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PREMISES 
 

Type III interferon (IFN) family is composed by IFNλ1, IFNλ2, IFNλ3 and 

the recently discovered IFNλ4. IFNλs are antiviral cytokine whose main function 

is to counteract viral spreading and promptly initiate the antiviral response in an 

infected host. For several years, this important role was thought to be peculiar of 

the well-known type I IFN family, composed by IFNα and IFNβ. Instead, both type 

I and type III IFN families elicit similar responses in cells expressing their specific 

receptors, activate similar signaling pathways and induce hundreds of interferon-

dependent antiviral mediators. In the last years, after the discovery of IFNλs, 

increasing numbers of studies have detected their presence in the context of several 

viral-mediated pathologies affecting mainly the anatomic barriers and mucosal 

tissues. As an example, IFNλ3 contributions in modulating the immune response 

during HCV infection in the liver has been reported and highlighted by several 

important studies, even though its ultimate role during HCV pathogenesis remains 

not completely understood.  

Plasmacytoid dendritic cells (pDCs) are one of the DC subsets that, among 

other functions, are highly specialized in the production of type I IFNs, thus 

promoting antiviral immune responses. In fact, pDCs rapidly and strongly respond 

to viral particles and nucleic acids via potent secretion of IFNα, and subsequently 

present the captured viral antigens to T cells initiating adaptive immune response. 

More recently, pDCs have been shown to produce also IFNλs upon treatment with 

different types of viruses, coculture with HCV-infected cells or synthetic ligands 

for TLR7 and TLR9. Moreover, among leukocytes, only pDCs, and less 

prominently B cells, have been shown to express IFNλR, but only pDCs have been 

unequivocally shown to respond to IFNλs in terms of altered CD80 and MHC-I 

expression, STAT1 phosphorylation activation and MX1 mRNA induction.  

In this study, I have extensively analyzed how human pDCs respond upon 

incubation with IFNλ3. My data not only confirm the pDC responsiveness to 

IFNλs, but also greatly extend previous observations already reported for IFNλ1. 

The purpose of my study has been to achieve a comprehensive and more complete 

characterization of pDC behavior in the presence of IFNλ3. This could give us some 



	 10	

important information on pDC peculiar skills, paving the way for further analysis 

on IFNλ-pDC crosstalk under specific context.   
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I. INTRODUCTION 
 
  



Introduction	
	

	 12	

 
 
 
 
 
 



Introduction	

	 13	

1.1 PLASMACYTOID DENDRITIC CELLS (pDCs) 
 

1.1.1 Properties of human pDCs 
Within the heterogeneous dendritic cell (DC) family, two main subsets of 

blood DCs can be discriminated based on their phenotype and functional 

characteristics: myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells 

(pDCs). The mDC subset can be further divided in BDCA1+/CD1c+ cells and 

BDCA3+/CD141+ cells. CD1c+ DCs have been shown to readily stimulate naïve 

CD4+ T cells and to secrete high amounts of IL-12 in response to toll-like receptor 

(TLR) ligation, whereas CD141+ DCs do not secrete much IL-12 but are well 

equipped to take up dead and necrotic cells for subsequent cross presentation of 

derived antigens to CD8+ T cells (1). In contrast to mDCs, pDCs have a very 

different protein expression profile reflecting their important and unique function 

in the secretion of type I Interferon (IFNα and IFNβ) and in the anti-viral immune 

response (1). 

pDCs are rare cell type constituting only 0.2% to 0.6% of of peripheral 

blood cells in healthy individuals. pDCs were originally described in human lymph 

nodes (LNs), and are mostly known for their ability to quickly produce large 

amounts of IFNα following viral infection, implicating pDCs as an important 

contributor during the early phase of anti-viral response through induction of 

hundreds of interferon stimulated genes (ISGs)(2,3). 
 

à pDC phenotype 

Human pDCs were first isolated from human blood and tonsils as CD4+ 

CD123+ HLA-DR+ cells (4,5).	In general, human pDCs phenotypically lack lineage 

markers for B and T cells, such as CD19 and CD3, myeloid and classical DC 

markers CD14, CD16 and CD11c, and natural killer (NK) cell marker CD56 (6). 

Several relatively pDC-specific surface markers have been established, such as 

BDCA2/CD303 and ILT7 (immunoglobulin like transcript 7); other useful markers 

include human CD123 and BDCA4/neuropilin-1 (6,7). BDCA2 is a member of the 

C-type lectin family of transmembrane glycoproteins that is specific for pDCs; ILT-

7 belongs to the leukocyte immunoglobulin-like receptor gene family; CD123 is 
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the IL-3 receptor-α (IL-3Rα) chain and BDCA4 is a receptor for members of the 

semaphorin family (8,9). Peculiar surface markers of the major human DCs 

populations are depicted in Figure 1. 
 

 
Adapted from Collin M. et al., Immunol, 2013; 140: 22–30 

Figure 1. Surface markers of the major human DC populations 

 

 

à Trafficking of pDCs 

pDC migration from the blood stream to the periphery is quite different from 

that of mDCs. mDCs typically seed peripheral tissues and become resident cells 

that migrate into T cell-rich areas of lymphoid organs through afferent lymphatics. 

On the contrary, pDCs released from the bone marrow into the blood stream reach 

T cell areas of the LNs mainly through high endothelial venules (HEVs)(3,4,10). 

This migration appears to be associated with their selective expression of CD62L 

(L-selectin) and chemotactic receptors C-C chemokine receptor type 7 (CCR7), 

which interact sequentially with peripheral lymph node adressins (PNAd) and 

chemokines CCL19 and CCL21 constitutively expressed by HEVs and stromal 

cells (9,11). In the LNs, pDCs have been found in close contact with T lymphocytes, 

Natural Killer T (NKT) cells, B lymphocytes, and NK cells (11,12).  

pDCs are difficult to detect in most peripheral tissues in resting conditions. 

However, large numbers of pDCs have been found in several tissues during viral 

infections, such as in skin infected with varicella zoster virus, human papilloma 

virus, or in the small intestine under both normal and inflammatory conditions. At 

Human	DC	subsets
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sites of infection pDCs can activate or get activated by interaction with other 

immune cells or by soluble factors (8,13,14). In contrast to mDC studies, reports 

addressing which inflammatory chemokines and adhesion receptors specifically 

drive migration of human pDCs are scarce. Human pDCs express chemotactic 

receptors chemokine (C-X-C motif) receptor 3 (CXCR3), a receptor for 

inflammatory chemokines CXCL10 (IP-10), CXCL11 (ITAC), and CXCL9 (MIG), 

as well as CXCR4, a receptor for CXCL12 (SDF-1), that likely mediate recruitment 

of pDCs into lymphoid organs and/or into inflamed tissues (10,15,16). pDC 

migration involves also P-selectin glycoprotein ligand 1 (PSGL1), β1 and β2 

integrins, and multiple chemokine receptors such as CCR2, CCR5, CCR6, CCR7, 

CCR9 and CCR10, as shown in Figure 2 (17,18).  
	

 
From Swiecki M. et al., Nat. Rev. Immunol. 2015; 15: 471–485  

Figure 2. Factors influencing pDC migration 

 

 

à pDCs as a source of type I IFNs in viral infections 

Although constituting only 0.2–0.6% of human blood cells, pDCs produce 

over 80% of IFNα among peripheral blood mononuclear cells (PBMC) in response 

to many viruses (2). Within 6 hours of activation, human pDCs dedicate 50% of the 

induced transcriptome to type I IFN genes (6,19). Type I IFN induces a global 
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response that limits the spread of viral infections through production of antiviral 

factors, but also initiates a network of cellular and molecular events that are crucial 

to the generation of protective immune responses (20). More recently, it has also 

been shown that pDCs produce type III IFNs (namely IFNλ1, IFNλ2 and IFNλ3) 

upon treatment with different type of viruses (more details discussed below)(21).  

pDCs produce other proinflammatory cytokines such as interleukin 6 (IL-6) 

and tumor necrosis factor α (TNFα), which regulate T, B, and NK cell and mDC 

responses and activity (22,23). In addition, pDCs produce several distinct 

chemokines such as CCL4, CCL5, CXCL9 and CXCL10, that allow a coordinated 

attraction of different immune effectors to the site of infection (17,24,25).  

 

à pDCs sense viruses through TLR7 and TLR9 

The ability of pDCs to quickly secrete enormous amounts of IFNs, 

proinflammatory cytokines and chemokines depends on cellular sensors that 

promptly detect the presence of viral DNA and RNA. The recognition of viruses or 

self nucleic acids by pDCs is mainly mediated by TLR7 and TLR9, which are 

located in endosomal compartments (26). Activation of these receptors in pDCs 

results in their secretion of type I IFNs via the myeloid differentiation primary 

response protein 88 (MyD88)-Interferon regulatory factor 7 (IRF7) pathway, as 

well as their production of pro-inflammatory cytokines and chemokines via the 

MyD88-nuclear factor-κB (NF�κB) pathway (26,27).	 Intracellular nucleic-acid 

sensors and signaling pathway is depicted in Figure 3. 

TLR9 accounts for pDC responses to unmethylated CpG motifs or synthetic 

oligonucleotides, such as CpG-ODN, which mimic bacterial or viral DNA(28) . 

TLR7 is responsible for pDC responses to guanosine or uridine-rich, single-

stranded RNA from viruses or synthetic analogs such as Imiquimod (R837) (29). 

In addition to TLRs, pDCs express several C-Type Lectin Receptors (CLRs), 

including BDCA2, DEC-205, dectin-1 and DCIR (DC immunoreceptor), but also 

Fc receptor CD32 (FcγRII) and high-affinity IgE receptor (FcεRI) (16,30).	 
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From Gilliet M. et al., Nat. Rev. Immunol. 2008; 8:594-606 

Figure 3. Activation pathways in pDCs responding to nucleic acids 

 

 

pDCs show differential responses based on the type of virus/bacteria or 

synthetic agonists that are recognized, which has been suggested to be attributed to 

a different site of TLRs activation within the endosomal system (31).	As shown in 

Figure 4, multimeric CpG-A oligonucleotides (known also as type A ODN) 

aggregate in early endosomes where they seem to preferentially activate the 

MyD88-IRF7 pathway that induces type I IFNs (32). By contrast, monomeric CpG-

B (known also as type B ODN) is transferred quickly to an endolysosomal 

compartment where it activates preferentially the MyD88-NF�κB pathway that 

triggers the expression of co-stimulatory molecules (i.e., CD40, CD80, CD86) and 

the secretion of pro-inflammatory cytokines and chemokines (33,34).	
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From Gilliet M. et al., Nat. Rev. Immunol. 2008; 8:594-606 

Figure 4. Signaling of CpG ODN classes in different endosomal compartments 

 

 

The activation of TLR7 and TLR9 by nucleic acids leads to the the assembly of a 

multiprotein signal transduction complex in the cytoplasm, containing IL-1 

receptor-associated kinase 4 (IRAK4), TNF receptor-associated factor 6 (TRAF6) 

and Bruton’s tyrosine kinase (BTK) (Figure 3 and 4) (8). Phosphorylation of IRF7 

and its translocation into the nucleus initiate the transcription of IFNs genes (35). 

The rapidity of IFN production exerted by pDCs is mainly mediated by their 

constitutive expression of IRF7 (32). This allows the rapid assembly of the 

multiprotein signal transduction complex described above. Other cell types, 

including mDCs, do not express IRF7 constitutively but require its upregulation in 

response to IFN-β feedback signaling following virus-induced activation of IRF3 

(35). TLR7/9 signaling pathways can lead also to ubiquitinylation of the protein 

kinase transforming growth factor-β (TGFβ)-activated kinase 1 (TAK1) that 

consequently activate NF-κB and mitogen-activated protein kinases (MAPK) 

(Figure 3 and 4) (17,32). Known NF-κB members are RelA/p65, RelB, cRel, p52, 

and p50, which form homo- or heterodimers (36). p65/p50 dimers are directly 



Introduction	

	 19	

responsible for expression of costimulatory molecules, whereas IRF5, together with 

MAPK activation, seems to be crucial for the production of IL-6 and TNFα (23,37). 

 

à Regulation of type I IFN responses by pDC receptors 

Given the importance of type I IFNs in activating a wide range of immune 

cells, IFN production by pDCs needs to be under tight control, to prevent aberrant 

immune responses that could harm the host (23). A number of surface receptors that 

modulate the type I IFN production by pDCs have been identified. Many of these 

receptors contain intracellular tyrosine-based inhibitory motifs (ITIMs). BDCA2 

and ILT-7 both associate with the γ-chain of the FcεRI, activate pDCs through an 

immunoreceptor-based tyrosine activation motif (ITAM)-mediated signaling 

pathway (26,38), and suppress the ability of pDCs to produce type I IFNs in 

response to TLR ligands (17,39).	Other receptors shown to inhibit type I IFN 

production by human pDCs include NKp44, CD300A and CD300C, DCIR and 

FcγRII (40–42).	 

 

à pDCs as antigen-presenting cells (APCs) 

In addition to cytokine secretion, activated pDCs undergo a characteristic 

DC maturation program (5). Upon activation by viral particle and/or TLR agonists, 

in fact, pDCs upregulate major histocompatibility complex (MHC) and co-

stimulatory molecules, ultimately leading to the differentiation of pDCs into mature 

DCs with the ability to stimulate naive T cells (43).	 

 

• Immature pDCs 

Nonactivated (immature) pDCs freshly isolated from the blood express low to 

undetectable levels of CD40, CD80 and CD86 and are therefore incapable of 

inducing significant proliferation of naive T cells (4,44). However, immature pDCs 

can induce antigen-specific anergy in CD4+ T cell clones. In fact, despite the lack 

of costimulatory molecules, nonactivated pDCs constitutively express inducible co-

stimulator ligand (ICOS-L) (45), which promotes survival and expansion of ICOS-

expressing FoxP3+ Tregs (46).These findings suggest a specialized role of 

nonactivated pDCs in peripheral tolerance (more details discussed below). 
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Accordingly, pDCs with an immature phenotype can suppress inflammatory 

responses to inhaled allergens and inhibit acute graft-versus host disease (8).  

 

• Mature pDCs 

Activated pDCs induce a broad spectrum of T cell differentiation (i.e., Th1, 

Th2, Th17, but also Treg) based on the cytokines secreted and cell surface proteins 

expressed, thus acting as immunogenic cells (Figure 5) (45,47,48).	 

Upon activation through TLR7 and TLR9, human pDCs differentiate into 

mature DCs. Auto/paracrine production of IFNα promotes pDC survival via 

induction of antiapoptotic genes, whereas TNFα supports pDC maturation (49). 

Several studies have demonstrated that activated pDCs mostly induce a Th1 

phenotype (IFN-γ/IL-12) in response to CpG, TLR7 and/or viruses, but Th2 (IL-4) 

and Th17 (IL-17) skewing has also been reported when pDCs are activated with IL-

3 plus CD40 or TLR7 ligands, respectively (50–52). IL-3 is a cytokine and growth 

factor that can be secreted in vivo by endothelial cells or activated T cells. pDCs 

mature into DCs in culture with IL-3 or IL-3 plus CD40L (4) and upregulate the 

costimulatory molecule OX40L, which leads to priming of T cells secreting Th2 

cytokines IL-4, IL-5, and IL-10 (53). Finally, TLR activated pDCs express 

programmed death ligand 1 (PD-L1) (16,54), which may induce T cell 

anergy/suppress T cell activation by binding to its receptor, programmed cell death 

protein 1 (PD1)	(55).These findings suggest that even mature pDCs could act to 

prevent excessive inflammation, thus avoiding damage to the host. 

 

  

TNF-α	and

Activated T-cell

Endothelial
cells

IL3-dependent

Mast-cells
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Adapted from Liu YJ, Annu. Rev. Immunol. 2005; 23:275-306 

Figure 5. Functional plasticity of activated pDCs 

 

 

à Antigen capture and presentation 

Numerous studies have established that pDCs are bona fide APC, capable 

of present antigens on both MHC class I and II molecules and thus trigger CD8+ 

cytotoxic T cells and CD4+ T cells. pDCs act also as professional APC in cross-

presentation of exogenous Ag to CD8+ T cells (56,57). Even if pDCs efficiently 

present endogenous antigens, they poorly present exogenous antigens when 

compared to mDCs (43).	One of the reasons for this is that pDCs hardly take up 

exogenous antigens by phagocytosis or macropinocytosis (37,58). However, pDCs 

internalize certain exogenous antigens via specific receptor-mediated endocytosis, 

by BDCA-2, DEC-205, CD32 and DCIR (42,59).		

	

 

1.1.2 Diverse functions of pDCs 
As a major effector cell type in immunity, pDCs have been implicated in 

nearly all pathological immune responses. For example, important roles for pDCs 

have been suggested in allergy and asthma (60), antitumor immunity (61), and 

responses to both viral and nonviral pathogens (17,62). Figure 6 shows pDC-

mediated functions in both innate and adaptive immune responses. 
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From Swiecki M. et al., Nat. Rev. Immunol. 2015; 15: 471–485  

Figure 6. Diverse functions of pDCs 

 

 

à pDCs in viral infections: detection and reaction 

Type I IFN production by pDCs in response to acute viral infections is 

usually limited in time and amplitude (63). Secretion of type I IFNs is most evident 

at early time-points in systemic infections with viruses such as cytomegalovirus 

(CMV), vesicular stomatitis virus (VSV) and herpes simplex virus 1 (HSV1) and 

mediates an immediate containment of viral replication (17). Paradoxically, pDC 

responses to acute viral infections may not always be beneficial. Recent evidences 

indicate that excessive production of type I IFNs during influenza virus infection 

can result in uncontrolled inflammation and apoptosis of bronchial epithelium (64). 

Thus, the impact of pDCs on acute viral infections may vary considerably 

depending on the virus, the route of infection and the genetic background. 

In humans, pDCs have been most extensively studied during human 

immunodeficiency virus (HIV) and chronic viral hepatitis, particularly hepatitis C 

virus (HCV) infections. The emerging picture suggests an important role for pDCs 

in these infections, although the exact mechanism and consequences of pDC 

activity are controversial at present (65). pDCs express CD4, CXCR4, and CCR5 

and are therefore direct targets of infection by HIV, which uses these molecules to 
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infect T cells (10). Indeed, HIV+ pDCs have been found in the thymus and tonsils 

of HIV-infected individuals (66). Depletion of pDCs from human thymocyte 

cultures enhanced HIV replication, suggesting that pDCs control HIV replication 

(67). In chronic hepatitis C virus patients, studies have shown that the number of 

circulating pDCs and their ability to produce type I IFNs are reduced, correlating 

with the persistence of the virus. It has been shown recently that pDCs can respond 

to HCV particles and particularly to HCV-infected hepatocytes through TLR7 

(68,69). HCV may specifically impair pDC activity (70,71), thereby compromising 

T cell responses against it; however, other studies demonstrated normal pDC 

functionality on a per cell basis in chronic HCV (22,72). The resolution of this 

controversy would establish pDCs either as a weak link of anti-HCV immune 

response or as a potentially powerful effector cells that can be harnessed for 

immunotherapy.  

 

à pDCs in autoimmunity 

Despite the low frequency of pDCs in blood and lymphoid tissues, their high 

potential to produce IFNα in response to self-nucleic acids raised questions about 

their putative role in autoimmunity (73).	Unwanted IFNα production by pDCs is 

involved in autoimmune pathogenesis, including systemic lupus erythematosus 

(SLE)(74), Sjogren’s syndrome, and psoriasis (75). Blood and tissue cells of these 

patients have an IFN signature indicating that IFN-inducible upregulation of IFN-

stimulated genes can be used as a disease biomarker (75).  

Free self-nucleic are able to enter TLR containing endosomes when 

complexed with host derived factors that are aberrantly expressed in certain 

autoimmune diseases (76). In SLE, self nucleic acids are complexed with 

autoantibodies directed against nucleic acids or nucleoproteins, causing 

inflammation in the tissues. Nucleic acid–containing immune complexes trigger 

IFNα release from pDCs upon FcγRII-mediated uptake into endosomes and local 

engagement of TLR7/9 (77). As a result, pDCs are continuously activated to 

produce type I IFNs, leading to an unabated activation and maturation of other cell 

types such as mDCs that stimulate autoreactive T cells (77). Moreover, pDC-

derived type I IFNs, together with IL-6, promote the differentiation of autoreactive 
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B cells into autoantibody secreting plasma cells (78). In psoriasis, free self-DNA 

forms complex with the cationic antimicrobial peptide LL37 overexpressed in skin 

lesions by activated keratinocytes (76). DNA complexed with LL37 enters 

endosomal compartments of pDCs and triggers high levels of type I IFN production 

via TLR9 in early endosomes (73,76) leading to a sustained pDC activation. 

 

à pDCs in tolerance  

Non-lymphoid tissue pDCs, such as those residing in the airways, gut, and 

liver, play a significant role in regulating mucosal immunity and are critical for the 

development of tolerance to inhaled or ingested antigens (79). When pDCs are 

either unstimulated or alternatively activated, thus expressing ICOSL, OX40L, 

PDL1 and/or granzyme B, they promote tolerance to tumor cells, alloantigens and 

harmless antigens (17). Recent studies have also proposed that pDCs that capture 

antigens in peripheral tissues use CCR9 to migrate to the thymus where they induce 

deletion of antigen-specific thymocytes, contributing to immune tolerance (79). 

 

à pDCs in tumors 

pDCs have been found in many solid tumors, including head and neck 

cancer, breast cancer, ovarian cancer, lung cancer, and skin tumors (61,80). In these 

tumors, pDCs are present in a nonactivated state and have been associated with the 

development and maintenance of the immunosuppressive tumor microenvironment 

(61,81). Mechanisms responsible for keeping the pDCs in this state include the 

secretion of prostaglandin 2 (PGE2) and TGFβ, which inhibit pDC-derived IFNα 

and TNFα production in response to TLR7 and 9 ligands, as well as CCR7 

expression, thereby impairing the migration of pDCs to the tumor-draining LN to 

prime T cells with tumor antigens (61,81). 

Unstimulated or alternatively activated pDCs can induce Treg cells through 

expression of indoleamine-pyrrole 2,3-dioxygenase (IDO) (82) or ICOSL (48). The 

accumulation of IDO-expressing pDCs in tumor-draining lymph nodes has been 

associated with worse clinical outcomes in patients with malignant tumors, 

including those with breast carcinoma (83). Human pDCs may also contribute to 

cancer progression via the production and release of the pro-apoptotic molecule 
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granzyme B	(9,81) which suppresses T cell proliferation. In contrast to NK cells, 

pDCs do not release the pore-forming protein perforin and therefore are unable to 

kill target tumor cells by releasing lytic granules (84).  

Conversely, pDCs can promote immunogenic antitumor responses if 

appropriately stimulated. Injection of activated pDCs loaded with tumor-associated 

peptides into patients with metastatic melanoma leads to favourable CD4+ and 

CD8+ T cell responses, indicating that vaccination using activated pDCs might be 

an attractive therapeutic strategy (85).	 TLR-activated pDCs in the tumor can 

stimulate NK cell activity and elicit potent CD8+ T-cell-mediated antitumor 

immunity via cell-cell contact or indirectly via IFNα secretion (86). TLR-activated 

pDCs also upregulate the expression of TNF-related apoptosis-inducing ligand 

(TRAIL) (87,88)	and acquire the ability to kill tumor cells in vitro (89), suggesting 

an additional mechanism by which activated pDCs may eventually induce 

antitumor activity. 

