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Abstract
Many problems over discrete event systems can be re-
duced to solving a synchronous FSM inequality A •X ⊆
S or a synchronous FSM equation A • X = S, where
X is a free variable and • is the synchronous composi-
tion operator. In this paper we address the problem of
solving a multi-component FSM equation, We study the
most general solution of a synchronous FSM equation de-
fined over several FSMs. In particular, we show that a
solvable equation has always a largest solution, then we
consider the largest alphabet of actions over which a solu-
tion exists, from which it is possible to extract the largest
solution over a restricted set of alphabets.

1 Introduction
Many problems over discrete event systems can be re-
duced to solving a synchronous FSM inequality A •X ⊆
S or a synchronous FSM equation A • X = S, where
X is a free variable and • is the synchronous compo-
sition operator [18]. The applications range from logic
synthesis [13, 3, 11], supervisory control and model
matching [4, 1, 10] to formal verification [2, 14], test-
ing [20, 19, 9, 8] and protocol conformance [17], discrete
games [6, 5]. An inequality as well as a solvable equation
is known to have a largest solution [15, 16, 12, 7, 18]. To
find optimal solutions with respect to some criteria, one
approach is first to find the most general solution contain-
ing any particular solution, then to extract a desired so-
lution from the largest solution. Most papers on the sub-

ject consider only binary synchronous FSM inequalities
and/or equations. However, when solving an equation for
designing an optimal component, e.g., in logic synthesis,
multi-component FSM equations may occur. In princi-
ple, since the synchronous composition operator is asso-
ciative, we could solve a multi-component FSM equation
by converting it into a binary FSM equation, by compos-
ing successively all the known components FSMs into a
single joint context FSM. However, it seems worth to in-
vestigate how to solve such an equation directly, without
lumping together the network of given FSMs into a single
one.

In this paper, we propose a formula of the composition
operator of several FSMs and introduce a multi compo-
nent FSM equation. We then propose two ways how a
largest solution over the given alphabet can be derived.
One of these ways proposes to consider the largest al-
phabet of a possible solution. The complexity of solving
an equation over the largest alphabet is polynomial when
the specification FSM is deterministic. If an equation is
unsolvable over the largest alphabet then it is unsolvable
over any alphabet over which the unknown is computed.
If the equation is solvable over the largest alphabet then
we propose an algorithm for deriving a special reduction
of this solution.

The paper is structured as follows. Sec 2 contains pre-
liminaries; the notion of the synchronous operator over
several FSMs and multi-component FSM equation are in-
troduced there. In Sec. 3 we propose a new procedure for
finding the largest solution over the largest alphabet of a
multi component FSM equation. Sec. 4 summarizes the
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paper and sketches some results under investigation im-
plied by the new procedure.

2 Preliminaries

2.1 Multi-component FSM composition
In this paper, an FSM is a 5-tuple M = (S, I,O, T, s0)
where S is a finite non-empty set of states with the initial
state s0, I = I1 × · · · × Ik and O = O1 × · · · × Op

where I1, . . . Ik and O1, . . . , Op are respectively input and
output alphabets associated to the input and output ports,
T = I×S×S×O is the behaviour relation. An FSM M
is observable if for each triple (i, s, o) ∈ I × S ×O there
exists at most one next state s′ ∈ S such that (i, s, s′, o) ∈
T .

Consider now a collection N of n interacting FSMs
M1, . . . Mn each of which has input and output ports
with associated input and output alphabets (see [21]). Let
Γ = {X1, . . . , Xm} be the collection of all the alphabets
of the component FSMs, where we assume that the same
alphabet corresponds to two ports if and only if these ports
are connected or it is a common input alphabet for them;
let θ ⊆ Γ be the subset of alphabets corresponding to ex-
ternal input and output ports of the overall system. There-
fore the sets θ and Γ and the set of component FSMs com-
pletely specify the structure of the network N . In order to
establish a normal form of an FSM network we assume
the following restrictions:

1. One and the same alphabet cannot be an output al-
phabet of different component FSMs.

2. One and the same alphabet cannot be an input and an
output alphabet of the same component FSM.

3. If an alphabet Xj is only an input alphabet of some
component FSM then Xj ∈ θ and Xj is an input
alphabet of the system.

4. If an alphabet Xj is only an output alphabet of some
component FSM then Xj ∈ θ and Xj is an output
alphabet of the system.

The behaviour of the whole network is described by an
FSM that is derived in the following way. Each compo-
nent FSM Mi is converted into a corresponding automa-
ton A(Mi) = Ai. Each automaton Ai is lifted to all
the alphabets of Γ(i.e., it is lifted to each alphabet that
is not already in the set of input and output alphabets of
Mi). The intersection of languages Ai↑Γhas all possible
sequences which can occur in the system. In order to de-
fine the external behaviour of the system the intersection

is projected on the alphabets of the set θ. A reduced ob-
servable FSM that corresponds to the obtained automaton
is a synchronous composition •Γ,θ(M1, . . . ,Mn).

In this paper, we further assume that all component
FSMs are complete and deterministic and that their com-
position too is complete and deterministic. Instead the
specification is not required to be complete and determin-
istic.

