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Abstract

In the object recognition community, much effort has been spent on devising
expressive object representations and powerful learning strategies for design-
ing effective classifiers, capable of achieving high accuracy and generalization.
In this scenario, the focus on the training sets has been historically weak; by
and large, training sets have been generated with a substantial human in-
tervention, requiring considerable time. In this paper, we present a strategy
for automatic training set generation. The strategy uses semantic knowledge
coming from WordNet, coupled with the statistical power provided by Google
Ngram, to select a set of meaningful text strings related to the text class-label
(e.g., “cat”), that are subsequently fed into the Google Images search engine,
producing sets of images with high training value. Focusing on the classes of
different object recognition benchmarks (PASCAL VOC 2012, Caltech-256,
ImageNet, GRAZ and OxfordPet), our approach collects novel training im-
ages, compared to the ones obtained by exploiting Google Images with the
simple text class-label. In particular, we show that the gathered images are
better able to capture the different visual facets of a concept, thus encod-
ing in a more successful manner the intra-class variance. As a consequence,
training standard classifiers with this data produces performances not too
distant from those obtained from the classical hand-crafted training sets. In
addition, our datasets generalize well and are stable, that is, they provide
similar performances on diverse test datasets. This process does not require
manual intervention and is completed in a few hours.
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1. Introduction

Object recognition has been since its beginnings and still is one of the
main and most studied topics in computer vision and its applications are
many and varied, ranging from image indexing and retrieval, to video surveil-
lance, robotics and medicine.

Even though at a first glance one may think that what is being recognized
is an object that is given “out there in the world”, at a closest look one may
see that what is detected and then assigned to a certain class of objects is
something that is constructed out from an aggregation of features that a
classifier has been trained to recognize as that particular kind of object [1].
As a consequence, the fact that a certain aggregation of features is recognized
as a dog or as a building, strongly depends on the images that have been
chosen to be part of the training set [2].

Traditionally, classifiers have been and often are still trained with datasets
that were created ad-hoc by computer vision scientists, whose expertise
drives the choice towards images with certain characteristics (being class-
prototypical instances or making the recognition particularly challenging,
see [3]); important examples are the Caltech-101/256 [4, 5], MSRC [6], the
PASCAL VOC series [7], LabelMe [8] and Lotus Hill [9]. Of course such
choice is not arbitrary, but the criteria of choice are left implicit and so are
the criteria of identity of the target object which is detected (or, better, con-
structed). As long as we are only concerned with object recognition tasks,
probably this is not such a big issue, but when such tasks are part of more
complex processes that include visual inference, this could constitute a draw-
back. Another relevant drawback is that building object recognition datasets
is costly and thus the number of images that are collected is limited.

To overcome the disadvantage of having few training images per class
and, in general, few object classes, in the last years projects have emerged,
which exploit the so called “wisdom of crowd” to populate object recogni-
tion datasets, through web-based data collection methods. The idea is to
employ web-based annotation tools that provide a way of building large an-
notated datasets by relying on the collaborative effort of a large population
of users [10, 11]. The outcome consists of millions of tagged images, but usu-
ally of these only few are accessible, and they are not organized into classes
by a proper taxonomy.
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Differently, one of the most important web-based projects which focuses
on the concept of class is ImageNet [12]. ImageNet takes the tree-like struc-
ture in which words are arranged in WordNet [13] and assigns to each word
(or, better, to each synset of WordNet) a set of images that are taken to
be instantiations of the class corresponding to the synset. The candidate
images to be assigned to a class are quality-controlled and human-annotated
through the service of the Amazon Mechanical Turk (AMT), an online plat-
form on which everyone can put up tasks for users, to be completed in order
for them to get paid. Nowadays, ImageNet is the largest clean image dataset
available to the vision research community, in terms of the total number of
images, number of images per category, as well as the number of categories
(80K synsets).

Apart from these advantages, an important fact that should be discussed
is where the images come from. In ImageNet, the source of data is Internet, so
that the ImageNet project partially falls in the category of those approaches
which build training sets by performing automatic retrieval of the images
[14, 15]. In very general terms, the idea consists in using a term denoting the
class of a target object as keyword for an image search engine and forming
with the images retrieved in this way the training set. Search engines index
images on the basis of the texts that accompany them and of users’ tags,
when they are present.

The obvious advantage of these approaches is that they can use a great
amount of images to form the training set; on the other hand, the training
set obtained in this way depends on the ranking of the images, that is, the
first images provided by a search engine (say Google Images) are those which
rank high in its indexing system. This is not beneficial for our purpose, since
we would like to obtain a set of images covering the visual heterogeneity of a
visual concept, and not only prototypical instances. As an example, we can
take a look to the first 20 images retrieved by Google Images when using the
keyword “cat” (Fig. 1). As visible, in most of the cases the cat is frontal, on
a synthetic background, focusing on the snout.

These considerations suggest that, starting from the simple image search
of Google, many steps ahead could be taken towards the creation of an ex-
pressive dataset.

So, the challenging question we will try to answer is: how is it possible
to exploit the big amount of images that are available on the web and to
automatize the search, providing a training set of pictures which mostly
represent the variety of a given concept?
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Figure 1: First 20 images obtained by searching “cat” in Google Images. The order
(row-major) follows the ranking given by the search engine.

Our proposal is to refine the web search by adding to the standard key-
word denoting the class of objects to be detected some other related terms,
in order to make the search more expressive. However, we would like these
terms to be added not to be arbitrarily chosen, but rather selected with a
criterion that has to be explicit and meaningful. More specifically, we would
like such accompanying keywords to have three important features:

1. to be frequently associated with the word denoting the target object
(otherwise, too few images would be retrieved by the association of the
two keywords);

2. to be meaningful from a visual point of view (as usually people tag
pictures on the basis of what is depicted in them)

3. to capture the maximum possible level of variability of the addressed
class.

Our approach can be summarized as follows: in the first step, we consider
a large textual dataset (Google Ngram1), containing 930 Gigabytes of text
material; from Google Ngram we extract bi-grams containing the word de-
noting the target object (for simplicity, let’s call it “target word”) plus other
terms, associated with their frequency in the dataset. In the second step,
this input is filtered in various ways, distilling information useful for cap-
turing the visual variability of the object of interest. To this aim, WordNet
will be exploited. More specifically, among the most frequent nouns that
accompany the target word in the bi-grams, hyponyms will be kept, thus
capturing entities which belong to subclasses of the object of interest. Ad-
jectives denoting visual properties will be also kept, that is, adjectives which
characterize visible aspects of objects (their color, their patterns). Finally,
among verbs, present participles are kept, in order to capture actions that

1https://books.google.com/ngrams/.
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can be performed or are performed by the entity of interest.
In the third step, these aspects will be fused together following two differ-

ent criteria: in the first “frequency based” one we choose, among all selected
words, those that, coupled with the target word, have the highest score in
terms of frequency (disregarding whether they are visual adjectives, verbs or
hyponyms). The final result of such process will be a list of pairs of words,
composed by the target word plus an accompanying word, chosen with ex-
plicit and semantic criteria that, fed into image search engines, will provide
semantically rich shots for training the object classifiers.

In the second strategy, we build three separate image sets, including bi-
grams formed by target word + visual properties, by target word + hy-
ponyms, and by target word + verbs, respectively. These are then fed into
three separate classifiers, whose classification decisions on a given test sample
are subsequently fused using standard fusion rules. In addition, a “ground-
ing” operation is adopted to reduce polysemy issues: it is assumed that, at
the moment of the definition of a target word, a more generic term is also
given (an hypernym). This term is added to all the strings created so far.
Experimentally, this ensures a semantically more coherent image collection.

