
2015 International Siberian Conference on Control and Communications (SIBCON)

978-1-4799-7103-9/15/$31.00 ©2015 IEEE

Deriving a Module of a Multi Agent System via
Finite State Machine Equation Solving

Ekaterina Darusenkova, Nina Yevtushenko

Tomsk State University
Tomsk, Russia

darusenkova@gmail.com, yevtushenko@sibmail.com

Tiziano Villa

University of Verona
Verona, Italy

tiziano.villa@univr.it

Abstract— In multiagent systems, there is a problem of

constructing an agent that can work in different contexts

satisfying different specifications. One of ways is to solve a system

of corresponding automata equations. Since in general, the

complexity of solving such equations is exponential w.r.t. to the

number of states of the context and specification, the question

arises whether a system of equations can be reduced to a single

equation. In this paper, we consider two special cases when a

system of equations under the parallel composition over Finite

State Machines can be reduced to a single equation. For each

case, it is shown how a corresponding single equation can be

derived.

Keywords— multiagent systems; Finite State Machine (FSM);

Parallel Composition of FSMs; FSM equations

I. INTRODUCTION

When constructing a multiagent system there is a problem
of designing an agent that can work in different contexts
facing different specifications [1]. The problem about the
permissible changes in the component (agent) behavior arises
in many other applications, such as optimization of digital
circuits, cryptography, logic synthesis, logic games, stabilizers
for the synthesis of asynchronous systems, etc. The problem is
known as the equation solving problem [2], submodule
construction [3] or the unknown component problem [4]. If
the behavior of all systems is described by sets of sequences of
actions then the problem can be solved using systems of
appropriate equations. In [1, 4], an approach is proposed for
solving a system of equations over Finite State Machines
(FSMs), i.e., over finite automata where actions are divided
into inputs and outputs and each input is followed by an
output. The proposed approach [1, 4] is to solve equations
separately and then derive the product of the largest solutions.
However, the complexity of solving a single equation over
FSMs is known to have the exponential complexity with
respect to the size of the context and specification and for this
reason, it would be nice to check whether the problem of
solving a system of FSM equations can be reduced to solving
a single equation.

Usually the interaction between the components is
described by using the operator of parallel or synchronous
composition, and thus we have a system of parallel or
synchronous equations [2]. In the case of the synchronous
composition that is used in hardware, all components are

active at each time instance; the composition produces an
external output and a matched pair of internal signals. The
parallel composition is based on the dialogue between
components, only one component is active at each time
instance and an external output is produced only after
finishing the internal dialogue between components. Such
compositions are widely used in telecommunication systems.
For multiagent systems, the parallel composition also seems to
be more appropriate.

In this paper, we consider a system of finite number of
equations under the parallel composition over FSMs. We show
that there exist two special cases when we can reduce the
system of FSM equations to a single FSM equation. Namely,
it happens when all contexts or all specifications coincide.

The rest of the paper is structured as follows. In Section 2,
we define basic notions and definitions for solving parallel
FSM equations. Section 3 contains the problem statement and
a proposed approach for reducing a system of equations to a
single equation. The section also contains a short discussion
about a general case. Section 4 concludes the paper.

II. PRELIMINARIES

A. Finite State Machine

Finite State Machine (FSM) [5] is a quintuple
A = (A, I, O, TA, a0), where A is a finite nonempty set of states
with the initial state a0, I and O are input and output alphabets,

and TA ⊆ I × A × A × O is a transition relation. An FSM A is

observable, if for each triple (a, i, o) ∈ A × I × O there exists

at most one state a'∈ A such that (a, i, o, a') ∈ TA. An FSM A

is complete, if ∀a ∈ A and ∀i ∈ I there exist o ∈ O and a'∈ A,

such that (a, i, o, a') ∈ TA. If A is not complete, then it is called

partial. An FSM A is deterministic, if ∀a ∈ A and ∀i ∈ I there
exist at most one pair of output o and state a', such that

(a, i, o, a') ∈ TA; an FSM A is nondeterministic, if there exist

a ∈ A and i ∈ I such that there are two different transitions

(a, i, o, a'), (a, i, o', a'') ∈ TA. When solving FSM equations the
notion of a nondeterministic FSM allows to describe a general
solution to a solvable equation. An FSM B = (B, I, O, TB, b0) is

a sub-machine of A if B ⊆ A and TB ⊆ TA. The largest
complete submachine of FSM A can be obtained by iterative
deleting states where the behavior of the FSM is not defined at

