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We consider a nonlinear pricing problem that takes into account credit risk and funding issues. The aforementioned problem
is formulated as a stochastic forward-backward system with delay, both in the forward and in the backward component, whose
solution is characterized in terms of viscosity solution to a suitable type of path-dependent PDE.

1. Introduction

Starting from the spreading of the credit crunch in 2007,
empirical lines of evidence have shown how some aspects of
financial markets, neglected up to that point by theoretical
models, are instead fundamental in concrete economical
frameworks. In particular, let us mention the violation of
standard nonarbitrage relation between forward rates and
zero-coupon bonds. Even though we will not address the lat-
ter problem in the present paper, we would like to underline
how it is very connected to the topicwewill treat, as witnessed
by the recent, wide, and growing literature linked to the so-
called multicurve modelling; see, for example, [1–5] and the
references therein.

In what follows, we will focus on a different issue which
emerged after the last financial crisis, namely, the problem of
pricing derivatives contracts, including the possibility of the
counterparty default, that is, the event in which a borrower
fails to make the required payments to his lender. Such an
event is treated in the framework of the credit risk which,
according to [6], is defined as the potential that a bank
borrower or counterparty will fail to meet its obligations in
accordance with agreed terms. Even if the number or type
of related financial losses is rather huge, it is interesting to
note that they may be complete, as in the case of default,
or even partial and can happen in a number of different
cases, for example, if a consumer fails to make a payment

related to a line of credit or if an insolvent insurance company
does not pay previously stipulated policy obligations or a
bank that because of its insolvency does not return funds
to a depositor. We would like to underline the notion that
the credit default risk has a great impact on almost all the
credit-sensitive transactions, also includingmortgages, loans,
securities, and derivatives. Hence, its careful determination
and forecasting are crucial tasks, especially in the modern
theory of financial markets (see, e.g., [7, 8]), which are widely
characterized by sophisticated contracts of the aforemen-
tioned type. In particular, the wrong estimation of credit
default risk that, at different levels, has been experienced
at the end of the last decade is intrinsically linked to the
inadequacy of classical models in describing real financial
markets, mainly because of the unrealistic hypotheses of the
existence of a unique risk-free rate, that is, the theoretical rate
of return of an investment with zero risk, or the possibility of
having unlimited access to funding. Our aim is to derive a
mathematical formulation of such problems, while we refer
the interested reader to, for example, [9, 10] and references
therein, for a deep study of related financial implications;
see also [11], where the credit risk is studied in connection
with the so-called Catastrophe Bonds, [12] where the default
probability problem for credit risk is considered, [13] which
concerns a large deviation approach, and [14] where related
trigger prices determination for convertible contingent bonds
is treated.
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Recently, several works appeared that try to include
counterparty risk, that is, the risk to each party of a contract
that the counterparty will be unable to meet contractual
obligations, as well as funding issues in pricing financial
contracts, leading to a systematic treatment of both of them.
In particular, to our knowledge, the first attempts in the direc-
tion of developing a concrete framework able to treat both the
counterparty risk and the funding constraints can be found in
[15–17]. However, we will mainly refer to a slightly different
and yet closely related approach, namely, the one developed
in [9, 18]. Let us mention that both approaches identify
backward stochastic differential equations (BSDEs) as a fun-
damental mathematical object to consider a financial setting
characterized by counterparty risk; see, for example, [19, 20].

In what follows, we also exploit the approach developed
in [18, 21], where the authors firstly consider the present value
of a contract as the discounted present value of future payoffs,
and then include margin variations and counterparty risk in
their valuation BSDE, which turns out to be risk-free rate
independent. In fact, the latter depends only on different
funding rates which are directly observable on the markets.

The main contribution of the present work is thus to
give rigorous and general mathematical foundation of the
previously introduced setting. In particular, following [18, 21],
we will consider the so-called master pricing equation gener-
alizing it in several directions. Firstly, we will consider possi-
bly path-dependent hedging strategy exploiting the so-called
path-dependent calculus developed in [22, 23]. Secondly, we
will not assume any differentiability assumptions in order
to consider viscosity solutions for the related pricing PDE.
Finally, as major generalization, we consider a margining
procedure that can be path-dependent with respect to the
portfolio. In fact, as pointed out in [15, Remark. 5.5], in
real world, the margining scheme often depends upon its
past values. It is worth mentioning that the latter is highly
nontrivial, since, from amathematical point of view, it implies
that the related BSDE generator depends on its past values as
well.

Let us recall that the first rigorous treatment of delay
differential equations dates back to the monograph [24],
while, more recently (see [22, 23, 25]), new notions of ad
hoc derivatives have been introduced to study the stochastic
calculus for path-dependent stochastic differential equations.
Since then, such results have been then generalized in several
directions; see, for example, [26–32] and the references
therein. We would like to mention that the path-dependent
calculus has revealed itself since its inception as a powerful
tool to model financial markets exhibiting delay and also
path-dependent options.

Analogously, in [33–35], the authors proposed an ad
hoc notion of viscosity solutions to path-dependent PDE
which, similar to the relation established by the Feynman-
Kac theorem between a stochastic differential equation (SDE)
and its deterministic counterpart, relates a path-dependent
SDE to a corresponding path-dependent PDE, by exploiting
the theory of BSDE, hence by using the notion of nonlinear
expectations; see, for example, [36].

Recently, the development of the theory of delayed
stochastic differential equations has made one step further

to include, besides the delay in the forward SDE, also a
delay component in the backward equation. In particular,
in [37], the authors proposed a new type of stochastic delay
equation, whose generator may depend on the past values of
the BSDE itself. Asmentioned above, this peculiarity is highly
nontrivial, as witnessed by several examples reported in [37],
where the authors show how the uniqueness property for the
solution fails to be true.

To overcome the latter problem, some additional assump-
tions have to be taken into account, as in [38], where,
exploiting the notion of viscosity solution proposed in [33],
the connection between forward-backward SDE with delay
both in the forward and in the backward component and a
new type of path-dependent PDE has been proved.

In the present paper, we exploit the aforementioned
results obtained in [38], to generalize the financial setting
developed in [18, 21], allowing for path-dependent hedging
strategies, that is, plans to reduce the financial risk associated
with adverse pricemovements of, for example, assets inwhich
one has invested, and collateralization scheme with delay.
We recall that the collateralization represents the situation in
which a borrower pledges an asset as recourse to the lender
to hedge the case of the borrower’s default. In particular, the
collateralization of assets gives, for example, banks a sufficient
level of reassurance against the default risk.The latter banking
practice allows loans to be issued to individuals or companies
which do not belong to the set of the ones having optimal
credit history or good debt rating. We underline the notion
that our approach is particularly suitable to treat financial
frameworks characterized by delays in the default procedure;
see, for example, [18, Sec. 3, Sec. 4], the latter being the object
of our future works.

Moreover, we underline that analogous approaches can
be fruitfully exploited within frameworks characterized by
stochastic optimal control problems, as has been made in, for
example, [31, 39]; see also the references therein.

The present paper is so structured: in Section 2, we
introduce the mathematical setting; in particular, Section 2.1
is devoted to the introduction to the formalism used, whereas
in Section 2.2 we state the main theoretical results that will
be then applied in Section 3 to the problem of obtaining
a portfolio under credit risk and funding issues. Finally, in
Section 3.1, we will derive the main path-dependent pricing
PDE.