The aim of the experiments is to validate the goodness of the training
datasets automatically built by our method, under different respects. We
take inspiration from the ImageNet paper [12], following some of its ex-
perimental protocols. In first instance, we analyze the object classification
accuracy derived from our data, mainly focusing on the PASCAL VOC 2012
“comp2” competition. This is carried out evaluating different classifiers, from
very straightforward (K-Nearest-Neighbor, KNN) to more advanced (Convo-
lutional Neural Networks, CNN [16]); we also evaluate the number of outliers
produced by our system. In addition, we explore how the performance varies
when the number of images employed changes; finally, we focus on different
datasets, evaluating how generalizable the results on different visual scenarios
are. In all cases, the results are encouraging, obtaining classification perfor-
mances not too distant from those obtained from the man-made training
set.

The rest of the paper is organized as follows: in Sec. 2 we report the
related literature, formed by a very few approaches; in Sec. 3 we present
our framework, detailing all the steps and fusion strategies that characterize
it. In Sec. 4 we discuss the experimental results obtained and, finally, in
Sec. 5 conclusions and issues to be addressed for future developments of the
approach are discussed.
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2. Related literature

Building object recognition training sets in an automatic fashion is a very
recent challenge, born in the robotic field within at least two robot competi-
tions: the Semantic Robot Vision Challenge (SRVC)2, and RoboCup@Home3.
Both competitions consist in letting a robot explore autonomously a previ-
ously unknown environment, locating specific objects, based on training data
collected online or from Internet image searches. One of the most well-known
system is Curious George [14]: the starting point of the self-training process
consists in crawling a pool of images of the selected target word from Google.
After that, the sequence of images is processed by a set of noise removal and
ranking operations, which essentially cluster similar images, pruning away
groups with too few elements. Groups with more images are ranked first.
This system is especially suited for dealing with the robotic scenario, where
the robot can acquire multiple shots, which are then matched with the im-
age clusters; having highly populated clusters ensures a robust matching.
The approach in [17] extends Curious George, by implementing an attention
scheme that allows it to identify interesting regions that correspond to poten-
tial objects in the world. In both cases, the recognition scenario is different
from ours, since multiple images of the same object are used as input of the
classifier system, while we expect a single test image. Anyway, in both cases
the first processing step for learning the appearance of an object is retrieving
a set of images with the Google Images search engine, fed with a single target
word. In [18], the problem of populating an image dataset for learning vi-
sual concepts is faced by focusing on images with explicit tags; in particular,
they propose a way to predict the relevance of the tag list associated with
the images w.r.t. a target concept. In our work, we prefer to disregard the
investigation of tags already associated to the images; instead, our aim is
to produce textual tags which are semantically relevant for the key concepts
that we are considering, and feeding an image search engine with those tags.
A massive automatic retrieval of images for the training of object detectors
is proposed in [15], where, similarly as in [14, 17], simple image search by
Google is used to populate the classes, but, differently from the the latter
methods, no postprocessing is implemented. For this reason, we consider this
process of data acquisition as competitor to our approach.

2http://www.semantic-robot-vision-challenge.org/.
3http://www.robocupathome.org/.
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3. Method

Our system aims at extracting from Internet a set of images representing
the input target word x; in order to reduce ambiguity, such word is associated
with its hypernym h. Both the words are selected by a human user and
expressed in English4. The approach is formed by three steps, the first two
of them are in common, while the third one is different depending on which
one of the two versions is considered, that is, the frequency-based combination
version (outlined in Fig. 2) and the classification-based combination version
(outlined in Fig. 3).

In the first step of our approach, the target word x is used to extract and
filter from Google Ngram all the bi-grams in the form

{xyn} ∪ {ynx} ∪ {yax} ∪ {yvx} (1)

where yn is a noun, ya is an adjective and yv is a verb, and the order of the
variables matters, meaning that the noun can both follow and precede the
target word, while the adjective and the verb must precede it. In addition,
occurrence frequencies of the bi-grams are also collected as metadata. The
number of bi-grams filtered is K, and is not selected a priori, since it depends
on the number of entries in the corpus.

The second step consists in performing a set of three operations of seman-
tic filtering: in the case of nouns, the set {yn} will be filtered and turned into
{y′n}, thus obtaining a set of Mn hyponyms of x; in the case of adjectives,
{ya} will be filtered and turned into {y′a}, containing Ma visual adjectives
only, that is, adjectives expressing visual properties of the object of interest
that can be observed with a camera. Finally, {yv} will be transformed in
{y′v}, distilling Mv verbs and obtaining only present participles, i.e. the lin-
guistic form in which actions and states are usually expressed. Even in this
case, Mn, Ma and Mv are not predefined, but depend on the content of the
corpus.

In the third step, two choices are available, corresponding to two different
versions of our system: the frequency-based combination (Fig. 2) and the
classification-based combination version (Fig. 3); please note that in all cases,

4Experiments with other languages have not been yet performed, since the sentence
structure may vary a lot from language to language and this should also be taken into
account. Anyway, analogous procedures can be easily found.
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the bi-grams so far obtained are now enriched with the hypernym h attached
at the top of them, to handle polysemy.

In the frequency-based combination, the bi-grams are collected together
in the same ensemble, and used to download N images; the mechanism that
brings from the total number of bi-grams M = Mn + Ma + Mv to N images
will be detailed in the following. After that, the resulting images are em-
ployed to train a single classifier, which is associated to the input word, and
used subsequently to classify previously unseen images. It is worth noting
that the system may need also a negative set of images (in the case of a
binary classifier), for the training process, which is not given here. The idea
is that, in a typical classification challenge where C concepts have to be rec-
ognized, the negative set of a class is given by the pool of positive images of
the remaining C − 1 classes, as done in our experiments. Alternatively, one
can choose to use a generative classifier, or a one-class discriminative clas-
sifier, in which case a negative set is not needed anymore. Following these
considerations, the system is fully automated.

The classification-based combination consists in downloading N images
from the hyponyms, visual adjectives and participles bi-grams, respectively,
and use them as training data for three different binary classifiers (one
for each kind of bi-gram: hyponyms, visual adjectives, participles). Once
trained, they will be used to classify a given test image, averaging their con-
fidence score and producing the final decision.

In the following, each phase of the approach will be fully detailed.

3.1. Corpus interrogation and filtering
The initial input is the keyword x and related hypernym h. The first step

of the process consists in downloading from Google Ngram all the bi-grams
in the form xy or yx, that is, having x as first or second term. As an example,
let us focus on x=“cat”. For each bi-gram, Google Ngram provides a pool of
metadata, among which there is the frequency of occurrence of that bi-gram
in the corpus.

Subsequently, from all bi-grams, only those of the form xyn, ynx, yax, yvx,
where yn is a noun, ya is an adjective and yv is a verb, are retained and the
order of the variables matters, since in English usually a “specifying” noun
can both follow and precede the target word, while a qualifying adjective
and an adjectival verb precedes it5. This operation provides K bi-grams:

5The choice of selecting these precise orders is motivated by widely known and long-
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Figure 2: Adopted method, frequency-based combination version.

actually, in our experiments, this step prunes away around the 70% of bi-
grams initially collected. Table 1 shows the first 10 bi-grams ordered by
frequency obtained, using x=“cat”; in this case K = 11970, starting from an
initial number of 510499 elements.

