
The S-HOCK Dataset: Analyzing Crowds at the Stadium

Davide Conigliaro1, Paolo Rota2, Francesco Setti3, Chiara Bassetti3, Nicola Conci4, Nicu Sebe4, and
Marco Cristani1

1University of Verona , 2Vienna Institute of Technology , 3ISTC–CNR (Trento) , 4University of Trento

Abstract

The topic of crowd modeling in computer vision assumes
a single generic typology of crowd, which is very simplis-
tic. In this paper we adopt a widely accepted taxonomy
for crowds, focusing on a particular category, the spectator
crowd, which is formed by people “interested in watching
something specific that they came to see” [5]. This can be
found at the stadiums, amphitheaters, cinema, etc. In par-
ticular, we propose a novel dataset, the Spectators Hockey
(S-HOCK), which deals with hockey matches during an in-
ternational tournament. The dataset considers 4 hockey
matches, where hundreds of spectators are individually an-
notated, capturing fine grained actions such as hands on
hips, clapping hands, watching the cellphone etc., for a to-
tal of more than 100 millions of annotations. Analyzing peo-
ple at the stadium addresses different computer vision tasks,
some of them are classic (crowd counting), while other are
brand new (as the spectator categorization). For this reason,
S-HOCK comes also with a set of protocols for dealing with
all of them, and a set of baselines and novel approaches that
define the best scores on all the tasks. Anyway, the perfor-
mances are far from being errorless, and this witnesses the
difficulty of the problem and that much can be done in the
future.

1. Introduction

Capturing and understanding crowd dynamics is a prob-
lem which is important per se, under diverse perspectives.
From sociology to public safety management, modeling and
predicting the crowd presence and its dynamics, possibly
preventing dangerous activities, is absolutely crucial.

In computer vision, crowd analysis focuses on model-
ing large masses, where a single person cannot be finely
characterized, due to the low resolution, frequent occlu-
sions and the particular dynamics of the scene. Therefore,
many state-of-the-art algorithms for person detection and

Figure 1. Example of images collected for both the spectators and
the rink, plus the annotations.

re-identification, multi-target tracking and action recogni-
tion cannot be directly applied in this context. As a con-
sequence, crowd modeling has developed its own tech-
niques as multiresolution histograms [44], spatio-temporal
cuboids [23], appearance or motion descriptors [3], spatio-
temporal volumes [27], dynamic textures [29], calculating
on top of the flow information. Such information is then
employed to learn different dynamics like Lagrangian par-
ticle dynamics [35], and in general fluid-dynamic models.
The most important applications of crowd analysis are ab-
normal behavior detection [29], detecting/tracking individ-
uals in crowds [24], counting people in crowds [7], identi-
fying different regions of motion and segmentation [39].

All of these approaches assume a general and unique
kind of crowd, while a thorough analysis of the sociological
literature offers a taxonomy which could be very interesting
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for computer vision. In particular, crowds – better defined
as large gatherings [16, 17, 30] – can be divided into four
broad categories:

1. prosaic [30] or casual [6, 18] crowds, where members
have little in common except their spatio-temporal lo-
cation (e.g., a queue at the airport check-in counter);

2. demonstration/protest [30] or acting [6, 18] crowd, a
collection of people who gather for specific protest
events (e.g. mob/riot/sit-in/march participants);

3. spectator [30] or conventional [6, 18] crowds, a col-
lection of people who gather for specific social events
(e.g. cinema/theatre/sport spectators), and within
which one may find

4. expressive crowds [6, 18], a collection of people who
gather for specific social events and want to be mem-
ber of the crowd, to participate in “crowd action” (e.g.
flash-mob dancers, mass participants, sport support-
ers).

Considering this taxonomy, we can certainly say that all the
approaches in the computer vision literature focus primar-
ily on casual [24, 35, 7], and protest crowds [25], with hun-
dreds of approaches and ten of datasets, while none of them
deals with the spectator crowd and its expressive segments.