2. Forward-Backward Delayed Equation
and Related Kolmogorov Equation

In what follows, we introduce the mathematical setting
that allows us to derive the delayed pricing equation we
are interested in. The aforementioned framework will be
first introduced in its complete generality; for example, we
will also consider path-dependent coefficients. Moreover, we
underline the notion that the main novelty of the present
work is represented by the fact that we can also consider
a backward equation with delayed generator, together with
the associated Feynman-Kac representation theorem. For the
sake of completeness, we report herewhat has been essentially
derived in [38].
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2.1. Pathwise Derivatives, Functional Itô’s Formula, Viscosity
Solution, and Time Delayed Forward-Backward System. Let
us briefly introduce the setting the path-dependent setting,
first developed in [22, 23], stating the main results; see
also [22, 23, 38], for a rather complete introduction to the
path-dependent calculus, [33] which concerns the concept of
viscosity solution to path-dependent PDE, and [37] for general
results on BSDE with delayed generator.

2.1.1. Pathwise Derivatives and Functional Itô’s Formula. In
what follows, we define the mathematical framework needed
to construct the solutions of the Kolmogorov equation we
will treat later; see, for example, [22, 23, 25] for a complete
introduction to the related functional Itô calculus. For ease of
notation,wewill considerR-valued processes, the generaliza-
tion to the case ofR𝑑-valued processes being straightforward.

We will denote 𝐵(𝑡, 𝜙̂) fl 𝜙(𝑡), while F fl (F𝑠)𝑠∈[0,𝑇] will
be the filtration generated by 𝐵.

Let D fl D([0, 𝑇];R), where 𝑇 < +∞ is a positive
fixed constant, be the set of Càdlàg R-valued functions, that
is, right continuous, with finite left-hand limits. On D, we
introduce the norm

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝑇

fl sup
𝑠∈[0,𝑇]

󵄨󵄨󵄨󵄨𝜙 (𝑠)
󵄨󵄨󵄨󵄨 , (1)

with respect to which D becomes a Banach space. Similarly
on [0, 𝑇] ×D, we introduce the pseudometric

𝑑 ((𝑡, 𝜙) , (𝑡
󸀠
, 𝜙
󸀠
)) fl

󵄨󵄨󵄨󵄨󵄨
𝑡 − 𝑡
󸀠󵄨󵄨󵄨󵄨󵄨

+ sup
𝑠∈[0,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝜙 (𝑠 ∧ 𝑡) − 𝜙

󸀠
(𝑟 ∧ 𝑡
󸀠
)
󵄨󵄨󵄨󵄨󵄨
,

(2)

with respect to which [0, 𝑇] × D becomes a complete
pseudometric space.

Let 𝑢 : [0, 𝑇] ×D → R be a given function; then we say
that 𝑢 is vertically differentiable at (𝑡, 𝜙) ∈ [0, 𝑇] ×D, if there
exist

𝜕𝑥𝑢 (𝑡, 𝜙) fl lim
ℎ→0

𝑢 (𝑡, 𝜙 + ℎ1[𝑡,𝑇]) − 𝑢 (𝑡, 𝜙)

ℎ
. (3)

The second-order derivative, when it exists, is denoted by
𝜕𝑥𝑥𝑢(𝑡, 𝜙) fl 𝜕𝑥(𝜕𝑥𝑢).

Moreover, taking 𝑡 ∈ [0, 𝑇] and considering a path 𝜙 ∈ D,
we define

𝜙𝑡 fl 𝜙 (⋅ ∧ 𝑡) ∈ D. (4)

As it is standard when dealing with delay equations, we
will exploit the following notation: for a path 𝜙 ∈ D, we will
denote by 𝜙(𝑡) the R-value at time 𝑡 of 𝜙, whereas 𝜙𝑡 denotes
the path up to time 𝑡.

We say that 𝑢 is horizontally differentiable at (𝑡, 𝜙) ∈
[0, 𝑇] ×D if there exist

𝜕𝑡𝑢 (𝑡, 𝜙) fl lim
ℎ→0
+

𝑢 (𝑡 + ℎ, 𝜙𝑡) − 𝑢 (𝑡, 𝜙)

ℎ
, (5)

for 𝑡 ∈ [0, 𝑇) and 𝜕𝑡𝑢(𝑇, 𝜙) fl lim𝑡→𝑇
−

𝜕𝑡𝑢(𝑡, 𝜙).

Let 𝑢 : [0, 𝑇] × D → R be nonanticipative; we say
that 𝑢 ∈ C([0, 𝑇] × D), if 𝑢 is continuous on [0, 𝑇] × D
under the pseudometric 𝑑; moreover, we write that 𝑢 ∈
C𝑏([0, 𝑇] × D), if 𝑢 ∈ C([0, 𝑇] × D) and 𝑢 is bounded on
[0, 𝑇] × D. Eventually, we say that 𝑢 ∈ C1,2

𝑏
([0, 𝑇] × D), if

𝑢 ∈ C([0, 𝑇] × D) and the derivatives 𝜕𝑥𝑢, 𝜕𝑥𝑥𝑢, and 𝜕𝑡𝑢
exist, and they are both continuous and bounded. Finally, we
denote by D𝑡 fl D([𝑡, 𝑇];R) the shifted spaces of Càdlàg
paths with corresponding metric and pseudometric.

Exploiting previous notations and following [25], we are
going to work with processes 𝑢 defined on [0, 𝑇] × C → R,
being C fl C([0, 𝑇];R), namely, the space of continuous
paths. It is worth mentioning that all the definitions stated
above can be straightforwardly adapted to the case 𝑢 : [0, 𝑇]×
C→ R.

For a continuous function 𝜙 ∈ C([−𝛿, 𝑇];R), we denote

𝜙(𝑡) fl (𝜙 (𝑡 + 𝜃))𝜃∈[−𝛿,0] , (6)

𝛿 > 0 being a fixed constant.
The following theorem states a functional version of Itô’s

formula; see, for example, [22, Theorem 4.1].

Theorem 1 (functional Itô’s formula). Let 𝐴 be a 1-
dimensional Itô process; namely, 𝐴 : [0, 𝑇] × C → R

is a continuous R-valued semimartingale defined on the
probability space (C, F ,P) which admits the representation

𝐴 (𝑡) = 𝐴 (0) + ∫

𝑡

0

𝑏 (𝑟) 𝑑𝑟 + ∫

𝑡

0

𝜎 (𝑟) 𝑑𝐵 (𝑟) ,

∀𝑡 ∈ [0, 𝑇] ,

(7)

for some suitable processes 𝑏 and 𝜎.
If 𝐹 ∈ C1,2

𝑏
([0, 𝑇] × C), then, for any 𝑡 ∈ [0, 𝑇), the

following change of variable formula holds true:

𝐹 (𝑡, 𝐴 𝑡) = 𝐹 (0, 𝐴0) + ∫

𝑡

0

𝜕𝑡𝐹 (𝑟, 𝐴 𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝜕𝑥𝐹 (𝑟, 𝐴 𝑠) 𝑏 (𝑠) 𝑑𝑠

+
1

2
∫

𝑡

0

𝜎
2
(𝑠) 𝜕𝑥𝑥𝐹 (𝑟, 𝐴 𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝜕𝑥𝐹 (𝑟, 𝐴 𝑠) 𝜎 (𝑠) 𝑑𝑊 (𝑠) .

(8)

2.1.2. Viscosity Solution to the Path-Dependent PDE. In what
follows, mainly following [38], we introduce the notion of
viscosity solution; see also [33].

