
Chasing infections by unveiling program dependencies

Mila Dalla Preda1 and Isabella Mastroeni2

1 Dipartimento di Informatica - Univ. di Bologna, Italy
dallapre@cs.unibo.it

2 Dipartimento di Informatica - Univ. di Verona, Italy
isabella.mastroeni@univr.it

Abstract. Metamorphic malware continuously modify their code, while preserv-
ing their functionality, in order to foil misuse detection. The key for defeating
metamorphism relies in a semantic characterization of the embedding of the mal-
ware into the target program. Indeed, a behavioral model of program infection
that does not relay on syntactic program features should be able to defeat meta-
morphism. Moreover, a general model of infection should be able to express de-
pendences and interactions between the malicious code and the target program.
ANI is a general theory for the analysis of dependences of data in a program. We
propose an high order theory for ANI, later called HOANI, that allows to study
program dependencies. Our idea is then to formalize and study the malware de-
tection problem in terms of HOANI.

1 Introduction

One of the major challenge in computer security is the detection and neutralization of
metamorphic malware. A metamorphic malware is a malicious program equipped with
a metamorphic engine that takes the malware, or parts of it, as input and morphs it at
run-time to a syntactically different but semantically equivalent variant, in order to foil
traditional misuse malware detectors. Misuse detectors are syntactic in nature as they
identify malware infection by comparing the byte sequence comprising the body of the
malware against a signature database [13]. It is exactly this syntactic characterization
of the malicious code that makes standard misuse malware detectors so vulnerable to
metamorphism. Thus, in order to handle metamorphism a malware detector should be
able to recognize the metamorphic variants of a malware, namely the possible evolu-
tions of the malicious code. The metamorphic engine is typically implemented as a set
of code obfuscations that preserve program semantics to some extent. Thus, in order
to handle metamorphism a malware detector should characterize infection in terms of
semantic properties rather than syntactic properties (like signatures). For this reason
researchers have started to investigate formal approaches to malware detection where
infection is specified in terms of behavioral properties of programs (e.g., [1, 2, 6, 9]).
As usual, the efficiency of these approaches is stated in terms of soundness (no false
positives) and completeness (no false negatives) properties. In [6] the authors present a
general framework based on program semantics and abstract interpretation for proving

Isabella

Isabella

Isabella

Isabella

soundness and completeness of malware detectors in the presence of obfuscations. This
semantic model for malware detection implicitly assumes that a malware appends its
code and behavior to the one of the target program (the victim) without interacting with
it. Hence, this formal model of malware infection is not appropriate for the descrip-
tion and identification of malware whose behaviors interferes with the one of the target
program (either with spurious or real dependences added to obstruct program analysis).

In order to develop a more general theory that is able to describe the interactions
between the malware and the target program we need a formal framework that is able
to describe dependences between fragments of the same program. It is well known that
non-interference [12] (NI) provides an ideal theory for reasoning on data dependencies
in a program and that abstract non-interference consists in a generalization of the the-
ory weakening the dependency analysis between data [7]. Our idea is to lift the ANI
framework on programs and to define a sort of high-order ANI (HOANI) that charac-
terizes dependences and relations among functions, and therefore programs, instead of
data. The idea is that we detect infection when the semantics of a program matches
the overall semantics of a target program corrupted by a malware. Indeed, if the mal-
ware detector could observe differences it would say that the specific malware has not
infected the program, since we cannot recognize its semantics in the semantics of the
program. This definition of malware detection allows to use HOANI for characterizing
both soundness and completeness of the malware detectors, but allows even something
more. We can inherits the attacker model and maximal information release characteri-
zations of ANI, which lifted high order and instantiated to the malware detection field
seem to provide a way to certify which classes of metamorphic engines do not deceive
the detector, and to make a training of the detector depending on the metamorphic en-
gine we aim to unveil. Finally, we prove that HOANI is a generalization of the semantic
approach cited above [6] to malware detection since under specific conditions the two
approaches collapse.

