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Abstract. The Julia static analyzer applies abstract interpretation to
the analysis and verification of Java bytecode. It is the result of 13 years
of engineering effort based on theoretical research on denotational and
constraint-based static analysis through abstract interpretation. Julia is
a library for static analysis, over which many checkers have been built,
that verify the absence of a large set of typical errors of software: among
them are null-pointer accesses, non-termination, wrong synchronization
and injection threats to security. This article recaps the history of Julia,
describes the technology under the hood of the tool, reports lessons
learned from the market, current limitations and future work.

1 Introduction

The Julia analyzer applies static analysis to Java bytecode, based on abstract
interpretation [7]. Its internal technology has been published already [9,10,21,
22,24,25,28–33] and the rest is a major, at times painful engineering effort,
aimed at making theory match the complex reality of modern software, as such
of virtually no direct interest to the scientific community. Hence, the goal of
this invited article is twofold: give a brief overview of the technology, meant
as a reference to other, more detailed articles; and report experience gathered
from the transformation of the tool into a company that survives on the market,
something that research scientists typically overlook but, at the end, is the sole
justification for the existence of a research community that does not want to
remain confined inside pure theoretical speculation.

Julia was born in 2003 to perform experiments that could complement and
support the formalizations presented in scientific articles. Figure 1 shows the
timeline and main milestones of the development of the tool. The main guideline
was the development of a sound static analyzer. That is, Julia was meant to find
all errors, without any false negatives. For this reason, abstract interpretation
was the preferred theoretical basis. In practice, this means that the main issue has
been the fight against false positives, whose reduction proved essential once the
tool was incorporated into a company and customers started using it. Currently,
the Julia analyzer is unique on the market in applying sound non-trivial static
analyses to large Java programs, such as nullness, termination, synchronization
and injection attacks (see Sects. 3, 4, 5 and 6). In particular, it is the only sound
analyzer able to find SQL-injections and cross-site scripting attacks [20] in Java.

The Julia company was incorporated in 2010, after 7 years of software devel-
opment, as a university startup, together with Roberto Giacobazzi from Verona
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Fig. 1. Timeline of the development of the Julia static analyzer and company (courtesy
of ReadWriteThink: www.readwritethink.org).
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and Fred Mesnard and Étienne Payet from Réunion. Nevertheless, the tool
needed further technological evolution to become strong enough for the mar-
ket. From 2015, Julia Srl is part of the larger Italian group Corvallis and enjoys
the support of its commercial network. The tool is currently used by banks and
insurance companies as well as by large industrial groups, in Italy and abroad.

This article is organized as follows. Section 2 shows the technology imple-
mented by the Julia library. Sections 3, 4, 5 and 6 show the most significant
examples of analyses built over that library. Section 7 describes problems and
solutions for the analysis of real software, which is never pure Java. Section 8
reports our experience with the engineering of a static analyzer. Section 9 reports
problems faced when a university startup hits the market and a sound static ana-
lyzer must become a tool used on an everyday basis by non-specialized personnel.
Section 10 concludes.

Throughout this article, examples are made over two simple Java classes.
Figure 2 shows a synchronized vector, implemented through an array, that collects
comparable, nullable objects and sort them through the bubblesort() method.
Method toString() returns an HTML itemized list of the strings. Figure 3 is a
Java servlet, i.e., an entry point for a web service. It expects four parameters and
collects their values inside a Collector of strings. It sorts those values and writes
their HTML list as output (typically shown on a browser’s window).

2 A Library for Static Analysis

Julia is a parallel library for static analysis of Java bytecode based on abstract
interpretation, over which specific analyses can be built, called checkers. As
of today, Julia has been used to build 57 checkers, that generate a total of
193 distinct classes of warnings, and a code obfuscator. The construction of
the representation of a program in terms of basic blocks (Sect. 2.1) is done in
parallel, as well as type inference. Checkers run in parallel. However, each single
analysis is sequential, since its parallel version proved to be actually slower. The
computation of a static analysis is asynchronous and yields a future (a token
that allows blocking access to the result of a running computation [14]), hence
it is still possible to launch many static analyses in parallel with a performance
gain, as long as they do not interact.

