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Abstract  

Background Deregulated immune response fails to control biofilm-forming bacteria, as 

Pseudomonas aeruginosa, in the lung of Cystic Fibrosis (CF) patients. Human Leukocyte 

Antigen (HLA)-G is an immune-modulatory molecule with a possible role in respiratory 

diseases and infections. Methods We performed HLA-G mRNA and protein analysis in 

plasma and exhaled breath condensate (EBC) from CF patients undergoing intravenous 

antibiotic treatment, CF cell line and murine model. Results Antibiotic therapy normalizes 

plasmatic levels of HLA-G in CF patients hospitalized for bacterial respiratory infection 

suggesting and anti-inflammatory role at the systemic level while in CF lung 

microenvironment, higher expression of HLA-G is associated with P. aeruginosa infection. 

CF cell line and CF murine model expressed higher HLA-G molecules in the presence of P. 

aeruginosa. Conclusions HLA-G expression and regulation in plasma and lung 

microenvironment suggest a role in reducing systemic inflammation and supporting the 

establishment and persistence of P. aeruginosa infection in the respiratory system. 
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Introduction 

Pseudomonas aeruginosa and Staphylococcus aureus are the most common pathogens 

colonizing lungs of patients with cystic fibrosis (CF) [1, 2]. Central for P. aeruginosa and S. 

aureus survival in the lung environment is their ability to adapt and switch between free-

living (planktonic) and surface-attached (biofilm) life-styles [3, 4]. 

There are several lines of evidence that support the critical importance of immune response 

and, specifically, professional phagocytic cells as key determinants in the ability of the host to 

control  biofilm forming bacteria [5]. As a proof of concept, patients with CF are well 

characterized to generate a deregulated innate phagocytic and/or signaling pathway 

insufficient for effective host control of bacterial infection and for sterilizing immunity [6]. 

However, the underlying mechanisms are largely unclear.  

Recent studies have shown that Human Leukocyte Antigen (HLA)-G molecules play a role in 

airway immune responses [7-9], in particular in asthmatic patients there is an increase in local 

and circulating HLA-G expression that could be an attempt to restore a proper balance in 

inflammatory cells and cascades that have been activated in chronic asthma, or be a part of the 

on-going pathogenesis of chronic asthma by the repression of selected classes of 

immunologically active cells [10]. 

Compared to Class Ia HLA, the non-classical Class I HLA-G antigen has low allelic 

polymorphism, highly restricted distribution in tissue and alternative mRNA splicing. The 

latter creates distinct membrane-bound (HLA-G1 to G4) and soluble (HLA-G5 to G7) variant 

isoforms [11]. In addition, a soluble HLA-G1 isoform (sHLA-G1) can be generated by 

membrane HLA-G1 proteolytic cleavage [12]. In healthy tissues, HLA-G1, HLA-G5, and 

sHLA-G1 are the most frequently reported isoforms. Their structure are similar to those of 

classical HLA Class I molecules. A tolerogenic function for HLA-G has been suggested, 

based on its ability to inhibit activated CD8+ T, natural killer and dendritic cells, to stimulate 
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T regulatory cells and to block T lymphocyte allo-response [11]. These functions are 

mediated by interactions with specific, inhibitory immune cell receptors ILT-2, ILT-4, CD8 

and KIR2DL4. HLA-G synthesis is controlled by several polymorphisms that modify the 

affinity of gene-targeted sequences of transcriptional or post-transcriptional factors [13]. A 14 

base pair (14 bp) insertion/deletion (ins/del) polymorphism (rs66554220) in exon 8 affects 

mRNA stability and protein expression while the ins allele is characterized by mRNA 

destabilization and lower protein production [14] and associates with pathological events such 

as pregnancy failure [15], autoimmune diseases [12], organ transplant failure [16], increased 

susceptibility to viral infection [17] and tumor progression [18]. HLA-G is regarded as a 

potential asthma and bronchial hyper-responsiveness susceptibility gene [8, 9, 11]; it is 

expressed by airway epithelium [10], is detectable in bronchial-alveolar lavage (BAL) 

samples from asthmatic patients [19] and is involved in lung development [20].  