In this work we have chosen to use Google Ngram, as it is publicly avail-
able and already annotated (each word is labeled with its grammatical form,
like adjective, noun, etc.), while other corpora, like Linguistic Data Consor-

lasting studies in linguistics, such as [19] and [20] (in particular Chapter 4), just to name
a few.
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Figure 3: Adopted method, classification-based combination version.

tium Gigawords6, are proprietary. Finally, the Google Ngram corpus is based
on Google books7, so on very heterogeneous sources.

x Bi-grams after the corpus interrogation and filtering

cat black cat, wild cat, white cat, old cat, fast cat, big cat, little cat, gray cat,
domestic cat, dead cat.

Table 1: Extracted bi-grams: the first 10 bi-grams ordered by frequency obtained when
using x=“cat”.

The second phase consists in a set of three semantic filtering operations,
which restrict the pool of bi-grams to have the additional words xyn, ynx,
yax, yvx, belonging to the following sets: hyponyms, visual adjectives, and

6http://catalog.ldc.upenn.edu/LDC2003T05
7http://books.google.com/
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present participles respectively.

3.2. Semantic filtering: hyponyms

In this case we focus on noun-noun bi-grams {xyn} , {ynx}. Among all
the bi-grams of this kind, the interest is focused on those in which the noun
yn is a hyponym of x. This is aimed at capturing many diverse specifications
of the target word under analysis, and as a consequence highly heterogenous
images. To this sake, WordNet is deployed [13], checking whether yns are
hyponyms of x.

WordNet is a lexical resource structured as a tree, whose nodes are con-
nected by lexical and semantic relations; each node in WordNet is a synset,
and some of the relations connecting synsets are hyponymy (linking a more
generic concept to more specific ones) and its opposite relation, hypernymy
(linking a more specific concept to more general ones), meronymy (linking
concepts denoting a certain entity with concepts denoting its parts), and so
on.

We decided not to use hypernyms at this stage, because, given the fact
that they are more general, the risk is that they would retrieve images of
objects that do not belong to the class of interest, but to some “sibling” class.
In addition, a correct hypernym is already given as input to the system, that
is, h, which will be used directly in the image collection step.

Moreover, we decided not to use meronymy, both because parts of the
objects are very often not visible in pictures and, when they are, if the term
denoting them is used in association with the target word, the search would
probably render many images of the part itself rather than of the object.
This is due to the fact that linguistically people tend to disambiguate the
reference of the name of a part specifying the object it is part of, rather than
vice versa. From this pruned dataset, we obtain Mn bi-grams, ranked in
descending order of frequency, obtaining a subset of {xyn}, {ynx}, namely,
{xy′n}, {y′nx}. Table 2 shows the first 10 hyponym bi-grams ordered by
frequency obtained when using x=“cat”, out of the Mn = 611 total bi-grams
retrieved for this target word.

3.3. Semantic filtering: visual adjectives

For the subset of bi-grams adjective + target word {yax}, ranked accord-
ing to their frequency, we can filter those that are relevant from a visual
point of view. We will do this by “climbing up their WordNet tree of hy-
pernyms”, until the upper-most level is reached. In case we find among the
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x Hyponym bi-grams

cat domestic cat, house cat, wild cat, siamese cat, persian cat, european cat,
sand cat, egyptian cat, angora cat, maltese cat.

Table 2: Hypomym bi-grams: the first 10 hyponym bi-grams ordered by frequency ob-
tained when using x=“cat”.

hypernyms “visual property” or “bodily property”, we keep the bi-gram and
use it for the search, otherwise we discard it. The choice to use adjectives as
first components of bi-grams is motivated by the fact that we want to search
for objects on the basis of the qualities that are most often used to describe
them. The decision to filter out all those qualities that are not specifications
of a visual or a bodily property is a consequence of the fact that we are
going to search for images, and so what we are mainly interested in are the
adjectives used to describe the visual appearance of the objects they depict.
Finally, we have chosen to constrain the order of the words by making the
adjective precede the target word, as in discourse the adjective referred to a
noun most of the times precedes it, rather than following it. From this pruned
dataset, we obtain a subset composed by Ma entries, ranked in descending
order of frequency. Thus, we end with a selection of the visual adjective +
target word set {y′ax}. Table 3 shows the first 10 visual adjective bi-grams
ordered by frequency obtained when using x=“cat”, out of the Ma = 1949
total bi-grams retrieved for this target word.

x Visual adjective bi-grams

cat black cat, white cat, gray cat, orange cat, grey cat, blue cat, red cat, green
cat, brown cat, pink cat.

Table 3: Visual adjective bi-grams: the first 10 visual adjective bi-grams ordered by
frequency obtained when using x=“cat”.

3.4. Semantic filtering: present participles

Bi-grams containing verbs {yvx} are also useful to improve the quality of
the image search, in order to capture the target objects in their contexts. A
huge amount of images in the Web have been uploaded by users and depict
objects in certain situations, like being in a particular state (for instance
sitting) or performing an action (e.g. running, being eaten, etc.). But even
in this case, we are interested in words that specify the search, so in a certain
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sense we would like to use verbs as if they were properties associated to
the target object. In discourse this is accomplished by using the adjectival
form of verbs, therefore using them in the present participle form. Like true
adjectives, they usually precede the object they refer to, so we constrain their
order of appearance in the bi-grams. From this pruned dataset, we obtain a
set of Mv bi-grams, ranked in descending order of frequency. This produces a
subset {y′vx}. Table 4 shows the first 10 present participle bi-grams ordered
by frequency obtained when using x=“cat”, out of the Mv = 587 total bi-
grams retrieved for this target word.

x Present participle bi-grams

cat playing cat, sleeping cat, purring cat, looking cat, hunting cat, talking cat,
using cat, missing cat, fishing cat, prowling cat.

Table 4: Present participle bi-grams: the first 10 present participle bi-grams ordered by
frequency obtained when using x=“cat”.

3.5. Combining the bi-grams: two policies

After collecting the subsets {xy′n}, {y′nx}, {y′ax}, {y′vx}, we propose two
ways to proceed: the former, frequency-based combination, where the pool
of bi-grams are collected together and used to crawl images from the web;
the latter, classification-based, where the bi-grams sets are kept separated,
and used to download three separate image datasets. These two strategies
(visible in Fig. 2 and Fig. 3, respectively), are detailed in the following.

Frequency-based combination strategy. In this strategy, all bi-grams are pooled
together, keeping trace of the frequency scores associated to them. These
scores allow to perform a ranking, from which we take the first ten bi-grams,
independently from their semantic nature (nouns, verbs, adjectives). This
gives a new set formed by {xy′′n}, {y′′nx}, {y′′ax}, {y′′vx}. Table 5 shows the 10
bi-grams ordered by frequency obtained when using x=“cat”, resulting from
the frequency-based combination strategy.

At this point, for each bi-gram we take N/10 images (enriching each bi-
gram with the hypernym h). As an alternative, we try to fix the number of
images proportionally to the frequency of the bi-grams, but experimentally
this brought to slightly inferior results. Our composite pool of images is fed
into a single binary classifier, which can be trained without a negative class
(ex.: one-class Support Vector Machine, a generative classifier) or with an
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x Frequency-based combination bi-grams

cat black cat, white cat, domestic cat, house cat, gray cat, playing cat, orange
cat, grey cat, sleeping cat, blue cat.

Table 5: Frequency-based combination bi-grams: the 10 bi-grams ordered by frequency
obtained when using x=“cat”, resulting from the frequency-based combination strategy.

arbitrary negative class. In the case of a standard object classification task
with C classes, the negative class may be composed by pooling together the
remaining C−1 classes. In Fig. 4, 20 images resulting from the image search
are reported, and in particular, in row-major order two images corresponding
to the related bi-grams listed in Table 5, for each bi-gram.