 

 

 

1.2 THE BIG FAMILY OF IFNs 

 
Discovered over 50 years ago, the interferons are historically best known 

for their ability to elicit viral resistance to cells (90). There are three distinct IFN 

families. The type I IFN family is a multi-gene cytokine family that encodes 13 

partially homologous IFNα subtypes in humans, a single IFNβ and several poorly 

defined single gene products (IFNε, IFNτ, IFNκ, IFNω, IFNδ and IFNζ) (91). The 

type II IFN family consists of a single gene product, IFNγ, that is predominantly 

produced by T cells and NK cells, and can act on a broad range of cell types that 

express the IFNγ receptor (IFNγR) (92). The type III IFN family comprises IFNλ1, 

IFNλ2 and IFNλ3 and the recently identified IFNλ4 (93), which have similar 

functions to cytokines of the type I IFN family but restricted activity, as the 

expression of their receptor is largely restricted to epithelial cell surfaces (94). 
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1.2.1 Type I IFN 
IFNα and IFNβ are the best-defined and most broadly expressed Type I 

IFNs. These cytokines are known for their ability to induce an antiviral state (95). 

First, they induce cell-intrinsic antimicrobial states in infected and neighbouring 

cells that limit the spread of infectious agents, particularly viral pathogens. Second, 

they modulate innate immune responses in a manner that promotes antigen 

presentation and NK cell functions. Third, they activate the adaptive immune 

system, thus promoting the development of high-affinity antigen-specific T and B 

cell responses and immunological memory (91,96).  

 

à Type I IFN production  

Almost all cells in the body can produce IFNα/β, and this usually occurs in 

response to the stimulation of pattern recognition receptors (PRRs) by microbial 

products (97). Diverse pathways downstream to these receptors transduce signals 

that converge on a few key molecules, such as the IRF family of transcription 

factors, that activate the transcription of genes encoding IFNα/β. The central tenet 

of IFNα/β production is that the IFNB gene is induced in an initial wave of 

transcription that relies on IRF3. This initial IFN burst triggers the transcription of 

IRF7, which then mediates a positive feedback loop, leading to the induction of a 

second wave of gene transcription, including IFNα-encoding genes (98). NF�κB 

can be required as a cofactor (96,98). In pDCs, as previously mentioned, IFNα 

production is directly mediated by constitutive expression of IRF7 and to retention 

of the MYD88-IRF7 complex in endosomes. 

 

à Type I IFN signaling and induction of ISGs 

IFNα and IFNβ bind a heterodimeric transmembrane receptor termed the 

IFNα receptor (IFNαR), which is composed of IFNαR1 and IFNαR2 subunits (99). 

In the canonical type I IFN-induced signaling pathway, IFNαR engagement was 

shown to activate the receptor-associated protein tyrosine kinases Janus kinase 1 

(JAK1) and tyrosine kinase 2 (TYK2), which phosphorylate the latent cytoplasmic 
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transcription factors signal transducer and activator of transcription 1 (STAT1) and 

STAT2 (96,100), as shown in Figure 7. Tyrosine-phosphorylated STAT1 and 

STAT2 dimerize and translocate to the nucleus, where they assemble with IRF9 to 

form a trimolecular complex called IFN-stimulated gene factor 3 (ISGF3). ISGF3 

binds to its cognate DNA sequences, which are known as IFN-stimulated response 

elements (ISREs), thereby directly activating the transcription of hundreds of ISGs. 

The phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) 

pathway, NF-kB and MAPK pathways can also be activated downstream of IFNαR. 

This diversity of signaling pathways may in part explain the broad effects of 

IFNα/β, as it allows the transcription of a broad range of genes in addition to those 

dedicated to viral restriction (96,100). These include genes that encode cytokines 

and chemokines, antibacterial effectors, pro-apoptotic and anti-apoptotic 

molecules, and molecules involved in metabolic processes (101). 

 

 
Adapted from McNab F. et al., Nat. Rev. Immunol. 2015; 15:87-103 

Figure 7. Type I IFN receptor signaling 

 

 

Several recent reports have extended our understanding of how the production of 

type I IFNs is regulated. Key new insights include: 

à basal levels of type I IFN production under physiological conditions are 
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maintained by the commensal microbiota (102). Immune cells can respond rapidly 

to low levels of type I IFNs, a capacity that is maintained under homeostatic 

conditions by an autocrine loop in which small amounts of IFNα/β maintain basal 

expression levels of STAT1 and IRF9 (103). Basal IFNα/β expression and 

attendant tonic IFNαR signaling equips immune cells to rapidly mobilize effective 

antimicrobial programs. 

à Type I IFNs can be induced by host factors and cytokines such as TNFα, 

which signal via IRF1 rather than via IRF3 and IRF7 (104), and by macrophage 

colony stimulating factor (M�CSF) (96). 

 

à The effects of type I IFNs: cell resistance and immune response 

The ability of IFNs to restrict viral replication is largely attributable to the 

induction of ISGs by which IFNα/β promote an antiviral state (95,97). ISG-encoded 

proteins restrain pathogens by several mechanisms, including the inhibition of viral 

transcription, translation and replication, the degradation of viral nucleic acids and 

the alteration of cellular lipid metabolism (105) (Figure 8). The fact that most 

viruses devote part of their limited genome to mechanisms that perturb IFNα/β 

production and/or IFNα/β-mediated signaling, thereby preventing ISGs from being 

induced, illustrates the importance of this cytokine family in host cell protection 

against viral infection (106).  

 

 
Adapted from Fensterl V. et al., Annu. Rev. Virol. 2015; 2:549–72 

Figure 8. Interferon-stimulated genes: the mediators of the biological effects of IFNs 
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While it has been known for many years that type I IFNs promote resistance 

to viral infections, the impact of type I IFNs on immune cell functions is becoming 

increasingly appreciated. IFNα affect myeloid cells, B cells, T cells and NK cells, 

thereby enhancing the immune responses, more effectively resolving viral 

infections and improving the generation of memory responses (97). A summary of 

type I IFN-mediated function is depicted in Figure 9. In this context, IFNα have an 

activating effect on immature mDCs, enhancing the cell-surface expression of 

MHC class I and II molecules and co-stimulatory molecules, such as CD80 and 

CD86, which is associated with an increased ability to stimulate T cells (51,107). It 

has also been observed that IFNα promotes the ability of mDCs to cross-present 

antigens during viral infections (108).	and the migration of mDCs to lymph nodes, 

through upregulation of chemokine receptors (109).  

Several studies have revealed that DC turnover is strongly influenced by 

IFNα/β in vivo. IFNα regulates mDC and pDC numbers in vivo by inducing the 

downregulation of anti-apoptotic molecules, upregulation of pro-apoptotic 

molecules and caspase activation (110). 

IFNα/β together with IL-12 augments NK cell and CD8+ T cell cytolytic 

activities and IFNγ production in vitro and in vivo, promotes Th1 polarization of 

CD4+ T cells, as well as long-term T cell survival and memory. Moreover, 

differentiation of B cells into immunoglobulin secreting plasma cells by IFNα/β is 

crucial for the development of local humoral responses against viruses (110). 
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From Ivashkiv L. et al, Nat. Rev.Immunol. 2014; 14:36-49 

Figure 9. Type I IFN controls innate and adaptive immunity and intracellular 

antimicrobial programs 

 

 

1.2.2 Type II IFN  

IFNγ is the sole type II IFN. It is structurally unrelated to type I IFNs, binds 

to a different receptor, and is encoded by a separate chromosomal locus. IFNγ is 

produced primarily by CD4+ and CD8+ T lymphocytes and NK cells (111). There 

is now evidence that other cells, such as B cells and professional APCs, secrete 

IFNγ, to induce local cells activation (112). IFNγ production is controlled by 

cytokines secreted by APCs, most notably IL-12 and IL-18 (113). The main 

function of IFNγ is macrophage activation, rendering them able to exert its 

microbicidal functions. Macrophage recognition of many pathogens induces 

secretion of IL-12 and other chemokines [e.g., macrophage-inflammatory protein-

1 (MIP-1)]. These chemokines attract NK cells to the site of inflammation, and IL-

12 promotes IFNγ synthesis in these cells, thus inducing IFNγ-mediated 

macrophages activation. IFNγ induces the transcription of more than 200 genes, 
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including those for the production of antimicrobial molecules such as oxygen free 

radicals and nitric oxide, which represent one of the best effector mechanisms for 

elimination of bacteria (114). Other cellular effects of IFNγ include induction of an 

antiviral state, inhibition of cellular proliferation and effects on apoptosis, 

immunomodulation, and leukocyte trafficking (111).   

Unlike the type I IFNs, which all appear to signal as monomeric cytokines, 

IFNγ signals as a homodimer receptor complex composed by two chains of each of 

the high-affinity (IFNγR1) and low-affinity receptors (IFNγR2) (99,115). In 

canonical IFNγ signaling, ligand engagement of the IFNγ receptor leads to 

activation of receptor-associated JAK1 and JAK2 and phosphorylation of STAT1. 

STAT1 homodimer translocates to the nucleus, binds to a regulatory DNA element 

termed gamma-activated sequence (GAS), and stimulates transcription of STAT1 

target genes (Figure 10). Besides the JAK/STAT pathway, type II IFN can also 

activate other signaling pathways, including the MAPK, PI3K and the NF-κB 

pathway (116). 

 

 
Adapted from Fensterl V. et al., Annu. Rev. Virol. 2015; 2:549–72 

Figure 10. Ligand–receptor complex assembled by type I, II or III IFNs 

pDCs
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1.2.3 Type III IFN 

IFNλs were discovered by two independent groups (117,118).  IFNλ family 

comprise four members: IFNλ1, IFNλ2, IFNλ3  and the very recently described 

IFNλ4	(93). Formally, IFNλs belong to the IL-10 family of cytokines containing 

IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26 (119,120). IFNλ2 and 3 share 96% 

sequence similarity, whereas IFNλ1 is less similar (121). IFNλ4 arises as a 

consequence of a frameshift mutation generating a new gene not normally 

expressed. It demonstrates only a 40.8% similarity to IFNλ3, acts through the same 

receptor and displays typical antiviral activity (93).  

 

à Expression of IFNλs 

Almost any cell type is able to express IFNλs in response to diverse viral 

infections. The stimuli that induce expression of IFNλ-encoding genes, including a 

range of viruses, are similar to those inducing expression of genes encoding 

IFNα/β  (117,118,122,123). Nonetheless, there are differences in transcription 

factor requirements between IFNα/β and IFNλs. Initial characterization of 

promoter regions upstream of IFNλ1 and IFNλ3 identified binding elements for 

IRF-1, IRF-3, IRF-7, and NF-κB, and the combined activity of IRFs and NF-κB 

was required for maximal gene induction (124). Therefore, the pathways leading to 

type I or type III IFN gene expression is not entirely identical, type III IFNs being 

more dependent on NF-κB than type I IFNs (125). 

Type III IFN can be expressed in a variety of primary human cell types of 

the hematopoietic lineage, such as monocytes and dendritic cells (126–128). 

Among non hematopoietic cells, epithelial cells are potent producers of type III 

IFNs (129). High levels of IFNλs were observed during viral infection of lung and 

liver tissues	 (122,130) and IFNλs seem to be the major IFNs induced in airway 

epithelial cells during infection with respiratory viruses (131).	Within the HCV-

infected liver both IFNα and -λs are present, but identification of the cell types that 

express IFNλs is difficult to determine. However, it is known that freshly isolated 

primary human hepatocytes (PHH) express IFNλs when infected with HCV (132) 

(Figure 11). Although there are no studies clearly addressing the issue of IFNλ 

production by DCs within the HCV-infected liver, it is known that DCs can secrete 



Introduction	

	 33	

IFNλs following in vitro stimulation (21,133–135). In this context, pDCs were 

shown to be important IFNλs producers upon viral infection with HSV-1, Sendai 

virus or cocolture with HCV-infected hepatocytes (21,127). However, in response 

to polyinosinic:polycytidylic acid [poly(I:C)] or after coculture with HCV infected 

cells, human CD141+ DCs were the major cell population producing IFNλs (134).  

 

 
From Lazear H. et al., Immunity Rev. 2015; 43:15-28 

Figure 11. Induction of IFNλ and IFNλ-activated signaling pathways 

 

 

à Restricted expression of IFNλR 

The IFNλR consists of two subunits, IFNλR1 (alpha chain) and IL-10R2 

(beta chain) (121). IL-10R2 shows a broad expression pattern	(136) whereas, unlike 

the type I IFN receptor IFNαR, the IFNλR1 displays a restricted cellular 

distribution (Figure 12). Several studies examined the responsiveness of human 

cell lines and primary cells to IFNλs (99,135,137). Fibroblasts, splenocytes, bone-

marrow derived macrophages and endothelial cells did not respond to IFNλs, 

although they responded to IFNα. Further studies demonstrated that epithelial cells 

are the primary targets of type III IFNs. Only organs with high-epithelial cell 

numbers express detectable levels of IFNλR (e.g., skin, intestine, hepatocytes and 

lungs)(129,138). Consistent with this pattern, the antiviral effects of IFNλs are most 
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evident against pathogens targeting epithelial tissues. Human hepatocyte cell line 

HepG2 and PHH express IFNλR and readily respond to IFNλs (139–141). 

Accordingly, IFNλ1 was shown to restrict HCV replication in both HepG2 and 

PHH (142). 

Conflicting responses to IFNλs has been reported regarding blood cells. 

Among hematopoietic cells, pDCs express the highest amount of both mRNA and 

surface protein of IFNλR1 (21,134). It has been shown that IFNλ1 effectively 

induces specific pDC response (134,143). However, few other immune cells 

express mRNA of IFNλR1, such as B cells and macrophages, but conflicting data  

on protein expression and cell response to stimulation with IFNλs are reported. 

(141,144). On the contrary, no expression was detected in NK and T cells (21). 

 

 
Adapted from Hermant P. et al., J. Innate Immun. 2013; 30 

Figure 12. Cells responsive to IFNλs 

 

 

à IFNλ signaling and regulation 

Despite engaging different heterodimeric receptors, the postreceptor 

signaling events after type I and type III IFN binding exhibit remarkable overlap. 

The signaling pathways resemble that induced by type I IFNs (Figure 10 and 11) 

(119,135,145) and include JAK-family kinases activation, STAT1 and STAT2 

phosphorylation, and association between activated STAT complexes and IRF-9 to 

form ISGF3, which translocates to the nucleus and induces expression of hundreds 

NK cells

B lymphocytes
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of ISGs. Additionally, JAK2 phosphorylation is induced by IFNλs (146), 

suggesting that a distinct upstream signaling events might differentiate IFNλ from 

IFNα activity in a cell-dependent manner. In addition to activating STAT1 and 

STAT2, IFNλR ligand engagement can activate STAT-independent signaling 

cascades (MAPK and ERK) (147).  

The transcriptional responses induced by IFNλ and IFNα are similar (148–150). No 

transcriptional signatures unique to IFNλs have been identified yet. However, the 

relative magnitude of gene expression induced by IFNα is often greater than that 

induced by IFNλs in many cell types. This may reflect a difference in the relative 

strength of signaling through type I IFN receptors versus type III IFN receptors. 

Alternatively, this difference may simply reflect a significant difference in the 

relative levels of expression of these receptors on the cell membrane (119). The 

IFNλ transcriptional response generally exhibits a delayed peak and longer duration 

(150). IFNα-treated Huh7 (Hepatocellular carcinoma cells) and PHH demonstrate 

a short induction of STAT1 phosphorylation (30 min-4 h), followed by a rapid 

peaked induction of ISGs mRNA. IFNλs, on the other hand, induces both a later 

and more sustained phosphorylation of STAT1 over 24 h and a slower increase in 

ISG expression (120,148,151). Of note, IFNλ3 demonstrates the highest anti-viral 

activity as measured by HepG2 challenge with encephalomyocarditis virus. 

Additionally, ISG induction [namely Myxovirus Resistance 1 (Mx1) and IRF9] by 

IFNλ3 was significantly higher compared to IFNλ1 and IFNλ2 (120,148).  

The antiviral signaling is controlled by anti-inflammatory ISGs including 

USP18 (ubiquitin carboxy-terminal hydrolase 18) and SOCS1-3 (suppressor of 

cytokine signaling), which interfere with the STAT signaling cascade. They 

function as part of a negative feedback loop to limit the extent and duration of the 

IFN response (152). USP18 was shown to be necessary and sufficient to induce 

differential desensitization by impairing JAK1 at the IFNαR. The potent and 

sustained effects of USP18 upregulation in the context of a chronic infection such 

as HCV may significantly affect IFNα induced signaling, as USP18 desensitizes 

cells to further IFNα stimulation but does not inhibit IFNλ signaling (153). 

Moreover, SOCS1 negatively regulates type I IFN signaling via interaction with 

TYK2 but it has still to be demonstrated whether SOCS1 has a role also in the 
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regulation of type III receptor activation (153). 

 

 

 

1.3 TYPE III IFNs AND pDCs: A CLOSE 

RELATIONSHIP 

 
High levels of IFNλR1 have been detected on pDCs relatively to other cell 

populations in human PBMCs (21,144). In addition to high constitutive levels of 

expression, pDCs further up-regulated IFNλR1 mRNA after stimulation with TLR7 

and TLR9 ligands, positioning the cell to respond rapidly to autocrine/paracrine 

IFNλ signals (143). 

IFNλ1 treatment of PBMCs have limited effects in terms of induction of 

both ISG mRNA expression and proinflammatory mediator release, namely MCP-

1, CXCL11 and IL-6 (154). This is mainly due to the restricted distribution of the 

IFNλR. In fact, PBMC stimulation with high dose of IFNλ1 showed variable 

mRNA levels for CXCL9, CXCL10 and CXCL11, suggesting that, among 

leukocytes, pDCs could be responsible for the production of these chemokines 

(155).  

To date, most of the information about pDC responsiveness to IFNλs 

stimulation relies on pDCs identified among PBMCs by flow cytometry analysis, 

and are mainly based on IFNλ1 properties. Authors showed that IFNλ1 stimulation 

of PBMCs results in enhancement of surface CD80, CD83, ICOS-L, and MHC-I 

expression on pDCs (21,143). Moreover, expression of CD62L and CCR7 was 

increased in pDCs following PBMC-treatment with IFNλ1, providing evidence for 

a role of IFNλ1 in pDC maturation and trafficking. Finally, IFNλ1 has been shown 

to counteract the proapoptotic effect exerted by Dexamethasone (DEX) in pDCs as 

measured by Annexin V binding and expression of active caspase-3 (21), 

suggesting that type III IFNs can exert positive feedback to keep the pDCs alive at 

least over the short-run. The protective effect of type III IFNs for pDCs could be 
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important in the case of viral infection, preventing cells apoptosis and enhancing 

their functions during antiviral activity.  

IFNλ-mediated stimulatory properties have been proved also on freshly 

isolated pDCs from blood of healthy donors. pDCs have been unequivocally shown 

to respond to IFNλs in terms of: i) MX1 mRNA induction by IFNλ3-stimulated 

pDCs (156); ii) increase in IFNα production after incubation with IFNλ1 plus CpG-

A (134); iii) inhibition of IFNγ, IL-13, and IL-10 production by cocultures of 

IFNλ1-treated pDCs with allogenic T cells (143). As far as can be ascertained from 

the literature, no other information is available on pDC functional responses to 

IFNλs. 
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II. FIRST AIM OF THE STUDY 
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TASK 1: CHARACTERIZATION OF PECULIAR pDC 

FUNCTIONS IN RESPONSE TO IFNλ3 

 
Although the interplay between DCs and members of the IFNλ family is 

becoming increasingly relevant, particularly at the light of their key role in 

induction of the antiviral state and control of HCV replication (157), the 

immunomodulatory activities of IFNλs in pDCs are poorly defined. 

pDCs constitute a nonparenchymal cell population that has been suggested to 

contribute to the intrahepatic IFN response during HCV infection, together with 

CD141+ mDCs, which are enriched in the liver (158). CD141+ mDCs and pDCs 

recognize HCV-infected hepatoma cells in a TLR3- and exosome-mediated 

fashion, respectively, and consequently produce IFNλs and IFNα (68,134). This 

mechanism needs to be still confirmed in the infected liver, even though it is 

conceivable that IFNα and IFNλ production by nonparenchymal cells could 

contribute to ISG induction by stimulating IFNαR and IFNλR (120,158).  

IFNλ3 has been shown to inhibit HCV replication in three independent 

models, confirming its important role in the context of HCV pathogenesis (142). 

Moreover, single nucleotide polymorphisms (SNPs) detectable close to IFNλ3, but 

not close to IFNλ1 and IFNλ2  genes, have been defined as important predictors of 

HCV clearance by the infected host. Genetic variants within or close to IFNλ3 gene 

(such as rs12979860 and rs8099917 SNPs) are associated with spontaneous and 

treatment-induced outcome of HCV infection (159–161). However, the 

mechanisms by which IFNλ3 polymorphisms affect the efficacy of HCV clearance 

remain to be determined. All in all, data suggest that a comprehensive 

characterization of IFNλ3−mediated immunomodulatory activity on IFNλ-

responsive cell populations, such as pDCs, need to be performed. 

 

For this first part of my project, I characterized pDC responses to IFNλ3 

stimulation, initially to confirm previous findings reported in literature for IFNλ1 

on pDC survival and modulation of surface markers. Subsequently, I examined how 
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IFNλ3 treatment influences other pDC responses, such as gene expression 

induction and cytokine production. 
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2.1 MATERIALS AND METHODS  
 

Cell isolation and culture conditions 

 PBMCs were isolated, under endotoxin-free conditions, from buffy coats of 

healthy donors after Ficoll-Hypaque gradient centrifugation (162). pDCs and 

CD14+-monocytes were then isolated using, respectively, the BDCA-4 Diamond 

Isolation Kit and the Human Monocyte Isolation kit (Miltenyi Biotec, Bergisch 

Gladbach, Germany) (163), according to the manufacturer’s instructions. After 

isolation, cells were suspended in RPMI 1640 medium supplemented with 10 % 

low-endotoxin fetal bovine serum (Sigma, Saint Louis, MO, USA) and either 

immediately analyzed for antigen expression, or cultured in 96-well tissue culture 

plates for functional assays. Purity of isolated pDCs (>98 %) and CD14+-monocytes 

(>97 %) was determined by flow cytometry analysis (163). Our healthy donors 

were: i) all caucasians; ii), 18-65 years old; iii) periodically checked for blood 

exams; iv) 3:1 as a male:female ratio. 

 

Cell stimulation 
 0.5 × 106 pDCs in 100 µl were usually plated in 96-well U-bottom plates 

(Costar, Corning Incorporated, Corning, NY), incubated in the presence or the 

absence of usually 30 ng/ml IFNλ3 (R&D, Minneapolis, MN, USA), 30 ng/ml 

IFNλ1 (R&D), 20 ng/ml IL-3 (Miltenyi) or their combination, 5 µM R837 

(InvivoGen, San Diego, CA, USA), 100 U/ml IFNα (Pegasys®, Genetech, South 

San Francisco, CA, USA), 0.1-10 ng/ml TNFα (Peprotech) and then cultured at 

37°C, 5% CO2 atmosphere for the times indicated. In all the experiments IL-3 was 

used at 20 ng/ml and IFNλ3 at 30 ng/ml, based on preliminary dose-response 

studies on gene expression induction, surface antigen modulation and cell viability. 