2.2 Solving an FSM equation for a network
of FSMs

Suppose that a network N of FSMs is composed by
known components (the context) M1, . . . , Mn−1 and that
the required behaviour of the whole system is described
by an FSM MS . Given some alphabets from Γ, the set of
alphabets of the network, we would like to derive an FSM
Mn over these alphabets such that •Γ,θ(M1, . . . , Mn) =
MS , i.e., the language of the composition of Mn with
the rest of the components is equal to the language of
the specification. The existence of a solution and its fea-
tures depend on the alphabets over which the unknown
MX is defined. In order to get the normal form of a sys-
tem of interacting FSMs, the following restrictions must
be satisfied by the input and output alphabets of the un-
known Mn, i.e., by In

1 , . . . , In
k and On

1 , . . . On
m respec-

tively, where {In
1 , . . . , In

k , On
1 , . . . , On

m} ⊆ Γ:

1. The set of all input alphabets of the unknown MX in-
cludes a) each input alphabet of the FSM MS that is
not an input alphabet of another known component
FSM, and b) each output alphabet of each known
component FSM that is not an output alphabet of
the FSM MS or an input alphabet of another known
component FSM.

2. The set of all output alphabets of the unknown MX

contains a) each output alphabet of the FSM MS that
is not an output alphabet of another known compo-
nent FSM, and b) each input alphabet of each known
component FSM that is not an input alphabet of the
FSM MS or an output alphabet of another known
component FSM.

The set of input alphabets of the unknown MX can be
further extended with input alphabets of other component
FSMs, whereas the set of output alphabets of the unknown
MX is precisely the one described in 2., because the sets
of output alphabets of two component FSMs must not in-
tersect. Any subset ρ ⊆ Γ that satisfies the two previous
conditions can be selected as a set of alphabets of the un-
known MX .
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As a straightforward corollary to the theorem in [17]
stating that the largest solution of the language/FSM in-
equality MA •MX ⊆ MS is given by MX = MA •MS

we have the following statement.

Theorem 2.1 The largest solution MLS of the FSM in-
equality •Γ,θ(M1, . . . ,Mn−1,MX) ⊆ MS , when MX is
defined over the set of alphabets ρ, is the reduced observ-
able FSM whose language is the largest prefix closed sub-
set of the language of the FSM •Γ,ρ(M1, . . . ,Mn−1,MS).

The largest complete solution MLCS is the largest com-
plete submachine of the largest FSM solution (if it exists).

Proof. The notation L(Mi) denotes the language of the
automaton associated to the FSM Mi.

A sequence α is not in a solution of the inequality
•Γ,θ(L(M1), . . . , L(Mn−1), L(MX)) ⊆ L(MS) if and
only if •Γ,θ(L(M1), . . . , L(Mn−1), {α}) 6⊂ L(MS). The
following statements are equivalent:
•Γ,θ(L(M1), . . . , L(Mn−1), {α}) ⊆ L(MS) ⇔
[L(M1)↑Γ∩· · ·∩L(Mn−1)↑Γ∩{α}↑Γ]↓θ∩L(MS) = ∅ ⇔
L(M1)↑Γ∩· · ·∩L(Mn−1)↑Γ∩{α}↑Γ∩L(MS)↑Γ = ∅ ⇔
α 6∈ [L(M1)↑Γ ∩ · · · ∩ L(Mn−1)↑Γ ∩ L(MS)↑Γ]↓ρ ⇔
α 6∈ •Γ,ρ(L(M1), . . . , L(Mn−1), L(MS)) ⇔
α ∈ •Γ,ρ(L(M1), . . . , L(Mn−1), L(MS)) 2

Theorem 2.2 Let MLS be the largest solution of the
FSM inequality •Γ,θ(M1, . . . ,Mn−1,MX) ⊆ MS and
let MLCS be the largest complete solution of the same
inequality.

If •Γ,θ(M1, . . . ,Mn−1,MLS) = MS then
MLS is the largest solution of the FSM equation
•Γ,θ(M1, . . . ,Mn−1,MX) = MS .

If •Γ,θ(M1, . . . ,Mn−1,MLCS) = MS then MLCS

is the largest complete solution of the FSM equation
•Γ,θ(M1, . . . ,Mn−1,MX) = MS .

If •Γ,θ(M1, . . . ,Mn−1,MLS) 6= MS , then the FSM
equation has no solution and therefore no complete solu-
tion.

It may happen that the largest solution of an FSM equation
is not a complete solution.

3 The largest solution over the
largest alphabet

In the previous section we assumed that the alphabets of
the unknown FSM are given. However, when there is no
solution over the given set of alphabets a solution may

exist over a larger set of input alphabets, i.e., for another
network topology. In this section, we show that there ex-
ists the largest set of input alphabets such that an equation
is solvable if and only if it is solvable over the Cartesian
product of these alphabets. The idea behind deriving such
a set is as follows. The set of input alphabets is selected
as large as possible while preserving the normal form of
the network. Therefore, all the alphabets of the set Γ
which are not output alphabets of the unknown compo-
nent are input alphabets of the unknown component, in
order to comply with 2. In other words, each alphabet of
the set Γ is an input or an output alphabet of the unknown.
We then derive a largest solution MLS,Γ to the inequal-
ity •Γ,θ(M1, . . . , Mn−1,MX) ⊆ MS over the set Γ of
alphabets.

