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Abstract—A score function induced by a generative model of the data can provide a feature vector of a fixed dimension for each data

sample. Data samples themselves may be of differing lengths (e.g., speech segments or other sequential data), but as a score function

is based on the properties of the data generation process, it produces a fixed-length vector in a highly informative space, typically

referred to as “score space.” Discriminative classifiers have been shown to achieve higher performances in appropriately chosen score

spaces with respect to what is achievable by either the corresponding generative likelihood-based classifiers or the discriminative

classifiers using standard feature extractors. In this paper, we present a novel score space that exploits the free energy associated with

a generative model. The resulting free energy score space (FESS) takes into account the latent structure of the data at various levels

and can be shown to lead to classification performance that at least matches the performance of the free energy classifier based on the

same generative model and the same factorization of the posterior. We also show that in several typical computer vision and

computational biology applications the classifiers optimized in FESS outperform the corresponding pure generative approaches, as

well as a number of previous approaches combining discriminating and generative models.

Index Terms—Hybrid generative/discriminative paradigm, variational free energy, classification.
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1 INTRODUCTION

THE design of models for classification and recognition
purposes is one of the fundamental issues in computer

vision. Among the several possible taxonomies, two
apparently orthogonal approaches can be found in the
literature: the generative and the discriminative paradigms.

Generative models are built to explain how samples
could have been generated. Without a separate special
notion of discrimination, they simply explain the data in
such a way that the model parameters link hidden
variables, which often have higher level semantics, to the
observations so as to fit the probability density of the
observed data. In such a model, classification can be treated
as an inference problem: A model per-class is first fit, thus
treating the class label during training as an additional
higher level, but observed, variable, and then new samples
are assigned to the category whose model fits best.

On the other hand, discriminative models target the
boundaries among categories rather than the complete
density function over the data. The philosophy of this
approach is that avoiding modeling complex structure of

the density models, the modeling power could potentially
be focused only on differentiating the classes, which could
thus lead to higher accuracy on the task at hand. Of course,
the discriminative models may need to indirectly capture
some of the complexities of the latent data structure when
this is necessary for accurate classification.

The complementary nature of discriminative and gen-
erative approaches to machine learning [1] has motivated
lots of research on the ways in which these can be combined
[2], [3], [4], [5], [6], [7], [8]. These approaches can loosely be
divided into three groups: blending methods, iterative methods,
and staged methods.

In a few words, blending methods [2], [4], [5], [9], [10] try
to optimize a single objective function that contains different
terms coming from the generative and discriminative model.
Iterative methods [11], [12], [13] are algorithms involving a
generative and a discriminative model that are trained in an
iterative process, each influencing the other. Finally, in
staged methods [6], [8], [14], [15], [16], the models are trained
in separate procedures, but one of the models—usually the
discriminative model—is trained on some features provided
by the first. This last family is currently the most frequently
applied or studied by the community and it contains the
family of methods called generative score spaces [7], which
perform classification after projecting the samples into a
fixed-dimensional space induced by a generative model.
Empirical results have often indicated that the classification
rate in such spaces outperforms both the direct classification
based on the inference in the generative model and the
discriminative classification in more straightforward feature
spaces which are not based on the latent data structure.

In this paper, we present a novel generative score space,
called Free Energy Score Space—FESS, exploiting varia-
tional free energy terms as features. The mapping arises
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naturally as a consequence of the factorization of the model.
The free energy terms quantify the data fit in different parts
of the model according to the posterior distribution and the
uncertainty in the posterior distribution. Interestingly, the
free energy terms seem to be informative for discrimination
even when the model is imperfect. As illustrated in the
experimental section, our approach tends to outperform the
performances of generative score space-based methods
proposed in the literature.

The rest of the paper is organized as follows: The next
section reviews the state of the art of hybrid, generative-
discriminative, approaches. In Section 3, the free energy
score space is described in detail. In Section 4, we show that
the proposed generative score space leads to better
classification performances than the related generative
counterpart. The score space is generalized in Section 5,
showing how multiple score functions can be defined
starting from the free energy formulation. An exhaustive
experimental section is presented in Section 6, and final
remarks are finally drawn in Section 7.

2 GENERATIVE, DISCRIMINATIVE AND HYBRID

CLASSIFIERS

Although generative models are trained simply to fit the
density of the data, they are meant to accomplish this by
involving a hierarchy of hidden variables. This latent
structure, rather than just the quality of the density fit, is
what often makes these models attractive. Human under-
standing of the world is often easily expressed in terms of a
combination of hidden causes, and so specification of a
generative model structure is intuitive. Furthermore, in the
human understanding of the structure of hidden causes,
those at higher levels of the hierarchy are imbued with
meaning. This provides a hope that inference and structure
learning algorithms for such models may lead to a pseudo-
intelligent behavior. It is thus the ability to perform
inference of hidden causes, rather than the quality of the
density fit, that excites the researchers. The two are, of
course, related, as a perfect density estimator would have to
capture the true latent structure somehow, but when the
models are imperfect, then the imperfection of the density
fit could affect inference of some hidden causes more than
the others. Actually, when the affected hidden variable is
the class label, other approaches, e.g., a different generative
model or a simpler feature-based discriminative algorithm,
may considerably outperform an otherwise seductively
general generative model.

In particular, generative models describe how the input
data could be generated through a process involving a
hierarchy of hidden variables, connected to each other
through a hierarchy of conditional distributions. In this
way, a correspondence between parts of the model and
features is established. The hierarchical probability density
modeling also allows for integration over hidden variables,
and generative models handle missing, unlabeled, and
varying-length data in an elegant unified way. Classifica-
tion is also performed in the same way: The likelihood
under such parameterized class-specific models can be used
for classification using the Bayes rule.

If the sets of all the hidden and observed variables are
denoted with H and X, then a generative model specifies
the joint probability distribution P ðH;XÞ. If X ¼ fxðtÞg
represent a set of i.i.d. samples and H ¼ fhðtÞg the set of
hidden variables associated with each sample, then the joint
distribution is

LG ¼ P ð�Þ � P ðH;Xj�Þ ¼ P ð�Þ �
YT
t¼1

P
�
hðtÞ; xðtÞj�

�
; ð1Þ

where P ð�Þ is the parameter prior and the crucial terms
P ðhðtÞ; xðtÞj�Þ represent the modeling of what the data look
like.

In the context of classification, xðtÞ may be sample
descriptors and cðtÞ their class labels. To use a generative
model for classification, for each class j we can learn the
class-conditional density fP ðXjC ¼ jÞ ¼ P ðXj�jg that sepa-
rately models each class and also estimate the prior P ðCÞ
directly from the class labels. The Bayes rule then provides
the posterior distribution:

P ðCjXÞ ¼ P ðX;Cj�Þ
P ðXj�Þ ¼

P ðXj�CÞ � P ðCÞP
c P ðXj�CÞ � P ðCÞ

: ð2Þ

An equivalent view of this procedure is that the class label
is simply treated as an additional variable which is
observed during training, but not during testing. The class
variable is thus not special in the latent structure in any way
other than that it is available during training. As implied
above, the consequence of this may be that as long as the
model is still not reflecting the world perfectly, the
modeling power may primarily target parts of the latent
structure other than the class label itself.