In selected experiments, pDCs were preincubated for 15 min with 5 µg/ml 

etanercept (a dimeric fusion protein that consists of the extracellular ligand-binding 

portion of the human 75 kDa TNF receptor linked to the Fc portion of the human 

IgG1, ENBREL®, Amgen, Thousand Oaks, CA, USA), 2.5 µg/ml adalimumab (a 

human-derived recombinant IgG1 monoclonal antibody, HUMIRA®, Abbott 
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Biotechnology, Illinois, USA), 2 µg/ml infliximab (a mouse/human chimeric IgG1 

monoclonal antibody, REMICADE®, Horsham, PA, USA) or their isotype control 

Abs (human IgG1, from eBioscience, San Diego, CA, USA), as well as 5 µg/ml 

αIFNαR (PBL Interferon Source, Piscataway, NJ, USA) or its isotype control Abs 

(mouse IgG2a from R&D) before treatment. In other experiments, 0.125 × 106 

CD14+-monocytes in 50 µl were plated in 96-well flat-bottom plates in the presence 

or the absence of pDC-derived supernatants or 0.1 ng/ml TNFα. After 1 h, cells 

were collected and centrifuged at 400 × g for 5 min. Supernatants were harvested 

and immediately frozen at -80° C, while the corresponding cell pellets were either 

used for flow cytometry analysis or lysed for RNA extraction.  

Table 1 summarize all the culture conditions, the stimuli and the various 

neutralizing antibodies that were used to specifically block the effects of the 

cytokine or membrane-bound receptors under investigation. 
 

Table 1. List of culture conditions and neutralizing antibodies 

 

 
 

 

 

 

Cell types Stimuli Neutralizing 
antibodies Concentration

pDC IFNλ3 30 ng/ml 
IFNλ1 30 ng/ml 
IL3 20 ng/ml 
R837 5 µM 
IFNα 100 U/ml 
TNFα 0.1-10 ng/ml 

etanercept 5 µg/ml
adalimumab 2.5 µg/ml
infliximab 2 µg/ml 
αIFNαR 5 µg/ml 

CD14+ TNFα 0.1 ng/ml 
etanercept 5 µg/ml
adalimumab 2.5 µg/ml
Spnt. Resting or 
IFNλ3-activated pDCs
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Flow cytometry analysis 
Determination of antigen expression 

 To perform phenotypic studies (163), pDCs were first treated with 5 % human 

serum, and then stained for 20 min at room T, using the following mAbs: FITC 

anti-CD303 (Miltenyi), PE-Cy7 anti-CD123 (BioLegend, San Diego, California, 

USA), APC anti-human CD62L (Miltenyi) APC-Cy7 anti-HLA-DRα 

(BioLegend), PE anti-CD86 (BioLegend), anti-CD83 (Miltenyi) and their related 

isotype controls. For IFNλR1 detection, I used 2 µg/ml PE anti-IFNλR1 and, as 

isotype control Ab, PE mouse IgG2a (both from BioLegend), while IL10R2 

expression was assessed by indirect staining using 10 µg/ml of an unconjugated 

mouse anti-IL-10R2 mAb [clone 4B2, kindly provided by Dr. K.W. Moore (when 

he was at DNAX institute in Palo Alto, CA, USA)], or its isotype control mAb 

(unconjugated mouse IgG1, from Biolegend), followed by an incubation with 4 

µg/ml secondary PE goat anti-mouse pAbs (Biolegend) (164). Sample fluorescence 

was then measured by using an eight-color MACSQuant Analyzer (Miltenyi), data 

analysis performed by FlowJo software Version 8.8.6 (TreeStar).  

Table 2 lists the fluorochrome-conjugated mAbs used in each staining. 

 

Determination of apoptosis 

 Phenotypic cell analysis under the various experimental conditions was 

performed in live cells. For analysis of apoptosis, live cells were identified as singlet 

VybrantTM DyeCycleTM Violet-negative cells (Life Technologies, Carlsbad, CA, 

USA) according to manufacturer’s instructions (163).  
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Table 2. List of fluorochrome-conjugated mAbs for FACS analysis 

 

 
 

 

Gene expression studies 
 Total RNA was extracted from pDCs and CD14+-monocytes after lysis by 

RNeasy Mini Kit (Qiagen, Venlo, Limburg, Netherlands), according to the 

manufacturer’s instructions. To completely remove any possible contaminating 

DNA, an on-column DNase digestion with the RNase-free DNase set (Qiagen) was 

performed during total RNA isolation. Purified total RNA was then reverse-

transcribed into cDNA, as previously described (162). Gene expression studies 

were performed by reverse transcription real-time PCR (RT-qPCR), using gene-

specific primer pairs (Life Technologies) available in the public database 

RTPrimerDB (http://medgen.ugent.be/rtprimerdb) under the following entry codes: 

TNFα (3551), CXCL10 (3537), IFNα (all genes) (3541), CXCL8 (3553), IFIT1 

(3540), ISG15 (3547), RPL32 (8775), CCL4 (3535), IκBα (7888). Total RNA 

(usually extracted from 50000 pDCs or 125000 CD14+-monocytes) was reverse 

transcribed by Superscript III (Life Technologies) while qPCR was carried out 

using Fast SYBR® Green Master Mix (Life Technologies). Data were calculated by 

Q-Gene software (http://www.gene-quantification.de/download.html) and 

expressed as mean normalized expression (MNE) units after RPL32 normalization.  

 

 

 

Fluorochrome-conjugated mAbs Provider

CD303 Miltenyi
CD86 BioLegend
CD83 Miltenyi
IFNλR1 BioLegend
CD16 BioLegend
CD123 BioLegend
CD62L Miltenyi
CD14 Miltenyi
HLA-DRα Biolegend
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Measurement of soluble mediators 

 IFNα, CXCL10 and TNFα production was measured in pDC-derived 

supernatants using specific ELISA kits purchased from, respectively, Mabtech 

(Nacka Strand, Sweden)(IFNα, 7 pg /ml detection limit), R&D (CXCL10, 30 pg 

/ml detection limit) and eBioscience (TNFα, 4 pg /ml detection limit), according to 

the manufacturer’s instructions.  

 

Immunoblots  

 100000 pDCs were incubated with or without 30 ng/ml IFNλ3 for 45 and 90 

min before blocking the stimulation in ice-cold PBS supplemented with 2 mM DFP 

and phosphatase inhibitors (10 mM NaF, 1 mM Na3VO4, 10 mM Na4P2O7). Whole 

cell extracts were prepared and subjected to immunoblots by standard procedures 

(162) using 1:1.000 rabbit polyclonal Abs anti-phospho-STAT2 (Tyr689) 

(Millipore, Darmstadt, Germany), 1:1.000 anti-phospho-STAT1 (Tyr701) rabbit 

pAbs (Cell Signaling, Beverly, MA, USA), 1:500 anti-total-STAT1 or anti-total-

STAT2 rabbit pAbs (both from Santa Cruz Biotechnology, Dallas, TX, USA). 

Blotted proteins were detected and quantified using the Odyssey infrared imaging 

system (LI-COR Biosciences, Lincoln, NE, USA). 

 

Statistical analysis  
 Data are expressed as mean ± SEM. Statistical analysis included one-way or 

two-way analysis of variance (ANOVA), followed by Tukey’s or Bonferroni’s post 

hoc test, respectively. Values of P < 0.05 were considered statistically significant. 

Statistical analysis was performed using Prism Version 6.0 software (GraphPad).   
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2 RESULTS (i) 
 

2.2.1 RESULTS AND RELATED DISCUSSION ARE DESCRIBED 

IN THE FOLLOWING PUBLICATION:  
Endogenously produced TNFα contributes to the expression of 

CXCL10/IP-10 in IFN-λ3-activated plasmacytoid dendritic cells 

 

 
 

 

  



Results	(i)	

	 50	

 

 
 
 



Article

Endogenously produced TNF-a contributes
to the expression of CXCL10/IP-10 in IFN-l3-

activated plasmacytoid dendritic cells
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ABSTRACT
The interplay between IFN-ls and dendritic cells is
becoming increasingly relevant, particularly in light of their
key role in inducing the antiviral state, including in hepatitis
C virus infection. In this work, we have analyzed exten-
sively how human plasmacytoid dendritic cells respond to
IFN-l3. We report that plasmacytoid dendritic cells in-
cubated with IFN-l3 prolong their survival; alter their
expression pattern of surface HLA-DRa, CD123, CD86,
and CD303; and time dependently produce IFN-a,
CXCL10/IFN-g-induced protein 10, and even modest
quantities of TNF-a. Nevertheless, endogenously pro-
duced TNF-a, but not IFN-a, was found to be essential for
driving the expression of CXCL10/IFN-g-induced protein
10 in IFN-l3-treated plasmacytoid dendritic cells, as
revealed by neutralizing experiments by use of adalimu-
mab, etanercept, and infliximab. We also observed that
based on the kinetics and levels of IFN-a and CXCL10/
IFN-g-induced protein 10 produced by their IFN-l3-treated
plasmacytoid dendritic cells, healthy donors could be
categorized into 2 and 3 groups, respectively. In particular,
we identified a group of donors whose plasmacytoid
dendritic cells produced modest quantities of CXCL10/IFN-
g-induced protein 10; another one whose plasmacytoid
dendritic cells produced elevated CXCL10/IFN-g-induced
protein 10 levels, already after 18 h, declining thereafter;
and a 3rd group characterized by plasmacytoid dendritic
cells releasing very high CXCL10/IFN-g-induced protein 10
levels after 42 h only. Finally, we report that in plasmacy-
toid dendritic cells, equivalent concentrations of IFN-l3
and IFN-l1 promote survival, antigen modulation, and
cytokine production in a comparable manner and without
acting additively/synergistically. Altogether, data not only

extend the knowledge on the biologic effects that IFN-ls
exert on plasmacytoid dendritic cells but also add novel
light to the networking between IFN-ls and plasmacytoid
dendritic cells in fighting viral diseases. J. Leukoc. Biol.
99: 000–000; 2016.

Introduction
IFNs are cytokines that are crucial for the establishment of innate
and adaptive immune mechanisms aimed at destroying in-
tracellular pathogens, particularly viruses [1]. Based on differ-
ences in their sequence, structure, receptor use, and biologic
activities, IFNs are divided into 3 types: type I, mainly represented
by IFN-a and IFN-b; type II, by IFN-g; and type III, which includes
the IFN-l family, comprising IFN-l1 or IL-29, IFN-l2/IL-28A,
IFN-l3/IL-28B, and the more recently described IFN-l4 [1, 2].
Although IFN-ls display structural similarities with both the type I
IFNs and the IL-10 family of cytokines, IFN-ls and IFN-a share
many biologic activities, in particular, direct antiviral effects [3].
Accordingly, antiviral activities of human IFN-ls have been
demonstrated in cell cultures infected with influenza virus, HIV,
HBV, and HCV [2–4]. IFN-l3 has been shown to inhibit HCV
replication in 3 independent HCV models [5]. Moreover, since
the identification of SNPs, detectable near IFN-l3, as important
predictors of spontaneous or after-treatment HCV clearance
[6–9], the role of IFN-l3 in the context of HCV pathogenesis and
progression seems particularly relevant [1, 2]. However, how
IFN-l3 polymorphisms translate into influencing the outcome of
HCV disease has not been clarified yet.
IFN-ls, similarly to type I IFNs, signal through the JAK/STAT

pathway, namely through STAT1 and STAT2, which ultimately
induces sets of .300 ISGs that are important for their biologic
activities [3, 4]. ISGs encode a variety of proteins, including
ISG15, MX1, IFIT1, and CXCL10/IP-10, able, for instance, to
inhibit viral replication, promote the degradation of viral nucleic
acids, or modulate immune responses [10, 11]. Nonetheless,
because of their different antiviral potency in some models,
diverse induction patterns, and differential tissue expression of

1. Correspondence: Dept. of Medicine, Section of General Pathology, University of
Verona, Strada Le Grazie 8, 37134 Verona, Italy. E-mail: marco.cassatella@univr.it
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of differentiation 62 ligand, DC = dendritic cell, DEX = dexamethasone, ETA =
etanercept, HBV = hepatitis B virus, HCV = hepatitis C virus, ICOS-L = ICOS ligand,
IFIT1 = IFN-induced protein with tetratricopeptide repeats 1, IP-10 = IFN-g-induced
protein 10, ISG = IFN-stimulated gene, MFI = mean fluorescence intensity,
MHC-I/II = MHC class I/II, MNE = mean normalized expression, MX1 = myxovirus
resistance 1, pDC = plasmacytoid dendritic cell, RPL32 = ribosomal protein L32,
RT-qPCR = real-time quantitative PCR, SNP = single nucleotide polymorphism
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their corresponding receptor subunits, it is clear that type I and
type III IFN antiviral actions do not merely duplicate but
probably complement each other [2, 3, 12]. All IFN-ls signal
through the same heterodimeric receptor complex composed of
a unique IFN-lR1 (also known as IL-28Ra or cytokine receptor
family 2 member 12) chain and IL-10R2 [3, 13]. Whereas IL-10R2
is ubiquitously expressed, IFN-lR1 displays a restricted tissue
expression that is limited to epithelial cells of the respiratory,
gastrointestinal, and reproductive tracts or to hepatocytes [14, 15].
Interestingly, in cells of the immune system, only pDCs and less
prominently, B cells, express IFN-lR1 [16–18], but only pDCs have
been unequivocally shown to respond to IFN-ls, in terms of
altered CD80 expression [16], STAT1 phosphorylation activation
[17], and MX1 mRNA induction [19].
DCs are cells that play a pivotal role at the interface between

innate and adaptive immune responses [20]. In humans, DCs
represent 0.3–0.5% of PBMCs and are typically grouped into 2
major subsets: conventional myeloid DCs and pDCs [20, 21].
Among DC subsets, pDCs are well recognized to produce massive
amounts of type I IFNs and to acquire the capacity to present
antigen upon exposure to viral stimuli [22, 23]. pDCs display
a plasma cell morphology and, under steady-state conditions, carry
low levels of MHC-I and -II and costimulatory molecules [24].
Peculiarly, pDCs strongly express the pattern recognition receptors
TLR7 and TLR9 and are thus capable of recognizing ssRNA and
unmethylated CpG-containing DNA ligands, respectively [25].
Importantly, pDCs regulate cell trafficking through the production
of CXCL10/IP-10 and other chemokines [26, 27], provide help
to NK cells [28], and also alter Th1/Th2 responses [29]. More
recently, pDCs have also been shown to produce IFN-l upon
treatment with different types of viruses or coculture with
HCV-infected cells or synthetic ligands for TLR7 and TLR9 [18, 30].
In this study, we have analyzed extensively how human pDCs

respond upon incubation with IFN-l3 and show that IFN-l3-treated
pDCs survive longer, undergo a partial maturation, and produce
IFN-a, CXCL10/IP-10, and TNF-a. We also show that even though
CXCL10/IP-10 totally depends on endogenously secreted TNF-a,
donor-dependent factors likely condition, in a differential manner,
the production of IFN-a and CXCL10/IP-10 by IFN-l3-treated pDCs.

MATERIALS AND METHODS

Cell isolation and culture
PBMCs were isolated, under endotoxin-free conditions, from buffy coats of
healthy donors after Ficoll-Hypaque gradient centrifugation [31]. pDCs and
CD14+ monocytes were then isolated by use of, respectively, the BDCA-4
Diamond Isolation Kit and the Human Monocyte Isolation Kit (Miltenyi Biotec,
Bergisch Gladbach, Germany) [32], according to the manufacturer’s instruc-
tions. After isolation, cells were suspended in RPMI-1640 medium, supple-
mented with 10% low-endotoxin FBS (Sigma, St. Louis, MO, USA) and analyzed
immediately for antigen expression or cultured in 96-well tissue-culture plates for
functional assays. Purity of isolated pDCs (.98%; Supplemental Fig. 1A) and
CD14+ monocytes was determined by flow cytometry analysis [32]. Our healthy
donors were the following: 1) all caucasians; 2), 18–65 y old; 3) periodically
checked for blood exams; 4) 3:1 as a male:female ratio.

Cell stimulation
pDCs (0.5 3 105) in 100 ml were usually plated in 96-well U-bottom plates
(Costar; Corning, Corning, NY, USA), incubated in the presence or absence of

usually 30 ng/ml IFN-l3 (R&D Systems, Minneapolis, MN, USA), 30 ng/ml
IFN-l1 (R&D Systems), 20 ng/ml IL-3 (Miltenyi Biotec), 5 mM R837
(InvivoGen, San Diego, CA, USA), 100 U/ml IFN-a (Pegasys; Genentech,
South San Francisco, CA, USA), and 0.1–10 ng/ml TNF-a (PeproTech, Rocky
Hill, NJ, USA) and then cultured at 37°C, 5% CO2 atmosphere, for the times
indicated. In selected experiments, pDCs were preincubated for 15 min with
5 mg/ml ETA (a dimeric fusion protein that consists of the extracellular
ligand-binding portion of the human 75 kDa TNFR linked to the Fc portion
of the human IgG1, ENBREL; Amgen, Thousand Oaks, CA, USA), 2.5 mg/ml
ADA (a human-derived rIgG1 mAb, HUMIRA; Abbott Laboratories, Abbott
Park, IL, USA), 2 mg/ml infliximab (a mouse/human chimeric IgG1 mAb,
REMICADE; Janssen Biotech, Horsham, PA, USA), or their isotype control
antibodies (human IgG1; eBioscience, San Diego, CA, USA), as well as 5 mg/ml
aIFNAR (PBL InterferonSource, Piscataway, NJ, USA) or their isotype control
antibodies (mouse IgG2a; R&D Systems), before treatment. In other
experiments, 0.125 3 106 CD14+ monocytes in 50 ml were plated in 96-well
flat-bottom plates in the presence or absence of pDC-derived supernatants
or 0.1 ng/ml TNF-a. After 1 h, cells were collected and centrifuged at 400 g
for 5 min. Supernatants were harvested and frozen immediately at 280°C,
while the corresponding cell pellets were used for flow cytometry analysis or
lysed for RNA extraction.

Flow cytometry analysis
To perform phenotypic studies [32], pDCs were first treated with 5% human
serum and then stained for 20 min at room temperature by use of the
following mAbs: FITC anti-CD303 (Miltenyi Biotec), PE-Cy7 anti-CD123
(BioLegend, San Diego, CA, USA), APC anti-human CD62L (Miltenyi Biotec),
APC-Cy7 anti-HLA-DRa (BioLegend), PE anti-CD86 (BioLegend), anti-CD83
(Miltenyi Biotec), and their related isotype controls. For IFN-lR1 detection,
we used 2 mg/ml PE anti-IFN-lR1 and as isotype control antibody, PE mouse
IgG2a (both from BioLegend), whereas IL-10R2 expression was assessed by
indirect staining by use of 10 mg/ml of an unconjugated mouse anti-IL-10R2
mAb [clone 4B2; kindly provided by Dr. K. W. Moore (when affiliated with
DNAX Institute, Palo Alto, CA, USA)] or its isotype control mAb (unconjugated
mouse IgG1; BioLegend), followed by an incubation with 4 mg/ml secondary PE
goat anti-mouse polyclonal antibodies (BioLegend) [33]. Sample fluorescence
was then measured by use of an 8-color MACSQuant analyzer (Miltenyi Biotec)
and data analysis performed by FlowJo software, version 8.8.6 (Tree Star,
Ashland, OR, USA). Phenotypic cell analysis under the various experimental
conditions was performed in live cells, identified as singlet Vybrant DyeCycle
Violet-negative cells (Life Technologies, Carlsbad, CA, USA) the overall gating
strategy for live cells is depicted in Supplemental Fig. 1A [32].

Gene-expression studies
Total RNA was extracted from pDCs and CD14+ monocytes after lysis by
the RNeasy Mini Kit (Qiagen, Venlo, Limburg, Netherlands), according to
the manufacturer’s instructions. To remove completely any possible
contaminating DNA, an on-column DNase digestion with the RNase-free
DNase set (Qiagen) was performed during total RNA isolation. Purified
total RNA was then reverse transcribed into cDNA, as described previously
[31]. Gene-expression studies were performed by RT-qPCR by use of gene-
specific primer pairs (Life Technologies), available in the public database
RTPrimerDB (http://www.rtprimerdb.org) under the following entry
codes: TNF-a (3551), CXCL10 (3537), IFN-a (all genes; 3541), CXCL8
(3553), IFIT1 (3540), ISG15 (3547), RPL32 (8775), CCL4 (3535), and IkBa
(7888). Total RNA (usually extracted from 50,000 pDCs or 125,000 CD14+

monocytes) was reverse transcribed by Superscript III (Life Technologies),
whereas qPCR was carried out by use of Fast SYBR Green Master Mix
(Life Technologies). Data were calculated by qGENE software (http://www.
gene-quantification.de/download.html) and expressed as MNE units after
RPL32 normalization.

Cytokine measurement
IFN-a, CXCL10/IP-10, and TNF-a production was measured in pDC-derived
supernatants by use of specific ELISA kits, purchased from, respectively,
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Mabtech (Nacka Strand, Sweden; IFN-a, 7 pg/ml detection limit), R&D
Systems (CXCL10/IP-10, 30 pg/ml detection limit), and eBioscience (TNF-a,
4 pg/ml detection limit), according to the manufacturers’ instructions.

Immunoblots
pDCs (100,000) were incubated with or without 30 ng/ml IFN-l3 for 45 and
90 min before blocking the stimulation in ice-cold PBS, supplemented with
2 mM diisopropylfluorophosphate and phosphatase inhibitors (10 mM NaF,
1 mM Na3VO4, 10 mM Na4P2O7). Whole-cell extracts were prepared and
subjected to immunoblots by standard procedures [31] by use of 1:1000 rabbit
polyclonal antibody anti-phospho-STAT2 (Tyr689; Millipore, Darmstadt,
Germany), 1:1000 anti-phospho-STAT1 (Tyr701) rabbit polyclonal antibodies
(Cell Signaling Technology, Beverly, MA, USA), and 1:500 anti-total-STAT1 or
anti-total-STAT2 rabbit polyclonal antibodies (both from Santa Cruz Bio-
technology, Dallas, TX, USA). Blotted proteins were detected and quantified
by use of the Odyssey infrared imaging system (LI-COR Biosciences, Lincoln,
NE, USA).

Statistical analysis
Data are expressed as means 6 SEM. Statistical analysis included 1-way or 2-way
ANOVA, followed by Tukey’s or Bonferroni’s post hoc test, respectively.
Values of P , 0.05 were considered statistically significant. Statistical analysis
was performed by use of Prism, version 6.0, software (GraphPad Software,
La Jolla, CA, USA).