Figure 4: “Cat” images obtained by the frequency-based combination strategy. In row-
major order are reported two images corresponding to the related bi-gram listed in Table 5,
for each bi-gram.

As visible, comparing these images with that of Fig. 1, one can immedi-
ately notice the higher heterogeneity, in pose, appearance and scale.

Classification-based combination strategy. Here the idea is to design a specific
classifier for each of the three subgroups of bi-grams so far obtained, using as
positive set {xy′n}, {y′nx}, {y′ax}, {y′vx}, respectively, with N images, where
each bi-gram is enriched with the hypernym h; as negative sets, the same
considerations made for the previous strategy are applied. When a test image
has to be evaluated, the three classifiers generate three values, expressing the
probability of belonging to that class. A final classification is performed by
applying the standard average vote (experimentally, we observed that the
majority, min and max fusion rules perform worse).

4. Experiments

In this section, we intend to show the quality of the produced training sets
under different perspectives. First, we use the simple K -Nearest-Neighbor
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(KNN) classifier to get a better insight into our approach, analyzing the inter-
mediate results of the process. Then, we employ a state-of-the-art classifier
to compare and contrast the performances of our training sets.

4.1. Dataset creation

For our experiments, we rely on the Google Images search engine to au-
tomatically gather images from the Internet. We take the image classes
contained in the PASCAL VOC 2012 dataset8 [7]: “aeroplane”, “bicycle”,
“bird”, “boat”, “bottle”, “bus”, “car”, “cat”, “chair”, “cow”, “dog”, “horse”,
“motorbike”, “dining table”, “person”, “potted plant”, “sheep”, “sofa”, “train”,
“tv/monitor”. Three are the reasons of our choice of the PASCAL VOC 2012:
the object of interest is not always in the center of the image, it is not re-
stricted to have as the only instance of its class the object in the picture (a
typical setting of the Caltech datasets and the older repositories [4, 5]), and
it is a very popular benchmark in the literature.

As first analysis, we automatically generate 5 different training sets of
N = 100 images each, for all the VOC classes; each dataset corresponds to
one particular intermediate result of our strategy, in particular:

Basic filter (basic) we use as keywords the top 10 bi-grams obtained from
the Ngram corpus, by applying the basic filter described in Sec. 3.1,
(see Table 13);

Hyponyms (hyp) keywords are the top 10 bi-grams obtained by applying
the hyponyms selection filter described in Sec. 3.2, (see Table 14).

Visual adjectives (vadj ) we use as keywords the top 10 bi-grams obtained
by applying the visual adjectives selection filter described in Sec. 3.3,
(see Table 15).

Present participles (prepar) keywords are the top 10 bi-grams obtained
by applying the present participles selection filter described in Sec. 3.4,
(see Table 16).

Frequency combination (fcomb) keywords are the top 10 bi-grams ob-
tained by applying the frequency-based combination strategy described
in Sec. 3.5.

8http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/
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Please note that the classification-based version, ccomb, has not a dataset on
its own, as it consists of three classifiers trained on images of the hyp, vadj,
prepar, respectively.

In the five strategies listed above, we add for each bi-gram the hypernym
h; in particular, for the class “person” h is “being”, for the classes “bird, cat,
cow, dog, horse, sheep” h is “animal”, for the classes “aeroplane, bicycle,
boat, bus, car, motorbike, train” h is “vehicle”, and, finally, for the classes
“bottle, chair, sofa, tv/monitor” h is “physical object”. Please note that
we do not consider the classes “dining table” and “potted plant” since they
are already in the form of bi-gram: adding another term to their specifica-
tion would generate tri-grams and the comparison would not be meaningful
anymore. For each bi-gram in the considered pool (basic filter, hyponym,
visual adjective, present participle, frequency combination) we keep the first
10 images provided by Google; this allows to collect N = 100 images per
class; in case the bi-grams are less than 10, say n, we select the top-ranked
bN/nc images per bi-gram.

In order to provide an example of how the final frequency combination
dataset is obtained with our method, we show here an excerpt for each
dataset, formed by 20 images each; here, the i-th pair of images (in row-
major order) derives from the two top-rank images of the i-th bi-gram being
analyzed. In cases in which the number of bi-grams is less than 10, say n,
we show the top b20/nc images per bi-gram. The bi-grams and the related
images are reported in Fig. 6 for the class “aeroplane”, and in Figg. 7-8
for the classes “cat” (partially discussed in the introduction), and “sofa”,
respectively.

In addition, for each class we show the first 20 top-rank images for the
Google basic approach (Google), that is, images obtained from the Google
Images search with the target word. Please note that this approach is also
used in [14, 15], so that it has to be considered a standard competitor of our
strategy. Finally, we also plot 20 random images of the PASCAL VOC 2012
dataset (VOC ), as further term of comparison.

Looking at the images of the Google dataset, one can immediately no-
tice how the typology of the images is restricted, centered on aircrafts for
public transportation, mostly flying, where the dominant color of the ves-
sels is white; this represents an important limitation, since aeroplanes can
also be taking on/off, on the floor in the hangar, on maintenance etc. Our
methodology solves this problem: starting with the basic filtering on the
bi-grams (which exhibits many outliers), the hyphonym bi-grams introduce
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Type Top 10 bi-grams and related images

basic german aeroplane, two aeroplane, curtiss aeroplane, model aeroplane, enemy aero-
plane, first aeroplane, aeroplane company, british aeroplane,one aeroplane, aeroplane
engines.

hyp jet aeroplane, fighter aeroplane

vadj light aeroplane, red aeroplane, white aeroplane, silver aeroplane, blue aeroplane,
black aeroplane, navy aeroplane, green aeroplane, gray aeroplane, gold aeroplane.

prepar flying aeroplane, bombing aeroplane, fighting aeroplane, making aeroplane, carrying
aeroplane, scouting aeroplane, building aeroplane, manufacturing aeroplane, wing
aeroplane, using aeroplane.

fcomb light aeroplane, flying aeroplane, bombing aeroplane, fighting aeroplane, making aero-
plane, jet aeroplane, carrying aeroplane, red aeroplane, white aeroplane, scouting
aeroplane.

Google

VOC

Table 6: Qualitative analysis of the different datasets related to the class “aeroplane” ob-
tained by applying our strategy of frequency-based combination (fcomb), but also showing
the intermediate basic, hyp,vadj and prepar datasets, together with the competitor Google
and the original VOC. For each bi-gram, two images have been reported, following their
row-major ranking in the list. 17



other kinds of aeroplanes (the military ones); the visual adjective bi-gram
set adds some other typologies (light) and provides planes of different colors.
Finally, the prepar set makes it possible to focus on aeroplanes in many dif-
ferent scenarios. The final fcomb dataset takes elements from these previous
datasets, exhibiting images definitely more various than those of Google, and
in this sense most similar to those of the VOC dataset.

Anyway, this comes with a price: in facts, in some cases outliers are
produced, especially in the case of the prepar dataset, in which some verbs
are clearly connected to the term “aeroplane” as direct object, and are not
used for better specifying the term “aeroplane”. This is the case of “building,
manufacturing aeroplane” and “using aeroplane”, that indicate the fact that
someone else is building and using the aeroplane, respectively: this brings
to images where parts of the aeroplane are portrayed, or images where a
toy model of a plane is built, or that show people on a plane. Anyway, the
overall effect in terms of classification accuracy (see later) and in terms of
outliers suggests that this is not a crucial issue, and that having more various
pictures of the object of interest is more important. This reasoning brings in
the problem of outliers, what they are, how they are defined, when an image
is dubbed as outlier, etc. Such issues will be discussed and analyzed later on
in the paper.

