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Abstract

This paper is concerned with existence and uniqueness of solu-

tion for the the optimal control problem governed by the stochastic

FitzHugh-Nagumo equation driven by a Gaussian noise. First order

conditions of optimality are also obtained.

1 Introduction

Consider here the reaction-di�usion equation
dX(t, ξ)−∆ξX(t, ξ)dt+ f(X(t, ξ))dt =

√
QdW (t) + F (t, ξ) dt (t, ξ) ∈ [0, T ]×O ,

X(t, ξ)|∂O = 0, t ∈ [0, T ] ,

X(0, ξ) = x(ξ), ξ ∈ O, x ∈ L2(O)

,

(1.1)

in a probability space (Ω,F ,P), where f(u) = u(u − a)(u − b), ∀u ∈ R,
O ⊂ Rd, d = 1, 2, 3 is a bounded and open set with smooth boundary ∂O,
W (t) is a cylindrical Wiener process and Q ∈ L(L2(O), L2(O)) (the space
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of linear and continuous operator from L2(O) into itself equipped with the
operator norm) is a self-adjoint positive operator with TrQ < ∞. Here a,
b ∈ L∞([0, T ] × O) and x ∈ L2(O) are given. Also F ∈ L2([0, T ] × O).
We shall denote by (Ft)t≥0 the natural �ltration induced by W (t). Equation
(1.1) can be rewritten as follows{

dX(t) + AX(t)dt+ f(X(t))dt =
√
QdW (t) + F (t) dt, t ∈ [0, T ] ,

X(0) = x, x ∈ L2(O)
,

(1.2)
A being the Laplace operator −∆ξ with domain D(A) := H1

0 (O) ∩ H2(O).
In the special case a, b ∈ R, (1.1) is the dimensionless form of the celebrated
FitzHugh-Nagumo equation, see, e.g., [1] and reference therein, perturbed
by a coloured Gaussian noise

√
QẆ . Its deterministic counterpart has been

introduced by FitzHugh (1922�2007) and Nagumo, see [18, 20] in order to
model the conduction of electrical impulses in a nerve axon. In particular
X is the nerve membrane potential and F := −V + I where V is the ion
concentration and I is the applied current. The Gaussian perturbation is the
e�ect of random input currents in neurons and their source is the random
opening or closing of ion channels, see, e.g. [23]. In 2-D and 3-D equation
(1.1) is relevant in statistical mechanics where it is called Ginzburg-Landau
equation and also in phase transition models of Ginzburg-Landau type, see,
e.g. [15]. We would like to underline that nonlinear potential of the form
f(u) = u(u − a)(u − b) arising here are speci�c for di�usion processes in
excitable media or for phase transition.

In what follows we will study the optimal control problem for (1.1) pro-
viding an existence and uniqueness result as well as the �rst order necessary
conditions for optimality, namely the maximum principle. In Sec. 2 we shall
prove the well-posedness of problem (1.1), see [9] for other results of this
type.

The existence of a solution to optimal control problem (P) will be proved
under suitable conditions on time interval [0, T ] and the cost functional in Sec.
2. It should be mentioned that there exists a large literature concerning the
optimal control problems governed by the deterministic FitzHugh-Nagumo
equation, see, e.g., [10, 19], while to the best of our knowledge, the stochas-
tic case that we are interested in, lacks of such results. The motivation is
that existence of an optimal control for the stochastic problem we consider
here is quite a delicate problem which cannot be solved with standard op-
timization arguments which require the weak lower semicontinuity of cost
functional in the control basic space and a more subtle argument based on
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Eckelands's variational principle was used. The existence result we obtain
here is the main novelty of this work. To prove the existence of an optimal
control an essential property of nonlinear function f is that it is ultimately
monotonically increasing, that is outside a bounded interval.

We shall use the basic notions and standard notation Lp(O), 1 ≤ p ≤ ∞
and Hk(O), k = 1, 2, H1

0 (O) for spaces of Lebesgue p−integrable functions
on O and respectively, Sobolev spaces on O. The norm in Lp(O) will be
denoted by | · |p = ‖ · ‖Lp(O) and the scalar product in L2(O) by 〈·, ·〉2. Given
a Banach space Y we shall denote by |·|Y its norm. By C ([0, T ];Y ) we denote
the space of Y−valued continuous functions on [0, T ] and by Lp ([0, T ];Y )
the space of p−integrable Y−valued functions on [0, T ]. By W 1,p ([0, T ];Y ),
1 ≤ p ≤ ∞ we shall denote the space of absolutely continuous functions
u : [0, T ]→ Y such that du

dt
∈ Lp ([0, T ];Y ).

We shall use the standard notations, see, e.g. [11], for spaces of pro-
cesses de�ned in probability space

(
Ω,F ,P, (Ft)t≥0 ,W

)
. CW ([0, T ];L2(O))

is the space of all L2(O)−valued (Ft)t≥0−adapted process such that u ∈
C ([0, T ];L2 (Ω, L2(O))). Similarly, L2

W ([0, T ];H1
0 (O)) is the space of all

(Ft)t≥0−adapted processes u ∈ L2 ([0, T ];L2 (Ω, H1
0 (O))).

We denote by WA the stochastic convolution de�ned by

WA(t) :=

∫ t

0

e−(t−s)A
√
QdW (s), ∀ t ≥ 0 .

In the following we shall assume that

E

[
sup

(t,ξ)∈[0,T ]×O
|WA(t, ξ)|2m

]
<∞ ,m ∈ [1, 2] . (1.3)

Su�cient conditions for (1.3) to hold are given in [11, Th.2.13]. We refer to
[7] for standard results on convex analysis which will be used in the following.