We describe below the support provided by the Julia library and then the
four scientifically more appealing checkers that have been built over that library.

2.1 Representation of Java Bytecode

The library provides a representation of Java bytecode which is:
ready for abstract interpretation: all bytecodes1 are state transformers,

including those modelling exceptional paths; the code is a graph of basic
blocks;

1 In this article, bytecode refers both to the low-level language resulting from the
compilation of Java and to each single instruction of that language. This is standard
terminology, although possibly confusing.
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Fig. 2. A collector of comparable values.
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Fig. 3. A servlet that reads four parameters, sorts them and writes them as a list.

fully typed and resolved: bytecodes have explicit type information available
about their operands, the stack elements and locals. Instructions that refer-
ence fields or methods are resolved, i.e., the exact implementation(s) of the
field or methods that are accessed/called are explicitly provided;

analysis-agnostic: it makes no assumption about the checker that will be
applied, hence it does as few instrumentation as possible; in particular, it
does not transform stack elements into locals not translate the code into
three-address form.

For instance, Fig. 4 shows the representation of the bytecode of bubblesort()
from Fig. 2. It shows exceptional paths, that are implicit in the source code and
correspond to situations where a runtime exception is raised and thrown back to
the caller. More complex exceptional paths are generated for explicit exception
handlers. Figure 4 shows that field accesses and method calls are decorated with
their resolved target(s), under square brackets. For instance, the access to the
field signature arr is resolved into an access to field Collector.arr of type
Comparable[]. The call to the method signature swap() is resolved into a call
to Collector.swap(Comparable[]). In more complex situations, resolution is
less trivial. For instance, Fig. 5 shows that the call to signature compareTo()
at line 38 in Fig. 2 is resolved into a call to String.compareTo(Object), since
the program stores only strings inside a Collector. Field resolution is static in
Java bytecode, while method resolution is dynamic and Julia applies a specific
algorithm [23], known as class analysis. For simplicity, Fig. 4 does not show static
types for each stack element and local variable at each bytecode. However, Julia
infers them and makes them available in this representation.
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start
load 0 Collector

getfield Collector.arr:Comparable[] [Collector.arr:Comparable[]]
dup Comparable[]

store 2 Comparable[]
monitorenter Comparable[]

catch throws 0
throw Throwable

load 0 Collector
getfield Collector.arr:Comparable[] [Collector.arr:Comparable[]]

store 1 Comparable[]
load 2 Comparable[]

monitorexit Comparable[]
const 0

store 2 int

load 2 int
load 1 Comparable[]

arraylength of Comparable[]

catch throws 2

if_cmpge int
return void

if_cmplt int
load 0 Collector

load 1 Comparable[]
call Collector.swap(Comparable[]):void [Collector.swap(Comparable[]):void]

throw Throwable

catch throws 0 increment 2 by 1

Fig. 4. The representation that Julia builds for method bubblesort() in Fig. 2. Ellipses
are blocks implementing exceptional paths. Filled rectangles are the compilation of the
for loop.

The Julia library builds over BCEL [13], for parsing the bytecode, whose later
version makes Julia able to parse the latest instructions used for the compila-
tion of lambda expressions and default methods in Java 8. An important issue
is the portion of code that should be parsed, represented in memory and ana-
lyzed. Parsing the full program and libraries might be possible but programs
use only a small portion of the libraries (including the huge standard library),
whose full analysis would be prohibitive in time and space. Since Java bytecode
is an object-oriented language where method calls are dynamic, determining
the boundaries of the code to analyze is non-trivial. Julia solves this problem
with class analysis [23], whose implementation has been the subject of extreme
optimization, to let it scale to very large codebases, that possibly instantiate
many classes and arrays. This implementation is called bytecode extractor and
is a delicate component of Julia that takes into account many situations where
objects are created by reflection (for instance, injected fields in Spring [18]). It is
important to know the entry points of the application from where the extraction
starts. Julia assumes by default that the main() method and callback redef-
initions (such as equals() and hashCode()) are entry points. But it can be
instructed to consider all public methods as entry points, or methods explicitly
annotated as @EntryPoint.
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Fig. 5. A portion of the representation that Julia builds for method swap() in Fig. 2.

