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Abstract:

Background - Type 2 diabetes (T2D) and cardiovascular disease (CVD) share risk factors and 

subclinical atherosclerosis (SCA) predicts events in those with and without diabetes. T2D 

genetic risk may predict both T2D and SCA. We hypothesized that greater T2D genetic risk is 

associated with higher extent of SCA.  

Methods and Results - In a cross-sectional analysis including up to 9,210 European Americans, 

3,773 African Americans, 1,446 Hispanic Americans and 773 Chinese Americans without 

known CVD and enrolled in the FHS, CARDIA, MESA and GENOA studies, we tested a 62

T2D-loci genetic risk score (GRS62) for association with measures of SCA, including coronary 

artery (CACS) or abdominal aortic calcium score, common (CCA-IMT) and internal carotid 

artery intima-media thickness, and ankle-brachial index (ABI). We used ancestry-stratified linear 

regression models, with random effects accounting for family relatedness when appropriate, 

applying a genetic-only (adjusted for sex) and a full SCA risk factors adjusted model 

(significance = p<0.01 = 0.05/5, number of traits analyzed). An inverse association with CACS 

in MESA Europeans (fully-adjusted p=0.004) and with CCA-IMT in FHS (p=0.009) was not 

confirmed in other study cohorts, either separately or in meta-analysis. Secondary analyses 

showed no consistent associations with -cell and insulin resistance sub-GRS in FHS and 

CARDIA. 

Conclusions - SCA does not have a major genetic component linked to a burden of 62 T2D loci 

identified by large genome-wide association studies. A shared T2D-SCA genetic basis, if any, 

might become apparent from better functional information about both T2D and CVD risk loci. 

Keywords: genetic association, risk assessment, subclinical atherosclerosis risk factor, type 2 
diabetes mellitus, cardiovascular disease
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Introduction

Type 2 diabetes (T2D) and cardiovascular disease (CVD) are clinically associated in adults1 and 

are an increasing public health and economic scourge in the US2, 3 and worldwide4, 5. Better 

prevention strategies require comprehension of risk factors and mediators underlying T2D and 

CVD6. T2D and CVD share a common metabolic milieu that triggers metabolic and vascular 

dysfunction starting at subclinical disease stages7 due to genetic and non-genetic risk factors. In 

particular, many recently identified common genetic variants increasing T2D risk also are 

associated with increased CVD risk8, 9 and so might confer risk for subclinical atherosclerosis 

(SCA)10.  

 Recently, a set of 36 single nucleotide polymorphisms (SNPs) previously identified in 

large genome-wide association studies (GWAS) as affecting T2D risk were associated with an 

increased risk of cardiovascular complications in T2D patients8. We have also shown that an 

additive genetic risk score (GRS62) comprised of 62 validated T2D-associated SNPs11-14 predicts 

incident T2D in European and African Americans15, 16. 

 The present work sought to investigate whether the T2D genetic burden, as represented 

by the polygenic T2D GRS62, is associated in cross-sectional analyses with variation in SCA 

measures, including coronary artery (CACS) or abdominal aortic calcium score (AACS), internal 

(ICA-IMT) or common carotid artery intima-media thickness (CCA-IMT), and ankle-brachial 

index (ABI).  

To maximize our sample size we conducted a multicenter transethnic association study in 

large population samples from four studies currently ongoing across the US: the Framingham 

Heart Study (FHS), the Coronary Artery Risk Development in Young Adults (CARDIA)17, the 

Multi-Ethnic Study of Atherosclerosis (MESA)18, 19 and the Genetic Epidemiology Network of 

bclinical atheroscleeeerororr
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Arteriopathy (GENOA)20, 21. 

Methods

1. Population  

The Offspring Cohort of the Framingham Heart Study 

Analyses were conducted for each measured SCA trait on a range of 1,111 up to 2,822 

participants of European ancestry from the Offspring Cohort of the FHS22. These subjects 

pertained the same cohort used to validate the predictability of incident T2D by GRS62
19.

Outcomes of interest and clinical characteristics were obtained at Offspring examination cycles 6 

(for analyses of ICA-IMT and CCA-IMT) and 7 (for CACS and AACS). ABI was measured 

between the two examinations and covariates included in ABI analyses were from the closest 

examination to ABI evaluation date. More details have been published previously22, 23.  

The CARDIA Study

Analyses were conducted for the available SCA traits on 816 African Americans and 1,635 

European Americans17. Only participants with complete genotype and clinical information for all 

predictors of interest were included in the analyses. We used data on SCA from follow-up visit at

years 20 (ICA-IMT and CCA-IMT) and 25 (CACS). 

The MESA Study

The MESA Study was designed to prospectively evaluate the development and progression of 

atherosclerotic disease19. The selection included individuals from the resident list of adults from 

the urban areas of the recruiting centers with emphasis on ethnic diversity. The present study 

included up to 2,526 participants of European ancestry, 1,611 African Americans, 773 Asian 

Americans and 1,446 Hispanic Americans from examination year 1 (2000-2001). 
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The GENOA Study

The longitudinal Genetic Epidemiology Network of Arteriopathy (GENOA) Study is one of four 

networks in the NHLBI Family-Blood Pressure Program and aims to elucidate the genetics of 

target organ complications of hypertension21. GENOA recruited European and African American 

sibships with at least 2 individuals with clinically diagnosed essential hypertension before age 60 

years. European Americans were recruited from the Rochester, MN Field Center and African 

Americans were recruited from the Jackson, MS Field Center. Current analyses were conducted 

on CACS measures and genotypes available for 969 European Americans and 535 African 

Americans. 

 In all study cohorts, participants with a personal history of CVD defined as myocardial 

infarction, stroke, coronary angioplasty and/or amputation not due to injury, when applicable, 

were excluded from the analyses.

2. Assessment of subclinical atherosclerosis 

SCA measures were determined in a similar fashion in all studies by carotid ultrasonography 

intima-media thickness, subcategorized for common and internal carotid (CCA-IMT, ICA-IMT), 

computed tomography scan for CACS and AACS, and ABI for peripheral artery disease22, 24-27.

All five SCA traits were measured in FHS and MESA participants. ICA-IMT, CCA-IMT28 and 

CACS29 measurements were available in CARDIA. Evaluation and interpretation of CACS 

measures in MESA were conducted as published elsewhere29, 30. In GENOA, CACS was 

measured in European Americans with an Imatron C-150 electron beam CT scanner (Imatron 

Inc., South San Francisco, CA)31. In GENOA African Americans, CACS was measured with 

standard scanning protocols developed as part of the NHLBI’s MESA and CARDIA studies29.
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3. Genotyping 

Genotyping in FHS was conducted using the Affymetrix GeneChip Human Mapping 500K 

Array supplemented with the Affymetrix 50K array. CARDIA and MESA Studies used the 

Affymetrix Genome-Wide Human SNP Array 6.0 (Santa Clara, California)32. GENOA Study 

used the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, 2007) or the Illumina 

Human 1M-Duo BeadChip (Illumina, 2010) at the Mayo Clinic, Rochester, MN. Quality control 

and imputation for missing genotypes were previously detailed16, 32-34 for FHS and CARDIA. 