On the basis of these observations, we hypothesized an implication of HLA-G molecules in 

CF disease and bacterial airway infections and designed a study to investigate its expression 

and modulation in this context. 
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Materials and Methods  

 

Human subjects 

Plasma (n=49) and Exhaled Breath Condensate (EBC) samples (n=28) were collected from 

CF patients with bacterial respiratory infection and treated with intravenous (IV) antibiotics 

(beta-lactamic, aminoglycosides) for 14 + 2 days at recommended doses [21] (Table I) for 

acute exacerbations. We selected to evaluate P. aeruginosa and S. aureus infection status, as 

the two main representative bacteria in CF respiratory infections. Patients with CF were 

considered infected by P. aeruginosa and S. aureus when it was isolated in at least three 

sputum cultures at intervals longer than one month in a period of six months or when mucoid 

colonies were present in the sample [21]. A cohort of 195 patients with CF and of 230 sex and 

age-matched non-CF individuals was tested for HLA-G ins/del 14bp polymorphism. Healthy 

control individuals (CTRLs, n=76) were tested for HLA-G protein levels in plasma and for 

Exhaled Breath Condensate (EBC, n=7). Written informed consent was obtained from all 

subjects enrolled in the study approved by the Institutional Review Board of AOUI Verona as 

project 1849.  

To assess pulmonary function the forced expiratory volume in one second (FEV1) was 

assessed and expressed as percentage of the predicted value for age, sex and height [22]. The 

inflammatory biomarker C-reactive protein (CRP) was measured in patients with CF by 

enzyme immunosorbent assay (Cell Biolabs, San Diego, CA, USA). The kit has detection 

sensitivity limit of 1 ng/mL human CRP. 

 

Cell lines 

HLA-G expression was studied in CF IB3-1 cells and in the corresponding isogenic controls 

(C38 cells), a kind gift from Pamela Zeitlin, Johns Hopkins University, Baltimore, USA, 
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cultured as previously described [23]. Replicates of 5x105 cells were exposed for 6, 12, and 24 

hours to 5 or 10 ng/ml lipopolysaccharide from P. aeruginosa (LPS; Sigma-Aldrich, St. 

Louis, MO, USA) or to 10% conditioned medium (CM)[23]. JEG-3 cells (ATCC, HTB-36) 

cultured in RPMI medium (Sigma-Aldrich) containing 10% fetal calf serum were used as a 

positive control since they constitutively express HLA-G.  

 

CF mouse model 

Sex- and weight-matched 129/FVB mice, homozygous for the F508del-CFTR mutation, and 

wild-type littermates were housed at the animal facility of the Université Catholique de 

Louvain (Brussels) and anesthetized with an intra-peritoneal mixture of 100 mg/kg ketamine 

(Pfizer, NY, USA) and 15 mg/kg xylazine (Bayer, Leverkusen, Germany). Bronchoalveolar 

lavage (BAL) was collected using a laryngoscope and a fine pipette tip, in the presence or in 

the absence of induction of inflammatory reaction by LPS (50 µl volume, 100 µg/25g body 

weight) instilled in the trachea. The local Animal Care and Use Committee approved the 

experiments (2013/UCL/MD/012). 