2 Background

Mathematical notation. If S and T are sets, then }(S) denotes the powerset of S and
S ⇥ T denotes the Cartesian product of S and T . If f : S�!T , Y ✓ S, and X ✓ T

then f(Y) def= {f(y) | y 2 Y } and f

�1(X) def=
�

x

��
f(x) 2 X

. We will often denote

f({x}) as f(x) and use lambda notation for functions. f�g def= �x. f(g(x)). hC,i de-
notes a poset C with ordering relation , while hC,,_,^,>,?i denotes a complete
lattice C, with ordering , lub _, glb ^, top and bottom element > and ? respectively.
id

def= �x. x and T def= �x. >. The point-wise ordered set of monotone functions, de-
noted C1

m�!C2, is a complete lattice hC1
m�!C2,v,t,u, T, �x.?i. f : C1�!C2

is (completely) additive if f preserves lub’s of all subsets of C1 (emptyset included).
Continuity, denoted c�! , holds when f preserved lubs’s of chains. Co-addittivity and
co-continuity are dually defined.

2

Isabella

Abstract interpretation. We use the framework of abstract interpretation [3, 4] for mod-
eling both the observational capability of malware detector and the invariant proper-
ties of metamorphic engines. Abstract interpretation is used for reasoning on proper-
ties rather than on (concrete) data values. Abstract interpretation is a general theory
for deriving sound approximations of the semantics of discrete dynamic systems, e.g.,
programming languages [3]. Approximation can be equivalently formulated either in
terms of Galois connections or closure operators [4]. An upper closure operator (uco
for short) ⇢ : C ! C on a poset C, representing concrete objects, is monotone, idem-
potent, and extensive: 8x 2 C. x C ⇢(x). The upper closure operator is the func-
tion that maps the concrete values to their abstract properties, namely with the best
possible approximation of the concrete value in the abstract domain. Formally, clo-
sure operators ⇢ are uniquely determined by the set of their fix-points ⇢(C), for in-
stance Par = {Z,ev,od, ?}. For upper closures, X ✓ C is the set of fix-points of
⇢ 2 uco(C) iff X is a Moore-family of C, i.e., X = M(X) def= {^S | S ✓ X} —
where ^? = > 2 M(X). The set of all upper closure operators on C, denoted
uco(C), is isomorphic to the so called lattice of abstract interpretations of C [4].
If C is a complete lattice then uco(C) ordered point-wise is also a complete lattice,
huco(C),v,t,u,>, idiwhere for every ⇢, ⌘ 2 uco(C), {⇢i}i2I ✓ uco(C) and x 2 C:
⇢ v ⌘ iff 8y 2 C. ⇢(y)  ⌘(y) iff ⌘(C) ✓ ⇢(C); (ui2I⇢i)(x) = ^i2I⇢i(x); and
(ti2I⇢i)(x) = x , 8i 2 I. ⇢i(x) = x. Given an abstraction, we want also to
understand whether the program computes accurately on the property. In general, the
abstract interpretation framework guarantees that the abstract computation is sound,
namely we can only lose information by computing on abstract properties. On the other
hand, the accuracy of the computation is modeled in terms of completeness: an ab-
stract domain is complete for a program if the computation of the program, on the
abstract properties, corresponds precisely to the abstraction of the concrete computa-
tion. In other words, the abstract domain is as precise as possible with respect to the
program to compute. The best correct approximation of f is f

bca def= ↵�f�� (or equiv-
alently ��↵�f���↵). It is known that f

] is sound iff f

bca v f

] and this implies that
↵(lfp(f))  lfp(f bca)  lfp(f]) [4]. In the following, if [[P]] is specified as fix-point of
(a combination of) predicate-transformers FP : C

c�!C, and ⇢ 2 uco(C), we denote
by [[P]]⇢ the (fix-point) semantics associated with F

bca
P = ⇢�FP �⇢. [[P]]⇢ is the best

correct abstract interpretation of P in ⇢. In this case ⇢([[P]])  [[P]]⇢.
Abstract non-interference. Abstract non-interference (ANI) [7] is a natural weakening
of non-interference by abstract interpretation. Suppose the variables of program split in
private (H) and public (L). Let ⌘, ⇢ 2 uco(VL) and � 2 uco(VH), where VL and VH are
the domains of L and H variables. ⌘ and ⇢ characterise the attacker. Let � 2 uco(VH),
which states what, of the private data, can flow to the output observation, the so called
declassification of � [10]. A program P satisfies ANI, and we write [⌘]P (�) ⇢), if
8h1, h2 2 VH