Let us denote by T the set of all stopping times 𝜏 such
that, for all 𝑡 ∈ [0, 𝑇), we have that the set {𝜙 ∈ C : 𝜏(𝜙) > 𝑡}
is an open subset of (C, ‖ ⋅ ‖𝑇), while we define by T𝑡 the
set of all stopping times 𝜏 such that, for all 𝑠 ∈ [𝑡, 𝑇), the set
{𝜙 ∈ C𝑡 : 𝜏(𝜙) > 𝑠} is an open subset of (C𝑡, ‖ ⋅ ‖𝑡

𝑇
).
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Let 𝐿 ≥ 0 and 𝑡 < 𝑇; then we denote by U𝐿
𝑡
the space of

R-valued processes 𝜆 such that |𝜆| ≤ 𝐿; then, we defined a
new probability measure P𝑡,𝜆 by 𝑑P𝑡,𝜆 fl𝑀𝑡,𝜆(𝑇)𝑑P, where

𝑀
𝑡,𝜆
(𝑠) fl exp(∫

𝑠

𝑡

𝜆 (𝑟) 𝑑𝑊 (𝑟) −
1

2
∫

𝑠

𝑡

|𝜆 (𝑟)|
2
𝑑𝑟) ,

P-a.s.
(9)

Let us consider the process (𝑋𝑡,𝜙(𝑠))𝑠∈[0,𝑇] which evolves
according to

𝑋
𝑡,𝜙
(𝑠) = 𝜙 (𝑡) + ∫

𝑠

𝑡

𝑏 (𝑟, 𝑋
𝑡,𝜙
) 𝑑𝑟

+ ∫

𝑠

𝑡

𝜎 (𝑟, 𝑋
𝑡,𝜙
) 𝑑𝑊 (𝑟) , 𝑠 ∈ [𝑡, 𝑇] ,

𝑋
𝑡,𝜙
(𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [0, 𝑡) ,

(10)

where (𝑡, 𝜙) ∈ [0, 𝑇] × C is given, 𝑊 is standard Brownian
motion, and 𝑏 and 𝜎 are some suitable coefficients that will
be soon better specified. Further, we denote byG = (G𝑠)𝑠∈[0,𝑇]
the natural filtration generated by𝑊.

Taking into account what we have introduced so far,
we are in position to state the main object of analysis in
the present work, namely, the following functional path-
dependent PDE:
− 𝜕𝑡𝑢 (𝑡, 𝜙) −L𝑢 (𝑡, 𝜙)

− 𝑓 (𝑡, 𝜙, 𝑢 (𝑡, 𝜙) , 𝜕𝑥𝑢 (𝑡, 𝜙) 𝜎 (𝑡, 𝜙) , (𝑢 (⋅, 𝜙))𝑡
)

= 0,

𝑢 (𝑇, 𝜙) = ℎ (𝜙) ,

(11)

for 𝑡 ∈ [0, 𝑇), 𝜙 ∈ C. Moreover, indicating by 𝛿 > 0 a given
fixed delay, we have set (𝑢(⋅, 𝜙))𝑡 fl (𝑢(𝑡 + 𝜃, 𝜙))𝜃∈[−𝛿,0], while,
in (11), we have denoted by L the second-order differential
operator given by

L𝑢 (𝑡, 𝜙) fl
1

2
𝜎
2
(𝑡, 𝜙) 𝜕𝑥𝑥𝑢 (𝑡, 𝜙)

+ 𝑏 (𝑡, 𝜙) 𝜕𝑥𝑢 (𝑡, 𝜙) ,

(12)

with 𝑏 : [0, 𝑇] × C → R and 𝜎 : [0, 𝑇] × C → R being two
nonanticipative functionals.

We now introduce the space of the test functions:

A
𝐿
𝑢 (𝑡, 𝜙) fl {𝜑 ∈ C1,2

𝑏
([0, 𝑇] ×C) : ∃𝜏0

∈ T
𝑡

+
, 𝜑 (𝑡, 𝜙) − 𝑢 (𝑡, 𝜙)

= min
𝜏∈T𝑡

E
𝐿

𝑡
[(𝜑 − 𝑢) (𝜏 ∧ 𝜏0, 𝑋

𝑡,𝜙
)]} ,

A
𝐿

𝑢 (𝑡, 𝜙) fl {𝜑 ∈ C1,2
𝑏
([0, 𝑇] ×C) : ∃𝜏0

∈ T
𝑡

+
, 𝜑 (𝑡, 𝜙) − 𝑢 (𝑡, 𝜙)

= max
𝜏∈T𝑡

E
𝐿

𝑡
[(𝜑 − 𝑢) (𝜏 ∧ 𝜏0, 𝑋

𝑡,𝜙
)]} ,

(13)

whereT𝑡
+
fl {𝜏 ∈ T𝑡 : 𝜏 > 𝑡}, if 𝑡 < 𝑇 andT𝑇

+
fl {𝑇}. Also,

for any 𝜉 ∈ 𝐿2(F𝑡
𝑇
;P), E𝐿

𝑡
(𝜉) fl inf𝜆∈U𝐿

𝑡

EP𝑡,𝜆
(𝜉) and E

𝐿

𝑡
(𝜉) fl

sup
𝜆∈U𝐿
𝑡

EP𝑡,𝜆
(𝜉) are nonlinear expectations.

The definition of a viscosity solution to the functional
PDE (11) (see, e.g., [33, Def. 3.3] or [38, Def. 2]) reads as
follows.

Definition 2. Let 𝑢 ∈ C𝑏([0, 𝑇]×C) such that 𝑢(𝑇, 𝜙) = ℎ(𝜙),
for all 𝜙 ∈ C.

(a) For any 𝐿 ≥ 0, one says that 𝑢 is a viscosity 𝐿-
subsolution of (11) if at any point (𝑡, 𝜙) ∈ [0, 𝑇] × C,
and, for any 𝜑 ∈ A𝐿𝑢(𝑡, 𝜙), it holds that

− 𝜕𝑡𝜑 (𝑡, 𝜙) −L𝜑 (𝑡, 𝜙)

− 𝑓 (𝑡, 𝜙, 𝜑 (𝑡, 𝜙) , 𝜕𝑥𝜑 (𝑡, 𝜙) 𝜎 (𝑡, 𝜙) , (𝜑 (⋅, 𝜙))𝑡
)

≤ 0.

(14)

(b) For any 𝐿 ≥ 0, one says that 𝑢 is a viscosity 𝐿-
supersolution of (11) if at any point (𝑡, 𝜙) ∈ [0, 𝑇] ×C,
and, for any 𝜑 ∈ A

𝐿

𝑢(𝑡, 𝜙), one has

− 𝜕𝑡𝜑 (𝑡, 𝜙) −L𝜑 (𝑡, 𝜙)

− 𝑓 (𝑡, 𝜙, 𝜑 (𝑡, 𝜙) , 𝜕𝑥𝜑 (𝑡, 𝜙) 𝜎 (𝑡, 𝜙) , (𝜑 (⋅, 𝜙))𝑡
)

≥ 0.

(15)

(c) One says that 𝑢 is a viscosity subsolution, respectively,
supersolution, of (11), if 𝑢 is a viscosity 𝐿-subsolution,
respectively, 𝐿-supersolution, of (11), for some 𝐿 ≥ 0.

(d) One says that 𝑢 is a viscosity solution of (11) if 𝑢 is both
a viscosity subsolution and supersolution of (11).

2.1.3. Time Delayed Forward-Backward System. The present
section is devoted to the characterization of the delayed
forward-backward system we are interested in. In particular,
we will look for a triplet,

(𝑋
𝑢,𝜙
, 𝑌
𝑢,𝜙
, 𝑍
𝑢,𝜙
)
(𝑢,𝜙)∈[0,𝑇]×C

, (16)

of stochastic processes such that the following decoupled
forward-backward system holds:

𝑋
𝑢,𝜙
(𝑡) = 𝜙 (𝑢) + ∫

𝑡

𝑢

𝑏 (𝑠, 𝑋
𝑢,𝜙
) 𝑑𝑠

+ ∫

𝑡

𝑢

𝜎 (𝑠, 𝑋
𝑢,𝜙
) 𝑑𝑊 (𝑠) , 𝑡 ∈ [𝑢, 𝑇] ,

𝑋
𝑢,𝜙
(𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [0, 𝑠) ,

𝑌
𝑢,𝜙
(𝑡) = ℎ (𝑋

𝑢,𝜙
)

+ ∫

𝑇

𝑡

𝑓 (𝑠, 𝑋
𝑢,𝜙
, 𝑌
𝑢,𝜙
(𝑠) , 𝑍

𝑢,𝜙
(𝑠) , 𝑌

𝑢,𝜙

𝑠
) 𝑑𝑠

− ∫

𝑇

𝑡

𝑍
𝑢,𝜙
(𝑠) 𝑑𝑊 (𝑠) , 𝑡 ∈ [𝑢, 𝑇] ,
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𝑌
𝑢,𝜙
(𝑡) = 𝑌

𝑡,𝜙
(𝑡) ,

𝑍
𝑢,𝜙
(𝑡) = 0,

𝑡 ∈ [0, 𝑢) .