2015 International Siberian Conference on Control and Communications (SIBCON)

least for a single input. If the initial state is deleted then FSM
A has no complete machine. Otherwise, the remained
complete FSM is the largest submachine of A. Each complete
submachine of A is a submachine of the largest complete
submachine of A (if it exists). As usual, the transition relation
TA of FSM A can be extended to sequences over the alphabets
I and O. A trace of the FSM is a sequence of pairs (i, o) which
correspond to consecutive transitions. A trace defines an
output response of the FSM to its input projection and thus, an
FSM can be considered as a sequential function that maps the
infinite set of input sequences to the sets of output sequences.
If each state of an FSM is reachable from the initial state via
some trace, then an FSM is called initially connected or
simply connected. FSMs are widely used in order to describe
the behavior of reactive systems which get some messages
(inputs) and produce a corresponding response (output) [2].
States of the FSM correspond to the memory about previously
applied inputs and produced outputs. For example, in Fig. 2 an
FSM with the initial state a is presented. After applying an
input i1 at the initial state a the FSM produces output u2 and
moves to the next state b; thus, when the next input i1 is
applied the FSM produces output o2 and remains at state b.

Given an FSM A, the set of all traces at state a of A is
called the language of A at state a, written LA(a). The
language of the FSM A at the initial state is called the
language of the FSM A and is denoted by LA, for short. The

FSM ({t0}, I, O, T, t0) where T = {t0} × I × O × {t0}, written
MAX(I, O), is called the maximum FSM over the input alphabet
I and the output alphabet O. The machine MAX(I, O) has the
language (IO)*. An FSM B is a reduction of FSM A, written A

≤ B, if LB ⊆ LA. If LB = LA then FSMs A and B are equivalent.
For complete deterministic FSMs the reduction and the
equivalence relations coincide.

The common behavior of two FSMs can be described by
the intersection of these machines. The intersection (or a

product) A ∩ B of FSMs A and B is the largest connected

submachine of the FSM (A × B, I, O, TA∩B, a0b0). Formally,

TA∩B = {(ab, i, o, a'b') | (a, i, o, a') ∈ TA ^ (b, i, o, b') ∈ TB}.

The language of A ∩ B is the intersection LA ∩ LB. The
intersection of two observable FSMs is an observable FSM;
however, the intersection of complete FSMs can be partial.

B. Finite Automaton

When combining FSMs, all the operators are defined over
finite automata. Finite automata are very close to FSMs: there
is the non-empty finite set of states with the designated initial
state and the designated subset of final states which
correspond to finishing some job and the non-empty finite set
of actions that are not divided into inputs and outputs. Given
an FSM A, the corresponding finite automaton Aut(A) is
derived by unfolding FSM transitions. Final states are states
that have an incoming transition labeled with an output and
the initial state. In Fig. 3, an automaton for the FSM in Fig. 2
is shown.

Given a sequence α ∈ V* and an alphabet W, a W-
restriction of α, written α↓W, is obtained by deleting from α all
symbols that belong to the set V \ W. Given a sequence α ∈ V*

and an alphabet W, a W-expansion of α, written α↑W, is a set
that contains each sequence over alphabet (V ∪ W) with the
V–restriction α. All the operators are extended to operators
over finite automata. Let P be an automaton over alphabet V
with the language L. Restriction (↓): Given a non-empty
subset U of V, the automaton P↓U that accepts the language L↓U

over U is obtained by replacing each transition (s, a, s'),

a ∈ V\U, in P by the transition (s, ε, s'). Expansion (↑): Given

alphabet U, the automaton P↑U with the language L↑U over

U ∪ V is obtained by adding a transition (s, a, s) for each a ∈
U\V and each state s of P.

C. Parallel Composition of FSMs

Let C = (C, I ∪ V, O ∪ U, TC, c0) and X = (X, U, V, TX, x0)
be two complete communicating FSMs where alphabets I, V,
O, U are pair-wise disjoint. The alphabet I represents the set of
external inputs of the composition, while the alphabet O
represents the set of external outputs of the composition. The
embedded component X corresponds to an agent to be
designed.

Fig. 1. The parallel composition of FSMs C and X

The two FSMs communicate under a single message in
transit, i.e., the next external input is submitted to the system
only after producing an external output to the previous input
(so-called "slow" environment). Under these conditions, the
collective behavior of the two communicating FSMs can be
described by an FSM. When applying an external input to the
FSM component C, the FSM produces an internal or an
external output. If the C produces an internal signal,
components start their dialogue that should be finished by
producing an external output by the component C. If the
dialogue becomes infinite then the composition is said to fall
into a livelock. If an external output is produced then the
composition waits for the next external input.

The parallel composition of FSMs C and X [1], denoted

C ◊ X, can be formally described using automata for FSM

components: First, for FSMs C and X, the corresponding
automata Aut(C) and Aut(X) are derived and the automaton
Aut(X) is expanded to external inputs and outputs. At the next

step, the intersection (Aut(C) ∩ Aut(X)↑I ∪ O)↓I ∪ O is restricted
to the set of external inputs and outputs and the restriction is
intersected with the automaton Aut(MAX(I, O)) that models the
slow environment. The obtained automaton is converted into
an FSM by combining inputs with following outputs. It is
known that the parallel composition of two complete FSMs

2015 International Siberian Conference on Control and Communications (SIBCON)

can be partial if the communicating FSMs fall into a live-lock.
In this case, the I-restriction of

(Aut(C) ∩ Aut(X)↑I ∪ O)↓I ∪ O ∩ Aut(MAX(I, O)) to may not
coincide with I*.