,8l1, l2 2 VL :

⌘(l1) = ⌘(l2) ^ �(h1) = �(h2)) ⇢([[P]](h1, l1)L) = ⇢([[P]](h2, l2)L). (1)

3

This notion says that, whenever the attacker is able to observe the input property ⌘ and
the output property ⇢, then it can observe nothing more than the property � of private
input. It is possible to systematically characterize the most concrete output observation
for a program, given the input one [7]. The idea is that of abstracting in the same object
all the elements that, if distinguished, would generate a visible flow. On the other hand,
we can characterize the maximal information that a program semantics allows to flow,
namely which is the most abstract property that needs to be declassified in order to
guarantee the non-interference of the program [7].

3 The Ingredients

Separability and Program Integration. Let us recall the notions of interleave and
separability introduced in [11]. Consider two disjoint sets of variables X = {x1 . . . xn}
and Y = {y1 . . . yn}. We use notation x̄ to refer to the tuple hx1 . . . xni, notation xi

to refer to the value stored in variable xi, and notation x̄ to refer to the tuple of values
hx1 . . .xni. We define the set of possible states over X and Y as follows:

⌃X:Y =
�
hx1 . . .xn : y1 . . .yni

��
X = {x1 . . . xn}, Y = {y1 . . . yn}

When Y = ? we refer to the set of states over X simply as ⌃X . Every trace � 2 ⌃

⇤
X:Y

is of the form � = hx̄1 : ȳ1ihx̄2 : ȳ2i . . . with hx̄i, ȳii 2 ⌃X:Y for every i. Let ✏ denote
the empty trace. We define the projection function ⇡X : ⌃X:Y ! ⌃X as ⇡X(✏) = ✏,
⇡X(hx̄1 : ȳ1i�) = x̄1⇡X(�), and similarly the projection function ⇡Y : ⌃X:Y ! ⌃Y .
According to [11] we define function interleave : ⌃

⇤
X:Y ⇥ ⌃

⇤
X:Y ! ⌃

⇤
X:Y such that

interleave(�1, �2) = � iff ⇡X(�) = ⇡X(�1) and ⇡Y (�) = ⇡Y (�2). A set of traces
� 2 ⌃X:Y satisfies separability iff it is closed under interleave, namely if 8�1, �2 2 �

then interleave(�1, �2) 2 � .
We model program integration as a function I : P⇥P�!P that given two programs

combines them into one. Let Var(P) denote the variables of program P . We interpret
the notions of interleaving and separability in the context of program integration.

Definition 1 An integration function I : P ⇥ P�!P satisfies separability if for every
pair of programs Q and T with disjoint variables, i.e., Var(Q) \ Var(T) = ?, the set
of traces [[I(Q, T)]] 2 }(⌃⇤

Var(Q):Var(T)
) is closed for interleave.

This means that, when the integration function satisfies separability, the behaviors of
programs Q and T are kept separate and independent in the behavior of the integrated
program I(Q, T). In other words an integration functions satisfies separability when it
does not add dependences between the programs it composes. Indeed, when we have
separability we believe that it is reasonable to assume that the behavior of I(Q, T)
restricted to Q coincides exactly with the behaviour of Q, namely that if I satisfies
separability then 8Q, T 2 P : ⇡

Var(Q)([[I(Q, T)]]) = [[Q]].