RESULTS

IFN-l3 promotes survival and antigen modulation in
human pDCs
Initial experiments confirmed that pDCs, freshly isolated from
the peripheral blood of healthy donors, display both subunits
composing the IFN-lR, namely IFN-lR1 and IL-10R2 (Supple-
mental Fig. 1B) [17, 18, 34], as well as tyrosine phosphorylated
STAT1 and STAT2 if incubated with IFN-l3 (Supplemental
Fig. 1C). In these latter, as well as in all subsequent, experiments,
IFN-l3 was used at 30 ng/ml. This was based on preliminary
dose-response studies on gene-expression induction (Supple-
mental Fig. 2A), surface antigen modulation (Supplemental
Fig. 2B), and survival (Supplemental Fig. 2C), which identified
such concentration as the optimal one to evaluate the effects of
IFN-l3 in pDCs, in line with other studies [16–19].
Subsequent experiments revealed that IFN-l3 maintains pDC

survival for up to 42 h (Fig. 1A and B), as measured by the
Vybrant DyeCycle Violet stain (Fig. 1C, showing a representative
experiment). Notably, the positive effect of IFN-l3 on pDC
survival was found to be substantially comparable with that
induced by IL-3 (Fig. 1A and B), a growth factor known to

Figure 1. IFN-l3 prolongs the survival of pDCs.
pDCs were incubated with or without 30 ng/ml
IFN-l3 or 20 ng/ml IL-3 right after isolation from
the blood. Cells were harvested at the 18 and 42 h
time points and then stained by the Vybrant
DyeCycle to assess their viability compared with
freshly isolated pDCs (T0) by flow cytometry
analysis. (A) Results of all individual experiments
in terms of viable cells for the conditions displayed
(n = 8–16); (B) related means 6 SEM. (C) Gating
strategy used to identify pDCs incubated for 42 h
that are live, from a representative experiment.
(Upper) Viable pDCs gated as Vybrant DyeCycle-
negative cells; (lower) cellular morphology and
percentages. Gray and black dots stand for dead
and live cells, respectively. The overall gating
strategy is depicted in Supplemental Fig. 1. FSC-A,
Forward-scatter-area; SSC-A, side-scatter-area.
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maintain pDC viability [24]. Moreover, flow cytometric analysis
confirmed [35, 36] that pDCs cultured for up to 42 h in medium
only express levels of HLA-DRa (Fig. 2A), CD123 (Fig. 2B), CD83
(Fig. 2C), and CD86 (Fig. 2D), substantially similar to those
observed in freshly isolated cells, whereas they significantly
decrease CD303 (P , 0.01; Fig. 2E) and increase CD62L (in the
latter case, at 42 h only; P , 0.01; Fig. 2F) levels. As compared
with untreated cells, expression of HLA-DRa (Fig. 2A), CD123
(Fig. 2B), CD83 (Fig. 2C), and CD86 (Fig. 2D) in IFN-l3-treated
cells was up-regulated significantly (for CD83 and CD86 only at
18 and 42 h, respectively, of culture), whereas that of CD62L
and CD303 was down-regulated significantly at 18 and 42 h,
respectively (Fig. 2E; see also representative plots in Supple-
mental Fig. 3). Such IFN-l3-mediated pDC antigen modula-
tion, again, substantially resembled that exerted by IL-3 (Fig. 2
and Supplemental Fig. 3) [24, 37], with some exceptions: IL-3,
in fact, was found to be significantly more potent than IFN-l3,
either in up-regulating expression of HLA-DRa at 42 h
(Fig. 2A) and of CD86 at 18 h (Fig. 2D) or in down-regulating
CD303 (Fig. 2E) and CD62L (Fig. 2F) expression at 18 and

42 h, respectively. On the other hand, IL-3 was significantly less
efficient than IFN-l3 in up-regulating CD83 after 18 h
(Fig. 2C).
Taken together, data demonstrate that IFN-l3 potently acts on

pDCs in terms of enhanced survival and modulation of surface
markers. Data also indicate that at least phenotypically [35, 38],
IFN-l3 induces a partial maturation of pDCs.

IFN-l3 induces the production of IFN-a and CXCL10/
IP-10 by human pDCs
We then evaluated whether, in pDCs, IFN-l3 could induce the
production of IFN-a and in turn, CXCL10/IP-10, as this T cell
attractant chemokine, under a variety of conditions [39–41],
depends on endogenously released type I IFN. No CXCL10/
IP-10 and IFN-a were measurable in supernatants from pDCs
cultured for up to 42 h in medium only (Fig. 3). We instead
observed that IFN-l3-treated pDCs produce and release signifi-
cant amounts of IFN-a (608 6 159 pg/ml, n = 16; Fig. 3A) or
CXCL10/IP-10 (764 6 187 pg/ml, n = 16; Fig. 3B) after 42 h of
incubation. However, only CXCL10/IP-10 could be measured at

Figure 2. IFN-l3 modulates the expression of several antigens in pDCs. After isolation, pDCs were incubated with or without 30 ng/ml IFN-l3 or
20 ng/ml IL-3. At the 18 and 42 h time points, cells were harvested and analyzed for HLA-DR (A), CD123 (B), CD83 (C), CD86 (D), CD303 (E), and
CD62L (F) expression by flow cytometry. For each antigen, the panels on the left report the results (as MFI) on a logarithmic scale of all individual
measurements, whereas bar graphs on the right report their means 6 SEM (n = 5–20) on a linear scale. MFI was calculated after subtracting the MFI
given by the correspondent isotype control antibodies or the basal fluorescence. Significant variations: *P , 0.05, **P , 0.01, ***P , 0.001.
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remarkable levels after 18 h (216 6 83 pg/ml, n = 22), suggesting
that its expression precedes that of IFN-a (8 6 3 pg/ml/18 h,
n = 17). Accordingly, in most samples of pDCs incubated with
IFN-l3, an induction of CXCL10, but not IFN-a, mRNA could be
detected as early as after 5 h, whereas an evident, although
variable, accumulation of IFN-a and CXCL10 transcripts was
present at 18 h (data not shown).
Although the graphical representations displayed in Fig. 3A

and B (reporting the means 6 SEM of IFN-a and CXCL10/IP-10
release calculated from all samples) would suggest that maximal
production of IFN-a and CXCL10/IP-10 by pDCs would occur
after 42 h incubation with IFN-l3, that was not always the case for
CXCL10/IP-10. In fact, we observed a very large variability in the
levels of extracellular IFN-a (Fig. 3C) and CXCL10/IP-10 (Fig. 3D)
measured in supernatants harvested from pDCs treated with IFN-l3
(ranging from a few up to thousands picograms/milliliter),
which, at least in some samples for CXCL10/IP-10, already
reached their maximum at 18 h (Fig. 3D). More interestingly,
we could retrospectively identify 3 reproducible patterns of

CXCL10/IP-10 production by pDCs incubated with IFN-l3
(Fig. 3D; dashed boxes), as better illustrated in representative
experiments shown in Fig. 3E–G and globally summarized in
Fig. 4A–C: a first group, herein referred to donors defined as
“low CXCL10/IP-10 producers,” characterized by a modest
production of CXCL10/IP-10 at 18 h (22 6 11 pg/ml, n = 10),
which even if remaining substantially low, significantly increases
at 42 h (163 6 24 pg/ml, n = 7; Figs. 3E and 4A); a second group,
herein referred to donors defined as “18 h strong CXCL10/IP-10
producers,” characterized by remarkably elevated levels of
CXCL10/IP-10 production already after 18 h (865 6 297 pg/ml,
n = 4), which do not further increase at 42 h (722 pg/ml, n = 2;
Figs. 3F and 4B); and finally, a 3rd group, herein referred to
donors defined as “42 h strong CXCL10/IP-10 producers,”
characterized by very high CXCL10/IP-10 levels detectable after
42 h (1320 6 264 pg/ml, n = 7; Figs. 3G and 4C).
Similarly to CXCL10/IP-10, 2 patterns of IFN-a production by

IFN-l3-treated cells were also reproducibly distinguishable based
on the extracellular cytokine levels measured at the 42 h time

Figure 3. IFN-l3 induces a time-dependent pro-
duction of IFN-a and CXCL10/IP-10 by pDCs.
After isolation, pDCs were incubated with or
without 30 ng/ml IFN-l3 for 5, 18, and 42 h. Cell-
free supernatants were then collected and extra-
cellular IFN-a (A and C) or CXCL10/IP-10 (B, D,
and E–G) measured by ELISA. (A and B) Means 6
SEM of all experiments (n = 13–18); (C and D)
results of all individual experiments. pDCs in-
cubated for up to 42 h in the absence of IFN-l3
produced neither IFN-a nor CXCL10/IP-10. (E–G)
Three different, reproducible patterns of
CXCL10/IP-10 production by pDCs incubated with
IFN-l3.
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point (Fig. 3C): 1 of them displaying IFN-a amounts ,150 pg/ml
(Fig. 3C, upper dashed box; here defined as “low IFN-a
producers”) and the other 1 .500 pg/ml (Fig. 3C, lower dashed
box; here defined as “strong IFN-a producers”). Interestingly,
by matching the amounts of IFN-a and CXCL10/IP-10,
measured in the same samples (Fig. 4), it seemed evident that
the donors whose pDCs produced low levels of IFN-a (Fig. 4D)
mainly corresponded to the low CXCL10/IP-10 producers (Fig. 4A),
a few of them (Fig. 4E) coinciding with the 18 h strong CXCL10/
IP-10 producers (Fig. 4B), whereas the donors whose pDCs
produced very high levels of IFN-a (Fig. 4F) all corresponded
to the 42 h strong CXCL10/IP-10 producers (Fig. 4A). Such
a correspondence was corroborated by calculating the Pearson
correlation coefficient, which proved that the release of

CXCL10/IP-10 and IFN-a by IFN-l3-treated pDCs was statistically
correlated after 42 (r = 0.683, P , 0.01) but not after 18 (r =
0.219, P = 0.313) h of incubation. Furthermore, the percentage
of live (Vybrant-negative) pDCs after 18 or 42 h of incubation
with IFN-l3 was found to be substantially similar within the 3
CXCL10/IP-10 (Fig. 5A) or the 2 IFN-a- (Fig. 5B) producer
groups, indicating that the variable CXCL10/IP-10 and IFN-a
production was not related to differences in pDC viability/
death.
Taken together, data not only prove that pDCs treated

with IFN-l3 produce and release significant quantities of IFN-a
and CXCL10/IP-10, but also uncover that the extent of IFN-a
and CXCL10/IP-10 production by IFN-l3-treated pDCs is very
variable and likely influenced by donor-dependent factors.

Figure 4. Relationship between the levels of CXCL10/IP-10 and the levels of IFN-a induced by IFN-l3 in pDCs. (A and D) Extracellular production
of CXCL10/IP-10 and IFN-a, respectively, measured in pDC-derived supernatants harvested from all low CXCL10/IP-10 producers. (B and E)
Extracellular production of CXCL10/IP-10 and IFN-a, respectively, from the 18 h strong CXCL10/IP-10 producers. (C and F) Extracellular production
of CXCL10/IP-10 and IFN-a, respectively, from the 42 h strong CXCL10/IP-10 producers. For each group, left panels report the absolute values of
CXCL10/IP-10 (A–C) and IFN-a (D–F) production by IFN-l3-treated pDCs (from all individual experiments); while the right panels (bar graphs) display
the means 6 SEM of the values reported in the left ones. pDCs incubated in the absence of IFN-l3 for up to 42 h produced neither IFN-a nor CXCL10/
IP-10. Please note that in B, each single experiment is identified by the same symbol. Significant increases: *P , 0.05, ***P , 0.001.
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Endogenous IFN-a is only partially required to induce
CXCL10/IP-10 in IFN-l3-treated pDCs
To ascertain definitively whether the induction of CXCL10/IP-10
expression in IFN-l3-treated pDCs depends on endogenous
IFN-a, we performed experiments in which pDCs were pre-
treated with antibodies neutralizing the IFN-aR [42] before their
incubation with IFN-l3 (Fig. 6). Luckily, the donors used in these
experiments happened to fall, by chance, into the 42 h strong
CXCL10/IP-10 producer group. In these experiments, aIFN-aR
antibodies only modestly inhibited the induction of CXCL10
mRNA at 18 h (Fig. 6A) or the production of CXCL10/IP-10 at
42 h (Fig. 6B), whereas they completely blocked the induction of
CXCL10/IP-10 production and mRNA expression by pDCs
incubated with IFN-a (Fig. 6D and E). Under the same
experimental conditions, isotype control antibodies did not affect
CXCL10/IP-10 production induced by IFN-l3 and IFN-a (Fig. 6C
and F). Taken together, data demonstrate that CXCL10/IP-10
produced by pDCs after 42 h of incubation with IFN-l3 is only
partially controlled by endogenous IFN-a.

Endogenous TNF-a is crucial for the induction of
CXCL10/IP-10 in IFN-l3-treated pDCs
It has been demonstrated that under several conditions [43–45],
transcription of CXCL10 can be cooperatively induced by
STAT1-activating stimuli (such as type I and type II IFNs), acting
in combination with NF-kB-activating agonists, including TNF-a.
Human pDCs are known to produce TNF-a, for instance in
response to R837 (Imiquimod) [46, 47]. Therefore, we in-
vestigated whether IFN-l3 could trigger the production of TNF-a
in pDCs and if so, whether TNF-a could endogenously play a role
in activating CXCL10/IP-10 expression. As shown in Fig. 7A and
B, very low but detectable amounts of TNF-a could be measured
in supernatants harvested from untreated and IFN-l3-treated
pDCs, in the latter case, slowly increasing after 18 h and reaching
significant levels up to 42 h. Concomitantly, TNF-a mRNA
accumulation significantly increased at 18 h in IFN-l3-treated
pDCs (Fig. 7C). Notably, the yields of TNF-a were not as variable
as the yields of IFN-a and CXCL10/IP-10 measured in the same
supernatants, as also confirmed by the coefficient of variability
analysis (data not shown) [48]. Despite of these low TNF-a
amounts, pDC incubation in the presence of TNF-a blockers,
including ETA, ADA, or infliximab [49], completely prevented
the induction of CXCL10 mRNA at 18 h (Fig. 7D, and data not
shown), as well as of CXCL10/IP-10 production at 18 and 42 h
(Fig. 7E, and data not shown), in response to IFN-l3, regardless
of the "CXCL10/IP-10 producer” group. Under the same
experimental conditions, isotype control antibodies did not
affect, in pDCs treated with IFN-l3, either the production of
CXCL10/IP-10 or the modulation of membrane markers (data
not shown). On the other hand, ETA inhibited neither the
survival of pDCs incubated with IFN-l3 for 42 h (Supplemental
Fig. 4A) nor the production of CXCL10/IP-10 induced by R837
in pDCs (Supplemental Fig. 4B), whereas both ETA and ADA
completely suppressed the induction of CXCL8 mRNA triggered
by 10 ng/ml TNF-a in pDCs (Supplemental Fig. 4C). Surpris-
ingly, TNF-a alone, at doses ranging from 0.01 to 10 ng/ml, was
found unable or able to trigger only minute amounts of
CXCL10/IP-10 by pDCs cultured for up to 42 h (data not
shown). However, supernatants harvested from pDCs, incubated
for 18 h with IFN-l3, but not with medium only, once transferred
to CD14+ monocytes for 1 h in the presence or absence of TNF-a
inhibitors, induced a TNF-a-dependent CCL4 (Fig. 8A) and IkBa
(Fig. 8B) mRNA expression. Importantly, neither was the
amounts of TNF-a contained in these supernatants (;15 pg/ml)
further increased once added to CD14+ monocytes nor was
TNF-a mRNA induced by them (data not shown), proving that
the biologic effects mediated by pDC-derived supernatants were
promoted by the TNF-a exclusively derived from IFN-l3-treated
pDCs. Moreover, whereas addition of 0.1 ng/ml TNF-a to
CD14+ monocytes induced CCL4 (Fig. 8C) and IkBa (Fig. 8D)
mRNA expression, addition of IFN-l3 neither did so nor
potentiated the action of TNF-a (Fig. 8C and D), confirming
that monocytes do not respond to IFN-l3. Taken together, data
demonstrate that IFN-l3 induces the production of biologically
active TNF-a by pDCs. Data also prove that endogenously
produced TNF-a is essential for the induction of CXCL10/IP-10
in IFN-l3-treated pDCs.

Figure 5. Survival of pDCs treated with IFN-l3 categorized according to
the CXCL10/IP-10 or IFN-a producer groups. Viability of pDCs after 18
and 42 h of incubation with 30 ng/ml IFN-l3, as analyzed by flow
cytometry. The percentage of live (Vybrant-negative) pDCs within the
3 CXCL10/IP-10 producer groups is shown in (A), while that within the
2 IFN-a producer groups is shown in (B) (means 6 SEM; n = 3–4).
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IFN-l1 and IFN-l3 are equally effective in promoting
survival, antigen modulation, and cytokine production
in pDCs
In a final series of experiments, we also addressed the potency of
IFN-l3, relative to that of IFN-l1, on pDC survival and/or
antigen modulation, as IFN-l1 has been shown to counteract the
proapoptotic effect exerted in pDCs by DEX [17], as well as to
enhance their CCR7, CD62L, CD80, CD83, ICOS-L, and MHC-I
expression levels [16, 17]. pDCs were cultured with or without 30
or 100 ng/ml IFN-l1 in the presence or absence of 30 ng/ml
IFN-l3 (purchased from the same company). As shown in Fig. 9,
the modulatory effects by 30 ng/ml IFN-l3 or 30 ng/ml IFN-l1
on pDC viability (Fig. 9A), as well as on pDC expression of CD86,
CD83, and HLA-DRa (Fig. 9B), were found to be substantially
similar. Furthermore, a combination of the 2 IFN-l types did not
provoke any additive/synergistic effects either (Fig. 9A and B).
Maximal effects on both cell viability (Fig. 9A) and antigen levels
(Fig. 9B) did not significantly change if IFN-l1 were used at
100 ng/ml, consistent with the data obtained with IFN-l3
(Supplemental Fig. 2).
We also measured the levels of CXCL10/IP-10, IFN-a, and

TNF-a in supernatants from the pDCs used for these experi-
ments, which retrospectively involved 3 donors belonging to the
42 h strong CXCL10/IP-10 producers. As shown in Fig. 9C,
production of CXCL10/IP-10, IFN-a, and TNF-a by pDCs
incubated for 42 h with 30 ng/ml IFN-l1 was not significantly
different from that triggered by 30 ng/ml IFN-l3. Once again,
a combination of IFN-l1 and IFN-l3 did not trigger any

additive/synergistic cytokine production (Fig. 9C). Worthy of
note is that in this group of experiments, the 42 h strong
CXCL10/IP-10 producer pattern was reproduced also in response
to IFN-l1, further corroborating the validity of our observations.

DISCUSSION

Although the interplay between DCs and members of the IFN-l
family is becoming increasingly relevant, particularly at the light
of their key role in induction of the antiviral state and, for
instance, control of HCV replication [50, 51], the immunomod-
ulatory activities of IFN-ls on pDCs are poorly defined. In this
work, we report that human pDCs respond to IFN-l3 in terms of
enhanced survival, modulation of surface markers, gene expres-
sion induction, and cytokine production. In particular, we show
that treatment of pDCs with IFN-l3 promotes the following: 1)
a maintenance of pDC viability at levels comparable with IL-3, 1
of the major survival factor for pDCs [24, 37]; 2) a change in the
expression pattern of surface HLA-DRa, CD123, CD86, and
CD303, consistent with a “partial” pDC maturation [35, 38, 46];
3) an induction of typical ISG mRNAs, including IFIT1, ISG15,
and CXCL10; 4) a time-dependent production of IFN-a,
CXCL10/IP-10, and unexpectedly, also TNF-a (in modest
amounts). These data not only extend previous observations,
demonstrating that pDCs up-regulate MX1 mRNA upon in-
cubation with IFN-l3 [19], but also confirm that pDCs respond
to IFN-l family members, as reported previously for IFN-l1. The
latter IFN-l type, in fact, has been shown to counteract the

Figure 6. Role of endogenous IFN-a in mediating
the induction of CXCL10/IP-10 in IFN-l3-treated
pDCs. pDCs were pretreated for 30 min with or
without 5 mg/ml aIFN-aR or mouse IgG2a (isotype
control antibodies) and then incubated with
IFN-l3 (A and B) for 18 and 42 h or 100 U/ml
IFN-a (C and D) for 5 and 18 h to perform
CXCL10 gene-expression and protein-production
studies. Bar graphs show the percentage of in-
hibition on both CXCL10 mRNA expression
(A and D; means6 SEM; n = 4,) and CXCL10/IP-10
production (B and E; n = 3) exerted by aIFN-aR
antibodies. Under the same experimental condi-
tions, isotype control antibodies did not affect
CXCL10/IP-10 production or mRNA expression
induced by IFN-l3 or IFN-a, as illustrated by
C and F, displaying 1 of the experiments reported
in B and E. Gene-expression data are depicted as
MNE units after RPL32 mRNA normalization.
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proapoptotic effect exerted by DEX in pDCs [17] to enhance
their CCR7, CD62L, CD80, CD83, ICOS-L, and MHC-I expres-
sion levels [16, 17]; to reduce IL-10, IL-13, and IFN-g production
by cocultures of pDCs with allogenic T cells [16]; and to
potentiate the production of IFN-a induced by CpG-A [18].
Interestingly, a comparison of the potency between IFN-l3 and
IFN-l1, used at identical concentrations, revealed that they were
essentially equivalent in terms of promotion of survival, antigen
modulation, and cytokine production in pDCs and that they do
not function additively/synergistically.
Notably, analysis of the patterns of IFN-a and CXCL10/IP-10

production by pDCs incubated with IFN-l3 uncovered a number
of peculiar features. For instance, in some but not all donors, we
noticed that CXCL10/IP-10 was produced by IFN-l3-treated
pDCs before IFN-a, therefore indicating that CXCL10/IP-10
might not be necessarily dependent on IFN-a, as also reported to
occur in pDCs incubated with CpG [52]. In fact, whereas
maximal IFN-a yields were always detected after 42 h of pDC
incubation with IFN-l3, peak levels of CXCL10/IP-10 were
observed to occur, depending on the donor, earlier. Another
observation that intrigued us was the large variability in the
amounts of IFN-a and CXCL10/IP-10 detectable in supernatants
harvested from IFN-l3-treated pDCs (ranging from a few to
thousands of picograms/milliliter), which we initially considered
“expectable,” given the use of primary cells. However, a more
diligent, retrospective scrutiny of our data globally revealed that
healthy donors could be differentiated into 3 groups based on
the kinetics and the amounts of CXCL10/IP-10 produced by
their IFN-l3-treated pDCs: 1) 1 group, including donors whom

we defined low CXCL10/IP-10 producers, whose IFN-l3-treated
pDCs release modest quantities of CXCL10/IP-10; 2) a second
group, including donors whom we called 18 h strong CXCL10/
IP-10 producers, whose IFN-l3-treated pDCs produce remark-
ably elevated levels of CXCL10/IP-10 already after 18 h; 3) and
a third group, including donors whom we called 42 h strong
CXCL10/IP-10 producers, characterized by pDCs expressing
very high CXCL10/IP-10 levels at the 42 h time point. Such
patterns recall observations made in a previous study describing
that PBMCs from healthy donors appeared to function as
“early” or “late” responders to IFN-l1: early responders showed
peak mRNA levels for CXCL9, CXCL10, and CXCL11 between
15 and 240 min, whereas late responders peaked between 24
and 72 h [53]. Concomitantly, 2 types of “IFN-a producers”
could also be distinguishable in our study, namely those whose
IFN-l3-treated pDCs produce IFN-a at levels ,150 pg/ml and
those producing the cytokine at levels .500 pg/ml. Interest-
ingly, whereas all 42 h strong CXCL10/IP-10 producers
corresponded to the donors whose pDCs produced high levels
of IFN-a (.500 pg/ml), the 18 h strong CXCL10/IP-10
producers did not. Altogether, data depict a very complex
scenario, implying that donor-dependent factors might likely
condition, in a differential manner, the production of IFN-a
and CXCL10/IP-10 by IFN-l3-treated pDCs. The molecular
bases underlying the variable capacity of pDCs to produce IFN-a
and CXCL10/IP-10 by the various donor typologies and its
potential biologic implication(s) are unknown and need to be
investigated better. In such regard, a number of polymorphisms
are present at the level of the IFN-a [54] and CXCL10 [55–57]

