
Dipartimento di Informatica
Università degli Studi di Verona

Rapporto di ricerca
Research report

96/2015
June 2015

Spatial Integrity Constraints in
3D City Models: from Conceptual
Definition to SQL Implementation

Alberto Belussi
Sara Migliorini
Mauro Negri
Giuseppe Pelagatti

Questo rapporto è disponibile su Web all’indirizzo:
This report is available on the web at the address:
http://www.di.univr.it/report

Abstract

Several different models have been defined in literature for the definition of
3D city models, from CityGML [13] to Inspire [7]. Such models include a ge-
ometrical representation of features together with a semantical classification
of them. The semantical characterization of objects encapsulates important
meaning and spatial relations which are defined only implicitly or through
natural language, such as buildings shall be disjoint or in touch, or a window
surface shall be contained in the building boundary.

The problem of ensuring the coherence between geometric and semantic
information is well known in literature. Many attempts exist which try to
extent the OCL language in order to represent spatial constraints for an
UML model. However, this approach requires a deep knowledge of the OCL
language and the implementation of ad-hoc procedures for the validation of
constraints defined at conceptual level.

The aim of this paper is the development of a set of templates for ex-
pressing spatial 3D constraints between features which does not require any
particular knowledge of a formal language. Moreover, the constraints instan-
tiated from these templates can be automatically translated into validation
procedures, without the need for ad-hoc implementations.

Keywords: keywords

1 Introduction

Many different models exist in literature for representing 3D spatial data
and in particular 3D city models, such as CityGML [13] and Inspire Annex
3 Building [7]. Besides to the geometrical characterization of objects, which
essentially refers to the ISO geometric types [10], such models provide a se-
mantical characterization of objects which encapsulates important meanings
and spatial relations, some examples of these semantical descriptions (in form
of constraints) are reported in Sec. 1.1.

However, semantical constraints are not directly integrated in the con-
ceptual model but are usually implicit or expressed in natural language.
Therefore, ad hoc procedures have to be implemented in order to validate
and ensure the satisfaction of constraints defined at conceptual level. This
introduces a gap between the conceptual design of a spatial dataset and its
implementation on GIS systems. Conversely, the ability to define spatial
integrity constraints at conceptual level allows designers to abstract from
implementation details and to apply one common constraint framework.

The Standard ISO TC211 19109 “Rules for application schema” recom-
mends the use of the OCL [11] language for specifying spatial integrity con-
straints at conceptual level. Sec. 2 will discuss several approaches to auto-
matically translate spatial-enhanced OCL constraints into validation proce-
dures. However, the use of generic OCL constraints has several limitations
as discussed in [14]. In particular, it introduces a great complexity both
in the conceptual modeling, since a deep knowledge of the OCL language
is required, and in the implementation phase, since complex ad-hoc proce-
dures have to be implemented for treating all cases and it is more difficult to
optimize such procedures.

This paper follows the approach proposed in [14] that allows the definition
of spatial integrity constraints into conceptual models through the use of pre-
defined OCL templates. Thanks to these templates the designer can specify
spatial integrity constraints in a straightforward manner, without the need
for a deep knowledge about the OCL language. Moreover, such constraints
can be automatically translated into SQL queries or into procedures in other
programming languages, in order to verify the correctness of spatial datasets.
Of course, it is much easier to optimize a set of constraint templates, because
their structure is known.

More specifically, this paper extends the work in [14] to the 3D space,
in particular as regards to surfaces and volumes. It takes as reference the
building model of CityGML (LoD3) and INSPIRE Annex 3 Building, but
the approach can be easily adapted to other generic 3D spatial models. The
contribution of the paper is twofold: (1) it provides a set of templates that

1

can be instantiated for representing 3D topological constraints at conceptual
level with reference to the standard ISO geometric model (Sec. 3-4), and (2) it
demonstrates how such constraint templates can be automatically translated
into validation procedures using first a mathematical geometric formulation
(Sec. 5.1) and then with reference to the SQL language (Sec. 5.2). In par-
ticular, such implementation refers to the 3D geometric functions and data
types available in the PostGIS system.

The choice to implement the validation procedures in SQL results partic-
ularly useful in the common case where validation tests have to be performed
on a huge amount of 3D spatial objects that are quite simple (i.e., in a city
model, not in a building model). However, the proposed template mecha-
nism and the abstract mathematical formulation proposed in Sec. 5.1 can be
implemented using other programming languages or technologies.

1.1 Motivating Example

This section illustrates some examples of 3D topological constraints among
buildings and its constituent parts which can be useful in the definition of a
3D city model. Some of these constraints are taken from CityGML but can
be reasonably applied to any other model. In particular, some concepts and
definitions of CityGML [13] LOD3 building model are used: for instance, the
thematic classification of openings and boundary surfaces.