The other case analyzed is that of the “cat” category (Fig. 7), whose bi-
grams have been already shown in Sec. 3. Even in this case, one can notice
that the final frequency-based combination dataset is richer in terms of visual
heterogeneity with respect to the Google search results. It is interesting to
note that in some cases “strange” images pop out, for example in correspon-
dence of the green cat; looking at Google, many images report cats with green
eyes, but the images portrayed here are the most ranked ones. A similar ar-
gument holds for “pink cat”, which in the text usually specifies the Sphynx
cat, but here we have these painted-pink cats as the highest ranked image.
Apparent outliers are also present here, like the “talking cat”, represented
by synthetic images.

The last case analyzed is that of the “sofa” category (Fig. 8). The con-
siderations that could be assessed in this case are similar to those reported
for the other target words, that is, our pool of images appear to report more
typologies of the target word taken into account (“sofa bed”,“convertible
sofa” ), with many images where the object denoted by the target word is
embedded in a real scenario; sofas are often in a room and the illumination,
scale, pose are diverse; in some cases we can see also people seated on them;
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Type Top 10 bi-grams and related images

basic black cat, wild cat, white cat, old cat, fast cat, big cat, little cat, gray cat, domestic
cat, dead cat.

hyp domestic cat, house cat, wild cat, siamese cat, persian cat, european cat, sand cat,
egyptian cat, angora cat, maltese cat.

vadj black cat, white cat, gray cat, orange cat, grey cat, blue cat, red cat, green cat, brown
cat, pink cat.

prepar playing cat, sleeping cat, purring cat, looking cat, hunting cat, talking cat, using cat,
missing cat, fishing cat, prowling cat.

fcomb black cat, white cat, domestic cat, house cat, gray cat, playing cat, orange cat, grey
cat, sleeping cat, blue cat.

Google

VOC

Table 7: Qualitative analysis of the different datasets related to the class “cat” obtained
by applying our strategy of frequency-based combination (fcomb), and showing the inter-
mediate basic, hyp,vadj and prepar datasets, together with the competitor Google and the
original VOC. For each bi-gram, two images have been reported, following their row-major
ranking in the list. Dead cats images have been removed for ethical reasons.
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Type Top 10 bi-grams and related images

basic leather sofa, room sofa, sofa bed, old sofa, sofa cushions, two sofa, small sofa, horse-
hair sofa, comfortable sofa, sofa beside.

hyp sofa bed, convertible sofa, divan sofa.

vadj green sofa, white sofa, red sofa, blue sofa, brown sofa, black sofa, pink sofa, gray sofa,
orange sofa, purple sofa.

prepar matching sofa, sagging sofa, looking sofa, facing sofa, inviting sofa, spring sofa, re-
clining sofa, including sofa, lounging sofa, imposing sofa.

fcomb sofa bed, green sofa, convertible sofa, white sofa, red sofa, blue sofa, matching sofa,
sagging sofa, brown sofa, looking sofa.

Google

VOC

Table 8: Qualitative analysis of the different datasets related to the class “sofa” obtained
by applying our strategy of frequency-based combination (fcomb), and showing the inter-
mediate basic, hyp,vadj and prepar datasets, together with the competitor Google and the
original VOC. For each bi-gram, two images have been reported, following their row-major
ranking in the list.
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all this is absolutely absent in the images of Google.
Summing up these qualitative observations, we can state that the dataset

produced by our method is actually a compromise between those benchmarks
which focus mainly on the item of interest, discarding the rest (like the Cal-
tech series, see later in the paper) and the ones which capture the objects
in their context (like PASCAL VOC series). Each of these two paradigms
of object visualization (1-discarding the background, 2-including the back-
ground) have pros and cons: in the former, the classifier can capture the
precise essence of the object of interest, without being distracted by other
entities in the scene. On the other hand, capturing the context is without
any doubt a key element for inferring the nature of an object (given the fact
that I recognize a road in the image, it is more probable to observe o motor-
bike than a shark on top of it). That is to say, the datasets produced by our
approach seem to be more general than those hand-crafted by scientists so
far. In the following, we will validate this assumption experimentally.

4.2. Evaluating the number of outliers

When evaluating a procedure which builds a dataset for object recogni-
tion, it is important to check how many outliers have been produced. The
lower is the number of outliers in a dataset, the more precise is the classifi-
cation model in avoiding false positives.

This introduces a much more intriguing question, that is, how to distin-
guish true positives from outliers. In some cases the decision is straightfor-
ward: images in which the target object is the main subject are positive,
those in which no instance of the target object is present are negative. But
what about more ambiguous cases, like photos of parts of the object, pic-
tures that are caricatures or cartoons, images in which the object is not in
the foreground and is surrounded by several other different objects? Decid-
ing which images to include in a positive or in a negative training set is a
general problem, which lacks the best solution. The goodness of the choice
strongly depends on the purpose of the classification. Suppose the goal of
the classification is to retrieve the largest number of representations of the
target object; probably one would like to have a “permissive” classifier that
includes as instances of the objects all the examples mentioned above. But
if the classification task is part of a more complex endeavor, like for instance
that of enabling a robot to recognize an object, grab it and use it for ac-
complishing a precise action, then we would want the classifier to work in a
more “restrictive” way. Our long term vision is to use classification as a first
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Type Example images

unrelated

irrelevant part

internal part

background

drawings

Table 9: Example of outliers images for class “car”.

step of a reasoning process on the connections of the various objects in an
environment and on the events in which they are involved. Ontology-based
approaches provide the formal tools to distinguish an object from its parts,
from the event it participates to and from the representations of it – just to
name a few – and allow to infer new properties and relations of such object
by leveraging on the axioms that explain the connections between all these
elements.

This is the main reason why we have chosen to use a restrictive strategy
in dubbing as outliers:

• images completely unrelated with the object;

• irrelevant parts of the object, that is, parts that alone are not sufficient
to make the object identifiable;

• internal parts of the object (like the cockpit of an aeroplane);

• the object in the background;

• drawings and caricatures of the object.

Following these annotation guidelines, we analyze all the images of the
classes found by our fcomb approach and those found by the Google method,
reported in Table 109. As a general note, we can see that we reduce the

9In general, the outliers of fcomb and of ccomb are in similar proportions.
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outliers rate only in half of the classes, while we allow more outliers in the
second half. In particular, in two classes we increase the number of outliers
of a significant amount (person and tv/monitor), but, as we will see, we do
not decrease performances in the classification task. In our opinion this is
because our method, though increasing the number of outliers for such cases,
at the same time ensures a wide variety in terms of training images: different
kinds of the target objects and different viewpoints. In this way we are able
to avoid problems related to overfitting of a particular kind of target object
– i.e. 90% of the images of person collected with the Google method are
actually ‘faces’.

Google fcomb
Class outliers good outliers good
Aeroplane 69 131 64 136
Bicycle 65 135 43 157
Bird 50 150 51 149
Boat 20 180 51 149
Bottle 17 183 52 148
Bus 30 170 64 136
Car 30 170 47 153
Cat 80 120 55 145
Chair 5 195 23 177
Cow 52 148 47 153
Dog 48 152 46 154
Horse 66 134 65 135
Motorbike 69 131 60 140
Person 11 189 102 98
Sheep 58 142 53 147
Sofa 7 193 13 177
Train 76 124 72 128
Tvmonitor 37 163 116 84

Table 10: Comparison between Google and fcomb with respect to outliers’ handling.