2 Existence for equation (1.1)

De�nition 2.0.1. We say that the function X ∈ CW ([0, T ];L2(O)) is called
a mild solution to (1.1) if X(t) : [0, T ] → L2(O) is continuous P−a.s., ∀ t ∈
[0, T ] and it satis�es the stochastic integral equation

X(t) = e−Atx−
∫ t

0

e−(t−s)A (f(X(s))− F (s)) ds+WA(t), ∀ t ∈ [0, T ] .
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Theorem 2.1. Assume that assumption (1.3) holds and that x ∈ H1
0 (O).

Then there exists a unique solution X to (1.1) which satis�es

X ∈ CW
(
[0, T ];H1

0 (O)
)
∩ L2

W

(
[0, T ];H2(O)

)
∩ L2

(
Ω;C

(
[0.T ];H1

0 (O)
))
.

We note in particular that assumption (1.3) holds if Q = A−
γ
2 , with

γ > d
2
− 1, see, e.g., [11, Prop.4.3].

If we de�ne the stochastic process y := X − WA, then equation (1.1)
reduces to the random parabolic equation
yt(t, ξ)−∆ξy(t, ξ) + y3(t, ξ) + f1(t, ξ)y2(t, ξ) + f2(t, ξ)y(t, ξ) = f3(t, ξ) in [0, T ]×O ,
y(t, ξ) = 0 in [0, T ]× ∂O ,
y(0, ξ) = y0(ξ) , ξ ∈ O

,

(2.1)

where f1, f2 ∈ L∞([0, T ] × O), f3 ∈ L2([0, T ] × O) are (Ft)t≥0−adapted
L2(O)−valued processes on [0, T ]. More precisely f1 = a + 3WA, f2 =
b+ 3W 2

A + 2WA, f3 = −W 3
A − 9W 2

A − bWA + F .
The following proposition states an existence and uniqueness result for

equation (2.1)

Proposition 2.2. Assume x ∈ H1
0 (O). Then there is a unique solutions to

equation (2.1) satisfying P−a.s.

y ∈ C
(
[0, T ];H1

0 (O)
)
∩ L2

(
[0, T ];H2(O)

)
. (2.2)

Moreover the process t 7→ y(t) is (Ft)t≥0−adapted.

Proof. Let us consider, for �xed ω ∈ Ω, the set

K =
{
y ∈ C

(
[0, T ∗];L2(O)

)
: ‖y‖L∞([0,T ∗];H1

0 (O)) ≤ R, 0 ≤ T ∗ ≤ T
}
,

(2.3)
where R is a positive real constant and T ∗ has to be chosen later on.

The set K is closed in C ([0, T ∗];L2(O)) and therefore it is a complete
metric space when equipped with the metric

ρ(y, v) = sup
t∈[0,T ∗]

|y(t)− v(t)|2. (2.4)

Let z ∈ K and let us consider the operation F : K → K de�ned by
Fz = y, where y is solution to
yt(t, ξ)−∆ξy(t, ξ) + y3(t, ξ) = −f1(t, ξ)z2(t, ξ)− f2(t, ξ)z(t, ξ) + f3(t, ξ) in [0, T ]×O ,
y(0, ξ) = x(ξ) in O ,
y(t, ξ) = 0 , (t, ξ) ∈ [0, T ]× ∂O

.

(2.5)
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By standard existence and uniqueness results, see, e.g., [4], problem (2.5)
has a unique solution

y ∈ C
(
[0, T ∗];H1

0 (O)
)
∩ L2

(
[0, T ∗];H2(O)

)
, P− a.s. ,

yt ∈ L2
(
[0, T ];L2 (O)

)
, P− a.s. ,

and by the Sobolev embedding theorem the following estimate holds

‖y(t)‖2
H1

0 (O) +

∫ t

0

|∆ξy(s)|22ds+

∫ t

0

|y(s)|66ds ≤

≤ C1

(∫ t

0

∫
O

(
f 2

1 z
4 + f 2

2 z
2 + f 2

3

)
dξ ds+ ‖x‖2

H1
0 (O)

)
.

(2.6)

By multiplying (2.5) by y, respectively ∆y, and integrating on (0, t)×O
it also follows that

‖y‖2
C([0,T ∗];H1

0 (O)) +

∫ t

0

(
|y(s)|66 + |y(s)|2H2(O)

)
ds ≤

≤ C2

∫ t

0

∫
O

(
|z|4 + |z|2 + 1

)
dξ ds ≤ C3T

∗(R4 +R2 + 1) ,

(2.7)

because ‖y‖H2(O) ≤ C‖∆y‖2 and by the Sobolev embedding theoremsH1
0 (O) ⊂

L6(O). This yields

‖y‖C([0,T ∗],H1
0 (O)) ≤ C3

√
T ∗(R4 +R2 + 1) ,

and so for T ∗ small enough we have that y = Fz ∈ K. Hence F maps K
into itself. Moreover F is a contraction on K under the metric (2.4). Indeed
we have by (2.5)

1

2

d

dt
|y(t)− ȳ(t)|22 + ‖y(t)− ȳ(t)‖2

H1
0 (O) ≤ C

∫
O

(|z − z̄||y − ȳ|(|z|+ |z̄|+ 1)) dξ ≤

≤ C (|z(t)− z̄(t)|2|y(t)− ȳ(t)|3(|z(t)|6 + |z̄(t)|6 + 1)) , a.e. t ∈ [0, T ] ,

the last being implied by the Hölder inequality, namely,
∣∣∫
O uvz

∣∣ ≤ |u|2|v|3|z|6 ,
therefore, we have

|y(t)− ȳ(t)|22 +

∫ t

0

‖y(s)− ȳ(s)‖2
H1

0 (O)ds

≤ C(R + 1)

(∫ t

0

|z(s)− z̄(s)|22ds
) 1

2
(∫ t

0

|y(s)− ȳ(s)|23ds
) 1

2

≤

≤ C2

4
(R + 1)2

∫ t

0

|z(s)− z̄(s)|22ds+

∫ t

0

|y(s)− ȳ(s)|2H1
0 (O)ds ,

(2.8)
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so that

ρ(y, ȳ) ≤ C

2
(R + 1)T ∗ρ(z, z̄) ,

and taking T ∗ < 2
C(R+1)

, we have that F is a contraction on K. Then by the

Banach �xed point theorem on [0, T ∗], there is exists a unique solution y to
(2.5) providing that T ∗ ∈ [0, T ] is su�ciently small.

