__.-’ .~/ Dipartimento di Informatica

Universit a degli Studi di Verona

Rapporto di ricerca

Research report
May 2009

72/2009

An Abstract Interpretation-based
Model for Safety Semantics

Isabella Mastroeni and Roberto Giacobazzi

Dipartimento di Informatica - Universita di Verona
(roberto.giacobazzi|isabella.mastroeni)@univr.it

Questo rapporto ¢ disponibile su Web all’indirizzo:
This report is available on the web at the address:
http://www.di.univr.it/report

Abstract

In this paper we describe safety semantics as abstract interpretation of a
trace-based operational semantics of a transition system. Intuitively, a prop-
erty is safety if "nothing bad will happen”. Formally this is described by
saying that a property is safety if it is maximal with respect to a given set of
allowed partial executions. We show that this can be specified in the stan-
dard Cousot’s framework of abstract interpretation. In particular, we show
that this semantics can be derived as fix-point of a semantic operator. This
construction provides a formal characterisation of the constructive nature of
safety properties, that can be enforced by means of execution monitors. By
using the same construction we show that while safety without stuttering
preserves the constructive nature, safety properties allowing cancellation of
states lose the constructive characterisation. Finally, we characterise safety
properties as the closed elements of a closure, and we show that in the
abstract interpretation framework safety and liveness properties lose their
complementary nature.

Keywords: Abstract interpretation, safety, semantics, program verifica-
tion, closure operators.

1 Introduction

The traditional dualism between safety and liveness properties of a transition
system has been widely studied in the literature. Since Lamport’s seminal
paper [?], a number of authors have studied the computational [?, 7], logical
[?], algebraic [?], and topological [?, ?] aspects of safety and liveness proper-
ties of a computation. This dualism have been also studied in the framework
of model checking and temporal logic [?, 7, ?] where safety is also known as
imvariance, saying that each partial computation of a possibly infinite trace
meets some requirement. According to this intuitive definition, safety prop-
erties assert that “nothing bad happens”; whereas liveness properties ensure
that “something good will eventually happen”. Typical examples of safety
properties are deadlock freedom, mutual exclusion, and partial correctness.
In contrast, a typical liveness property is termination.

The importance of safety properties relies precisely on its standard con-
structive characterisation. Indeed, Schneider [?] noted that safety properties
correspond precisely to the enforceable properties. Namely to those proper-
ties for which there exists a mechanism that works by monitoring execution
steps of a program, terminating the programs that are about to violate the
security property. The basic idea is that a safety property holds for a com-
putation if it holds for each of its states, therefore by checking the property
during the execution we are sure to enforce the property for the whole com-
putation. Starting from this work, several papers have been written about
execution monitors, analysing their power, in terms of the information that
they can recall [?], or trying to extend the class of properties that can be
monitored [?]. Recently, a precise characterisation of enforceable security
properties is given [?], providing a better characterisation of those proper-
ties which are enforceable by execution monitors as well as a taxonomy of
enforceable security policies.

A more theoretic aspect to consider is that the standard characterisation
of safety/liveness properties naturally leads also to the definition of safety
properties as closure operators on the set of possible traces, and liveness as
open sets. This corresponds to a well known approach to safety/liveness in
topological terms. According to Alpern and Schneider [?] safety properties
are the closed sets in the Cantor’s topology on infinite traces, while liveness
properties are precisely the dense sets of the same topology. This dualism
is justified by observing that with respect to liveness properties, any par-
tial computation is always remediable. This corresponds to saying that for
any finite (partial) trace o, there exists an infinite completion o7 of o such
that on satisfies a given liveness property. Another theoretical approach for
modelling safety and liveness is the one proposed by H.P. Gumm in [?]. In
this work the author shows that all that is needed in order to characterize
safety is a V-preserving map ¢ between complete Boolean algebras. This
map extracts from a set of infinite traces all the corresponding partial execu-

tions and it can be interpreted as an abstraction of the infinite semantics, in
the standard abstract interpretation framework [?]. This map is central in
our approach since it provides the model for safety semantics necessary for
establishing a formal connection between the standard approaches to safety
and liveness and abstract interpretation.

Abstract Interpretation and the hierarchy of semantics. Abstract
interpretation [?] is a general theory for semantics approximation, which
includes static program analysis as a special case. The design of an approxi-
mate semantics is usually a step-by-step procedure which starts from a very
concrete semantics, specifying the computational behavior at a great level of
detail, and which leads to the definition of a more abstract semantics, where
only the properties of interest about the computation can be observed. The
abstraction is specified by an V-preserving map which represents the left
adjoint in a pair of functions, relating the concrete and the abstract seman-
tics, forming a Galois insertion. In the case of standard program analysis,
the approximate semantics is a decidable approximation of the concrete
one. The whole approach is systematically driven by abstract interpretation
theory which provides a number of formal methods and tools to help the
designer. This approach has several well known advantages with respect
to other methods: (1) The analysis is fully described and constructively
derived by the way the concrete data and control flows are approximated;
(2) The correctness with respect to the concrete semantics can be immedi-
ately proved formally by construction; (3) New and more advanced analyses
can be systematically conceived by modifying the abstraction methods [?, 7].

In [?] Cousot proposes an abstract interpretation-based formal structure
where several well-known semantics are derived as abstract interpretations
of a more concrete semantics, which is the maximal trace semantics. In
Fig. 7?7 we have a picture of this hierarchy, in particular we can note that
in the same structure we have also depicted several possible observables of
the different semantics (e.g., finite, +, or infinite, w, computations). All
the abstraction relations depicted with plain lines (isomorphisms) or arrows
(abstractions) are those present in the original hierarchy (see Sect. ?? for
more details).

Main contribution. In this paper we use the abstract interpretation
framework mainly for two reasons: first we want to insert safety semantics
in the Cousot’s hierarchy of semantics (Fig. ?7); second, we aim to study
whether the complementary relation between safety and liveness holds also
in the abstract interpretation characterisation. For the first task, the idea
is that of deriving a semantics for safety by abstract interpretation, i.e., by
abstracting the (infinite) operational trace-based semantics [?]. The derived

infinite
. w
angelic demonic _e9H

Hoare’s axiomatic °
PH

N

natural

-

B
I
)

pVp~

N

Dijkstra’s pred—trans

3

R

Denotational

/L

stu
70

e
.7°

&
€
\]

8

D

Relational «

ﬁ'
Q

str

Y
e

can

ﬂ\
€
3
g
55

RHY
Trace-based I T

+

[

Vi
NN

j

Figure 1: Cousot’s hierarchy.

semantics is the most abstract approximation of the concrete trace semantics
of a transition system which preserves safe executions, i.e., modeling only
safety properties. The interest in this semantics is twofold: (1) it provides
a formal setting where safety semantics can be compared with respect to
other semantics; (2) it provides a base semantics for designing static pro-
gram analysis tools for safety properties, for proving its correctness, and for
deriving new safety properties by abstract interpretation. In particular, we
show that safety semantics can be obtained as the fix-point of a semantic
operator, which provides a formal characterisation of how execution moni-
tors works for enforcing safety properties. We use this characterisation also
for showing that not all the possible restrictions of safety properties preserve
this constructive nature. In particular, safety without stuttering, allowing
repetition of states, can still be obtained as fix-point, while safety proper-
ties allowing cancellation of states (e.g., strong safety) lose the constructive
nature, namely cannot be enforced like standard safety properties.

The second task concerns complementation in the abstract interpretation
framework, hence we have first to characterise safety properties by means of
a closure operator. We formally prove that this operator precisely captures
safety properties in the Alpern-Schneider approach, modelling both safety
and liveness properties. At this point we study the algebraic properties of
the safety domain in order to compute its (pseudo-)complement in the infi-
nite trace semantics, showing that, in the abstract interpretation framework,
safety is not complemented, hence liveness cannot be characterised as the
complement of safety.

Structure of the paper. The paper is structured as follows. In Sect. 77
we describe some basic notions that we will use in the paper. In particular
we introduce abstract interpretation, and we describe the Cousot’s hierarchy
of semantics. In Sect. 7?7 we describe the safety semantics as Galois inser-
tion, including it in the hierarchy of semantics. The main task of this section
is to use the Kleene fix-point transfer theorem in order to obtain the safety
semantics as fix-point of a semantic operator, formalising its constructive
nature. In Sect. ??7 we introduce three restrictions of safety properties, we
include them in the Cousot hierarchy of semantics as abstract interpreta-
tions of the safety semantics. Hence we show that to allow repetition of
states in safety properties preserves the constructive nature, while to allow
cancellation of states makes safety properties lose the constructive charac-
terisation. Finally, in Sect. 7?7 we obtain safety semantics as an abstract
domain and we characterise the algebraic structure of safety semantics in
the abstract interpretation framework, in order to show that, in this context,
liveness cannot be interpreted as the complement of safety semantics.

2 Preliminaries

2.1 Basic notions

If S and T are sets, then (S) denotes the powerset of S, S\T denotes the
set-difference between S and T', S C T denotes strict inclusion, and for a
function f: S — T and X C S, f(X) < {f(x) |z € X}. By go f we denote
the composition of the functions f and g, i.e., go f = Az.g(f(x)).

Lattices and meet irreducible elements. The notation (P, <) denotes
a poset P with ordering relation <, while (P, <,V,A, T, L) denotes a com-
plete lattice P, with ordering <, lub V, glb A, greatest element (top) T, and
least element (bottom) L. Often, <p will be used to denote the underlying
ordering of a poset P, and Vp, Ap, Tp and L p denote the basic operations
and elements of a complete lattice. The notation C' = A denotes that C and
A are isomorphic ordered structures.

x € C is meet-irreducible if t = a Nb = x € {a,b}. The set of meet-
irreducible elements in C' is denoted Mirr(C). A subset X of a lattice C' is
said to be order generating iff every element of C can be written as an glb
of a subset of X.

Functions. S—T denotes the set of all functions from S to 7. We use
the symbol C to denote pointwise ordering between functions: If S is any
set, P a poset, and f,g:S — P then f C g if for all x € S, f(x) <p g(x).
Let C and A be complete lattices. Then, C A, C—— A, C—=>A, and

coa

C' =% A denote, respectively, the set of all monotone, (Scott-)continuous,
additive, and co-additive functions from C to A. Recall [?] that f € C—— A
iff f preserves lub’s of (nonempty) chains iff f preserves lub’s of directed
subsets, and f : C' — A is (completely) additive if f preserves lub’s of all
subsets of C' (empty set included). Co-addittivity is defined by duality.