2.2 Denotational Analyses

Support for denotational analyses has been the first provided by Julia, by apply-
ing to imperative object-oriented programs previous results for logic programs.
Denotational semantics is a way of formalizing the semantics of programs [34],
based on the inductive, bottom-up definition of the functional behavior of blocks
of code. The definition is direct for the smaller components of the code and is
inductive for larger components, made up of smaller ones. For loops and recur-
sion, a fixpoint computation saturates all possible execution paths. By semantics
of programs, in the context of Julia one must always understand abstract seman-
tics, defined in a standard way, through abstract interpretation [7], so that it
can be computed in finite time.

Julia is completely agnostic about this abstraction. In general, for Julia an
abstract domain is a set of elements A = {a1, . . . , an}, that can be used to
soundly approximate the behavior of each bytecode instruction, together with
operations for least upper bound (�) and sequential composition (◦) of abstract
domain elements. Consider for instance Fig. 4. A denotational analyzer starts by
replacing each non-call bytecode with the best abstraction of its input/output
behavior (from pre-state to post-state) provided by A (Fig. 6). Then the ana-
lyzer merges abstractions sequentially, through the ◦ operator of A (Fig. 7). This
process is known as abstract compilation [17]. The fixpoint computation starts
at this point: Julia keeps a map ι from each block in the program to the cur-
rent approximation computed so far for the block (an interpretation). Each call
bytecode gets replaced with the � of the current approximations ι(b1) . . . ι(bk) of
its k dynamic targets (modulo variable renaming) and sequentially merged (◦)
with the approximation inside its block (as a31 in Fig. 7). Then ι(b) is updated
with the approximation inside b sequentially composed (◦) with the least upper
bound (�) of the current approximations of its f followers: ι(b1) � . . . � ι(bf ).
This process is iterated until fixpoint. At the end, ι(b) is the abstraction of all
execution traces starting at each given block b.
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A nice feature of denotational analysis is that of being completely flow and
context sensitive, fully interprocedural and able to model exceptional paths. In
practice, this depends on the abstract domain A. In particular, its elements
should represent functional behaviors of code (from pre-state to post-state) in
order to exploit the full power of denotational analysis. In practice, this is achiev-
able for Boolean properties of program variables (being null, being tainted,
being cyclical, and so on), since Boolean functions can be used as representa-
tion for functional behaviors and efficiently implemented through binary decision
diagrams (BDDs) [5]. Julia has highly optimized support for building abstract
domains that use BDDs, It reduces the number of Boolean variables by abstract-
ing the variables of interest only (for nullness, only those of reference type).

The implementation of denotational analysis is difficult for non-Boolean prop-
erties of variables (for instance, the set of runtime classes of the objects bound
to a variable or the set of their creation points). Moreover, it provides only
functional approximations of the code, rather than approximations of the state
just before a given instruction. The latter problem is solved at the price of a
preliminary transformation [24], that Julia implements.

a1
a2
a3
a4
a5
a6

a26
a27

a7
a8
a9
a10
a11
a12
a13

a14
a15
a16

a25

a23
a24

a17
a18
a19

call Collector.swap(Comparable[]):void [Collector.swap(Comparable[]):void]

a22

a21 a20

Fig. 6. The abstraction of the non-call bytecodes of method bubblesort() in Fig. 2.