Complete information on genotyping and imputation quality of MESA and GENOA are 

available in the Supplementary Material. 

Ethics Statement

Local Institutional Review Boards approved FHS, CARDIA, MESA and GENOA study 

protocols and all participants provided written informed consent.

Statistical Analysis 

The GRS in FHS and CARDIA European Americans was calculated by summing the number of 

risk alleles (0, 1, or 2) at each locus, weighted by its published effect-size (natural log-

transformed)11. For CARDIA African Americans and for each MESA and GENOA ethnic group 

we used an unweighted GRS, calculated by summing the risk alleles across the loci. We used an 

unweighted GRS for non-European ancestry cohorts because most of the T2D SNPs come from 

GWAS conducted among people of European ancestry. However, weighting has little effect on 

the GRS35, makes models fit slightly better, but does not change the ranking of individuals from 

low to high risk15, 35.  

ICA-IMT, CCA-IMT, AACS, CACS, fasting insulin, triglycerides and HDL-cholesterol

were log-transformed to reduce skewness. Descriptive data were expressed as mean±SE, if not 
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otherwise indicated. We used multivariable linear regression models for CARDIA and MESA 

cohorts and similar models in FHS and GENOA with a random effect accounting for family 

relatedness to test the association of an additive 62 T2D SNPs GRS (Supplemental Table 1) with 

measures of SCA.

For each SCA trait we applied models adjusted for sex (genetic-only model) and for a 

comprehensive set of SCA risk factors (full model), as shown in Supplemental Table 2. Principal 

components were included in GENOA and MESA models to control for population stratification 

in each ethnic group. The fully-adjusted model included: sex, age, waist circumference, body 

mass index (BMI), triglycerides, HDL-cholesterol, LDL-cholesterol, fasting insulin, fasting 

glucose, systolic blood pressure (SBP), hypertension/diabetes and/or lipid medication, physical 

activity, smoking, family history of T2D and/or CVD. SBP was excluded in the analysis for ABI 

since ABI is calculated from SBPs at ankle and arm.

 We also conducted subsidiary analyses of two subsets of the 62 T2D SNPs comprised of 

20 tag-SNPs thought to be associated with -cell function (GRS ) or 10 associated with insulin 

resistance (GRSIR)16 in the FHS and CARDIA cohorts to further elucidate possible mechanistic 

pathways, testing the hypothesis that genetic risk for IR in particular would be associated with 

SCA. 

 The rationale behind computing a GRS to account for the cumulative burden of a genetic 

exposure stands upon prior literature36, 37. Indeed, using GRS allows to carry out association 

analyses by treating the genetic exposure as a whole, irrespective of the number of SNPs 

comprised in the score.   

 Post-hoc power calculations using QUANTO 1.2 software showed that for a sample size 

of 1,835 individuals, we had 80% power to detect association of GRS62 explaining 0.64% of the 
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variance in SCA traits with type 1 error rate set at p<0.01 (p=0.05 divided by the number of traits 

(5) analyzed). We had 80% power to detect association of GRS  and GRSIR each explaining 

0.73% or more of the variance in SCA traits with type 1 error set at p<0.005 (0.05/[5 traits x 2 

GRS]). 

In order to replicate the primary FHS analyses in European Americans and to verify 

whether they might be extended to different ancestral groups, we conducted association analyses 

of GRS62 with CACS, ICA-IMT and CCA-IMT in CARDIA, MESA and GENOA cohorts 

separately within each ethnicity. Then, association results from each cohort were meta-analyzed 

using a fixed effect approach, separately for European and African Americans, with a two-sided 

p<0.01 as threshold for significance. 

All statistical analyses were carried out with SAS 9.2 (SAS Institute Inc., Cary, NC, 

USA) and R 2.9.2 (http://www.r-project.org).  

Results

We analyzed up to 7,952 European Americans, 2,124 Africans Americans, 773 Asian Americans 

and 1,446 Hispanic Americans from four cohort studies. Clinical and anthropometric features 

and measures of SCA traits are shown for each study cohort in Supplemental Table 3 and 

Supplemental Table 4.  

Overall, study participants were of a wide age and BMI range. Prevalence of diabetes and 

abdominal obesity was much higher in African Americans than in other ethnicities. Participant 

characteristics within each ethnic group were comparable across all cohorts with the proportion 

of males and females being equally distributed, except in GENOA African Americans where 

women comprised 74.2% of the participants. The T2D GRS62 was approximately normally 

distributed with a range from 48.3 to 83.3 in European Americans and from 46.8 to 83.2 in 

ohort were meta-ananananaala
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African Americans over all cohorts. African Americans in CARDIA had higher mean GRS than 

European Americans, while the opposite was the case in MESA and GENOA cohorts. In MESA 

Asian and Hispanic Americans the T2D GRS62 spanned, respectively, from 48.1 to 73.6 and 

from 48.5 to 79.6 (Supplemental Figure 1 and Supplemental Figure 2). GRS  and GRSIR were 

normally distributed and ranged from 12.2 to 31.9 and from 3.3 to 18.0 in FHS and CARDIA 

European Americans, respectively, while in CARDIA African Americans the GRS ranged from 

13.2 to 28.4 and the GRSIR ranged from 5.0 and 16.9 (Supplemental Figure 2).  

The primary analyses in FHS showed an inverse association between GRS62 and CCA-

IMT (p=0.009, full model), which was not replicated in CARDIA or MESA (Table 1) European 

Americans. In the MESA European Americans, there was a significant inverse association 

between GRS62 and CACS (p=0.004, full model), which was not replicated in other cohorts 

(Table 1). Lack of a significant association between GRS62 and SCA was confirmed by meta-

analyses of up to 12,983 individuals from four cohorts for the available SCA traits, i.e. CACS, 

CCA-IMT and ICA-IMT (Figure 1).

 Supplemental analyses showed that ICA-IMT was negatively associated with GRS  in 

FHS in the full model (p=0.007, Supplemental Table 5), but this finding was not replicated in

CARDIA European Americans. The GRSIR was not associated with any SCA trait in any of the 

models in either the FHS cohort or in either CARDIA ethnic group (Supplemental Table 6). 

Discussion

The primary finding of our study was the absence of a significant association between the 

genetic burden for T2D, based on a 62 SNPs GRS, and a wide set of SCA traits in a large US 

adult population. Results were consistent for all four ancestral groups studied. An inverse 

association of the GRS62 with CCA-IMT in FHS was not confirmed in two other cohorts either in 
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replication comparisons or meta-analysis. A 10 SNP GRS and a 20 SNP GRS representing 

variants associated, respectively, with -cell function or insulin resistance also showed no 

significant association with SCA. 