Let us now show by contradiction, that such a solution exists on a �xed
interval [0, T ]. Indeed if [0, T ∗] is the maximal interval on which y exists, by
(2.5) we have , as mentioned above, that the following estimate holds

‖y(t)‖2
H1

0 (O) +

∫ t

0

(
‖y(s)‖2

H2(O) + |y(s)|66
)
ds ≤

≤ C

∫ t

0

(
|y(s)|44 + |y(s)|22 + ‖f3‖2

2

)
ds, ∀ t ∈ [0, T ∗] .

(2.9)

Taking into account that

|y|22 + |y|44 ≤ ε|u|66 + Cε, ∀ ε > 0 ,

we get by (2.9) that

‖u(t)‖H1
0 (O) +

∫ t

0

‖u(s)‖2
H2(O)ds+

∫ t

0

|u(s)|66ds ≤ C, ∀ t ∈ [0, T ∗] ,

where C is independent of T ∗. Therefore we also have that

| d
dt
y(t)|2 ≤ C1, ∀ t ∈ [0, T ∗] ,

and the limit limt→T ∗ y(t) = y(T ∗) exists with u(T ∗) ∈ H1
0 (O). Then we can

apply the above local existence result, extending y as a solution to (2.1) on
[T ∗, T ∗ + δ], which contradicts the assumption that [0, T ∗] is the maximal
interval of existence, hence T ∗ = T .

Since the right hand side of (3.3) where z = y is in L2(0, T ;L2(O)), we
infer that

y ∈ C
(
[0, T ];H1

0 (O)
)
∩ L2

(
[0, T ];H2(O)

)
, P− a.s. , (2.10)

moreover, since the contraction principle implies that the limit y = limn→∞ yn
belongs to C ([0, T ];L2(O)), where yn = F (yn−1) are (Ft)t≥0−adapted, we
can conclude that y is in fact an (Ft)t≥0−adapted process and so y satis�es
(2.2), as claimed.
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Proof of Theorem 2.1(continued). We set X := y +WA, where y is the solu-
tion to (2.1) given by Proposition 2.2, that is
yt −∆y + y3 + ay2 + by + 3WAy

2 + 3WAy
2 + 2WAy = F −W 3

A − aW 2
A − bWA in [0, T ]×O ,

y = 0 on [0, T ]× ∂O ,

y(0, ξ) = x(ξ) , ξ ∈ O
,

(2.11)

By assumption (1.3) on WA we see that

E

[
sup

(t,ξ)∈[0,T ]×O

(
|f1|2m + |f2|2m

)]
<∞, m = 1, 2 ,

E
[
‖f3‖L2([0,T ]×O)

]
<∞ .

(2.12)

Taking into account (2.11) and (2.1) we get that

y ∈ L2
(
Ω;C

(
[0, T ];L2(O)

)
∩ L2

W

(
[0, T ];H1

0 (O) ∩H2(O)
))
, (2.13)

which implies (2.2) as claimed.

3 The optimal control of stochastic FitzHugh-

Nagumo equation

Let U be a real Hilbert space with the norm | · |U and B ∈ L (U ;L2(O)).
We shall denote by U the space of all (Ft)t≥0−adapted processes u : [0, T ]→
U s.t. E

[∫ T
0
|u(t)|2Udt

]
<∞. The space U is a Hilbert space with the norm

|u|U =
(
E
[∫ T

0
|u(t)|2Udt

]) 1
2
and scalar product

〈u, v〉U =

(
E
[∫ T

0

〈u(t), v(t)〉Udt
]) 1

2

, ∀u, v ∈ U ,

where 〈·, ·〉U is the scalar product of U .
Consider the functions g, g0 : R→ R and h : U → R̄ :=]−∞,∞], which

satisfy the following conditions

(i) g, g0 ∈ C1 (L2(O)) and Dg, Dg0 ∈ Lip (L2(O);L2(O)) (where D stands
for the Fréchet di�erential) and Lip (L2(O);L2(O)) is the the space of
Lipschitz continuous function from L2(O) to L2(O) with the norm de-
�ned denoted ‖ · ‖Lip(L2(O)).
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(ii) h is convex, lower-semicontinuous and (∂h)−1 ∈ Lip(U) where ∂h : U →
U is the subdi�erential of h (see, e.g. [7, p. 82]). Moreover assume
that ∃ α1 > 0 and α2 ∈ R s.t. h(u) ≥ α1|u|2U + α2, ∀ u ∈ U . We set
L = ‖(∂h)−1‖Lip(U) (Here Lip(U) is the space of Lipschitz operators on
U .

We consider the following optimal control problem

MinimizeE
[∫ T

0

(g(X(t)) + h(u(t))) dt

]
+ E [g0(X(T ))] , (P)

subject to u ∈ U and
dX(t)−∆ξX(t)dt+ f(X(t))dt =

√
QdW (t) +Bu(t)dt+ f0dt , in [0, T ]×O ,

X = 0 on [0, T ]× ∂O ,
X(0) = x in O ,

,

(3.1)

where f0 ∈ L∞ ([0, T ]×O).
In the following we shall assume both (2.12) and Tr[QA] <∞, where A

is as above the Laplace operator with domain H1
0 (O) ∩H2(O).

Theorem 3.1. Let x ∈ H1
0 (O). Then there exists C∗ > 0 independent of x

such that for LT + ‖Dg0‖Lip(L2(O)) < C∗ there is a unique solution (u∗, X∗)
to problem (P).