Concluding this section, we believe that being restrictive in labeling an
image as inlier is also a good practice, given that it is generally easier to
lessen constraints rather then to strengthen them.
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4.3. Object recognition by KNN classification
Inspired by [12], a KNN approach is used to test the dataset produced

by our method, considering both the frequency-based combination strategy
(fcomb), and adding the classification-based combination strategy ccomb; we
consider also the datasets obtained by the intermediate steps of our method
discussed in the previous qualitative experiment, that is, basic, hyp, vadj,
prepar.

In the experiment evaluating the fcomb methodology, for each class, we
build a binary classifier by using N positives, where N is the dimensionality
of the PASCAL VOC 2012 training set for each class, and the same number
of negative training samples; the positives taken from the fcomb dataset,
the negatives randomly taken from the positive samples of the other classes,
in a uniform way (that is, each class contributes with the same number of
elements in creating the negative class). We resize all the images, both from
the training and the testing sets, to 32×32 pixels; we compute then the
feature descriptors simply by considering the RGB coordinates of each pixel.
For selecting the neighbors, we use as metrics the sum of squared distances
(SSD). Each positive training sample that has been individuated as neighbor
of a test image votes ‘+1’ for that image, a negative neighbor gives ‘-1’; the
summation of all the votes individuates the winning class (considering the
sign) and a sort of “confidence” by considering the module.

For evaluating the ccomb methodology, a classifier for each of the posi-
tive datasets hyp, vadj, prepar is instantiated, the negative being the same
dataset of the previous trial. This way, each classifier gives a signed score
measuring the confidence of having a test set belonging to a particular class
(or its negative). These three confidences are then mediated to get the final
classification score.

To indicate the number of neighbors, we select K = 49. To evaluate
performances, we employ PASCAL VOC’s interpolated average precision
(AP) [21]: the precision/recall curve is interpolated by using the maximum
precision observed across all cutoffs with higher recall, and the AP is the
value of the area under this curve; in practice this metric penalises approaches
which classify only a subset of images with high precision (see [7] for more
details).

As competitive approaches, we include the Google approach [14, 15], that
is, considering as positive the N top ranked images obtained by searching
the target word with Google Images search; as reference, we consider also
the results obtained with the PASCAL VOC 2012 training set. As testing
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prepar  MAP=0.11197
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fcomb   MAP=0.13252
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Figure 5: AP values on each Pascal VOC class obtained by the KNN classifier, comparing
the two strategies of our approach (fcomb and ccomb), the intermediate strategies basic,
hyp, vadj, prepar, the comparative approach Google [14, 15] and the reference VOC. MAP
stands for mean AP, computed on all the per-class APs. Better viewed in colors.

set, the whole PASCAL VOC 2012 validation set has been considered. The
results are shown in Fig. 5.

Even if the scores are quite low (we are facing a hard problem with a
straightforward classifier), the results lead to some evident conclusions: 1)
using solely the Google Images search engine for creating an object recog-
nition dataset is not very effective; in practice, the reasons are explained in
the previous qualitative experiment - technically speaking, our datasets cap-
ture in a better way the intra-class visual variance; 2) enriching the target
word with some additional terms coming from one of our intermediate strat-
egy basic, hyp, vadj, prepar boosts the performance; 3) the frequency-based
fusion fcomb version gives the highest performance (MAP=0.13252) among
our strategies, followed by the classification-based combination version ccomb
(MAP=0.12604). 4) Our two strategies are not so far from the performance
obtained by the PASCAL VOC training set, especially the fcomb version.
In particular, looking at the curves, we can observe that in some cases the
AP obtained with our two strategies is slightly higher than that obtained by
the VOC dataset (see the AP related to the classes “bird”, “bottle”, “car”,
“dog”, “horse”, “motorbike”, “sofa”). This fact can be explained once again
by the high heterogeneity enforced by our semantically driven image collec-
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tion system. As a confirmation, one can simply observe Table 8 concerning
the “sofa” class: here the typology of our images (see the fcomb row) match
better than the other methods the VOC’s typology.

4.4. Object recognition using Convolutional Neural Networks

In this experiment, we follow one of the leading approaches in large scale
object recognition, namely Convolutional Neural Networks (CNNs). Popu-
larized by the performance of [22] on the ImageNet 2012 classification bench-
mark, CNNs have been shown to be excellent features extractors when used
on different datasets w.r.t. the one originally used for training [23]. In partic-
ular, we use a publicly available pre-trained CNN [24] to retrieve the weights
in the 7th layer of the network when it is forward-fed with input images (see
[16] for more details). We then use these 4096-dimensional sparse vectors to
train a linear SVM [25] for each object class, optimized on a random half of
the VOC validation set and tested on the remaining half.

In Fig. 6, we compare the AP values obtained with our classification-
based combination strategy ccomb against the stock VOC training data and
against the training sets obtained by the Google approach [14, 15], using a
similar amount and distribution of images as in VOC, with less populated
classes, like “cow” and “sheep”, and more populated ones, like “person”.
For the sake of visual clarity, we do not report here the performance of the

aereo bicycle bird boat bottle bus car cat chair cow dog horse mbike person sheep sofa train tvmonitor  
20

30

40

50

60

70

80

90

100

Pascal VOC 2012 Object classes

A
ve

ra
ge

 P
re

ci
si

on
 (A

P)

 

 

VOC training (MAP 79.3)
ccomb (MAP 72.9)
Google (MAP 70.0)

Figure 6: AP values on each Pascal VOC class by the CNN-based classifier trained on the
stock training data and the training sets obtained by our proposed method using Google
(mean AP is indicated in parentheses).

frequency-based combination version fcomb, obtaining systematically lower
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results than ccomb. As first evident fact, performance is much higher if
compared to the KNN results, due to the sophisticated features extracted
from the images by the CNN. At the same time, the difference among the
ccomb and the VOC approach is higher, with ccomb trailing behind all the
time. This effect can be understood by considering two facts: first, the CNN
feature extractor (in its original version [24]) has been trained on ImageNet
clean images, which do not include outliers like drawings, synthetic images
etc. Second, and especially for few classes, our approach collects a consistent
number of outlier images which actually are drawings, 3D models etc: see
for example Table 10, the class “person”, of which some outliers are shown
in Fig. 7a.

a)

b)

c)

Figure 7: Some outliers of the class “person” regarding the ccomb approach (a) and some
inliers for the Google approach (b) and ccomb approach (c).

These two facts may have caused the high discrepancy between the “per-
son” results shown in Fig. 5 and those reported here (Fig. 6). Another
observation is that the ccomb approach in some cases do not outperform
drastically the simple approach. Even in this case, the reason may lie in the
higher number of outliers in few cases. Still, it is worth noting that even
with noisy samples, our system ensure higher variability, allowing to system-
atically overcome the Google method; as an example, we can focus again on
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Figure 8: Classification performances while changing the cardinality of the dataset; the
abscissa is scaled logarithmically to better show the behavior at low cardinalities.

the class “person”, where the Google approach exhibits very similar pictures
(Fig. 7b), if compared to our set of inlier images (Fig. 7c).

4.5. Changing the dataset cardinality

A crucial aspect worth investigating in our framework is the classification
behaviour when changing the cardinality of the training dataset. In par-
ticular, it is interesting to analyze what happens both when the number of
available images is small (mimicking a fast, time-constrained system), and
when it is arbitrarily large (asymptotic behavior).