 A wide literature has validated the approach of using a T2D GRS in diverse populations 

as a robust predictor of T2D, whether alone or considering clinical variables16, 17, 35, 38-41. Prior 

studies also used the T2D GRS to predict vascular disease8, 42-44, showing that T2D susceptibility 

variants are able, cumulatively, to predict coronary heart disease (CHD) events. As single genetic 

variants only explain a very small proportion of the variation in T2D risk, we did not expect 

individual SNPs to achieve study-wide significance for association with SCA traits, especially 

with the present sample size. To overcome weak effects of individual variants, we therefore 

applied the widely used strategy of expressing overall T2D genetic risk burden as a GRS, to test 

for association with SCA. Indeed, a recent analysis of the cumulative effect of common genetic 

variation associated with BMI- and fasting insulin loci showed that a higher burden of variants 

was associated with metabolic syndrome traits, IR and CHD events, but not SCA45.  

 Starting with the plausible hypothesis that T2D genetic risk would be associated with 

SCA, we used a rigorous approach including conservative correction for multiple trait tests, 

replication studies in separate cohorts (thereby reducing type 1 error) and meta-analysis of a 

large sample size (increasing power). We therefore can conclusively state that a measure of T2D 

genetic risk is not associated with higher indices of SCA in these cohorts.  

These results can be compared with other recent studies. As recently reviewed9, the 

genetic signatures of T2D, CHD and glycemic quantitative traits seem to overlap only at

chromosomes 2q36.3 and 9p21.3. Notably, a major proportion of fasting insulin-associated loci 

have shown directionally consistent associations with T2D risk and CVD quantitative risk factors 
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(i.e. adverse lipid profile and abdominal adiposity) but none of the glycemic quantitative traits 

has been directly associated with CVD-risk. In this context, Qi et al.8 showed that the genetic 

risk of T2D, as represented by a 36 T2D SNPs GRS, was associated with an increased risk of 

CVD in European Americans affected by T2D. Additionally, while Doria et al.46 showed that the 

effect of genotype at 9p21.3 locus on CVD events was raised only in persons with T2D with

poor glycemic control, Rivera et al.47 found that, compared to non-T2D individuals, the genetic 

variation at 9p21.3 locus was associated with a higher severity of coronary artery disease 

comorbid with T2D. On the other hand, a recent analysis in the FHS22 specifically pointing to the 

genetic variation at candidate 2q36.3-IRS1 locus failed to identify an etiological link between 

SCA and T2D. 

It might therefore be argued that distinct mechanisms lead T2D and non-T2D subjects to 

CVD events, and that within T2D cases hyperglycemia might act as permissive environment 

leading to the full expression of CVD-risk genetics. These data, together with the null results of 

our present study, both with our T2D GRS62 and with the two sub-scores (GRSIR and GRS ), 

collectively suggest that in the general population T2D and CVD are not genetically linked 

together through SCA, the association of T2D genetics being so far observed only with CVD 

events but not with early subclinical disease.

Our analysis plan was designed to specifically test the impact of a comprehensive T2D 

genetic risk burden on SCA risk. We therefore created a basic, purely genetic, model by 

including as exposure both GRS and sex, as sex is 100% genetically determined and is also 

associated with T2D risk. Then, we added covariates like age and other confounders/mediators 

not completely genetically determined but potentially related to a pro-atherosclerotic, pro-

diabetic phenotype. In particular, we did not specifically aim to mechanistically unravel the 
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pathobiology of atherosclerosis. Instead, we adjusted for sex in the genetic-only model to simply 

address the question of whether the known spectrum of established genetic determinants of T2D 

(including sex chromosome) is associated with measures of SCA. 

 Strengths of our study include a validated T2D GRS aligned to the current level of 

evidence, a detailed characterization of SCA, a comprehensive selection of covariates, and a

careful control of type 1 and type 2 error by means of a large sample size from the general 

population and a multicenter replication strategy in different ethnicities. Additionally, given the 

strong age-calcification relationship across young adulthood, mid-life and older ages48, 49, the 

wide range of age among our different cohorts allowed to capture the whole spectrum from 

early- to late-onset calcification. 

 However, our approach might have been weakened by multiple interactions among 

different SNPs within the GRS: several of the component genes in the score may be indeed 

associated with SCA, but the component score might not be significantly associated if the effect 

was diluted by the other variants. We did not perform individual SNP tests for association with 

SCA, as individual locus effects were not our main hypothesis and would require a vast sample 

size to account for the increased type 1 error rate and to identify individual locus effects, the 

threshold for significance being in that case p<1.6x10-4 (i.e. 0.05/(5 SCA traits) x (62 SNPs)). 

Furthermore, the 62 genome-wide significant SNPs we used explained only a fraction (around 

10%) of the total T2D phenotypic variance in other studies50 and did not represent actual 

functional variants that have yet to be discovered. We also acknowledge that the exclusion of 

CVD individuals, may have resulted in a population enriched for protective factors especially 

among those with higher T2D GRS, which would explain the borderline negative association of 

the GRS62 with CCA IMT in FHS and CACS in MESA European Americans.  However, in 

and older ages48, 49,, , , th
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sensitivity analyses conducted in FHS and CARDIA the T2D GRS62 allele distribution was 

comparable between people with positive CVD history and the population actually analyzed

(data not shown). Hence, for consistency with our main focus on SCA we excluded individuals 

with clinical CVD. The relatively younger age of CARDIA participants offers another possible 

limitation, however, it is well known that SCA begins to develop in Westernized populations in 

early youth51, 52. Further, associations in CARDIA were similar to those in the other cohorts we 

studied. Lastly, while we could confidently use the GRS to depict the T2D genetic risk for 

European and Mexican Americans, and therefore reasonably claim robustness of our results, our 

GRS was not best tailored to African or Asian Americans. However, we have shown in several 

prior studies that T2D GRS based on SNPs found in European ancestry samples do predict T2D 

in African American samples, even accounting for clinical risk factors16, 17, 53. 

 Our results have several implications and point to future directions.  We provided 

compelling evidence that the genetic burden of T2D risk as represented by our GRS62

formulation was not associated with SCA. This suggests that T2D and SCA have separate 

genetic structures and that no large common variant genetic soil10 underlies both T2D and CVD.

However, it is possible that more complex formulation of T2D genetic risk might be associated 

with SCA.

T2D and SCA are linked clinically1, 8 and the prevalence of CVD events and the burden 

of CVD risk factors are higher in T2D patients. Furthermore, there is evidence that screening for 

SCA in asymptomatic individuals at intermediate CVD risk improves the predictability of the 

occurrence of CVD over and above established CVD risk factors54. Incorporating genetic 

information into disease prediction models would further improve the ability to capture people 

with higher CVD risk at a preclinical stage. However, current polygenic scores do not 
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remarkably outperform clinical models15 and functional interrogation of T2D and CVD genetics 

is necessary to further optimize polygenic risk prediction of either T2D or CVD or both. 