Figure 7. Role of endogenous TNF-a in mediating
the induction of CXCL10/IP-10 in IFN-l3-treated
pDCs. pDCs were incubated with or without 30 ng/ml
IFN-l3 for up to 42 h to analyze gene expression
and extracellular production of TNF-a. (A) Results
of all individual measurements; (B) means6 SEM of
A (n = 13–19). (C) TNF-a mRNA expression in
IFN-l3-treated pDCs. (D and E) pDCs were
pretreated for 30 min with or without TNF-a
inhibitors (TNFi), namely 5 mg/ml ETA or 2.5 mg/ml
ADA, as well as their isotype control antibodies
(human IgG1; F) before incubation with IFN-l3.
After 18 (D and E) and 42 h (E), CXCL10 mRNA
expression (D) and production (E) were evaluated
and results displayed as absolute values without or
with TNFi. Isotype control antibodies for TNFi did
not affect the production of CXCL10/IP-10 in-
duced by IFN-l3, as illustrated by F, displaying 1 of
the experiments reported in E. Significant
increases: *P , 0.05, **P , 0.01.
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loci, in turn, influencing the expression/production of the
related products in different diseases, including sarcoidosis [54],
HBV [55], tuberculosis [56], and malaria [57]. However, pre-
liminary results would exclude the existence of a correlation
among the 3 groups of CXCL10/IP-10 producers by us identified
and 2 of the polymorphisms identified in the CXCL10 promoter
region, namely the 21447A . G and 2135G . A ones [55, 57]
[unpublished results]. Moreover, it would also be worthy to
investigate whether and how the 3 CXCL10/IP-10 producer
groups associate with those SNPs detectable near IFN-l3, which in
HCV-infected patients, are predictive for a failure in responding to
the peg-IFN-a/ribavirin therapy or in spontaneously clearing
HCV infection [6–9, 58].
Whatever the case is, experiments that used antibodies

neutralizing the IFN-aR definitively confirmed that the pro-
duction of CXCL10/IP-10 triggered by IFN-l3-treated pDCs,
isolated from the 42 h strong CXCL10/IP-10 producers, is
scarcely dependent on endogenous IFN-a. Even though no
18 h strong CXCL10/IP-10 producers could be included in
IFN-aR-neutralizing experiments, based on the observations
described above, there is no reason to believe that production
of CXCL10/IP-10 by their IFN-l3-treated pDCs may be more
dependent on endogenous IFN-a than in 42 h strong CXCL10/
IP-10 producers. By contrast, the use of different TNF-a

inhibitors, namely, ADA, ETA, and infliximab [49], allowed us
to uncover that the expression of CXCL10/IP-10 by IFN-l3-
treated pDCs is totally driven by endogenously produced
TNF-a, regardless of the CXCL10/IP-10 producer group.
Under the same experimental conditions, endogenous TNF-a
was found to contribute slightly to the production of IFN-a
[unpublished results] and not to affect pDC survival, pointing
to its distinctive role in promoting CXCL10/IP-10 expression.
Moreover, no inhibition of CXCL10/IP-10 expression by ETA
was observed in pDCs incubated with R837 (which produces
massive amounts of TNF-a, IFN-a, and CXCL10/IP-10) [23, 46, 59],
thus excluding a “reverse signaling”-mediated inhibitory effect
[60] and indicating an apparently specific effect of endogenous
TNF-a under IFN-l3 treatment only. Intriguingly, notwithstand-
ing the results obtained by TNF-a blockers, exogenous TNF-a
alone, at doses ranging from 0.01 to 10 ng/ml, triggered only
minute amounts of CXCL10/IP-10 in pDCs, even though it
induced, for instance, CXCL8 mRNA and pDC maturation
[unpublished results]. On the other hand, supernatants
harvested from pDCs treated with IFN-l3 for 18 h displayed the
capacity to induce, in a TNF-a-dependent manner, the expres-
sion of CCL4 and IkBa mRNAs in CD14+ monocytes, thus
proving definitively that the TNF-a, present in pDC-derived
supernatants, is biologically active.

Figure 8. Supernatants harvested from IFN-l3-
stimulated pDCs exert TNF-a-dependent biologic
activities in CD14+ monocytes. pDCs were cultured
for 18 h with or without 30 ng/ml IFN-l3. Then,
cell-derived supernatants were harvested (pDC-
supnts for unstimulated pDCs, l3pDC-supnts for
IFN-l3-treated pDCs), diluted 1/1 with tissue-
culture medium, and then transferred to CD14+

monocytes in the presence or absence of ETA or
ADA (A and B). Concomitantly, CD14+ monocytes
were also incubated in the presence or absence of
30 ng/ml IFN-l3 or 0.1 ng/ml TNF-a, the latter
cytokine alone or in presence of ETA, ADA, or
IFN-l3 (C and D). After 1 h of incubation, CCL4
(A and C) and IkBa (B and D) mRNA expression
was evaluated by RT-qPCR. Each panel reports
a representative experiment out of 3 with similar
results.
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A number of reasons might explain why endogenously
produced TNF-a is able to control the production of CXCL10/
IP-10 in pDCs incubated with IFN-l3. One possibility might be
that the CXCL10 locus, following treatment with IFN-l3, but
not spontaneously, undergoes a chromatin reorganization that
becomes accessible to the signals triggered by endogenous
TNF-a. If so, such a scenario would resemble what occurs in
human neutrophils with regard to their production of IL-6 in
response to R848 and/or TNF-a [61]. An alternative, more
likely explanation, relies instead on the known molecular
mechanisms controlling an optimal CXCL10 transcription,
which is well demonstrated to involve a synergistic action of
the transcription factors STAT and NF-kB [43–45]. According
to such an explanation, we would speculate that STATs and
NF-kB would be mobilized to the CXCL10 promoter in
pDCs incubated with IFN-l3: STATs directly in response to
IFN-l3 and NF-kB following activation by endogenously pro-
duced TNF-a.
In conclusion, our study greatly extends our knowledge on the

biologic effects that IFN-l3 exerts on pDCs, which might be
relevant in the context of viral infections, particularly in the case
of HCV progression. Accordingly, if pDCs are recruited into the

liver of chronic hepatitis C patients [62], then it is tempting to
speculate that locally produced IFN-l3 activates pDCs to express
ISG genes and to produce TNF-a, IFN-a, and CXCL10/IP-10.
Locally, TNF-a may contribute to hepatic inflammation and cell
death, whereas CXCL10/IP-10 and IFN-a could influence the
recruitment and activation of CXCR3+ cells (such as monocytes,
NK cells, and Th1 cells) [27] in the infected liver. Conceivably,
these phenomena would all sustain the progression of in-
flammation and immune response, eventually leading to chronic
infection. More broadly, our data also suggest that IFN-l3, by
triggering the production of IFN-a, CXCL10/IP-10, and TNF-a
by pDCs, may impact on the cytokine balance controlling the
polarization/recruitment of Th cells, favoring, in turn, the Th1
phenotype, in line with what was previously shown for IFN-l1 and
IFN-l2 [63, 64].
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10, IFN-a, and TNF-a, measured in supernatants
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2.2.2 SUPPLEMENTAL MATERIAL FOR: 

Endogenously produced TNFα contributes to the expression of 

CXCL10/IP-10 in IFN-λ3-activated plasmacytoid dendritic cells 
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Supplemental Figure 1. Purity, IFNλR expression and IFNλ3 responsiveness by human 
plasmacytoid cells (pDCs). 
pDCs were isolated from peripheral blood of healthy volunteers by immunomagnetic separation 
(see M&M) and then stained with antibodies towards CD303 and CD123 (A). Panels show 
representative plots of the overall gating strategy for FACS analysis. Live cells were selected by 
firstly gating on singlet cells (panel I), and then on Vybrant™ DyeCycle™ Violet-negative cells 
(panel II). Marker modulation and/or viability assays were performed on this cell population (panel 
II). pDC purity was determined gating on CD303+/CD123+-live cells (panel III, always > 98 %).  
Panels in (B) display flow cytometric plots illustrating IFNλR1 and IL-10R2 expression levels in 
freshly isolated pDCs. Panel (C) displays an immunoblot demonstrating that a strong STAT1 and 
STAT1 tyrosine phosphorylation is induced in pDCs incubated with 30 ng/ml IFNλ3 for 45 and 90 
min. Panels (B) and (C) show one representative experiment out of, respectively, five and three 
performed with similar results. 
 
 
 
 



         
 
 
 
Supplemental Figure 2. pDCs are activated by IFNλ3 in a dose-dependent manner. 
Freshly isolated pDCs were incubated with different concentrations of IFNλ3 for 18 h and then 
evaluated for IFIT1, ISG15 and CXCL10 mRNA induction by RT-qPCR (panels in A), HLA-DR 
and CD303 expression by flow cytometry (panels in B), and survival by 
VybrantTMDyeCycleTMViolet assay (panel C). (A) Gene expression data (mean ± SEM) are 
depicted as mean normalized expression (MNE) units after RPL32 mRNA normalization. (B) For 
each antigen, expression is displayed as net mean fluorescence intensity (MFI) after subtraction the 
correspondent basal fluorescence. (C) Viability was assessed by flow cytometry analysis, gating on 
VybrantTMDyeCycleTMViolet -negative cells to exclude apoptotic cells (A). (A-C) Representative 
experiments out of at least three performed with similar results. 
 
 
 
 
 



 
 
 
 
 
Supplemental Figure 3. Expression of surface markers in pDCs incubated with IFNλ3 or IL-3.  
Freshly isolated pDCs were incubated with or without 30 ng/ml IFNλ3 or 20 ng/ml IL-3 for 42 h 
and then analysed for HLA-DR (A), CD123 (B), CD83 (C), CD86 (D), CD303 (E) and CD62L (F) 
expression by flow cytometry. Panels show histograms for each marker as compared to the 
corresponding basal fluorescence. Black lines stand for marker fluorescence, while gray lines stand 
for basal fluorescence. One representative experiment. 
 



 

                            
 
 
 
 
Supplemental Figure 4. Role of endogenous TNFα in mediating cell viability or CXCL10 
production in, respectively, IFNλ3- or R837-treated pDCs. 
 (A) pDCs were pretreated for 30 min with or without 5 µg/ml etanercept (ETA) prior to incubation 
with IFNλ3. After 42 h, cells were harvested and stained by VybrantTMDyeCycleTMViolet to assess 
their viability by flow cytometry analysis (see M&M). Bars in the graphs show the means ± SEM 
(n=5) of alive pDCs. (B) pDCs were pretreated with or without 5 µg/ml ETA and then incubated 
with 5 µM R837. After 18 h, cells were harvested, centrifuged and their supernatants evaluated for 
CXCL10 content by ELISA (n=3). (C) pDCs were pretreated for 30 min with or without 5 µg/ml 
etanercept or or 2.5 µg/ml adalimumab, and then incubated with or without or 10 ng/ml TNFα. 
After 3 h, cells were lysed for total RNA extraction and CXCL8 mRNA expression evaluated by 
RT-qPCR. Gene expression data are depicted as MNE units after RPL32 mRNA normalization 
(n=3). Asterisks in (C) indicate significant variations of TNFα-stimulated sample compared to the 
other stimulatory conditions: *P<0.05. 
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TASK 2: pDC ACTIVATION BY IL-3: MORE THAN 

JUST A GROWTH FACTOR 

 
IL-3 is a cytokine functioning as a growth factor for pDCs that belongs to 

the β common (βc) family of cytokines, together with granulocyte-macrophage 

colony-stimulating factor (GM-CSF) and IL-5 (165). The βc family of cytokines 

was originally identified for its ability to stimulate hematopoiesis (166). IL-3 

signals through a heterodimeric cell surface receptor that is composed of a major 

binding, cytokine-specific subunit (IL3Rα) and a common β chain subunit. Among 

the many biological activities exerted by IL-3, “cell survival” is one of its key 

functions, specifically in maintaining hematopoietic cell viability. In fact, the βc 

family of cytokines has the ability to regulates the production and function of a 

wide spectrum of hematopoietic cells (166).  

Despite its broad range of biological functions, IL-3 is not normally detected 

in the circulation and is largely not essential for steady-state immune functions, but 

can be secreted during emergency myelopoiesis, following, for example, infections 

(165). Under inflammatory conditions, IL-3 is secreted mainly by activated T cells, 

endothelial cells and mast cells (see also Figure 5) (165,167,168). IL-3 stimulates 

the production and activation of mast cells and basophils, important cellular 

regulators of the Th2-mediated inflammatory responses against parasites or during 

allergic diseases (165).  

A role for IL-3 in solid tumor development has been reported (169). Indeed, not 

only hematopoietic cells, but also endothelial cells express receptors for IL-3 and 

respond to IL-3 in multiple ways (167). Recent evidence has shown that IL-3 

regulates the development and progression of solid tumors through its ability to 

stimulate the formation of new blood vessels from endothelial cells (170).  

In this context, given their high expression of CD123 (the IL-3Rα 

subunit)(4), pDCs are a well-known target of IL-3. pDCs, in fact, differentiate into 

mature DCs when incubated with IL-3 (50), as observed by an increased expression 

of co-stimulatory molecules CD80, CD86, and MHC-I and -II (4,49). Moreover, 

IL-3-stimulated pDCs produce TNFα (49,171), that in turn mediates the 
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maturation-promoting effect by IL-3. Finally, pDCs cultured with IL-3 acquire Ag 

presentation capacity, and preferentially prime Th2 cells (49). Interestingly, 

because of its potent prosurvival action on pDCs in vitro (49), IL-3 is commonly 

added to the culture medium during experiments in which the effects on pDCs by a 

given stimulus of interest is tested (41,42,172,173).	Interestingly, during my studies 

related to my first task, I observed that IFNλ3 upregulates the expression of the IL-

3Rα subunit (CD123), suggesting that, by this mechanism, it might modulate pDC 

responsiveness to IL-3.  

 

Based on these premises, in this second part of my project I investigated the effect 

of IL-3 on pDCs, alone or in the presence of IFNλ3. To do so, I examined whether 

IFNλ3 and IL-3 could cooperate in activating human pDCs. 
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3.1 RESULTS (ii) 
 
3.1.1 Expression of surface CD123/IL-3R and IFNλR1 are 

upregulated by both IFNλ3 and IL-3 in human pDCs  
Preliminary flow cytometry experiments revealed that both IFNλ3 and IL-

3, in addition to increase the levels of surface CD123 (Figure 13A) (174), also 

upregulate the expression of IFNλR1 in human pDCs incubated for 18 h (Figure 

13B), therefore indicating that they may reciprocally influence responsiveness of 

pDCs to each other. Since I have previously shown that either IFNλ3 or IL-3 

prolong the viability of pDCs (174), I then investigated whether they could promote 

a more potent prosurvival effect when used in combination. However, that was not 

the case, because, as shown in Figure 13C, each cytokine by itself substantially 

triggered a maximal increase of pDC survival. Similarly, neither CD123 (Figure 

13A), nor IFNλR1 (Figure 13B) expression was additively or synergistically 

enhanced by IFNλ3 and IL-3 used in combination.  

 

 
Figure 13. Effect of IFNλ3 and/or IL-3 on the IFNλ3R1 and IL-3Rα expression as 
well as survival by pDCs 
pDCs were incubated with or without 30 ng/ml IFNλ3 and/or 20 ng/ml of IL-3. Cells were 
harvested after 18 h and analyzed by flow cytometry for CD123 (panel A) and IFNλR1 (panel 
B) surface expression in comparison with freshly isolated pDCs (T0). The bar graphs report the 
means ± SEM (n= 7-15). MFI was calculated after subtracting the MFI given by the 
correspondent isotype control antibodies or the basal fluorescence. In the same experiments, 
pDCs were stained with the Vibrant DyeCycle to assess their viability (panel C). Gating 
strategy to identify live pDCs has been performed as previously described (174).  
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3.1.2 IFNλ3 and IL-3 synergistically induce the production of IFNα 

by human pDCs   
 Subsequently, I analyzed the production of IFNα by measuring its accumulation 

in cell-free supernatants from pDC cultures incubated with or without IFNλ3 and/or 

IL-3 for up to 18 h. As shown in Figure 14 (panel A displaying the values of all 

individual donors; panel B the related means ± SEM), minimal amounts of IFNα 

(less than 10 pg/ml) were detected from pDCs treated with either IFNλ3 or IL-3, 

but not in their absence. By contrast, a synergistic production of IFNα was instead 

measured after 18, but not 5, h of pDC incubation with both IFNλ3 and IL-3 (Figure 

14A and B), which was also observed at gene expression level by qPCR (Figure 

14C). In these latter experiments, IFNλ3 and IL-3 alone were found to modestly, 

but significantly induce IFNα mRNA accumulation at the 18 h time point only 

(Figure 14C). Under the same experimental conditions, IL-3 was also found to 

upregulate the mRNA expression of various interferon responsive genes (ISGs), 

such as IFIT1 (Interferon-Induced Protein with Tetratricopeptide Repeats 1), ISG15 

(ISG15 Ubiquitin-Like Modifier) and MX1 (Myxovirus Resistance 1) after 18 h of 

pDC incubation, while IFNλ3 was found to trigger a similar effect already after 5 h 

(Figure 14D). Notably, also ISG mRNA expression was synergistically 

upregulated by cotreatment of pDCs with IFNλ3 and IL-3 at the 5 and 18 h time-

points, with the exception of IFIT1 mRNA, which was synergistically augmented 

at the 5 h time-point (Figure 14D).  

 To clarify if, and to what extent, endogenous IFNα could be responsible for the 

induction of ISG mRNA expression in pDCs treated with IL-3 and/or IFNλ3, I 

performed new experiments using antibodies (Abs) neutralizing the IFNαR. As 

shown in Figure 14E, upregulation of IFIT1, ISG15 and MX1 mRNA expression 

in pDCs treated with IL-3 for 18 h was largely blocked by the αIFNαR Abs, 

suggesting a functional autocrine action by endogenous IFNα. By contrast, ISG 

expression induced in pDCs either by IFNλ3 alone, or by IFNλ3 plus IL-3, was only 

slightly affected by the αIFNαR Abs (Figure 14E), indicating a major role of 

IFNλ3 in directly triggering the expression of IFIT1, ISG15 and MX1. 
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 Taken together, data demonstrate that, in pDCs, IL-3 induces the production of 

small, but biologically active amounts of IFNα, which autocrinally induces the 

expression of ISG mRNAs. Data also demonstrate that IFNλ3 plus IL-3 synergize 

in inducing the production of IFNα, as well as the expression of ISG mRNA: the 

latter phenomenon, however, occurs independently from endogenous IFNα. 

 

 
Figure 14. Production of IFNα by pDCs treated with IL-3 plus IFNλ3 and its 
involvement in mediating ISG mRNA expression 
After isolation, pDCs were incubated with or without 30 ng/ml IFNλ3, 20 ng/ml IL-3 or their 
combination for 5 and 18 h. Cell-free supernatants were collected and extracellular IFNα 
(panels A and B) measured by ELISA. Panel (A) shows the results of all individual experiments 
for the displayed conditions, while panel (B) their related means ± SEM (n= 5-16). No IFNα 
was measurable in supernatants from pDCs cultured up to 18 h in the absence of stimuli. (panels 
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C and D), pDCs were incubated for 5 and 18 h and evaluated for IFNα (C), IFIT1, ISG15 and 
MX1 (D) mRNA expression by RT-qPCR. Results (mean ± SEM, n=5-14) are depicted as mean 
normalized expression (MNE) units after RPL32 mRNA normalization. (panel E) pDCs were 
incubated with or without 5 µg/ml of αIFNαR or mouse IgG2a (isotype control antibodies, not 
shown) for 30 min and then incubated with IFNλ3, IL-3 or their combination for 18 h. Bar 
graphs show the percentage of inhibition of IFIT1, ISG15 and MX1 mRNA expression (means 
± SEM, n= 4) exerted by αIFNαR antibodies. Under the same experimental conditions, isotype 
control antibodies did not affect mRNA expression of these genes (data not shown). Significant 
variations: * P<0,05; ** P <0,01; *** P <0,001. 
 
 

3.1.3 IFNλ3 and IL-3 synergistically induce the production of 

TNFα by human pDCs independently from IFNα 

Measurement of TNFα in the same pDC-derived supernatants confirmed 

(174) that IFNλ3	induces the production of very low, but detectable, levels of the 

cytokine (Figure 15A and B). Similarly, IL-3 confirmed (171) to trigger a 

remarkable production of TNFα by pDCs (Figure 15A and B), already after 5 h of 

incubation in line with the results from gene expression experiments (Figure 15C). 

Interestingly, the amounts of TNFα detected in supernatants from IFNλ3 plus IL-

3-treated pDCs were significantly higher than those from IL-3-treated pDCs, but 

only at the 18 h time-point	 (Figure 15A and B), consistent with findings at the 

TNFα mRNA level (Figure 15C). Expression of TNFα mRNA in pDCs treated 

with IL-3 or IFNλ3	 alone was instead maximal after 5 and 18 h, respectively 

(Figure 15C). Given that endogenous IFNα was shown to be involved in 

supporting TNFα production in IL-3 plus CpG-stimulated pDCs (41), I investigated 

its role in our experimental system by incubating pDCs in the presence of αIFNαR 

Abs for 18 h. As shown in Figure 15D, the production of TNFα by IFNλ3 and/or 

IL-3-stimulated pDCs was minimally influenced by the presence of αIFNαR Abs, 

suggesting that endogenously produced IFNα is substantially dispensable for the 

generation of TNFα, independently from its yields. 
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Figure 15. Synergistic production of TNFα by pDCs incubated with IL-3 plus IFNλ3 
pDCs were incubated with or without 30 ng/ml IFNλ3, 20 ng/ml IL-3, or their combination, for 
5 and 18 h to analyze TNFα protein production (panels A and B) or gene expression (panel C). 
(A) Results from all individual measurements by ELISA. (B) means ± SEM of A (n= 5-17). 
(C) Expression of TNFα mRNA in pDCs. Gene expression data (mean ± SEM, n=8-14) are 
depicted as mean normalized expression (MNE) units after RPL32 mRNA normalization. 
(panel D) pDCs were pretreated for 30 min with or without 5 µg/ml αIFNαR or mouse IgG2a 
(isotype control antibodies, not shown) and then incubated with IFNλ3, IL-3, or their 
combination for 18 h. Bar graphs shows the percentage of inhibition on TNFα production (n= 
3-5) exerted by αIFNαR antibodies. Under the same experimental conditions, isotype control 
antibodies did not affect TNFα production (data not shown). Significant variations: **P<0,01; 
***P<0,001. 
 