2.3 Constraint-Based Analyses

A constraint-based analysis translates a Java bytecode program into a set-
constraint, whose nodes are (for instance) blocks of code and whose edges
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a28

a34 a29

a30

a25

a32 a31
call Collector.swap(Comparable[]):void [Collector.swap(Comparable[]):void]

a22

a21 a20

Fig. 7. The sequential merge of the abstraction of method bubblesort() in Fig. 2.

propagate abstract information between nodes. The approximation at a node
is the least upper bound of the abstract information entering the node from
each in-edge. Abstract information is propagated along the edges until fixpoint.
The constraint for Fig. 4 might be as in Fig. 8, where each node contains the
fixpoint abstract information at that node and arrows represent propagation of
abstract information. Method calls have been flattened by linking each call place
to the first node of the target(s) of the call. Each return instruction inside a
callee is linked back to the non-exceptional followers of the calls in the callers.
Each throw bytecode inside a callee is linked back to the exceptional followers
of the calls in the callers. There might exist a direct link from a call instruc-
tion to its subsequent instructions, such as between the node approximated with
a6 and that approximated with a9 in Fig. 8. This edge can model side-effects
induced by the execution of the method, if they can occur.

The nice feature of constraint-based analysis is that it can be easily applied
to every kind of abstract domain, also for non-Boolean properties. For instance,
abstract information might be the set of already initialized classes; or undirected
pairs of variables that share; or directed pairs of reachable variables. Moreover,
there is large freedom about the granularity of the constraint: nodes might stand
for approximations at blocks of code; but also for approximations at each single
instruction (by splitting the blocks into their component instructions); or even for
approximations of each single local variable or stack element at each program
point. The latter case allows one for instance to compute the set of creation
points for each variable; or the set of runtime classes for each variable; or the
set of uninitialized fields for each variable. Finally, edges can propagate abstract
information by applying any propagation rule, also one that might transform
that information during the flow. The limitation of constraint-based analysis is
that it is inherently context-insensitive, since method calls have been flattened:
there is a merge-over-all-paths leading to each given method.
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The Julia library includes highly optimized algorithms for building con-
straints and computing their fixpoint, with different levels of granularity. These
algorithms strive to keep the constraint as small as possible, by automatically col-
lapsing nodes with identical approximation. Abstract information at each node
is kept in a bitset, for compaction. Propagation is particularly optimized for
additive propagation rules.

2.4 Predefined Static Analyses

The Julia library builds on its infrastructure for denotational and constraint-
based analyses and provides a set of general-purpose predefined analyses, that
can be useful for building many checkers. In particular, the library provides:

– a possible class analysis for variables [23,32] (constraint-based, used for the
extraction algorithm) and its concretization as creation-points analysis;

– a definite aliasing analysis between variables and expressions [21] (constraint-
based);

– a possible sharing analysis between pairs of variables [29] (constraint-based);
– a possible reachability analysis between pairs of variables [22] (constraint-

based);
– a numerical analysis for variables, known as path-length [33] (denotational);
– a possible cyclicity analysis for variables [28] (denotational);
– a possible nullness analysis for variables [30] (denotational);
– a definite non-null analysis for expressions [30] (constraint-based);
– a definite initialization analysis for fields [31] (constraint-based);
– a definite locked expressions analysis [10] (constraint-based);
– a possible information flow analysis for variables [9] (denotational).

3 Nullness Checker

A typical error consists in accessing a field or calling a method over the null
value (a dereference of null). This error stops the execution of the program with
a NullPointerException. Julia can prove that a program will never raise such
exception, but for a restricted set of program points where it issues a warning.
The Nullness checker of Julia uses a combination of more static analyses. A first
analysis approximates the Boolean property of being null for program (local)
variables, by using BDDs that express constraints on all possible nullness behav-
iors of a piece of code [30]. However, object-oriented programs store values in
fields and not just local variables. This makes things much more difficult, since
a field holds null by default: hence Julia proves also that a field is always ini-
tialized before being read [31]. Moreover, expressions might be locally non-null
because of some previous non-nullness check. Julia can prove it, provided the
expression does not change its value between check and dereference [30].