Fix points. We denote by IfpTf and gfpsf, respectively, the least and
greatest fix-point, when they exist, of an operator f on a poset. If f €
C——C then lfptc f = VienS' (L), where, for any i € N and = € C, the i-th
power of f in z is inductively defined as follows: f°(z) = z; fiT!(z) = f(f'(x)).
Dually, if f is co-continuous then gfpigf = NienSU(Te). {fi(Le)}ien and
{fY(Tc)}ien are called, respectively, the upper and lower Kleene’s iteration
sequences of f (see [?]). It is possible to transfer any fix-point computation
on a domain into another domain under suitable conditions. These results
are known as fiz-point transfer theorems [?]. In the following we will use
the Kleene fiz-point transfer theorem which is as follows: Let (A, <4) and
(C, <¢) be complete lattices and fo: C=>C, fa: A" A anda: C——A
such that a(L¢) = L4 and a o fo = fa o . Then a(lfptc fc) = lfpfﬁfA.
The closure iteration order for Iifpf (gfpf) is the least ordinal 3 such that
F(fo) = 7.

Topology. A topology on a set X, QX, is a family of subsets of X such
that: If S C QX then JS € QX; If S C QX is finite then (]S € QX. X
is a topological space if it is equipped with a topology. The elements of QX
are known as the open subsets of the space X. We say that a subset F' C X
is closed if its complement is open. Let X be a topological space, then a
(Kuratowski) topological closure is an operator M : p(X) — (X)) which is
extensive (VA C X. A C M(A)), idempotent and finitely additive (namely
M(@) =@ and M(A)UM(B) = M(AUB)).

2.2 Abstract interpretation

Abstract domains can be equivalently formulated either in terms of Galois
connections or closure operators [?].

Abstract domains individually. An upper closure operator on a poset P
is an operator p : P — P monotone, idempotent and extensive. The set of all
upper closure operators on P is denoted by uco(P). Let (C, <,V,A, T, L) be
a complete lattice. A basic property of closure operators is that each closure
is uniquely determined by the set of its fix-points p(C'). For upper closures:
X C C'is the set of fix-points of an upper closure on C'iff X is a Moore-family
of C,ie, X = M(X)={AS|SC X} — where A@ = T € M(X). For any

X C C, M(X) is called the Moore-closure of X in C, i.e., M(X) is the least
(w.r.t. set-inclusion) subset of C' which contains X and it is a Moore-family
of C. Tt turns out that (p(C), <) is a complete meet subsemilattice of C
(i.e., A is its glb). The standard abstract interpretation framework can be
also represented by means of the adjoint relation between abstraction and
concretization functions [?]. If « : C "> A and 7 : A-=>C are monotone
functions such that Az.z Cyoa and a oy C Az.z, then (A, «,v,C) is
called a Galois connection (GC for short) or adjunction between C and
A, also denoted (C,<¢) ;i (A, <4). Note that in GC, for any v € C
and y € A: a(z) <ay ez <cy(y) and v(y) = V{z| a <y}and
a(z) = A{ y‘ z <~(y) }. If in addition o 1= Az.z, then (A a,v,C) is

a Galois insertion (GI) alsvo denoted (C, <¢) = (A, §A> of Ain C. Note
that A = C iff (C,<¢) *=5 (4, <4). The concrete and abstract domains,
C and A, are assumed to be complete lattices and are related by abstraction
and concretization maps forming a GC (A4, «,~,C). Following a standard
terminology, A is called an abstraction of C', and C is a concretization of
A. If (A,a,7,C) is a GI, then each value of the abstract domain A is
useful in representing C', because all the elements of A represent distinct
members of C', v being 1-1. Any GC may be lifted to a GI by identifying
in an equivalence class those values of the abstract domain with the same
concretization. This process is known as reduction of the abstract domain.

Abstract domains collectively. If C is a complete lattice then uco(C)
ordered pointwise is also a complete lattice, (uco(C),C, UL, M, Az. T, Az.x),
where for every p,n € uco(C), {pi}ier C uco(C) and x € C:

- pCniff vy € C. p(y) < n(y) iff n(C) C p(C);
= (Mierpi)(x) = Nierpi(®);
— (Uierpi) (@) =z & Vie L pi(r) = x;

Note that any GI (A4, «, v, C') uniquely determines an upper closure operator
voa € uco(C) and conversely, any closure operator p € uco(C') uniquely de-
termines a GI (p(C), p,id,C), up to isomorphic representation of domain’s
objects. Hence, we will identify uco(C) with the so-called lattice Lo of
abstract interpretations of C' (cf. [?, Section 7| and [?, Section 8]), i.e.,
the complete lattice of all possible abstract domains (modulo isomorphic
representation of their objects) of the concrete domain C. The pointwise
ordering on uco(C') corresponds precisely to the standard ordering used to
compare abstract domains with regard to their precision: A; is more pre-
cise than Ay (i.e., Ao is an abstraction of Ay) iff A; T Ay in wuco(C) iff
(A1, <a4y) = (A2, <a4,). Let {A;}tier C uco(C): UierA; is the most con-
crete among the domains in £¢ which are abstractions of all the A;’s, i.e.,
Uier A; is the least (w.r.t. ©) common abstraction of all the A;’s; and M;erA;

is (isomorphic to) the well-known reduced product (basically cartesian prod-
uct plus reduction) of all the A;’s, or, equivalently, it is the most abstract
among the domains in £¢ which are more concrete than every A;. Let us
remark that the reduced product can be also characterized as Moore-closure
of set-union, i.e., M;crA; = M(UiEIAi)-

Computing abstract functions. If (4,«a,v,C)isaGland fo: C—C,
fa: A=A, then f4 is a sound approximation of fo if ao fo <4 faoa.
Soundness naturally implies that a(lfpfgfc) < lfpi“ fa.-fao fo=faoa
then we say that f4 is a complete approximation of fo. In the case of com-

pleteness we have a(IfpC fo) = Ufpi4 fa [?].

2.3 Cousot’s semantics hierarchy

In this section, we recall Cousot’s hierarchy of semantics [?, ?]. Semantics in
the hierarchy are derived as abstract interpretations of a more concrete oper-
ational semantics that associates a discrete transition system with each well-
formed program. A transition system is a pair (X, 7) where ¥ is a nonempty
set of states and 7 C X x 3 is a binary transition relation between a state and
its possible successors. In the following, ¥+ and X* E'N—Y denote re-
spectively the set of finite nonempty and infinite sequences of symbols in X.
Given a sequence o € ¥° = T U, its length is denoted |o| € NU{w} and
its i-th element is denoted o;. A non-empty finite (infinite) trace o is a finite
(infinite) sequence of program states where two consecutive elements are in
the transition relation 7, i.e., for all i < |o|: (0;,0i4+1) € 7. In the following
we will use Greek letters for denoting potentially infinite traces, we will use
letters such as z,y for denoting finite traces of states. The maximal trace
semantics of a transition system [?] is 7°° L7t U, where if T C X is a set
of final/blocking states 7 = {0 € ¥||o| = n,Vi € [I,n) . (0;_1,0;) € T},
™ ={0eX¥VieN. {o5,0i41) €T}, 77 = Upso{z € 7| 2,1 € T}, and
" = N 7F. In the following we will use the concatenation operation be-
tween traces: The concatenation o = ¢ of the traces n,£ € X*° is defined
only if 9, _1 = €. In this case o has length |o| = || + [£] — 1 and it is
such that o; = m for each 0 <1 < [n|, while o, _14, = & If 0 < n < [§].
Moreover if n € 3¢ then for each £ € ¥°° we have n™¢& = n. For instance, if
n = ab and £ = bc, then 0 = n™ & = abe.

The semantics 7°° [?] is the fix-point of the monotone operator F'* :
©(X%°) — p(3>°) defined on traces as F*°(X) = 7! U727~ X. This operator
provides a bi-induction (induction and co-induction) on the complete lattice
of the maximal trace semantics (p(X°°), 5% M, 1% M X ¥¢) where
XC®Yifandonlyif XNET CYNET and Y NX¥ C X NX¥. This
order, later called the computational order, allows us to combine both least
and greatest fix-point in a unique fix-point presentation: finite (terminating)

Semantics Domain relation Abstraction and Concretization

%) | (p(5%), ©) == (p(5+),) ot (X) = X A5 xt

FHY)=YUus®

17}

a?(7%) (p(X%),C) v:a (D?,C) | a?(X)=XUU{ chaos(op)| o € XNZ¥ }

YY) =Y
™ = a%(7%) | (p(E%),C) = (p(2*),O) a®(X) = X NE & xv
=Xuxt

Table 1: Observable semantics as abstract interpretations

traces are obtained by induction (least fiz-point) of F*> on (p(X1),C) and

infinite traces are obtained by co-induction (greatest fiz-point) on (p(3¢), C),

which corresponds to the least fiz-point of F*° on (p(X¢), D). In this case:
= Ifps. F™ (see [?, 7] for details).

The semantics in natural style may have a corresponding angelic, de-
monic, and infinite observable all of which are abstractions. All the ob-
servables are derived as fix-points in the computational order by applying
fix-point transfer theorems.

Angelic. The angelic trace semantics 7 is designed as an abstraction
of the maximal trace semantics, and it is obtained by approximating sets
of possibly finite or infinite traces with sets of finite traces only, i.e., 77 =
a™ (1) (see Table ??). The angelic trace semantics is constructively derived
as fix-point in the computational order: 7 = IfpS F'™ where F'* : p(X1) —

o(X) is defined as FH(X) =L U2~ X.

Demonic. The demonic trace semantics, denoted as 77, is derived from

the maximal trace semantics by approximating non-termination by chaos,
namely by the set of all the possible finite computations starting from the
state that leads to non-termination and this corresponds to allowing the
worst possible behavior of the program [?, ?]. This semantics is obtained as
an abstraction of the natural semantics by the function a2, i.e. 79 = a9(7%°)
(see Table ??7). In this way the new observable is defined on the domain

D? = a?(p(X>))! that is such that X € D? if and only if

o€ XY = chaos(c) C X"

where chaos(o) £ { §eXt| 6 =09 } The demonic trace semantics is

constructively derived as fix-point in the computational order: 79 = lfp%i Fo
where X COY if Vo € ¥¥. 0 € X V (0 ¢ Y A Ve Xt o0 € X =
000 €Y) and F?: D9 — D? is defined as FO(X) =7 U2~ X [7].

Infinite. The infinite trace semantics, denoted 7%, is derived by observ-
ing non-terminating traces only, i.e., 7¥ = a¥(7°°) (see Table ??). The
infinite trace semantics is constructively derived as fix-point in the compu-
tational order: 7% = gfps. F“ where F“ : p(X%) — ©(X¢) is defined as
FY(X) =72"X.