First of all, in a city model all buildings shall be disjoint or touch each
other. Moreover, if a building consists of only one (homogeneous) part, it
shall be represented by a unique solid element. Otherwise, if it is composed
by several individual structures, it shall be modeled as a set of solid parts,
such that all these parts touch each other to form a composite solid, see
Fig. 1. With reference to CityGML, each building part must be related to
exactly one building and touch it.

CompositeSolid

Solid 1 Solid 2

_AbstractBuilding

BuildingPart Building

*

consistsOf
BuildingPart

*

Figure 1: Example of building composed of two parts that touch each other.

With reference to the CityGML and/or INSPIRE building model, the
outer facade of a building can also be differentiated semantically using a set

2

of surface types with a special function, like wall, roof, ground, and so on,
see Fig. 2. Clearly, if a building is represented by both a solid and a set of
boundary surfaces, these surfaces have to touch the boundary of the solid.

WallSurfaces

RoofSurface

GroundSurface

_AbstractBuilding
*

* _BoundarySurface

boundedBy

RoofSurface

WallSurface

GroundSurface

GroundSurface

Figure 2: Example of building boundary surfaces.

The last but more common example regards the relation that exists be-
tween the outer shell of a building and its openings (i.e., doors and windows).
Different representations can be adopted for modeling openings: in the sim-
plest case, a building can be represented by a solid and its openings are sur-
faces that have to touch the solid. Conversely, in a more elaborated model,
such as CityGML LOD3, openings are surfaces that can be related to one of
the boundary surfaces representing the building outer shell. Moreover, since
boundary surfaces have a precise semantic meaning, openings like doors and
windows can be found only on roof and/or wall surfaces. In particular, if the
geometric location of an opening topologically lies within a boundary surface
component, then it must be represented as a hole within that surface: the
opening surface must be embraced by a set of surfaces defining the building
boundary. For instance, in Fig. 3 taken from [13], the window surface has to
be embraced by some wall surfaces, the outer ceiling surface and the outer
floor surface. Notice that the opening surface must not be contained in any
building surface.

GroundSurface
OuterFloorSurface

W
al
l

Su
rf
ac
e

W
al
lS
u
rf
ac
e

Ro
of
Su
rfa
ce

RoofSurface

W
al
l

Su
rf
ac
e

W
al
lS
u
rf
ac
e

OuterCeiling
Surface

_BoundarySurface

*

0..1

opening

_Opening

Window Door Window

Window

Figure 3: Example of building with an opening.

3

2 Related Work

In [15] the authors analyse the structure of semantic and spatial informa-
tion of 3D city models as well as their correspondence. In particular, they
distinguish the semantic model of CityGML from the geometry model. The
semantic model consists of class definitions for the most important features
within 3D city models, such as buildings, water bodies, transportation, veg-
etation, and so on; conversely, the geometry model is based on the Standard
ISO 19107 “Spatial Schema” [10]. According to this separation, the term
coherence describes consistent relationships between spatial and semantic
entities. The author classify six different situations depending on the degree
of specification of both the semantic and geometric components. In partic-
ular, CityGML supports two cases: one in which only semantics is specified
without geometry or vice-versa, and the other characterized by complex ob-
jects with structured geometry. Clearly, the last one requires the specification
of more detailed consistency rules. The authors conclude that the coherence
evaluation could be performed at data model level by explicitly marking some
aggregation relations in the semantic model as spatial aggregations, but does
not provide any tool for checking such constraints.

In [8] the author provides a set of axioms to achieve geometrical consis-
tency of 3D models. This paper only deals with the geometric consistency
with respect to the specified spatial data types. It provides the theoretical
foundations for checking tools by defining an axiomatic characterization of
3D city models. The efficiency of the proposed method stems from its lo-
cality: in most cases, consistency checks can be safely be restricted to single
components, which are defined topologically: a 3D city model is decomposed
into simple components and the axioms can be combined in order to obtain
constraints for aggregation of components. The geometrical-topological 3D
city model is defined by a graph defined by a set of vertices, edges, faces and
solids. Example of axioms are: each solid is bounded by a closed composite
surface, each vertex and edge is incident to at least one face.

In [16] the authors define a set of axioms which regards both the geometric
and semantic validation of a CityGML model. In particular, they define the
concept of valid geometry using the definition of spatial data types provided
in [13], and a set of axioms which check their compliance. Given a valid
geometry, a set of semantic rules is defined which are mainly determined
by the underling data model. Such rules are defined in terms of OCL [11]
statements which refer to the UML diagram defining the CityGML elements
in the Standard. An example of rule is the relation between a main building
and its building parts. This paper uses a similar approach, but it is more
general, because it provides a set of constraint templates which can be instan-

4

tiated for obtaining a richer set of constraints depending on domain-specific
information which exceeds the default specification of CityGML. Moreover,
the author proposes an ad hoc implementation of the provided constraints
through a Java Tool, where the constraints instantiated from the provided
templates are automatically translated into SQL spatial queries.