Proof. The proof is based on Ekeland's variational principle already used
in a similar deterministic context (See, e.g. [6]). Namely, we consider the
function Ψ : U → R̄ de�ned by

Ψ(u) = E
[∫ T

0

(g(Xu(t)) + h(u(t))) dt

]
+ E [g0(Xu(T ))] ,

where Xu is the solution to (3.1). It is easily seen by (2.1) that Ψ is lower-
semicontinuous and Ψ(u)→ +∞ as |u|U → +∞.

If Ψ is weakly lower continuous on U this is su�cient for the existence of
a minimum of Ψ on U . In the deterministic case, that is, if Q = 0 the weak
lower continuity of Ψ is a direct consequence of compactness of the map u 7→
Xu from U to C ([0, T ];L2(O)) which is not the case here, that is, this map is
not compact from U to L2 (Ω;C ([0, T ];L2(O))). So the existence in problem
(P) does not follows by standard minimization techniques. However, by the
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Ekeland variational principle, see, e.g., [16], there is a sequence {uε} ⊂ U
such that

Ψ(uε) ≤ inf{Ψ(u) ;u ∈ U}+ ε ,

Ψ(uε) ≤ Ψ(u) +
√
ε |uε − u|U , ∀u ∈ U .

(3.2)

In other words,

uε = arg min
u∈U
{Ψ(u) +

√
ε |uε − u|U} .

Hence (Xuε , uε) is a solution to the optimal control problem

min

{
E
[∫ T

0

(g(Xu(t) + h(u(t))) dt

]
+ E [g0 (Xu(T ))] +

+
√
ε

(
E
[∫ T

0

|u(t)− uε(t)|2U dt
]) 1

2

;u ∈ U

}
.

(3.3)

The latter means that for all v ∈ U and λ > 0

E
[∫ T

0

(
g(Xuε+λv(t) + h((uε + λv)(t))

)
dt

]
+ E

[
g0(Xuε+λv(T ))

]
+

+ λ
√
ε

(
E
[∫ T

0

|v(t)|2U dt
]) 1

2

≤

≤ E
[∫ T

0

(g(Xε(t)) + h(uε(t))) dt

]
+ E [g0(Xε(T ))] .

This yields

E
[∫ T

0

〈Dg(Xε(t)), Z
v(t)〉2 dt

]
+ E

[∫ T

0

h′(uε(t), v(t))dt

]
+

+ E [〈Dg0(Xε(T )), Zv(T )〉2] +
√
ε

(
E
[∫ T

0

|v(t)|2Udt
]) 1

2

≤ 0 , ∀ v ∈ U ,

(3.4)

where Zv solves the system in variations associated with (3.1), that is
∂
∂t
Zv −∆Zv + f ′(Xε)Z

v = Bv in [0, T ]×O ,
Zv(0) = 0 in O ,
Zv = 0 on [0, T ]× ∂O ,

(3.5)
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and h′ : U × U → R is the directional derivatives of h, see, e.g., [7, p.81],
namely

h′(uε, v) = lim
λ↓0

h(uε + λv)− h(uε)

λ
, ∀ v ∈ U .

We associate with (3.1) the dual stochastic backward equation
dpε + ∆pεdt− f ′(Xε)pεdt = κε

√
QdW (t) +Dg(Xε)dt in [0, T ]×O ,

pε(T ) = −Dg0(Xε(T )) in O ,
pε = 0 on [0, T ]× ∂O ,

.

(3.6)
It is well-known that equation (3.6) has a unique solution (pε, κε) satisfying

pε ∈ L∞W
(
[0, T ];L2 (O)

)
∩ L2

W

(
[0, T ];H1

0 (O)
)
,

kε ∈ L2
W

(
[0, T ];L2 (O)

)
,

(See, e.g., [17, Prop. 4.3] or [22]). By Itô's formula we have

d 〈pε, Zv〉2 = 〈dpε, Zv〉2 + 〈pε, dZv〉2 ,

and this yields

E
[∫ T

0

〈Dg(Xε(t)), Z
v(t)〉2 dt

]
+ E [〈Dg0(Xε(T )), Zv(T )〉2] = 0 ,

and substituiting in (3.4), we obtain, ∀ v ∈ U , the following inequality

E
[∫ T

0

h′(uε(t), v(t))dt

]
+
√
ε

(
E
[∫ T

0

|v(t)|2Udt
]) 1

2

≤

≤ E
[∫ T

0

〈B∗pε(t), v(t)〉U dt
]
.

Let G(u) := E
[∫ T

0
h(u(t))dt

]
, then its subdi�erential ∂G : U → U , evaluated

in uε is given by

∂G(uε) =

{
v∗ ∈ U : 〈v, v∗〉U ≤ E

[∫ T

0

h′(uε(t), v(t))dt

]
, ∀ v ∈ U

}
.

(See, e.g., [7, p.81]). Then we infer that

uε(t) = (∂h)−1
(
B∗pε(t) +

√
εθ̃ε

)
, t ∈ [0, T ] , P− a.s. ,
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where θ̃ε ∈ U and |θ̃ε|U ≤ 1, ∀ ε > 0.
Therefore, we have shown that

uε = (∂h)−1 (B∗pε + θε) , ‖θε‖L2([0,T ]×Ω;U) ≤
√
ε ,

dpε + ∆pεdt− f ′(Xε)pεdt = Dgε(Xε)dt+ κε
√
QdW (t) in [0, T ]×O ,

pε(T ) = −Dg0(Xε(T )) in O ,
pε = 0 in [0, T ]× ∂O ,

.