All semantics in the hierarchy are derived again as abstract interpretation
of the trace-based semantics. Each semantics in natural style corresponds
here to a suitable abstraction of the basic natural trace-based semantics 7.
In the following we denote by Nat the identical abstraction of the maximal
trace semantics.

The relational semantics R associates an input-output relation with pro-
gram traces by using the bottom symbol 1 & ¥, to denote non-termination.
This corresponds to an abstraction of the maximal trace semantics where
intermediate computation states are ignored. The abstraction function o
that allows to get the relational semantics as abstraction of the maximal
trace one, i.e., R® = a¥(7>) is given in Table ??. The relative observables
are angelic Rt (the big-step relational semantics [?]), demonic R? and infi-
nite R¥ relational.

The denotational semantics D> abstracts away from the history of compu-
tations by considering input-output functions. This semantics is isomorphic
to relational semantics. The abstraction function o that leads to the de-
notational semantics by abstracting the relational one, i.e., D® = aP(R>)
is given in Table ??. The relative observables are angelic DF, demonic D?
[?] and infinite D* denotational.

Dijkstra’s predicate transformer gVWp is represented as a set of co-additive
functions, denoting the weakest-precondition predicate transformers [?]. In
general, the weakest precondition semantics describes in an implicit way the
semantics of a program. We consider the program S and a post-condition
(set of desired final states) P, that we want to hold after the execution of
S. The semantics consists in finding the weakest pre-condition, namely the
biggest set of possible initial states, which allows the program to terminate

INote that, as explained in Sect. ??, in order to obtain a Galois insertion the abstraction
has to be surjective and therefore, in this case, we have to restrict the co-domain of o
precisely to the set of its images.

Semantics

RX = a’R(Too)

D> — aD(ROO)

gWp = a9"VP(D>)

gH = a9 (gWp)

U{{o0, L) | 0 € X}

U{oc € ¥ | (00, L) €Y}

Domain relation Abstraction and Concretization

(6(5),©) = (2 x 21),) a(X) = (a0, 20) | 0 € X7}
ARY)={z et | (zg,2n_1) €Y}
(p(E % £1),0) 5 (5 — p(Z1),5) | oP(X) = Asfs' €T, | (5,5) € X}

VP ={{z,y) |y € fz)}

(& — p(20), 5 = (0(51) =0(D), 3) | 0™ (/) = AP{s €T | J() € P)
() = As.{8' | 5 & B(E L~ {s'})

(0(51) =2 0(2), 3) = (D) © 9(51),2) | (@) = (1Y) | X € 8(V))
FH(H) = \Y.U{X | (X,Y) € H}

Table 2: Basic natural-style semantics as abstract interpretations

in a state which belongs to P. The abstraction function o?** that allows to
get the weakest precondition semantics as abstraction of the denotational
one, i.e., gWp = aY?(D>), is given in Table ?7?7. The relative observables
are angelic Wip (weakest-liberal precondition [?]), demonic Wp?, infinite
Wp* and weakest precondition for total correctness Wp [?].

Similarly to the gWp semantics, in the Hoare axiomatic semantics we con-
sider triples of the kind {Q} S {P}, and in this case we give semantics to
the program S by finding all the pairs (P, @) such that {Q} S {P} is a valid
Hoare triple [?]. Hoare’s axiomatic semantics gH is represented as elements
in tensor product domains, i.e., GC’s, specifying the adjoint relation be-
tween weakest-precondition and strongest-postcondition in Hoare’s triples
{P} C {Q}. The abstraction function a”* that leads to the axiomatic se-
mantics by abstracting the weakest precondition one, i.e., gH = " (gWp),
is given in Table ??. The relative observables are angelic pH (Hoare’s partial
correctness semantics [?]), demonic gH?, infinite gH* and total correctness
semantics tH [?].

The whole hierarchy, relating semantics styles and observables is shown
in Figure 7?7, where continuous lines and arrows denote, respectively, iso-

10

morphisms and strict abstractions (i.e., abstractions which are not isomor-
phisms) between semantics.

3 Safety semantics in the hierarchy

In this section we aim to characterise the safety semantics in the abstract
interpretation framework in order to insert it in the Cousot’s hierarchy of
semantics and to formally characterise its constructive nature. In fact, as
we have seen, all the semantics in the hierarchy are obtained as fix-points of
semantic operators. Our aim is to provide the same characterisation also for
safety semantics, showing that this fix-point characterisation precisely for-
malises the constructive nature of safety properties, which can be enforced
by means of execution monitors.

Modelling safety in abstract interpretation. The abstract interpreta-
tion formalisation of safety properties is given in terms of an abstraction of a
set of infinite traces of a transition system modelling concurrent executions.
The first definition of safety by means of a pair of adjoint functions was
given in terms of the maps ¢, : (X¥) — p(X1) and v, : P(ETT) — P(Z¥)
[?7] where:

pu(X)={ze¥t|beX. o0 } 1Y) ={oceX¥| pu(0)CY }

with X € p(X%), Y € p(X1). The relation z < y means that = is a prefix
of y. In this case, while ¢, extracts the set of finite prefixes of an (infinite)
trace, v, completes a set Y of finite traces into the least set of infinite traces
whose prefixes are included in Y. The result is a Galois connection.

Proposition 3.1 (p(X1), vu,Yw, p(X¥)) is a Galois connection [?].

At this point, we can define the safety domain, as the ¢, abstraction of
the infinite trace domain, namely

S=pu,(EXE) ={ X €p(XT)| IV € p(E*) . 0, (Y) =X }

This is a domain of infinite sets of finite traces, collecting all the sets of traces
corresponding to safety properties. Note that, this domain, is closed under
set union but not under set intersection, since the intersection of infinite sets
can be finite.

Proposition 3.2 (S,C, @, X, U, M%) is a complete lattice, where the great-
est lower bound is the best correct approximation of the concrete one N, i.e.,

M X = Qo (Nivw(Xi))-

11

Hence, we can insert safety semantics in the hierarchy as shown in Fig. 77.
by defining the safety semantics of a transition system (X,7) as 7% =

0w (T).

Constructing safety by fix point. At this point, we aim to exploit the
hierarchy of semantics in order to prove that also the safety semantics can be
obtained as the fix-point of a semantic operator. This fix-point characterisa-
tion is important both in the security policies and in the semantic contexts
since it provides a better understanding of the structure of the safety seman-
tics. In the context of security policies, this construction provides, in some
sense, a theoretical comprehension of why safety properties are enforceable
by execution monitors. Indeed, execution monitors analyse the property
step by step during the execution of programs, while the fix-point operator,
we are going to define, builds the safety semantics by keeping, at each step
of computation, only the prefixes of those traces that at least for n steps (at
the n'" iteration) are possible executions of the program to analyse. This is
exactly the constructive characterisation we can provide of safety semantics,
in the semantic context, coherent with the constructive semantic character-
isation provided for several known semantics in the Cousot’s hierarchy [?].

Hence, we follow the standard Cousot construction by specifying safety
safe as the fix-point of a monotone operator defined on infinite
traces. In particular, we show that this semantic operator is ¢, (F*), where
we recall that the fix point of F“ 'AX. 727X is the infinite semantics 7%
[?]. Note that, in the following, we use the function ¢, applied also to
sets of finite traces. This is a natural extension of the function previously
defined: Let X € X°° then ¢, (X) < {yext| IweX.y<sz }. Inorder
to specify safety semantics as fix-points, we consider the semantic operator:

semantics T

F*(X) = pu(r* " X)

The idea is to prove that the safety semantics is the fix-point of this semantic
operator by using the dual Kleene transfer theorem [?]. Consider a concrete
domain C' with an operation F, an abstract domain A with an abstract
operator Fgq, a: C — A co-continuous and F4 o & = a o F' (commutative
property), then the transfer theorem says that a(gfpF) = gfpFa. In our
case, the concrete domain is the infinite semantics 7%, the abstract domain is
the safety semantics 75, the abstraction is clearly the prefix abstraction ¢,
while the concrete and the abstract operators are respectively F“ and F*.
Hence, in order to apply this transfer to greatest fix-points the abstraction
function has to be co-continuous but we know by Proposition 7?7 that ¢,
is not co-continuous. Fortunately, this is not a problem because Cousot
noticed [?] that co-continuity is not needed in general, since the proof of

12

the transfer theorem uses only the fact that the abstraction preserves the
greatest lower bound of the (possibly transfinite) iterates of the concrete
operator starting from T. Therefore, the first thing to prove is that ¢,
preserves the greatest lower bound of all the iterates of F“. Fortunately, as
the following results shows, F** is co-additive, hence we have only to check
whether ¢, preserves the greatest lower bound of the iterates, limited by w,
of the concrete operator starting from ¥ T. The following lemmas provide
some useful properties of the concatenation operation. We recall that the
concatenation used in this paper is not a simple juxtaposition of traces,
but a concatenation possible only when the two traces share, respectively,
the last and the first symbol, e.g., ab™bc* = abc®” while ab ™ c* = @& (see
Sect. 77).

Lemma 3.3 Let {X;}; C p(£%). Then 72~ (N), X;) =), (T2~ X,).
PRrOOF.

SeMT27X;i © Vi.d=000102...0,... € T°7X;
@50516’7’2, Vi.01...0pn... € X;
@50516’7’2, 516n6ﬂZXz

~ 5:505152...5n...€T2AﬂZ-X2‘

Lemma 3.4 Let X € p(X¥) and Y € S, then
(1) ol Tu(X)) = u(r?7X) (i) 727 (Y) = qupu(r? TY)

PROOF. (i) By definition 72 ", (X) = 727 {zext|IoeX.vx0 },
then

x’Epr(TQ’\{xGEJﬂ JreX.zx0 })
& 2 < 2w129 -+ Ty With Towy € T2, T1T - Ty € Pu(X)
s 7
= T
& x'E{ﬂc62+‘ EIUETQ’\X.x<J }ZQDW(TQAX)

=
<L TTL Ty, Toxl €72, o €X . 11T2- Ty K O
!/

<

TOT1T2 Ty K T2 0 €T2TX

(77) By definition 2 Tw(Y) = 72~ {o0ex¥| @u(0) CY }, then

x/GTQ”\{UGE“"(pw(U)gY} |
& o' = xgr129 - Ty - With zoxy € T2, T1Te - Ty € Y (Y)
= x/:xoxl...xn...7x0x1€7_27 Qow(xl.xQ"'xn---)CY
& pu(a) = pu(xoriTe Y-+) C ng(TQ ~Y)

& o' e 7w$0w(72 AY)

13

where in the last implications we have to consider <,0w(7'2 ~Y) instead of
727Y in order to have also the prefixes of 2’ whose length is 1. O

At this point, let us show that F** is co-additive, meaning also that we
can reach its fix point in at most w iterations.