Therefore, despite our understanding of the genetic signature of complex traits is steadily 

increasing, new approaches incorporating functional, structural and/or regulatory annotation55

into disease prediction are needed to untangle the missing link, if any, between T2D and CVD at 

a genetic level. 

In conclusion, common polygenic T2D risk variation, as incorporated in a comprehensive 

and validated GRS, was not associated with any of five measures of SCA. Our study suggests 

that the biological and genetic relationships among T2D, CVD and SCA are probably more 

complex than expected. Further mechanistic investigations are needed to explore whether shared 

or distinct vascular disease mechanisms related to T2D might be in play. Therefore, given the 

global burden of T2D and CVD in the era of precision medicine and patient-oriented healthcare,

it is timely to achieve a deeper understanding about the genetic determinants of T2D, CVD and 

intermediate risk traits, in order to improve risk prediction and the ability to discover newly 

targeted therapeutic molecules.
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Table 1: Association between a 62 T2D SNPs genotype risk score (GRS) and prevalent subclinical atherosclerosis measures in linear 
regression models of FHS, CARDIA, GENOA* and MESA cohorts. 

FHS CARDIA GENOA

European American European Americans African Americans European Americans African American*

Basic Model Beta±SE P Beta±SE P Beta±SE P Beta±SE P Beta±SE P 

CACS -0.012±0.026 0.66 0.011±0.010 0.27 -0.007±0.016 0.64 0.003±0.017 0.88 0.025±0.029 0.40
AACS -0.029±0.032 0.36 - - - - - - - -

ICA-IMT -0.008±0.004 0.03 0.000±0.001 0.88 0.000±0.001 0.67 - - - -
CCA-IMT -0.002±0.002 0.21 0.000±0.000 0.94 0.001±0.001 0.08 - - - -

ABI 0.000±0.001 0.72 - - - - - - - - 
Full Model

CACS -0.012±0.028 0.67 0.006±0.010 0.56 -0.018±0.015 0.24 0.001±0.015 0.95 0.041±0.026 0.12
AACS -0.017±0.033 0.61 - - - - - - - - 

ICA-IMT -0.009±0.004 0.02 0.000±0.001 0.63 0.000±0.001 0.72 - - - -
CCA-IMT -0.004±0.002 0.009 0.000±0.000 0.54 0.000±0.001 0.47 - - - -

ABI 0.001±0.001 0.13 - - - - - - - -

MESA

European Americans Asian Americans African Americans Hispanic Americans

Basic Model Beta±SE P Beta±SE P Beta±SE P Beta±SE P 

CACS -0.026±0.010 0.01 -0.027±0.012 0.14 0.019±0.014 0.17 -0.004±0.014 0.76
AACS -0.042±0.023 0.07 -0.022±0.048 0.65 0.003±0.039 0.93 0.029±0.031 0.33

ICA-IMT -0.001±0.002 0.75 0.001±0.004 0.85 -0.001±0.003 0.65 0.006±0.003 0.02
CCA-IMT -0.001±0.001 0.33 -0.001±0.002 0.65 -0.000±0.001 0.79 -8.98E-06±0.001 0.99

ABI 3.27E-05±0.001 0.95 0.000±0.001 0.63 -0.000±0.001 0.64 0.000±0.001 0.61
Full Model

CACS -0.029±0.009 0.004 -0.027±0.019 0.16 0.016±0.014 0.28 0.002±0.015 0.88
AACS -0.012±0.019 0.53 -0.033±0.039 0.40 -0.027±0.035 0.44 0.035±0.028 0.20

ICA-IMT -0.001±0.002 0.63 -0.000±0.004 0.98 -0.002±0.003 0.52 0.006±0.003 0.02
CCA-IMT -0.001±0.001 0.30 -0.001±0.002 0.77 -0.000±0.001 0.87 9.49E-05±0.001 0.93

ABI 0.000±0.001 0.44 0.000±0.001 0.67 -0.001±0.001 0.36 0.000±0.001 0.85
CACS: coronary artery calcium score, AACS: abdominal aorta calcium score, ICA: internal carotid artery, CCA: common carotid artery, IMT: intima-media thickness, ABI: ankle-brachial index. Basic 
Model: SCA trait = GRS + sex + k; Full Model: fully-adjusted model (GRS + sex, age, waist circumference, body mass index, triglycerides, HDL-cholesterol, LDL-cholesterol, fasting insulin, fasting 
glucose, systolic blood pressure (SBP), hypertension/diabetes and/or lipid medication, physical activity, smoking, family history of T2D and/or CVD. SBP was excluded in the analysis for ABI since 
ABI is calculated from SBPs at ankle and arm). *African Americans in GENOA had a genetic risk score limited to 55 of 62 T2D SNPs. Data expressed as mean ± standard error.  Sample sizes (N [min-
max]): FHS NEur [1,111-2,822]; CARDIA: NEur [1,267-1,635], NAfr [562-816]; GENOA: NEur =969, NAfr =535; MESA: NEur [760-2,526], NAsi [247-773]; NAfr [343-1,611], NHis [496-1,446]. 
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Figure Legends:

Figure 1: Meta-analysis of GRS62 association tests with CACS (panel-A, Nmeta=4,780; panel-B, 

Nmeta=1,835), CCA-IMT (panel-C, Nmeta=6,220; panel-D, Nmeta=2,190) and ICA-IMT (panel-E, 

Nmeta=5,842; panel-F, Nmeta=2,109) measures across all study cohorts stratified by European and 

African Americans (GRS62, genetic risk score comprised of 62 single nucleotide polymorphisms 

associated with type 2 diabetes; CACS, coronary artery calcium score; CCA-IMT and ICA-IMT, 

intima-media thickness of common and internal carotid artery). 
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SUPPLEMENTAL*MATERIAL*

*

Supplemental*Methods*

We# applied# a# multivariable# linear# regression# model# with# random# effects# to# account# for# family#

relatedness,#where#appropriate,#to#test#the#association#of#subclinical#atherosclerosis#(SCA)#measures#

with#an#additive#genetic#risk#score#(GRS62)#comprised#of#62#single#nucleotide#polymorphisms#(SNPs)#

known#to#be# linked#with# type#2#diabetes# (T2D)# risk# (Table*S1)1.#Many#of# them#are#associated#with#

either#betaJcell#function#or#insulin#resistance#(IR)#physiology.#Therefore,#as#described#by#Vassy#et#al.#