This is a critical point: from a recent statistics of 2014
conducted by UK Home Office1, disorders at stadiums
caused 2,273 arrests only considering the FA competitions
in the last year. Moreover, in the last 60 years 1447 people
died and at least 4600 were injured at the stadiums during
major events around the world2.

These statistics motivated in several countries emergency
plans for ensuring a better safety and order management,
and it is here where computer vision may consistently help.
This paper goes in this direction, focusing on the analysis
of the spectator crowd, and offering the first dataset on the
subject, S-HOCK.

S-HOCK focuses on an international hockey competition
(12 countries from all around the world have been invited)
which has been held in Trento (Italy) during the 26th Winter
Universiade, focusing on the final 4 matches of the tourna-
ment.

The dataset has many cues that make it unique in the
crowd literature, and in general in the surveillance realm.
The dataset analyzes the crowd under different levels of de-
tails, offering labeling for each one of them: at the lowest
level, it gives the number and position of all the spectators.
At the medium level, it gives a fine grained specification
of all the actions performed by each single person, such as
bending, applauding, the head orientation etc. At the higher

1Football-related arrests and football banning order statistics, Season
2013–14, available online at http://goo.gl/j9yYYQ.

2See at http://goo.gl/xMU2Zf.

level, it models the network of social connections among the
public (who knows whom in the neighborhood), what is the
supported team, what has been the best action in the match,
etc. This information is summarized by an impressive num-
ber of annotations, collected over a year of work: more than
100 millions of double checked annotations. This permits
potentially to deal with hundreds of tasks, few of them are
documented here, all of them aimed at understanding and
predicting the crowd behavior.

Other than this, the dataset is multidimensional, in the
sense that offers not only the view of the crowd (at different
resolutions, with 4 cameras) but also on the matches. This
multiplies the number of possible applications that could be
assessed, investigating the reactions of the crowd to the ac-
tions of the game, opening up to applications of summariza-
tion and content analysis. Besides these figures, S-HOCK
is significantly different from all the other crowd datasets,
since the crowd as a whole is mostly static and the motion
of each spectator is constrained within a limited spatial sur-
rounding of his position.

Together with the annotations, in this paper we discuss
about some tasks which focus on the low and high level of
details of the crowd analysis, namely, the people detection
and the head pose estimation for the low level analysis, and
the fan identification for the high level analysis. Fan identi-
fication is a kind of crowd segmentation, where the goal is
to find the team supported by each one of the spectator. This
task is intuitively useful to segregate the different supporter
teams, and individuates “hot” zones in which the two teams
are mixed. For all of these applications, we define the ex-
perimental protocols, so that future researches could easily
and fairly compare with us.

From the experiments we conducted, we show how stan-
dard methods for crowd analysis, which work well on state-
of-the-art datasets, do not fit the type of data we are dealing
with, thus requiring us to face the problem from a different
perspective. For this reason, together with the baseline ap-
proaches, we also propose customized approaches for the
spectator crowd, which fit better the scenario at hand, defin-
ing new upper bounds.

Summarizing, the contributions of this work are
• A novel dataset for spectator crowd, which describes at

different levels of detail the crowd behavior with mil-
lions of ground truth annotations, synchronized with
the game being played in the field. Crowd and game
are captured with different cameras, ensuring multiple
points of view;
• A set of tasks for analyzing the spectator crowd, some

of them are brand new;
• A set of baselines for some of these tasks, with novel

approaches which define the state of the art;
• A sociologically motivated taxonomy of crowds,

which individuates four different crowd types, two of

http://goo.gl/j9yYYQ
http://goo.gl/xMU2Zf


Annotation Typical Values
People detection full body bounding box [x, y,width, height]
Head detection head bounding box [x, y,width, height]
Head pose∗ left, frontal, right, away, down
Body position sitting, standing, (locomotion)
Posture crossed arms, arms alongside body, elbows

on legs, hands on hips, hands in pocket,
hands on legs, joined hands, hands not visible,
crossed legs, parallel legs, legs not visible