4

The Malware Detection Problem. A malware detector can be modeled as a function
D : P⇥ P ! {true, false} that decides whether a program is infected with a malware
or a metamorphic variant of it. Given M,P 2 P we denote with M ,! P the fact
that program P is infected with malware M . An ideal metamorphic malware detector
should be both sound (never erroneously claim that a program is infected) and complete
(detect all metamorphic variants), namely it should satisfy the following:

D(M,P) = true , 9M 0 metamorphic variant of M : M

0
,! P

The weaker notions of relative soundness/completeness are used to certify soundness
and completeness of a given malware detector wrt a class of obfuscations [6] .

Definition 2 Let O be a set of obfuscations. A malware detector D is sound for O if
D(P,M) = true) 9O 2 O : O(M) ,! P . A malware detector D is complete for
O if 8O 2 O : O(M) ,! P) D(P,M) = true .

In the following we formalize the notion of infection in terms of program integration:
M ,! P iff 9T. [[P]] = [[I(M,T)]]. Hence, the integration function I models infection
(we may have different infection functions). For instance, if the malware is a standard
file infector appending its code to a target file, then the integration is simply the con-
catenation of the codes involved and it would be modeled by an integration function
that satisfies separability.

Higher-order Abstract Noninterference. In order to model non-interference in code
transformations such as code obfuscation and metamorphism, we consider an higher-
order version of ANI, where the objects of observations are programs instead of values.
Hence, we have a part of a program (semantics) that can change and that is not observ-
able, and the environment which remains the same up to an observable property. The
function analyzed by HOANI is a program integration function, which takes the two
parts of the program and provides a program as result. The output observation is the
best correct approximation of the resulting program. Consider programs P 2 P and the
corresponding semantics, i.e., [[P]]. Hence, we define

⌘([[P1]]) = ⌘([[P2]]) ^ �([[Q1]]) = �([[Q2]])) ⇢([[I(Q1, P1)]]) = ⇢([[I(Q2, P2)]]) (2)

Note that, the abstractions can be any abstract property on programs. In the follow-
ing, we consider HOANI for a particular family of abstractions, and in particular for
semantics’ bca. In other words, if we have ⇢ 2 uco(}(⌃)), then we consider ⇢

⇢ 2
uco(}(⌃) m�!}(⌃)) such that ⇢

⇢ def= �f. ⇢f⇢ [5]. By noting that, ⇢

⇢([[P]]) = [[P]]⇢

(defined in Sect. 2), we can rewrite Eq. 2 in the following HOANI notion:

[[P1]]⌘ = [[P2]]⌘ ^ [[Q1]]� = [[Q2]]� =) [[I(Q1, P1)]]⇢ = [[I(Q2, P2)]]⇢ (3)

5

Example 1. Consider the following program fragments, where 10! = 3628800:

Q1 :

2

6664

prod = 1; x = 1;

while x < 11 {
prod = prod · x;

x = x + 1};

Q2 :

2

6664

prod = 10!; x = 11;

while x > 1 {
x = x� 1;

prod = prod/x};

P1 :

2

6664

sum = 0; x = 1;

while x < 11 {
sum = sum + x;

x = x + 1};

P2 :

2

6664

sum = 55; x = 11;

while x > 1 {
x = x� 1;

sum = sum� x};

Consider, as I (T = [[I]]) the integrating algorithm proposed by [8], providing the
following resulting programs:

I(Q1, P1) :

2

66666664

prod = 1; sum = 0;

x = 1;

while x < 11 {
prod = prod · x;

sum = sum + x;

x = x + 1};

I(Q2, P2) :

2

66666664

prod = 10!; sum = 55;

x = 11;

while x > 1 {
x = x� 1;

prod = prod/x;

sum = sum� x};

Consider the abstract domain ◆ 2 uco(}([�m,m])) of limited intervals, where m 2 Z is
the maximal integer. In this case ◆(x) = [min(x), max(x)]. Interval analysis is defined
in [3], with standard bca abstract interpretations for arithmetic operations on intervals:
�, �, . Then we have that

[[Q1]]◆ = [[Q2]]◆ ^ [[P1]]◆ = [[P2]]◆ =) [[I(Q1, P1)]]◆ = [[I(Q2, P2)]]◆

This HOANI property of the considered integration algorithm tells us that we can vary
the involved programs leaving unchanged the variables’ intervals without inducing any
variation in the interval analysis of the resulting program.