Proposition 3.5 F*“* is co-additive.

PROOF.

Fee(X)) = Fo (0o (N7 (X0))
= (T ?“%(ﬂ Yw(Xi))) [by Lemma ?7(i) |
= (7'2/\0 Y (Xi)) [by Lemma ?7?]
= (PW(H ((X,))) [by Lemma ?7(ii) |
= v %%(27X)) = [T Foie(X,)

O
Finally, we can prove that ¢, preserves the iterations of F“, and the

previous result justifies the fact that we do not consider transfinite iterations.
Proposition 3.6 ¢, ((,en(F*)"(32%)) = [Ty ew ((F2)"(3¥))

PRrROOF. Note that (F“)"(X¥) = oy [?]. Therefore we have to prove
that cpw(ﬂneN(T"Jrl TE) = [rEy Pw ("1 ~%%). By definition of M= (sce
Proposition ??) we have [&y ¢w (7’"‘.H YY) = ou(Nhen %,gpw(Tm"1 —3).
Let n € N. We have that 71 =% = .0, (7’”%L1 —3¥). Clearly the inclu-
sion C comes from the extensivity of Safe. Let us prove the other inclusion.
Consider § € ’ngpw(T"Jrl’\Z”), then by definition of ~, this implies that
ww(9) C gpw(7'm"1 —X¢). Suppose § ¢ 7SN then 3i < n+1.(0;,0i+1) ¢
7, therefore we have dy...d;41 € @ (0) but dp...0i41 ¢ gpw(T”ﬂ.L1 XY,
which is absurd for the inclusion above. Hence § € 71 ~%%. The equality
just proved implies trivially the thesis. O

At this point, in order to apply the Kleene transfer theorem we have

simply to show the commutative property, namely F* o o, = @, o F¥,
which corresponds to saying that the abstraction ¢, is complete wrt the
operation F¥, i.c., ¢y 0 F¥ o o, = @y, o F¥ [?], being F** < o, o F¥. This
is precisely what we proved in the first point of Lemma ?77.

The next theorem collects together all the properties we proved for F“ and
v, giving a fix-point characterization of safety semantics as the greatest
fix-point of F**¢ obtained by Kleene fix point transfer.

Theorem 3.7 759 = gfp§+ [rsafe

14

PrROOF. We can prove the theorem by using the dual of Kleene’s fix-
point transfer theorem. Moreover by Lemma ?7(i) we can simply verify
that F** is complete with respect to abstraction ¢, and to the function
F*“. By Proposition 7?7 we have that at least in w iterations we find the fix-
point. Finally by the Proposition 7?7 we know that the abstraction function
commutes with finite iterations of F so we can apply the dual of Kleene’s
fix-point transfer theorem. Therefore we have that 7% = o, (gfps. F¥) =

ol :

Finally, let us note that, in this case, we can also show how F*** generates
7% In particular, note that the n*” iteration of F*® is X" = ¢, (7" 1 ~x)
(by induction and by Lemma ??). Next result is a property of ¢, useful for
characterising the fix point of F*** without using the transfer theorem.

Proposition 3.8 Consider § € ¥, then we have ¥n € N.g,(8) C 0, (7" "XT) <

VneN.jerm v

PROOF. Suppose that Vn € N.¢,(0) C ¢, (7" "X*), and that In € N.J ¢
7" 7% then there must exists &;_1,d; € ¥ with i < n such that (6;_1,0;) &
7. This implies that ¢, (8) Z ¢, (7 ~%"), which is absurd. Suppose now
that Yn € N.§ € 7" %X% and that 3n € N. p,(0) € ¢ (7" " X7), then
Jr € 0, (0) . x &€ p (" T"XT), there are at least two states x;_1,7; € %
with 4 < n such that (z;_1,7;) ¢ 7. This means that § ¢ 7 ™%, which is
absurd. |

Hence, we can provide the following direct proof of Theorem ?7.

ng§+Fsaf8 = H:SN X" = H:SN SDw(Tn+1 AE—F) = ﬂijf;o SDw(ThAE—F)

Po (M0 Ywpw (T 7ET))

Pw (ﬂn>0{ o€ X ‘ pu(0) C pu(t" TET) })

{zext

= {2eTT| IeX.Vn>0.9,00) Cp,(t""8T) .z x4
[by Prop. 7?7]

= {zeXT|Iex?.Vn>0.em 7. 26 }

{zeSt|IeMyuy™ Y. 250 }

(Pw(ﬂn>0 Th’\EuJ) = (‘Ow(nnEN 7.nJrl r\zw) =0, (Tw) — psafe

At this point, we can underline that, the fix point construction explicitly
described above, can be interpreted as monitoring, for two main observa-
tions. First, the n'? iteration of F*%, i.c., @, (7" ~%%), corresponds to
the set of all the prefixes of all the computations that at least for n steps are
computations of the considered program. From the abstract interpretation
point of view it is like to abstract traces only to the first n + 1 states, or
in other words, to observe only the first n steps. Second, we can note that

15

€ Nnso{ 0 €2 @u(o) Cpu(r"7EF) }.

N

0}

if we check the program for n steps, and therefore for all the prefixes of
these steps of computation, in order to check the program for n + 1 steps
it is sufficient to move one step forward in the computation, since we know
that o, (7"t1) = 771 U, (7). But these two things together, intuitively,
provide a theoretical description of how an execution monitor works.

4 Other safety properties as abstractions in the
hierarchy

In this section, we consider three different kinds of safety semantics known in
the literature, and we show that all of them can be modelled as abstractions
of safety in the hierarchy of semantics. This characterisation is important
also because allows us to prove that some kind of safety properties, in partic-
ular those admitting cancellation of states, lose the well-known constructive
nature.

We mainly focus on two notions of safety: safety without stuttering [?] (also
called stuttering safety) and strong safety [?]. Intuitively a property is safety
without stuttering if it is safety and if it is insensitive wrt the repetition of
states. In other words, a property is without stuttering if, given a sequence
of states o that satisfies the property, then any other sequence ¢’ that differs
from o only for the repetition of a set of states of o, satisfies the property.
An example of property without stuttering is the following: Consider the
sequence o of states representing the evolution of a clock with a variable
h for hours and m for minutes. Then consider another sequence ¢’ again
representing a clock with a variable h for hours, a variable m for minutes
and a variable s for seconds. Then a property without stuttering cannot
distinguish the two sequences even if ¢’ evolves in 59 consecutive different
states while o does not change [?] (namely repeats for 59 times the same
state). On the other hand a property II is a strong safety property, if it is
a safety property without stuttering and is insensitive to deletion of states,
i.e., from any sequence in II if we delete an arbitrary number of states, then
the resulting sequence is also in II. In the following we will identify a trace
property as the set of traces satisfying the property.

Definition 4.1 Let II be a property on (potentially infinite) traces. Then
I is safety without stuttering if it is safety and if

cell.oco=o0pg0o1...0,... thenVi>0.0¢...0;0;... €1l
I is strong safety if it is safety without stuttering and if
(%) cell.c=0p01...04... then¥Vi>0.0¢...0i—10441... €1l

In Definition 7?7 we call cancellation safety a safety property that satisfies
only (). Note that in the cancellation property it is assumed that the initial

16

Safety property Abstraction and concretization

Stuttering safety: (X)) = { T e X® ' Vi ki€ N~ {0}

Cancellation safety:

Vi>0.k €{0,1}

Strong safety: ot (X)E { xr e X® ‘

kn

ko, k
Jye X .x=y"y;"...ypn ...

_ k1 kn
Ozcan(X)d_ef{CCGEOO‘ HyGX-HU—yO% e Ynt e

EIyEX.x:ygoylfl...ny"...
Vi>0.k €N, koEN\{O}

)
)

Table 3: Restricted safety properties

state is always observed [?]. The class of strong properties is a strict subset
of the class of safety properties without stuttering.

The importance of properties without stuttering is in both requirement and
system specification. In system specification, a property with stuttering
exposes too much details of the internal structure, while in requirement
specifications these properties preclude, in model checking, efficient verifi-
cation [?]. The meaning of the definition of strong safety properties is that
if we don’t observe the system during certain instances then the observed
behaviour should still be permissible, and similarly if we observe the same
state many times before a state change occurs, then the resulting behaviour
should still be permissible. The strong safety properties are important since
invariant properties are a subset of them [?].

At this point we can define the abstractions characterising the restricted
safety properties as abstractions of S. Let us define these abstractions in the
most general form, namely consider the abstraction given in Table 77, where,
for each a € {a™, "™, ™"} we have o : p(X°) — a(p(X>)), namely «
is generically defined in the set of all the possible traces, even if the cor-
responding semantics in the hierarchy are obtained by applying a to the
set S. In the following we will call all these new abstract safety semantics
restricted safety properties. Note that o = " Ll a".

The definitions in Table 7?7 imply that we can identify the closure oper-
ators associated with these Galois insertions by using the abstraction func-
tions only. Moreover, from these definitions it turns out that the three
abstractions differ only for the hypotheses on the number of possible rep-
etitions k;. In the following, for each « in Table 7?7, we write k; € D, in
order to denote that k; respect the hypothesis imposed by the abstraction
a. In particular we have that Dgsta = N N {0}, k; € Dgean means that
Vi > 0.k; € {0,1}, while kg = 1, and k; € D,str means that Vi > 0.k; € N

17

while ky € N~ {0}. The following lemma says that the restricted properties
commute with the safety abstraction, and this property is important after-
wards for proving that the « abstractions are closure operators on the safety
abstraction domain. In the following, we consider again the extension of ¢,
to any set of (finite or infinite) traces.

Lemma 4.2 Leta € {a*", o™, a"}, and o € ¥, Then p,a(0) = ap,(0)?.

PROOF. Let z € p,(a(0)) then there exists o’ € a(o) such that = < o'.

Since o’ = Jlomalfl ... then there exists 7 such that z = Ugoalfl . Ufi. Since
0001 ...0; < o and ko, k1, ... k; € N we have that x € ayp, (o).

Consider now z € ap, (o). Then z = mgox’fl . xﬁ" with zoz1...2, < 0.
Let 8 € 3¢ such that xgzy...z,0 = o, then :cgoxlfl ...zkp € a(s). This
clearly implies that = € ¢, (a(0)). O

Proposition 4.3 Let a € {a'", o™, a“"}. « is an upper closure operator,
i.e., a(S) is a Moore family.