Consider for instance the code in Figs. 2 and 3. The Nullness checker of Julia
issues only the following warning:
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start of
Collector.bubblesort():void

a1

normal end of
Collector.bubblesort():void

exceptional end of
Collector.bubblesort():void

a2 a3

a5

a10

a4

a7a6

a9start of
Collector.swap(Comparable[]):void

normal end of
Collector.swap(Comparable[]):void

exceptional end of
Collector.swap(Comparable[]):void

a8

Fig. 8. A constraint generated for method bubblesort() in Fig. 2.

Collector.java:38: [Nullness: FormalInnerNullWarning]
are the elements inside formal parameter "x" of "swap" non-null?

First of all, this proves that the program will never raise a NullPointer
Exception elsewhere. Let us check that warning then. At line 38 of Fig. 2 the
value of x[pos] can actually be null, since the array x is allowed to hold null
elements (parameters of a servlet are null when missing) and the test x[pos]
!= null at line 37 is not enough to protect the subsequent dereference at line
38. The reason is that the programmer at line 37 has incorrectly used the eager &
operator, instead of the lazy &&. Hence the dereference at line 38 will be eagerly
executed also when x[pos] holds null.

In order to appreciate the power of this checker, consider that, after fix-
ing the bug, by replacing & with && at line 37, the Nullness checker does not
issue any warning anymore, which proves that the program will never raise
a NullPointerException. This is achieved through the expression non-null
analysis [30], that now proves expression x[pos] to be non-null at line 38.

4 Termination Checker

Most programs are expected to terminate. A non-terminating program will never
provide an answer to a query or will hang a device. The Termination checker
of Julia proves that loops terminate, by translating Java bytecode into logic
programs over linear constraints [2,33], whose termination is subsequently proved
by using traditional techniques for logic programs [4,6,19,26]. Since imperative
programs allow shared data structures and destructive updates, the inference
of linear constraints needs the support of sharing and cyclicity analysis [28,



50 F. Spoto

29]. Julia implements linear constraints with bounded differences [8]. For small
programs, Julia can use the more precise and more expensive polyhedra [3] or a
mixed implementation of bounded differences and polyhedra.

Consider for instance the code in Figs. 2 and 3. The Termination checker of
Julia issues only the following warning:

Collector.java:35: [Termination: PossibleDivergenceWarning]
are you sure that Collector.swap always terminates?

Hence it proves that all other loops in the program terminate. The reason is that
variable pos is incremented at line 42, but that line is only executed inside the
body of the if at line 36. If the statement pos++ is moved outside the body of the
if, then the code is correct and Julia proves termination of this loop as well. This
result is achieved through the use of a preliminary definite aliasing analysis [21]
that proves that, during the execution of the loop, the strictly increasing value
of pos is always compared against the value of the expression x.length-1 and
that value does not change, not even by side-effect.

5 Synchronization Checker

Concurrency is more and more used in modern software. It supports perfor-
mance, by running algorithms in parallel on multicore hardware, but also respon-
sivity, by running long tasks on threads distinct from the user interface thread
(typical scenario in Android programming [15]). But concurrency is difficult and
programmers tend to write incorrect concurrent code. Code annotations have
been proposed [14] as a way of specifying synchronization policies about how
concurrent threads can access shared data to avoid data races (concurrent access
to the same data). The semantics of such annotations has been recently formal-
ized [11] and tools exist nowadays that check and infer them [10]. Julia has a
GuarbedBy checker that is able to prove the correctness of annotations already
provided by the programmer, but can also infer sound annotations for fields and
method parameters [10], that were not explicitly written in code.