 

HLA-G assay  

HLA-G levels were measured in 100 µl of cell CM, and in plasma and EBC samples. EBCs 

were collected using a condenser (TURBO-DECCS, Medivac, Parma; Italy) and concentrated 

by evaporation with a SpeedVac Concentrator SVC100H (Savant™ Universal SpeedVac™ 

Vacuum System; Thermo Scientific, Waltham, MA, USA). A bead array Bio-Plex system 

(BioRad, Hercules, CA, USA) was used to assay sHLA-G with anti-HLA-G MoAbs 

conjugated beads: MEM-G9 for sHLA-G1 and HLA-G5 isoform, and 5A6G7 for HLA-G5 

isoform (Exbio, Vestec, Czech Republic), respectively. sHLA-G1 levels were calculated as 

the difference between total sHLA-G and HLA-G5 [24]. The sensitivity of the method is 1 
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pg/mL. Plasma samples were analyzed for sHLA-G levels by enzyme immunosorbent assay 

[24]. The limit of sensitivity was 1.0 ng/ml.  

 

Immunoblotting. JEG-3, IB3-1 and C38 cell samples of conditioned medium, murine 

splenocytes (C57B1/6 mice) and BALs were biotinylated with 0.2 mg/mL EZ-Link Sulfo-

NHS-LC-Biotin (Pierce, Rockford, IL, USA) and immunoprecipitated for 2 hours with anti-

HLA-G MoAb (MEMG9) or anti-Qa2 MoAb (e-Bioscience, San Diego, CA, USA). 

Immunoprecipitates, previously normalized for the total protein content to 1 mg/mL were 

loaded and separated in 10% TGX-Pre-cast gel (BioRad), transferred onto a PVDF membrane 

(Merck Millipore), incubated with horseradish peroxidase (HRP)-conjugated anti-mouse 

MoAb (GE Healthcare Europe GmbH, Milan, Italy) and developed by enhanced chemi-

luminescence (ECL kit, GE Healthcare). Densitometric analysis was then performed with a 

Geliance Imaging System (Perkin Elmer, Waltham, MA, USA). 

 

Flow cytometry  

The expression of HLA-G was analyzed in cells by direct immunofluorescence with anti-

HLA-G AlexaFluor-conjugated MoAb (87G) (Exbio) and flow cytometry performed with 

FacsVantage (Becton Dickinson).  

 

Quantification of HLA-G transcripts and HLA-G 14bp ins/del polymorphism typing  

Total RNA (RNeasy Mini Kit; Qiagen, Valencia, CA, USA) was reverse transcribed 

(SuperScript™ System; Life Technologies) and quantitative PCR was performed using the 

endogenous control RNaseP eukaryotic gene (MGB, Applied Biosystems®, Milan, Italy). 

Genomic DNA, extracted from EDTA blood (Nucleon; GE Healthcare) was genotyped for 

HLA-G 14bp ins/del polymorphism by Real Time-PCR [25].  
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Statistical analysis 

According to data distribution (Kolmogorov-Smirnov test), we applied parametric statistics 

(StatView software, SAS Institute Inc, USA). A significance level (P-value) ≤ 0.05 was 

considered significant.  
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Results 

Intravenous antibiotic therapy influences HLA-G expression in CF patients. 

In this study we evaluated the possible role of HLA-G molecules in CF and airway bacterial 

infections. In Table 1 the main characteristics of CF and control (CTRL) subjects are 

summarized. A less negative Height Z score and the absence of diabetic subjects were found 

in the CTRL group (p=0.042 and p<0.0001, respectively). We followed P. aeruginosa and S. 

aureus infection status as the two main representative bacteria implicated in CF respiratory 

infections. At the time of admission, 49% of sputum cultures from patients with CF resulted 

positive for P. aeruginosa and 45% were positive for S. aureus. Nine patients (18%) scored 

positive for both strains (Table II). We then examined sHLA-G expression in the plasma 

sample from CTRLs and patients with CF during hospitalized for respiratory exacerbation. 

sHLA-G levels in the plasma of patients with CF (median 2.5 ng/mL) resulted significantly 

lower than in CTRLs (median 17.05 ng/mL, p=0.0018, Student t test). All patients with CF 

underwent intravenous antibiotic (i.v.) therapy for 14+2 days at recommended doses [21]. 