PrROOF. In order to show that «(S) is a Moore family of S we have
to prove that for any X; € a(S) we have [X; € «(S). Recall that
M5 X = 0w (N); 7w (X:)). Consider the following relations.

r=20...25 € Pu();Nw(Xi)) = FoeN1w(Xi) . 250

= Jdo.xxo0, Vi.o €7,(X;) = Jo.z<x0, Vi.p,(0) CX;
= Jo.x <0, Vi.a(p,(o)) C X;, | by hypotheses on X;]

= Jo.x <0, Vi.p,(a(0)) C X;, | by Lemma ?? |

= Jo.x =<0, Vi.a(o) C v (X;)

= Jo.z<x0, a(o) C), 1(Xi)

= 3020, 9u(0(0) € puli (X))

= Jo.z<0, a(pu(0)) C eu(); 1(Xi)), [by Lemma ?? |
= o) € g 1(X)

We proved in this way that [X; € «(S), namely that [X; is an «
safety property. O

The proposition above implies that for any X,Y € «(S), where « is a
restricted safety, we have that a(X M= Y) = X M*** Y being « a closure.
The following proposition is straightforward by Lemma ?77.

Now that safety without stuttering, as well as all the other restricted
safety properties, are included in the Cousot’s hierarchy of semantics as
abstractions of the safety semantics, we can derive them as fix-points of a
semantic operator designed by fix-point transfer from the fix-point safety

2a applied to infinite traces is the natural extension of the corresponding function
defined in Table ?77.

18

semantics given in the previous section. Consider the dual Kleene fix-point
transfer introduced before. We want to obtain any of the abstract safety
properties introduced so far as the greatest fix-point of the semantic operator

FO[— anafe

In this case, the concrete domain is the safety semantics 7°*, the abstract
semantics are the different 7¢, the abstractions are the respective «, and the
operators are F*** (concrete) and F'* (abstract). As we noticed in Sect. 77,
in order to apply the transfer theorem the abstraction function has to be co-
continuous. Unfortunately we can show that all the abstractions introduced
so far are not co-continuous.

Proposition 4.4 Let a € {a'", o™, a*"}. Then « is not co-continuous.

PrOOF. We show first how the cancellation property makes the co-continuity
to fail. Let v € {a*™, a*"} Consider Vn € N.X,, £ { z e &+ | jz[>n+1 = 2,=a },
clearly Vn € N.X,, € S since Vn.X,, = ¢, (Y},) whereY,, = { oeExv ‘ Opn=a }

a(Xy,) = { xlgo .. .xhm | ki€ Do,(m>n+1 = x, =aq) } Note that a(X,,) =

¥t indeed let y € XF, then if |y| < n or y, = a it is in «(X,,). Let us con-
sider |y| > n and y,, # a, then we can write y = (yo)! ... (Yn—1)2a’(yn)t - .. (ym)!
where clearly yo ... Yn—1a¥yn - .. Ym € Xn, therefore y € a(X,,). But this im-
plies immediately that Vn € N.y,a(X,) = £* and therefore [Ty a(X,) =
Yo (Mpen Twa(Xn)) = X, On the other hand we have that ~,(X,) =
{ocex¥| o, =a },thereforeN,cyw(Xn) ={0c€X¥| VneN.0,=a } =
{a*}. This means that @, (N,en 1w (Xn)) = {a,aa,aaq, ...}, ie., a([Trey Xn) =
a(@w(Mpen 1w (Xn))) = {a, aa, aaa, ...}, clearly different from 3¢.

Consider now o** and the sets X,, & { at | 1<n }U{ a"x‘ reXt, bex }
which compose a decreasing chain. Then we have that the concretization
is v, (Xp) = { S E“| a" <o, beo } Clearly, as in Proposition ?7?
we can note that (), 7.(X,) = @&. On the other hand for each n we
have that { a’| i € N } C o™ (X,,), therefore a* € (), y0*(X,). From
these facts we have [], a(Xy) = ¢u(), 1wa(Xyn)) # @ while o[], Xs) =

agpw(nn 'Yan) =0 O

Therefore all the abstractions introduced are not co-continuous. Anyway,
as noticed before, co-continuity is too strong a condition. Indeed, it would be
sufficient to prove that the abstraction functions introduced above preserve
the greatest lower bound of the iterates of F***. Unfortunately, this holds
for ", but it does not hold for the other restricted safety properties as it
is shown in the following example.

Example 4.5 It is worth noting that the dual Kleene transfer fix-point the-
orem, also in its weakened form, is not applicable to strong and cancellation
safety properties to generate a fix-point semantics of them. The following

19

example shows that the two restricted abstractions mentioned above do not
commute with the iterations of F*¥. Let a € {a*",a“"}. Consider the
transition system with ¥ = {a,b,c} and 7 = {{a,b), (b,b), (b,c)}, with c is
a terminal state. Note that for each n we have that ab® ¢~ X% C 77 %%,
This implies that ¥Yn € N . ab" ?ca® € ™ X%, Consider Vi € N . aca’,
then Vn € N, Vi € N. aca® € ayp,(ab”2ca®) C ap, (1" ~X¥) since aca® =
ab® ... b%ca’. Being ¢, (aca®) = {a} U { acd’ { i €N }, we have that Vn €
N. ¢py(aca®) C ap, (" ™E¥), namely Yn € N . aca® € 00, (" ~E).
Hence we have the following implications

aca® € N, V(" 7X¥) = VieN. aca’: € oo, ’qung(ThAEw)
= VieN.aca" €[], ap, (1" EY)

On the other hand, we have that ~,p,(T" "X%) = 7" X% (see the proof
of Proposition ??). Then it is worth noting that (), 7" %% = {ab¥,b*}.
Therefore

af, 0T 759) = apu N, wpu(T" T5%) = ap, (), 7" T8
= a(f{a’|ieN Ju{b|ieN })

Now, ifa = ", thena({ ab’| i e N Ju{ b'| ie N })=a*({ ab’| ie N })U
ar({ b ieN V) ={ab|ijeNj>0 Ju{b|ieN }={ab'|ijeN }.
While, if oo = a*" then a*({ ab’| i e N JU{ b'| i€ N })=a“({ abl| i€ N }U
a({b]ieN })={ab|ieN yu{b|ieN }. In both cases, we

have that ¥i . aca® ¢ a[], @ (T TE¥).

Hence, in the following we can investigate only on the fix point construction
of safety without stuttering.

Next results show precisely that o**" preserves the greatest lower bounds of
the iterations of F*™™", As before, we have first to avoid transfinite iterations,
proving simply that F @ reaches the fix point before w iterations, in order
to show the preservation of glb only for w limited greatest lower bounds.

Lemma 4.6 Let o = o™, then we have that
Vn e N.VX € a(S) . (F*)"(X) = a((F*7)"(X))

Proor. Let a = . We prove the thesis by induction on the num-

ber of applications of F®. By definition we have (F%(X))’ = X and
a((F=*(X))%) = a(X) = X, being X € a(S). Recall that (F*)"(X) £ (aF=)"(X).
Let (aF**)"(X) = a((F**)"(X)) be the inductive hypothesis. We prove

that this holds also for n 4+ 1. Consider

(Fa)n-i-l(X) — (anafe)n-i-l(X) — (anafe)((anafe)n(X))
= (aF=*)(a((F*=*)"(X))) [by inductive hypothesis]
= a(F**(a((F=*)"(X))) [by composition]
= a(F((F)" (X)) [being (F*)"(X) € a(S) |
— a((Fsafe)n—i-l(X))

20

Proposition 4.7 Let a = o*™. Then

safe safe
e <|_|(F“)"(E+)) = [](F)™ ().
neN neN

o def

PrOOF. Recall that F'* = « o F**¢ therefore

MTren(@F=)*(37) = [Trey a((F=)" (1))
= @ ﬂ:éeN(Fsafe)n(E'i_) by Proposition ??]

[by Lemma ?7?]

[
anafe(ﬂsafe (Fsafe)”(2+) [by Proposition 7?7]

[

[

[

= neN
= aF=Fa([Tty (F=e)"(E) by Lemma ?? |

= anafe(ﬂfféeN a(F=fe)n(3T)) by Proposition 77 |
= aF=e ([T (aF=e)n(s)) by Lemma ?? |

a

These results tell us that the fix point is reached at most in w iterations,
hence we have simply to show now that o™ preserves w-bounded iteration
only.

Lemma 4.8 Let o = o™ and § € X% then we have Vn € N:
©0u(0) C ap,(T"78T) & §ea(r" V)

PROOF. (=) Consider § € ¥¢, and ¢, (6) C ag, (7" "X*+). By definition
of a this corresponds to saying that Vx € ¢, (8) there exists z € ¢, (7" ~%1)

such that = = zgozfl ... 2Fm for some m € N, kg, k1, ..., kyn € Dy. Now we
prove that this fact implies that 30 € X such that ¢, (c) C @, (7" ~%1)

and such that § = agoalfl ... for k; € D,. Starting from ¢, () we want to

find a set of prefixes ¢, (o) for some o € 3¢.
First of all we prove that if z = ys, with 2,y € ¥*, s € ¥ and such that

x = zgo oy = wgo . ..wlhl with z,w € @, (7" ~%*), then we can find
. h! h!,
w' € @ (" "XT) such that y = wg °...w," and w' < z. Indeed suppose,

without losing generality, that k,, and h; are different from 0, otherwise we
would take the longest prefix of z and w with the last exponent different from
0 which is by construction in ¢, (7% ~X*). The fact that x = ys implies that

zgo cglm = wgo . wl}”s. Therefore zgo cgkmml = wgo e wlhl = y. Now
. 2 def 0,1 > .
if 2 € o (7" T XT) then also w' = zp21 ... zm,lzr{n b e 0, (7" ™ X1)3 since

{0

2071 - - . zm_lzm’l} < z. In this way we found w' € ¢, (7" ~%%) such that
y € a(w') with w’ < z. It is worth noting that the set of these elements of

3We wrote z1®1} since we don’t know if km > 1.

21

¢, (7" T X1) is an infinite set of prefixes, therefore it is the set of prefixes of
a certain infinite trace o, ¢, (o), and moreover the relation among prefixes

of 4 and o implies that 6 = agoalfl Therefore:

0w(0) Cap,(T" ") = Vz e p,(0).32 € (1" TXT) .1 = zgo ... zkm

m
= JoeX¥. p,(0) Cp,(r" 81, §= Ugoalfl e
= Joerh 7YY .§= O'godlfl
= J€a(r" V)
where it is trivial to verify that () C o, (7" "XT) implies 0 € 77 "X,
(«=) Consider § € a(7" ~X%). Then the following implications hold:

S€a(tm™yvY) = 3067’““2‘“.5:05(’0{“...
= HUGEW-QDW(U) gSDw(ThAE-F)a 6:0.6900.?1.”
= u(0) € alpu(0)) C apy (T T57)

where the last inclusions are due to the fact that § = agoalfl o O

Proposition 4.9 Let o = o*™. Then

safe safe
[] a(F=)"(£) = a <|_| (F”fe)"(E*))

neN neN

PROOF. Note that it always holds that (][], X;) C [@(X;). This means
that [Trey a((F=)"(S1)) 2 a ([Tiey(F=<)"(X1)) holds trivially. Let us
consider the other inclusion. We noted in Sect. ?? that, (F**)"(XF) =
@, (TP %), where @, here is the extension to both finite and infinite

traces defined in Sect ?77. Therefore the following relations hold.