2
,#we#used#prior#genetic#and#physiologic#evidence#

1,#3J6
#to#define#a#subJGRS#comprised#of#20#T2D#SNPs#

mainly#associated#with#betaJcell#function#(GRSβ)#and#a#subJGRS#comprised#of#10#T2D#SNPs#associated#

with#peripheral# insulin# resistance# (GRSIR),#with#each# locus#weighted# in#European#Americans#by# the#

same#effect#size#as#in#the#GRS62.#

For#each#SCA#trait#we#applied#a#geneticJonly#model#(adjusted#for#sex)#and#a#full#atherosclerosis#risk#

factors#adjusted#model# (Table*S2).#Clinical#and#anthropometric#characteristics#of#study#cohorts#are#

shown# in# Table* S3# and# Table* S4.# The# GRSβ# and# GRSIR# were# tested# only# in# FHS# and# CARDIA# study#

samples#(Table*S5?S6).##

Many#of#the#62#tagJSNPs#associated#with#T2D#(Table*S1)#are#also#known#to#be#associated#with#SCA#

risk# factors/confounders.# We# interrogated# Genome.gov# (http://www.genome.gov/),# a# catalog# of#

published# GWAS,# and# PheGenI# (http://www.ncbi.nlm.nih.gov/gap/phegeni),# a# phenotypeJoriented#

resource# housed# at# the# National# Center# for# Biotechnology# Information.# Risk# factors# listed# in# the#

catalogs# as# being# associated# with# one# or# more# of# the# known# 62# T2D# loci# were# included,# among#

others,# in# the# full#model# (BMI,#waist#circumference,# systolic#blood#pressure,# fasting# insulin,# fasting#

glucose,# triglycerides,# HDLJcholesterol# and# LDLJcholesterol).# Therefore,# the# basic# model# could# be#

described#as#“purely”#genetic,#as#it#tested#the#association#of#a#T2D#GRS#alone#with#SCA#traits,#after#

adjustment# for# sex,# while# the# full# model# accounted# for# the# overall# spectrum# of# confounders,#

mediators#and/or#risk#factors#for#SCA#available#in#our#dataset,#by#adjusting#for#a#comprehensive#list#

of#atherosclerosis#risk#factors.#



 2 

Genotyping:#

MESA:# Caucasian,#Hispanic,# and#Chinese#American#participants#were# genotyped#on# the#Affymetrix#

GenomeJWide#Human#SNP#Array#6.0# (Affymetrix,#Santa#Clara,#CA,#USA)#at#the#Affymetrix#Research#

Services#Lab.#6,880#samples#passed#initial#genotyping#QC.#African#American#samples#were#genotyped#

at#the#Broad#Institute#of#Harvard#and#MIT#as#part#of#the#CARe#project#
7
.#Affymetrix#performed#wet#

lab#hybridization#assay,#and#plateJbased#genotype#calling#using#Birdseed#v2.#Sample#QC#was#based#

on# call# rates# and# contrast# QC# (cQC)# statistics.# Broad# performed# similar# QC# for# CARe# sample.#

Additional#sample#and#SNP#QC#were#carried#out#at#University#of#Virginia,#including#sample#call#rate,#

sample#cQC,#and#sample#heterozygosity#by#ethnicity#at#the#sample# level;#outlier#plates#checking#by#

call#rate,#median#cQC#or#heterozygosity#at#plate#level.# #Four#samples#were#removed#due#to#low#call#

rate# (<95%).#Cryptic# sample#duplicates#or#unresolved#cryptic#duplicates#were#dropped.#Unresolved#

gender#mismatches#were#also#dropped.#At#the#SNP#level,#we#excluded#monomorphic#SNPs#across#all#

samples;# SNPs#with#missing# rate#was#>#5%#or#observed#heterozygosity# ># 53%#were# also#excluded.#

Additional#genotypes#were#imputed#to#the#1000#Genomes#Phase#I#integrated#variant#set#(NCBI#build#

37#/#hg19)#separately#in#each#ethnic#group#using#the#program#IMPUTEv2.#We#used#data#freezes#from#

23# Nov# 2010# (lowJcoverage# wholeJgenome)# and# 21
st
# May# 2011# (highJcoverage# exome),# phased#

haplotypes# released# March# 2012# (v3),# and# phased# haplotypes# for# 1,092# individuals# and# over# 39#

million# variants.# All# imputed# and# genotyped# SNPs# were# aligned# to# the# '+'# strand# of# the# human#

genome# reference# sequence# (NCBI# Build# 37).# The# Affymetrix# annotation# file#

"GenomeWideSNP_6.na31.annot.csv"#was#used#for#all#matching#of#probe#set#IDs#with#RS#IDs.#

#

GENOA:#GENOA# Study# participants#were# genotyped# on# the# Affymetrix# GenomeJWide#Human# SNP#

Array#6.0#(Affymetrix,#2007)#or#the#Illumina#Human#1MJDuo#BeadChip#(Illumina,#2010)#at#the#Mayo#

Clinic,# Rochester,# MN.# African# American# sibships# for# the# GENOA# study# were# identified# using#

hypertensive#participants# from# the#Atherosclerosis#Risk# in#Communities# Study# (ARIC)# as#probands.#

Genotypes#were#obtained#for#92#additional#GENOA#participants#who#were#also#in#the#ARIC#Study#and#

who#could#not#be#genotyped#on#either#platform#using#the#GENOA#blood#sample.#Genotyping#for#the#



 3 

ARIC# study# was# done# at# the# Broad# Institute# on# the# Affymetrix# 6.0# platform.# For# all# genotyping#

platforms#used,#samples#and#SNPs#with#a#call#rate#<95%#were#removed.#Samples#demonstrating#sex#

mismatch,# duplicate# samples,# and# samples#with# low# identityJbyJstate#with# all# other# samples#were#

also# removed.# Imputation# was# performed# with# the# singleJstep# approach# implemented# in#Markov#

Chain# Haplotyper# (MaCH)# 1.0.16#
8
.# The# reference# panel# was# composed# of# the# HapMap# phased#

haplotypes# (release# 22).# Imputation# was# performed# separately# for# participants# genotyped# on# the#

Affymetrix#6.0#as#part#of#the#GENOA#study,#participants#genotyped#on#the#Illumina#Human#1MJDuo#

BeadChip,#and#participants#genotyped#on#the#Affymetrix#6.0#as#part#of#the#ARIC#Study.#Since#only#a#

small#number#of#directly#genotyped#SNPs#overlap#on#the#Affymetrix#and#Illumina#platforms,#imputed#

dosages#were#used#for#all.#

In#GENOA#African#Americans#the#GRS#was# limited#to#55#SNPs#due#to#poor# imputation#quality# for#7#

SNPs.#

#

FHS#and#CARDIA#genotyping#and#imputation#strategy#have#been#previously#detailed#elsewhere
2,#7,#9

.#

#

#
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Chr,#chromosome;#SNP,#single#nucleotide#polymorphism;#OR,#odd#ratio##

 

Supplemental*Table*1*–*62*independent*loci*and*relative*tag?SNPs*associated*with*Type*2*Diabetes*from*DIAGRAMv3*1.#*
*