The procedure of deriving the FSM MLS,Γ includes the
following steps.

Step 1 Derive the automaton A = A(M1)↑Γ ∩ · · · ∩
A(Mn−1)↑Γ ∩A(MS)↑Γ.

Step 2 Derive an FSM M as follows.

1. FSM M has a transition
(s, x1 . . . xk, y1 . . . yt, s

′), where x1 . . . xk

is an item of the Cartesian product of the input
alphabets (of the unknown component FSM)
and y1 . . . yt is an item of the Cartesian product
of the output alphabets (of the unknown
component FSM), if the automaton A has a
transition (s, x1 . . . xk, y1 . . . yt, s

′).

2. FSM M has a transition
(s, x1 . . . xk, y1 . . . yt, DNC) if there is a
component FSM Mi, i = 1, . . . , n − 1, which
has no transition from the state corresponding
to s under the projection of x1 . . . xk and
y1 . . . yt onto the alphabets of this component
FSM.

3. FSM M has a transition
DNC, x1 . . . xk, y1 . . . yt, DNC) for all pairs
x1 . . . xk, y1 . . . yt.

Step 3 Derive the FSM MLS,Γ as the reduced and ob-
servable representation of the largest complete sub-
machine of FSM M .

The complexity of deriving MLS,Γ is polynomial as the
determinization operator is not used.

Theorem 3.1 If •Γ,θ(M1, . . . ,Mn−1,MLS,Γ) = MS ,
then the equation is solvable at least over the set Γ of
alphabets. Otherwise, the equation has no solution over
any alphabet.
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Theorem 3.2 Assume that
•Γ,θ(M1, . . . ,Mn−1,MLS,Γ) = MS . Given a set
ρ ⊆ Γ of input and output alphabets and an FSM MB

over the set ρ of alphabets that is a solution of the
equation, then the FSM obtained from the automaton
A(MB)↑Γis a reduction of the FSM MLS,Γ.

Thus, according to Th. 3.2, given the solution MLS,Γ

and a set of alphabets ρ ⊆ Γ over which to compute the
unknown component FSM, a largest solution MLS,ρ over
ρ (if it exists) can be extracted from MLS,Γ using the fol-
lowing steps.

Step 1 Derive the largest solution MLS,Γ over the set Γ
of alphabets.

Step 2 Derive an FSM Mρ from MLS,Γ as follows.

1. For each state and each absent input/output pair
(over the set Γ) add a transition to the desig-
nated Fail state.

2. Add to the Fail state a transition to itself for
each input/output pair.

3. For each transition, erase each label that corre-
sponds to an alphabet that is not in ρ.

Step 3 Derive the automaton A(Mρ) and determinize it.
Then delete from the obtained deterministic automa-
ton each subset of states that contains the Fail state
and convert the resulting automaton into an FSM
M

′

ρ.

Step 4 MLCS,ρ, i.e., the largest complete solution of the
equation over the set of alphabets ρ ⊆ Γ, is the
largest complete submachine of M

′

ρ (if it exists).

Example 3.1 Fig. 1 shows the steps of the algorithm: (a)
shows the topology of the problem with the FSM MA and
MC that compose the context; (b) shows the FSM conpo-
nent MA; (c) shows the FSM conponent MC; (d) shows
the FSM specification MS; (e) shows the automaton of the
product •Γ(A,C, S); (f) shows MLS,Γ the largest FSM
solution over the largest alphabet Γ; (g) shows the topol-
ogy of the problem with the solution MLS,Γ depending
over the largest alphabet Γ; (h) shows the projection of
the solution MLS,Γ over the alphabet ρ over which the
original unknown is defined; (i) shows the determination
of the projection of MLS,Γ to the alphabet ρ; (l) shows the
final solution MLS,ρ.

4 Conclusions and Work in
Progress

The new procedure to compute the largest solution of a
synchronous FSM equation is leading also to some new
interesting equisolvability results that we will report when
the investigation will be completed. In particular, if all
component FSMs are complete and deterministic and the
specification is also described by a complete and deter-
ministic FSM, we can restrict the largest set of input al-
phabets of the unknown over which the solvability of the
equation should be checked. The reason is that in this case
we can delete from the set of input alphabets of the un-
known each output alphabet of another component FSM
that corresponds to some external output. Given such an
alphabet Xi, consider a transition in MLS from state s
under input/output pair x1 . . . xk/y1 . . . yt and let an out-
put depend on x1 . . . xi−1. As the specification FSM and
all other component FSMs are deterministic, there ex-
ists exactly one value xi such that the transition under
x1 . . . xk/y1 . . . yt does not lead to the DNC state. Cor-
respondingly if we delete a component from all tuples we
will still get a complete FSM as a solution to the equation.
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