(17)

Let us first focus on the forward component𝑋 appearing
in system (17), also assuming the following.

Assumptions 3. Let us consider twononanticipative function-
als 𝑏 : [0, 𝑇] ×C→ R and 𝜎 : [0, 𝑇] ×C→ R such that
(A1) 𝑏 and 𝜎 are continuous;
(A2) there exists ℓ > 0 such that, for any 𝑡 ∈ [0, 𝑇], 𝜙, 𝜙󸀠 ∈

C,
󵄨󵄨󵄨󵄨󵄨
𝑏 (𝑡, 𝜙) − 𝑏 (𝑡, 𝜙

󸀠
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝜎 (𝑡, 𝜙) − 𝜎 (𝑡, 𝜙

󸀠
)
󵄨󵄨󵄨󵄨󵄨

≤ ℓ
󵄩󵄩󵄩󵄩󵄩
𝜙 − 𝜙
󸀠󵄩󵄩󵄩󵄩󵄩𝑇
.

(18)

In light of Assumptions 3, the following theorem states
both the existence and the uniqueness for the process
(𝑋
𝑢,𝜙
(𝑡))𝑡∈[0,𝑇]; see, for example, [38, Th. 4].

Theorem 4. Let the coefficients 𝑏 and 𝜎 satisfy Assumptions
3 (A1)-(A2). Let (𝑡, 𝜙), (𝑡󸀠, 𝜙󸀠) ∈ [0, 𝑇] × C be given. Then,
there exists a unique continuous and adapted stochastic process
(𝑋
𝑢,𝜙
(𝑡))𝑡∈[0,𝑇], such that

𝑋
𝑢,𝜙
(𝑡) = 𝜙 (𝑢) + ∫

𝑡

𝑢

𝑏 (𝑠, 𝑋
𝑡,𝜙
) 𝑑𝑠

+ ∫

𝑡

𝑢

𝜎 (𝑠, 𝑋
𝑢,𝜙
) 𝑑𝑊 (𝑠) , 𝑡 ∈ [𝑢, 𝑇] ,

𝑋
𝑢,𝜙
(𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [0, 𝑢) .

(19)

In order to analyse the delayed backward SDE appearing
in (17), let us first introduce the main reference spaces we will
work with.

Definition 5. (i) LetH2
𝑡
denote the space of G𝑢-progressively

measurable processes 𝑍 : Ω × [𝑢, 𝑇] → R, such that

E [∫
𝑇

𝑢

|𝑍 (𝑠)|
2
𝑑𝑠] < ∞. (20)

(ii) Let S2
𝑢
be the space of continuous G𝑢-progressively

measurable processes 𝑌 : Ω × [𝑢, 𝑇] → R such that

E[ sup
𝑢≤𝑠≤𝑇

|𝑌 (𝑠)|
2
] < ∞. (21)

Moreover, we will equip the spaces H2
𝑢
and S2

𝑢
with the

following norms:

‖𝑍‖
2

H2
𝑢

= E [∫
𝑇

𝑢

𝑒
𝛽𝑠
|𝑍 (𝑠)|

2
𝑑𝑠] ,

‖𝑌‖
2

S2
𝑢

= E[ sup
𝑢≤𝑠≤𝑇

𝑒
𝛽𝑠
|𝑌 (𝑠)|

2
] ,

(22)

where 𝛽 > 0 is a given constant.

Further, in order to deal with the delayed backward SDE
appearing in (17), we will assume the following.

Assumptions 6. Let

𝑓 : [0, 𝑇] ×C ×R ×R ×C ([−𝛿, 0] ;R) 󳨀→ R,

ℎ : C 󳨀→ R,
(23)

such that the following hold:

(B1)There exist 𝐿,𝐾,𝑀 > 0, 𝑝 ≥ 1 and a probability
measure 𝛼 on ([−𝛿, 0],B([−𝛿, 0])) such that, for any
𝑡 ∈ [0, 𝑇], 𝜙 ∈ C, (𝑦, 𝑧), (𝑦󸀠, 𝑧󸀠) ∈ R × R, 𝑦̂, 𝑦̂󸀠 ∈
C([−𝛿, 0];R), we have the following:

(i) 𝜙 󳨃󳨀→ 𝑓 (𝑡, 𝜙, 𝑦, 𝑧, 𝑦̂) is continuous,

(ii) 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝜙, 𝑦, 𝑧, 𝑦̂) − 𝑓 (𝑡, 𝜙, 𝑦
󸀠
, 𝑧
󸀠
, 𝑦̂)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐿 (
󵄨󵄨󵄨󵄨󵄨
𝑦 − 𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑧
󸀠󵄨󵄨󵄨󵄨󵄨
) ,

(iii) 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝜙, 𝑦, 𝑧, 𝑦̂) − 𝑓 (𝑡, 𝜙, 𝑦, 𝑧, 𝑦̂
󸀠
)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐾∫

0

−𝛿

󵄨󵄨󵄨󵄨󵄨
𝑦̂ (𝜃) − 𝑦̂

󸀠
(𝜃)
󵄨󵄨󵄨󵄨󵄨

2

𝛼 (𝑑𝜃) ,

(iv) 󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝜙, 0, 0, 0)
󵄨󵄨󵄨󵄨 < 𝑀(1 +

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

𝑝

𝑇
) .

(24)

(B2)The function 𝑓(⋅, ⋅, 𝑦, 𝑧, 𝑦̂) is F-progressively measur-
able, for any (𝑦, 𝑧, 𝑦̂) ∈ R ×R ×C([−𝛿, 0];R).

(B3)The function ℎ is continuous and, for all 𝜙 ∈ C,
󵄨󵄨󵄨󵄨ℎ (𝜙)

󵄨󵄨󵄨󵄨 ≤ 𝑀(1 +
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

𝑝

𝑇
) . (25)

Hence, we are in position to report the result which states
both the existence and the uniqueness for the solution to
the BSDE with delayed generator we are considering; see, for
example, [38, Th. 7].

Theorem 7. If Assumptions 6 (B1)–(B3) hold true and 𝐾 and
𝛿 are small enough, namely, if there exists a constant 𝛾 ∈ (0, 1)
such that

𝐾
𝛾𝑒
(𝛾+6𝐿

2
/𝛾)𝛿

(1 − 𝛾) 𝐿2
max {1, 𝑇} < 1

290
, (26)

then there exists a unique solution (𝑌𝑢,𝜙, 𝑍𝑢,𝜙)(𝑢,𝜙)∈[0,𝑇]×C to the
backward stochastic differential system (17), such that

(𝑌
𝑢,𝜙
, 𝑍
𝑢,𝜙
) ∈ S

2

𝑢
×H
2

𝑢
, (27)

for all 𝑢 ∈ [0, 𝑇]; moreover, 𝑢 󳨃→ (𝑌𝑢,𝜙, 𝑍𝑢,𝜙) is continuous
from [0, 𝑇] into S2

0
×H2
0
.