(3.7)

By (3.2) and by assumptions (ii) it follows also that {uε}ε>0 is bounded in
U . Moreover, by (3.1) we have that
dXε(t)−∆Xε(t)dt+ f(Xε(t))dt =

√
QdW (t) + f0dt+Buε(t)dt , in [0, T ]×O ,

Xε = 0 on [0, T ]× ∂O ,
Xε(0) = x in O

,

(3.8)
which by (3.3), assumption (ii) and exploiting the Itô formula, implies that

E
[∫ T

0

(
|Xε(t)|22 + |∇Xε(t)|22 + L−1|uε(t)|2U

)
dt

]
≤ C , ∀ ε > 0 . (3.9)

Moreover by (3.8) and (3.2), again using the Itô formula applied to |X|22, we
have that ∀ ε > 0

E

[
sup
t∈[0,T ]

|Xε(t)|22

]
+ E

[∫ T

0

|Xε(t)|2H1
0 (O) dt

]
+ E

[∫ T

0

|Xε(t)|42 dt
]
≤

≤ C(1 + |x|22)

. (3.10)

If we now apply the Itô formula in (3.8) to the function X → 1
2
|X|2

H1
0 (O)

,

taking into account that Tr[QA] <∞ and that

−
∫
O
f(Xε)∆Xεdξ ≥ ab

∫
O
|∇Xε|2dξ −

∫
O
|∆Xε||Xε|2dξ ,

we obtain by (3.10) that

E

[
sup
t∈[0,T ]

|Xε(t)|2H1
0 (O)

]
+ E

[∫ T

0

|∆Xε(t)|22dt
]
≤ C(1 + |x|2H1

0 (O)) . (3.11)

Similarly, by (3.7) we obtain that
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1

2
d|pε(t)|22 −

∫
O
|∇pε(t)|2dξ −

∫
O
f ′(Xε)p

2
ε(t)dξ =

=

∫
O
Dg(Xε(t))pε(t)dξ +

1

2

∫
O
|κε|2dξ +

∫
O
pεκε

√
QdW (t) .

which yields

E

[
sup
t∈[0,T ]

|pε(t)|22

]
+ E

[∫ T

0

|pε(t)|2H1
0 (O) dt

]
+ E

[∫ T

0

∫
O
|Xε|2|pε|2dξ dt

]
+ E

[∫ T

0

|κε(t)|22dt
]
≤ C + E

[
|Xε(T )|22

]
≤ C , ∀ ε > 0 .

(3.12)

(Here and everywhere in the following we shall denote by C several positive
constants independent of ε). In particular, it follows by (3.7) and (3.12) that
{uε}ε>0 is bounded in L2 (Ω;L∞ ([0, T ];U)).

Equation (3.8) implies that

∂

∂t
(Xε(t)−Xλ(t))−∆ (Xε(t)−Xλ(t)) + (f (Xε(t))− f (Xλ(t))) =

= BB∗(pε(t)− pλ(t)) +B(θε(t)− θλ(t)) .
(3.13)

In virtue of (3.12) this yields

1

2
|Xε(t)−Xλ(t)|22 +

∫ t

0

|Xε(s)−Xλ(s)|2H1
0 (O) ds ≤

≤ −
∫ t

0

∫
O

(f (Xε(s))− f (Xλ(s))) (Xε(s)−Xλ(s)) dξ ds

+ L

∫ t

0

|pε(s)− pλ(s)|2|Xε(s)−Xλ(s)|2ds

+ C

∫ t

0

|θε(s)− θλ(s)|U |Xε(s)−Xλ(s)|2ds , ∀ t ∈ [0, T ] ,

where L = ‖(∂h)−1‖Lip.
We further have

(f(Xε)− f(Xλ)) (Xε −Xλ) = f ′(αXε + (1− α)Xλ)(Xε −Xλ)
2 ,
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where α ∈ [0, 1] and assuming that 0 < a < b,

f ′(u) ≥ 0 for u 6∈ [0, b] ,

|f ′(u)| ≤ C for u ∈ [0, b] ,

then

−
∫ t

0

∫
O

(f(Xε)− f(Xλ)) (Xε −Xλ) dξ ds ≤ C
∫ t

0
|Xε(s)−Xλ(s)|22ds , ∀ ε, λ > 0 ,

which yields, for t ∈ [0, T ]

|Xε(t)−Xλ(t)|22 +

∫ t

0

|Xε(s)−Xλ(s)|2H1
0 (O) ds ≤

≤ C

(
L

∫ t

0

|pε(s)− pλ(s)|22ds+

∫ t

0

∫
O

(Xε(s)−Xλ(s))
2dξds+ ε+ λ

)
.

(3.14)

Applying Gronwall's lemma in (3.14), we have

|Xε(t)−Xλ(t)|22 +
1

2

∫ t

0

|Xε(s)−Xλ(s)|2H1
0 (O) ds ≤

≤ C

(
L

∫ T

0

|pε(s)− pλ(s)|22ds+ ε+ λ

)
, ∀ ε , λ > 0 , t ∈ [0, T ] .

(3.15)
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Similarly we get by (2.9) and the Itô formula

|pε(t)− pλ(t)|22 +

∫ T

t

|pε(s)− pλ(s)|2H1
0 (O) ds+

1

2

∫ T

t

|κε(s)− κλ(s)|22ds =

= |Dg0(Xε(T ))−Dg0(Xλ(T ))|22+

+

∫ T

t

∫
O

(f ′(Xε(s))pε(s)− f ′(Xλ(s))pλ(s)) (pε(s)− pλ(s))dξds+

−
∫ T

t

〈
κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
2

=

=

∫ T

t

∫
O
f ′(Xε(s))(pε(s)− pλ(s))2dξ ds+

−
∫ T

t

∫
O

(f ′(Xε(s)− f ′(Xλ(s)) (pε(s)− pλ(s))dξ ds+

−
∫ T

t

〈
κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
2

+

+ |Dg0 (Xε(T ))−Dg0 (Xλ(T )) |22 ≤

≤ C

(∫ T

t

∫
O

(|Xε|+ 1)(pε(s)− pλ(s))2dξ ds

)
+

+

(∫ T

t

∫
O

(Xε(s)−Xλ(s)) (pε(s)− pλ(s))(1 + |Xε|+ |Xλ|)|pε|dξ ds
)

+

−
∫ T

t

〈
κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
2

+

+ ‖Dg0‖Lip(L2(O))|Xε(T )−Xλ(T )|22 , t ∈ [0, T ] ,P− a.s. .
(3.16)

Proceeding as above, we also have∫
O
|Xε(s)||pε(s)− pλ(s)|2dξ ≤ |pε(s)− pλ(s)|4|pε(s)− pλ(s)|2|Xε(s)|4 ≤

≤ 1

2
|pε(s)− pλ(s)|2H1

0 (O) +
1

2
|pε(s)− pλ(s)|22|Xε(s)|24 .