Locomotion walking, jumping (each jump), ris-
ing pelvis slightly up

Action / Interac-
tion

waving arms, pointing toward game, point-
ing outside game, rising arms, waving flag,
hands a cone, whistling, positive gesture, neg-
ative gesture, applauding, clapping (each clap),
using device, using binoculars, using mega-
phone, patting somebody, call for attention, hug-
ging somebody, kissing somebody, passing ob-
ject, hit for fun, hit for real, opening arms,
hands to forehead, hitting hands (once), none

Supported team the team supported in this game (according to
the survey)

Best action the most exciting action of the game (according
to the survey)

Social relation If he/she did know the person seated at his/her
right (according to the survey)

Table 1. The annotations provided for each person and each frame
of the videos. These are only typical values that each annotation
can have, a detailed description of the annotations is provided in
the supplementary material. The meaning of the head pose at-
tributes will be explained later in the paper. [∗] For the experi-
ments in Sec. 3.2, away class has been further divided in far-left
and far-right to discriminate the head pose even when a spectator
is not looking toward the rink.

which have never been investigated in computer vi-
sion, the spectator crowd and its expressive segments.

The rest of the paper is organized as follows: The details
of the data collection and labeling are reported in Sec. 2;
the tasks of people detection, head pose estimation, and fan
identification are introduced in Sec. 3, focusing on contex-
tualizing the problem, discussing the related state of the art,
presenting the considered baselines and our approach, and
discussing the results obtained. Finally, in Sec. 4, other ap-
plications worth investigating are briefly discussed, which
will further promote our dataset as a future benchmark for
spectator crowd analysis.

2. Data Collection & Annotation

The 26th Winter Universiade was held in Trento (Italy)
from 11 to 21 of December 2013, attracting about 100,000
people from all over the world among athletes and spec-
tators. The data collection campaign focused on the last
4 matches (those with more spectators) held in the same
ice-stadium, and was conducted by a team of 6 people, 4
of them collecting questionnaires and the remaining at the

cameras: in particular we used 5 cameras: a full HD cam-
era (1920×1080, 30 fps, focal length 4mm) for the ice rink
and another one for a panoramic view of all the bleachers,
and 3 high resolution cameras (1280×1024, 30 fps, focal
length 12mm) focusing on different parts of the spectator
crowd. In total, 20 hours of recordings have been collected,
with inter-camera synchronization: this brougth to the in-
teresting feature of having the crowd synchronized with the
game on the rink.

After the match, we asked to a percentage of uniformly
distributed spectators (30%) to fill a simple questionnaire
with three questions (whose significance will be clear later
in the paper):
• Which team did you support in this match?
• Did you know at the begin of the match who is sitting

next to you?
• Which has been the most exciting action in this game?
In this dataset we propose game segments from differ-

ent hockey matches in order to stress the generalization ca-
pability of the algorithms discussed in this paper, since in
each match we have different people and illumination con-
ditions. In particular, from each match we selected a pool
of sequences highlighting different situations inside the rink
(goals, saves, timeouts, etc.), with each video 31 seconds
long (930 frames), for a total of 75 sequences: 15 for each
one of the 4 cameras on the crowd and 15 sequences on the
game. These sequences were chosen to represent a wide,
uniform and representative spectrum of situations, e.g. tens
of instances of goals, shots on goal, saves, faults, timeouts
(each sequence has more than one event). [Paolo: The full
annotation reported in Tab. 1 has been performed on one
among the three close-field cameras, whereas in the other
two are annotated only with the survey information. The
forth view is a wide-field view of the previous three views
and the fifth is oriented toward the ice rink in order to record
the game events. The 5 cameras are synchronized.]

Each sequence has been annotated frame by frame, spec-
tator by spectator, by a first annotator, using the ViPER for-
mat [10] 3. Such annotator had to perform three different
macro tasks: detection (localizing the body and the head),
posture and action annotation, respectively. [Paolo: This
amounted to deal with a set of 50 labels, listed in Table 14].