2.2. Viscosity Solution for the Path-Dependent PDE. The
present subsection ismainly based on [38] and it is devoted to
the study of viscosity solutions to the path-dependent equa-
tion (11). In what follows, we will consider that Assumptions
6 (B1)–(B3) hold true.
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It is worthmentioning that typical generators𝑓 satisfying
Assumptions 6 are of the following form:

𝑓1 (𝑡, 𝜙, 𝑦, 𝑧, 𝑦̂) fl 𝐾∫
0

−𝛿

𝑦̂ (𝑠) 𝑑𝑠,

𝑓2 (𝑡, 𝜙, 𝑦, 𝑧, 𝑦̂) fl 𝐾𝑦̂ (𝑡 − 𝛿) .
(28)

Remark 8. If 𝑔 : [0, 𝑇] → R is a measurable and bounded
function with 𝑔(𝑡) = 0 for 𝑡 < 0, the linear time delayed
generator

𝑓 (𝑡, 𝜙, 𝑦, 𝑧, 𝑦̂) = ∫

0

−𝛿

𝑔 (𝑡 + 𝜃) 𝑦̂ (𝜃) 𝛼 (𝑑𝜃) (29)

satisfies Assumptions 6.

Let us define the function 𝑢 : [0, 𝑇] ×C→ R by

𝑢 (𝑡, 𝜙) fl 𝑌𝑡,𝜙 (𝑡) , (𝑡, 𝜙) ∈ [0, 𝑇] ×C; (30)

notice that 𝑢(𝑡, 𝜙) is deterministic; in fact, 𝑌𝑡,𝜙(𝑡) is G𝑡
𝑡
≡ N-

measurable. Thus, we have the following results which are
the Feynman-Kac type result adapted to the current path-
dependent setting.

Theorem 9 (existence). Let Assumptions 3 and 6 hold true;
then, if the delay 𝛿 and the Lipschitz constant𝐾 are sufficiently
small, namely, if condition (26) is verified, then the path-
dependent PDE (11) admits at least one viscosity solution.

Proof. See, for example, [38, Th. 11].

Theorem 10. Let Assumptions 3 and 6 hold true as well as
condition (26). Then, there exists a continuous nonanticipative
functional 𝑢 : [0, 𝑇] ×C→ R such that

𝑢 (𝑡, 𝑋
𝑢,𝜙
) = 𝑌
𝑢,𝜙
(𝑡) , ∀𝑡 ∈ [0, 𝑇] , 𝑎.𝑠., (31)

for any (𝑢, 𝜙) ∈ [0, 𝑇] ×C, which is a viscosity solution to the
path-dependent PDE (11).

Proof. See, for example, [38, Th. 14].

3. Pricing under Counterparty Risk

In the present section, we are going to apply previously
derived results to the pricing of financial derivatives under
counterparty risk and funding issues. In order to derive the
pricing equation, we closely follow [21, Sec. 2]; see also, for
example, [10, 40] and the references therein.

Let us consider a standard filtered probability space
(Ω,G, (G𝑠)𝑠∈[0,𝑇],Q), with 𝑇 < +∞ being a fixed positive
constant, while the filtrationG𝑠 represents all the information
available on the market at a given time 𝑠. Our goal is to derive
a portfolio of financial contracts between two parties, namely,
the investor, whichwill be denoted by 𝐼, and the counterparty,
which will be denoted by 𝐶.

In order to work in a realistic and concrete financial
framework, we include the risk of default. In particular, we

denote by 𝜏𝐼 and 𝜏𝐶 the G-measurable stopping time repre-
senting the default time of 𝐼 and 𝐶, respectively. Moreover,
we prescribe that 𝜏𝐼 and 𝜏𝐶 have intensity 𝜆𝐼 > 0 and 𝜆𝐶 > 0,
respectively, and are indicated by 𝜏 fl 𝜏𝐼 ∧ 𝜏𝐶 and by 𝜆 fl
𝜆𝐼 + 𝜆𝐶. Recalling that a risk-neutral measure Q is nothing
but a probability measure such that each share price equals
the discounted expectation of the share price under Q itself,
in what follows, (F𝑠)𝑠∈[0,𝑇] indicates the default-free filtration
generated by the asset 𝑆 which evolves under the risk-neutral
measure Q and according to the following SDE:

𝑑𝑆 (𝑡)

𝑆 (𝑡)
= 𝑟𝑡𝑑𝑡 + 𝜎 (𝑡, 𝑆𝑡) 𝑑𝑊 (𝑡) ,

𝑆0 = 𝑠0 > 0 ∈ R+,

(32)

where 𝑟 isF-measurable process indicating the risk-free rate.
We also assume that there exists a risk-free account 𝐵 whose
dynamic is given by

𝑑𝐵 (𝑡) = 𝑟𝑡𝐵 (𝑡) 𝑑𝑡,

𝐵0 = 1,

(33)

where we have used the notation introduced in Section 2,
while the assumptions on the coefficients appearing in (32)-
(33) will be specified in a while. We underline the notion
that we indicate by 𝑆(𝑡) the present R-value of the process
𝑆, whereas 𝑆𝑡 denotes the whole path up to time 𝑡, so that, in
complete generality, we have assumed both the risky asset and
the riskless rate to be path-dependent.

Remark 11. Until now, we have worked under the strong
assumption that there exists a risk-free rate 𝑟 with a
corresponding risk-free account. Nevertheless, the latter
assumption turns out to be rather unrealistic in concrete
financial markets, and this enlightens a major strength of
our approach, since it allows deriving a portfolio that is
independent of the risk-free rate 𝑟.

Given a rate 𝜉(𝑠), we will denote the discount factor
associated with 𝜉 by

𝐷 (𝑢, 𝑡; 𝜉) fl 𝑒−∫
𝑡

𝑢
𝜉
𝑠
𝑑𝑠
, (34)

and we also define𝐷(𝑢, 𝑡) fl 𝐷(𝑢, 𝑡; 𝑟).
Following [21, Sec. 2.1], we construct a replicating port-

folio taking all future cash flows and then discounting them
at the risk-free rate 𝑟. Moreover, to treat the problem in its
full generality, we will assume the following processes to
be possibly path-dependent, hence stating a difference with
respect to what has been done in [21].

In particular, we have first to consider the payments due
to the contract itself, which is a predictable process 𝜋𝑡 and
the terminal payoff of the claim Φ(𝑆𝑇), so that, at time 𝑡, the
cumulated discounted flow is given by

1{𝜏>𝑇}𝐷 (0, 𝑇)Φ (𝑆𝑇) + ∫
𝜏

𝑡

𝐷(𝑡, 𝑠) 𝜋𝑠𝑑𝑠. (35)
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We also have a random variable 𝜃𝜏 representing the cash
flow due to the default of one of the parties; hence, the
resulting cash flow is given by

1{𝑡<𝜏<𝑇}𝐷 (𝑡, 𝜏) 𝜃𝜏 = 1{𝑡<𝜏<𝑇} ∫
𝑇

𝑡

𝐷(𝑡, 𝑠) 𝜃𝑠𝑑1{𝜏≤𝑠}. (36)

We consider further a collateral account 𝐶𝑡, namely, an
asset or some other financial good that a borrower offers to
a lender to secure a loan, and we will use the convention
that 𝐶𝑡 > 0 and 𝐶𝑡 < 0 for the investor being the collateral
taker and the collateral provider, respectively. Moreover, we
assume that the collateral account is subjected to an interest
rate 𝑐𝑡, which might be different according to what party the
collateral taker is in; namely, we have

𝑐𝑡 = 1{𝐶
𝑡
>0}𝑐
+

𝑡
+ 1{𝐶

𝑡
<0}𝑐
−

𝑡
. (37)