(3.17)

Moreover, exploiting both the Hölder and the interpolation inequality, we
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obtain∫
O
|Xε −Xλ| |pε − pλ| (1 + |Xε|+ |Xλ|)|pε|dξ ≤

≤ |Xε −Xλ|4 |pε − pλ|4
(∫
O

(1 + |Xε|+ |Xλ|)2|pε|2dξ
) 1

2

≤

≤ |Xε −Xλ|
1
2
2 |Xε −Xλ|

1
2
6 |pε − pλ|

1
2
2 |pε − pλ|

1
2
6 ×

×
(∫
O

(1 + |Xε|+ |Xλ|)2|pε|2dξ
) 1

2

≤

≤ |Xε −Xλ|
1
2
2 |Xε −Xλ|

1
2

H1
0 (O)
|pε − pλ|

1
2
2 |pε − pλ|

1
2

H1
0 (O)
×

×
(∫
O

(1 + |Xε|+ |Xλ|)2|pε|2dξ
) 1

2

≤ α
(
|Xε −Xλ|2H1

0 (O) + |pε − pλ|2H1
0 (O)

)
+

+
C

α

(
|Xε −Xλ|22 + |pε − pλ|22

)(∫
O

(1 + |Xε|+ |Xλ|)2|pε|2dξ
)
,

(3.18)

where α is arbitrary small. Substituting now (3.17), (3.18) into (3.14), (3.16),
we obtain P−a.s.

|Xε(t)−Xλ(t)|22 + |pε(t)− pλ(t)|22 +

∫ t

0

|Xε(s)−Xλ(s)|2H1
0 (O)ds+

+

∫ T

t

|pε(s)− pλ(s)|2H1
0 (O) ds+

∫ T

t

|κε(s)− κλ(s)|22ds ≤

≤ C

(
L

∫ t

0

|pε(s)− pλ(s)|22 ds+ ε+ λ

)
+ C

∫ T

t

|pε(s)− pλ(s)|22 |Xε(s)|24ds+

+ ‖Dg0‖Lip|Xε(T )−Xλ(T )|22+

+
C

α

(∫ T

t

|Xε(s)−Xλ(s)|22 +

∫ T

t

|pε(s)− pλ(s)|22Tε,λ(s)ds
)

+

−
∫ T

t

〈
κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
2
, ∀ t ∈ [0, T ] ,

(3.19)

where

Tε,λ :=

∫
O

(1 + |Xε|+ |Xλ|)2|pε|2dξ .

We note that the process r 7→
∫ r
t

〈
(κε − κλ)

√
QdW (s), Xε(s)−Xλ(s)

〉
2
is

a local martingale on [t, T ], hence by the Burkholder-Davis-Gundy inequality,
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see, e.g., [13, p.58], we have for all r ∈ [t, T ]

E

[
sup
r∈[t,T ]

|
∫ r

t

〈
(κε(s)− κλ(s))

√
QdW (s), Xε(s)−Xλ(s)

〉
2
|

]
≤

≤ C

(
E
[∫ r

0

|κε(s)− κλ(s)|22|Xε(s)−Xλ(s)|22ds
]) 1

2

≤

≤ CE

[
sup
s∈[t,r]

|Xε(s)−Xλ(s)|22

]
+

1

2
E
[∫ r

t

|κε(s)− κλ(s)|22ds
]
,

and by (3.18) we get

E

[
sup
s∈[t,T ]

(
|Xε(s)−Xλ(s)|22 + |pε(s)− pλ(s)|22

)]

+ E
[∫ T

0

|Xε(s)−Xλ(s)|2H1
0 (O)ds+

∫ T

t

|pε(s)− pλ(s)|22ds
]

+ E
[∫ T

t

|κε(s)− κλ(s)|22ds
]
≤

≤ ‖Dg0‖E
[
|Xε(T )−Xλ(T )|22

]
+ C

(
LE
[∫ T

0

|pε(s)− pλ(s)|22 ds
]

+ ε+ λ

)
+ CE

[
sup
s∈[t,T ]

|Xε(s)−Xλ(s)|22

]

+ CE
[∫ T

t

(
|pε(s)− pλ(s)|22 + |Xε(s)−Xλ(s)|22

) (
|Xε(s)|24 + Tε,λ(s)

)
ds

]
.

(3.20)
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Taking into account estimates (3.10), (3.11) and (3.15), from (3.20) we have

E

[
sup
s∈[t,T ]

(
|Xε(s)−Xλ(s)|22 + |pε(s)− pλ(s)|22

)]

+ E
[∫ T

0

|Xε(s)−Xλ(s)|2H1
0 (O)ds+

∫ T

t

|pε(s)− pλ(s)|22ds
]

+ E
[∫ T

t

|κε(s)− κλ(s)|22ds
]
≤

≤ C̃

(
LE
[∫ T

0

|pε(s)− pλ(s)|22 ds
])

+ C̃

(
E
[∫ T

t

|pε(s)− pλ(s)|22
(
|Xε(s)|24 + Tε,λ(s)

)
ds

])
+ C̃‖Dg0‖LipE

[
|Xε(T )−Xλ(T )|22

]
+ C̃(ε+ λ) .