For this reason, the discriminative methods target the
separation boundaries among classes, rather than the
distribution over instances of a class. In terms of probabil-
istic inference, discriminative modeling could be seen as
directly targeting the conditional probability distribution
P ðCjXÞ:

LD ¼ P ð�Þ � P ðCjX; �Þ ¼ P ð�Þ �
YT
t¼1

X
h

P
�
cðtÞ; hðtÞjxðtÞ; �

�
:

ð3Þ

This is sometimes referred to as the conditional likelihood or
discriminative likelihood. Integrating over hidden variables
that barely affect likelihood near the decision boundaries has
little effect on the conditional likelihood, and so optimizing
this cost should focus the modeling power to the task at
hand—classification—rather than capturing many other
causes of variability in the data, which may only be
interesting in some other applications. Furthermore, this
provides a good reason to expect that the decision
boundaries can potentially be modeled in a much simpler
fashion than the generative models, and for this reason most
discriminative approaches use general-purpose classifica-
tion framework based on data features which are extracted
in a model-free manner (e.g., image features based on local
filters, or global measures of distribution of image colors).

Discriminative models perform well in many scientific
areas, e.g., object recognition, economics, bioinformatics,
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and text recognition. They often outperform generative
models in classification tasks, especially when large training
sets are available [1]. However, the classification boundaries
themselves may be complex enough to require the use of
hidden variables for their explanation. In contrast with
generative models, typical discriminative approaches in the
past suffered from difficulties in encoding a structured
prior knowledge that could be relevant for classification.
Also, as the decision boundaries are modeled, the approach
is not as modular as the generative paradigm: The
introduction of new classes into discriminative training
typically requires contrasting the samples from the new
class with those from all previously studied classes to learn
the new boundaries, with little benefit from previous study
of the same data with respect to other class boundaries.

In recent years, the complementary properties of the
two families have encouraged attempts to combine their
strengths. This has led to many different kinds of hybrid
frameworks organized in the taxonomy described in the
following.

2.1 Blending Methods

Blending methods rely on the optimization of hybrid
objective functions that contains at least a discriminative
and a generative term. These methods are often referred to
as hybrid learning.

Discriminative learning optimizes the discriminative
likelihood (i.e., (3)), which can also be written as

LC ¼ P ð�Þ
YT
t¼1

P ðcðtÞjxðtÞ; �Þ

¼ P ð�Þ
YT
t¼1

P ðcðtÞ; xðtÞj�ÞP
c P ðcðtÞ; xðtÞj�Þ

:

ð4Þ

Besides, Minka [17] suggests that a more natural view of
dealing with it is to consider the class variable as simply a
child variable in a generative model. The sample
descriptors X are generated from some model (possibly
with a rich latent structure) with some parameters ~�, and
then the class label is generated from the data descriptors
themselves according to some parameters �. Since both
sets of variables are observed during training, then the
learning of the two sets of parameters decouples and the
conditional distribution linking X and C can be trained
independently of the model of the data density, i.e., the
parameters ~�. In this sense, there is really no change in the
apparatus for learning and inference when we switch to
discriminative training, only a change concerning how the
connections among variables are organized. So, Minka
refers to these as discriminative models, not discriminative
learning. However, this view also raises the question of
whether it is possible to set up the models where the two
parts (the generative likelihood of the data X and the
conditional likelihood for the link from X to C) are not
entirely decoupled in training, and if blending can lead to
improved classification.

In [9], the authors train a discriminant function based on
the log-likelihood ratio (so that it has generative parameters)
with the maximum entropy criterion. On the other hand,
Bouchard and Triggs [2] and Lasserre et al. [4] suggest
merging the two objective functions LD (3) and LG (1). The

idea here is to use a convex combination of the objective
functions.

In [2], the authors use the following objective function:

logLð�Þ ¼ P ð�Þ þ � � logLGð�Þ
þ ð1� �Þ � logLDð�Þ;

ð5Þ

where � is a fixed weight. By varying �, one can work from
pure generative training (� ¼ 1) to pure discriminative
training (� ¼ 0). Because the parameters are not decoupled,
the training is not decoupled either and some interaction is
forced to happen.

In [4], two different sets of parameters � and ~�, for the
generative and discriminative parts, respectively, are
learned using a prior to keep them near in the parameter
space. The marginal likelihood is used in place of the
generative likelihood (2):

logLð�Þ ¼ P ð�; ~�Þ þ � � logLDð~�Þ
þ ð1� �Þ � log

X
c

P ðX;Cj�Þ: ð6Þ

A different approach, called multiconditional learning,
has been studied in [5]. These authors suggest a framework
whereby generative and discriminative components have
different and unconstrained weights

logLð�Þ ¼ � � logLGð�Þ þ � � log
X
c

P ðX;Cj�Þ: ð7Þ

In all of the cases hybrid learning performs better in the
middle of the two worlds (i.e., � 6¼ 0; 1).

2.2 Iterative Methods

Iterative methods are examples of generative and discrimi-
native models that help each other and are learned
iteratively. The most known example is the wake sleep-like
algorithm [12]. The original algorithm is developed in the
context of unsupervised training of a neural network. The
network is given a set of generative weights and a set of
discriminative weights (called recognition in [12]).

In the “wake” phase, neurons are driven by recognition
connections, and generative connections are adapted to
increase the probability that they would reconstruct the
correct activity vector in the layer below. In the “sleep”
phase, neurons are driven by generative connections and
recognition connections are adapted to increase the prob-
ability that they would produce the correct activity vector in
the layer above.

An example of a recent application of this idea is [18],
where the parameters of the constellation model for object
recognition [19] are learned using an EM-like algorithm,
where in the M-step, some quantities are learned discrimi-
natively with an SVM. The process is repeated until
convergence. They report better results than what is
achieved by purely generative models.

Other algorithms that follows the ideas of Hinton et al.
[12] can be found in the context of newsgroup categoriza-
tion [20], biology [21], or motion/pose estimation [13], [22].

2.3 Staged Method and Score Spaces

Staged methods learn interesting features using a genera-
tive model, and use the derived feature vectors to train a
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discriminative classifier. Note that we have a generative

step followed by a discriminative step.
For example, in [14], input samples are described using a

conditional distribution coming from a probabilistic latent

semantic analysis model (pLSA [23]) previously learned.
Yet another approach requires learning a generative

model for each category, and then it performs inference

giving different weights to the different components of the

model [24]. These weights are learned discriminatively.

