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Abstract— In multiagent systems, there is a problem of 

constructing an agent that can work in different contexts 

satisfying different specifications. One of ways is to solve a system 

of corresponding automata equations. Since in general, the 

complexity of solving such equations is exponential w.r.t. to the 

number of states of the context and specification, the question 

arises whether a system of equations can be reduced to a single 

equation. In this paper, we consider two special cases when a 

system of equations under the parallel composition over Finite 

State Machines can be reduced to a single equation. For each 

case, it is shown how a corresponding single equation can be 

derived. 
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I.  INTRODUCTION 

When constructing a multiagent system there is a problem 
of designing an agent that can work in different contexts 
facing different specifications [1]. The problem about the 
permissible changes in the component (agent) behavior arises 
in many other applications, such as optimization of digital 
circuits, cryptography, logic synthesis, logic games, stabilizers 
for the synthesis of asynchronous systems, etc. The problem is 
known as the equation solving problem [2], submodule 
construction [3] or the unknown component problem [4]. If 
the behavior of all systems is described by sets of sequences of 
actions then the problem can be solved using systems of 
appropriate equations. In [1, 4], an approach is proposed for 
solving a system of equations over Finite State Machines 
(FSMs), i.e., over finite automata where actions are divided 
into inputs and outputs and each input is followed by an 
output. The proposed approach [1, 4] is to solve equations 
separately and then derive the product of the largest solutions. 
However, the complexity of solving a single equation over 
FSMs is known to have the exponential complexity with 
respect to the size of the context and specification and for this 
reason, it would be nice to check whether the problem of 
solving a system of FSM equations can be reduced to solving 
a single equation.  

Usually the interaction between the components is 
described by using the operator of parallel or synchronous 
composition, and thus we have a system of parallel or 
synchronous equations [2]. In the case of the synchronous 
composition that is used in hardware, all components are 

active at each time instance; the composition produces an 
external output and a matched pair of internal signals. The 
parallel composition is based on the dialogue between 
components, only one component is active at each time 
instance and an external output is produced only after 
finishing the internal dialogue between components. Such 
compositions are widely used in telecommunication systems. 
For multiagent systems, the parallel composition also seems to 
be more appropriate.  

In this paper, we consider a system of finite number of 
equations under the parallel composition over FSMs. We show 
that there exist two special cases when we can reduce the 
system of FSM equations to a single FSM equation. Namely, 
it happens when all contexts or all specifications coincide.  

The rest of the paper is structured as follows. In Section 2, 
we define basic notions and definitions for solving parallel 
FSM equations. Section 3 contains the problem statement and 
a proposed approach for reducing a system of equations to a 
single equation. The section also contains a short discussion 
about a general case. Section 4 concludes the paper. 

II. PRELIMINARIES 

A. Finite State Machine 

Finite State Machine (FSM) [5] is a quintuple 
A = (A, I, O, TA, a0), where A is a finite nonempty set of states 
with the initial state a0, I and O are input and output alphabets, 

and TA ⊆ I × A × A × O is a transition relation. An FSM A is 

observable, if for each triple (a, i, o) ∈ A × I × O there exists 

at most one state a'∈ A such that (a, i, o, a') ∈ TA. An FSM A 

is complete, if ∀a ∈ A and ∀i ∈ I there exist o ∈ O and a'∈ A, 

such that (a, i, o, a') ∈ TA. If A is not complete, then it is called 

partial. An FSM A is deterministic, if ∀a ∈ A and ∀i ∈ I there 
exist at most one pair of output o and state a', such that 

(a, i, o, a') ∈ TA; an FSM A is nondeterministic, if there exist 

a ∈ A and i ∈ I such that there are two different transitions 

(a, i, o, a'), (a, i, o', a'') ∈ TA. When solving FSM equations the 
notion of a nondeterministic FSM allows to describe a general 
solution to a solvable equation. An FSM B = (B, I, O, TB, b0) is 