(3.21)

where C̃ is a positive constant independent of ε and λ. It follows that if
C̃(LT + ‖Dg0‖Lip) < 1, then, for any t ∈ [0, T ],

E

[
sup
s∈[t,T ]

(
|Xε(s)−Xλ(s)|22 + |pε(s)− pλ(s)|22

)]

+ E
[∫ T

0

|Xε(s)−Xλ(s)|2H1
0 (O)ds+

∫ T

t

|pε(s)− pλ(s)|22ds
]

+ E
[∫ T

t

|κε(s)− κλ(s)|22ds
]
≤

≤ CE
[∫ T

t

|pε(s)− pλ(s)|22
(
|Xε(s)|24 + Tε,λ(s)

)
ds

]
+ C(ε+ λ) .

(3.22)

Let us de�ne for j ∈ N

Ωj :=

{
ω ∈ Ω : sup

ε
sup
t∈[0,T ]

(
|Xε(t)|22 + |Xε(t)|2H1

0 (O) + |Xε(t)|24 + |pε(t)|22
)
dt ≤ j

}
,

then estimates (3.10) and (3.11) implies that

P (Ωj) ≥ 1− C

j
, ∀ j ∈ N ,

for some constant C independent of ε.
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If we set Xj
ε := 1ΩjXε, p

j
ε := 1Ωjpε and κ

j
ε := 1Ωjκε, then such quanti-

ties satisfy the system (3.7)-(3.8), with 1Ωj

√
QdW . The latter means that

estimate (3.22) still holds in this context, so that we have

E

[
sup
s∈[t,T ]

|Xj
ε (s)−X

j
λ(s)|

2
2 + sup

s∈[t,T ]

|pjε(t)− p
j
λ(t)|

2
2

]

+ E
[∫ T

t

|pjε(s)− p
j
λ(s)|

2
H1

0 (O)ds

]
+ E

[∫ T

t

|(κε(s)− κλ(s))χj|22ds
]
≤

≤ Cj

∫ T

t

E
[
|pjε(s)− p

j
λ(s)|

2
2

]
ds+ C (ε+ λ) , j ∈ N .

(3.23)

By Gronwall's lemma we get, for any t ∈ [0, T ]

E

[
sup
s∈[t,T ]

|Xj
ε (s)−X

j
λ(s)|

2
2 + sup

s∈[t,T ]

|pjε(s)− p
j
λ(s)|

2
2

]
≤ C(ε+ λ)eCjT , (3.24)

where Cj = C(j3 + 1), hence, for ε→ 0 and all j ∈ N, we obtain

Xj
ε → Xj in L2

(
Ωj;L

2 ([0, T ]×O)
)
,

pjε → pj in L2
(
Ωj;L

2 ([0, T ]×O)
)
,

(3.25)

where→ means strong convergence. By estimates (3.10) and (3.12) it follows
that taking related subsequences, still denoted by ε, we have

Xε ⇀ X∗ in L2
(
[0, T ]× Ω;H1

0 (O)
)
,

pε ⇀ p∗ in L∞
(
[0, T ];L2 (Ω×O)

)
,

pε ⇀ p∗ in L2 ([0, T ]× Ω×O) ,

pε ⇀ p∗ in L2
(
[0, T ]× Ω;H1

0 (O)
)
,

uε ⇀ u∗ in L∞
(
[0, T ];L2 (Ω;U)

)
,

(3.26)

where ⇀ means weak (respectively, weak-star) convergence, so we have for
ε→ 0

Xε → X∗ , pε → p∗ , a.e. in [0, T ]× Ωj ×O . (3.27)

By (3.10) we see that

E
∫ T

0

∫
O
|f(Xε(s, ξ))|

4
3 dξds ≤ C , ∀ε > 0 .
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Since {f (Xε)} is bounded in L
4
3 ([0, T ]× Ω×O), then it is weakly com-

pact in L1 ([0, T ]× Ω×O) and by (3.27) we have that for a subsequence
{ε} → 0,

f (Xε)→ f(X∗) , a.e. in [0, T ]× Ω×O ,

which, in virtue of (3.27) and since

P (Ωj) ≥ 1− C

j
, ∀ j ∈ N0 ,

we have
f (Xε)→ f(X∗) in L1 ([0, T ]× Ωj ×O) . (3.28)

Then, letting ε→ 0 in (3.8), we obtain
dX∗(t)−∆X∗(t)dt+ f(X∗(t))dt =

√
QdW (t) +Bu∗(t)dt in [0, T ]×O ,

X∗ = 0 on [0, T ]× ∂O ,
X∗(0) = x in O

.

Taking into account that Ψ is weakly lower semicontinuous in U we infer by
(3.2) that

Ψ(u∗) = inf {Ψ(u);u ∈ U} ,

therefore (X∗, u∗) is optimal for the problem (P) and the proof of existence
is therefore complete.

Concerning the uniqueness for the optimal pair (X∗, u∗) given by Th. 3.1,
we have that it follows by the same argument via the maximum principle
result for problem (P), namely one has the following result.

Theorem 3.2. Let (X∗, u∗) be optimal in problem (P), then

u∗ = (∂h)−1(B∗p) , a.e. t ∈ [0, T ] , (3.29)

where p is the solution to the backward stochastic equation
dp+ ∆pdt+ f ′(X∗)pdt = g′(X)dt+ κ

√
QdW (t) in [0, T ]×O ,

p(T ) = −Dg0(X∗(T )) in O ,
pε = 0 on [0, T ]× ∂O

,

(3.30)
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Proof. If (X∗, u∗) is optimal for the problem (P), then by the same argument
used to prove Th. 3.1, see (3.4), we have

E
[∫ T

0

〈Dg(X∗(t)), Zv(t)〉2 dt
]

+ E
[∫ T

0

h′(u∗(t), v(t))dt

]
+ E [〈Dg0(X∗(T )), Zv(T )〉2] ≤ 0 , ∀ v ∈ U ,

(3.31)

where Zv is solution to equation (3.5) with Xε replaced by X∗. This implies
as above that (3.29) holds.

The uniqueness in (P). If (X∗, u∗) is optimal in (P) then it satis�es systems
(1.1), (3.29) and (3.31), so that arguing as in the proof of Th. 3.1, the same
set of estimates implies that the previous system has at most one solution if
LT + ‖Dg0‖Lip < C∗, where C∗ is su�ciently small.