In [17] the author provides a set of domain-specific constraints for a Cli-
mate City Campus Database described using CityGML. Examples of con-
straints are the distance between buildings and trees, or between aquatic
plant and water. Such constraints are provided in OCL and translated into
spatial queries for Oracle.

The use of OCL [11] for the specification of spatial constraints has been
investigated also in [4] where the authors try to integrate the 9 Intersection
Model into OCL. The obtained model is called OCL9IM and provides an ex-
pressive language adapted to precisely model alphanumerical and topological
constraints. They also investigate the possibility to translate OCL9IM into
SQL by providing an extension of the the tool named OCL2SQL [3].

The problem of consistency validation between semantic and geometry in
CityGML is highlighted also in [9] where the author provides an overview of
CityGML, its concepts, applications, impacts, and future developments.

3 Geometric Model

In order to define spatial integrity constraints on data models specified using
UML, the reference geometric model used here is the ISO 19107 standard
(Spatial Schema) which has also been integrated in the ISO 19136 (GML).
This section briefly introduces the spatial data types of GML that are con-
sidered in this paper and the set of topological relations existing between
them defined in terms of the well-known 9-intersection model [6]; this for-
mal definition of the relations is necessary for guiding the implementation of
constraints in the next section.

3.1 Spatial Data Types

The geometric model of GML consists of primitives, which may be combined
to form complexes, composite or aggregate geometries. For each dimension,
there is a geometric primitive: a zero-dimensional object is a Point, a one-
dimensional object is a Curve, a two-dimensional object is a Surface, and
a three-dimensional object is a Solid.

This paper concentrates on a subset of 3D datatypes of GML which are
the most relevant for 3D city modeling, also with respect to CityGML and

5

Inspire. In particular, it considers polyhedral surfaces, multi-surfaces and
solid objects.

gml::_Geometry

gml::_GeometricPrimitive gml::_AbstractGeometryAggregate

gml::_Surface gml::_Solid

gml::Polygon
gml::Solid

gml::MultiPolygon

gml::_Ring gml::LinearRing

gml::PolyhedralSurface

1..*

patch

1
*

exterior

* *

* 1in
te
ri
o
r

ex
te
ri
o
r

Figure 4: Reference spatial data types hierarcy.

Definition 3.1 (Abstract Surface). A surface is a 2-dimensional object. A
simple surface may consist of a single patch that is associated with one ex-
terior boundary and zero or more interior boundaries. The boundary of a
simple surface is the set of closed curves corresponding to its exterior and
interior boundaries [10].

In the Standard the class Surface is abstract, the only instantiable sub-
classes considered in this paper are the ones defined by OGC [12]: Polygon
and PolyhedralSurface.

Definition 3.2 (Polygon). A Polygon is a planar surface defined by one exte-
rior boundary and zero or more interior boundaries. Each interior boundary
defines a hole in the polygon. The interior and exterior boundaries are defined
by LinearRing such that the interior boundaries have an opposite orientation
w.r.t. the exterior one.

Notice that a Polygon is valid if it is topologically closed, no two rings in
the boundary cross and the rings in the boundary may intersect at a point
but only as a tangent, its interior is a connected set of points, and the exterior
with one or more holes is not connected [12].

Definition 3.3 (PolyhedralSurface). A PolyhedralSurface is a contiguous
collection of Polygons (called patches), which share common boundary seg-
ments. For each pair of polygons that touch, the common boundary shall be
expressible as a finite collection of LineStrings. Each such LineString shall
be part of the boundary of at most 2 polygon patches.

6

Without loss of generality, the following simplification is introduced w.r.t.
the standard: no holes are admitted in a patch and adjacent coplanar patches
are not admitted, since they can be replaced by the patch obtained by merg-
ing them.

Definition 3.4 (Abstract Solid). A solid is a 3-dimensional object whose
extent is defined by the boundary surfaces. In particular, these surfaces shall
be organized into one set of surfaces for each boundary component of the
solid, and each of these shells shall be a cycle [10].

In this paper a Solid is defined by a closed PolyhedralSurface. Notice that
the Solid objects considered in this paper have no holes (like in CityGML),
this is justified by the fact that only the external shell of a building is con-
sidered.

Definition 3.5 (MultiPolygon). A MultiPolygon is an unstructured set of
polygons. No further constraints are defined for a MultiPolygon element.

MultiPolygon can be considered a generalization of PolyhedralSurface,
since no particular constraints are required.

3.2 Topological Relations

The 9-intersection model [6] is the most common model for binary topological
relations. It defines the topological relation R existing between two objects
A and B considering the intersection between its interior (A◦), boundary
(∂A) and exterior (A−).