Note that in this case again we have a generative step

followed by a discriminative step. A similar approach was

later used in [25] for speaker verification.
We include in this family of hybrid models the methods

based on score spaces.
Using the notation of Smith and Gales [7], such spaces

can be built from data by considering for each observed

sequence xðtÞ ¼ ðxðtÞ1 ; . . . ; x
ðtÞ
k ; . . . ; x

ðtÞ
K Þ of observations x

ðtÞ
k 2

<d, k ¼ 1; . . . ; K, a family of generative models P ¼
fP ðXj�iÞg parameterized by �i.

The observed sequence xðtÞ is mapped to the fixed-length

score vector ’f
F̂
ðxðtÞÞ:

’f
F̂
ðxðtÞÞ ¼ F̂ ðfðfPiðxðtÞj�iÞgÞÞ; ð8Þ

where f is the function of the set of probability densities

under the different models, and F̂ is some operator applied

to it. For methods that fall in this category, score argument,

function, and mapping should be clearly determined.
The most popular example is the Fisher kernel (FK),

introduced by Jaakkola and Haussler [6]. The idea is to use

a discriminative model using feature vectors coming from a

generative model, in this case the derivative of the

loglikelihood of the data point with respect to the different

parameters � of the generative model. The features used by

the discriminative model for data point x will be

’f
F̂
ðxÞ ¼ r� log pðxj�Þ. Coming back to (8), the score argu-

ment f is the loglikelihood, and the operator F̂ produces the

first order derivatives with respect to parameters. In [7],

higher order derivatives are also included.
Another example of score space is the TOP kernel [8], for

which the function f is the posterior log-odds and F̂ is

again the gradient operator.
The similarity-based approach of Bicego et al. [26] also

falls in this category. The idea there is to describe a sample

with the vector of its marginal likelihoods under all the

classes. Instead of picking the Maximum likelihood (ML)

classification (max), a discriminative classifier is used as an

additional corrective stage. This approach is presented as

the likelihood score space in [7].

In all these cases, the generative score space approaches
help to distill the relationship between a model parameter �i
and the particular data sample. After the mapping, a score
space metric must be defined in order to employ discrimi-
native approaches.

A number of useful properties of these mappings, and
especially for Fisher score, can be derived. For example, for
[6], [8] it was shown that the classification is asymptotically
better than the generative classification.

Some popular score spaces are reported in Table 1, where
we highlighted their score argument, operator, and mapping.
L is the number of the classes, P is the number of the
parameters, and k is the order of the gradient. It is also worth
noting that [7] is a special case (K ¼ 0) of the TOP kernel.

An experimental comparison on score spaces extracted
from topic models in the context of microarray data
classification can be found in [28].

One of the major drawbacks of generative score spaces is
that they build upon the choice of one (or a few) out of
many possible generative models, as well as the parameters
fit to a limited amount of data. In practice, these models can
therefore suffer from improper parameterization of the
probability density function, local minima, overfitting, and
undertraining problems. Consider, for instance, the situa-
tion where the assumed model over high dimensional data
is a mixture of n diagonal Gaussians with a given small and
fixed variance, and a uniform prior over the components.
The only free parameters are therefore the Gaussian centers,
and let us assume that training data are best captured with
these centers all lying on (or close to) a hypersphere with a
radius sufficiently larger than the Gaussians’ deviation. An
especially surprising and inconvenient outlier in this case
would be a test data point that falls close to the center of the
hypersphere, as the derivatives of its loglikelihood with
respect to these parameters (Gaussian centers) evaluated at
the estimate could be very low when the number of
components n in the mixture is large because the
derivatives are scaled by the uniform posterior 1=n. But,
this makes such a test point insufficiently distinguishable
from the test points that actually satisfy the model perfectly
by falling directly into one of the Gaussian centers. If the
model parameters are extended to include the prior
distribution over mixture components, then derivatives
with respect to these parameters would help to disambig-
uate those points.

In this paper, we propose a novel hybrid method that
belongs in this family and which focuses on how well the
data point fits different parts of the generative model. The
information passed from the generative to the discrimina-
tive models is extracted from the variational free energy as a
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lower bound on the negative loglikelihood of the data. This
affords us several advantages: First of all, the variational
free energy can always be computed for an arbitrary
structure of the posterior distribution, allowing us to deal
with generative models with many latent variables and
complex structure without compromising tractability, as
was previously done for inference in generative models.
The possibility of simplifying the posterior (i.e., using
variational approximations of the free energy) allows us to
deal with simpler models, which, while less precise, are
often not just faster, but are less prone to local minima [29].

Second, a variational approximation of the posterior
typically provides an additive decomposition of the free
energy, providing many terms that can be used as features;
this procedure identifies the score operator. These terms/
features are divided into two categories: the “entropy set”
of terms that express uncertainty in the posterior distribu-
tion, and the “cross-entropy set” describing the quality of
the fit of the data to different parts of the model according
to the posterior distribution.

Finally, it is worth noticing now how the posterior entropy
is not taken into account in the previous score spaces [6], [8],
[27]. In fact, as we will see in Section 3, the entropy of the
hidden variables does not depend on the parameters and the
differentiation (i.e., the score operator) makes it vanish.

We found the resulting score space to be highly
informative for discriminative learning. An earlier version
of this paper appeared in [30]. Here we extend [30], using
novel score operators (i.e., the gradient), introducing novel
ways to decompose the free energy and a table notation to
describe such decomposition, and finally extending the
experimental section. In particular, we tested our approach
on several computational biology problems, as well as
computer vision problems (scene/object recognition). The
results compare favorably with the state of the art from the
recent literature.

3 FREE ENERGY SCORE SPACE

A generative model defines the distribution P ðHj�Þ ¼QT
t¼1 P ðhðtÞ; xðtÞj�Þ over a set of observations x ¼ fxðtÞgTt¼1,

each with associated hidden variables (hidden states) hðtÞ,
for a given set of model parameters � shared across all
observations. In addition, to model the posterior distribu-
tion P ðHjXÞ, we also define a family of distributions Q
from which we need to select a variational distribution
QðHÞ that best fits the model and the data. Assuming i.i.d
data, the family Q can be simplified to include only
distributions of the form QðHÞ ¼

QT
t¼1 QðhðtÞÞ.

The free energy [31], [32] is a function of the data,
parameters of the posterior QðHÞ, and the parameters of the
model P , defined as

FQ ¼ IKILðQ;P ðHjX; �ÞÞ � logP ðXj�Þ

¼
X
H

QðHÞ log
QðHÞ

P ðX;Hj�Þ :
ð9Þ

The Kullback-Leibler (KL)-divergence is always positive
and zero only if QðHÞ equals the true posterior probability;
therefore minimizing F with respect to Q will always
provide the negative loglikelihood � logP ðXÞ.

The free energy bounds the loglikelihood, FQ �
� logP ðXÞ and the equality is attained only if Q is
expressive enough to capture the true posterior distribution,
as the free energy is minimized when QðHÞ ¼ P ðHjXÞ.
Constraining Q to belong to a simplified family of
distributions Q, however, provides computational advan-
tages for dealing with intractable models P . Examples of
distribution families used for approximation are the fully
factorized mean field form [33] or the structured variational
approximation [34], where some dependencies among the
hidden variables are kept.