Consider for instance Fig. 2 and 3. Field arr at line 4 of Fig. 2 is annotated
as @GuardedBy("itself"). This means that a thread can dereference the value
of field arr only at program points where that thread locks the value itself [11].
For instance, this is what happens at lines 12, 18 and 53. Nevertheless, the
GuardedBy checker of Julia issues the following warning:

Collector.java: [GuardedBy: UnguardedFieldWarning]
is "itself" locked when accessing field "arr"?

Indeed, the value of arr is copied into variable x at line 26 and later dereferenced
at line 29 and inside method swap(), without holding the lock on that value.
The programmer might have expected to optimize the code by reducing the span
of the critical section to line 26 only. But this is incorrect since it protects, inside
the critical section, only the name arr (which is irrelevant) rather than the value
of arr (which is semantically important). If the synchronization starting at line
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25 is extended until the end of line 30, Julia does not issue any warning anymore
and infers the @GuardedBy("itself") annotation for field arr.

6 Injection Checker

Injection attacks are possibly the most dangerous security bugs of computer pro-
grams [20], since they allow users of a web service to provide special input argu-
ments to the system, that let one access sensitive data or compromize the system.
The most famous attacks are SQL-injection and cross-site scripting (XSS). Julia
has an Injection checker that applies taintedness analysis through an abstract
domain for information flow, made of Boolean formulas and implemented as
BDDs [9].

Consider for instance the code in Figs. 2 and 3. The Injection checker of Julia
issues only the following warning:

Parameters.java:24: [Injection: XSSInjectionWarning]
possible XSS-injection through the 0th actual parameter of write

Lines 18–21 in Fig. 3 actually store some parameters of the request inside the
collector and such parameters can be freely provided by an attacker. They are
then sorted at line 22 and written to the output of the servlet as an HTML
list, at line 24. Hence, if the attacker provides parameters that contain special
HTML of Javascript tags, they will be rendered by the browser and hence open
the door to any possible attack.

The power of Julia’s analysis is related to a new notion of taintedness for
data structures, that does not classify fields as tainted or untainted on the basis
of their name, bur considers instead an object as tainted if tainted data can be
reached from it [9]. For instance, if another Collector would be created in the
code in Fig. 3, populated with strings not coming from the parameters of the
request, and written to the output of the servlet, then Julia would not issue a
warning for that second write(). Both collectors would be implemented through
field arr (Fig. 2) but only one would actually reach tainted data. This object-
sensitivity justifies the precision of the Injection checker of Julia, compared to
other tools [9].

7 Frameworks: Java Does Not Exist

Julia is a static analyzer for Java bytecode. But real programs nowadays are
very rarely pure Java code. Instead, they are multilanguage software based on a
large variety of frameworks. For instance, Java often integrates with Java Server
Pages (JSPs), another programming language that is used to program the views
of web applications. If a static analyzer does not understand JSPs, then it will
miss part of the code, non-nullness information, information flows and injection
attacks. A framework is, instead, a library that simplifies the implementation
of frequently used operations and very often modifies the semantics of the lan-
guage by introducing new behaviors through reflection. The typical example,
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in the banking sector, is Spring [18], that provides declarative configuration of
software applications through XML or annotation-based specification of beans;
as well as simplified implementations of web services and of the model-view-
controller design pattern for web applications; it also provides aspect-oriented
programming. Spring applications are often built on top of a persistence frame-
work, typically Hibernate [16].

If a static analyzer does not understand the multilanguage nature of software
or does not understand the semantical modifications that frameworks induce in
Java, then it will issue many false alarms and also miss actual bugs. That is, it
will become imprecise and unsound. Julia manages JSPs by compiling them into
Java code through the Jasper compiler [12]. Julia embeds partial support for
Spring, in particular for bean instantiation and their injection as dependencies.
Nevertheless, this is work in progress and the evolution of the frameworks tends
to be faster than our ability to deal with their new features.