Plasma samples of patients with CF obtained after i.v. treatment showed an increase in sHLA-

G levels (median 13.77 ng/mL, P < 0.0001) which reach those levels observed in the plasma 

of CTRLs  (Figure 1A).  

Clinical and functional laboratory data (FEV1 and CRP variations) at discharge indicated that 

all CF patients had benefited from antibiotic therapy. Although not statistically significant 

(p=?? please complete) a trend to a reduced bacterial load appeared. Indeed, an 8% reduction 

of sputum cultures resulted positive for P. aeruginosa and of 19% for S. aureus (Table 2). 

The i.v. treatment improved FEV1 values (≥ 5% positive increase of FEV1, Table 2) while 

the acute phase reaction pentraxin C-reactive protein (CRP), an inflammation-related 

biomarker [26], was drastically reduced (Table 2). Interesting, variations of CRP plasma 

levels were inversely correlated to sHLA-G in 30% of CF patients (Spearman Correlation r=-
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0.307; P=0.032), while no significant correlations were observed with FEV1 values and the 

outcome of microbial infections (data not shown).  

 

HLA-G gene polymorphisms and microbial infection 

A 14bp ins/del polymorphism (rs66554220) in the HLA-G gene is known to affect its 

expression, in particular the 14bp del allele is known to stabilize its mRNA and to increase 

HLA-G protein levels [14]. We analyzed the HLA-G ins/del 14bp polymorphism in CF 

individuals that were categorized in three genotypes (ins/del, ins/ins, del/del). The genotype 

distribution did not differ between the two cohorts of 195 patients with CF and 230 sex- and 

age-matched CTRLs (p=0.062) (Table 3). Moreover, there was no significant influence of the 

genotype on plasma levels of sHLA-G in patients with CF (Figure 1B) and in non-CF 

individuals (data non-shown). However, the outcome of microbial infections was associated 

with an increased risk of chronic P. aeruginosa infection in patients with CF displaying the 

del/del genotype (OR: 3.3; 95% CI: 1.8-6.1) (Table 4), which has been associated to an 

increased HLA-G production [25]. On the contrary, no correlation was observed with S. 

aureus infection status (data non shown). Given the absence of any evident correlation 

between plasma HLA-G levels and the occurrence of lung infection by P. aeruginosa, we 

tested whether a specific accumulation of HLA-G might occur in the lung microenvironment. 

 

sHLA-G expression in Exhaled Breath Condensate  

To better characterize the expression of HLA-G in the lung microenvironment, we examined 

sHLA-G expression in the Exhaled Breath Condensate (EBC) from CTRLs and patients with 

CF during hospitalization for respiratory exacerbation. EBC was selected as a non-invasive 

matrix to monitor sHLA-G molecules in the lung microenvironment [27], where bacteria 

accumulate. In EBC of patients with CF, sHLA-G levels were significantly higher (median 
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8.68 pg/mL) than in CTRLs (median 1.7 pg/mL, p=0.016, Student t test). After antibiotic i.v. 

therapy, a decrease in sHLA-G (median 2.3 pg/mL, p=0.0235) was observed with 

intermediate values when compared with CTRLs (p=0.016) (Figure 2A). No significant 

relationship was observed between the levels of sHLA-G in EBC samples, sHLA-G amount 

in plasma samples (suggesting a microenvironment-specific regulation of its levels), clinical 

data and S. aureus infection status (data not shown).  

 

HLA-G levels in EBC and P. aeruginosa infection 

We next examined the association of HLA-G levels in EBC and the infection status of 

patients with CF.  sHLA-G levels in EBC were manifold higher (median 17.3 pg/mL) in 

patients found positive for the presence of P. aeruginosa than in those patients whose sputum 

culture were negative for the bacterium (median 2.1 pg/mL, p=0.005) or healthy CTRLs 

(median 1.7 pg/mL, p=0.025) (Figure 2B). After antibiotic i.v. therapy, patients with CF who 

cultured positive for P. aeruginosa after antibiotic therapy showed higher HLA-G levels in 