Minimization of FQ as a proxy for negative loglikelihood
is usually achieved by an alternating optimization with
respect to Q and �, a special case of which—when Q is fully
expressive—is the EM algorithm. Different choices of Q
provide different types of compromise between the accu-
racy and computational complexity. For some models,
accurate inference of some of the latent variables may
require excessive computation even though the results of
the inference can be correctly reinterpreted by studying the
posterior Q from a simpler family and observing the
symmetries of the model, or by reparametrizing the model
(see, for example, [35]). In what follows, we will develop a
technique that uses the parts of the free energy to infer the
mapping of the data to a class variable with an increased
accuracy despite possible imperfections of the data fit,
whether this imperfection is due to the approximations and
errors in the model or the posterior.

Having obtained an estimate of parameters �̂ that fit the
given i.i.d. data we can rearrange the free energy (9) as
FQ ¼

P
t F t
Q, with

F t
Q ¼

X
hðtÞ

QðhðtÞj�̂Þ � logQðhðtÞj�̂Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Entropy

�
X
hðtÞ

QðhðtÞj�̂Þ � logP ðhðtÞ; xðtÞj�̂Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Cross�entropy

:

ð10Þ

The second term in the equation above is the cross-entropy
term and it quantifies how well the data point fits the
model, assuming that hidden variables follow the estimated
posterior distribution. This posterior distribution is fitted to
minimize the free energy, and the first term in (10) is the
entropy quantifying the uncertainty of this fit.

If Q and P factorize, then each of these two terms further
breaks into a sum of individual terms, each quantifying the
aspects of the fit of the data point with respect to different
parts of the model. For example, if the generative model is
described by a Bayesian network, the joint distribution can be
written as P ðzðtÞ ¼

Q
n P ðzðtÞn jPAnÞ, where zðtÞ ¼ fxðtÞ; hðtÞg

denotes the set of all variables (hidden or visible) and PAn

are the parents of the n� th of these variables, i.e., of zðtÞn .
The cross-entropy term in the equation above further

decomposes intoX
½zðtÞ

1
�

Q
�
z
ðtÞ
1 [ PA1j�̂

�
� logP

�
z
ðtÞ
1 jPA1; �̂

�
þ � � � þ

X
½zðtÞ
N
�

Q
�
z
ðtÞ
N [ PAN j�̂

�
� logP

�
z
ðtÞ
N jPAN; �̂

�
:

ð11Þ
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For each discrete hidden variable zðtÞn , the appropriate
terms above can be further broken down into individual
terms in the summation over the Dn possible configurations
of the variable, e.g.,

Q
�
zðtÞn ¼ 1;[ PAnj�̂

�
� logP

�
zðtÞn ¼ 1jPAn; �̂

�
þ � � � þ

Q
�
zðtÞn ¼ Dn;[ PAnj�̂

�
� logP

�
zðtÞn ¼ DnjPAn; �̂

�
:
ð12Þ

In a similar fashion, the entropy term can also be
decomposed further into a sum of terms as dictated by
the factorization of the family Q.

Therefore, the free energy for a single sample t can be
expressed as the sum

F t
Q ¼

X
i

ft
i;�̂
; ð13Þ

where all the free energy pieces ft
i;�̂

derive from the finest
decomposition (i.e., (12) or (11)).

The terms ft
i;�̂

describe how the data point fits possible
configurations of the hidden variables in different parts of
the model. Such information can be encapsulated in a score
space that we call the free energy score space or simply FESS.

For example, in the case of a binary classification
problem, given the generative models for the two classes,
we can define as FðQ;�̂ÞðxðtÞÞ the mapping of xðtÞ to a vector of
scores f with respect to a particular model with its estimated
parameters, and a particular choice of the posterior familyQ
for each of the classes, and then concatenate the scores.
Therefore, using the notation from [7], the free energy score
operator ’FESS

F̂
ðxðtÞÞ is defined as

’FESS
F̂

: xðtÞ !
�
FðQ1;�̂1Þðx

ðtÞÞ;FðQ2;�̂2Þðx
ðtÞÞ
�
; ð14Þ

where

FðQc;�̂cÞ ¼
�

. . . ; ft
i;�̂c
; . . .

�T
; c ¼ 1; 2: ð15Þ

If the posterior families are fully expressive, then the MAP
estimate based on the generative models for the two classes
can be obtained from this mapping by simply summing the
appropriate terms to obtain the log-likelihood difference as
the free energy equals the negative loglikelihood.

However, the mapping also allows for the parts of the
model fit to play uneven roles in classification after an
additional step of discriminative training. In this case, the
data points do not have to fit either model well in order to be
correctly classified. Furthermore, even in the extreme case
where one model provides a higher likelihood than the other
for the data from both classes (e.g., because the models are
not nested, and likelihoods cannot be directly compared), the
mapping may still provide an abstraction from which
another step of discriminative training can benefit. The
additional step of training a discriminative model allows for
mining the similarities among the data points in terms of the
path through different hidden variables that has to be
followed in their generation. These similarities may be
informative even if the generative process is imperfect.

Obviously, (14) can be generalized to include multiple
models (or the use of a single model) and/or multiple
posterior approximations, either for two-class or multiclass
classification problems.

When the exact posterior is used, the minimization of the
free energy is equivalent to the standard maximum like-
lihood approach, and it is anatically ec.

3.1 Example: How to Choose the Score Function F̂

To better understand how to build and choose a particular
score operator, consider the generative model described by
the Bayesian network in Fig. 1. It is characterized by a
visible variable X and two hidden variables H1 and H2.
Suppose that both Hi assume values in f1; . . . ; Dg. The joint
probability distribution factorizes as follows:

P ðX;H1; H2Þ ¼ P ðXjH1; H2Þ � P ðH2jH1Þ � P ðH1Þ: ð16Þ

The hidden variables factorize according to the family Q
chosen. In this case, we can choose between an uncon-
strained, form Qu ¼ QðH1; H2Þ, or a still exact form, but
parameterized differently, e.g., Qe ¼ QðH2jH1Þ �QðH1Þ, or
the fully factorized form Qf ¼ QðH2Þ �QðH1Þ. Please note
that in this case the true posterior distribution factorizes as
in Qe.