Allowing also for rehypothecation, namely, allowing
banks and brokers to use assets that have been posted as
collateral by their clients, we end up with the following cash
flow:

∫

𝜏

𝑡

𝐷 (𝑡, 𝑠) (𝑟𝑠 − 𝑐𝑠) 𝐶𝑠𝑑𝑠. (38)

The contract will be hedged by a cash position denoted by𝐻𝑡,
respectively, by exploiting a position in a risky asset, denoted
by 𝐹𝑡. As we have already done, we use the convention that
𝐹𝑡 > 0 and 𝐹𝑡 < 0 if the investor is borrowing money and
if he is investing money, respectively. Again, we assume the
existence of two different rates

𝑓𝑡 = 1{𝐹
𝑡
>0}𝑓
+

𝑡
+ 1{𝐹

𝑡
<0}𝑓
−

𝑡
, (39)

so that the funding component cash flow reads as follows:

∫

𝜏

𝑡

𝐷 (𝑡, 𝑠) (𝑟𝑠 − 𝑓𝑠) 𝐹𝑠𝑑𝑠. (40)

A similar convention holds for 𝐻𝑡, so that (39)-(40)
become

ℎ𝑡 = 1{𝐻
𝑡
>0}ℎ
+

𝑡
+ 1{𝐻

𝑡
<0}ℎ
−

𝑡
, (41)

∫

𝜏

𝑡

𝐷 (𝑡, 𝑠) (ℎ𝑠 − 𝑓𝑠)𝐻𝑠𝑑𝑠. (42)

Eventually, summing up all the aforementioned cash
flows (35), (36), (38), (40), and (42), we have that the value of
the portfolio 𝑉 is given by

𝑉 (𝑡) = E
G
𝑡
[∫

𝜏

𝑡

𝐷 (𝑡, 𝑠)

⋅ (𝜋𝑠 + (𝑟𝑠 − 𝑐𝑠) 𝐶𝑠 + (𝑟𝑠 − 𝑓𝑠) 𝐹𝑠 − (𝑓𝑠 − ℎ𝑠)𝐻𝑠)]

+ E
G
𝑡
[1{𝜏>𝑇}𝐷 (𝑡, 𝑇)Φ (𝑆𝑇) + 1{𝑡<𝜏<𝑇}𝐷 (𝑡, 𝜏) 𝜃𝜏] ,

(43)

where we have denoted EG
𝑡
[⋅] fl E[⋅ | G𝑡]. Further, since

𝑉(𝑠) = 𝐹𝑠 + 𝐻𝑠 + 𝐶𝑠, we can substitute it in (43), obtaining

𝑉 (𝑡) = E
G
𝑡
[∫

𝜏

𝑡

𝐷 (𝑡, 𝑠) (𝜋𝑠 + (𝑓𝑠 − 𝑐𝑠) 𝐶𝑠

+ (𝑟𝑠 − 𝑓𝑠) 𝑉 (𝑠) − (𝑟𝑠 − ℎ𝑠)𝐻𝑠)]

+ E
G
𝑡
[1{𝜏>𝑇}𝐷 (𝑡, 𝑇)Φ (𝑆𝑇) + 1{𝑡<𝜏<𝑇}𝐷 (𝑡, 𝜏) 𝜃𝜏] .

(44)

For a concrete example of how (44) is practically derived,
we refer to [21, Sec. 2.2].

Switching to the default-free filtration, we can exploit the
results stated in [41, Sec. 5.1] and [42, Lemma 3.8.1]; see also
[21, Lemma 3.1, Lemma 3.3]. In particular, let us recall thatG
is the standard filtration, whereasF denotes the default-free
filtration.

Lemma 12. For any 𝑋 G-measurable random variable and
any 𝑡 ≥ 0, it holds that

E
G
𝑡
[1{𝑡<𝜏≤𝑠}𝑋] = 1{𝜏>𝑡}

EF
𝑡
[1{𝑡<𝜏≤𝑠}𝑋]

EF
𝑡
[1{𝜏>𝑡}]

. (45)

In particular, we have that, for anyG𝑡-measurable random
variable 𝑌, there exists an F𝑡-measurable random variable 𝑍
such that

1{𝜏>𝑡}𝑋 = 1{𝜏>𝑡}𝑍. (46)

Lemma 13. Let 𝜑𝑠 be a predictable process and let 𝜏𝐼 and 𝜏𝐶 be
a stopping time with intensity 𝜆𝐼

𝑡
> 0 and 𝜆𝐶

𝑡
> 0, respectively.

Assuming that 𝜏𝐼 and 𝜏𝐶 are independent and denoting 𝜏 fl
𝜏𝐼 ∧ 𝜏𝐶 and 𝜆𝑡 = 𝜆𝐼𝑡 + 𝜆

𝐶

𝑡
, then one has

E
G
𝑡
[1{𝑡<𝜏<𝑇}1{𝜏

𝐼
<𝜏
𝐶
}𝜑𝜏]

= 1{𝜏>𝑡}E
F
𝑡
[∫

𝑇

𝑡

𝐷 (𝑡, 𝑠; 𝜆) 𝜆
𝐼

𝑡
𝜑𝑠𝑑𝑠] .

(47)

So, by an application of Lemmas 12 and 13 and with slight
abuse of notation, we denote again by 𝑉(𝑡) the portfolio
evaluated under the default-free filtrationF; namely,

𝑉 (𝑡) = E
F
𝑡
[∫

𝜏

𝑡

𝐷 (𝑡, 𝑠; 𝑟 + 𝜆) (𝜋𝑠 + (𝑓𝑠 − 𝑐𝑠) 𝐶𝑠

+ (𝑟𝑠 − 𝑓𝑠) 𝑉 (𝑡) − (𝑟𝑠 − ℎ𝑠)𝐻𝑠)] + E
F
𝑡
[𝐷 (𝑡, 𝑇; 𝑟

+ 𝜆)Φ (𝑆𝑇) + 𝐷 (𝑡, 𝜏; 𝑟 + 𝜆) 𝜃𝜏] .

(48)

By (48) and proceeding as in [21, Sec. 3], we can immedi-
ately obtain the BSDE formulation for the portfolio𝑉; that is,
we have that 𝑉 evolves according to

𝑑𝑉 (𝑠) = − (𝜋𝑠 + (𝑓𝑠 − 𝑐𝑠) 𝐶𝑠 − (𝜆𝑠 + 𝑓𝑠) 𝑉 (𝑠)

− (𝑟𝑠 − ℎ𝑠)𝐻𝑠) 𝑑𝑠 − 𝑍 (𝑠) 𝑑𝑊 (𝑠) ,

𝑉 (𝑇) = Φ (𝑆𝑇) .

(49)
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3.1. The Pricing Path-Dependent PDE. In the previous sec-
tion, we have derived the BSDE that describes the evolution
of the financial portfolio, while, in the present section, we
are going to better specify the mathematical assumptions
regarding (49). We would like to underline the notion that
while some of the following assumptions are mainly taken
from [21, Sec. 4], some others are here formalized, to our best
knowledge, for the first time.

We assume that the dividend process 𝜋 depends on
time 𝑡 and on the underlying 𝑆; moreover, we assume the
dependence to be possibly path-dependent; namely, we have
𝜋(𝑡, 𝑆𝑡). Further, we assume that 𝜋 satisfies Assumptions 3.

Inwhat follows, all the rates 𝑟,𝑓, 𝑐, ℎ, and𝜆 are taken to be
deterministic and bounded in time and possibly dependent
on past values.