a sub-machine of A if B ⊆ A and TB ⊆ TA. The largest 
complete submachine of FSM A can be obtained by iterative 
deleting states where the behavior of the FSM is not defined at 
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least for a single input. If the initial state is deleted then FSM 
A has no complete machine. Otherwise, the remained 
complete FSM is the largest submachine of A. Each complete 
submachine of A is a submachine of the largest complete 
submachine of A (if it exists). As usual, the transition relation 
TA of FSM A can be extended to sequences over the alphabets 
I and O. A trace of the FSM is a sequence of pairs (i, o) which 
correspond to consecutive transitions. A trace defines an 
output response of the FSM to its input projection and thus, an 
FSM can be considered as a sequential function that maps the 
infinite set of input sequences to the sets of output sequences. 
If each state of an FSM is reachable from the initial state via 
some trace, then an FSM is called initially connected or 
simply connected. FSMs are widely used in order to describe 
the behavior of reactive systems which get some messages 
(inputs) and produce a corresponding response (output) [2]. 
States of the FSM correspond to the memory about previously 
applied inputs and produced outputs. For example, in Fig. 2 an 
FSM with the initial state a is presented. After applying an 
input i1 at the initial state a the FSM produces output u2 and 
moves to the next state b; thus, when the next input i1 is 
applied the FSM produces output o2 and remains at state b. 

Given an FSM A, the set of all traces at state a of A is 
called the language of A at state a, written LA(a). The 
language of the FSM A at the initial state is called the 
language of the FSM A and is denoted by LA, for short. The 

FSM ({t0}, I, O, T, t0) where T = {t0} × I × O × {t0}, written 
MAX(I, O), is called the maximum FSM over the input alphabet 
I and the output alphabet O. The machine MAX(I, O) has the 
language (IO)*. An FSM B is a reduction of FSM A, written A 

≤ B, if LB ⊆ LA. If LB = LA then FSMs A and B are equivalent. 
For complete deterministic FSMs the reduction and the 
equivalence relations coincide. 

The common behavior of two FSMs can be described by 
the intersection of these machines. The intersection (or a 

product) A ∩ B of FSMs A and B is the largest connected 

submachine of the FSM (A × B, I, O, TA∩B, a0b0). Formally, 

TA∩B = {(ab, i, o, a'b') | (a, i, o, a') ∈ TA ^ (b, i, o, b') ∈ TB}. 

The language of A ∩ B is the intersection LA ∩ LB. The 
intersection of two observable FSMs is an observable FSM; 
however, the intersection of complete FSMs can be partial. 

B. Finite Automaton 

When combining FSMs, all the operators are defined over 
finite automata. Finite automata are very close to FSMs: there 
is the non-empty finite set of states with the designated initial 
state and the designated subset of final states which 
correspond to finishing some job and the non-empty finite set 
of actions that are not divided into inputs and outputs. Given 
an FSM A, the corresponding finite automaton Aut(A) is 
derived by unfolding FSM transitions. Final states are states 
that have an incoming transition labeled with an output and 
the initial state. In Fig. 3, an automaton for the FSM in Fig. 2 
is shown. 

Given a sequence α ∈ V* and an alphabet W, a W-
restriction of α, written α↓W, is obtained by deleting from α all 
symbols that belong to the set V \ W. Given a sequence α ∈ V* 

and an alphabet W, a W-expansion of α, written α↑W, is a set 
that contains each sequence over alphabet (V ∪ W) with the 
V–restriction α. All the operators are extended to operators 
over finite automata. Let P be an automaton over alphabet V 
with the language L. Restriction (↓): Given a non-empty 
subset U of V, the automaton P↓U that accepts the language L↓U 

over U is obtained by replacing each transition (s, a, s'), 

a ∈ V\U, in P by the transition (s, ε, s'). Expansion (↑): Given 

alphabet U, the automaton P↑U with the language L↑U over 

U ∪ V is obtained by adding a transition (s, a, s) for each a ∈ 
U\V and each state s of P. 

C. Parallel Composition of FSMs 

Let C = (C, I ∪ V, O ∪ U, TC, c0) and X = (X, U, V, TX, x0) 
be two complete communicating FSMs where alphabets I, V, 
O, U are pair-wise disjoint. The alphabet I represents the set of 
external inputs of the composition, while the alphabet O 
represents the set of external outputs of the composition. The 
embedded component X corresponds to an agent to be 
designed. 

 

Fig. 1. The parallel composition of FSMs C and X 

The two FSMs communicate under a single message in 
transit, i.e., the next external input is submitted to the system 
only after producing an external output to the previous input 
(so-called "slow" environment). Under these conditions, the 
collective behavior of the two communicating FSMs can be 
described by an FSM. When applying an external input to the 
FSM component C, the FSM produces an internal or an 
external output. If the C produces an internal signal, 
components start their dialogue that should be finished by 
producing an external output by the component C. If the 
dialogue becomes infinite then the composition is said to fall 
into a livelock. If an external output is produced then the 
composition waits for the next external input.  