*

Chr* SNP?risk*allele* Locus* OR* Chr* SNP?risk*allele* Locus* OR*
1# rs2075423JG# PROX1#or#PPP2R5A# 1.07# 9# rs10758593JA# GLIS3# 1.06#

1# rs10923931JT# NOTCH2# 1.08# 9# rs17791513JA# TLE4# 1.12#

2# rs10203174JC# THADA# 1.14# 9# rs2796441JG# TLE1# 1.07#

2# rs243088JT# BCL11A# 1.07# 9# rs16927668JT# PTPRD# 1.04#

2# rs13389219JC# GRB14# 1.07# 10# rs11257655JT# CDC123/CAMK1D# 1.07#

2# rs2943640JC# IRS1# 1.10# 10# rs7903146JT# TCF7L2# 1.39#

2# rs7569522JA# RBMS1# 1.05# 10# rs1111875JC# HHEX/IDE# 1.11#

2# rs780094JC# GCKR# 1.06# 10# rs12571751JA# ZMIZ1#or#PPIF# 1.08#

3# rs11717195JT# ADCY5# 1.11# 10# rs12242953JG# VPS26A# 1.07#

3# rs1496653JA# UBE2E2# 1.09# 11# rs10830963JG# MTNR1B# 1.10#

3# rs4402960JT# IGF2BP2# 1.13# 11# rs1552224JA# ARAP1#(CENTD2)# 1.11#

3# rs1801282JC# PPARG# 1.13# 11# rs163184JG# KCNQ1# 1.09#

3# rs6795735JC# ADAMTS9# 1.08# 11# rs5215JC# KCNJ11# 1.07#

3# rs12497268JG# PSMD6# 1.03# 11# rs2334499JT# DUSP8#or#HCCA2#(YY1AP1)# 1.04#

3# rs17301514JA# ST64GAL1# 1.05# 12# rs7955901JC# TSPAN8/LGR5# 1.07#

4# rs6819243JT# MAEA# 1.07# 12# rs12427353JG# HNF1A#(TCF1)# 1.08#

4# rs4458523JG# WFS1# 1.10# 12# rs2261181JT# HMGA2# 1.13#

5# rs6878122JG# ZBED3#or#PDE8B# 1.10# 12# rs10842994JC# KLHDC5#or#PPFIBP1# 1.10#

5# rs459193JG# ANKRD55# 1.08# 13# rs1359790JG# SPRY2# 1.08#

6# rs7756992JG# CDKAL1# 1.17# 15# rs4502156JT# C2CD4A#or#VPS13C# 1.06#

6# rs3734621JC# KCNK16# 1.07# 15# rs11634397JG# ZFAND6# 1.05#

6# rs4299828JA# ZFAND3# 1.04# 15# rs12899811JG# PRC1# 1.08#

7# rs17168486JT# DGKB# 1.11# 15# rs2007084JG# AP3S2# 1.02#

7# rs10278336JA# GCK## 1.07# 15# rs7177055JA# HMG20A# 1.08#

7# rs849135JG# JAZF1# 1.11# 16# rs9936385JC# FTO# 1.13#

7# rs17867832JT# GCC1#or#PAXP4# 1.09# 16# rs7202877JT# BCAR1# 1.12#

7# rs13233731JG# KLF14# 1.05# 17# rs2447090JA# SRR# 1.04#

8# rs3802177JG# SLC30A8# 1.14# 18# rs12970134JA# MC4R# 1.08#

8# rs7845219JT# TP53INP1# 1.06# 19# rs10401969JC# CILP2# 1.13#

8# rs516946JC# ANK1# 1.09# 19# rs8182584JT# PEPD# 1.04#

9# rs10811661JT# CDKN2A/B# 1.18# 20# rs4812829JA# HNF4A# 1.06#
#
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Supplemental*Table*2*–*Outline*of*models*applied*in*the*association*analysis*of*Genetic*
Risk*Scores*(GRS)*with*subclinical*atherosclerosis*traits,*plus*covariates.*

*

BASIC*MODEL*
#

GRS,#sex#

#

#

FULL*MODEL* GRS,#sex#

#

Age#

BMI#

Waist#circumference#

Systolic#blood#pressure#(SBP)
*
#

#

Fasting#insulin#

Fasting#glucose#

Triglycerides#

HDLJCholesterol#

LDLJCholesterol#

#

Family#history#of#T2D#

Family#history#of#CVD#

#

Smoking#status#

Physical#activity#

#

Diabetes#medication#

Hypertension#medication#

LipidJlowering#medication#

#
#

BMI,#body#mass#index;#T2D,#type#2#diabetes;#CVD,#cardiovascular#disease;#ABI,#ankleJbrachial#index.#
*
NOTE:#SBP#excluded#for#ABI#since#ABI#is#calculated#from#SBPs#at#ankle#and#arm.#
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Supplemental*Table*3*–*Subclinical*atherosclerosis*measures,*anthropometric*and*clinical*characteristics*in*FHS*and*CARDIA*cohorts.!
! ! !

! FHS! CARDIA!
! * * * *

! Exam%6% Exam%7% Exam%year%20% Exam%year%25%
! * * * *

Ethnicity! European*Americans* African*Americans* European*Americans* African*Americans* European*Americans*
N!(male!%)! 2459!(44.8%)! 1111!(44.8%)! 816!(38.6%)! 1635!(45.9!%)! 811!(38.8%)! 1621!(45.9!%)!
Age!(yr)! 57.9!±!9.6! 58.9!±!8.9! 44.4!±!3.8! 45.5!±!3.3! 49.4!±!3.8! 50.6!±!3.3!
BMI!(kg/m2)! 27.6!±!4.9! 28.1!±!4.9! 31.7!±!7.6! 27.9!±!6.7! 32.2!±!7.8! 28.2!±!6.2!
Waist!circumference!(cm)! 96.5!±!12.7! 96.5!±!12.7! 94.7!±!15.7! 89.8!±!15.1! 97.1!±!15.8! 91.6!±!15.6!
Systolic!blood!pressure!(mmHg)! 127.1!±!18.3! 124.9!±!17.7! 119.1!±!15.5! 112.2!±!12.5! 122.2!±!14.5! 114.5!±!13.7!
Fasting!glucose!(mg/dL)! 101.3!±!22.9! 99.9!±!18.2! 102.3!±!30.2! 97.8!±!21.2! 102.1!±!34.6! 96.7!±!20.4!
Fasting!insulin!(pmol/L)! P! 14.3!±!8.6! 17.1!±!12.2! 13.5!±!9.1! 13.39!±!14.1! 9.6!±!7.3!
Triglycerides!(mg/dL)! 136.1!±!88.2! 132.6!±!86.5! 96.4!±!58.4! 116.9!±!82.4! 101.4!±!67.1! 120.0!±!86.3!
HDLPcholesterol!(mg/dL)! 51.9!±!16.1! 53.9!±!15.9! 54.1!±!16.3! 54.4!±!17.2! 57.7!±!17.3! 58.7!±!18.5!
LDLPcholesterol!(mg/dL)! 127.4!±!32.9! 121.4!±!31.3! 110.4!±!33.6! 110.3!±!30.5! 109.2!±!33.9! 113.4!±!30.9!
Parental!history!of!diabetes!(%)! 19.8! 19.8! 17.9! 9.5! 17.6! 9.4!
Parental!history!of!CVD!(%)! 43.2! 41.9! 39.8! 41.3! 39.9! 41.2!
Diabetes!(%)! 7.1! 6.3! 10.9! 3.4! 13.3! 6.5!
Smokers!(never/former/current!P!%)! 35.8/48.9/15.2*! 39.5/50.7/9.8*! 59.9/40.1†! 46.1/53.9†! 62.2/37.9†! 50.7/49.3†!
Physical!activity!! P! P! 287.5±285.4‡! 370.3±260.8‡! 264.4±257.5‡! 388.0±280.9‡!
Genetic!Risk!Score! 66.7!±!5.3! 66.7!±!5.2! 69.2!±!4.5! 66.4!±!5.2! 69.2!±!4.5! 66.4!±!5.2!
! ! ! ! !