R(A,B) =

A◦ ∩B◦ A◦ ∩ ∂B A◦ ∩B−
∂A ∩B◦ ∂A ∩ ∂B ∂A ∩B−
A− ∩B◦ A− ∩ ∂B A− ∩B−

In [5] the authors generalize the case to a 3D space. In order to do so,

a major assumption is made which is valid in the context of this paper:
the interior, boundary and exterior of the objects are simple connected such
that the volume’s boundary separate the interior from the exterior. Since
the volume’s boundary must be simply connected, the volume cannot have
any holes in its interior. The authors further exclude holes of the type of
a doughnut. Therefore, a 3D volume exposes the same properties as a 2D
region.

As stated in the previous section, the paper concentrates only on 3D
data types which are more useful in the description of city models: solid
(denoted as V) and surfaces (denoted as S). Table 1 reports the formal

7

Table 1: Definition of the possible 3D topological relations between two solids
(V/V), a solid and a surface (V/S), a surface and a solid (S/V) or two surfaces
(S/S). Topological relations are denoted as: disjoint (DJ), touch (TC), in
(IN), contains (CN), equal (EQ), overlap (OV). Only for the relation IN also
the case curve/surface is considered (C/S).

Rel. Definition Geom. Matrix Pattern

DJ A ∩B = ∅ V/V,
S/S

FFT − FFT − TTT

V/S,
S/V

TC
(A◦ ∩B◦ = ∅)∧

(A ∩B 6= ∅)

V/V FFT − FTT − TTT

V/S FFT − T ∗ ∗ − ∗ ∗ T
FFT − FTT − T ∗ T

S/V FT ∗ −F ∗ ∗ − T ∗ T
FFT − FT ∗ −TTT

S/S FTT − ∗ ∗ ∗ − T ∗ T
FFT − T ∗ ∗ − T ∗ T
FFT − FT ∗ −T ∗ T

IN
(A ∩B = A)∧

(A◦ ∩B◦ 6= ∅)
V/V TFF − T ∗ F − TTT

S/S TFF − ∗ ∗ F − TTT

S/V,
C/S

T ∗ F − ∗ ∗ F − TTT

CN
(A ∩B = B)∧

(A◦ ∩B◦ 6= ∅)
V/V,
S/S

TTT − F ∗ T − FFT

V/S T ∗ T − ∗ ∗ T − FFT

EQ A = B V/V,
S/S

TFF − FTF − FFT

OV

(A◦ ∩B◦ 6= ∅)∧
(A ∩B 6= A)∧
(A ∩B 6= B)

V/V TTT − TTT − TTT

S/S T ∗ T − ∗ ∗ ∗ − T ∗ T
V/S T ∗ T − T ∗ T − T ∗ T
S/V TTT − ∗ ∗ ∗ − TTT

definition of each topological relation, together with the specification of the
pair of geometric types to which it applies and the corresponding template
of the 9-intersection matrix. The symbol T means that the intersection is
not empty, F that the intersection is empty and ∗ that the intersection can
be indifferently empty or not empty.

8

4 Spatial Constraint Templates

This section applies the approach proposed in [14] to city data models by
defining OCL templates also for UML classes with spatial attributes having
3D geometric types. The OCL templates have a fixed logical structure, but
have parameters that allow one to change the involved (constrained and con-
straining) classes, the spatial attributes, the required topological relations,
the optional functions to be applied on geometries, the optional selection on
constrained or constraining class.

The fundamental difference between the template approach proposed in
this paper and the generic spatial OCL approach reported in Section 2 is the
following: instead of augmenting OCL with new spatial operators and imple-
ment a generic translator of OCL expressions into a chosen target technology
(i.e., SQL), a set of spatially oriented OCL templates with parameters are
defined and an optimized implementation of them is specified for a set of
target technologies.

Spatial constraint templates are defined by combining a logical structure
with a topological relation. Two types of logical structure are considered: the
existential (the most used) and the universal structure. An existential spatial
constraint requires that, given an object x belonging to the constrained class
X, there exists an object y of the constraining class Y such that the given
topological relation (or disjunction of topological relations) is satisfied.

Definition 4.1 (SC∃). Let X be a constrained class with a spatial attribute
g, Y be a constraining class with a spatial attribute f and rel1, . . . , reln a
disjunction of relation. An existential spatial constraint (SC∃) requires
that for each object x of X there exists an object y of Y such that one of
the relation rel1, . . . , reln is satisfied between x.g and y.f . It allows also to
express selection conditions for X or Y or both. The selection σ2 regarding
Y can contain attributes of Y and also attributes of X, while the selection
σ1 on X can contain only attributes of X. When selection conditions are
specified, the constraint is applied only to those objects of X that satisfies
the selection σ1. Moreover, only those objects of Y that satisfies the selection
σ2 can be considered for testing the required topological relations. Finally
some spatial functions s1() and s2() can be applied to the attributes f and
g. They are optional, thus they can be left null.