Thus, we fix a set of predetermined cardinalities10 for the size of each class,
and evaluate our datasets against Google and PASCAL VOC 2012. Since
many images in the latter are shared – they contain multiple objects within
– we choose to pick the class-exclusive images first and the shared ones after
those are exhausted, to keep the negative sets balanced as long as possible.
Since the PASCAL VOC images are not ranked like the searched images,
every experiment at a given cardinality is repeated 10 times on random draws
(giving priority to the class-exclusive first) and averaged.

For Google and ccomb, the approach is deterministic and amounts to
taking one image without replacement from each bi-gram in turn (where the
bi-grams are ordered by descending frequency), then starting again from the
first bi-gram until all the images have been exhausted. When the desired

10We choose {1, 2, . . . , 10, 20, . . . , 100, 150, . . . , 450, 476} as class sizes; larger sizes are
inconvenient to handle and add little information.
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Test on: Mean
Train on: PASCAL

VOC
Caltech-256 ImageNet GRAZ others

PASCAL VOC 88.46 96.52 93.20 92.10 93.94
Caltech-256 85.96 99.95 98.15 92.78 92.30
ImageNet 85.74 99.75 98.58 93.29 92.93
GRAZ 81.50 97.65 92.91 97.51 90.69

Google 73.29 98.91 95.47 84.71 88.09
ccomb 75.25 99.57 96.56 84.84 89.06

Table 11: Cross-dataset generalization on the class “person”.

cardinality is bigger than the available images for a given class, this class
stops growing, and only acquires negative samples through the enlarging of
the other classes.

In Fig. 8, we show the resulting APs averaged over all the classes: as
expected, PASCAL VOC has considerable variance with low cardinalities
and becomes stable as the size increases; Google and ccomb perform better
than PASCAL VOC at the beginning – thanks to the images being more
relevant – but are overtaken after size 7 and 15, respectively. Towards bigger
sizes, they show a very slight uptrend, but it is unlikely they will reach
the PASCAL VOC performance. ccomb shows to be an improvement w.r.t.
Google, due to the bigger number and variety of starting images, which is
promising in light of future expansions of our approach. Note that Fig. 6 has
slightly different APs because of the mismatched class sizes.

4.6. Evaluating the generalization capabilities

Of significant interest for the practical usefulness of our approach is how
well the training datasets generalize beyond the insights gathered on PAS-
CAL VOC. One way to gain an approximate idea is by performing cross-
dataset evaluations between different benchmark datasets, and comparing
the relative performance of our training sets. Following [3], we set out to
explore cross-dataset generalization on two test classes: “person” and “cat”
(note that the results of [3] will not be directly comparable). For each class,
we perform 10 randomized experiments with 200 positive and 400 negative
samples split into 50% for training, 25% for cross-validation and 25% for
testing. As source of the negative samples, we still use the “other” classes of
PASCAL VOC, and while the negative sets are kept the same, we swap the
positive sets from the benchmark datasets, or provide our training sets.
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Test on: Mean
Train on: PASCAL

VOC
ImageNet OxfordPet others

PASCAL VOC 93.87 96.07 98.27 97.17
ImageNet 92.24 96.90 98.15 95.20
OxfordPet 92.36 96.07 99.34 94.22

Google 80.99 92.76 96.32 90.02
ccomb 86.48 96.10 97.93 93.50

Table 12: Cross-dataset generalization on the class “cat”.

In Table 11, we report the APs averaged on 10 runs for the datasets PAS-
CAL VOC, Caltech-256, ImageNet and GRAZ on class “person”. Despite
underperforming on PASCAL VOC, the same training sets of Google and
ccomb do very well on Caltech-256 and ImageNet, exceeding PASCAL VOC
itself. On average, they display good generalization, on par with hand-crafted
training sets, and ccomb edges ahead of Google by a small margin.

In Table 12, we report the APs averaged on 10 runs for the datasets
PASCAL VOC, ImageNet, and OxfordPet on the class “cat”. This time,
ccomb has a larger advantage on Google and it is explained by a very good
performance of the prepar and vadj keywords.

5. Conclusions

In this paper we face the new problem of building a training dataset for an
object classifier, in a completely automatic fashion. Given a list of objects,
for each one of them we want a binary classifier; following the well-known
PASCAL VOC structure, the idea is to collect a positive image dataset,
where the images portray different visual aspects of the object of interest.
So far, this task has been pursued by crawling image search engines by using
the target word denoting the object of interest. Here, we make a substan-
tial step ahead, enriching the text strings with elements that model many
different aspects of the object under analysis. The results, obtained by us-
ing both a standard KNN classifier and a most powerful convolutional net
trained on our dataset, promote our idea: specifying objects with hyponyms,
visual adjectives and present participles allows to increase the visual vari-
ability, getting different information to be encoded by a classifier. The whole
process takes around 20 minutes for the PASCAL VOC 2012 dataset, getting
performances that are not too far from the figure of merits obtained with the
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Class # bi-grams Top 10 bi-grams

aeroplane 872 german aeroplane, two aeroplane, curtiss aeroplane, model aero-
plane, enemy aeroplane, first aeroplane, aeroplane company,
british aeroplane,one aeroplane, aeroplane engines

bicycle 2994 bicycle riding, bicycle shop, bicycle wheel, bicycle ergometer,
new bicycle, bicycle race, stationary bicycle, bicycle ride, bicycle
pump, riding bicycles

bird 16500 little bird, young bird, small bird, wild bird, game bird, bird
sing, migratory bird, white bird, old bird, bird species

boat 3542 small boat, little boat, fishing boat, open boat, torpedo boat,
motor boat, flying boat, patrol boat, ferry boat, canal boat

bottle 7964 two bottle, water bottle, glass bottle, empty bottle, one bottle,
beer bottle, small bottle, wine bottle, plastic bottle, another
bottle

bus 2701 school bus, data bus, address bus, local bus, greyhound bus,
city bus, shuttle bus, montgomery bus, pci bus, tour bus

car 5320 new car, motor car, police car, street car, sports car, used car,
rental car, patrol car, old car, passenger car

cat 3101 black cat, wild cat, white cat, old cat, fast cat, big cat, little
cat, gray cat, domestic cat, dead cat

chair 16158 two chair, rocking chair, easy chair, leather chair, folding chair,
empty chair, wooden chair, comfortable chair, one chair, backed
chair

cow 31958 two cow, dairy cow, one cow, milk cow, per cow, milch cow,
sacred cow, old cow, mad cow, cow dung

dog 45412 dog is, hot dog, little dog, mad dog, prairie dog, old dog, two
dog, like dog, other dog, bulldog

horse 5111 white horse, black horse, crazy horse, old horse, good horse,
trojan horse, wild horse, light horse, dark horse, dead horse

motorbike 29 small motorbike, new motorbike, old motorbike, red motorbike,
honda motorbike, little motorbike, powerful motorbike, bmw
motorbike, davidson motorbike, big motorbike

person 8777 young person, single person, second person, average person, par-
ticular person, older person, human person, sick person, differ-
ent person, white person

sheep 8287 black sheep, lost sheep, mountain sheep, bighorn sheep, hun-
dred sheep, thousand sheep, one sheep, two sheep, many sheep,
merino sheep

sofa 5347 leather sofa, room sofa, sofa bed, old sofa, sofa cushions, two
sofa, small sofa, horsehair sofa, comfortable sofa, sofa beside

train 4731 wagon train, freight train, long train, passenger train, special
train, express train, night train, railroad train, railway train,
pack train, o’clock train

tvmonitor 3308 cable tv, watching tv, watch tv, color tv, satellite tv, local tv,
watched tv, national tv, screen tv, network tv