We assume that 𝜃 has the form

𝜃𝑡 = 𝜖 (𝑡) − 1 {𝜏𝐶 < 𝜏𝐼} LGD𝐶 (𝜖 (𝑡) − 𝐶𝑡)
+

+ 1 {𝜏𝐼 < 𝜏𝐶} LGD𝐼 (𝜖 (𝑡) − 𝐶𝑡)
−
,

(50)

where LGD denotes the loss given default, commonly defined
as the share of an asset that is lost when a borrower defaults,
and (𝜖(𝑡) − 𝐶𝑡)

+ and (𝜖(𝑡) − 𝐶𝑡)
− denote the positive part and

the negative part, respectively.Wewill not enter here financial
details regarding 𝜃𝑡, since it would go beyond the aim of the
present work, but we refer the interested reader to [10] for a
deep treatment of closeout values.We assume then that 𝜖(𝑡) =
𝑉(𝑡).

The hedging term 𝐻 is of the form 𝐻𝑠 = 𝐻(𝑠, 𝑆𝑠, 𝑉(𝑠),
𝑍(𝑠)) and it satisfies Assumptions 6; moreover, the diffusion
term 𝜎, appearing in (32), satisfies Assumptions 3.

Last but not least, since this is the main novelty of the
present approach, we assume that the collateral depends
on portfolio past values. As said above, this implies that
the BSDE is highly irregular, and even the existence and
uniqueness of a solution are in general not granted under
standard assumptions. However, as pointed out in [15, Rem.
5.5], in practice, it often happens that the collateralization
scheme is path-dependent in 𝑉. We thus assume that the
collateral 𝐶 is of the following particular form:

𝐶(𝑠) = 𝛼𝑡𝑉(𝑡),

𝑉(𝑡) fl
1

𝛿
∫

0

−𝛿

𝑉 (𝑡 + 𝑠) 𝑑𝑠,

(51)

where 𝛼𝑡 ∈ (0, 1]; that is, we assume the collateral to be a frac-
tion of a time average of the portfolio. Notice that in principle
also 𝜃 in (50) depends on 𝑉(𝑡) so that in what follows we
will use the notation 𝜃𝑠(𝑉(𝑠)). Moreover, in order to satisfy
condition (26), we have that 𝛿 is positive and small enough.
Alternatively, we can set 𝛿 = 𝑇, at the cost of assuming that
the Lipschitz constant in (32) satisfies condition (26).

We would like to underline the notion that previous
choice is just one of the possible schemes admitted in our
mathematical setting; see, for example, (28)-(29).

The aforementioned assumptions can be better formal-
ized as follows.

Assumptions 14. One has the following:
(C1)The parameters 𝑟, 𝑓, 𝑐, ℎ, and 𝜆 are all bounded

elements ofC.
(C2) 𝐻 : [0, 𝑇] ×C ×R ×R→ R, and there exist positive

constants 𝐿𝐻 > 0 and𝑀𝐻 > 0 and 𝑝 ≥ 1 such that

(i) 𝜙 󳨃󳨀→ 𝐻(𝑡, 𝜙, 𝑦, 𝑧) is continuous,

(ii) 󵄨󵄨󵄨󵄨󵄨𝐻 (𝑡, 𝜙, 𝑦, 𝑧) − 𝐻 (𝑡, 𝜙, 𝑦
󸀠
, 𝑧
󸀠
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐿𝐻 (
󵄨󵄨󵄨󵄨󵄨
𝑦 − 𝑦
󸀠󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑧 − 𝑧
󸀠󵄨󵄨󵄨󵄨󵄨
) ,

(iii) 󵄨󵄨󵄨󵄨𝐻 (𝑡, 𝜙, 0, 0)
󵄨󵄨󵄨󵄨 < 𝑀𝐻 (1 +

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

𝑝

𝑇
) .

(52)

(C3) Φ : C → R is continuous and, for all 𝜙 ∈ C, there
exist𝑀Φ > 0 and 𝑝 ≥ 1, such that

󵄨󵄨󵄨󵄨Φ (𝜙)
󵄨󵄨󵄨󵄨 ≤ 𝑀Φ (1 +

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

𝑝

𝑇
) . (53)

(C4) 𝜎 : [0, 𝑇] × C → R is continuous and, for any 𝑡 ∈
[0, 𝑇], 𝜙, 𝜙󸀠 ∈ C, there exists ℓ𝜎 > 0 such that

󵄨󵄨󵄨󵄨󵄨
𝜎 (𝑡, 𝜙) − 𝜎 (𝑡, 𝜙

󸀠
)
󵄨󵄨󵄨󵄨󵄨
≤ ℓ𝜎

󵄩󵄩󵄩󵄩󵄩
𝜙 − 𝜙
󸀠󵄩󵄩󵄩󵄩󵄩𝑇
. (54)

In light of Assumptions 14, let us consider the following
forward-backward collateralization scheme:

𝑆
𝑢,𝜙
(𝑡) = 𝜙 (𝑡) + ∫

𝑡

𝑢

𝑟𝑠𝑑𝑠 + ∫

𝑡

𝑢

𝜎 (𝑠, 𝑆
𝑢,𝜙

𝑠
) 𝑑𝑊 (𝑠) ,

𝑠 ∈ [𝑢, 𝑇] ,

𝑆
𝑢,𝜙
(𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [0, 𝑢) ,

𝑉
𝑢,𝜙
(𝑡) = Φ (𝑆

𝑢,𝜙

𝑇
)

+ ∫

𝑇

𝑡

𝐵 (𝑠, 𝑆
𝑢,𝜙

𝑠
, 𝑉
𝑢,𝜙
(𝑠) , 𝑍

𝑢,𝜙
(𝑠) , 𝑉

𝑢,𝜙

(𝑠)
) 𝑑𝑠

− ∫

𝑇

𝑡

𝑍
𝑢,𝜙
(𝑠) 𝑑𝑊 (𝑠) ,

𝑉
𝑢,𝜙
(𝑡) = 𝑉

𝑡,𝜙
(𝑡) , 𝑡 ∈ [0, 𝑢) ,

(55)

with

𝐵 fl (𝑓𝑠 + 𝜆𝑠) 𝑉
𝑢,𝜙
(𝑠) − 𝜋𝑠 − 𝜃𝑠 (𝑉(𝑠))

+ (𝑟𝑠 − ℎ𝑠)𝐻 (𝑠, 𝑆𝑠, 𝑉 (𝑠) , 𝑍 (𝑠))

− 𝛼𝑠 (𝑓𝑠 − 𝑐𝑠) 𝑉(𝑠).

(56)

Remark 15. It is worth mentioning that, in the setting
represented by (55), we are generalizing the framework
considered in [21]. In fact, we have that, besides assuming the
collateralization scheme to be dependent on the past values
of 𝑉, we are also considering both the hedging strategy and
the terminal payoff to be possibly path-dependent. Moreover,
we do not require any differentiability assumption on Φ. The
latter is a crucial point when dealing with concrete financial
derivatives often characterized by terminal payoffs which are
Lipschitz continuous but fail to be differentiable.
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With respect to the forward-backward system (55), we
have the following.