A notable framework is Android. Knowledge about the Android standard
library is essential to avoid many false alarms. For instance, Julia has been
instructed to reason about the way views are constructed in an Android activity
from their XML specification, in order to reduce the number of false alarms
about wrong classcasts and null-pointer dereferences [25]. A big problem is that
Julia analyzes Java bytecode, but Android applications are packaged in Dalvik
bytecode format. Currently, it is possible to export the Java bytecode from the
integrated development environment or convert Dalvik into Java bytecode, with
the Dex2Jar tool [1].

8 Engineering Problems

A static analyzer for a real programming language is very complex software.
It implements involved semantical definitions; it is highly optimized in order
to scale to the analysis of large programs; it uses parallel algorithms, whose
implementation requires experience with multithreading; it must be clear, main-
tainable and expandable, which requires object-orientation and design pattern
skills. The natural question is then who can ever write such software. Julia
has been developed in 13 years, largely by a single person, who is a university
researcher and a passionate programmer. It is possibly the case that a very
professional development team could have be used instead, but a deep involve-
ment of researchers in the development effort seems unavoidable. In particular,
the complexity and duration of the effort seems to us incompatible with spotty
development by students or PhD’s, which would result in fragmentation, subopti-
mal implementation and final failure. However, researchers are usually reluctant
to spending so much time with activities that do not translate into published
papers. This is understandable, since their production is typically measured in
terms of publications only. It seems to us necessary to find alternative ways of
measuring the production of researchers, by including their direct involvement
in technology transfer, at the right weight.
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After a static analyzer has been developed by researchers, it must eventually
be entrusted to professional programmers, who will continue with the less critical
development of the tool. This is a delicate moment and requires time. Knowledge
can pass from researchers to programmers but this is a long term investment with
no immediate monetary benefit. As with any complex software, the alternative is
to lose experience and finally memory about the code, which would mean utter
disaster. The best solution is to open-source the code of the analyzer, if this is
compatible with the business model of the company.

Maintenance of a static analyzer is another difficult engineering task. In our
experience, a small improvement of the analyzer might change its precision or
computational cost very much, or introduce bugs. Hence it becomes important
to find ways for reducing the risk of regression. Since Julia is written in Java, we
have of course applied Julia to Julia itself from time to time, found errors and
debugged the analyzer. But this is not possible for functional bugs. Testcases are
more helpful here, but there is little experience with testing of static analyzers.
We have developed hundreds of higher level tests, that run the static analysis
of a given program and compare the result with what was obtained in the past.
Such tests must be updated from time to time, since Julia performs more and
more checks and becomes more and more precise. Of course, this process cannot
be done by hand. Instead, Julia has the ability to translate, automatically, the
result of a static analysis into a JUnit test class, that can later be used to check
for non-regression. Hence testcases can be updated automatically. For instance,
the following JUnit testcase is automatically generated from the analysis of the
code in Fig. 2 and 3 with the checkers Nullness, Termination, GuardedBy and
Injection. It re-runs the analyses, asserts the existence of the expected warnings
and the non-existence of other warnings:

@Test
public void test() throws WrongApplicationException, ClassNotFoundException {

Program program = analyse();
ClassMembersBuilder classMembersBuilder = new ClassMembersBuilder(program);

assertWarning(new UnguardedFieldWarning("Collector.java", "arr", "itself"));
assertWarning(new PossibleDivergenceWarning

(classMembersBuilder.getMethod("Collector", "swap", "void", "Comparable[]")));
assertWarning(new FormalInnerNullWarning("Collector.java", 38, "Collector", "swap", 0));
assertWarning(new XSSInjectionWarning("Parameters.java", 24,

classMembersBuilder.getMethodReference("java.io.Writer", "write", "void", "String"), 0));
assertNoMoreWarnings();