Among the whole set of possible features that can char-
acterize the human dynamics, we selected the annotated el-
ementary forms of action [30] as strictly connected with the
analysis of social interaction, and related to our specific set-
ting, i.e. sport spectator crowd. In particular, we drew from
available literature on (a) social interaction, with particular
attention to non-verbal conduct (proxemics, bodily posture,

3The toolkit is available at http://viper-toolkit.
sourceforge.net/

4The database is available at http://mmlab.disi.unitn.it/
SHock

http://viper-toolkit.sourceforge.net/
http://viper-toolkit.sourceforge.net/
http://mmlab.disi.unitn.it/SHock
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Simple Search Grid Prior
Method Prec. Rec. F1 Prec. Rec. F1

HOG + SVM 0.743 0.561 0.639 0.662 0.709 0.684
HASC+SVM [38] 0.365 0.642 0.465 0.357 0.685 0.469
ACF [11] 0.491 0.622 0.548 0.524 0.649 0.580
DPM [14] 0.502 0.429 0.463 0.423 0.618 0.502
CUBD [13] 0.840 0.303 0.444 0.613 0.553 0.581

Table 2. Quantitative results of people detection methods, with and
without the grid-arrangement prior. [Davide: QUI CHIEDONO
LA ROC]

gesture, etc.), especially in public places; and (b) the so-
called crowd behavior, i.e. social interaction in large gath-
erings [16, 17, 30], in particular sport spectator gatherings.

Each annotator had two weeks to annotate 930 frames,
and was asked to do it in a lab, in order to monitor him/her
and ensure a good annotation quality. After all the se-
quences have been processed, producing a total amount of
more than 100 millions of annotations [Paolo: Forse ci sono
da rivedere sti numeri alla luce di quanto scritto 3 paragrafi
sopra.], a second round of annotations started, with the “sec-
ond annotators” that had to find bugs in the first-round an-
notation phase. The whole work involved 15 annotators and
lasted almost 1 year, with all annotators paid for their duties.

3. Evaluation
In this section we present a set of possible applications

and analysis that can be conducted on the proposed dataset.
In particular we focus on two classical applications, such
as people detection and head pose estimation, and one more
interesting application from the social point of view, such as
crowd segmentation based on the behavior of its members.
For each one of the mentioned topics we briefly present the
state of the art taking into account only the methods appli-
cable in this particular scenario and some preliminary ex-
periments conducted on our dataset. We also propose some
ways to improve the performance by exploiting the specific
structure of the crowd and the relation between the crowd
behavior and taking into account what is happening in the
hockey rink.

3.1. People Detection

People detection is a standard and still open research
topic in computer vision, with the HOG features [9] and
the Deformable Part Models [14] as workhorses, and plenty
of alternative algorithms [12]. Unfortunately, most of the
methods in the state of the art are not directly usable in our
scenario, mostly for two reasons: low resolution – a person
has an average dimension of 70×110 pixels – and occlu-
sions – usually only the upper body is visible, rarely the
entire body and sometimes only the face.

Recently, some works studied how to improve the per-
formance of detectors by means of an explicit model of the

visual scene. Specifically, focusing on people detection in
crowded scenes, Barina et al. [4] used the Hough transform
to overcome the non-maxima suppression stage for detect-
ing multiple istances of the same object, while San Biagio
et al. [38] proposed a new descriptor able to treat com-
plex structural information in a compact way. To overcome
occlusion issues, Wu and Nevatia [43] used a number of
weak part detectors based on edgelet features and Eichner
et al. [13] fused DMP [14] and Viola-Jones [33] detectors
to identify upper bodies. Finally, Rodriguez et al. [36] pro-
posed to optimize a joint energy function combining crowd
density estimation and the localization of individual people.

In this work we provide 5 different baselines for people
detection, from the simplest algorithms to the state of the
art method for object detection, showing how in this sce-
nario the simplest method get very high scores due to the
problems listed above.

The first method we consider is a simple detector based
on HOG [9] features (cell size of 8×8 pixels) and a linear
SVM classifier (HOG+SVM). Similarly, the second method
only differs in the descriptor we use, which in this case
is the Heterogeneous Auto-Similarities of Characteristics
(HASC) descriptor [38]. We use the same sliding window
as in the previous case to generate the map and the detec-
tions. We will refer to this method as HASC+SVM.