1 For example, if we take the fully factorized family,
the free energy of this model becomes

FQf ¼
X
t

XD
h1¼1

Q
�
h
ðtÞ
1

�
logQ

�
h
ðtÞ
1

� 

þ
XD
h2¼1

Q
�
h
ðtÞ
2

�
logQ

�
h
ðtÞ
2

�

�
XD
h1¼1

Q
�
h
ðtÞ
1

�
logP

�
h
ðtÞ
1

�

�
XD

h1;h2¼1

Q
�
h
ðtÞ
1

�
�Q
�
h
ðtÞ
2

�
logP

�
xðtÞjhðtÞ1 ; h

ðtÞ
2

�

�
XD

h1;h2¼1

Q
�
h
ðtÞ
1

�
�Q
�
h
ðtÞ
2

�
logP

�
h
ðtÞ
2 jh

ðtÞ
1

�!
;

ð17Þ

where the first two terms represent the entropy and the
remaining three the cross entropy; each term refers to
“local” parts of the model. At this point, we can focus on
Table 2 to better understand (11)-(12): Generative classifi-
cation “maps” a sample in a single value, its free energy F t

(loglikelihood). At the first level of detail L1, we can map a
sample (i.e., ’FESS

F̂
ðxðtÞÞ) in two values, its entropy and its

cross entropy. As a second level of detail L2, the unique
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Fig. 1. a) An example of a Bayesian network. b) Two different posterior
factorization, each of them identifies a particular family; Qe is the exact
posterior, and Qf is the mean field approximation.

1. Being unconstrained, Qu is always fully expressive and it always
captures the true posterior distribution q�; in this case we have
q� � Qe ¼ Qu.



factorizations induced by the generative model and by the
family Q break the free energy in several contributions,
that is, in this case two entropy terms and three cross
entropy terms (see Table 2, level of detail or (17)). At the
finest level of decomposition L3, in case of discrete valued
variable, each term can be broken down considering the
values each hidden variable can assume, so that, for
example, the first entropy term

PD
h1¼1 Qðh

ðtÞ
1 Þ logQðhðtÞ1 Þ is

the sum of D contributions, and the last cross-entropy termPD
h1;h2¼1 Qðh

ðtÞ
1 Þ �Qðh

ðtÞ
2 Þ logP ðhðtÞ2 jh

ðtÞ
1 Þ is the sum of D2

contributions.
Summarizing, we have three levels of detail which define

three different score functions and different score spaces

L1 :
��’FESS

F̂L1

ðxðtÞÞ
�� ¼ 2; ð18Þ

L2 :
��’FESS

F̂L2

ðxðtÞÞ
�� ¼ 5; ð19Þ

L3 :
��’FESS

F̂L3

ðxðtÞÞ
�� ¼ 2 �D2 þ 3 �D: ð20Þ

The same considerations hold for the other factoriza-
tions; for example, in Table 2 we reported the three levels of
detail if we employ the family Qe.

4 FREE ENERGY SCORE SPACE CLASSIFICATION

DOMINATES THE MAP CLASSIFICATION

We use here the terminology introduced in [8], under
which FESS can be considered a model-dependent feature
extractor, as different generative models lead to different
feature vectors [36]. The family of feature extractors ’F̂ :
X ! <d maps the input data xðtÞ 2 X in a space of fixed
dimension derived from a plug-in estimate �: in our case,
the generative model with parameters �̂ from which the
features are extracted.

Given some observations xðtÞ and the corresponding
class labels cðtÞ 2 f�1;þ1g following the joint probability
P ðX;Cj��Þ, a generative model can be trained to provide an
estimate �̂ 6¼ ��, where �� are the true parameters. As most
kernels (e.g., Fisher and TOP) are commonly used in
combination with linear classifiers such as linear SVMs,
Tsuda et al. [8] propose as a starting point for evaluating the

performance of a feature extractor the classification error of

a linear classifier wT � ’F̂ ðxÞ þ b in the feature space <d,
where w 2 <d and b 2 <. Assuming that w and b are chosen

by an optimal learning algorithm on a sufficiently large

training data set and that the test set follows the same

distribution with parameter ��, the classification error

Rð’F̂ Þ can be shown to tend to

Rð’F̂ Þ ¼ min
w;b

Ex;c�
�
�c �

�
wT � ’F̂

�
xðtÞ
�
þ b
��
; ð21Þ

where �½a� is an indicator function which is 1 when a > 0,

and 0 otherwise, and Ex;y denotes the expectation with

respect to the true distribution P ðX;Cj��Þ.
In [6], [8], it has been shown that the Fisher kernel

classifier can perform at least as well as its plug-in estimate

if the parameters of a linear classifier are properly

determined:

R
�
’FK
F̂

�
� Ex;c� �c � P

�
cðtÞ ¼ þ1jxðtÞ; �̂

�
� 1

2

� 	
 �
¼ Rð�Þ;

ð22Þ

where � represents the generative model used as plug-in

estimate.
This property also trivially holds for our method, where

’F̂ ðxðtÞÞ ¼ ’FESSF̂
ðxðtÞÞ, because the free energy can be

expressed as a linear combination of the elements of ’.
In fact, the minimum free energy test (and the maximum

likelihood rule when Q is fully expressive) can be defined

on ’ derived from the generative models with parameters

�̂þ1 for one class and �̂�1 for the other as

ŷ ¼ min
y

�
F t
ðQ;�̂þ1Þ

;F t
ðQ;�̂�1Þ


¼ �

�
1TFðQ;�̂þ1Þðx

ðtÞÞ � 1TFðQ;�̂�1Þðx
ðtÞÞ
�
:

ð23Þ

Given (23), it is straightforward to prove that the error

made by the kernel classifier that works in FESS (i.e.,

Rð’FESS
F̂

Þ) is as low as the error made by the MAP labeling

based on the generative models (i.e., RQð�Þ) for the two

classes since generative classification is a special case of our

framework. In practice, we have to prove that (21) holds for

FESS, so we have that

R
�
’FESS
F̂

�
¼ min

w;b
Ex;c�

�
�c �

�
wT � ’FESS

F̂

�
xðtÞ
�
þ bÞ

�
ð24Þ

� Ex;c�
�
�c �

�
wT � ’FESS

F̂

�
xðtÞ
�
þ b
��
8 w; b; ð25Þ

where (25) holds because we are considering any w and b,

and in (24) we were considering them optimally chosen to

minimize the error.
If (25) holds for any choice of w and b, it would also hold

for the particular choice w ¼ wg and b ¼ bg.

R
�
’FESS
F̂

�
� Ex;c�

�
�c �

�
wTg � ’FESSF̂

�
xðtÞ
�
þ bg

��
for wg ¼ þ1; . . . ;þ1

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{M1 times

;�1; . . . ;�1
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{M2 times

2
4

3
5T ;

bg ¼ 0:

ð26Þ
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TABLE 2
Definition of the Score Function

for Choosing a Particular Score Space



Above, the first M1 elements are the components of the free
energy for one model and the remaining M2 for the second
model. One can notice that (26) implements the free energy
test (23); therefore we have proven that Rð’FESS

F̂
Þ � RQð�Þ.

Furthermore, when the family Q is expressive enough
to capture the true posterior distribution, the free energy
test is equivalent to maximum likelihood classification,
RQð�Þ ¼ Rð�Þ. The dominance of the Fisher and TOP
kernels [6], [8] over their plug-in holds for FESS too, and
the same plug-in (the likelihood under a generative
model) may be used when this is tractable. However, if
the computation of the likelihood (and the kernels derived
from it) is intractable, then the free energy test, as well as
the kernel methods based on FESS that will outperform
this test, can still be used with an appropriate family of
variational distributions Q.