EBC (median 11.2 pg/mL) than patients whose sputum culture turned negative (median 1.5 

pg/mL, p < 0.001) or CTRLs (median 1.7 pg/mL, p < 0.001) (Figure 2B). Since soluble 

HLA-G could derive from both shedded membrane HLA-G1 isoform and soluble HLA-G5 

isoform, we evaluated the amount of the two different isoforms in EBC. Both sHLA-G1 and 

HLA-G5 isoforms were detected with HLA-G5 molecule representing the main isoform 

monitored after i.v. antibiotic therapy in patients with CF (Figure 3). 

  

P. aeruginosa infection induces HLA-G expression in CF bronchial epithelial cells. 

 As a bimodal distribution of sHLA-G values in EBC samples was noticed within individuals 

with CF on the basis of the presence/absence of P. aeruginosa infection and an association 

between HLA-G del/del 14bp genotype and the occurrence of infection, we tested the 
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hypotheses that the bacterium might affect HLA-G expression in CF lung environment. In 

particular, we focused on bronco-epithelial cells, the airway interface that plays a key role in 

CF [28]. We measured HLA-G levels in CF (IB3-1) and isogenic, corrected (C38) bronchial 

epithelial cells in the presence/absence of P. aeruginosa culture medium (CM).  P. 

aeruginosa CM was able to induce the expression of larger (10-fold) amounts of HLA-G in 

IB3-1 CF cells compared to the corresponding non-CF C38 cell line, where a lower (4-fold) 

HLA-G increase was recorded (Figure 4A) 24hrs after incubation. These findings were 

confirmed using P. aeruginosa LPS, as a key component of the bacterial wall. In fact, it is 

known that LPS acts as a powerful inducer for HLA-G expression [14]. The treatment of C38 

and IB3-1 cells with P. aeruginosa LPS for 12 hours promoted an increase of HLA-G at the 

mRNA level (Figure 4B). No induction of the HLA-G membrane expression was found in 

any C38 and IB3-1 cells (Figure 4C). On the contrary, we observed HLA-G release in both 

C38 and IB3-1 cells with higher amounts being found in IB3-1 cells in comparison with C38 

cell line (Figure 4D). 

We then evaluated the amounts of HLA-G1 and HLA-G5 isoforms after P. aeruginosa LPS 

treatment. mRNA analysis indicated that only the HLA-G5 isoform is produced by bronchial 

epithelial cells, thus excluding membrane shedding as the source of the protein found in the 

CM (Figure 5A). ELISA test confirmed the presence of HLA-G5 isoform in the CM (Figure 

5B).  Altogether, these data indicate that bronchial epithelial cells are able to express HLA-G5 

and that P. aeruginosa soluble molecules, in particular LPS, are able to induce the expression 

and secretion of the isoform, with the highest levels produced by CF cells.    

 

P. aeruginosa infection induces Qa2 expression in CF murine lung. 

To further characterize the differential regulation of HLA-G in CF airway in the 

presence/absence of P. aeruginosa infection, we compared the levels of HLA-G murine 
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ortholog, Qa2, in the BAL of wild-type (CTRL) and CF mice treated with vehicle (saline) or 

P. aeruginosa LPS [14]. Lower Qa2 levels were found in BAL samples from naïve, non-LPS-

stimulated CF mice as compared to wild-type mice (p=0.0005). Challenge with LPS was able 

to increase Qa2 levels only in the BAL of CF mice (p=0.001) (Figure 6) suggesting that CF is 

associated to an increased capability to release this important modulator of the immune 

response.  
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Discussion 

The expression of HLA-G molecules during pathogen infection is an important component of 

microbial immune escape mechanisms and influences disease severity during viral infections. 