Theorem 16. Let one consider the forward-backward delayed
system (55) with Assumptions 14. Then, for every (𝑢, 𝜙) ∈
[0, 𝑇] ×C, it holds that

𝑉
𝑢,𝜙
(𝑡) = 𝑢 (𝑡, 𝑆

𝑢,𝜙
) , ∀𝑡 ∈ [𝑢, 𝑇] , (57)

where 𝑢(𝑡, 𝜙) = 𝑉𝑡,𝜙(𝑡) is a viscosity solution of the following
path-dependent PDE:

𝜕𝑡𝑢 (𝑡, 𝜙) +
1

2
𝜎
2
(𝑡, 𝜙) 𝜕

2

𝑥𝑥
𝑢 (𝑡, 𝜙) + 𝑟𝑡𝜕𝑥𝑢 (𝑡, 𝜙)

= 𝐵 (𝑡, 𝜙, 𝑢 (𝑡, 𝜙) , 𝜕𝑥𝑢 (𝑡, 𝜙) 𝜎 (𝑡, 𝜙) , (𝑢 (⋅, 𝜙))𝑡
) ,

𝜙 ∈ C, 𝑡 ∈ [0, 𝑇) ,

𝑢 (𝑇, 𝜙) = Φ (𝜙) , 𝜙 ∈ C,

(58)

with
𝐵 (𝑡, 𝜙, 𝑦, 𝑧, 𝑦̂) fl (𝑓𝑠 + 𝜆𝑠) 𝑦 − 𝜋𝑠 − 𝜃𝑠 (𝑦̂)

+ (𝑟𝑠 − ℎ𝑠)𝐻 (𝑠, 𝜙, 𝑦, 𝑧)

− 𝛼𝑠 (𝑓𝑠 − 𝑐𝑠) 𝑦̂.

(59)

Proof. Because of Assumptions 14, we have that (55) satisfies
Assumptions 3 and 6; hence, exploiting Theorems 4 and 7,
we have existence and uniqueness of a solution to the
delayed forward-backward system (55). Thus, by using the
results stated in the previous sections, we can derive the
characterization of (55) given in (65). In particular, we obtain
that Theorem 10 holds true, and the claim follows.

We would like to underline the notion that the scheme
described by (55) still depends on the nonrealistic assumption
of a risk-free rate 𝑟.Then, in order to consider amore concrete
case, namely, without the risk-free rate, we will exploit the
results stated in [21, Sec. 6]. In particular, we will assume
the hedging strategy to be a classical delta-hedging strategy;
namely,

𝐻(𝑠, 𝑆𝑠, 𝑉 (𝑠) , 𝑍 (𝑠)) fl 𝑆𝑡
𝑍 (𝑡)

𝜎 (𝑡, 𝑆𝑡)
, (60)

so that (55) can be rewritten as follows:

𝑆
𝑢,𝜙
(𝑡) = 𝜙 (𝑡) + ∫

𝑡

𝑢

ℎ𝑠𝑑𝑠 + ∫

𝑡

𝑢

𝜎 (𝑠, 𝑆
𝑢,𝜙

𝑠
) 𝑑𝑊 (𝑠) ,

𝑠 ∈ [𝑢, 𝑇] ,

𝑆
𝑢,𝜙
(𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [0, 𝑢) ,

𝑉
𝑢,𝜙
(𝑡) = Φ (𝑆

𝑢,𝜙

𝑇
) + ∫

𝑇

𝑡

𝐵̃ (𝑠, 𝑆
𝑢,𝜙

𝑠
, 𝑉
𝑢,𝜙
(𝑠) , 𝑉

𝑢,𝜙

(𝑠)
) 𝑑𝑠

− ∫

𝑇

𝑡

𝑍
𝑢,𝜙
(𝑠) 𝑑𝑊 (𝑠) ,

𝑉
𝑢,𝜙
(𝑡) = 𝑉

𝑡,𝜙
(𝑡) , 𝑡 ∈ [0, 𝑢) ,

(61)

with

𝐵̃ fl (𝑓𝑠 + 𝜆𝑠) 𝑉
𝑢,𝜙
(𝑠) − 𝜋𝑠 − 𝜃𝑠 (𝑉(𝑠))

− 𝛼𝑠 (𝑓𝑠 − 𝑐𝑠) 𝑉(𝑠).

(62)

Thus, we are now dealing with a scheme, that is, the one
represented by system (61), which is independent of the risk-
free rate 𝑟, where the parameter ℎ mimes the role played by
the risk-free rate 𝑟 in the classical Black-Scholes equation. For
the latter setting, the following result holds.

Theorem 17. Let one consider the forward-backward delayed
system (61), assuming both Assumptions 14 and the existence of
positive constants 𝑘𝜎 and𝐾𝜎 such that, for any (𝑡, 𝜙) ∈ [0, 𝑇] ×
C, the following holds:

𝑘𝜎 < 𝜎 (𝑡, 𝜙) < 𝐾𝜎. (63)

Then, for every (𝑢, 𝜙) ∈ [0, 𝑇] ×C,

𝑉
𝑢,𝜙
(𝑡) = 𝑢 (𝑡, 𝑆

𝑢,𝜙
) , ∀𝑡 ∈ [𝑢, 𝑇] , (64)

where 𝑢(𝑡, 𝜙) = 𝑉𝑡,𝜙(𝑡) is a viscosity solution of the following
path-dependent PDE:

𝜕𝑡𝑢 (𝑡, 𝜙) +
1

2
𝜎
2
(𝑡, 𝜙) 𝜕

2

𝑥𝑥
𝑢 (𝑡, 𝜙) + 𝑟𝑡𝜕𝑥𝑢 (𝑡, 𝜙)

= 𝐵̃ (𝑡, 𝜙, 𝑢 (𝑡, 𝜙) , 𝜕𝑥𝑢 (𝑡, 𝜙) 𝜎 (𝑡, 𝜙) , (𝑢 (⋅, 𝜙))𝑡
) ,

𝜙 ∈ C, 𝑡 ∈ [0, 𝑇) ,

𝑢 (𝑇, 𝜙) = Φ (𝜙) , 𝜙 ∈ C,

(65)

with

𝐵̃ (𝑡, 𝜙, 𝑦, 𝑦̂) fl (𝑓𝑠 + 𝜆𝑠) 𝑦 − 𝜋𝑠 − 𝜃𝑠 (𝑦̂)

− 𝛼𝑠 (𝑓𝑠 − 𝑐𝑠) 𝑦̂.

(66)

Proof. The proof is analogous to the one provided for Theo-
rem 16.

4. Conclusion and Further Development

Inspired by the increasing attention to financial models
which take into account credit risk factors, we have gener-
alized results provided in [10, 21] by exploiting techniques
developed to treat backward stochastic differential equations
(BSDEs).

Our BSDE approach generalizes the approach derived in
[10, 21] allowing the coefficients n the resulting pricing PDE
to be possibly path-dependent. Moreover, as major novelty of
our work, we are also able to treat a collateralization scheme
that can depend on the past value of the contract.

We would like to underline the notion that the previous
approach will be the base of our future works related to the
fundamental topic of allowing for closeout rule with delay.
Previous situation usually happens when one considers the
time gap between the actual default of a party and the real
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closure of a contract. In such interval of time, it may happen
that also the second party could default. Therefore, when one
has to price a contract, such a time delay has to be taken into
account; see, for example, [10] for a detailed treatment of the
topic.

With respect to the aforementioned setting, we believe
that both BSDEs techniques and the path-dependent calculus
could turn out to be useful tools to treat the problem in
concrete financial frameworks.

According to the recent literature, it is also important to
note that the BSDEs techniques investigated in the present
paper are also strongly connected to theoretical and, respec-
tively, applied, questions (see, e.g., [43, 44]) that can lead
to highly interesting developments, also from the statistical
point of view.
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[16] S. Crépey, “Bilateral counterparty risk under funding
constraints—part I: pricing,” Mathematical Finance, vol.
25, no. 1, pp. 1–22, 2015.
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Risk Modeling, Osaka University Press, Osaka, Japan, 2009.

[43] C. Marinelli, L. Di Persio, and G. Ziglio, “Approximation and
convergence of solutions to semilinear stochastic evolution
equations with jumps,” Journal of Functional Analysis, vol. 264,
no. 12, pp. 2784–2816, 2013.

[44] L. Di Persio and M. Frigo, “Gibbs sampling approach to
regime switching analysis of financial time series,” Journal of
Computational and Applied Mathematics, vol. 300, pp. 43–55,
2016.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