@ € [Tign a((F=)"(351)) = 2 € gu(Mnen Yoo((F2)"(2)))

T € 0u(Npen 'Ywaﬁpw(fnﬂ ~xXt)

3o € Npen Yo ("1 7ET) L2 50

Jo.VneN.o € yap, (" TE), x50

Jo.¥n e N.py(0) Cap,(T"17ET), <50

Jo.Vne€N.o € a(t"1 ™%%), x < o [by Lemma ??]
Jo.¥neN.3 e I8Ny g =508 ... x<0, k€D,
Jo.VneN.3 e 2. p,(0) C o ("1 78, o =38 ... 20

A I R

At this point we have to prove that the condition above, ie., Jo.Vn €
N.36 € 2. 0,(0) C @, ("t ™%H), o = 5806k ... implies that we can
build an infinite trace § with the same properties and whose prefixes belong

22

to ., ("1 =X F) for all n. First of all we can erase all the consecutive repe-
titions from o, obtaining a minimal* (as number of states) trace ¢’ that gen-
erates o by a: o = 03“0?1 ... where Vi.h; # 0, and Vi.o; 7é Tit1 by construc-
tion. If |0/| < w, i.e., ¢’ = 0¢...0k, then we consider ¢’ = 00 OO .
namely we do not erase the repetmons of the last different stafce.

For each n consider the trace & such that ¢,(6) C ¢, (7"t ™%%) and
o= 5k°5k1 .., which exists by hypothesis. This means that 5'505]1‘“ e =
0,0 ... Since we are dealing with stuttering safety we have that Vi.k; >
0. ThlS implies that § and ¢’ contain the same states, only the number of
their repetitions can change. Consider a prefix # = 0p...0; of o’. Let us
prove by induction on the length of = that ¥n .z € 7" ~%+, If |z = 1
then it must be z = 0. But any ¢ such that 5]505]f1 = 03“0{” ... has
S0 = oo therefore, since Vn .35 . ¢, (§) C @, (7" ~2F) . 5’80 = ago o
then Vn .z = 0y € ¢, (t" "1 X%, Let x = 0¢...0y, i.e., |x| =i+ 1, then

go . O'Z}-li < o, therefore, let h = |Jg° .. 0£”|, there must exist ¢ such that

ww(d) C @w(Th“EJF) such that o = 5’5051f1 Clearly this last hypothe-
: K
sis implies that dj .7 < j < h.ago...a{“ = 55“‘0...5/. Since g ...0; €

(2

@u (T ~51), we have that &...5; € 7" Namely VI < j —1.(8;,6.41) € T,
which implies, due to the equality above, that VI < i — 1. (0;,0141) € T,
namely x € 7°T1. In this way we proved that Va < o’ we have dn . x € ™.
Now let |#| = m, then Vn < m we have z € 7" ™%+ C ¢, (7"t X)), while
Vn > m we have that < 0g...0, € 7" YT since 0¢...0, € T,
therefore Vn . Vo € ¢,(0') . x € ¢ (r"T17XF). We proved in this way
that Vn € N . ¢,(0") C @w(7"+1“2+). Therefore we have the following
implications:

Jo . Vn €N.36 € 5%, ¢,(0) Cpu(r"T17nh), o =000 ... 10
30,6 .¥n € N. 0, (6) C ("1 ~5t) g =6k ... z<0
30,6 . € N. 6§ € yupu(r "+1’\E+).0:5§°51f1.. ,r<0
30,8 .6 € Npen Twpu (T 7E9), o =600 ..., <0

30,0 . 0, (6) € Y (Nnen Vo (T T, o = Spost . r<o

30,0 . pu(0) C apy(d) C apy ﬂneN Vopu (T 7EY), 250

T € @w(a) C apy, ﬂneN rVwSDw(Tn—H Azw) = a(l_l:éeN(Fsafe)n(E—’—))
O

A R

Finally, next result proves that the abstract domain defined by o®" i
complete for the operator F**¢ [? ?], namely the commutative property
holds. In the following the domain D, for the values k; is always N ~ {0}.

Lemma 4.10 Let o = ™. Then avo F** = a0 F** o .

“Minimal here means that if we erase some other states then we cannot rebuild o by
using a.

23

PROOF. By definition we have that a o F*** = v o F*** o o corresponds to
the property VX € S.ap, (72 7 X) = ag, (1?2 " a(X)). Since a(X) 2 X and
being all the involved functions monotone, we have the immediate inclusion
ap, (127 X) C ap, (7?2 " a(X)).
Let us prove the other inclusion.

T € Oéng(Ti “a(X)) = Jy=vyoy1.-.-Ym € QDW(T2 “a(X)) .z = ygoylfl yﬁ{”
for some ko, k1,..., kn € N {0}

= x:ygoylfl...yﬁlmﬂwETg“a(X).yﬁw
= r=yy ke y S w, worwr, W Ewr L wn € a(X)
= x=y§°y’f1--.yfn%y4w, dzoz1...z1€ X .
w = zgozi“ ...zl}” for some hg, hy,...,h € NX {0}
= =yt ke y s w, W =20

Yoz0...21 € T2 TX | since zg = wy, yo = wo and ho # 0]

At this point, note that y; ..,y < w’h,: z(]}“z?l . zlhl.

This implies ylfl oy = 202" .. zllll, with /; < [. From ;clhe limpli(;la—
tions above we obtain the equality = = ygoylfl oyl = ygozoozll g
with yozo...2, € (27 X) being prefix of yozo...z € 727 X. Namely

r € a(p, (27 X)). O

...le

Hence, we can transfer the fix-point of the operator F*** on the stuttering
abstract domain in order to construct it systematically.

Theorem 4.11 Let a = o, X € a(S) and F*(X) 2 ap, (12~ X). Then

T = a(gfps F*%) = gfpg. F*.
PROOF. F%oa = a o F** o o by definition of F'*, and a0 F*** o v = v 0 F**®
by Lemma ??. Then we have that F*oa = ao F***. Then by using Proposi-
tion 77, we can apply the dual weakened Kleene transfer theorem and obtain
the thesis. O

In this section we showed that safety without stuttering, allowing to
replicate states, preserves the constructive characterisation proved for safety
semantics. This characterisation is important since it tells us that we can en-
force also this restriction of safety monitoring the computation of programs.
We also showed that the same does not hold whenever we consider cancel-
lation, namely whenever we want to enforce properties where the deletion
of states is admitted. In other words safety semantics allowing cancellation
of states cannot be characterised in a constructive way.

5 Safety vs Liveness in abstract interpretation

In this section we want to exploit the abstract interpretation based char-
acterisation of safety with a different task. Our final aim is to prove that

24

the complementary nature of safety and liveness properties does not have a
corresponding interpretation in the abstract interpretation framework. In
fact, it is well known, that in the standard approach to safety/liveness [?],
liveness is in some way a “complementary” notion of safety in the sense that
any interesting property is indeed the intersection of a safety property with
a liveness one [?][Th.1]. What we would like to investigate is whether this
“complementary” relation holds also in the abstract interpretation frame-
work, namely we want to understand if the complementation of the safety
domain, as abstraction, is a significant domain and whether it models live-
ness properties. Hence we have to follow the following steps: (i) we first have
to characterise safety property by means of a closure operator; (ii) we have
to prove that this closure precisely captures safety properties in the Alpern-
Schneider approach to safety/liveness properties; (iii) we characterise the
complement of this safety closure in the abstract-interpretation framework.

5.1 The closure operator Safe

Consider the pair of adjoint functions used in the previous sections for char-
acterising safety in the hierarchy of semantics. It is well know that the
composition of a pair of adjoint function forms a closure operator, in par-
ticular, the composition Safe = v, o ¢, is an upper closure operator (see
Sect. 77?):

Safe(X) = { o€ E“| 0u(0) C pu,(X) }

In the following of this section we use the Alpern and Schneider [?] charac-
terisation of safety and liveness properties in order to formally prove that
this closure precisely captures safety properties and can be used for charac-
terising also liveness properties. Indeed, Safe captures exactly the intuitive
characterisation of safety properties since it completes a set X of infinite
traces with all those traces whose partial executions are partial executions
of traces in X, in this sense it is maximal with respect of a given set of
partial executions, those of X. On the other hand, liveness properties are
intuitively described as properties that admits every possible partial execu-
tion, in this case formally Safe would complete the property with all the
missing infinite traces. Hence the idea is to show that safety properties are
exactly those such that Safe(X) = X, while liveness properties are those
such that Safe(X) = X¢.

5.2 Safe for safety/liveness properties

According to Alpern and Schneider [?], safety and liveness properties can
be characterized by considering the standard Cantor topology on the set of

25

infinite traces X induced by the metric d : ¥¥ x ¥* — R defined as

0 ifo=4¢
d(0,0) = { 27" ifn=min{i | o; = 0;}

In this case, safety properties have been proved to be the closed sets of the
Cantor’s topology, while the dense sets are the liveness properties on p(3¢).
Hence, if we prove that the closure Safe is a topological closure and that
its closed elements are closed in the Cantor topology then we have done,
since the topological structure guarantees that also the dense elements can
be characterised by means of the topological closure, i.e., Safe(X) = X“.

Safe is a topological closure. Note that, the following properties are
intuitively quite trivial for a Cantor’s topology. Nevertheless, we provide a
detailed proof in order to show, in sake of readability, how the closure Safe
works.

Lemma 5.1
1. The closure operator Safe is finitely additive;
2. The closure operator Safe is not continuous;

3. The closure operator Safe is not co-continuous.

PROOF.

1. First of all we prove that if we take two sets X and Y in p(X“) then
Safe(X UY) = Safe(X) U Safe(Y): By definition we have that

Safe(X UY) = {oe¥¥| p,(0) Cp (XUY) }
= { 0 €YY 0u(0) C pu(X)Up,(Y) }

We prove now that if ¢,,(0) C ¢, (X) U@, (Y) then ¢, (0) C v, (X) or
Yw(o) C @,(Y). Suppose that ¢, (o) N, (X) # & and that ¢, (o) €
Yw(X), then we have @ # ,(0) N pu(X) C ¢, (Y). For the first
inequality we can say that 32’ € X1 .2/ < 0, 2/ € p,(X) and 2’ €
0w (Y), since the difference operation doesn’t erase x’. Moreover Vz €
St 7'z g0 = 2/z € p,(Y) for the same reason, and being the sets
closed under prefix.