Indeed, alveolar macrophages collected from patients suffering from acute cytomegalovirus 

pneumonitis usually express high levels of HLA-G molecules [29], a conditions favouring 

immune evasion. Altered levels of HLA-G were recorded in airway system in asthma and 

bronchial hyper-responsiveness [11], suggesting a role of HLA-G molecules in chronic lung 

inflammation and infections in respiratory tract, a condition typical of  CF disease.  

Our data showed that plasma sHLA-G levels are lower in hospitalized CF patients in 

comparison to healthy controls but increase following i.v. antibacterial therapy to levels that 

are indistinguishable from healthy controls. Interesting, the increased HLA-G in a subgroup 

of patients with CF was inversely related to levels of CRP, a biomarker of systemic 

inflammation [26]. An impact of the role of HLA-G molecules in immune-regulation, for 

example in the creation of a tolerogenic environment at the maternal-fetal interface [15] and 

in transplanted patients [16, 30], has been already suggested. Our data on plasma samples 

support the idea of a possible implication of HLA-G molecules in the regulation of systemic 

inflammation in CF condition, where sHLA-G increase might control an excessive activation 

of immune cells. On the other hand, we found an increased frequency of the 14bp del/del 

genotype in CF patients with persistent P. aeruginosa infection. Since this genotype is 

characterized by increased HLA-G expression with respect to the other genotypes [25], this 

finding was unexpected. However, we need to consider that immune response maybe tightly 

regulated by local conditions. Indeed, our data showed that there is an association between 

increased sHLA-G levels in the alveolar microenvironment (assayed in EBCs) and persistence 

of P. aeruginosa infection even after i.v. antibiotic therapy administered to CF patients. In 
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this context, the immune-regulatory role of HLA-G, by decreasing local immune response, 

might support the persistence of bacterial infection in the lung microenvironment. 

Experiments in mice confirmed that CF condition is associated with a stronger up-regulation 

of HLA-G expression in the lung microenvironment in response to challenge with LPS. In 

fact, higher levels of HLA-G murine ortholog Qa2 were found in BALs of CF mice 

challenged with P. aeruginosa LPS in comparison with wild-type mice. Similarly, CF 

bronchial epithelial cells secreted higher amounts of HLA-G in comparison to isogenic 

CFTR-corrected cell lines upon challenge with P. aeruginosa CM or with LPS. Taken 

together, these findings indicate that CF disease influences the regulation of Qa2/HLA-G 

expression, mainly through the secreted isoform HLA-G5, in the presence of bacterial 

infections. 

How the presence of a higher HLA-G concentration in the lung microenvironment might 

contribute to the development of chronic P. aeruginosa infection in CF remains still 

unknown. We propose that the same mechanism that is beneficial at the systemic level, where 

it might control the excessive immune response, can support the establishment of P. 

aeruginosa infection reducing the activation of local immune response. Bacteria may inhibit 

immune cell responses by inducing HLA-G that in turn interacts with immune inhibitory 

receptors, including ILT2, ILT4 and KIR2DL4, to counteract the host immune system. This 

can occur at the early stages of bacterial clearance as well as at later time thus supporting 

long-term bacterial persistence.  

Interestingly, we found a correlation between HLA-G expression and P. aeruginosa infection 

status, but not with S. aureus presence/absence. This finding is in agreement with the previous 

results obtained comparing the ability of these two bacteria to induce cytokine secretion [31]. 

The authors observed that planktonic and biofilm S. aureus induced equivalent amounts of 



16 
 

cytokine in human monocytes. In contrast, biofilm-forming P. aeruginosa induced a higher 

production of tumor necrosis factor and interleukin-6 than their planktonic counterpart. 

Conclusions 

HLA-G differential regulation in the plasma and lung microenvironment in CF suggest, for 

the first time, a role as an anti-inflammatory molecule at systemic level, whereas in the lung, 

HLA-G could impair bacterial clearance mechanisms and increase, by a similar mechanism, 

the probability of developing chronic bacterial airway infection. 

Further studies are needed to fully understand the role of HLA-G molecules in this context, 

but these data suggest that this target deserve additional efforts necessary to define its precise 

role in CF. 