Table 13: Top 10 bi-grams obtained from the Ngram corpus, by applying the basic filter.
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Class Top 10 hyponym bi-grams

aeroplane jet aeroplane, fighter aeroplane
bicycle safety bicycle, tandem bicycle, ordinary bicycle
bird flying bird, night bird, aquatic bird, flightless bird, passerine bird, gallinaceous bird,

cock bird, hen bird, ratite bird, carinate bird
boat small boat, ferry boat, canal boat, river boat, pilot boat, mail boat, packet boat, tug

boat, police boat, guard boat
bottle water bottle, beer bottle, wine bottle, whiskey bottle, soda bottle, ink bottle, pop

bottle, pill bottle, ketchup bottle, bottle gourd
bus school bus
car police car, sports car, patrol car, squad car, race car, touring car, electric car, electric

car, stock car, racing car
cat domestic cat, house cat, wild cat, siamese cat, persian cat, european cat, sand cat,

egyptian cat, angora cat, maltese cat
chair rocking chair, folding chair, swivel chair, lawn chair, side chair, straight chair, barber

chair, garden chair, fighting chair, feeding chair
cow heifer cow
dog hunting dog, puppy dog, mongrel dog, working dog, toy dog, poodle dog, pug dog,

cur dog, dalmatian dog, coasch dog
horse wild horse, saddle horse, race horse, bay horse, riding horse, sorrel horse, chestnut

horse, roan horse, harness horse, female horse
person good person, dead person, deceased person, deceased person, innocent person, reli-

gious person, best person, bad person, married person, male person
sheep black sheep, domestic sheep, ewe sheep, wether sheep, sheep ram
sofa sofa bed, convertible sofa, divan sofa
train freight train, passenger train, subway train, mail train, car train, boat train, hospital

train, streamliner train
tvmonitor cable tv

Table 14: Top 10 bi-grams obtained by applying the hyponyms selection filter.
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Class Top 10 visual adjective bi-grams

aeroplane light aeroplane, red aeroplane, white aeroplane, silver aeroplane, blue aeroplane,
black aeroplane, navy aeroplane, green aeroplane, gray aeroplane, gold aeroplane

bicycle red bicycle, blue bicycle, black bicycle, green bicycle, white bicycle, pink bicycle,
purple bicycle, silver bicycle, light bicycle, orange bicycle

bird white bird, black bird, blue bird, red bird, brown bird, canary bird, gray bird, green
bird, grey bird, silver bird

boat light boat, white boat, black boat, red boat, green boat, blue boat, gray boat, orange
boat, brown boat, navy boat

bottle green bottle, brown bottle, black bottle, blue bottle, white bottle, red bottle, light
bottle, pink bottle, purple bottle, orange bottle

bus address bus, blue bus, white bus, red bus, black bus, green bus, orange bus, gray
bus, silver bus, brown bus

car black car, red car, blue car, white car, green car, light car, gray car, brown car, grey
car, maroon car

cat black cat, white cat, gray cat, orange cat, grey cat, blue cat, red cat, green cat, brown
cat, pink cat

chair red chair, green chair, blue chair, white chair, black chair, gold chair, silver chair,
brown chair, orange chair, light chair

cow red cow, white cow, black cow, brown cow, purple cow, blue cow, green cow, gray
cow, silver cow, grey cow

dog red dog, black dog, white dog, brown dog, blue dog, green dog, gray dog
horse white horse, black horse, light horse, gray horse, red horse, brown horse, grey horse,

blue horse, green horse, pink horse
motorbike red motorbike, black motorbike
person white person, black person, light person, brown person, red person, green person,

polish person, blue person, straw person, bearing person
sheep black sheep, white sheep, red sheep, blue sheep, brown sheep, green sheep, gray

sheep, bearing sheep, grey sheep, silver sheep
sofa green sofa, white sofa, red sofa, blue sofa, brown sofa, black sofa, pink sofa, gray sofa,

orange sofa, purple sofa
train black train, blue train, white train, red train, light train, green train, gold train,

purple train, sable train, silver train
tvmonitor white tv, color tv, black tv, light tv, colour tv, polish tv, blue tv, red tv, green tv,

gray tv

Table 15: Top 10 bi-grams obtained by applying the visual adjectives selection filter.
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Class Top 10 present participle bi-grams

aeroplane flying aeroplane, bombing aeroplane, fighting aeroplane, making aeroplane, carrying
aeroplane, scouting aeroplane, building aeroplane, manufacturing aeroplane, wing
aeroplane, using aeroplane

bicycle stealing bicycle, renting bicycle, buying bicycle, fixing bicycle, bring bicycle, wheeling
bicycle, parking bicycle, dodging bicycle, owning bicycle, having bicycle

bird singing bird, humming bird, breeding bird, flying bird, mocking bird, nesting bird,
wading bird, eating bird, migrating bird, living bird

boat fishing boat, flying boat, sailing boat, rowing boat, passing boat, rocking boat, mov-
ing boat, cruising boat, sinking boat, racing boat

bottle nursing bottle, weighing bottle, feeding bottle, washing bottle, collecting bottle,
smelling bottle, dropping bottle, throwing bottle, sampling bottle, remaining bot-
tle

bus morning bus, passing bus, sightseeing bus, moving bus, connecting bus, waiting bus,
including bus, during bus, grounding bus, oncoming bus

car sleeping car, dining car, touring car, racing car, moving car, passing car, waiting car,
speeding car, oncoming car, approaching car

cat playing cat, sleeping cat, purring cat, looking cat, hunting cat, talking cat, using cat,
missing cat, fishing cat, prowling cat

chair rocking chair, folding chair, reclining chair, dining chair, matching chair, reading
chair, revolving chair, rolling chair, lounging chair, looking chair

cow milking cow, lactating cow, producing cow, grazing cow, breeding cow, feeding cow,
keeping cow, looking cow, herding cow, including cow

dog hunting dog, barking dog, sleeping dog, running dog, working dog, looking dog,
sporting dog, living dog, howling dog, fighting dog

horse rocking horse, galloping horse, riding horse, running horse, trotting horse, stalking
horse, flying horse, walking horse, kicking horse, bucking horse

motorbike passing motorbike, speeding motorbike
person living person, dying person, missing person, looking person, thinking person, inter-

esting person, loving person, controlling person, caring person, charming person
sheep herding sheep, grazing sheep, wandering sheep, raising sheep, tending sheep, counting

sheep, bleating sheep, shearing sheep, keeping sheep, killing sheep
sofa matching sofa, sagging sofa, looking sofa, facing sofa, inviting sofa, spring sofa, re-

clining sofa, including sofa, lounging sofa, imposing sofa
train moving train, morning train, evening train, approaching train, passing train, speeding

train, oncoming train, following train, waiting train, departing train
tvmonitor watching tv, morning tv, using tv, including tv, making tv, viewing tv, running tv,

doing tv, producing tv, existing tv

Table 16: Top 10 bi-grams obtained by applying the present participles selection filter.
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PASCAL VOC training set (whose data collection required definitely more
time), and are systematically better than the simple search by name per-
formed on Google. As improvements, we plan to employ Flickr as image
source repository, adopting multilingual strategies, and possibly building or
reusing an ontology of the visual connected to a foundational ontology, in
order to be able to leverage not only on the semantic relations holding be-
tween words, but also on the ontological relations between the objects such
words are referred to.
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