5 CONTROLLING THE LENGTH OF THE FEATURE

VECTOR: A SET OF SCORE SPACES BASED ON

FREE ENERGY

In some generative models, especially sequence models, the
number of hidden variables may change from one data
point to the next. Let us describe this issue with an example.
In speech processing, hidden Markov models (HMMs) [37]
may be used to model utterances x

ðtÞ
1 ; . . . ; x

ðtÞ
KðtÞ of different

sequence lengths KðtÞ. As each element in the sequence has
an associated hidden variable, the hidden state sequences
s
ðtÞ
1 ; . . . ; s

ðtÞ
KðtÞ are also of variable lengths. The parameters �

of this model include the prior state distribution �, the state
transition probability matrix A ¼ afijg ¼ Qðsk ¼ ijsk�1 ¼ jÞ,
and the emission probabilities B ¼ bfivg ¼ Qðsk ¼ ijxk ¼
fivgÞ. Exact inference is tractable in HMMs and so we can
use the exact posterior distribution to formulate the free
energy and the free energy minimization is equivalent to
the usual Baum-Welch training algorithm [38] and
FQe ¼ � logP ðXÞ. The free energy of each sample xðtÞ is
reported in (27):

F t
Qe ¼

X
½s�
Q
�
s
ðtÞ
1

�
logQ

�
s
ðtÞ
1

�

þ
X
½s�

XKðtÞ
k¼2

Q
�
s
ðtÞ
k ; s

ðtÞ
kþ1

�
logQ

�
s
ðtÞ
k js

ðtÞ
k�1

�
�
X
½s�
Q
�
s
ðtÞ
1

�
log�

s
ðtÞ
1

�
X
½s�

XKðtÞ
k¼2

Q
�
s
ðtÞ
k ; s

ðtÞ
k�1

�
log afsðtÞ

k
;s
ðtÞ
k�1
g

�
X
½s�

XKðtÞ
k¼1

Q
�
s
ðtÞ
k

�
log bfsðtÞ

k
;x
ðtÞ
k
g:

ð27Þ

Depending on how this is broken into terms fi, we
could get feature vectors whose dimension depends on the
length of the sample KðtÞ. To solve this problem, we first
note that a standard approach to dealing with utterances of
different lengths is to normalize the likelihood by the
sequence length, and this approach is also used for
defining other score spaces. If, before the application of

the score operator, we simply evaluate the sums over k in
the free energy and divide each by KðtÞ, we obtain a fixed
number of terms independent of the sequence length. This
results in a length-normalized score space nFESS, where
the granularity of the decomposition of the free energy is
dramatically reduced.

In general, even for fixed-length data points and
arbitrary generative models, we do not need to create large
feature vectors corresponding to the finest level of
granularity described in (12), or for that matter the slightly
coarser level of granularity in (11). Some of the terms in
these equations can be grouped and summed up to ensure
for shorter feature vectors, if this is warranted by the
application. The longer the feature vector, the finer the level
of detail with which the generative process for that data
sample is represented, but more data are also needed for the
training of the discriminative classifier. Domain knowledge
can often be used to reduce the complexity of the
representation by summing appropriate terms without
sacrificing the amount of useful information packed in the
feature vectors. Moreover, as happens for Jaakkola and
Haussler [6], Li et al. [16], standard dimensionality
reduction techniques, e.g., PCA, can be employed.

In Table 3, we reported two examples of normalized
FESS (nFESS), showing how a different level of detail for
different pieces can be chosen.

In the first case, F̂a, we are not interested in entropy and
we only kept one term.2 Since we are summing DþD
contributes, we normalize multiplying for 1

2�D (see Table 3,
column “Norm.Const”). Then, we kept the maximum
granularity for the local contribution:

XD
h1¼1

Q
�
h
ðtÞ
1

�
logP

�
h
ðtÞ
1

�
because we suppose it is very important for the problem at
hand; finally, we only keep a term for each of the two
remaining cross-entropy components. In this way, we have
defined the score function F̂a and the resulting score space
has dimension equal to Dþ 3. Analogously, we can choose
to group different terms and define the score space F̂b
whose final dimension is D2 þ 2 �Dþ 2 (see Table 3).

When a term at the second level (L2) is the result of

more than a summation, a spurious level of detail can be

used. For example, consider the term
PD

h1;h2¼1 Qðh
ðtÞ
1 Þ �

QðhðtÞ1 Þ logP ðhðtÞ2 jh
ðtÞ
1 Þ. At level 2, one has to perform the

summations over H1 and H2 yielding to a single value, and

at level 3 each addendum of the summation is taken as

feature, yielding to D2 values. In this case, intermediate

levels can be obtained performing only the summation of

H1 (or H2), yielding to only D values: We call this

intermediate level L
ðH1Þ
3 (or L

ðH2Þ
3 ), where the apex identifies

the summation performed. As we will see in the experi-

ments’ section, this level of detail is very important for

variable length descriptions like the possible inputs to

hidden Markov models or latent Dirichlet allocation.
Such control of the feature vector length does not negate

the previously discussed advantages of the classification in
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2. We circled the values in Table 3.



the free energy score space compared with the straightfor-

ward application of free energy, likelihood, or in the case of

sequence models, length-normalized likelihood tests.
Since the free energy score space defined in Section 3,

Table 2, is generalized by nFESS, in the following we will

refer to both families of spaces as FESS. What differentiates

the various score spaces is the particular choice of the score

operator F̂ .

6 EXPERIMENTS

We evaluated our approach on several standard data sets

and compared its performance with the classification

results provided by the data sets’ creators, those estimated

using the plug-in estimate �, and those obtained using the

Fisher (FK) and TOP (TK) kernels [6], [8] derived from the

plug-ins.3 Support vector machines (SVMs) with linear and

RBF kernels were used as discriminative classifiers. As

plug-ins, or generative models/likelihoods �, for the three

score spaces compared across experiments, we used hidden

Markov models [37] in Experiments 1-2, and latent Dirichlet

allocation (LDA) [39] in Experiments 3-5.
Comparisons are based on the same validation proce-

dure used in the papers that introduced the data sets. To

ensure the repeatability of results, we detailed their

procedure in every experiment. The code to extract FESS

for pLSA and HMM is available on our webpages.

6.1 Hidden Markov Models

Using the HMM as plug-in estimate we first focused on

computational biology examples.