Remark 3.3. Theorems 3.1 and 3.2 remain true if assumption (i) is relaxed
to

(i)' Dg0 ∈ Lip(L2(O)), g = g(t, y) : [0, T ] × L2(O) → R is of class C1 in y,
Dyg ∈ C([0, T ]× L2(O)), and supt∈[0,T ] ‖Dy g(t, y)‖Lip(L2(O)) <∞.

Remark 3.4. As clear from the previous proof the constant C∗ arising in
conditions of Theorem 3.1 depends of f and g only and, as mentioned earlier,
it is independent of initial data x.

4 An example

Roughly speaking the control objective in system (1.1) is to drive the
potential X to track a given trajectory X1 and an end potential X0. This
can be reformulated as the optimal control problem

Minimize E
[∫ T

0

α|u(t)|22 + |X(t)−X1(t)|22dt
]

+ λE
[
|X(T )−X0|22

]
,

(4.1)
subject to

u ∈ L2
W ([0, T ];L2(O)) , m ≤ u ≤M a.e. on [0, T ]×O . (4.2)

dX(t)−∆X(t)dt+ f(X(t)) =
√
QdW (t) + u(t)dt+ f0dt in [0, T ]×O ,

X(0) = x in O ,
X = 0 on [0, T ]× ∂O

,

(4.3)
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where f(u) = u(u− a)(u− b), α, λ > 0, 0 < m < M <∞ and the functions
X1 ∈ L2([0, T ];L2(O)), X0 ∈ L2(O) are given.

As mentioned above, the physical signi�cance of the problem is the fol-
lowing: �nd an optimal current u applied to a nerve axon in such a way that
the resulting potential X �ows closely to a speci�ed regime X0 = X0(t, ξ)
during the time interval [0,T], and such that it is near to a given potential
X0 at the �nal time T (on these lines see also [21]).

Problem (4.1)-(4.3) is of the form (P) where

g(t,X) = |X −X1(t)|22 , g0(X) = λ|X −X0|22 , (4.4)

and h : L2(O)→]−∞,+∞] is de�ned by

h(u) =

{
α|u|22 if u ∈ U0 ,

∞ if u 6∈ U0

, (4.5)

U0 :=
{
u ∈ L2(O) : m ≤ u ≤M a.e. in O

}
.

We have ∂h(u) = 2αu+NU0(u), where NU0 (the normal cone to U0) is given
by

NU0(u) =

v ∈ L2(O) :

v(ξ) = 0 if u(ξ) ∈ (m,M) ;

v(ξ) ≥ 0 if u(ξ) = M ;

v(ξ) ≤ 0 if u(ξ) = m

 .

Then (∂h)−1(v) = 2αPU0(v) where PU0 : L2(O) → U0 is the projection
operator

PU0(v)(ξ) :=


M if v(ξ) ≥M ,

m if v(ξ) ≤ m,

v(ξ) if m < v(ξ) < M ,

ξ ∈ O .

By by Theorem 3.1, there exists a constant C∗ > 0 such that if αT +λ < C∗

the problem (4.1)-(4.3) has a unique solution (X∗, u∗) given by
u∗ = 2αPU0(p

∗) in [0, T ]×O , P− a.s.
dp∗(t) + ∆p∗(t)dt− f ′(X∗(t))p∗(t)dt = 2(X∗(t)−X1)dt+ κ

√
QdW (t) in [0, T ]×O ,

p∗(T ) = −2λ(X∗(T )−X0) in O ,
p∗ = 0 on [0, T ]× ∂O

.

(4.6)
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5 The linear multiplicative noise perturbation

We brie�y discuss here the case where the Gaussian perturbation is pro-
portional with the nerve membrane potential. The neuron impulse dynamic
is better described by the equation

dX(t)−∆X(t)dt+ f(X(t))dt = X(t)dW (t) dt+ F (t)dt in [0, T ]×O ,
X(0) = x in O ,
X = 0 on [0, T ]× ∂O ,

, (5.1)

where

W (t, ξ) =
∞∑
j=1

µjei(ξ)βj(t) , t ≥ 0 , ξ ∈ O ,

µj ∈ R and {ej}∞j=1 is an orthonormal basis in L2(O) of eigenfunctions for A
corresponding to eigenvalues λj.

By the scaling transformation X = eWy equation (5.1) reduces to the
random di�erential equation (see, e.g. [8])

∂y
∂t −∆y + (µ−∆W )y − 2∇W · ∇y = e−WF in [0, T ]×O ,
y(0, ξ) = x(ξ) ξ ∈ O ,
y = 0 on [0, T ]× ∂O ,

, (5.2)

where µ = 1
2

∑∞
j=1 µ

2
jej.

We shall assume that

∞∑
j=1

µ2
j |ej|2∞ <∞ . (5.3)

Arguing as in Proposition 2.2 it follows by (5.3) that (5.2) has a unique
solution y satisfying (2.13) and this implies that X = eWy is a strong solution
to (5.1) which satis�es condition of Theorem 2.1. We omit the details.

As regards the corresponding optimal control problem P governed by the
equation{

dX(t)−∆ξX(t)dt+ f(X(t))dt = X(t)dW (t) +Bu(t)dt+ f0dt , in [0, T ]×O ,
X(0) = x in O , X = 0 on [0, T ]× ∂O ,

,

(5.4)

the existence of an optimal control pair (X∗, u∗) follows as Theorem 3.1
by Eckeland variational principle (3.2) taking however in account that the
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corresponding dual backward equation (3.6) is in this case
dpε + ∆pεdt− f ′(Xε)pεdt+ κεdt = κεdW (t) +Dg(Xε)dt in [0, T ]×O ,
pε(T ) = −Dg0(Xε(T )) in O ,
pε = 0 on [0, T ]× ∂O ,

.

(5.5)
The details are left to the reader.
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