Comorbidity!status! ! ! ! !
! ! ! ! !

Diabetes!medication!(%)! 3.3! 2.9! 7.9! 3.4! 10.7! 4.6!
Hypertension!medication!(%)! 23.4! 24.8! 23.1! 10.2! 41.8! 31.8!
LipidPlowering!medication!(%)! 9.8! 13.9! P! P! P! P!
! % % % %

Subclinical!atherosclerosis!traits! % % % %
! ! ! ! !

AACS!(Agatston!unit)! P! 1458.6!±!2332.3! P! P! P! P!
CACS!(Agatston!unit)! P! 229.8!±!550.8! P! P! 31.7!±!154.6!(n=586)! 49.2!±!252.1!(n=1267)!
CCAPIMT!(mm)!! 0.5!±!0.4!(n=2340)! P! 0.7!±!0.1!(n=617)! 0.7!±!0.1!(n=1379)! P! P!
ICAPIMT!(mm)!! 0.8!±!1.9!(n=2035)! P! 0.6!±!0.2!(n=562)! 0.6!±!0.2!(n=1332)! P! P!
ABI! 1.1!±!0.1!(n=2822)! P! P! P! P!
! ! ! ! !
!

Data! expressed! as!mean±standard!deviation,! if! not! otherwise! indicated.!AACS,! abdominal! aorta! calcium! score;! CACS,! coronary! artery! calcium! score;! CCA,! common! carotid! artery;! ICA,! internal!
carotid!artery;!IMT,!intimaPmedia!thickness;!ABI,!anklePbrachial!index.!*Smoking!status!categorized!as!never/former/current!in!FHS.!†Smoking!status!categorized!as!never/ever!in!CARDIA.!‡Physical!
activity!is!expressed!as!Total!Intensity!Score,!according!to!the!CARDIA!Physical!Activity!History!Questionnaire!(Pereira!MA!et%al.;!PMID:!9243481).!!
!
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Supplemental*Table*4*–*Subclinical*atherosclerosis*measures,*anthropometric*and*clinical*characteristics*in*MESA*and*GENOA*cohorts.!
! ! !

! MESA! GENOA*
! * ! ! ! * *

! * * * * *
! * * * * * *

Ethnicity! European*Americans* Asian*Americans* African*Americans* Hispanic*Americans* European*Americans* African*Americans||*
N!(male!%)! 2526!(47.7%)! 773!(49.2%)! 1611!(46.1%)! 1446!(48.3%)! 969!(40.9%)! 535!(25.8%)!
Age!(yr)! 62.7!±!10.2! 62.4!±!10.4! 62.3!±!10.1! 61.4!±!10.3! 58.9!±!9.5! 68.5!±!7.7!
BMI!(kg/m2)! 27.7!±!5.1! 23.9!±!3.3! 30.2!±!5.9! 29.5!±!5.2! 30.7!±!6.3! 32.7!±!7.2!
Waist!circumference!(cm)! 97.9!±!14.5! 87.1!±!9.8! 101.3!±!14.7! 100.7!±!13.1! 100.3!±!16.2! 101.1!±!15.4!
Systolic!blood!pressure!(mmHg)! 123.5!±!20.5! 124.6!±!21.7! 131.8!±!21.8! 126.8!±!21.9! 131.4!±!16.8! 137.5!±!21.0!
Fasting!glucose!(mg/dL)! 91.3!±!21.6! 99.2!±!28.6! 100.3!±!32.7! 103.9!±!39.4! 104.6!±!24.5! 111.6!±!37.7!
Fasting!insulin!(pmol/L)! 9.1!±!5.6! 9.6!±!12.5! 11.5!±!27.5! 11.8!±!15.7! 54.2!±!40.3! 80.6!±!87.5!
Triglycerides!(mg/dL)! 133!±!90.1! 143.1!±!85.7! 105.2!±!70.5! 158.4!±!101.8! 159.0!±!96.9! 101.0!±!63.3!
HDLPcholesterol!(mg/dL)! 52.4!±!15.8! 49.3!±!12.4! 52.3!±!15.2! 47.5!±!13.1! 52.4!±!15.6! 57.1!±!16.5!
LDLPcholesterol!(mg/dL)! 117.1!±!30.3! 115.1!±!28.8! 116.7!±!33.3! 119.9!±!32.9! 122.7!±!32.1! 114.6!±!35.3!
Parental!history!of!diabetes!(%)! P! P! P! P! 29.4! 40.9!
Parental!history!of!CVD!(%)! 44.6/33.2/2.8*!! 14.5/23.3/1.2*! 31.9/31/7*! 31.2/23.8/3.2*! 57.5†!! 56.1†!
Diabetes!(%)! 5.9! 13.5! 17.4! 17.8! 13.5! 35.5!
Smokers!(never/former/current!P!%)! 33.1/66.9‡! 69.6/30.4‡! 26.6/73.4‡! 40.7/59.3‡! 52.5/37.3/10.2! !60.4/31.4/8.2!
Regular!physical!activity!(daily!hours)! 12.8!±!4.9! 9.9!±!4.4! 14.4!±!7.1! 11.6!±!5.9! 3.7!±!2.5§! 1.0!±!1.8§!
Genetic!Risk!Score! 63.9!±!4.7! 61.5!±!4.2! 56.5!±!4.7! 62.7!±!4.8! 64.2!±!4.9! 57.0!±!3.9!
! ! ! ! ! ! !

Comorbidity!status! ! ! ! ! ! !
! ! ! ! ! ! !