SC∃(X, σ1(x), g, s1(), {rel1| . . . |reln}, Y, σ2(x, y), f, s2())
context X
inv: σ1(self) implies(Y.allinstances→

exists(a : Y | σ2(self, a) ∧
(check(self.g.s1(), {rel1, . . . , relk}, a.f.s2())))

9

where the expressions σ1(self) and σ2(self, a) indicate the expressions that
are obtained by replacing x with self and y with a in σ1(x) and σ2(x, y),
respectively; moreover, they can be true if no sections are required. Finally,
if s1() (or s2()) is null the function is not inserted in the expression, i.e.
g.s1()→ g (or f.s2()→ f).

The predicate check verifies that one of the topological relation {rel1, . . . ,
relk} is satisfied between the two given geometries (a.reli(b) semantics is
defined in Tab. 1):

check(a, {rel1, . . . , relk}, b)) ≡def a.rel1(b) or . . . or a.relk(b).

Example 4.1. Referring to the examples in Sec. 1.1 and the CityGML model,
a basic existential topological constraint can be defined between all instances
of the class BuildingPart and an instance of the class Building. More
specifically, given an instance x of BuildingPart there exists an instance a
of Building such that x touches a:

SC∃(BuildingPart, true, lod3Solid, null, {TC},
Building, true, lod3Solid, null)

Accordingly with CityGML, this example assumes that both classes have a
geometric property called lod3Solid which represents its extent. Fig. 5 shows
a graphical representation of such constraint.

Building BuildingPart

- lod3Solid - lod3Solid

1 0..*

SC∃ (BuildingPart, true, lod3Solid, null, {TC}, Building, true, lod3Solid, null)

Figure 5: Example of existential spatial constraint between a main building
and its parts.

The example below includes also some selection conditions.

Example 4.2. With reference to CityGML, an Opening shall be connected
to a BoundarySurface. However, not all kinds of boundary surface can
contain a window or a door; in particular, it is reasonable to assume that
only an instance of RoofSurface or of WallSurface can contain a window
or a door. This constraint can be represented using a selection on the surface
type as follows:

SC∃(Opening, true, lod3MultiSurface, null, {IN},
BoundarySurface,

y.IsTypeOf(RoofSurface, WallSurface),

lod3MultiSurface, null)

10

Finally, the following example includes a spatial function.

Example 4.3. The existential spatial constraint on boundary is particularly
useful for expressing the constraint existing between an opening (e.g., window)
and the solid representing a building. In particular, in the simple model
discussed in Sec. 1.1 where windows are represented as surfaces that lies on
a building solid, it is necessary to ensure that such surface is contained in
the solid boundary.

SC∃(Window, true, surface, null, {IN},
Building, true, solid, boundary()).

The universal logical structure replaces the existential quantification with
a universal one [1][2].

Definition 4.2 (SC∀). Let X be a constrained class with a geometric at-
tribute g, Y be a constraining class with a geometric attribute f and rel1,
. . . , reln a disjunction of relations. A universal spatial constraint requires
that one of the topological relations rel1, . . . , reln exists between the geome-
try of the constrained object x.g and the geometry y.f of all the objects y of
the constraining class Y . Selection conditions and spatial functions can be
applied also for this constraint, with the same meaning illustrated for SC∃.

The SC ∀ constraint is meaningful only for some kinds of topological re-
lations, for instance disjoint or touch.

SC∀(X, σ1(x), g, s1(), {rel1| . . . |reln}, Y, σ2(x, y), f, s2())
context X
inv: σ1(self) implies(Y.allinstances→

forall(a : Y | self = a ∨
(check(self.g.s1(), {rel1, . . . , relk}, a.f.s2()))

Example 4.4. A typical usage for the universal spatial constraint is for the
establishing that all buildings has to be disjoint or in touch:

SC∀(Building, true, lod3Solid, null, {TC | DJ},
Building, true, lod3Solid, null)

In some cases it is necessary to specify a spatial constraint based on an
association that links the constrained class and the constraining one. The
following template deals with these cases.

11

Definition 4.3 (SCr
∀). Let X be a constrained class with a geometric at-

tribute g, Y be a constraining class with a geometric attribute f , rel1, . . . ,
reln be a disjunction of relation, and r1, . . . , rn be a chain of association roles
that links the class X to the class Y . An universal spatial constraint
with a binding to a chain of roles considers as available objects of the
constraining class, only the objects that can be reached by the constrained
object through the chain of roles r1. . . . rn.

The extension of the universal constraint to include a chain of association
roles can be trivially deduced from this case.