4 Malware detection by unveiling program dependencies

4.1 Abstract noninterference-based malware detector

In this section, we define a notion of malware detector inspired by higher order abstract
noninterference, let us call it ANIMD. The idea is that a program P is infected with a
possibly metamorphic variant of malware M if it is (semantically) equivalent, at least
up to an observation (program analysis), to the integration of a code segment T with
the code of the malware M . Formally, given ⇢ 2 uco(}(⌃⇤

Var(P)
)):

ANIMD⇢(M,P) = true , 9T 2 P : [[I(M,T)]]⇢ = [[P]]⇢

Namely a program P is infected with a malware M if it behaves wrt ⇢ like a target
program T infected with malware M .

6

Given a metamorphic engine ME we assume that it is possible to identify a seman-
tic property � that is preserved by any code transformation generated by ME, while
each transformation changing � cannot be generated by ME. This means that ME can
be modeled as a semantic property � 2 uco(}(⌃⇤

Var(M)
)) and that the set of all the

obfuscating transformations generated by ME can be formalized as follows:

O� =
�

O
��8P,Q 2 P. [[P]]� = [[Q]]� , P = O(Q)

.

This are exactly all and only the transformations used by the malware equipped with
ME as stealthing technique. We can either assume to know this property, or given a
set of metamorphic malware variants we can derive it and then use it to model the
metamorphic engine (possibly catching also unseen variants). First of all, let us rewrite
HOANI in the context of malware detector: by changing the version of the malware,
up to an observable property �, the malware detector analysing ⇢ is not deceived by the
differences between the versions and recognize the same infection in both the analyzed
programs. Hence, we define HOANI�

⇢ :

[[M]]� = [[M 0]]� =) [[I(M,P)]]⇢ = [[I(M 0
, P)]]⇢ (4)

At this point we study the precision of the malware detectors based on HOANI in terms
of soundness and completeness.

Theorem 2 (Soundness). Let O� =
�

O
��8P,Q 2 P. [[P]]� = [[Q]]� , P = O(Q)

,

then ANIMD⇢ is sound for O� whenever:

[[M]]� = [[M 0]]� (= [[I(M,P)]]⇢ = [[I(M 0
, P)]]⇢ (5)

Theorem 3 (Completeness). If HOANI�
⇢ holds, then ANIMD⇢ is complete for O�.

4.2 Certifying and Training Malware Detectors.

In this section we discuss how we can exploit the HOANI framework in order to un-
derstand how we can certify the “power” of a malware detector in terms of the classes
of metamorphic engines unable to deceive it, and how we can do a training of malware
detectors starting from a class of obfuscation techniques characterizing a metamorphic
engine that we aim to defeat. In this way we could formally understand the relation be-
tween the metamorphic invariant property and the analysis performed by the detector.
The ANI framework allows to describe two transformations, one characterizing the
most concrete output observation unable to observe interferences, and the other charac-
terizing the maximal property that do not cause interference [7]. We believe that these
two transformations, once lifted high order, would provide exactly a way for certify-
ing and training malware detectors. The main difference between ANI and HOANI is
that while abstracting data means to consider properties of data, i.e., sets of values; ab-
stracting programs means to consider the best correct approximation of their semantics,

7

i.e., the abstraction of a function is a more abstract function instead of a set of func-
tions. This difference makes not so immediate to extend ANI from data to functions
and requires a deeper analysis of a higher-order notion of abstract non-interference.
Note that, because the domain transformers introduced for ANI [7] extended to the
definition above of HOANI would generate sets of programs and therefore of seman-
tics (i.e., functions), which in general represent program/semantics properties, we can
build a correspondence between semantic properties, i.e., sets of semantic functions,
and best correct approximations. In other words, we can always associate a best correct
approximation with any set of functions, while we can construct a set of functions cor-
responding to any given best correct approximation of a given function.
Certification: Given ⇢ in HOANI we can characterize the maximal amount of infor-
mation released �. This property � is non-redundant, i.e., any change of � do cause
interference, and it is such that when it is invariant then there is no interference in the
observation ⇢. Hence, if we start from a malware detector ANIMD⇢, we can charac-
terize the most concrete property � such that ANIMD⇢ is sound and complete for O�.
This means that ANIMD⇢ is sound and complete for any metamorphic engine whose
code transformations preserves at least �

Training: Given a property � the HOANI framework allows to characterize the most
concrete observation unable to observe interferences when the property � is unchanged.
In other words, if we start from a set of obfuscations O, whose semantic invariant is the
property � then we can characterize the most concrete ⇢ such that the corresponding
ANIMD⇢ is complete for O. Namely, we can modify the observation capability of the
malware detector depending in the class of obfuscation we aim to defeat.

4.3 What’s new in ANIMD?

In this section we compare the prosed ANIMD with the closest framework of semantic-
based malware detectors based on abstract interpretation [6]. The two approaches are
clearly related since both model the malware detector as parametric on the program
analysis that it is able to perform. Moreover, in both the approaches the malware code
has in some way to be separated by the original program and both the approaches
characterize classes of obfuscation techniques, those used by a metamorphic engine,
in terms of the invariant property left unchanged by the transformations. This means
that we can quite easily compare these two approaches. In particular, we show that
ANIMD generalize all these aspects by considering the best correct approximation of
the program semantics instead of the output abstraction, and by considering a generic
integration function instead of the trivial composition of programs. Hence, let us first
recall the basic definitions of the first semantic malware detector [6].

Semantic Malware Detector. The idea of [6] is to classify a program P as infected
by a possibly metamorphic variant of malware M if there exists a portion of P whose

8

abstract behavior corresponds to the abstract behavior of M . This implicitly assumes
that infection does not add dependences between the malware and the target program,
namely that the integration function that models infection satisfies separability. Given
⇢ 2 uco(}(⌃

Var(M))), we can rewrite the semantic malware detector of [6] as:

SMD⇢(M,P) = true , 9Q, T 2 P : [[P]] = [[I(Q, T)]] ^ ⇢([[M]]) = ⇢([[Q]])

SMD vs ANIMD. Observe that SMD⇢ decides infection by comparing the abstraction
of the concrete semantics of programs, i.e., ⇢([[M]]) = ⇢([[Q]]), while ANIMD⇢ decides
infection by comparing the abstract semantics of programs, i.e., [[I(M,T)]]⇢ = [[P]]⇢.
The abstraction of the concrete semantics and the abstract computation of the seman-
tics collapse when the abstract domain ⇢ is complete for the computation of program
semantics as shown by the following result.

Lemma 4. If f is complete for ⇢, i.e., ⇢�f = ⇢�f�⇢ then we can apply the fix point
Kleene transfer, namely ⇢ lfpf = lfp ⇢�f�⇢.

Thus, in order to compare SMD⇢ and ANIMD⇢ we have to assume the completeness
of the domain ⇢ for the semantic computation, i.e., 8P 2 P : ⇢([[P]]) = ⇢(lfpFP) =
lfp⇢ � FP � ⇢ = [[P]]⇢.

Another difference between SMD and ANIMD is given by the computational do-
main that they consider: SMD observes properties of the behaviour of the malware,
while ANIMD properties of the behaviour of the whole infected program. Thus, in
order to understand their relation we define the following domain extension: Given
⇢ 2 uco(}(⌃⇤

Var(M)
)) we denote e⇢ 2 uco(}(⌃⇤

Var(M)
)) ⇥ uco(}(⌃⇤

Var(T)
)) any ab-

straction that is ⇢ on Var(M), i.e., e⇢ = ⇢⇥ ⌘ where ⌘ 2 uco(}(⌃⇤
Var(T)

)).

Theorem 5. Consider an integration function I that satisfies separability, two abstract
domains ⇢ and e⇢ that are complete for the computation of program semantics and as-
sume that Equation 4 and Equation 5 hold, then SMD⇢(M,P), ANIMDe⇢(M,P).