Diabetes!medication!(%)! 4.6! 9.2! 13.6! 15.8! 8.9! 32.0!
Hypertension!medication!(%)! 33.3! 29.1! 50.3! 32.9! 68.4! 80.8!
LipidPlowering!medication!(%)! 18.3! 14.1! 15.8! 13.3! 27.0! 40.9!
! % % % % % %

Subclinical!atherosclerosis!traits! % % % % % %
! ! ! ! ! ! !

AACS!(Agatston!unit)! 1668.4!±!2581.4!(n=760)! 1044.7!±!2015.4!(n=247)! 887.2!±!1737.7!(n=343)! 1044.6!±!1898.4!(n=496)! P! P!
CACS!(Agatston!unit)! 338.6!±!577.2!(n=1433)! 205.8!±!374.3!(n=392)! 294.0!±!582.8!(n=714)! 281.4!±!567.2!(n=659)! 201.6!±!467.2! 236.3!±!583.0!
CCAPIMT!(mm)!! 0.9!±!0.2!(n=2501)! 0.8!±!0.2!(n=770)! 0.9!±!0.2!(n=1573)! 0.9!±!0.2!(n=1431)! P! P!
ICAPIMT!(mm)!! 1.1!±!0.6!(n=2475)! 0.9!±!0.5!(n=766)! 1.1!±!0.6!(n=1547)! 1.0!±!0.6!(n=1399)! P! P!
ABI! 1.1!±!0.1!(n=2494)! 1.1!±!0.1!(n=768)! 1.1!±!0.1!(n=1432)! 1.3!±!0.1!(n=1430)! P! P!
! ! ! ! ! ! !

!

Data! expressed!as!mean±standard!error,! if! not!otherwise! indicated.!AACS,! abdominal! aorta! calcium! score;! CACS,! coronary! artery! calcium! score;! CCA,! common! carotid! artery;! ICA,! internal! carotid! artery;! IMT,! intimaPmedia!
thickness;!ABI,!anklePbrachial!index.!*CVD!is!categorized!in!MESA!as!myocardial!infarction/stroke/amputation!not!due!to!injury.!†Expressed!as!parental!history!of!coronary!heart!disease!in!GENOA.!‡Smoking!status!categorized!as!
never/ever!in!MESA.!**Smoking!status!categorized!as!never/former/current!in!GENOA.!§Physical!activity!categorized!as!moderate!or!heavy.!||African!Americans!in!GENOA!had!an!available!genetic!risk!score!limited!to!55!of!62!T2D!
SNPs.!
!
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Supplemental* Table* 5* –*Association* between*prevalent* subclinical* atherosclerosis*measures* and* a*
T2D*genotype*risk*score*(GRS)*comprised*of*20*tag*SNPs*mostly*linked*with*betaRcell*function*(GRSβ)*
in*linear*regression*models*of*FHS*and*CARDIA*cohorts.!

! ! !

! FHS! CARDIA!
*

*

* European*Americans* African*Americans* European*Americans*
* * * * *

Basic*Model* Beta±SE% P% Beta±SE% P% Beta±SE% P%
! * * * *

CACS* P0.023±0.05! 0.64! P0.011±0.03! 0.71! 0.005±0.02! 0.76!
AACS* P0.072±0.06! 0.23! P! P! P! P!

ICARIMT* P0.016±0.01! 0.01! P0.001±0.00! 0.55! 0.001±0.00! 0.31!
CCARIMT* P0.002±0.00! 0.41! P0.001±0.00! 0.60! 0.000±0.00! 0.69!

ABI* P9.33E+08±0.00! 0.94! P! P! P! P!
* ! ! ! !

Full*Model* % % % % % %
! ! ! ! !

CACS* P0.021±0.05! 0.69! P0.027±0.03! 0.36! 0.001±0.02! 0.95!
AACS* P0.012±0.06! 0.85! P! P! P! P!

ICARIMT* P0.018±0.01! 0.007* P0.001±0.00! 0.68! 0.001±0.00! 0.15!
CCARIMT! P0.004±0.00* 0.15! P0.001±0.00! 0.49! 0.001±0.00! 0.21!

ABI* 0.001±0.00! 0.46! P! P! P! P!
! ! ! ! !

AACS,!abdominal!aorta! calcium!score;!CACS,! coronary!artery! calcium!score;!CCA,! common!carotid!artery;! ICA,! internal! carotid!artery;! IMT,!
intimaPmedia!thickness;!ABI,!anklePbrachial!index.!Data!expressed!as!mean±standard!error.!
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Supplemental* Table* 6* –*Association* between*prevalent* subclinical* atherosclerosis*measures* and* a*
T2D*genotype*risk*score*(GRS)*comprised*of*10*tag*SNPs*mostly*linked*with*insulin*resistance*(GRSIR)*
in*linear*regression*models*of*FHS*and*CARDIA*cohorts.!

! ! !

! FHS! CARDIA!
*

*

* European*Americans* African*Americans* European*Americans*
* * * * *

Basic*Model* Beta±SE% P% Beta±SE% P% Beta±SE% P%
! * * * *

CACS* P0.004±0.07! 0.95! P0.011±0.04! 0.98! 0.041±0.03! 0.11!
AACS* 0.112±0.08! 0.17! P! P! P! P!

ICARIMT* P0.003±0.01! 0.77! 0.000±0.00! 0.93! P0.001±0.00! 0.71!
CCARIMT* P0.004±0.00! 0.29! 0.001±0.00! 0.46! P0.000±0.00! 0.77!

ABI* P7.74P06±0.00! 0.99! P! P! P! P!
* ! ! ! !

Full*Model* % % % % % %
! ! ! ! !

CACS* 0.036±0.08! 0.65! 0.005±0.04! 0.89! 0.025±0.03! 0.32!
AACS* 0.056±0.09! 0.57! P! P! P! P!

ICARIMT* P0.005±0.01! 0.65! 0.001±0.00! 0.84! P0.000±0.00! 0.83!
CCARIMT! P0.009±0.00* 0.01! 0.001±0.00! 0.58! P0.001±0.00! 0.63!

ABI* 0.001±0.00! 0.56! P! P! P! P!
! ! ! ! !

AACS,!abdominal!aorta!calcium!score;!CACS,!coronary!artery!calcium!score;!CCA,!common!carotid!artery;! ICA,! internal!carotid!artery;! IMT,!
intimaPmedia!thickness;!ABI,!anklePbrachial!index.!Data!expressed!as!mean±standard!error.*
!
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Supplemental*Figure*1*–*Distribution*of*the*total*sum*of*risk*alleles*comprised*in*the*T2D*GRS62*in*GENOA*(panel*A*and*B)*and*MESA*
cohorts*(panels*C*to*F),*stratified*by*ethnicity.*
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Supplemental*Figure*2*–*Distribution*of*the*total*sum*of*risk*alleles*comprised*in*the*T2D*GRS62,*GRSβ*and*GRSIR*in*FHS*(panel*A,*B,*C,*
respectively)*and*in*CARDIA*cohorts*(panel*D*to*I),*stratified*by*ethnicity.*
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