SC r
∀(X, σ1(x), (r1, .., rn), g, s1(), {rel1|..|reln},
Y, σ2(x, y), f, s2())

context X
inv: σ1(self) implies(self.r1 →

forall(b2 | b2.r2 → · · · → forall(bn | bn.rn →
forall(a : Y | σ2(self, a) implies(
check(self.g.s1(), {rel1, . . . , relk}, a.f.s2()))))...)

Example 4.5. The existential spatial constraint with a binding to a chain
of association roles can be used to model the conditions characterizing the
openings in CityGML. In particular, let us consider the model in which each
window (or door) of a building has to be embraced inside the outer boundary
of the building itself, see Fig. 3. This condition can be represented stating
this pair of constraints:

SCr
∀(Building, true, (boundedBy, opening),

lod3Solid, boundary(), {CN},
Opening, true, lod3MultiSurface, boundary())

SCr
∀(Building, true, (boundedBy, opening),

lod3Solid, boundary(), {TC},
Opening, true, lod3MultiSurface, null)

5 Template Implementation

This section presents the implementation of the constraint templates with
reference to a vector model, which represents an abstract description of a
current spatial DBMS able to deal with 3D data at some extent. The imple-
mentation on PostGIS of one template is also shown as real case example.

12

5.1 Vector Model

This paper aims to test the feasibility of representing and validating 3D
spatial data in current GIS systems (the experiments adopt PostGIS 2.0
on PostgreSQL 9.4). To this purpose, this section presents a framework
characterized by a discrete representation of solids, based on polyhedral sur-
faces of the geometric model of the Simple Feature Access for SQL (SFA)
(OGC standard implemented in PostGIS), and a set of basic operations, that
are necessary for the evaluation of topological relations between solids and
between solids and surfaces. These operations have a corresponding imple-
mentation in current GIS systems or can be implemented using procedural
language provided by them (in the experiments we implemented some ba-
sic operations using pl/pgsql of PostgreSQL 9.4). In order to simplify the
presentation and focus on the validation approach, we consider only surfaces
implemented as: polygons with no holes, multipolygons as set of polygons
with no holes, and polyhedral surfaces as set of polygons with no holes with
the known constraints presented in Def. 3.3. The extension to polygons with
holes is possible, but is not presented in this paper. The following definitions
formalize the framework.

Definition 5.1 (Basic vector types). In Table 2 some vector types are de-
fined. They are a basis for defining the representation of spatial types.

Table 2: Basic vector types.
Vector type Description

vertex v It is a tuple of finite numbers representing a 3D
coordinate: v = (x, y, z).

segment s (v1, v2) It is a pair of vertices and represents the segment
obtained by considering the linear interpolation
between them.

ring r (v1, . . . , vn) It is a list of vertices, its linear interpolation
represents a ring (v1 = vn).

patch p (v1, . . . , vn) It is a finite part of a plane whose boundary is
defined by a ring.

Definition 5.2 (Vector representation in 3D). Given a geometry g, its vector
representation VR(g) is defined as follows (v denotes a generic vertex, s a
generic segment, p a generic patch and r a generic ring):

• If g ∈ Polygon then VR(g) = (v1, . . . , vn) with n > 1.
The polygon is planar, thus the vertices of VR(g) are coplanar. The

13

linear interpolation between any two consecutive vertices vi, vi+1 is
a segment si and the sequence of segments (s1, . . . , sn−1) is a ring.
Therefore alternative discrete representations can be a list of segments:
VR′(g) = (s1, . . . , sm) with m = n − 1 and si = (vi, vi+1) or a ring
VR′′(g) = r.

• If g ∈ PolyhedralSurface then VR(g) = ((v1,1, . . . , v1,n1), . . . , (vk,1, . . . ,
vk,nk

)) with ni > 2 and k > 0, where each list of vertices is a ring
representing a polygon without holes. Using the patch definition, the
discrete representation of a PolyhedralSurface can also be described as
list of patches: VR′(g) = (p1, . . . , pk) with k > 0 and where each pi is
a planar patch defined by the ring ri = (vi,1, . . . , vi,ni

).

• If g ∈ MultiPolygon then VR(g) = ((v1,1, . . . , v1,n1), . . . , (vk,1, . . . , vk,nk
))

with ni > 2 and k > 0, where each list of vertices is a ring representing
a polygon without holes.
Similarly to what have been proposed for PolyhedralSurface, a Multi-
Polygon can also be described as list of patches: VR′(g) = (p1, . . . , pk)
with k > 0 where each pi is a polygon.

• If g ∈ Solid then VR(g) = ((v1,1, . . . , v1,n1), . . . , (vk,1, . . . , vk,nk
)) with

ni > 2 and k > 3. As in previous cases a Solid can also be described as
list of patches: VR′(g) = (p1, . . . , pk) with k > 0 and where each pi is
a planar patch. The set of patches must represent a polyhedral surface
which is simple, i.e. it has no self-intersections and is a cycle, i.e. it
has empty boundary.