5 Conclusions and future works

In this work we have begun to investigate the possibility of exploiting the ANI theory
for detecting malware infection. To this end we have started to reason on an high order
version of the standard ANI framework that allows to reason on dependences and inter-
ferences among programs (instead of data). We have formalized the malware detection
problem in terms of HOANI and we have proved that the malware detector ANIMD
based on HOANI generalizes the semantic malware detector SMD proposed in [6]. An
interesting feature of ANIMD is that it is parametric on the infection strategy used by
the malware and that it can model possible interactions between the malware and the
target program. Another reason that makes our approach promising is the possibility to

9

develop systematic techniques for certifying and training malware detectors. This can
be done by lifting high order the ANI transformations that characterize respectively the
most concrete output observation unable to detect interferences, and the maximal prop-
erty that do not cause interference. Indeed, the ability of certifying the precision of a
given malware detector, and the possibility of deriving the best malware detector wrt
a metamorphic engine are two important challenges in the battle against metamorphic
malware. To this end we have to deeply understand and develop the HOANI theory
beyond ANIMD.

Based on these results, our goal is to develop a systematic strategy for the design of
the best malware detector for a given class of metamorphic code variants. To this end
we first need to develop a technique for learning the metamorphic engine ME that has
generated the considered malware variants. Next we have to characterize the invariant
property � of all the generated variants in order to derive the observation property ⇢

that characterizes detection for ANIMD⇢. We believe that this theoretical identification
of the program property ⇢ that the malware detector should consider in order to handle
metamorphism for ME can given useful insight in the design and implementation of a
malware detector tool able to defeat ME.

References

1. P. Beaucamps, I. Gnaedig, and J. Y. Marion. Behavior abstraction in malware analysis. In
Runtime Verification (RV’10), volume 6418 of LNCS, pages 168–182, 2010.

2. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-aware mal-
ware detection. In Proceedings of the IEEE Symposium on Security and Privacy (S&P’05),
pages 32–46, Oakland, CA, USA, 2005.

3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proc. of Conf. Record of the
4th ACM Symp. on Principles of Programming Languages (POPL ’77), pages 238–252, New
York, 1977. ACM Press.

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. of
Conf. Record of the 6th ACM Symp. on Principles of Programming Languages (POPL ’79),
pages 269–282, New York, 1979. ACM Press.

5. P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to comport-
ment analysis generalizing strictness, termination, projection and PER analysis of functional
languages) (Invited Paper). In Proc. of the 1994 IEEE Internat. Conf. on Computer Lan-
guages (ICCL ’94), pages 95–112, Los Alamitos, Calif., 1994. IEEE Comp. Soc. Press.

6. M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray. A semantics-based approach to
malware detection. ACM Trans. Program. Lang. Syst., 30(5):1–54, 2008.

7. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-interference
by abstract interpretation. In Proc. of the 31st Annual ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages (POPL ’04), pages 186–197, New York, 2004. ACM-
Press.

8. S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering versions of programs. ACM
Trans. Program. Lang. Syst., 11(3):345 – 387, 1989.

10

9. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Detecting malicious code by model
checking. In Proceedings of the 2nd International Conference on Intrusion and Malware
Detection and Vulnerability Assessment (DIMVA’05), volume 3548 of LNCS, pages 174–
187, 2005.

10. I. Mastroeni. On the rôle of abstract non-interference in language-based security. In K. Yi,
editor, Third Asian Symp. on Programming Languages and Systems (APLAS ’05), volume
3780 of Lecture Notes in Computer Science, pages 418–433, Berlin, 2005. Springer-Verlag.

11. J. McLean. A general theory of composition for trace sets closed under selective interleaving
functions. In Proc. IEEE Symposium in Security and Privacy, pages 79–93, Los Alamitos,
Calif., 1994. IEEE Comp. Soc. Press.

12. A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE J. on se-
lected ares in communications, 21(1):5–19, 2003.

13. P. Ször. The Art of Computer Virus Research and Defense. Addison-Wesley Professional,
Boston, MA, USA, 2005.

11