The parallel composition of FSMs C and X [1], denoted 

C ◊ X, can be formally described using automata for FSM 

components: First, for FSMs C and X, the corresponding 
automata Aut(C) and Aut(X) are derived and the automaton 
Aut(X) is expanded to external inputs and outputs. At the next 

step, the intersection (Aut(C) ∩ Aut(X)↑I ∪ O)↓I ∪ O is restricted 
to the set of external inputs and outputs and the restriction is 
intersected with the automaton Aut(MAX(I, O)) that models the 
slow environment. The obtained automaton is converted into 
an FSM by combining inputs with following outputs. It is 
known that the parallel composition of two complete FSMs 
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can be partial if the communicating FSMs fall into a live-lock. 
In this case, the I-restriction of 

(Aut(C) ∩ Aut(X)↑I ∪ O)↓I ∪ O ∩ Aut(MAX(I, O)) to may not 
coincide with I*. 

D. FSM Equations 

Solving the problem of designing an agent of the 
multiagent system, the problem of solving the system of 
parallel FSM equations arises. Let 

C = (C, I ∪ V, O ∪ U, TC, c0) and S = (S, I, O, TS, s0) be two 

complete FSMs. An expression "C ◊ X ≅ S" is called an FSM 

equation w.r.t. the unknown FSM X over the input alphabet U, 
and the output alphabet V. The FSM C is called the context, 
and the FSM S is called the specification. An FSM equation 
can have no solution. For a solvable equation, there exists a 
largest solution that is the FSM with the language 

Aut(C) ◊ Aut(S) = (Aut(C) ∩ Aut(S)↑U ∪ V)↓U ∪ V [2]. Undefined 
input sequences of the largest solution correspond to input 
sequences which violate the specification and for this reason, 
when designing an agent we are interested in complete 
solutions to the FSM equation. If a solvable FSM equation has 
a complete solution then it is known to have the largest 
complete solution. Each complete solution of an equation is a 
reduction of the largest complete solution [2]. 

E. System of FSM Equations 

If an agent has to work in different contexts and it is 
necessary to provide a certain level of service in each context 
then when designing an agent, the problem arises of solving 
systems of equations.  

Let Ci and Si be collections of complete FSMs where all Ci 
(and all Si) are defined over the same input and output 

alphabets. A collection of equations Ci ◊ X ≅ Si, i = 1, 2, …, k, 

is called a system of FSM equations. An FSM A defined over 
the alphabets of the unknown component X is a solution to the 
system if A is a solution to each equation of the system. The 
detailed method for solving FSM equations is described in [4] 
where it is also shown that a solvable FSM equation has the 
largest solution. A solvable system of parallel FSM equations 
also has the largest solution that is the intersection over largest 
solutions to all equations. 

III. PROBLEM STATEMENT AND A SOLUTION PROPOSED 

When solving an FSM equation C ◊ X ≅ S, a corresponding 

FSM inequality C ◊ X ≤ S is solved first. Given a system of 

FSM inequalities Ci ◊ X ≤ Si, i = 1, 2, the question is whether 
we could reduce the system of FSM inequalities to a single 
FSM inequality. In other words, whether there exists a single 
equation such that the sets of solutions of the system and this 
equation coincide.  

In this paper, we consider two special cases. 

A. Case 1 

Let S1 = S2 = S, be the specification, however, this service 
has to be provided into two different contexts C1 and C2. 

Theorem 1. Given a system of FSM inequalities 

Ci ◊ X ≤ S, i = 1, 2, where C1 and C2 are specified over the 
same alphabets, the largest solution to the system and the 

largest solution to the inequality (C1 ∪ C2) ◊ X ≤ S coincide. 

The sketch of the proof. For each sequence β of the 

context C1 (and also C2) and each sequence α of the largest 

solution M of the system Ci ◊ X ≤ S, (i = 1, 2) the composition 

β ◊ α is in the specification S. Since the union of the contexts 

C1 and C2 has only sequences of C1 and C2, for each sequence 

β of the context C1 ∪ C2 and each sequence α of the largest 

solution M, the composition β ◊ α is in the specification S. 

On the other hand, for each sequence α of the largest 

solution Mi to a single equation Ci ◊ X ≤ S it holds that β ◊ α is 

in S. �  

The following statement can be proven by induction. 

Corollary 1. Given a system of FSM inequalities 

Ci ◊ X ≤ S, i = 1, 2, …, k, where C1 , …, Ck are specified over 
the same alphabets, the largest solution to the system and the 

largest solution to the inequality (C1 ∪ … ∪ Ck) ◊ X ≤ S 

coincide. �  

Corollary 2. Given a system of FSM equations Ci ◊ X ≅≅≅≅ S, 

i = 1, 2, …, k, where C1 , …, Ck are specified over the same 
alphabets and FSM S is deterministic, the largest solutions to 

the system and to the equation (C1 ∪ … ∪ Ck) ◊ X ≅≅≅≅ S 

coincide. �  

We now illustrate Theorem 1 by the following examples.  

