficult to use.
Problems have been reported over single parts of the GUI,
and lead to many "on the road" improvements. This
process lead us to the present version 2 of our live-class.
• architectural and structural problems: having to

deal with many users in many different sites, we had to
face connectivity and bandwidth issues, partly due to
having many students (up to 20) inside the same building,
and over the same network link. FMS2 doesn't support
multicasting, so, while our server can deliver content to

large groups of users, this sometimes isn't possible due to
the lack of bandwidth on the client side.
• minimal requirements: sometimes, even when

clearly stated, client classes don't meet the minimal
requirements to access the system, so we experienced
slowdowns in the audio/video streams and difficulties in
completing lessons. We didn't experience any problems
with the classrooms that met our requirements.

V. Future directions

The many positive feedbacks we had about the SFIDE
projects can allow us to foresee a future where the knowledge
and the tools developed within this project can be made
available to other e-learning initiatives and environments. This
can lead to further improvements to the live-class, to meet
different pedagogical and technological requirements. There
are many possible improvements, but some main points can be
taken as our roadmap for the following months.

A. More integration
At present, user profiling and live-class interface

assignment is made upon a text file, which defines the
appropriate GUI for any user. To improve this situation, we
plan to link the live-class with Moodle, allowing the live-class
to directly query the Moodle user-base and get informations
about the user's profile in the particular course that integrates a
live-class as one of its resources. We also could create a
Moodle block displaying the real-time status of the live-class,
once a course has one associated.

B. Accessibility
The current live-class allows a little personalization by the

user, setting some parameters in the GUI itself. This way of
operating, while good-looking, can be difficult for some users.
To improve the GUI's usability, we plan to introduce keyboard
shortcuts or hot-keys, allowing more keyboard interaction, to
move some steps towards a more accessible (in the W3C-WAI
meaning) interface.

C. Framework independence
We plan to unlink the live-class from Moodle, allowing it

to be integrated into other platforms. One of the key-points of
the whole ELViRA project (University of Verona's initiative
for e-learning) is that it's not bound to any specific platform or
communication medium, so the live-class must be considered
only temporarily a Moodle-specific tool. We plan to
implement a support web application, where the live-class will
found one common interface to query and get informations
about users. This will presumably be built as a plugin-
architecture, where each platform provided by the ELViRA
project will get its own plugin, to determine user's data and

The Third Advanced International Conference on Telecommunications (AICT'07)
0-7695-2843-0/07 $20.00 © 2007

role for the context where the live-class has been placed.

D. Performance and scalability
Some of the problems we noticed with the current live-

class are bandwidth-related. To partially solve these problems
we are evaluating two different approaches.

The most typical one is to design the system with a
central server where both video streams (teacher and student)
converge, and with a set of servers, possibly one for each
classroom, who receive one stream from the central server and
re-distribute it across multiple streams from inside the
classroom itself. The main advantage is that these servers
(Edge servers) share all the current live-class structure,
implementing a structure distributed over the territory. The
main disadvantage is the additional cost, using proprietary
software and technologies.

The most innovative approach, while implemented using
some well-known technologies, is to introduce multicast.
While keeping the same structure we set up to manage the
incoming audio and video streams (one from the teacher and
one from the current student or tutor), the FMS could send
both streams in "push" mode to an external streaming server,
where, using IP multicast, the streams will be sent back to the
clients. The main disadvantage will be creating the automatic
system to set up the streams for the classes, while the main
advantage will be the use of a standard way of distributing
content, supported by most of the network equipment and
particularly efficient, with no need to maintain a network of
intermediate proxy servers.

E. Standardization
The further developments of the live-class could be even

more ambitious: the platform itself could become a
coordinated object container, the GUI could be re-
implemented with AJAX technology, as a highly interactive
web application, while graphical elements and drawings could
be rendered with SVG, a vectorial format chosen by the W3C
as a standard for graphics on the WWW. Audio and video
streams could be managed with SMIL and standard codecs
like H.264 and G728/G729, or even CELP, since most of the

audio is voice. The adoption of these technologies could lead
to a better compliance with W3C and ITU standards, to a
reduced bandwidth usage and to improve accessibility from
different client platforms.

VI. Conclusion

The SFIDE project showed us that, in some cases, an e-
learning project can be developed with scarce resources, while
answering to strict requirements, and that the key to its success
is the sharing of the involved risks between the service
provider (our University) and the users (external schools and
students). Even on a low budget, the platform set up for
SFIDE has been able to deliver the service with short
downtimes and just two lessons over a six month period had to
been rescheduled.

This project also allowed us to implement the core
functionalities of a synchronous e-learning platform that we
will be able to adapt and use in other projects, and that we can
further improve by integrating it in the asynchronous platform
we are using and by moving it towards more compliance to
web standards.

VII. References

[1] Giuseppe Scollo, Giovanni M. Bianco, Riccardo
Fattorini, Olga Forlani, Nicola Piccinini, Ugo Savardi,
“Strategic planning and service models for the ELViRA
project”, aict-sapir-elete 2005, p. 516, Advanced Industrial
Conference on Telecommunications/Service Assurance with
Partial and Intermittent Resources Conference/E-Learning on
Telecommunications Workshop (AICT-SAPIR-ELETE’05),
2005.

[2] Olga Forlani, Giovanni M. Bianco, Michele Albrigo,
"Technology and Services: Cars and Assistance for E-
Learning Roadmaps," aict-iciw, p. 12, Advanced International
Conference on Telecommunications and International
Conference on Internet and Web Applications and Services
(AICT-ICIW'06), 2006.

The Third Advanced International Conference on Telecommunications (AICT'07)
0-7695-2843-0/07 $20.00 © 2007