We considered three different families for the posterior
distribution: exact (Qe), mean field (Qf ), and a structured
approximation (Qc). In formulas:

Qe ¼ Qðs1Þ �
YK
k¼2

Qðskjsk�1Þ;

Qc ¼
YK
k¼1

Qðsk; skþ1Þ; Qf ¼
YK
k¼1

QðskÞ:

For what concerns the exact posterior, the free energy of an
HMM is reported in (27), and we report the score function
that defines the score argument in Table 4. The free energy,
score functions, and score argument for the other two
families are straightforward to extract. The dimensionality
of the score vectors and other details on the experiment are
reported separately for each experiment. We have always
chosen the maximum level of detail. For what concerns the
HMM parameters, we used a random initialization and we
estimated the number of the states Q using hold-out
likelihood, with a 10-folds cross evaluation. In all the tests,
the loglikelihood peaked around Q � 10.

6.1.1 Experiment 1—E. Coli Promoter Gene Sequences

The first analyzed data set consists of the E. coli promoter
gene sequences (DNA) with associated imperfect domain
theory [40].4 The standard task on this data set is to
recognize promoters in strings of nucleotides (A, G, T, or
C). A promoter is a genetic region which facilitates the
transcription of gene located nearby. The input features
are 57 sequential DNA nucleotides. The results are
obtained using leave-one-out (LOO). We trained a gen-
erative model �HMM once for each left-out sample. For
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TABLE 4
Free Energy Score Space for Hidden Markov Models

3. When computable. 4. This data set is available at [41].

TABLE 3
Definition of the Score Function for the Normalized FESS

The decomposition refers to the Bayesian network depicted in Fig. 1a, the family chosen is the fully factorized family Qf (see also Fig. 1b). In the
column “Norm. Const.” we explicitly reported the normalization constants for each piece fi.



each such test point, the model is learned only on the
training set consisting of all data but that point. The
training data points are mapped in FESS via F̂HMM based
on the model, and the discriminative training is performed
only on these same training points. This procedure yields
two rules: 1) the way to assign features to any data point,
and 2) the rule for assigning the class to the data point
based on these features. These two rules, solely based on
the training data, are then used to assign the class to the
test point. This procedure has been repeated for the three
posterior families we considered.

Results are reported in Table 5 and illustrate that FESS
represents well the fixed size genetic sequences, leading to a
superior performance over other score spaces as well as
over the plug-in �HMM . This test also gives the opportunity
to compare two different score functions: In this particular
experiment, the sequences all have the same (reasonable)
length K ¼ 57, so the maximum level of detail can be
employed L3 (i.e., (20)); the length of the score vectors is
reported in Table 5 in the rows labeled with “len.”

As results show, when FESS is employed using its
maximum resolution L3, the improvement with respect to
FK and TK is impressive. The underlying motivation is
that dimensions of feature vectors FK, TK, and F̂HMM are
calculated via “temporal means”; therefore they do not keep
the information for each temporal instant k (position, in our
case) of sequences separate, whereas L3 has several
dimensions that refer explicitly at each position in the
sequence; this information is very useful when dealing with
biological sequences like promoters or genotypes [42].
Moreover, F̂L3

outperforms F̂HMM since fewer optimization
factors wi are involved.

As expected, the posterior family has influence in the
generative classification: the coarser the approximation, the
worse the performances. This does not hold once discrimi-
native classifiers are used indeed all the three families seem
perform equally well.

6.1.2 Experiment 2—Introns/Exons Classification in

HS3D Data Set

The HS3D data set5 [15] contains labeled intron and exon
sequences of nucleotides. The task here is to distinguish
between the two types of gene sequences that can both vary
in length (from dozens of nucleotides to tens of thousands

of nucleotides). This setting gives us the opportunity of
asserting the validity of the score normalizations (see
Section 5). For the sake of comparison, we adopted the
same experimental setting of Jebara et al. [15].

We learn a single generative model using all the training
samples; subsequently, we extracted the scores for all the
data, using once again the scores of the training samples to
learn the SVMs. The length of the score vectors are reported
in Table 6, in the rows labeled with “len.” Table 6 also
summarizes the results, showing that, FESS once again
outperforms all the comparisons with statistical signifi-
cance, beating the state of the art on this data set.

6.2 Latent Dirichlet Allocation

Using latent Dirichlet allocation as plug-in estimate, we
focused on computer vision examples.

Topics models such as pLSA [23] and LDA [39] have
been successfully employed in computer vision tasks such
as scene classification [43], [44]. In this formulation, each
image IðtÞ is represented as a collection of NðtÞ detected
patches or visual words fxðtÞn g

NðtÞ
n¼1 , taking word labels from a

previously trained codebook of W words. LDA uses a finite
number of hidden topics Z to model the co-occurrence of
visual words inside and across images. Each visual word
xðtÞn is assigned a hidden topic zðtÞn , where P ðxnjznÞ ¼ �, and
each image is explained as a mixture of hidden topics �ðtÞz .
For convenience, the mixture of topics is sampled from a
Dirichlet distribution of hyperparameter �.

For more details and for LDA free energy, see [39].
In Table 7, we report the score function that defines the

score argument; the final length of the score vectors is 4Z.
Unlike probabilistic latent semantic analysis, LDA adds the
Dirichlet prior � on the per-document topic distribution
[45]; therefore FESS can be easily extracted simply ignoring
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TABLE 5
Promoter Classification Results

TABLE 6
Introns/Exons Classification Results

TABLE 7
Free Energy Score Space for Latent Dirichlet Allocation

We omitted L1.5. http://www.sci.unisannio.it/docenti/rampone.



the last free energy piece in Table 7. This yield to a score
vector of length 3Z.

As input for LDA, we extracted SIFT features from 16	
16 pixel patches computed over a grid with spacing of
8 pixels; we used 40 topics (Z ¼ 40) and 175 codewords
(W ¼ 175). We use the wide literature on these models [43],
[44] to choose a good estimate of the model parameters.

For each test we trained C generative models,6 one for
each class, with a random initialization of the model
parameters. We used half of the training set designated by
the database authors to do this, keeping the second half to
learn the discriminative model. Afterward, we mapped the
samples using the appropriate score argument from the rest
of the data set.

6.2.1 Experiment 3—Scene Classification on Several

Data Sets

We used these models as the generative starting point and
evaluated our classification algorithm on three different
popular data sets: 1) Oliva and Torralba [46], 2) Vogel and
Schiele [47], and 3) Fei Fei and Perona [43]. We will refer to
these data sets as OT, VS, and FP, respectively. For each test,
we calculated the classification accuracy over the test set,
repeating the process 10 times and averaging the results.

Results for each data set are summarized in Table 8,
where we compare the accuracy of our approach with the
accuracy achieved by the data sets’ authors and the current
state of the art. The methods presented in [46], [47], [48] are
purely discriminative: The features (SIFT or image patches)
are directly used for SVM classification with well-suited
kernels. In particular, for [47], the training requires manual
annotation of nine semantic concepts for 60,000 patches
making the preprocessing step rather expensive. The
unsupervised approach of Bosch et al. [44] trains a single
pLSA model for all the classes, and then uses the marginal
distribution P ðtopicjdocumentÞ as the input for a discrimi-
native classifier, thus employing a hybrid (staged) techni-
que. Finally, we also considered the semi-supervised
generative approach of FeiFei and Perona [43], which
makes use of LDA likelihood for classification.