Definition 5.3 (Basic predicates and operations). For each operation it is
specified: the domain (the set of objects where the operation applies), one or
more domains for parameters and the target domain. The possible domains
are: vertex, segment, ring, patch (referenced together as primitive), Polygon,
MultiPolygon, PolyhedralSurface (referenced together as surface) and solid;
the domain geometry is the union of all previous domains.

Operations

• vert : geometry→ P (vertex)1, g.vert() returns the set of vertices defin-
ing the geometry g, for surface and solid it can be derived from VR(g).

• seg : geometry→ P (segment), g.seg() returns the set of segments defin-
ing the geometry g, for surface and solid it can be derived from VR′(g).

1The symbol P (S) denotes the power set of the set S.

14

• bnd : segment→ P (vertex), s.bnd() returns the set containing the start
and end point of the segment s.

• bnd : patch ∪ surface → P (segment), g.bnd() returns the set of seg-
ments defining the boundary of the patch/surface g.

• bnd : solid → polyhedral surface, sd.bnd() returns the polyhedral sur-
face defining the boundary of the solid sd.

• pat : surface ∪ solid → P (patch), sf.pat() returns the set of patches
defining the polyhedral surface sf or the solid, i.e. sf.pat() = VR′(sf).

• intSeg : surface → P (segment), sf.intSeg() returns the set of segments
defining the boundaries of the patches sf.pat() but that do not belong
to sf.bnd().

• intVert : surface→ P (segment), sf.intVert() returns the set of vertices
belonging to the rings of the patches sf.pat() but that do not belong to
segments of sf.bnd().

• ray3: vertex ∪ segment ×solid→ integer, g.ray3(sd) returns the num-
ber of patches of sd.pat() that are intersected by the semi-straight line
starting from g.start() and passing through g.end() (excluding the pos-
sible intersection at g.start()); when g is a vertex v the semi-straight
line starting in v = (xv, yv, zv) with equation y = yv, z = zv and x > xv
is considered.

Predicates

• eq3 : geometry × geometry → boolean, g.eq3(g0) tests the equality be-
tween two geometries; two geometries are equal only if they have iden-
tical vector representation, i.e. g.eq3(g0) ≡ VR(g) = VR(g0).

• cnt3 : segment × vertex → boolean, s.cnt3(v) tests the containment
between a vertex v and the interior of a segment s: v ∈ I(s).

• int3 : patch×segment→ boolean, p.int3(s) tests the intersection between
the interior of a patch and the interior of a segment: dim(I(p)∩I(s)) =
0. If the intersection has dimension 1, it returns false.

• cnt3 : patch× vertex→ boolean, p.cnt3(v) tests the inclusion between a
vertex v and the interior of a patch p: v ∈ I(p).

15

• int3 : patch×patch→ boolean, p1.int3(p2) tests the intersection between
the interior of two patches: if dim(I(p1) ∩ I(p2)) = 1 it returns true,
otherwise it returns false.

• cop : patch ∪ segment × segment → boolean, p.cop(s) (s0.cop(s)) tests
the coplanarity between the patch p (or the segment s0) and the seg-
ment s.

• cop : patch × patch → boolean, p.cop(p0) tests the coplanarity between
the patches p and p0.

• 〈rel〉2 : geometry × geometry → boolean, g.〈rel〉2(g0) tests the topolog-
ical relation 〈rel〉 ∈ {dj, tc, in, cn, ov} between the projection of the
geometries g and g0 on the plane where both geometries lie.

We show hereby how the set of topological relations presented in Section
3 can be implemented using the operations and predicates introduced above
and the vector representation of the geometries presented in Def. 5.2. This
allows then to focus only on the implementation of the basic vector operations
and predicates. The implementation of functions for topological relation tests
changes with respect to the geometric type of objects and many different
cases have to be considered; in this paper we show only some of them, in
particular, those ones that involve solid geometries.

Proposition 5.1 (Tests implementation). Given the basic operations and
predicates presented in Def. 5.3 the implementation of the following topo-
logical relation tests can be formally defined as shown in Tab. 3. Due to
space limitations, the analysis is limited to the tests that are necessary for
the spatial integrity constraint examples shown in the previous sections.

• curve in surface: considering the matrix for in, [T ∗F −∗ ∗F −TTT],
when applied to rings and surfaces in the 3D space, only the interior-
interior intersection, INT◦◦(cv, sf), and the interior-exterior intersec-
tion, INT◦−(cv, sf), need to be tested (i.e. the matrix can be reduced to
[T ∗ F − ∗ ∗ ∗ − ∗ ∗ ∗]).