Hence the infinite traces in Y which have 2’ as prefix surely have as
prefix also each prefix of 2/, then ¢, (0) C ¢, (Y). Therefore

{ o] pu(0) Cpu(X)Upu(Y) } =
={ 0| vul(o) Cpu(X) }U{]| vulo) Cpu(Y) }
Safe(X))

2. We prove that the closure is not continuous by showing an example
where the continuity fails. Consider the increasing chain {X,}neny C
o(2¥), where Vn € N. X, = {p*} U {a’t® | i < n}. It is worth
noting that |J, X, = {0*} U {a"b¥ | n € N}. Therefore we have that
(U, Xn) ={b"|ie Ntu{a' | i e N}U{a't’ | i,j € N}. Finally we
can find that v,¢,(U, Xn) = {a*, 0¥} U {a"b¥ | n € N}.

On the other hand we have that for each n € N, ¢, (X,,) = {b' | i €
N}u{a' | i <n}U{a’¥’ | i <mn, j € N}. Therefore v,0,(X,) =
{b*} U {a’* | i < n}. Clearly we have that a¥ ¢ |, Yw@w(Xn).

3. Finally we can show that Safe is not co-continuous since we can find
an example where co-continuity fails. Consider the decreasing chain
{ X nen C p(E9), defined as follows: Vn e N. X, £ {0 | a" <0, be
o}. The only infinite trace o that for each n has a” as prefix is 0 =
a®, but o does not contain b, therefore (), X, = @. On the other
hand for each n we have ¢, (X,) 2 {a’ | i € N} since for all i < n
we have that o' < a™, while for all i > n we have that a” < a' <
a't” € X,. Therefore Vn € N . a¥ € v,0,(X,), which implies that
a* € (), Ywpw(Xn). We proved in this way that Safe =, o ¢, is not
co-continuous since Y, (), Xn) = 2.

a

Note that the lemma above implies also that the function ¢, is not co-
continuous. It is immediate to prove the following result.

Proposition 5.2 Safe is a topological closure

PRrROOF. Safe is an upper closure operator by construction. Moreover by
Proposition ??, it is finitely additive and Safe(&) = @. This makes Safe a
topological (Kuratowski) closure. O

Safe characterisation of safety and liveness properties. Note that
(3¥,d) is a complete metric space, namely every Cauchy sequence in ¢
has a limit. Recall that a sequence {o,,} in a metric space (U,d) is Cauchy
provided that:

Ve >0 3k.Vn,m > k. d(on,0m) <€

and that its limit, when it exists, is denoted as lim, .., 0, and it is the
(unique) o such that

Ve > 03k.Vn > k. d(op,0) <e

Let X C ¥% be a set of finite traces. We denote by X ™ the set of traces in X
of length n. Then, in our case, a sequence {o,} of infinite traces is Cauchy

27

if for every € > 0 there exists k = —|[loge] such that for every n,m >
kE oo(o) = p,(0m,)1*. (29,d) is therefore clearly complete because it
contains all infinite traces. It is known [?] that a set X C U is closed in the
metric topology induced by the complete metric space (U, d) if and only if
the limit of any Cauchy sequence of points in X is contained in X.

Lemma 5.3 X = Safe(X) iff it is closed in the Cantor topology on ¥¢.

PROOF. In order to prove this result we have only to prove that for any X C
Y9 0 € Yupw(X) iff there exists a Cauchy sequence {z"}nen C Yopw(X),
of finite traces, such that lim, ., 2" = 0.

(=.) Let 0 € 7,0,(X). This holds iff p,(0) C ¢u,(X). We consider
the sequence of traces {2"} ey such that z, = yn with y € ¢, (o)™ and
yn € X C v,¢,(X). These objects exist because any finite prefix y of o is a
finite prefix of some infinite trace yn in X. This sequence is clearly Cauchy
by definition and lim,, .., 2" = 0.

(«<.) Let {z"} en be a Cauchy sequence in 7,4, (X) such that lim,, . z" =
o. We prove that o € 7,¢,(X). From what we observed above, and the
definition of limits of Cauchy sequences, for any m > 0, there exists k such
that ¢, (0)"™ = ¢, (z¥)T™. Therefore

0 (0) = Upncw 90 (0)1™ € Upcy U 00 (%) € (X))

Then, we have that ¢, (0) C ¢, (X) which implies that o € y,p,(X). O

Hence, due to the Alpern and Schneider topological characterisation of
safety and liveness properties [?], we have the following characterisation of
these properties by means of the closure Safe.

Theorem 5.4 Given X € p(3¥), property on infinite traces
e X is a safety property iff Safe(X) = X;

e X is a liveness property iff Safe(X) = 3¢.

5.3 Complementing Safe

It is clear from the previous construction and from Gumm’s characteriza-
tion of safety and liveness [?], that safety properties are abstractions of
infinite traces. In this sense, the safety semantics can be considered as an
abstract interpretation of the infinite trace semantics in Cousot’s hierarchy
(see Figure ?7). This abstraction allows also to provide a characterisation
of liveness properties, in terms of Safe as we have seen before, i.e., X is
liveness iff Safe(X) = X“. However, we don’t have a characterisation of
liveness properties by means of an abstraction whose closed elements are
indeed liveness properties.

28

With this aim in mind we study the structure of meet-irreducible elements,
i.e., those sets which cannot be obtained by intersection. Indeed, the impor-
tance in this investigation is twofold: (i) the complementation in abstract
interpretation is based on these elements, as we will see later on; (ii) Closure
operators on p(.5), with S being any complete lattice, are traditionally spec-
ified in terms of their meet-irreducible elements [?]. This is justified by the
fact that closure operators are Moore families. In fact, for complete lattices
generated by their meet-irreducible elements, like algebraic complete lat-
tices, meet-irreducibles specify the least (often irredundant) set from which
the whole lattice can be generated. Unfortunately, this is not the case for the
closed sets of Cantor topology on ¥¢, i.e., for the elements in Safe. Namely,
in our context, for each element X such that X = Safe(X) we can find two
other different elements in Safe whose glb is equal to X. This implies that
Safe does not have meet-irreducible elements. This fact, itself, is quite un-
usual in the abstract interpretation framework, but what makes Safe even
more interesting, is the fact that we can anyway characterise a subset A of
closed which is order generating for Safe. In other words, each closed Safe
element is meet generated by elements in A.

The algebraic structure of safety properties. In this section we want
to characterise the algebraic structure of the domain Safe. For this reason,
we have to investigate about the existence of its meet-irreducible elements
(Mirr(Safe) for short), which are the elements closest to the top of the
lattice. In order to understand the following results we have to underline
some aspects about meet-irreducible elements. We recall that (see Sect 77)
a meet-irreducible set X is different from the top, i.e., 3“, and cannot be
obtained as intersection of sets different from itself, i.e., if X = X7 N X,
then X = X; or X = X5. On the other hand, note that, given a metric
space X, any closed C' C X can be obtained as the intersection of the closed
sets C' U {x1} and C U {xo}, with z1,29 ¢ C. In general, this means that
each element in Safe can be obtained as intersection of other two sets in
Safe. Even if this allows to say that Safe has not meet-irreducible elements,
it is not sufficient for constructively characterising whether Safe is, anyway,
order generated. Hence, our aim is to understand which are the closed sets
just below the top, and to characterise the structure of the elements that
can generate the whole domain of closed elements of Safe.

Clearly, the following study is based on the fact that Safe is an abstrac-
tion of the infinite trace semantics in the Cousot hierarchy of semantics
[?]. Moreover, in the following, any element in Safe is called a safety set.
At this point, before entering in the construction, it is worth noting that
Vo € . Safe({0}) = {0}, since, being ¥* a metric space, all the singletons
{d} are closed in the Cantor topology.

29

Now, let us start defining the following sets. Given x € ¥, we define
A ZE{dex| 240)

This is the set of all the traces § such that z is not prefix of . In other words,
the only traces that are not in A, are all the possible infinite extensions of
x. We use these sets for defining the following subset of p(X¢):

A={A epE)| zext }

A collects all the set maximal with respect to all the possible finite prefixes
but one, namely A, is maximal with respect the set of partial executions
Yt~ {z}. For this reason, intuitively, they are the safety properties “closest”
to the top. These elements, like meet-irreducible, contains all the informa-
tion necessary for meet generating each safety property. Nevertheless, they
cannot be meet-irreducible since they can also be generated by other differ-
ent elements in A, as we can show in the following results.

Lemma 5.5 VX € A. Safe(X) = X and X is not meet-irreducible.

Proor. Let X = A,. Then we have:

Safe(X) = Safe(A;)
= Safe{é\m;éd} by Prop. 7?7(1.)]
= {02 p(0) Cpu({d x4} }
{5| %5}

Clearly, these elements cannot be meet-irreducible since they are closed of
the Cantor topology, in the metric space X%. O

Corollary 5.6 Mirr(Safe) =

Now we can prove that the abstract domain of Safe is order generated by A,
namely we can show that each closed element can be obtained as intersection
of elements in A. This means, that A is all we need for describing the closed
elements in Safe.

Proposition 5.7 A C Safe is order generating for Safe.

PROOF. We prove that each element X in Safe can be obtained as inter-
section of elements in A. Consider X € Safe, then

FEX & puld) Cpu(X)
& VzeXt. (zep,d)
& VeeXt. (v pu(X)
& Vzelt. (z ¢ pu(X)
& VreXt. (v pu(X)
& deN{ M| 2 pu(X) }

30

a

The proposition above says that in order to obtain a safety set it is
necessary to cancel from the top X an infinite number of traces. This
because, we are unable to rebuild the missing traces simply by looking at the
prefixes of the traces in the set. From this observation and the propositions
above we can conclude the following result.

This means that the set Mirr(Safe) is not order generating [?].

A first characterisation of liveness properties as sets of infinite traces
can be obtained by analysing the results just given. Indeed, we can use the
elements in A for understanding the sets representing liveness properties.
We noticed, in fact, that the elements in A are in Safe since they lack an
infinite amount of traces. We can note that if, instead, we cut off from the
top X a finite number of traces then we obtain liveness properties, since all
their prefixes are prefixes of other remaining traces of the set.

Proposition 5.8 Consider X € p(X“) such that X has finite cardinality,
i.e., | X| € N, then ¥ \ X is liveness.