 

Future perspectives 

Additional studies on the role of HLA-G molecules in CF patients and bacterial infections 

will be relevant to precisely define the mechanisms controlling the deregulated immune 

response present in patients with CF and responsible for the persistence of bacterial infection 

in the lung environment. The identification of HLA-G as a key molecule in this process could 

help in the definition of new therapeutic protocols that could help in the management of CF 

patients. In spite of aggressive antibiotic treatment, the eradication of bacterial infection is 

difficult to achieve and often leads to chronic airway infection. The possibility to restore 

immune response modulating HLA-G expression could be an adjuvant therapy to the standard 

antibacterial protocols. The current researches on HLA-G expression [32] bode well for the 

use of HLA-G modulation as a therapeutic strategy in a few years.   

 

Summary points 
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1. Immune response acts as a key determinant in the control of biofilm-forming bacteria 

in the lung of patients with Cystic Fibrosis (CF).  

2. Human Leukocyte Antigen (HLA)-G is an immune-modulating molecule with a 

possible role in respiratory diseases and infections.  

3. Soluble HLA-G is lower in plasma samples of CF patients in comparison with controls 

and is normalized after i.v. therapy. 

4. Soluble HLA-G is higher in the EBC of CF patients and is normalized after i.v. 

therapy in CF patients free of P. aeruginosa infection.  

5. CF cell line and CF murine model expressed higher HLA-G molecules in the presence 

of P. aeruginosa.  

6. Higher expression of HLA-G in CF lung microenvironment is associated with P. 

aeruginosa infection. 

7. HLA-G might have a role in bacterial immune-escape mechanisms.  
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Figure legends   

Figure 1. 

Panel A: Levels of sHLA-G in plasma samples from 49 CF patients before and after 

i.v.antibiotic therapy and in 76 control subjects (CTRL). Median values are reported. Panel B: 

sHLA-G plasma levels in 33 CF patients before (pre) and after (post) i.v. antibiotic therapy 

subdivided accordingly with 14bp ins/del polymorphism (rs66554220) genotypes (13  for 

genotype E., 8 for genotype I, 12 for genotype D). Mean ± standard deviations are reported. P 

values were obtained by Student t test. 

 

Figure 2.  

Panel A:  Levels of sHLA-G in EBC samples from CF patients (n=28) before and after I.V. 

antibiotic therapy and control subjects (CTRL, n=7). Panel B: Levels of sHLA-G in EBC 

from 26 CF patients before and after i.v. antibiotic therapy and in control subjects (CTRL, 

n=7). CF patients were categorized according to the presence (Pa+) (n=10) or absence (Pa-) 

(n=16) of P. aeruginosa infection. Median values are reported. P values were obtained by 

Student t test. 

 

Figure 3. sHLA-G1 and HLA-G5 protein levels in EBC samples before (pre) and after (post) 

I.V. therapy. Median values are reported. P values were obtained by Student t test. 

 

Figure 4. Panel A: Western Blot analysis of IB3-1 and C38 CM untreated or after P. 

aeruginosa CM exposure. Panel B: Q-PCR for total HLA-G mRNA expression in IB3-1 and 

C38 cell lines after 10ng/ml P. aeruginosa LPS treatment for 12 hrs. Results of Q-PCR 

analysis shown as relative quantities (RQ) of HLA-G transcripts in IB3-1 and C38 cell lines 

treated or not with LPS compared to those of JEG-3 positive control cell line (assigned an 
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arbitrary value of 10); P values were obtained by Student t test. Means ± standard deviations 

are reported. Panel Panel C: Flow cytometric analysis HLA-G expression on a representative 

experiment on IB3-1 and C38 cell lines after LPS exposure. Cells were stained with 87G-

Alexa Fluor 488 (Exbio, Praha, CZ) for membrane HLA-G expression. Panel D: sHLA-G 

levels in IB3-1 and C38 left untreated or after treatment for 6, 12 or 24 hrs with 5ng/ml 

10ng/ml of LPS; p values were obtained by Student t test. Means ± standard deviations are 

reported.  