D. FSM Equations

Solving the problem of designing an agent of the
multiagent system, the problem of solving the system of
parallel FSM equations arises. Let

C = (C, I ∪ V, O ∪ U, TC, c0) and S = (S, I, O, TS, s0) be two

complete FSMs. An expression "C ◊ X ≅ S" is called an FSM

equation w.r.t. the unknown FSM X over the input alphabet U,
and the output alphabet V. The FSM C is called the context,
and the FSM S is called the specification. An FSM equation
can have no solution. For a solvable equation, there exists a
largest solution that is the FSM with the language

Aut(C) ◊ Aut(S) = (Aut(C) ∩ Aut(S)↑U ∪ V)↓U ∪ V [2]. Undefined
input sequences of the largest solution correspond to input
sequences which violate the specification and for this reason,
when designing an agent we are interested in complete
solutions to the FSM equation. If a solvable FSM equation has
a complete solution then it is known to have the largest
complete solution. Each complete solution of an equation is a
reduction of the largest complete solution [2].

E. System of FSM Equations

If an agent has to work in different contexts and it is
necessary to provide a certain level of service in each context
then when designing an agent, the problem arises of solving
systems of equations.

Let Ci and Si be collections of complete FSMs where all Ci
(and all Si) are defined over the same input and output

alphabets. A collection of equations Ci ◊ X ≅ Si, i = 1, 2, …, k,

is called a system of FSM equations. An FSM A defined over
the alphabets of the unknown component X is a solution to the
system if A is a solution to each equation of the system. The
detailed method for solving FSM equations is described in [4]
where it is also shown that a solvable FSM equation has the
largest solution. A solvable system of parallel FSM equations
also has the largest solution that is the intersection over largest
solutions to all equations.

III. PROBLEM STATEMENT AND A SOLUTION PROPOSED

When solving an FSM equation C ◊ X ≅ S, a corresponding

FSM inequality C ◊ X ≤ S is solved first. Given a system of

FSM inequalities Ci ◊ X ≤ Si, i = 1, 2, the question is whether
we could reduce the system of FSM inequalities to a single
FSM inequality. In other words, whether there exists a single
equation such that the sets of solutions of the system and this
equation coincide.

In this paper, we consider two special cases.

A. Case 1

Let S1 = S2 = S, be the specification, however, this service
has to be provided into two different contexts C1 and C2.

Theorem 1. Given a system of FSM inequalities

Ci ◊ X ≤ S, i = 1, 2, where C1 and C2 are specified over the
same alphabets, the largest solution to the system and the

largest solution to the inequality (C1 ∪ C2) ◊ X ≤ S coincide.

The sketch of the proof. For each sequence β of the

context C1 (and also C2) and each sequence α of the largest

solution M of the system Ci ◊ X ≤ S, (i = 1, 2) the composition

β ◊ α is in the specification S. Since the union of the contexts

C1 and C2 has only sequences of C1 and C2, for each sequence

β of the context C1 ∪ C2 and each sequence α of the largest

solution M, the composition β ◊ α is in the specification S.

On the other hand, for each sequence α of the largest

solution Mi to a single equation Ci ◊ X ≤ S it holds that β ◊ α is

in S. �

The following statement can be proven by induction.

Corollary 1. Given a system of FSM inequalities

Ci ◊ X ≤ S, i = 1, 2, …, k, where C1 , …, Ck are specified over
the same alphabets, the largest solution to the system and the

largest solution to the inequality (C1 ∪ … ∪ Ck) ◊ X ≤ S

coincide. �

Corollary 2. Given a system of FSM equations Ci ◊ X ≅≅≅≅ S,

i = 1, 2, …, k, where C1 , …, Ck are specified over the same
alphabets and FSM S is deterministic, the largest solutions to

the system and to the equation (C1 ∪ … ∪ Ck) ◊ X ≅≅≅≅ S

coincide. �

We now illustrate Theorem 1 by the following examples.

Example 1. Consider parallel composition in Fig. 1,
contexts C1 and C2 in Figs. 2 and 4 and the specification S
with the set of transitions (1, i1, o1, 2), (2, i1, o2, 2), (2, i2, o1,
2).