We also test 3 state-of-the-art methods for people de-
tection: (1) the Aggregate Channel Features (ACF) detec-
tor [11] uses the Viola-Jones framework to compute integral
images (and Haar wavelets) over the color channels, fusing
then together; (2) the Deformable Part Model (DPM) [14]
combines part’s templates arranged in a deformable config-
uration fed into a latent SVM classifier; and (3) the Calvin
Upper Body Detector (CUBD) [13], a combination of the
DPM framework trained on near-frontal upper-bodies – i.e.
head and upper half of the torso of the person – and the
Viola-Jones face detector.

On top of all these methods, we propose an extension
based on the strong prior we have in our kind of crowd, i.e.
the people are “constrained” by the environment to arrange
in a grid – the seats on the bleachers. Assuming a regular
grid (considering the camera perpendicular at the plane of
the bleachers and ignoring distortion effects) and consider-
ing the fact that since people are more likely to locate on
the same rows and columns, we can just add to the detec-
tion confidence map the average of the map over the rows
and the columns. Consider D(x, y) the output of the de-
tector for the patch (x, y), the modified output for a target
location (x̂, ŷ) is:

D̃(x̂, ŷ) = D(x̂, ŷ) +
∑
i

D(xi, ŷ) +
∑
j

D(x̂, yj)

In the case there is a distortion due to the camera point of
view, this could be easily recovered by using Hough trans-
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Figure 2. Qualitative results for people detection algorithms. Detection confidence map for each method with and without imposing the
grid-arrangement prior. (best viewed in color)

form for detecting the “principal directions” and summing
over these new lines.

As experimental protocol, we use two videos from a sin-
gle game for training and two from different games for val-
idation, leaving the 11 sequences from the final for testing.
A set of 1,000 individuals randomly selected from the train-
ing videos are used as positive samples, while a background
image is used to generate the negative samples for training.
Then, 20 random frames from the validation videos are used
to tune the best parameters for minimum detection score
threshold and the non-maxima suppression parameters. A
subsampling of 1 frame every 10 for each video is used
for testing, resulting in 1,000 images and 150,000 individ-
uals. While ACF, DPM and CUBD have their own search-
ing algorithms to generate candidate bounding boxes, for
HOG+SVM and HASC+SVM we consider a sliding win-
dow of 72×112px with a step of 8px, generating a detec-
tion confidence map of 160×118 patches. A threshold on
the minimum detection score and a non-maxima suppres-
sion stage have been applied to generate the predicted de-
tections.

We consider an individual as correctly identified if the
[Davide: intersection area between the predicted and anno-
tated bounding boxes is more than 50% of the union of the
two rectangles by the formula

Bp ∩Bgt >
(Bp ∪Bgt)

2
(1)

] where Bp ∩ Bgt denotes the intersection of the predicted
and ground truth bounding boxes and Bp ∪Bgt their union.
As performance measures we use precision, recall and F1

scores.
A qualitative evaluation of the baselines and the grid ar-

rangment prior contribution is in Fig. 2, while quantitative
results are in Table 2. We can notice how the best per-
forming method is the HOG+SVM, while part based frame-
works (i.e. DPM and CUBD) perform poorly in their stan-
dard version; this is probably due to the low resolution of
the person bounding boxes which makes it very difficult to
detect single parts like arms and legs. By introducing our

proposed prior, we can see how all the methods increase
their performances, and in particular CUBD increases of
about 10%, becoming one of the best detectors for this kind
of scenario. As a result of the introduction of our grid-
arrangement prior, an average improvement of about 5% in
F1 score is achieved.

3.2. Head Pose Estimation

Once the body has been detected, and the head has been
localized, a consequent operation to be carried out is the
head pose estimation. It represents another low-level oper-
ation, essential for many medium and high level tasks, for
example capturing the focus of attention of the spectators,
correlating it with the action in the ice rink.