Example 1. Consider parallel composition in Fig. 1, 
contexts C1 and C2 in Figs. 2 and 4 and the specification S 
with the set of transitions (1, i1, o1, 2), (2, i1, o2, 2), (2, i2, o1, 
2).  

 

Fig. 2. The context C1 

 

Fig. 3. An automaton Aut(C1) 
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Fig. 4. The context C2 

The specification S is defined over the set of external 
inputs I = {i1, i2} and the set of external outputs O = {o1, o2}. 
Contexts C1 and C2 are defined over the set of external inputs 
I = {i1, i2}, the set of external outputs O = {o1, o2}, the set of 
internal inputs V = {v1, v2} and the set of internal outputs 
U = {u1, u2} and are shown in Figs. 2 and 4.  For the context 

C2, there is no solution to the inequality C2 ◊ X ≤ S and thus, 
there is no solution for the system of inequalities. By direct 
inspection, a reader can assure that for the union of C1 and C2, 

there also is no solution of the inequality (C1 ∪ C2) ◊ X ≤ S.  

Example 2. Consider the specification FSM S with the set 
of transitions (1, i1, o1, 2) (1, i2, o2, 1), (2, i1, o2, 2), (2, i2, o1, 
2). The largest solution L to the system over the set of inputs 
U = {u1, u2} and the set of outputs V = {v1, v2} derived as the 

intersection of largest solutions to the inequalities C1 ◊ X ≤ S 

and C2 ◊ X ≤ S is shown in Fig. 5. Consider now the inequality 

(C1 ∪ C2) ◊ X ≤ S. By direct inspection one can assure that the 

largest complete solution L′ to the inequality (C1 ∪ C2) ◊ X ≤ S 
is equivalent to the FSM in Fig. 5. 

 

Fig. 5. The largest complete solution L to the system 

B. Case 2 

Let С1 = С2 = С be the context; however, different services 
have to be provided in this context. 

Theorem 2. Given a system of FSM inequalities 

C ◊ X ≤ Si, i = 1, 2, where S1 and S2 are specified over the 
same alphabets, the largest solution to the system and the 

largest solution to the inequality C ◊ X ≤ (S1 ∩ S2) coincide. 

The sketch of the proof. For each sequence β of the 

context C and each sequence α of the largest solution M of the 

system C ◊ X ≤ Si, (i = 1, 2), the composition β ◊ α is in the 

specification S1 (and also is in S2). Since the intersection of 
specifications S1 and S2 has only sequences which are in both 

S1 and S2, for each sequence β of the context C and each 

sequence α of the largest solution M, the composition β ◊ α is 

in S1 ∩ S2.  

On the other hand, for each sequence α of the largest 

solution Mi to a single equation it holds that β ◊ α is in 

S1 ∩ S2. 

The following statement can be proven by induction. 

Corollary 1. Given a system of FSM inequalities 

C ◊ X ≤ Si, i = 1, 2, …, k, where S1 , …, Sk are specified over 
the same alphabets, the largest solution to the system and the 

largest solution to the inequality C ◊ X ≤ (S1 ∩ … ∩ S k)  
coincide. 

Corollary 2. Given a system of FSM equations C ◊ X ≅≅≅≅ Si, 

i = 1, 2, …, k, where S1 , …, Sk are deterministic, the largest 
solution to the system and the largest solution to the equation 

C ◊ X ≅≅≅≅ (S1 ∩ … ∩ Sk)  coincide. 

IV. CONCLUSION 

In this paper, we have studied the problem of reducing the 
system of parallel FSM equations to a single equation that 
arises in many applications, such as the optimization of digital 
circuits, cryptography, logic synthesis, logic games, stabilizers 
for the synthesis of asynchronous systems, etc. In particular, 
we have considered two special cases when such reduction can 
be performed. For each case, it is shown how to derive a 
corresponding single equation. A general case, when contexts 
and specifications of different equations do not coincide, 
needs more research and this is our future work. The same 
approach can be applied for the general case of parallel 
composition when both, the context and the unknown have 
external input and outputs. We also mention that the system of 
equations over the synchronous composition can be treated in 
the same way; the synchronous composition operator 
corresponds to the case when all components are active at 
each time instance and is used for describing the behavior of 
hardware modular systems. 
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