6.2.2 Experiment 4—Scene Recognition Using Various

Discriminative Methods in FESS

Obviously, a number of discriminative methods can be
utilized to design a classifier based on the features extracted
from the free energies under a set of previously learned
generative models. As discussed above, if linear discrimi-
nant functions are adopted, the sum of the pieces of free
energy fti will be reweighted by a set of weights fwig. For

example, if we employ a logistic regression, we can estimate

a set of weights wi, and classify using the sigmoid function:

P ðxÞ ¼ 1

1þ eð��1þ
P

i
�i�fti Þ

:

It is especially interesting to impose sparsity so that only

few �i 6¼ 0, i.e., only some free energy pieces will be taken

into account for classification. This can be done efficiently

by adding L1 regularization term for the weights of the

logistic regressor to the optimization criterion.
As experiments we consider the VS and FP data sets and

we apply several discriminative methods. Results are

reported in Table 9, where LDF stands for linear discrimi-

nant functions, LR for logistic regression, S-LR stands for

sparse logistic regression, and L-SVM stands for linear

support vector machine. For how the score space is built,

each of them outperforms generative classification (�LDA).

6.2.3 Experiment 5—Using the Gradient as Score

Operator, gFESS

In this final test, we focus only on the OT data set.

Although we find that FESS outperforms the previously

studied score spaces that depend on the derivatives, its use

as score operator for FESS is, of course, possible. This

allows for the construction of kernels similar to FK and

TK, but derived from intractable generative models like

latent LDA. In Table 10, we report the score spaces based

on free energy; we refer to the score space defined by the

free energy as score argument, and to the gradient as score

operator with F̂r as gradient-FESS (gFESS).
In Table 10, FESS can be defined by the decomposition in

entropy and cross entropy (first level of detail, F̂L1
), by the

unique factorization properties of the network and Q
(second level of detail, F̂L2

), or by considering the values

each hidden variable can assume (third level of detail, F̂L3
),

as shown in Table 2.
nFESS is defined by the decomposition performed by the

score operator F̂�, which can be illustrated using the

“tabular” notation previously described (see Tables 3 and 2).
gFESS uses the gradient as score operator and it

corresponds to the Fisher score [6] only if the likelihood

of the generative model upon which it is built is tractable;

this does not hold for LDA, where approximate learning

algorithms have to be used and L ¼ logP ðXj�Þ < F , and

the Fisher score is not computable.
The derivatives of the free energy of LDA with respect to

the parameters �ij (word-topic distribution) and � (Dirichlet

parameters on topic) are
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TABLE 8
Scene Classification:

Comparison with the State of the Art

TABLE 9
Scene Classification: Generative Classification
and Various Discriminative Methods in FESS

6. LDA performances were found to be slightly inferior to pLSA.
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 !
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ðtÞ
j

 !
;

@FLDA

@�ij
¼
XKðtÞ
n¼1

Q
�
zðtÞn
�
� wðtÞn

�ij
;

ð28Þ

where �ðtÞs define the mixture of topics that characterize the
documents.

Classification results on the OT data set are reported in
Table 11. We found that F̂LDA outperforms F̂r, and this is
due to the fact that the entropy terms do not depend on �

while the gradient sets them to zero, making the resulting
score space less expressive.

7 DISCUSSION AND CONCLUSIONS

In this paper, we present a novel generative score space,
FESS, exploiting variational free energy terms as features.
The additive free energy terms arise naturally as a
consequence of the factorization of the model P and the
posterior Q. We show that the use of these terms as features
in discriminative classification leads to more robust results
than the use of the Fisher scores, which are based on the
derivatives of the loglikelihood of the data with respect to
the model parameters. As has been previously observed, we
find that the Fisher score space suffers from the so-called
“wrap-around” problem, where very different data points
may map to the same derivative (an example was discussed
in the introduction). On the other hand, free energy terms
quantify the data fit in different parts of the model, and are
informative even when the model is imperfect. This
indicates that the rescaling of these terms, carried out by
the subsequent discriminative training, in some way leads to
improved modeling of the data. Scaling a term in the free
energy composition, e.g., the term

P
h QðhÞ logP ðxjhÞ, by a

constant w is equivalent to raising the appropriate condi-
tional distribution to the power w. This is indeed reminis-
cent of some previous approaches to correcting generative
modeling problems. In speech applications, for example, it is
a standard practice to raise the observation likelihood in
HMMs to a power less than 1, before inference is performed

on the test sample, as the acoustic signal would otherwise

overwhelm the hidden process modeling the language

constraints [50]. This problem arises from the approxima-

tions in the acoustic model. For instance, a high-dimensional

acoustic observation is often modeled as following a

diagonal Gaussian distribution, thus assuming independent

noise in the elements of the signal, even though the true

acoustics of speech is far more constrained. This results in

overaccounting for the variations in the observed acoustic

signal, and to correct for this in practice, the log probability

of the observation given the hidden variable is scaled down.
The technique described here proposes a way to

automatically infer the best scaling, but it also goes a step

further in allowing for such corrections at all levels of the

model hierarchy, and even for specific configurations of

hidden variables. Furthermore, the use of kernel methods

provides for nonlinear corrections too. This extremely

simple technique is shown here to work remarkably well,

outperforming previous score space approaches as well as

the state of the art in several diverse applications.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the FET

programme within the EU FP7, under the SIMBAD project

(contract 213250).

REFERENCES

[1] A.Y. Ng and M.I. Jordan, “On Discriminative vs. Generative
Classifiers: A Comparison of Logistic Regression and Naive
Bayes,” Proc. Advances in Neural Information Processing Systems 14,
pp. 841-848, 2001.

[2] G. Bouchard and B. Triggs, “The Trade-Off between Generative
and Discriminative Classifiers,” Proc. 16th IASC Symp. Computa-
tional Statistics, pp. 721-728, 2004.

[3] S. Kapadia, “Discriminative Training of Hidden Markov Models,”
PhD dissertation, Univ. of Cambrdige, 1998.

[4] J.A. Lasserre, C.M. Bishop, and T.P. Minka, “Principled Hybrids
of Generative and Discriminative Models,” Proc. IEEE CS Conf.
Computer Vision and Pattern Recognition, pp. 87-94, 2006.

[5] A. Mccallum, C. Pal, G. Druck, and X. Wang, “Multi-Conditional
Learning: Generative/Discriminative Training for Clustering and
Classification,” Proc. 21st Nat’l Conf. Artificial Intelligence, pp. 433-
439, 2006.

[6] T. Jaakkola and D. Haussler, “Exploiting Generative Models in
Discriminative Classifiers,” Proc. Advances in Neural Information
Processing Systems 11, pp. 487-493, 1998.

[7] N. Smith and M. Gales, “Speech Recognition Using SVMs,”
Proc. Advances in Neural Information Processing Systems 15,
pp. 1197-1204, 2002.

[8] K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R.
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