The literature on head pose estimation is large and het-
erogeneous as for the scenarios taken into account; most of
the approaches assume that the face is prominent in the im-
age, as in a multimodal interaction scenario, and rely on the
detection of landmark points [47, 22, 8]. Here these solu-
tions are inapplicable since the faces are too small (50x40
pixels on average). In a low resolution domain the work
proposed by Orozco et al. [32] seems to fit better, relying
on the computation of the mean image for each orientation
class. Distances w.r.t. the mean images are used as de-
scriptors and fed into SVMs. In [42], the authors exploit an
array of covariance matrices in a boosting framework. The
image of the head is divided into different patches, that are
weighted depending on their description capability. On S-
HOCK these methods are performing roughly the same in
terms of classification accuracy, with a huge time consump-
tion (see Tab. 3).

In order to overcome this issue, we propose two novel
approaches based on Deep Learning, with comparable re-
sults but much faster. The choice of Deep Learning is moti-
vated by the large number of effective approaches in the ob-
ject recognition literature, witnessing its versatility in many
scenarios [28, 21, 26, 41, 40].

In particular, we evaluate the performance of the Con-
volutional Neural Network (CNN) and the Stacked Auto-
encoder Neural Network (SAE) architecture. In both meth-



(a) (b) (c) (d) (e)

Figure 3. Examples of the five head poses considered for the ex-
periments in Sec. 3.2; in order (a) to (e): far left, left, frontal, right,
far right.

AVG Accuracy Training time Testing time
Method [sec] [sec]

Orozco et al. [32] 0.368 105303 6263
WArCo [42] 0.376 186888 87557

CNN 0.346 16106 68
SAE 0.348 9384 3

CNN + EACH 0.354 16106 68
SAE + EACH 0.363 9384 3

Table 3. Classification accuracy for state-of-the-art methods aver-
aged on the five classes and the computation time. The time used
to refine the prediction through EACH is negligible comparing to
the one used to train and test the neural network.

ods we feed the Neural Network with the original image,
resized to a standard size of 50x50 pixels, so as to have uni-
form descriptors. The CNN is composed by 5 layers: an
input layer followed by 2 sets of convolution-pooling layers
(see Fig. 4 (a)). Both kernels in the convolutional layers
are 5 × 5 pixels, the scaling factor of the pooling layer is
2 and the training has been performed over 50 iterations.
The SAE architecture is depicted in Fig. 4 (b), the input im-
ages are fed into an auto-encoder with hidden layers of size
h = 200, trained separately. A second training phase is per-
formed on the neural network initialized with the weights
learned in the previous stage. Both training procedures are
refined in 100 epochs.

As for the experimental protocol is the same as in the
previous case, except for the fact that there is no valida-
tion set; all the training sequences are employed to extract
a total of 107299 heads while the testing set is composed
by 34949 heads from the testing sequences. In this experi-
ment, we take as input the head locations coming from the
ground truth, in order to derive a sort of upper bound on
the estimation perfomances. In this respect, faces are anno-
tated as frontal, left, right, far left and far right. In a more
quantitative fashion, frontal faces are considered roughly in
the range between −10◦ and 10◦, left and right spans from
−10◦ to −80◦ and 10◦ to 80◦ respectively. The heads ex-
ceeding those angles in both directions are considered as far
left and far right. This has been detailed to the annotators
during the data labeling (see Fig. 3).

In Tab. 3 shows the results of the current state of art
methods compared with the two proposed approaches. The
overall accuracy spans within a range of 3% for Orozco et

al. [32], WArCo [42], CNN and SAE but in neural networks
approaches the computation workload is much less. This
speed up in classification time for both training and testing
phases makes our method more suitable for real life appli-
cations where a quick response and an imminent decision
is required. As a further remark, we trained WArCo by ran-
domly sampling 5000 samples among all those available for
training, this has been necessary for the huge computation
time required to learn the model in case of using the whole
set of data.