Fig. 2. The context C1

Fig. 3. An automaton Aut(C1)

2015 International Siberian Conference on Control and Communications (SIBCON)

Fig. 4. The context C2

The specification S is defined over the set of external
inputs I = {i1, i2} and the set of external outputs O = {o1, o2}.
Contexts C1 and C2 are defined over the set of external inputs
I = {i1, i2}, the set of external outputs O = {o1, o2}, the set of
internal inputs V = {v1, v2} and the set of internal outputs
U = {u1, u2} and are shown in Figs. 2 and 4. For the context

C2, there is no solution to the inequality C2 ◊ X ≤ S and thus,
there is no solution for the system of inequalities. By direct
inspection, a reader can assure that for the union of C1 and C2,

there also is no solution of the inequality (C1 ∪ C2) ◊ X ≤ S.

Example 2. Consider the specification FSM S with the set
of transitions (1, i1, o1, 2) (1, i2, o2, 1), (2, i1, o2, 2), (2, i2, o1,
2). The largest solution L to the system over the set of inputs
U = {u1, u2} and the set of outputs V = {v1, v2} derived as the

intersection of largest solutions to the inequalities C1 ◊ X ≤ S

and C2 ◊ X ≤ S is shown in Fig. 5. Consider now the inequality

(C1 ∪ C2) ◊ X ≤ S. By direct inspection one can assure that the

largest complete solution L′ to the inequality (C1 ∪ C2) ◊ X ≤ S
is equivalent to the FSM in Fig. 5.

Fig. 5. The largest complete solution L to the system

B. Case 2

Let С1 = С2 = С be the context; however, different services
have to be provided in this context.

Theorem 2. Given a system of FSM inequalities

C ◊ X ≤ Si, i = 1, 2, where S1 and S2 are specified over the
same alphabets, the largest solution to the system and the

largest solution to the inequality C ◊ X ≤ (S1 ∩ S2) coincide.

The sketch of the proof. For each sequence β of the

context C and each sequence α of the largest solution M of the

system C ◊ X ≤ Si, (i = 1, 2), the composition β ◊ α is in the

specification S1 (and also is in S2). Since the intersection of
specifications S1 and S2 has only sequences which are in both

S1 and S2, for each sequence β of the context C and each

sequence α of the largest solution M, the composition β ◊ α is

in S1 ∩ S2.

On the other hand, for each sequence α of the largest

solution Mi to a single equation it holds that β ◊ α is in

S1 ∩ S2.

The following statement can be proven by induction.

Corollary 1. Given a system of FSM inequalities

C ◊ X ≤ Si, i = 1, 2, …, k, where S1 , …, Sk are specified over
the same alphabets, the largest solution to the system and the

largest solution to the inequality C ◊ X ≤ (S1 ∩ … ∩ S k)
coincide.

Corollary 2. Given a system of FSM equations C ◊ X ≅≅≅≅ Si,

i = 1, 2, …, k, where S1 , …, Sk are deterministic, the largest
solution to the system and the largest solution to the equation

C ◊ X ≅≅≅≅ (S1 ∩ … ∩ Sk) coincide.

IV. CONCLUSION

In this paper, we have studied the problem of reducing the
system of parallel FSM equations to a single equation that
arises in many applications, such as the optimization of digital
circuits, cryptography, logic synthesis, logic games, stabilizers
for the synthesis of asynchronous systems, etc. In particular,
we have considered two special cases when such reduction can
be performed. For each case, it is shown how to derive a
corresponding single equation. A general case, when contexts
and specifications of different equations do not coincide,
needs more research and this is our future work. The same
approach can be applied for the general case of parallel
composition when both, the context and the unknown have
external input and outputs. We also mention that the system of
equations over the synchronous composition can be treated in
the same way; the synchronous composition operator
corresponds to the case when all components are active at
each time instance and is used for describing the behavior of
hardware modular systems.

ACKNOWLEDGMENT

This work is partly supported by Project 739 (goszadanie
minobrnayki RF).

REFERENCES

[1] K. El-Fakih and N. Yevtushenko, “Progressive solutions to FSM
equations,” CIAA, pp. 274-282, 2008.

[2] N.V. Yevtushenko, M.V. Rekun and S.V. Tihomirova,
“Nondeterministic Finite State Machines: analysis and synthesis. Part 2.
Solving FSM Equations,” Tomsk, Tomsk State University, p. 111, 2009.
(In Russian).

[3] G. v. Bochmann, “Using logic to solve the submodule construction
problem,” Discrete Event Dynamic Systems, pp. 27-59, 2013.

[4] T. Villa, N. Yevtushenko, R.K. Brayton, A. Mishchenko, A. Petrenko
and A. Sangiovanni-Vincentelli, “The Unknown Component Problem,”
Theory and Applications, p. 312, 2012.

[5] J.E. Hopcroft, R. Motwani, and J.D. Ullman, “Introduction to Automata
Theory, Languages, and Computation,” Addison-Wesley Publishing
Company, 2001.