 

3.1.4 Endogenous TNFα is required for IFNα production by 

IFNλ3- and/or IL-3-treated pDCs  
 Because it has been previously shown that, in primary or synovial macrophages 

from patients with rheumatoid arthritis, TNFα may function as an endogenous 

inducer of type I IFN production (104,175), I investigated whether the same  could 

occur under our experimental conditions. As shown in Figure 16, etanercept 
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(ETA), a TNFα blocker (176), potently inhibited both IFNα mRNA expression 

(Figure 16A) and IFNα production (Figure 16B) in pDCs treated with IFNλ3 plus 

IL-3 for 18 h. Similar results were observed when pDCs were incubated with IFNλ3 

plus IL-3 in the presence of adalimumab (ADA), another TNFα blocker (data not 

shown). It was not possible to precisely quantify the effect of ETA on IFNλ3- or 

IL-3-stimulated pDCs, due to the scarce amounts of IFNα produced by them. 

However, expression of IFNα mRNA was almost completely abrogated by ETA in 

pDCs treated with either IFNλ3 or IL-3 (data not shown). Nonetheless, ETA almost 

completely blocked IFIT1, ISG15 and MX1 mRNA expression in pDCs treated 

with IFNλ3 plus IL-3 (Figure 16C), consistent with the results shown in Figure 

16A. ETA also diminished the expression of IFIT1 and ISG15 mRNA induced by 

IFNλ3 alone (Figure 16C), exerting a higher suppressive effect in IL-3-treated cells 

(Figure 16C). Importantly, specificity of ETA effects on IFNα and ISG expression 

was demonstrated by its inability to significantly influence the prosurvival action 

by IFNλ3 and/or IL-3 in pDCs (Figure 16D). In final experiments, 

TNFα exogenously added to pDC cultures was found to directly induce either the 

production of IFNα (Figure 16E), at levels similar to IFNλ3 or IL-3 (see Figure 

14A), or a rapid expression of ISG15 mRNA (Figure 16E).  

 Altogether, data demonstrate that the synergistic production of IFNα by pDCs 

incubated with IFNλ3 plus IL-3 is mainly mediated by endogenous TNFα, which 

is synergistically induced by the two stimuli in combination, and that by itself 

results able to directly trigger IFNα expression.  
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Figure 16. Role of endogenous TNFα in mediating the production of IFNα and the 
mRNA expression of ISGs in pDCs treated with IL-3 plus IFNλ3 
pDCs were pretreated with or without 5 µg/ml ETA or human IgG1 (isotype control antibodies) 
for 30 min, and then incubated with IL-3 plus IFNλ3 for 18 h. Bar graphs shows the percentage 
of inhibition of IFNα mRNA expression (panel A) and IFNα production (panel B) (means ± 
SEM, n= 3-4) exerted by ETA. Under the same experimental conditions, isotype control 
antibodies did not affect IFNα production or mRNA expression (data not shown). (panel C) 
pDCs were pretreated with or without 5 µg/ml ETA and then incubated with IFNλ3, IL-3 or 
their combination for 18 h. The percentage of inhibition on IFIT1 and ISG15 mRNA expression 
is reported (means ± SEM, n= 3). (panel D) pDCs were pretreated with ETA prior to 
stimulation, and after 18 h harvested and stained by Vybrant DyeCycle Violet to assess their 
viability by flow cytometry. Bars in the graphs show the means ± SEM (n=4) of live pDCs in 
the presence or absence of ETA. Gating strategy to identify live pDCs has been performed as 
previously reported (174). (panel E) pDCs were cultured in the presence or absence of 10 ng/ml 
TNFα, for 5 and 18 h, to measure their capacity to produce IFNα (by ELISA, mean ± SEM, n= 
4). (panel F) IFIT1 mRNA expression in pDCs treated with 10 ng/ml TNFα for 3 h. Gene 
expression data (mean ± SEM, n=4) are depicted as mean normalized expression (MNE) units 
after RPL32 mRNA normalization. Significant variations: *P<0,05. 
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3.2 DISCUSSION (ii) 
 

In this study, I investigated whether the capacity of IFNλ3 to activate 

various functions of human pDCs could be influenced by IL-3, since our previous 

experiments uncovered that IFNλ3 increases the expression of CD123, the alpha 

chain of the IL-3 receptor (174). Interestingly, I subsequently found that, viceversa, 

pDCs incubated with	 IL-3 augment the expression of IFNλR1. This latter 

observation thus strengthened my initial hypothesis that pDCs may respond more 

powerfully to IFNλ3 and IL-3 together, given that the two cytokines reciprocally 

upregulate their receptor expression. And, as described below, that was the case. In 

particular, I found a synergistic production of IFNα by pDCs incubated for 18 h 

with IFNλ3 plus IL-3, while minimal amounts of IFNα were detected from pDCs 

treated with either IFNλ3 or IL-3 alone. Quantitative PCR experiments 

demonstrated that such effects of IFNλ3 plus IL-3 were mirrored by an 

accumulation of IFNα mRNA, indicating actions presumably at the transcriptional 

level. I did not investigate, however, the intracellular signaling pathways whereby 

IFNλ3 plus IL-3 synergistically trigger the transcription of IFNα. It might be 

possible that IFNλ3 positively regulates the pathways involved in IFNα production 

by IL-3-treated pDCs, namely the PI3K- and MAPK-signaling cascades (177,178). 

Alternatively, there might be effects of the two cytokines at the post-transcriptional 

level, for instance on IFNα mRNA stability or translation, or even at chromatin 

level, favoring an increase accessibility of the transcriptional machinery at the IFNα 

locus. Whatever the case is, since both IFNλ3 and IL-3 alone are able to actively 

induce IFNα mRNA expression and production in pDCs, I would favor the notion 

that the different signaling pathways triggered by the two cytokines ultimately 

converge to synergistically increase IFNα gene transcription and protein 

production.  

 

Since my experiments uncovered that the also expression of mRNAs 

encoding ISGs, including IFIT1, ISG15 and MX1 was synergistically increased in 

pDCs treated with IFNλ3 plus IL-3, I asked whether this phenomenon could be 
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mediated by endogenously produced IFNα. Unexpectedly, ISG mRNA expression 

was found to be only slightly decreased when IFNλ3 plus IL-3-treated pDCs were 

incubated in the presence of IFNαR neutralizing antibodies. Such a minor role of 

endogenous IFNα in inducing ISG mRNAs could be explained by the fact that the 

latter genes can be directly upregulated by IFNλ3, which indeed triggers signaling 

pathways similar to those activated by type I IFN (119). Accordingly, IFNαR 

blocking experiments did not influence the significantly upregulated expression of 

the various ISG mRNAs in pDCs incubated with IFNλ3 alone. On the other hand, 

I found that IL-3, by itself, upregulated ISG mRNA expression at levels comparable 

to those induced by IFNλ3 alone, and, surprisingly, in a fashion totally dependent 

on endogenous IFNα. Low amounts of IFNα (less than 10 pg/ml) could be, in fact, 

detectable in supernatants harvested from pDCs cultured with IL-3 for both 5 and 

18 h. The latter data are, by the way, consistent with previous findings 

demonstrating that a given cytokine, even if produced in very low amounts, is 

potentially able to induce a remarkable cell response (104,174). Taken together, my 

data suggested that the synergistic increase of ISG mRNA expression in pDCs 

incubated with IFNλ3 plus IL-3 derives, in part, from the a presumably direct effect 

of IFNλ3, and, in part, from an action triggered by IL-3 mediated via endogenous 

IFNα.  

 

 
It has been previously shown that pDCs incubated with IL-3 can produce 

variable amounts of TNFα (49,171). Moreover, pDCs incubated with RNA-

containing immune complexes (IC) in the presence of GM-CSF, that shares with 

IL-3 a common β-receptor for signaling, were found to produce synergistic amounts 

of both IFNα and TNFα as compared to RNA-IC alone (168). Furthermore, in our 

previous work we found that also IFNλ3 induces the production of low, but 

biologically active, levels of TNFα  by human pDCs (174). These observations 

prompted me to subsequently analyze whether IFNλ3 plus IL-3 could induce the 

production of TNFα in amounts higher than those induced by IL-3/IFNλ3 alone. 

That was indeed the case, as I observed a synergistic induction of TNFα mRNA 
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expression and production by pDCs incubated with IFNλ3 plus IL-3, detectable 

after 18 h and maintained up to 42 h of culture (my unpublished observations). 

However, I did not investigate how such a synergistic production of TNFα occurs 

at molecular/biochemical levels. In such regard, it is well known that the induction 

of TNFα mRNA expression usually depends on stimulus-induced activation of 

NFκB- and/or MAPK-dependent pathways (179,180), and that IL-3 is presumably 

able to activate NFκB (165). Similarly, and as already proved for type I IFNs (181), 

also IFNλ3 is able to activate NFκB- and/or MAPK-dependent signaling pathways 

according to some studies (147,182). Thus, I would speculate that, in pDCs treated 

with IFNλ3 plus IL-3, the latter cytokine is mostly responsible to activate NF-

kB/MAPK, while IFNλ3 simply potentiates the IL-3-triggered signaling, in turn 

leading to a strong TNFα mRNA expression and protein production.  

 

Subsequently, I explored whether, in IL-3-treated pDCs, endogenous IFNα 

could have some role inducing TNFα production, similarly to its action on ISG 

mRNA expression. As putative control, I made these experiments using also pDCs 

treated with IFNλ3 plus IL-3 as, under this condition, IFNα production is 

synergistically increased. However, IFNαR neutralizing antibodies had only a 

minor, or even no, effect on the production of TNFα secreted by pDCs treated either 

by IL-3 alone, or by IFNλ3 plus IL-3, suggesting that, independently of its yields, 

endogenous IFNα is not required for the production of TNFα. Conversely, 

experiments performed in the presence of different TNFα inhibitors, namely 

etanercept (ETA)(this thesis) and adalimumab (ADA) (my unpublished 

observations), allowed me to uncover that the production of IFNα by IFNλ3 plus 

IL-3-treated pDCs is mostly driven by endogenous TNFα. Similarly, I found that 

also the expression of ISGs in IFNλ3 plus IL-3-treated pDCs is mostly driven by 

endogenous TNFα. Thus, data suggest that, in IFNλ3 plus IL-3-stimulated pDCs, 

endogenous TNFα is responsible for both the synergistic production of IFNα and 

the mRNA expression for ISGs. 
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Interestingly, ETA almost completely abrogated the expression of both 

IFNα and ISG mRNAs even in pDCs treated with either IFNλ3 or IL-3 (my 

unpublished observation). However, it was not possible to precisely quantify the 

effect of TNFα inhibitors on the production of IFNα by either IFNλ3-, or IL-3-, 

treated pDCs. In any case, ETA almost completely blocked IFIT1, ISG15 and MX1 

mRNA expression in pDCs treated with IL-3,	 consistent with an inhibition on 

IFNα-dependent effects. A down-modulation of ISG expression by ETA was 

detected also in IFNλ3-treated pDCs, even though αIFNαR antibodies were 

ineffective under the same experimental conditions, thus excluding the involvement 

of IFNα. Although these results need to be carefully interpreted, it is possible that 

endogenous TNFα directly contributes to the transcriptional control of ISGs via 

NF-kB- and/or MAPK-dependent pathways, as proposed by the literature (183–

185). In any case, the specificity of the effects by the TNFα inhibitors was 

demonstrated by their inability to significantly influence the prosurvival effects 

exerted by IFNλ3 and/or IL-3 in pDCs. Notably, combination of IFNλ3 and IL-3 

did not produce a pDC prosurvival effect superior to that exerted by IFNλ3/IL-3 

alone. Moreover, exogenous TNFα was found to directly induce both the 

production of low amounts of IFNα and expression of ISG15 mRNA, confirming 

pDC responsiveness to TNFα.  

 

In sum, in this work I report that IFNλ3 and/or IL-3 induce, in human pDCs, 

the mRNA expression and production of both IFNα and TNFα, yet in a 

differentially regulated manner. As displayed in Figure 17, the combination of IL-

3 and IFNλ3 induces a strong potentiation in the production of both TNFα and 

IFNα as compared to pDCs treated with IL-3/IFNλ3 alone. Synergistic increase of 

IFNα production by IFNλ3 plus IL-3-treated pDCs seems to be mostly dependent 

on endogenously produced TNFα (by approximately 80 %, panel 17C). By 

contrast, IFNα is produced in very low amounts by pDCs treated with each single 

agent (panels 17A and 17B), nonetheless IFNα mostly drives ISG mRNA 

expression in IL-3-treated pDCs (by approximately 60 %, panel 17B), but not in 

IFNλ3- (by 10 %, panel 17A) or IFNλ3 plus IL-3-treated pDCs (by 20 %, panel 
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17C). Even if IFNα is synergistically produced by IFNλ3 plus IL-3-treated pDCs, 

ISG mRNA expression under the latter experimental conditions derives in part from 

endogenously produced TNFα (by approximately 60 %, panel 17C), which also 

acts via IFNα, and in part from a direct effect of IFNλ3. Finally, endogenous TNFα 

drives ISG expression in both IL-3- (by approximately 80 %, panel 17B) and 

IFNλ3- (by approximately 40 %, panel 17A) stimulated pDCs. 

 

All in all, data suggest that IFNλ3 and IL-3 may collaborate to induce some 

functional responses by pDCs at maximal levels. Specifically, pDCs take advantage 

of IL-3 because it potentiates their production of IFNα and their expression of ISG 

mRNA in response to type III IFNs (that are typical pDC activators). pDCs take 

also advantage of IFNλ3, since, on the other hand, it collaborates with IL-3 to 

synergistically increase the production of TNFα, that is important for pDC 

maturation. In this context, it is worth mentioning that IL-3 is often used in in vitro 

studies to maintain pDC survival in culture (41,42,172,173). This also occurs in 

experiments in which researchers investigate the effect on pDCs by a given 

stimulus. However, the potential contribution of IL-3 in determining the final 

results is almost always ignored (59, 172). As reported in this study, my data 

highlight that IL-3, in addition to prolong the survival of pDCs, may induce a 

number of responses that might sum up to those exerted by any stimulus under 

investigation. It derives that the potential contribution of IL-3, present in culture 

medium to incubate pDCs, should be always taken into consideration for a correct 

interpretation of final results. 
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Figure 17. Schematic representation of the regulation of mRNA expression and 

cytokine production in human pDCs treated with IL-3 plus IFNλ3 
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CHARACTERIZATION OF TONSIL slan/MDC8+ cell 

FUNCTIONS AND PHENOTYPE 

 
During my PhD, I have been also involved in a research project that focuses 

on the role in inflammation and cancer of a new subset of neglected subset of 

monocytes/myeloid dendritic cell, namely the slan (6-sulfo LacNAc+)/MDC8+ 

cells. Our group is in fact intensively working on these cells in collaboration with 

Prof. William Vermi (University of Brescia), recently demonstrating that they 

localize in metastatic tumor lymph nodes. However, despite the identification of 

these cells in a number of inflamed tissues (such as tonsils), detailed studies on 

phenotype and function of tissue slan/MDC8+ cells are still missing. Hence, in 

collaboration with my colleagues, I have performed experiments on tonsil 

slan/MDC8+ cells with the purpose of: i) comparing tonsil slan/MDC8+ cells 

phenotype and function with those of other known tonsil DC/macrophage 

populations; ii) clarifying the relationship between tonsil and blood slan/MDC8+ 

cells. Our data suggest that circulating slan/MDC8+ cells contribute to the pool of 

tonsil DCs and pave the way for a more detailed characterization of slan/MDC8+ 

cells in other pathological situations. 
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4.1 RESULTS (iii) 
 

4.1.1 MATERIAL AND METHODS, RESULTS AND DISCUSSION 

ARE DESCRIBED IN THE FOLLOWING PUBLICATION 

slan/M-DC8+ cells constitute a distinct subset of dendritic cells in 

human tonsils 
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ABSTRACT
Human blood dendritic cells (DCs) include three main distinct subsets, namely 

the CD1c+ and CD141+ myeloid DCs (mDCs) and the CD303+ plasmacytoid DCs (pDCs). 
More recently, a population of slan/M-DC8+ cells, also known as “slanDCs”, has been 
described in blood and detected even in inflamed secondary lymphoid organs and 
non-lymphoid tissues. Nevertheless, hallmarks of slan/M-DC8+ cells in tissues are 
poorly defined. Herein, we report a detailed characterization of the phenotype and 
function of slan/M-DC8+ cells present in human tonsils. We found that tonsil slan/
M-DC8+ cells represent a unique DC cell population, distinct from their circulating 
counterpart and also from all other tonsil DC and monocyte/macrophage subsets. 
Phenotypically, slan/M-DC8+ cells in tonsils display a CD11c+HLA-DR+CD14+CD11bdim/

negCD16dim/negCX3CR1dim/neg marker repertoire, while functionally they exhibit an 
efficient antigen presentation capacity and a constitutive secretion of TNFα. Notably, 
such DC phenotype and functions are substantially reproduced by culturing blood 
slan/M-DC8+ cells in tonsil-derived conditioned medium (TDCM), further supporting 
the hypothesis of a full DC-like differentiation program occurring within the tonsil 
microenvironment. Taken together, our data suggest that blood slan/M-DC8+ cells are 
immediate precursors of a previously unrecognized competent DC subset in tonsils, 
and pave the way for further characterization of slan/M-DC8+ cells in other tissues.

INTRODUCTION

Dendritic cells (DCs) represent a heterogeneous 
population of myeloid cells that are characterized by a very 
efficient capacity to present antigens to T cells. To date, 
three types of blood DCs, deriving from the same precursor 
[1], have been described in humans [2]. Specifically, the 
plasmacytoid DCs (pDCs), that are specialized in type I 
interferon production [3], and the conventional myeloid 
DCs (mDCs), that include the CD1c+(BDCA1+) DCs and 
the CD141+(BDCA3+) DCs, the latter ones being skilled 
at antigen cross-presentation to CD8+ T cells [4]. All 
these DC populations have been also found in secondary 
lymphoid organs, including tonsils, spleen and lymph 

nodes [5-7]. An additional population of blood myeloid 
cells, that shares a number of phenotypic and functional 
characteristics with classical mDCs, has been described 
and called “slanDCs” by Schäkel and colleagues [8]. 
Accordingly, slanDCs have been identified by the use 
of a specific monoclonal antibody (M-DC8) recognizing 
the 6-Sulfo LacNAc (slan) carbohydrate modification of 
PSGL-1, whose acronym gave thus origin to the “slanDC” 
terminology [9-10]. However, on a two-dimensional flow 
cytometry dot plot of CD14 and CD16 expression in 
peripheral blood mononuclear cells (PBMCs), slan/M-
DC8+ cells in part overlap with CD14dimCD16+ monocytes 
[10-11], suggesting that they might actually represent a 
subset of non-classical monocytes [12-13]. Functionally, 
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blood slan/M-DC8+ cells have been described as potent 
pro-inflammatory cells based on their capacity to produce 
large amount of tumor necrosis factor alpha (TNFα) 
and IL-12p70 upon stimulation with toll-like receptor 
(TLR) ligands [10, 14]. Blood slan/M-DC8+ cells also 
promote proliferation, cytotoxicity and interferon-gamma 
(IFNg) production by natural killer (NK) cells [8, 15-
16], and induce strong antigen-specific T-cell responses 
[9]. Furthermore, it is well established that slan/M-
DC8+ cells locate in lymphoid and peripheral tissues, 
especially under inflammatory conditions. slan/M-DC8+ 
cells, in fact, have been identified in mucosal associated 
lymphoid tissue (such as tonsils [17],[11] and intestine 
Peyer’s patches [17]), in skin of inflammatory diseases 
including lupus erythematosus [18] and psoriasis [14], 
in the colonic mucosa of Crohn disease patients [16-
17], as well as in carcinoma-draining lymph nodes [11]. 
However, even though blood slan/M-DC8+ cell function 
and phenotype have been exhaustively delineated, an 
extensive comparison between blood and tissue slan/M-
DC8+ cells, as well as between tissue slan/M-DC8+ cells 
and other tissue DC/macrophage populations, has never 
been performed.

In this study, we have performed a detailed 
characterization of slan/M-DC8+ cells in tonsils, in turn 
demonstrating that they represent a unique DC population, 
clearly different from any other tonsil DC or monocyte/
macrophage population described to date [19]. Moreover, 
our data suggest that blood slan/M-DC8+ cells contribute 
to replenish such slan/M-DC8+ DC pool in tonsils, thus 
uncovering new information on plasticity by blood slan/
M-DC8+ cells and their ultimate commitment within tissue 
microenvironments. 

RESULTS

slan/M-DC8+ cells as a unique DC population in 
human tonsils

To better characterize the frequency, phenotype, 
differentiation state and function of slan/M-DC8+ cells in 
tissues, we initially analyzed, by flow cytometry, single 
cell suspensions from a large set of human tonsils. All 
tonsil samples were obtained from children affected by 
recurrent, chronic tonsillitis. Using the gating strategy 
illustrated in Supplementary Figure S1, among HLA-
DR+CD11c+ myeloid cells we could identify two DC 
populations, namely the CD1c+(BDCA-1+) DCs and 
the CD141+(BDCA-3+) DCs (Figure 1a), as previously 
reported by others [19], and a CD14+CD11b+ monocyte/
macrophage population. In addition, we could also 
identify the slan/M-DC8+ cells (Figure 1a). We calculated 
that the slan/M-DC8+ cells account for about 0.1 % of 
the total CD45+ leukocytes (data not shown), and about 

10 % of the total HLA-DR+CD11c+ myeloid cells in 
tonsils (Figure 1b). In such regard, slan/M-DC8+ cell 
frequency was found similar to that of CD141+ DCs (8.1 
± 3.1 %; n = 22), but consistently lower than those of 
CD1c+ DCs (29.2 ± 13.5 %; n = 21) or CD14+CD11b+ 
monocytes/macrophages (16.3 ± 13 %; n = 15) (Figure 
1b). As assessed by cytospin preparations of sorted cells, 
tonsil slan/M-DC8+ cells displayed a typical DC shape, 
similar to CD1c+ and CD141+ DCs, yet showing a larger 
size (Figure 1c). Conversely, CD14+CD11b+ monocytes/
macrophages consist of a heterogeneous population that 
includes large cells with typical macrophage morphology, 
containing phagocytic vacuoles admixed to smaller cells 
with round morphology and similar to monocytes (Figure 
1c). Among the different tonsil compartments identified 
by the BCL6/CKP staining (Figure 2a), slan/M-DC8+ cells 
were found mainly located in the crypts (Figure 2b), as 
previously reported [11], while CD14+CD11b+ monocytes/
macrophages were predominant in the inter-follicular (IF) 
area (Figure 2c). 