}

9 From Research to Market

Pushing new technology from laboratory to market is definitely exciting, but it is
also source of deception. In the case of Julia, the key point of soundness has been
the hardest to communicate to the market. Customers often already use a static
analysis tool, which is typically highly unsound, and do not see soundness as a
reason to change. Instead, they tend to highlight non-scientific aspects, such as
the ability to integrate the tool into their organization, its ease of use, the quality
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of the graphics of the reports, the classification of the warnings inside well-
known grids, the ability to work on specific software technology, which is typically
multilanguage and based on frameworks. Very few customers seem impressed by
soundness. Instead, customers tend to support other tools that do everything,
without questioning how good such tools actually are at doing this everything.
This situation might change in the future, but decades of misinformation will
not be easily forgotten. From this point of view, the dichotomy between scientific
publication and industrial communication must be eventually resolved, but this
requires good will on both sides.

Hitting the market is also an opportunity to discover how real software looks
like and hence what a static analyzer should be able to analyze. For instance,
very often programmers do not initialize objects inside their constructors, but
leave them uninitialized and later call setter methods. This is sometime the con-
sequence of the use of frameworks, such as Java Beans or Hibernate, or it s just a
programming pattern. In any case, it hinders static analysis, since uninitialized
fields hold their default value in Java (null or 0), which induces the analyzer
to issue hundreds of warnings, since objects can be used before being fully ini-
tialized. Similarly, programmers never check for nullness of the parameters of
public methods, which leads to warnings if such parameters are dereferenced.
We stress the fact that all these warnings are real bugs, in principle. But pro-
grammers will never see it that way, since they assume that methods are called
in a specific order and with specific non-null arguments. Of course, this is not
documented, not even in comments. Julia reacts to this situation with analyses
of different strictness: for instance, together with the Nullness checker, Julia has
a BasicNullness checker that is optimistic w.r.t. the initialization of fields and
the nullness of the parameters passed to public methods.

Another problem faced with real software is that this is written against all
programming recommendations. We found methods of tens of thousands of lines,
with hundreds of variables. This means that abstract domains based on BDDs
or linear inequalities typically explode during the analysis. We applied worst-
case assumptions, triggered when computations become too complex, although
this results in more false alarms. But naive triggers are sensitive to the order of
computation of the abstract analysis, i.e., they might fire non-deterministically,
which is unacceptable in an industrial context. Hence we had to find more robust
triggers for the worst-case assumption, that do not depend on the order of com-
putation of the analysis.

10 Conclusion

The Julia static analyzer is the result of 13 years of research and engineering. It
is the proof that research from academia can move to the market and provide a
solution to an actual market need. It is exciting to see theoretical results about
static analysis, BDDs, polyhedra and fixpoint computation applied to solve real
problems of large banks, insurance companies, automobile industries and simple
freelance programmers around the world.
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This article presents a synthetic view of the history of Julia and of its under-
lying technology and strengths. It acknowledges the problems faced once the
tool is used to analyze actual software, written in peculiar ways and using reflec-
tion, also through several frameworks, and the expectations that customers have
about such technology. These aspects are the real issues that still jeopardize the
success of sound static analysis outside the academic world.

The development of Julia continues. There are many open problems that
need an answer. First of all, concurrency is an opportunity not yet completely
exploited, that can improve the efficiency of the tool by using more parallel algo-
rithms. It is also a problem, since the analysis of concurrent programs is difficult
and current techniques are often unsound in that context. Also the presenta-
tion of the warnings needs improving. Instead of a flat list, possibly organized
into static priority classes, it might be possible to rank warnings w.r.t. their
features, by using machine learning [27]. Finally, the applicability of Julia will
be expanded. The translation from CIL bytecode into Java bytecode is already
implemented and should allow, in the near future, to analyze safe CIL code with
Julia, such as that derived from the compilation of C#. The application to other
programming languages is possible in principle, but seems more difficult. Large
parts of the Julia library might be recycled for other languages, in particular
the fixpoint algorithms, but the specific analyses need to be built again from
scratch.
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