In case of large sport events the spectator crowd atten-
tion tends to be attracted by the location of the action. This
observation can be exploited to benefit the final classifica-
tion. For this reason we propose an additional experiment
named EACH (Event Attention CatcH). In order to accom-
plish this task we consider the ice rink as our universe of
locations where the puck can be. We are not interested in
the pitch information of the head so we reduce the rink to
a monodimensional space. We model the position of the
puck such as a Gaussian distribution over all the possible
locations and we consider it as a prior probability in order
to refine the final head pose estimation. This probability
P

(c)
A is formalized in Eq. (2)

P
(c)
A =

U(c)∑
i=L(c)

1

σ
√

2π
e−

(xi−m
(c))

2σ (2)

where L(c) and U (c) are the lower and the upper boundaries
of the rink for the specific class c respectively, m(c) is the
position of the puck.

c = arg max
c

(αP
(c)
A + (1− α)P

(c)
N ) (3)

The final decision is taken according with the Eq. (3),
where α is a weighting parameter, P (c)

N is the probability
of the head pose being assigned to class c computed by the
Neural Network.

We observe that this model is much more beneficial
when players are playing with respect to when the game
is paused by a foul. This particular aspect suggests us to
tune the α parameter according to the game phase. The re-
sults reported in Tab. 3 are computed using σ = 15 and
α = 0.3. The ice rink information increases the accuracy
by approximately 2% on both CNN and SAE frameworks.

3.3. Spectators Categorization

In our dataset the spectators categorization task consists
in finding different groups of people among the spectators.
The result of this segmentation is strictly related to the be-
havior of the people and thus we are able to cluster peo-
ple supporting different teams by considering their reaction
during specific game actions, e.g. goals, saves, etc.
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Figure 4. (a)Architecture of CNN. (b) SAE architecture: in cyan are pictured the interconnections between the auto-encoder that must be
trained separately, in red instead there are the interconnections of the final NN.

Method Accuracy
AS2007 [2] 0.592
MMS2010 [31] 0.559
Our 0.621

Table 4. Spectators categorization accuracy obtained from the nor-
malized confusion matrix.

Spectators categorization can be considered a subtask of
the crowd behavioral analysis, which is generally associ-
ated with human activity analysis [19, 34, 1]. As stated by
Jaques et al. [20], in computer vision there are two main
approaches for crowd behavior analysis: the object-based
where the crowd is considered as a collection of individu-
als, and the holistic approach which treats the crowd as a
single entity. This second approach is the one that best suits
the spectator crowd analysis because it directly tackles the
problem of dense occluded crowds. The holistic approaches
usually start from optical flow to extract global information
from the crowd. In [2], the authors use Lagrangian parti-
cle dynamics to segment the flow; here the notion of a flow
segment is equivalent to a group of people that perform a
coherent motion.

More recently, Mehran et al. [31] propose a streakline
representation of flow to address various computer vision
problems, including crowd flow. They use a simple water-
shed segmentation of streaklines to cluster regions of coher-
ent motion.

Both these works and several datasets proposed in the
literature focus on pedestrian crowds [37, 2], instead with
S-HOCK we propose a crowd with different dynamics and
behavior, where the people are assumed to stay near a fixed
location for most of the time and their movements are lim-
ited to their position. For this reason, the works listed above
require some adjustments in order to be applied to the spec-
tators categorization task.

In this paper we also present a new method for specta-

tors categorization, whose framework can be extended to
previous methods. As most of the holistic approaches, our
method also starts from dense optical flow computation.
Then we decompose the flow map into a set of overlapping
patches and we describe each patch with five features: x
and y coordinates of the patch’s centroid, the average flow
intensity I (over all the pixels belonging to the patch), the
entropy of flow intensity EI and directions ED (both direc-
tions and intensities are quantized to compute the entropy).

These feature vectors are then passed to a Gaussian clus-
tering with automatic model selection [15], obtaining an in-
stantaneous spatial clustering of the patches for each frame.
Following, we perform a temporal segmentation based on
the similarity between patches: we will call it Patch Simi-
larity History (PSH).
Let consider the matrixHf

τ where each entryHf
τ (i, j) mea-

sures the similarity between patches pi and pj considering
the evolution of patches’ labels until frame f of the video.
Hf
τ (i, j) can be computed as:

Hf
τ (i, j) =

{
Hf−1
τ (i, j) + τ, if Ψf (i, j) = 1

max(0, Hf−1
τ (i, j)− δ), otherwise

where τ decides the temporal extent of the similarity in term
of frames duration, δ is the decay parameter and Ψf (i, j) is
an update function defined as:

Ψf (i, j) =

{
1, if Labfi = Labfj
0 otherwise

Labfi and Labfj indicating the labels associated to patches
pi and pj at the same frame f , during the previous spatial
clustering. In such way PSH represents a similarity matrix
since it describes how much two patches are similar over
time, depending on the spatial cluster to which they belong.
By computing the reciprocal of PSH we can obtain a dis-
tance matrix and use it to perform a complete linkage hier-
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Figure 5. Qualitative results for spectators categorization. The colored areas represent the two groups of spectators supporting different
team.

archical clustering. The result is a dendrogram where clus-
ters are defined by cutting branches off the tree. Depending
on the height of the cut we can obtain diverse spectators cat-
egorization where the clustered patches could represent the
whole crowd or a subset of it.

In order to set up the same test protocol for all the meth-
ods we divide the scene into overlapping patches. We cre-
ated a grid ofNp=585 patches with size 64×128px and half
a patch size of overlap. Each patch is associated with a
ground truth label of the person’s bounding box with the
highest overlapping area (if any). The main difference be-
tween our method and those in the literature, lies in the fact
that the outputs of these methods are based on a frame-by-
frame pixels-wise segmentation. So in order to adapt them
to our test protocol, we assign to each patch a predicted la-
bel corresponding to the most voted within the patch area.

Each method was tested using the standard setting given
by the authors. The parameters of the PSH τ and δ have
been set respectively to 30 and 1. For the methods that
use optical flow it was computed every 10 frames. Table 4
shows the accuracies resulting from the spectators catego-
rization tasks. Instead Figure 5 shows the qualitative evalu-
ation. The results show that the proposed method is able to
categorize the spectator better than the other methods with
an accuracy of 62.1%. Since the temporal segmentation
was the same for all methods, the best result obtained by
our method is probably due to the features extracted from
each patch. In fact we are able to describe the behavior
of the people from the patches, considering how much they
move (with the intensity I) and describing the kind of move-
ment (with the flow entropyED andEI ). Further results re-
garding the confusion matrices of the experiments and other
qualitative results could be found in supplementary materi-
als.

4. Conclusions
This paper has introduced S-HOCK, a novel dataset fo-

cusing on a brand-new issue, the modeling of the spectator
crowd. Our main goal is to promote the potentialities of our
benchmark, whose features have been barely exploited in
the applications we have taken into account here: actually,

we have focused on some low-level, traditional tasks (peo-
ple detection and head pose estimation) and a novel, high-
level challenge, the spectator categorization. This choice
has been motivated from the fact that on one side we wanted
to show the impact that a similar scenario has on the realm
of already existent classification algorithms; on the other
side, we wanted to disclose one of the many new challenges
that a spectator crowd scenario does offer, as the specta-
tor categorization. At the same time, we have shown that
many are the ways with which the performances of mod-
ern algorithms can be improved, and that novel challenges
request novel solutions, making the spectator crowd an ex-
citing problem to be faced. Many other are the open issues:
at a medium level of detail, capturing actions as hugging,
clapping hands etc. would be difficult due to the dimension
and the dense distribution of the spectators; at a high level
of details, understanding groups of people that know them-
selves will be certainly hard for the classical approaches of
group estimation; in facts, they are usually based on prox-
emics principles, here not usable due to the fixed positions
of the people. [Davide: Further high level analysis could be
on excitement detection (detecting the peak of excitement
of the crowd ), crowd/people action forecasting, which is
also intriguing since in this case we may consider the be-
havior of a person as being influenced by the neighbors and
by the game, etc. Such applications make S-HOCK richer
compared to all other crowd datasets, where usually only
the position of the people is annotated (or in some cases
estimated, as in [46]), without ground truth obtained also
from the people in the crowd itself, and where only tasks of
counting, tracking and event detection can be assessed, as
in [45]. ] Therefore, we are confident that S-HOCK may
trigger the design of novel and effective approaches for the
analysis of the human behavior.

[Davide:
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