 

Figure 5. Panel A: Representative Q-PCR analysis of HLA-G1 and HLA-G5 isoforms 

mRNA expression in the indicated cell lines treated for 12 hrs with 10ng/ml LPS. Panel B: 

sHLA-G1 and HLA-G5 protein levels in the indicated cell lines treated with 10ng/ml LPS for 

the indicated hours (hrs). Means ± standard deviations are reported.  

 

 Figure 6. 

 Western Blot analysis of BALs from CF (CF) and wild type (WT) mice before and after 

treatment with LPS from P. aeruginosa. SP: murine splenocytes, used as positive control for 

Qa2 expression. One representative western blotting is shown, below are the means ± SD of 

the densitometric analysis of four independent experiments. Arbitrary OD values were 

normalized versus the wild-type control samples set to 100%.  
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Table 1. Demographic and Clinical Characteristics of CF patients enrolled during 

exacerbation and control subjects (CTRLs). 

 

Patients N 49 CTRL N 76 p value 

Male/Female 22/27 Male/Female 35/41 0.888 

Age years 18.0±8.9 Age years 19.0±9.1 0.752 

Weight Z score -1.03±1.32 Weight Z score -0.85±1.30 0.069 

Height Z score -0.65±1.19 Height Z score -0.23±0.82 0.042* 

BMI Z score -0.61±1.56 BMI Z score -0.71±1.42 0.532 

Diabetes n (%) 17 (35%) Diabetes n (%) 0 (0%) <0.0001* 

 

BMI: body mass index 

P values were obtained by Fisher exact test and Student t test. * significant p values 
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Table 2. Clinical conditions of CF Subjects before and after I.V. antibiotic therapy. 

 

 Before After p value 

Lung function    

FEV1 (%) 51.38 ± 19.68 57.16 ± 22.30 <0.001* 

Serum values    

CRP (mg/L) 15.56 ± 7.73 2.06 ± 1.15 <0.001* 

Sputum Microbiology    

P. aeruginosa 24/49 (49%) 20/49 (41%) 0.5426† 

S. aureus 22/49 (45%) 13/49 (26%) 0.091† 

 

*Wilcoxon signed rank test 

†Fisher exact test  

FEV1: forced expiratory volume in 1 sec; CRP: C-reactive protein 
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Table 3. CF patients and control subjects subdivided according to HLA-G 14bp ins/del 
polymorphism. 
 

 

Genotype 14bp 

 

del/del 

n (%) 

ins/del 

n (%) 

ins/ins  

n (%) 

p value 

 

CF (192) 93 (47) 72 (38) 27 (15) 

CTRL (213) 80 (38) 90 (42) 43 (20) 
0.062* 

 

*Chi squared test (3x2 Table) 
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Table 4. CF patients subdivided according to HLA-G 14bp ins/del polymorphism. 

 

Genotype 14bp del/del 14bp ins/del 14bp ins/ins p value 

Age years 25.5±11.0 25.5±10.1 24.0±10.2 0.34* 

Height Z score -0.5±2.5 -0.5±1.2 -0.4±1.2 0.25* 

Weight Z score -0.7±1.3 -0.7±1.3 -0.5±1.4  0.18* 

BMI Z score 0.2±1.0 0.1±0.9 0.2±1.0  0.80* 

FEV1 (% predicted) 73.4±22.8 65.5±29.6 70.8±24.0 0.35* 

Chronic P. aeruginosa infection, n (%) 49 (53) 19 (26) 6 (22) 0.0005† 

Diabetes n (%) 14 (15) 11 (15) 3 (11) 0.85† 

 

*  Kruskal Wallis test; †Chi squared test 
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Figure 1. 
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Figure 2.  
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 

 