By characterizing their phenotype by flow 
cytometry, we observed that, despite donor variability, and 
in contrast to their blood counterpart, tonsil slan/M-DC8+ 
cells did express CD14, a feature shared with monocytes/
macrophages (Figures 1d and 2d). By contrast, CD11b 
was found neither in slan/M-DC8+ cells, nor in other 
DCs (Figures 1e and 2d). Moreover, by IHC staining of 
tonsil sections, the anti-CD11b antibody strongly stained 
follicular DCs (Figure 2e), neutrophils (Figure 2f) and a 
population of small mononuclear cells (likely monocytes, 
Figure 2g), but not slan/M-DC8+ cells (Figure 2g). A 
weak CD11b reactivity was also observed in larger CD14+ 
mononuclear cell in the IF area (Figure 2c), therefore 
accounting for the CD11b+CD14+ population detectable 
by flow cytometry (Figure 1a). 

The possibility that tonsil slan/M-DC8+ cells 
might overlap with a recently identified population of 
CD14+FcεRI+ present in human inflammatory fluids, 
and able to induce Th17 differentiation [20], was also 
excluded since tonsil slan/M-DC8+ cells do not express 
FcεRI (Figure 1f). Interestingly, we could observe that 
FcεRI is, however, expressed by tonsil CD1c+ DCs (Figure 
1f), which are instead CD14-negative (Figures 1d and 2d). 
By flow cytometry, we found that CD163, previously 
reported as a marker for axillary lymph node CD14+ 
cells [7], was variably expressed by all cell populations 
under investigation (Figure 1g). Finally, analysis of 
costimulatory molecule expression revealed that, while 
CD86 was expressed in slan/M-DC8+ cells, mDCs and 
CD11b+CD14+ monocytes/macrophages (Figure 1h), 
CD83 was regularly absent in all these cell populations 
(Figure 1i). Notably, both CD40 and CD80 were expressed 
at the highest levels in tonsil slan/M-DC8+ cells (Figure 
1j, 1k). Finally, we found that tonsil slan/M-DC8+ cells 
do not express CD206 and CD209 (data not shown). 
Altogether, these data qualify tonsil slan/M-DC8+ cells as 
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Figure 1: Phenotypic characterization of slan/M-DC8+ DCs and other myeloid populations in human tonsils. a. Contour 
plots illustrate how slan/M-DC8+ DCs, as well as CD1c+ DCs, CD141+ DCs and CD14+CD11b+ monocytes/macrophages, were identified 
within tonsil cell suspensions by flow cytometry (a more complete and detailed gating strategy is reported in Supplementary Figure S1). b. 
Graph shows the percentages of tonsil slan/M-DC8+ DCs, CD1c+ DCs, CD141+ DCs and CD14+CD11b+ monocytes/macrophages among 
all HLA-DR+CD11c+ myeloid cells (n = 15-20). c. Morphology of sorted slan/M-DC8+ DCs, CD1c+ DCs, CD141+ DCs and CD14+CD11b+ 
monocytes/macrophages on cytospins stained by May-Grunwald Giemsa (scale bar = 20 µm). d.-k. Graphs show the expression levels of 
each indicated marker in tonsil slan/M-DC8+ DCs, CD1c+ DCs, CD141+ DCs and CD14+CD11b+ monocytes/macrophages, as measured by 
flow cytometry. Values indicate the mean fluorescence intensity (MFI) for each sample. *P < 0.05; **P < 0.01, by one-way ANOVA test.
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Figure 2: slan/M-DC8+ DCs and CD14+CD11b+  monocytes/macrophages are distinct cell populations in human tonsils. 
a.-c.; e.-g. Sections are from tonsil samples and stained as indicated by labels. a. Pan-cytokeratin (CKP) and BCL6 identify different 
compartments including follicles with BCL6+ germinal centre (GC) B-cells, CKP+ epithelial crypts and the interfollicular area (IF) between 
two or more follicles. b. High power view of a tonsil crypt area showing slan/M-DC8+ DCs intermingled with epithelial cells. Inset shows 
a higher magnification of slan/M-DC8+ DC morphology. c. High power view of an interfollicular area showing a CD14/CD11b double 
staining. Inset shows a higher magnification of a CD14+ cell as well as a CD14+CD11b+ cell. e., f. CD11b stains both follicular DCs in 
germinal centers (e), and CD66b+ neutrophils in the tonsil epithelium (f); inset in panel f shows a high power view of CD11b+CD66b+ 
neutrophils. (g. and inset) Tonsil slan/M-DC8+ DCs are instead completely negative for CD11b. Sections are counterstained with Meyer’s 
haematoxylin. Original magnifications: 40X (panel a, scale bar 500 µm); 100X (panels e-g, scale bar 200 µm); 200X (panels b,c, scale bar 
100 µm); 600X (insets). d. Overlay plots displaying the CD11b and CD14 levels in tonsil slan/M-DC8+ DCs, CD1c+ DCs, CD141+ DCs and 
CD14+CD11b+ monocytes/macrophages, as measured by flow cytometry. Single cell populations were first identified by specific markers 
(as depicted in Figure 1a) and then overlaid on the contour plots of total CD11c+HLA-DR+ cells. A representative experiment, out of at least 
4 performed with similar results, is shown.
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a distinct DC population. Data also suggest that, by flow 
cytometry, CD11b could be a much more useful marker 
to distinguish tonsil CD11bdim/neg DC subsets from tonsil 
CD11bbright monocytes/macrophages than the commonly 
used CD14 or CD163.

Blood slan/M-DC8+ cells incubated in tonsil-
derived conditioned medium (TDCM) acquire the 
phenotype of tonsil slan/M-DC8+ DCs

A comparative analysis between blood versus tonsil 
slan/M-DC8+ cells revealed substantial differences in 
morphology and phenotype. In fact, blood slan/M-DC8+ 
cells are round with irregularly shaped nucleus (Figure 
3a), while slan/M-DC8+ DCs purified from tonsils are 
larger cells with large round nuclei and acquire dendrites 
(Figures 1c and 3c). Phenotypically, blood and tonsil slan/
M-DC8+ cells are CD83-negative and maintain equivalent 
levels of M-DC8 (Figure 3b, 3d). By contrast, tonsil 
slan/M-DC8+ DCs express lower levels of both CD16 
and CX3CR1, but higher levels of HLA-DR, CD11c and 
CD14 than blood slan/M-DC8+ cells (Figure 3b, 3d), thus 
suggesting that the latter cells modify their phenotype 

once recruited into tonsils.
Concomitantly with the analysis of ex vivo isolated 

tonsil slan/M-DC8+ DCs, we set up an in vitro model 
aimed at inducing a tonsil-like phenotype in slan/M-
DC8+ cells purified from the blood of healthy donors. 
Specifically, we generated various TDCMs and used them 
as a culture medium for blood slan/M-DC8+ cells. As 
shown in Figure 3e, blood slan/M-DC8+ cells conditioned 
by TDCM for 5 days become morphologically very similar 
to slan/M-DC8+ DCs directly purified from tonsils (Figure 
3c). We also observed that TDCM-conditioned slan/M-
DC8+ cells down-modulated CD16 and CX3CR1, while 
they up-regulated HLA-DR, CD11c and CD14 (Figure 
3f), thus mirroring the phenotype of freshly purified 
tonsil slan/M-DC8+ DCs (Figure 3d). Accordingly, CD83 
remained negative also in TDCM-conditioned slan/M-
DC8+ cells (Figure 3f). Taken together, these experiments 
demonstrate that TDCM substantially induces a tonsil-like 
phenotype in blood slan/M-DC8+ cells, thus supporting the 
hypothesis of a “differentiation program” that peripheral 
slan/M-DC8+ cells undertake upon their arrival in tonsils. 

Figure 3: Blood slan/M-DC8+ cells incubated in tonsil derived-conditioned medium (TDCM) acquire the morphology 
and phenotype of tonsil slan/M-DC8+ DCs. Blood slan/M-DC8+ cells were cultured for 5 d in TDCM and then compared to tonsil 
slan/M-DC8+ DCs in terms of morphology and phenotype. Morphology of, respectively, blood a., tonsil-sorted c., and TDCM-conditioned 
e., slan/M-DC8+ cells on cytospins stained by May-Grunwald Giemsa (scale bar = 20 µm) is shown. b., d., f. Contour plots and histograms 
illustrating the expression of each indicated marker (thick black line) versus related isotype control (thin black line) in blood b., tonsil-sorted 
d. and TDCM-conditioned f. slan/M-DC8+ cells. MFI value for each marker is also reported in corresponding histogram. A representative 
experiment out of 4 performed with similar results is shown.
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Blood slan/M-DC8+ cells exhibit a remarkable 
plasticity

In subsequent experiments, we compared the 
phenotype of TDCM-conditioned slan/M-DC8+ cells 
with the phenotypes acquired by blood slan/M-DC8+ 
cells incubated for 5 days in the presence of either GM-
CSF plus IL-4, which is known to generate competent 
DCs from circulating slan/M-DC8+ cells [21], or IL-34, 
which induces a macrophage differentiation from classical 
CD14+ monocytes [22]. Notably, blood slan/M-DC8+ cells 
express the highest levels of CD115/CSF1R (e.g., the 
receptor shared by both M-CSF and IL-34) as compared 
to the other blood DC and monocyte subsets (Figure 4a). 
First of all, we found that, unlike control medium, all 
stimulatory conditions maintained the survival of slan/
M-DC8+ cells at variable levels (Figure 4b). Then, we 
observed that culturing slan/M-DC8+ cells with GM-CSF 
plus IL-4, IL-34 or TDCM, significantly up-regulated the 
expression of HLA-DR, in line with an in vitro-induced 
differentiation process (Figure 4c). A similar trend was 
also observed for the expression of CD11c (Figure 4d), 
even though its modulation did not reach statistical 
significance. Interestingly, surface CD163, CD14 and 
CD16, which are typically co-expressed by macrophages 
[22-23], were either upregulated (CD163 and CD14) or 
maintained (CD16) in IL-34-treated slan/M-DC8+ cells 
(Figure 4e-4g). Conversely, the same three markers were 
almost negative when slan/M-DC8+ cells where cultured 
in GM-CSF plus IL-4 (Figure 4e-4g), in line with their 
DC-like differentiation [21, 24]. In such regard, TDCM-
conditioned slan/M-DC8+ cells, as GM-CSF plus IL-4-
conditioned slan/M-DC8+ cells, did express either CD163 
or CD16 at minimal levels (Figure 4e, 4g). Finally, 
TDCM-conditioned slan/M-DC8+ cells were found to 
express moderate amounts of CD14 (Figure 4f), yet at 
significantly higher levels than their blood counterpart (P 
< 0.001 by two-tailed unpaired t test), consistent with the 
CD14 detection in tonsil slan/M-DC8+ DCs (Figure 1d). 
Our data demonstrate that TDCM-conditioned slan/M-
DC8+ cells display a DC-like antigen expression profile 
that is more similar to that acquired by GM-CSF plus IL-
4-conditioned slan/M-DC8+ cells than to the macrophage-
like one induced by IL-34. Interestingly, we found that 
GM-SCF, but not IL-4, was detectable in all TDMCs used 
for our in vitro differentiation (ranging from 200 pg ml-1 to 
2800 pg ml-1). Taken together, data also uncover that blood 
slan/M-DC8+ cells exhibit a remarkable plasticity and 
differentiate into either DCs or macrophages, depending 
on the type of differentiation factors they are exposed to.

Tonsil slan/M-DC8+ DCs efficiently present 
antigens to T cells

Extending previous observations [11], double 
stains for M-DC8 and CD3, CD4 or CD8 (Figure 5a-
5c) confirmed that, in human tonsils, slan/M-DC8+ 
DCs interact with T cells. In addition, some CD3+ T 
cells contacting slan/M-DC8+ DCs also co-stain for the 
proliferating marker Ki67 (Figure 5d). Based on these 
findings, we then analyzed the Ag presentation capacity 
by slan/M-DC8+ DCs isolated from tonsils. We thus 
sorted CD11c+slan/M-DC8+ DCs along with all other 
DC/macrophage populations and then cultured each cell 
type with allogeneic CD4+ T lymphocytes to measure 
their proliferation after 7 days (Figure 5e, showing a 
representative experiment). We observed that, at least 
at their highest concentrations, tonsil slan/M-DC8+ DCs 
displayed, similarly to CD1c+ or CD141+ DCs, an Ag 
presentation capacity significantly higher than tonsil 
CD14+CD11b+ monocytes/macrophages. The latter 
cells, indeed, were reproducibly found to be very poor 
stimulatory APCs for T cells (Figure 5e, 5f). 

Subsequently, we analyzed the capacity of TDCM-
conditioned slan/M-DC8+ cells to perform Ag presentation 
under autologous settings. We thus co-cultured blood and 
TDCM-conditioned slan/M-DC8+ cells with autologous 
CD4+ T cells for 7 d in the presence of Tetanus Toxoid 
(TT). We observed that TDCM-conditioned slan/M-DC8+ 
cells induced a CD4+ T cell proliferation at higher extent 
than freshly isolated, autologous blood slan/M-DC8+ 
cells, while peripheral CD14+ monocytes (either freshly 
isolated or conditioned with TDCM) resulted to be poor 
APCs (Figure 5g). Donor-matched blood CD1c+ DCs 
performed the strongest Ag presentation capacity without 
the necessity to differentiate. Indeed, freshly isolated as 
well as TDCM-conditioned CD1c+ DCs promoted an 
equivalent T cell proliferation (Figure 5g). Of note, the 
Ag presentation capacity by TDCM-conditioned slan/M-
DC8+ cells (Figure 5g) and freshly purified tonsil slan/M-
DC8+ DCs cultured at the same concentration (e.g., 5,000 
APCs) were similar (Figure 5f). Taken together, data 
support the notion that tonsil slan/M-DC8+ DCs represent 
an additional bona fide DC subset present in tonsils. Data 
also demonstrate that TDCM could be used as a valid in 
vitro model to induce, starting from blood slan/M-DC8+ 
cells, not only the phenotype but also the APC function of 
tonsil slan/M-DC8+ DCs. 

Tonsil slan/M-DC8+ DCs constitutively secrete 
TNFα but not IL-12p70

Finally, we analyzed the capacity of tonsil slan/M-
DC8+ DCs to produce TNFα and IL-12p70. CD1c+ DCs, 
CD14+CD11b+ monocytes/macrophages and CD303+ 
pDCs were also tested for comparison purposes. Initially, 
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Figure 4: Blood slan/M-DC8+ cells display the capacity to polarize toward either a “DC-like” or a “macrophage-like” 
phenotype. a. Expression levels of CD115/CSF1R in blood CD1c+, CD141+, CD303+, CD14+CD16-, CD14+CD16+ and slan/M-DC8+ 
cells within freshly isolated peripheral PBMCs (n = 4). b.-g. Blood slan/M-DC8+ cells were cultured for 5 days in: medium alone (only 
in panel b), tonsil-derived conditioned medium (TDCM), 50 ng ml-1 GM-CSF plus 20 ng ml-1 IL-4, or 100 ng ml-1 IL-34. b. Graph shows 
the percentage of live slan/M-DC8+ cells after a 5 d-incubation under each stimulatory condition (n = 8-10). Cell viability was established 
by flow cytometry, using Vybrant® DyeCycle™ Violet Stain. Live cells were gated (e.g., Vybrant negative slan/M-DC8+ cells) and surface 
marker expression then analyzed. c.-g. Graphs show the levels of expression of HLA-DR (c), CD11c (d), CD163 (e), CD14 (f) and CD16 
(g) in 5 d-treated slan/M-DC8+ cells and freshly purified blood slan/M-DC8+ cells (n = 8-15). *P < 0.05; **P < 0.01; ***P < 0.001, by 
one-way ANOVA test. 
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Figure 5: slan/M-DC8+ DCs interact with T cells in tonsils and display a remarkable antigen presentation capacity. 
a.-d. Sections are from human tonsils stained as indicated by labels. Double staining shows that a fraction of slan/M-DC8+ DCs interact 
with CD3+ T cells in the crypt (a), which are either CD4+ (as dominant population, b) and CD8+ (c). d. Triple staining shows that the T cell 
population interacting with slan/M-DC8+ DCs includes a fraction of CD3+Ki67+ proliferating T lymphocytes. Cell interactions are illustrated 
by high power view insets in panels a-d. Sections are counterstained with Meyer’s haematoxylin. Original magnifications: 100X (panels 
a-d, scale bar 200 µm); 600X (insets in a-d). e., f. Sorted tonsil slan/M-DC8+ DCs, CD1c+ DCs, CD141+ DCs, CD14+CD11b+ monocytes/
macrophages and CD303+ pDCs were co-cultured with CFSE-labeled allogeneic CD4+ T cells for 7 days. T cell proliferation was then 
determined by the CFSE dilution method. e. Representative experiment displaying T cell proliferation by the CSFE assay, in which 5x104 T 
cells were cultured with 5x103 cells of sorted tonsil slan/M-DC8+ DCs, CD1c+ DCs, CD141+ DCs, CD14+CD11b+ monocytes/macrophages 
in a final volume of 200 µL. f. Graph shows the % of T cell proliferation induced by an increasing number of each tonsil cell population, 
as indicated (n = 3-7). **P < 0.01; ***P < 0.001, by two-way ANOVA test. g. 5x103 freshly isolated (blood) or 5-d TDCM-conditioned 
slan/M-DC8+ cells, CD14+ monocytes or CD1c+ DCs from the same healthy donors were co-cultured with 5x104 CFSE-labeled autologous 
CD4+ T cells in the presence of TT antigen in a final volume of 200 µL, for 7 days. Graph shows the % of T cell proliferation induced by 
each cell population (n = 3-7). **P < 0.01, by two-way ANOVA test.
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we took advantage of a cytokine secretion assay [11], 
since it allows the direct analysis of cytokine secretion at 
a single-cell level within a heterogeneous cell population. 
We found that tonsil slan/M-DC8+ DCs constitutively 
secrete TNFα (Figure 6a and Supplementary Figure S2, 
this latter showing one representative experiment), unlike 
blood slan/M-DC8+ cells [11]. A constitutive TNFα 

production was also observed in CD1c+ DCs (Figure 
6b) and, at higher levels, in CD14+CD11b+ monocytes/
macrophages (Figure 6c), but not in CD303+ pDCs (Figure 
6d). Stimulation with TLR agonists in combination 
with IFNγ slightly increased TNFα secretion in slan/M-
DC8+ DCs, CD1c+ DCs and CD14+CD11b+ monocytes/
macrophages (Figure 6a-6c). An induction of TNFα 

Figure 6: Tonsil slan/M-DC8+ DCs, CD1c+ DCs, CD14+CD11b+ monocytes/macrophages and CD303+ pDCs produce 
TNFα but not IL-12p70. a.-h. Tonsil cell suspensions were incubated with or without 100 U ml-1 IFNγ plus either 100 ng ml-1 LPS or 
5 µM R848, either for 4 h (to detect TNFα secretion, a-d), or for 12 h, after a 6 h pre-incubation (to detect IL-12p70 secretion, e-h). Graphs 
show TNFα-secreting slan/M-DC8+ DCs a., CD1c+ DCs b., CD14+CD11b+ monocytes/macrophages c. and CD303+ pDCs d., or IL-12p70-
secreting slan/M-DC8+ DCs e., CD1c+ DCs f., CD14+CD11b+ monocytes/macrophages g. and CD303+ pDCs h.. The graphs show the mean 
of cytokine secreting cells (as percentage of each cell population) calculated from 4 experiments. i., j. 2.5x104 100 µl-1 blood (gray bars), or 
5-d TDCM-conditioned (purple bars), slan/M-DC8+ cells were incubated for 24 h with or without 100 U ml-1 IFNγ plus either 100 ng ml-1 
LPS or 5 µM R848 to measure the levels of TNFα (i) and IL-12p70 (j) in cell free supernatants by ELISA (n = 5-7). k. Blood slan/M-DC8+ 
cells were either immediately stimulated with 100 U ml-1 IFNγ plus 100 ng ml-1 LPS for 24 h, or conditioned in TDCM, in the presence 
or absence of 10 µg ml-1 anti-IL-10 or IgG2a isotype control mAbs. After 5 d of incubation, TDCM-conditioned slan/M-DC8+ cells were 
stimulated with IFNγ plus LPS for 24 h. IL-12p70 was then measured in cell-free supernatants by ELISA. Graph show the loss of IL-12p70-
producing capacity (in %) by TDCM-conditioned slan/M-DC8+ cells after IFNγ plus LPS stimulation (in the absence or the presence of 
neutralizing mAbs), as compared to blood slan/M-DC8+ cells incubated with IFNγ plus LPS.
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production in CD303+ pDCs was instead observed only 
after R848 stimulation (Figure 6d), consistent with the 
absence of TLR4 expression by these cells. By contrast, 
no IL-12p70 secretion could be detected either by tonsil 
slan/M-DC8+ DCs cells, or by the other cell populations, 
under any experimental condition used (Figure 6e-6h). 

Such an ex vivo analysis on tonsil slan/M-DC8+ DCs 
was further supported by in vitro data using the TDCM-
differentiation model. In fact, while blood slan/M-DC8+ 
cells incubated for 24 h with IFNγ plus either LPS or R848 
produced both TNFα and IL-12p70 (by ELISA) (Figure 
6i, 6j; grey bars), TDCM-conditioned slan/M-DC8+ cells 
retained the capacity to produce only TNFα but not IL-
12p70 (Figure 6i, 6j; purple bars). 

Given the ability of IL-10 in inhibiting the 
production of IL-12p70 by monocyte-derived DCs [25-
26], we then analyzed whether IL-10 was contained in 
TDCMs, finding remarkable levels of it (244 ± 179 pg ml-

1; n = 9) in all TDCMs. To clarify whether TDCM-derived 
IL-10 might be responsible for the loss of IL-12p70 
production capacity by activated slan/M-DC8+ cells, we 
therefore added an anti-IL-10 neutralizing antibody to 
blood slan/M-DC8+ cells incubated with TDCM. Then, 
after 5 d of differentiation, we re-stimulated the cells with 
IFNγ plus LPS, in the presence of anti-IL-10 neutralizing 
antibody or its related isotype control, for additional 
24 h. As shown in Figure 6k, the inability to produce 
IL-12p70 by TDCM-conditioned slan/M-DC8+ cells 
under conditions in which IL-10 is neutralized remained 
unchanged. In control experiments, the same antibody 
completely restored the IL12p70 production abrogated by 
exogenous IL-10 (data not shown).