PrOOF. Consider Y = X“ \ X. We have first to prove that X C Safe(Y).
Namely we have to prove that 6 € X implies § € Safe(Y'). By definition of
Safe this holds if V§ € X we have ¢,,(d) C ¢, (Y). Consider x € @, (4), then
we can always build an infinite trace o such that V§ € X . za # 9, since the §
are finite in number. This implies that, for each x € ¢, (§) we have za € Y,
therefore x € ¢, (Y'). Hence we proved that X C Safe(Y'), on the other hand
clearly we have that Y C Safe(Y'), and therefore 3% =Y U X C Safe(Y).
This, finally, means that Safe(Y) = 3¢, being Safe(Y) C X¢.]

Complementing Safe. In the following we consider the complement op-
eration defined in [?, ?] as a systematic method to compare abstract do-
mains. Abstract domain complementation introduced in [?] provides a sys-
tematic method for decomposing abstract domains. Complementation is
the inverse operation of the reduced product (see [?]), namely an opera-
tion which, starting from any two domains C' C D, gives as result the most
abstract domain C' © D, whose reduced product with D is exactly C (i.e.,
(Ce D)nD = C). By the equivalence between closure operators and
abstract domains, the above notion of complementation corresponds pre-
cisely to pseudo-complementation for the closure pp corresponding to D in
uco(C). Recall that if L is a meet-semilattice with bottom then the pseudo-
complement of x € L, if it exists, is the unique element z* € L such that
zAz*=_LandVy € L. (x ANy = 1) = (y < z*) [?]. In a complete lat-
tice L, if z* exists then z* = V{y € L | x Ay = L}. If every z € L has

31

the pseudo-complement, L is pseudo-complemented. It is worth noting that
pseudo-complementation is the only possible form of complementation for
abstract interpretation. Indeed, it is well known [?, ?] that uco(C') is com-
plemented (in the standard sense) iff C'is a complete well-ordered chain, and
this is a far too restrictive hypothesis for semantic domains. The following
results [?, ?] provide sufficient conditions on C' such that uco(C') is pseudo-
complemented. Moreover C' is meet-generated by S C C if C = M(S5).

Theorem 5.9 Let C be a complete lattice.
1. If C is a meet-continuous then uco(C) is pseudo-complemented [?].

2. If C is meet-generated by Mirr(C) then uco(C) is pseudo-complemented
and, for any A € uco(C), we have A* 2 C 6 A = M(Mirr(C)NA) [?].

By this theorem, we have that X“ is pseudo-complemented, and triv-
ially meet-generated by its meet-irreducible elements, hence we can think
of characterising the complement of Safe on the infinite trace semantic do-
main. Note that X is meet-irreducible in p(3¢) if and only if Jo € ¢
such that X = X“ \ {o}. It is worth noting that this fact, together with
Proposition 7?7, implies that if X is a meet-irreducible element of p(3%)
then Safe(X) = X%, i.e., X is liveness.

Corollary 5.10 Inf & Safe = Inf

The interpretation of this result is that, from an algebraic point of view,
liveness is not the complement information of safety, since safety as closure
has no complement in the set of infinite traces.

6 Conclusions

In this paper we have studied the lattice-theoretical structure of safety se-
mantics in terms of the abstract interpretation of a maximal trace semantics
of a transition system. This allows us to prove some properties of the safety
semantics as properties of the corresponding abstraction on infinite traces.
In particular we proved that the safety abstraction is complete in the sense
of abstract interpretation with respect to the fix-point semantics operator
characterizing infinite computations. This construction provides a complete
characterization of the safety semantics and of some of its abstractions such
as stuttering and strong safety in the Cousot’s hierarchy. The whole result-
ing picture, including Cousot’s standard hierarchy and the new observable
of safety properties, is depicted in Fig. 7?7. Further abstractions of safety
can be derived by abstract interpretation of 7**¢. In particular it is possible
to reinterpret the Alpern and Schneider [?] result by isolating the safety

32

component of any property 7 in the lattice of abstract interpretations sim-
ply by considering 7 U Safe, which is the common abstraction between 7
and safety. Further research directions are towards the inclusion of security
properties in Cousot’s hierarchy of semantics. In particular in [?] the au-
thor proves that the only enforceable security policies are those representing
safety properties. By enforceable we mean that there exists a mechanism
that works by monitoring execution steps of a program and terminating the
executions that are about to violate the security policy been enforced.

References

1]

S. Abramsky and A. Jung, Domain theory, in Handbook of Logic in
Computer Science, S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum,
eds., vol. 3, Oxford University Press, Inc., 1994, pp. 1-168.

B. Alpern, A.J. Demers, and F.B. Schneider, Safety without stuttering,
Information Processing Letters 23 (1986), pp. 177-180.

B. Alpern and F.B. Schneider, Defining liveness, Information Process-
ing Letters 21 (1985), pp. 181-185.

, Recognizing safety and liveness, Distributed Comp. 2 (1987),
pp- 117-126.

K.R. Apt and G.D. Plotkin, Countable nondeterminism and random
assignment, J. of the ACM 33 (1986), pp. 724-767.

C. Baier and M. Kwiatkowska, On topological hierarchies of temporal
properties, Fundamenta Informaticae 41 (2000), pp. 259-294.

G. Birkhoft, Lattice Theory, AMS Colloquium Publication, 3rd edition,
AMS (1967).

E. Chang, Z. Manna, and A. Pnueli, Characterization of temporal prop-
erty classes, in Proc. of the Internat. Collog. on Automata, Languages
and Programming (ICALP °92), Lecture Notes in Computer Science,
vol. 623, Springer-Verlag, 1992, pp. 474-486.

A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato,
Complementation in abstract interpretation, ACM Trans. Program.
Lang. Syst. 19 (1997), pp. 7-47.

P. Cousot, Constructive design of a hierarchy of semantics of a transi-
tion system by abstract interpretation, Theor. Comput. Sci. 277 (2002),
pp. 47-103.

33

[11]

[20]

[21]

[22]

P. Cousot and R. Cousot, Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approrimation
of fixpoints, in Proc. of Conf. Record of the jth ACM Symp. on Princi-
ples of Programming Languages (POPL "77), ACM Press, New York,
1977, pp. 238-252.

, Constructive versions of Tarski’s fixed point theorems, Pacific
J. Math. 82 (1979), pp. 43-57.

, Systematic design of program analysis frameworks, in Proc. of
Conf. Record of the 6th ACM Symp. on Principles of Programming
Languages (POPL ’79), ACM Press, New York, 1979, pp. 269-282.

, Inductive definitions, semantics and abstract interpretation, in
Proc. of Conf. Record of the 19th ACM Symp. on Principles of Pro-
gramming Languages (POPL ’92), ACM Press, New York, 1992, pp.
83-94.

J. de Bakker, Mathematical theory of program correctness, Prentice-Hall
International (1980).

E. Dijkstra, Guarded commands, nondeterminism and formal deriva-
tion of programs, Comm. of The ACM 18 (1975), pp. 453-457.

E.W. Dijkstra, A discipline of programming, Series in automatic com-
putation, Prentice-Hall (1976).

P. Dwinger, On the closure operators of a complete lattice, Indagat.
Math. 16 (1954), pp. 560-563.

G. Filé and F. Ranzato, Complementation of abstract domains made
easy, in Proc. of the 1996 Joint Internat. Conf. and Symp. on Logic
Programming (JICSLP ’96), The MIT Press, Cambridge, Mass., 1996,
pp. 348-362.

P.W. Fong, Access Control By Tracking Shallow Execution History, in
IEEE Symposium on Security and Privacy, 2004, pp. 43 — 55.

R. Giacobazzi, C. Palamidessi, and F. Ranzato, Weak relative pseudo-
complements of closure operators, Algebra Universalis 36 (1996), pp.
405-412.

R. Giacobazzi and F. Ranzato, Refining and compressing abstract do-
mains, in Proc. of the 24th Internat. Collog. on Automata, Languages
and Programming (ICALP °97), Lecture Notes in Computer Science,
vol. 1256, Springer-Verlag, Berlin, 1997, pp. 771-781.

R. Giacobazzi, F. Ranzato, and F. Scozzari, Making abstract interpre-
tations complete, J. of the ACM. 47 (2000), pp. 361-416.

34

[24]

[25]

[26]

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S.
Scott, A Compendium of Continuous Lattices, Springer-Verlag (1980).

H.P. Gumm, Another glance at the Alpern-Schneider theorem, Informa-
tion Processing Letters 47 (1993), pp. 291-294.

K.W. Hamlen, G. Morrisett, and F.B. Schneider, Computability classes
for enforcement mechanisms, ACM Trans. on Programming Languages
and Systems 28 (2006), pp. 175 — 205.

C. Hoare, An axiomatic basis for computer programming, Comm. of
The ACM 12 (1969), pp. 576-580.

L. Lamport, Proving correctness of multiprocess programs, IEEE Trans.
on Software Eng. 3 (1977), pp. 125-143.

, The temporal logic of actions, ACM Trans. on Programming
Languages and Systems 16 (1994), pp. 872-923.

J. Ligatti, L. Bauer, and D. Walker, Enforcing Non-safety Security Poli-
cies with Program Monitors, in 10th European Symposium on Research
in Computer Security (ESORICS), Lecture Notes in Computer Science,
vol. 3679, Springer-Verlag, 2005, pp. 355 — 373.

J. Morgado, Note on complemented closure operators of complete lat-
tices, Portug. Math. 21 (1962), pp. 135-142.

S. Owiki and L. Lamport, Proving liveness properties of concurrent
programs, ACM Trans. Program. Lang. Syst. 4 (1982), pp. 455-495.

D.O. Paun, Closure under stuttering in temporal formulas (1999).

G. Plotkin, A structural approach to operational semantics, DATMI-19
Aarhus University, Denmark (1981).

F.B. Schneider, Enforceable security policies, Information and System
Security 3 (2000), pp. 30-50.

Z. Shmuely, The structure of Galois connections, Pacific J. Math. 54
(1974), pp. 209-225.

A.P. Sistla, Safety, liveness and fairness in temporal logic, URL
citeseer.nj.nec.com/prasadsistla99safety.html.

, On Characterization of Safety and Liveness Properties in Tem-
poral Logic, in Proc. of the 4th ACM Symp. on Principles of Distributed
Computing, ACM Press, New York, 1985.

35

[39] M.B. Smyth, Topology, in Handbook of logic in computer science (vol.
1): background: mathematical structures, vol. 1, Oxford University
Press, Inc., 1992, pp. 641-761.

[40] W. Thomas, Safety and liveness properties in propositional temporal
logic: Characterization and decidability, Schriften Zur Informatik 116
(1986).

36

University of Verona =

Department of Computer Science

2y Strada Le Grazie, 15 z)
1 1-37134 Verona

Italy

http://www.di.univr.it