DISCUSSION

In this study, we have performed an extensive 
phenotypic and functional characterization of slan/M-
DC8+ cells in human tonsils, which ultimately proves 
that these cells represent a unique CD11c+HLA-
DR+CD14+CD11bdim/negCD16dim/negCX3CR1dim/neg 

population of DCs, different from other classical CD1c+ 
and CD141+ mDCs or CD14+CD11b+ monocytes/
macrophages. Our data also demonstrate that tonsil 
slan/M-DC8+ DCs differ from their blood counterparts, 
characterized by a CD11c+HLA-DR+CD14dimCD11bdim

CD16brightCX3CR1bright phenotype, suggesting that blood 
slan/M-DC8+ cells undergo a DC differentiation process 
once migrated into tonsils. Functionally, tonsil slan/M-
DC8+ DCs proved to be competent in antigen presentation 
and to constitutively produce TNFα. Moreover, blood 
slan/M-DC8+ cells incubated with TDCM for 5 days were 
found to acquire a tonsil-like slan/M-DC8+ DC phenotype 
and function, suggesting the involvement of soluble 
factors produced by the tonsil environment for such a 
differentiation process.

slan/M-DC8+ cells are usually CD14dim in different 

compartments (e.g., blood or skin [9, 27]). In this study, an 
unexpected observation that we uncovered is that, unlike 
their blood counterpart, tonsil slan/M-DC8+ DCs express 
CD14 at variable but significant levels. This finding is 
particularly interesting since tissue CD14+ myeloid cells 
are conventionally limited to macrophages (e.g., in human 
skin [28], tonsils [19], lymph nodes [7], intestine [29] 
and spleen [30]). Nevertheless, a subset of CD1c+FcεRI+ 
inflammatory DCs has been recently reported to express 
CD14 [20]. Another study also reported the existence of 
CD14+CD163dimM-DC8+ cells in intestinal lamina propria, 
displaying features of both macrophages and DCs [31]. 
Interestingly, this population share, at least in part, the DC 
phenotype of tonsil slan/M-DC8+ DCs herein described. 
Moreover, a very recent study shows that CD172a+ 
slanDCs in Crohn’s disease tissues express CD14 
[32]. Taken together, all these findings indicate that the 
expression of CD14 is not specific for tissue macrophages 
since it can be also shared by some DC subsets in tissues. 
By contrast, CD11b was found highly expressed in 
tonsil CD14+ cells but not in slan/M-DC8+ DCs or in all 
other DC populations, suggesting that, at least in tonsils, 
surface CD11b might better discriminate between DCs and 
monocytes/macrophages. 

In this study, tonsil DCs, including slan/M-DC8+ 
DCs, were found negative for CD83, confirming a 
previous observation [19]. However, tonsil slan/M-DC8+ 
DCs do express other costimulatory molecules, such as 
CD40, CD80 and CD86. Moreover, tonsil slan/M-DC8+ 
DCs were found to display a proficient Ag presentation 
capacity, significantly higher than tonsil CD14+CD11b+ 
monocytes/macrophages and similar to other DCs. Thus, 
despite tonsil M-DC8+ cells have been already defined as 
DCs simply based on their morphology and localization 
[17], herein we provide the first direct demonstration 
of their remarkable antigen presentation capacity. 
Furthermore, our findings are consistent with previous 
in vitro data demonstrating a superior Ag presentation 
capacity by blood slan/M-DC8+ cells than CD14+ 
monocytes [8], as well as a stronger priming activity for 
naïve T cells by GM-CSF plus IL-4-treated slan/M-DC8+ 
cells than GM-CSF plus IL-4-treated CD14+M-DC8- cells 
[21]. 

As mentioned, we also show that blood and tonsil 
slan/M-DC8+ cells display a substantially different 
phenotype. We believe that this is strictly coupled with 
the slan/M-DC8+ cell migration into tonsils and terminal 
differentiation into DCs. This is also in accordance with 
the previous demonstration that in vitro cultured blood 
slan/M-DC8+ cells, once detaching from erythrocytes 
(a process mimicking the exit from the vessels), rapidly 
acquire several characteristics of DCs [8, 10]. Moreover, 
it has been already reported that CD16+ monocytes 
(which include slan/M-DC8+ cells), but not CD14+CD16- 
monocytes, preferentially become DCs in a model of 
reverse transmigration through endothelial cells [33]. 
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Notably, we also found that tonsil slan/M-DC8+ DCs 
dramatically down-regulate their CD16 expression, which 
was speculated to represent a step required to differentiate 
into DCs [21]. Finally, tonsil slan/M-DC8+ DCs also 
down-modulate CX3CR1 expression, a phenomenon that 
might be caused by its internalization after binding with 
CX3CL1/Fractalkine, its ligand, which is highly expressed 
in the crypts of inflamed tonsils [34], where slan/M-DC8+ 
DCs frequently localize [11, 17]. 

Previous studies have highlighted the 
proinflammatory nature of circulating slan/M-DC8+ cells, 
for their capacity to produce high levels of TNFα and, 
particularly, IL-12p70 [9-10], in response to TLR ligands 
[14]. Immunofluorescence staining of skin lesions from 
cutaneous lupus erythematosus and psoriasis patients 
has confirmed that slan/M-DC8+ cells are TNFα-positive 
also in tissues [14, 18]. TNFα expression in colonic 
mucosa-associated slan/M-DC8+ cells of Chron’s disease 
patients has also been reported [32]. Herein, we show a 
constitutive secretion of TNFα by a fraction of slan/M-
DC8+ DCs within tonsil cell suspensions, which was 
also observed to occur in the case of CD1c+ DCs and 
CD14+CD11b+ monocytes/macrophages, but not CD303+ 
pDCs. Unexpectedly, by using a number of assays, we 
could not detect any IL-12p70 production either by tonsil 
slan/M-DC8+ DCs or by all other tonsil cell populations 
under investigations, even after their stimulation with LPS 
or R848 in the presence of IFNγ. The reasons for such 
inability to produce IL-12p70 are still unclear and need 
to be clarified at molecular level. We hypothesize that a 
general desensitization towards bacterial stimuli [35] 
might occur in inflamed tonsils continuously exposed to 
bacteria and their products. This might also explain the 
concomitant poor responsiveness to LPS/R848 plus IFNγ 
by ex vivo tonsil slan/M-DC8+ DCs in terms of TNFα 
production. Moreover, we explored the possibility that IL-
10, readily detectable in our tonsil-conditioned medium, 
might play a role in determining an inability to produce 
IL-12p70 by tonsil slan/M-DC8+ DCs. However, addition 
of anti-IL-10 monoclonal antibodies did not restore the 
capacity to produce IL-12p70 by TDCM-conditioned 
slan/M-DC8+ cells, suggesting that other downregulatory 
mechanisms are likely involved.

Another novel finding of this study is the 
identification of a remarkable plasticity exhibited by 
blood slan/M-DC8+ cells. In fact, we show that blood 
slan/M-DC8+ cells exquisitely acquire all characteristics/
features of ex vivo isolated tonsil slan/M-DC8+ DCs, 
including morphology, marker expression and functions 
when conditioned by TDCM for 5 days. In such regard, we 
found that TDCMs contain discrete amounts of GM-CSF, 
but not IL-4, which in concert with other factors might 
drive slan/M-DC8+ cell differentiation within the tonsil 
microenvironment. By contrast, we found that blood slan/
M-DC8+ cells display a more macrophage-like phenotype 
when incubated with IL-34. To our knowledge, these are 

the first data describing effects of IL-34 on circulating 
slan/M-DC8+ cells, which also express the highest levels 
of CD115/CSF1R among blood leukocytes. CD115 mRNA 
is highly restricted to the macrophage lineage [36], whose 
circulating precursors, at least in mice, are the so-called 
“patrolling” monocytes [37], known to correspond to the 
“non-classical” CD14dimCD16+ monocytes in humans [13]. 
Taken together, all these observations are consistent with 
the hypothesis of blood slan/M-DC8+ cells as a subset 
of “non-classical” monocytes [12-13] prone to fully 
differentiate into a more “DC-like” or “macrophage-like” 
cells depending on the microenvironment of the colonized 
tissue. In line with this notion, our data indeed show how 
blood slan/M-DC8+ cells differentiate into DCs upon 
migration into tonsils, as also suggested by de Baey et al. 
[17], who firstly described a M-DC8+ cell population in 
mucosa-associated lymphoid tissues. More broadly, the 
vision of slan/M-DC8+ cells as a yet not fully differentiated 
subpopulation of blood CD16+ monocytes, whose fate is 
driven by local stimuli, can reconcile the debate in the 
literature on the identity of these cells. In fact, although 
blood slan/M-DC8+ cells overlap with CD14dimCD16+ 
non-classical monocytes, tonsil slan/M-DC8+ DCs look 
and behave differently from their circulating counterpart, 
displaying bona fide DC functional properties. Despite 
the definition of slan/M-DC8+ cell ontogeny is beyond the 
scope of this paper, we speculate for a role of blood slan/
M-DC8+ cells as a potential reservoir of tonsil DCs and 
spotlight their plasticity and commitment under specific 
tissue microenvironment. Future studies should be aimed 
at establishing whether such slan/M-DC8+ cell plasticity 
could be also exploited for therapeutic manipulation of T 
cell functions in different disease settings.

MATERIALS AND METHODS

Cell isolation and culture

PBMCs were isolated from buffy coats of healthy 
donors by density centrifugation (Ficoll-Paque; GE 
Healthcare, Little Chalfont, Buckinghamshire, United 
Kingdom) under endotoxin-free conditions. Then, slan/
M-DC8+ cells, CD1c+ DCs and CD14+ monocytes were 
purified using specific isolation kits (Miltenyi Biotec, 
Bergisch Gladbach, Germany), to more than 90 % purity, 
while CD4+ T lymphocytes cells were isolated (> 95 % 
purity) by the EasySep Human CD4 T Cell Enrichment 
Kit (StemCell Technologies, Vancouver, Canada) [11]. 
Tonsil samples were obtained from children affected by 
recurrent, chronic tonsillitis, thus undergoing surgery via 
cold steel dissection. Tonsils were immediately processed, 
minced into small fragments, treated for 15 min at 37° 
with 0.2 mg ml-1 Liberase Blendzyme 2 (Roche, Basel, 
Switzerland), and then processed by gentleMACS 
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dissociator (Miltenyi Biotec) [11]. Tonsil cell suspensions 
were washed, filtered through a 40 µm cell strainer and 
ultimately depleted of T and B lymphocytes by CD3 
and CD19 MicroBeads (Miltenyi Biotec), to enrich the 
DCs. Thereafter, tonsil slan/M-DC8+ DCs, CD1c+ DCs, 
CD141+ DCs, CD14+CD11b+ monocytes/macrophages and 
CD303+ pDCs were isolated to more than 90 % purity, 
by fluorescence activated cell sorting (FACS), using a 
FACSAria II flow cytometer (Becton Dickinson, Franklin 
Lakes, NJ). After purification, cells were suspended in 
standard medium [RPMI 1640 medium supplemented 
with 10 % low-endotoxin fetal bovine serum (FBS, < 0.5 
endotoxin U ml-1, Sigma-Aldrich, St. Louis, MO)] and 
cultured for 24 h with 100 U ml-1 IFNγ (R&D Systems, 
Minneapolis, MN) in combination with either 5 µM R848 
(InvivoGen, San Diego, CA) or 100 ng ml-1 ultrapure LPS 
(from E. coli, 0111:B4 strain, Alexis Biochemicals, San 
Diego, CA). Alternatively, cells were cultured for 5 days 
in either tonsil-derived conditioned medium, 50 ng ml-1 
GM-CSF plus 20 ng ml-1 IL-4 (both from Miltenyi Biotec), 
or 100 ng ml-1 IL-34 (R&D system). For morphological 
analysis, cells were subjected to cytospin and stained 
by the May-Grunwald/Giemsa procedure. Pictures were 
taken using a Leica DFC 300FX Digital Color Camera 
on a Leica DM 6000 B microscope. All experimental 
procedures were approved by the institutional review 
boards of the University of Verona and Spedali Civili of 
Brescia. Retrospective analysis of archival material (see 
below) was conducted in compliance with the Declaration 
of Helsinki and with policies approved by the Ethics 
Board of Spedali Civili di Brescia. Human samples were 
obtained following informed written consent.

Immunohistochemistry

Tissue blocks containing formalin-fixed paraffin-
embedded (FFPE) tonsils were retrieved from the tissue 
bank of the Department of Pathology (Spedali Civili 
di Brescia, Brescia, Italy). Four-micron thick tissue 
sections were used for immunohistochemical staining. 
slan/M-DC8+ cells were specifically identified by using 
primary antibodies towards the 6-sulfo LacNAc residue 
(slan/M-DC8) on PSGL-1, namely clone DD1, as 
previously reported [10]. Other antigens were identified 
using antibodies listed in Supplementary Table S1. The 
primary immune reaction was revealed using Novolink 
Polymer (Leica Microsystems, Wetzlar, Germany) 
followed by 3, 3’-diaminobenzidine (DAB). For double 
immunohistochemistry, after completing the first immune 
reaction, the second one was visualized using Mach 
4 MR-Alkaline Phosphatase (AP) (Biocare Medical), 
followed by Ferangi Blue (Biocare Medical, Concord, 
CA) as chromogen. For triple immunohistochemistry, 
after completing the second immune reaction, sections 
were incubated with primary antibodies to Ki-67 
and revealed using a biotinylated system followed 

by streptavidinconjugated with AP (Dako, Glostrup, 
Denmark) with New Fucsin as chromogen. 

Generation of tonsil derived conditioned medium 
(TDCM) and TDCM-conditioned cells

TDCM was generated by culturing tonsil cell 
suspension (10*106 ml-1, n = 8) in RPMI plus 10 % FBS 
for 24 h. Cell-free supernatants were then collected and 
stored at - 20° C. Each TDCM was diluted 1:5 in RPMI 
plus 10 % FBS immediately before its addition to blood 
slan/M-DC8+ cells, CD1c+ DCs or CD14+ monocytes for 
subsequent incubation. After 5 d, cells were harvested, 
extensively washed and used for different functional 
assays. In selected experiments, anti-IL-10 mAbs, or 
their IgG2a isotype controls (10 µg ml-1, both from R&D 
system), were added to slan/M-DC8+ cells during the 5 
d-incubation with TDCM, as well as during the subsequent 
24 h-activation with IFNγ plus LPS. 

Flow cytometry analysis

For phenotypic studies, typically 2.5x105 PBMCs, 
5x105 cells from tonsil cell suspensions or 104 in vitro 
stimulated slan/M-DC8+ cells were initially incubated 
for 10 min in 50 µl Phosphate Buffer Solution (PBS) 
containing 5 % human serum (to prevent nonspecific 
binding), and then stained for 15 min at room T using 
the monoclonal antibodies listed in Supplementary Table 
S2. Sample fluorescence was measured by an eight-color 
MACSQuant Analyzer (Miltenyi Biotec), while data 
analysis was performed by FlowJo software Version 
8.8.7 (Tree Star Inc., Stanford, CA) [11]. Cell viability 
was analyzed using Vybrant® DyeCycle™ Violet (Life 
Technologies, Carlsbad, CA) [11]. Phenotypic analysis 
under the various experimental conditions was performed 
on live cells, identified as Vybrant-negative cells (in the 
case of TDCM-conditioned/stimulated slan/M-DC8+ cells) 
or PI-negative cells (in the case of tonsil cell suspensions) 
[11]. The mean fluorescence intensity (MFI) relative 
to each molecule was obtained by subtracting either 
the MFI of the correspondent isotype control, or cell 
autofluorescence (fmo). 

T cell proliferation assays

For allogeneic assays, 1.25-5x103 slan/M-DC8+ DCs, 
CD1c+ DCs, CD141+ DCs, CD14+CD11b+ monocytes/
macrophages and CD303+ pDCs, sorted from tonsils, 
were co-cultured with 5x104 CFSE-labeled allogeneic 
CD4+ T lymphocytes in U-bottom 96-well plates [11]. For 
autologous assays, 5x103 freshly isolated or 5-d TDCM-
conditioned slan/M-DC8+ cells, CD1c+ DCs and CD14+ 
monocytes were co-cultured with 5x104 CFSE-labeled 
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autologous CD4+ T lymphocytes in U-bottomed 96-well 
plates, in the absence or presence of 5 µg ml-1 tetanus 
toxoid (TT) [11]. For both allogeneic and autologous 
assays, T-cell proliferation was assessed after 7 days by 
measuring CFSE dilution by flow cytometry [11]. 

Analysis of cytokine production

Total cell suspensions from tonsils were analyzed 
for TNFα and IL-12p70 production by specific cytokine 
secretion assays (Miltenyi Biotec) [11]. Briefly, 5x105 

tonsil cells were incubated with 100 U ml-1 IFNγ in 
combination with either 100 ng ml-1 ultrapure LPS or 5 
µM R848 in standard medium at 37°C either for 4 h, to 
optimally detect TNFα secretion, or for 12 h, after a 6 h 
pre-incubation in standard medium, to optimally detect IL-
12p70 secretion. Percentages of cytokine secreting cells 
were then identified as cytokine-positive cells among 
total slan/M-DC8+ DCs, CD1c+ DCs, CD14+CD11b+ 
monocytes/macrophages and CD303+ pDCs, gated as 
shown in detail in Supplementary Figure S1. TNFα and 
IL-12p70 levels present in cell-free supernatants harvested 
from either blood or TDCM-conditioned slan/M-DC8+ 
cells, and stimulated as detailed in legend to Figure 6, 
were measured by specific ELISA kits from eBioScience 
(San Diego, CA; sensitivity: 4 pg ml-1). The levels of 
IL-10, GM-CSF and IL-4 in TDCMs were measured by 
ELISA kits, purchased from eBioScience, BioLegend (San 
Diego, CA) and Mabtech (Cincinnati, OH), respectively. 
Detection limits of these ELISA were: 2 pg ml-1 for IL-10, 
3 pg ml-1 for GM-CSF and IL-4

Statistical analysis

Data are expressed as means ± SEM of the number 
of experiments indicated in each Figure legend. Statistical 
analysis, including one-way or two-way analysis of 
variance followed by Bonferroni’s post hoc test, was 
performed by Prism Version 5.0 software (GraphPad 
Software, Inc., La Jolla, CA). 
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slan/M-DC8+ cells constitute a distinct subset of dendritic cells in human tonsil 

Supplementary Table S1. List of the antibodies used for immunohistochemistry studies. 

 

 

 

 

 

 

 

 

 

 

 

Reagent Clone Dilution Isotype Source 

BCL6 IG191E/A8 1:300 mIgG1 kindly provided by G. Roncador 
(Centro Nacional de Investigaciones 

Oncológicas Madrid, Spain) 
CD1a 010 1:50 mIgG1 Dako 

CD3 SP7 1:100 rabbit Thermo Scientific, Waltham, MA 

CD4 4B12 1:40 mIgG1 Thermo Scientific 

CD8 C8/144B 1:30 mIgG1 Dako 

CD11b  1:300 rabbit polyclonal Sigma-Aldrich 

CD14 7 1:50 mIgG2a 

Novocastra Laboratories,  
Newcastle upon Tyne, United 

Kingdom 

CD66b G10F5 1:200 mIgM BioLegend,  San Diego, CA 

CD83 1H4b 1:150 mIgG1 Novocastra Laboratories 

DD1 DD1 1:60 mIgM kindly provided by Knut Schäkel 
(University Hospital Heidelberg, 

Heidelberg, Germany) 
Keratin (wide 

spectrum-CKP) 
MNF116 1:100 mIgG1 Dako 

Ki-67 MM1 1:100 mIgG1 Novocastra Laboratories  



Supplementary Table S2. List of the antibodies used for flow cytometry.  

Antibody  Clone  Isotype  Source  

AlexaFluor488 anti-human CD1c L161 mIgG1 BioLegend 

AlexaFluor647 anti-human CX3CR1  2A9-1  rat IgG2b  BioLegend  

AlexaFluor647 rat IgG2b  RTK4530   BioLegend  

APC anti-human CD11b ICRF44 mIgG1 BioLegend 

APC anti-human CD11c  MJ4-27G12  mIgG2b  Miltenyi Biotec 

APC anti-human CD14 TUK4  mIgG2a  Miltenyi Biotec 

APC anti-human CD141 (BDCA-3)  AD5-14H12  mIgG1  Miltenyi Biotec 

APC-Cy7 anti-human HLA-DR  L243  mIgG2a  BioLegend  

Brilliant Violet 510 anti-human CD45  HI30  mIgG1  BioLegend  

FITC anti-human CD14 TÜK4 mIgG2a Miltenyi Biotec 

FITC anti-human CD141  AD5-14H12 mIgG1 Miltenyi Biotec 

FITC anti-human CD303  AC144  mIgG1  Miltenyi Biotec  

FITC anti-human Slan (M-DC8)  DD1  mIgM  Miltenyi Biotec 

PE anti-human CD1c (BDCA-1)  AD5-8E7  mIgG2a  Miltenyi Biotec 

PE anti-human CD11b ICRF44 mIgG1 BioLegend 

PE anti-human CD115 9-4D2-1E4 rat IgG1 BioLegend 

PE anti-human CD14 TUK4  mIgG2a  Miltenyi Biotec 

PE anti-human CD16 3G8  mIgG1  BioLegend  

PE anti-human CD163 GHI/61 mIgG1 BioLegend 

PE anti-human CD40 HB14 mIgG1 BioLegend 

PE anti-human CD80 2D10 mIgG1 BioLegend 

PE anti-human CD83 HB15 mIgG1 Miltenyi Biotec 

PE anti-human CD86 IT2.2 mIgG2b BioLegend 

PE anti-human FcHRI CRA1 mIgG2b Miltenyi Biotec 

PE anti-human CD206 15-2 mIgG1 BioLegend 

PE anti-human CD209 (DC-SIGN) 9E9A8 mIgG2a BioLegend 

PE mouse IgG1  MOPC-21  mIgG1 BioLegend  

PE-Cy7 anti-human CD19  HIB19  mIgG1  BioLegend  

PE-Cy7 anti-human CD3  UCHT1  mIgG1  BioLegend  

PerCP-Cy5.5 anti-human CD16  3G8  mIgG1  BioLegend  

Vioblue anti-human CD11c  MJ4-27G12  mIgG2b  Miltenyi Biotec 

 

 

 



 

Supplementary Figure S1. Gating strategy to distinctively identify slan/M-DC8+ DCs, CD1c+ DCs, 

CD141+ DCs and CD14+CD11b+ monocytes/macrophages in human tonsils.  
Single cell suspensions from tonsils were processed for flow cytometry analysis to identify slan/M-DC8+ DCs, 

CD1c+ DCs, CD141+ DCs and CD14+CD11b+ monocytes/macrophages. Steps 1-4 were sequentially used to 

exclude cell debris (1), doublets (2), dead cells (3), and, ultimately, to gate CD45+ leukocytes (4). Subsequently, 

in steps 5-7, analysis was performed on CD3/CD19-negative cells (5). Within the latter cells, HLA-DR-positive 

(6) and subsequently HLA-DR+CD11c+ cell populations (7) were gated. The latter HLA-DR+CD11c+ population 

includes, in fact, all myeloid DCs, macrophages and monocytes. Steps 8-11 show the specific combination of 

markers used to gate each myeloid population type: slan/M-DC8+ DCs (purple gate, 8), CD1c+ DCs (green gate, 

9), CD141+ DCs (orange gate, 10) and CD14+/CD11b+ monocytes/macrophages (blue gate, 11).  

 

 

 



 

 

 

 

 

 

 

 

 

 

Supplementary Figure S2. TNFD�and�IL-12p70 secretion by tonsil slan/M-DC8+ DCs. 

Tonsil cell suspensions were incubated with or without 100 U ml-1 IFNJ�plus either 100 ng ml-1 LPS or 5 PM 

R848, either for 4 h (to detect TNFD secretion), or for 12 h, after a 6 h pre-incubation (to detect IL-12p70 

secretion). Contour plots display a representative experiment illustrating the percentage of TNFD- (a) or IL-

12p70- (b) secreting tonsil slan/M-DC8+ DCs. 

 