• surface disjoint surface: the matrix in 3D is simplified and the necessary
tests are reduced to [FF ∗ −FF ∗ − ∗ ∗∗].

• surface in surface: the matrix in 3D is simplified and the necessary test
is reduced to [∗ ∗ F − T ∗ ∗ − ∗ ∗ ∗]. The “T” in the second row is
necessary to exclude equals.

16

• surface touches surface: the matrix in 3D is simplified and the necessary
test is reduced to [F ∗ T − ∗ ∗ ∗ − ∗ ∗ ∗]∨ [F ∗ ∗ − T ∗ ∗ − ∗ ∗ ∗]∨
[F ∗ ∗ − ∗T ∗ − ∗ ∗∗].

• solid disjoint solid: considering the matrix for disjoint ([FFT−FFT−
TTT]) when applied to solids in the 3D space, only the interior-interior
intersection (int◦◦(sd1, sd2)) and the boundary-boundary intersection
(int∂∂(sd1, sd2)) need to be tested (i.e., the matrix is reduced to [F ∗
∗ − ∗F ∗ − ∗ ∗∗]).

• solid touches solid: the matrix in 3D is simplified and the necessary
test is reduced to [F ∗ ∗ − ∗T ∗ − ∗ ∗∗].

Proof. In order to prove that the tests for a relation r on type t1/t2 are im-
plemented correctly, we show that the implementation proposed in Tab. 3
detects all the possible scenarios that correspond to the existence of the rela-
tion r in 3D space considering objects of types t1/t2. The possible scenarios
are presented in Tables 4, 5 , 6 and 7.

• cv in sf: this relation occurs when INT◦◦(cv, sf) ∧ ¬INT◦− (cv, sf).
INT◦◦(cv, sf) is true if at least one segment of cv intersects the inte-
rior of sf; sufficient conditions for obtaining this result are produced
in the following possible scenarios of Tab. 4: cells (1, 1), (3, 2), (5, 2),
(6, 2), (6, 4), (8, 1) ,(8, 2), (8, 3), (10, 2) and (10, 3). In the proposed
test (first row of Tab. 3) scenarios (10, 2) and (10, 3) are covered by
formula at line 1., (8, 1) ,(8, 2) and (8, 3) by formula at line 2., (6, 2),
(6, 4) by formula at line 3., (5, 2) by formula at line 4., (3, 2) and (1, 1)
by formula at line 5.
¬INT◦−(cv, sf) is true if all segments of cv are contained in (or a equal
to) some primitives of sf; sufficient conditions for obtaining this result
are produced in the following possible scenarios of Tab. 4: cells (8, 1),
(8, 2), (9, 1), (9, 2) and (10, 2). In the proposed test (first row of Tab. 3)
scenarios (10, 2) is covered by formula at line 6. and (8, 1), (8, 2), (9, 1),
(9, 2) are covered by formula at line 7.

• sf1 disjoint sf2: this relation requires to test: INT◦◦(sf1, sf2), INT∂∂(sf1,
sf2) and INT◦∂(sf1, sf2). INT◦◦(sf1, sf2) is true if exists at least one
primitive covering the interior of sf1 intersects one primitive covering
the interior of sf2; sufficient conditions for obtaining this result are
produced in the following possible scenarios of Tab. 5: cells (1, 1), (5, 2),
(9, 2), (13, 1), (13, 2), (13, 3), (17, 2), (19, 2), (19, 3), (21, 1), (21, 2),
(21, 3), (24, 2) and (24, 3). In the proposed test (second row of Tab. 3)

17

Table 3: Implementation of topological relation tests.
Relation #L Test

in IN(cv, sf) ≡ INT◦◦(cv, sf) ∧ ¬INT◦−(cv, sf).
curve/surf INT◦◦(cv, sf) ≡
IN(cv, sf) 1. ∃s ∈ cv.seg()(∃p ∈ sf.pat()(p.int3(s) ∨ (p.cop(s) ∧ ¬p.dj2(s) ∧ ¬p.tc2(s)))∨

2. ∃s0 ∈ sf.intSeg()(s.cop(s0) ∧ ¬s.dj2(s0) ∧ ¬s.tc2(s0))∨
3. ∃v0 ∈ sf.intVert()(s.cnt3(v0) ∨ v0.eq3(s.start()) ∨ v0.eq3(s.end())))∨
4. ∃v ∈ cv.vert()(v 6∈ cv.bnd() ∧ (∃p ∈ sf.pat()(p.cnt3(v))∨
5. ∃s0 ∈ sf.intSeg()(s0.cnt3(v)) ∨ ∃v0 ∈ sf.intVert()(v.eq3(v0))))

¬INT◦−(cv, sf) ≡
6. ∀s ∈ cv.seg()(∃p ∈ sf.pat()(p.cop(s) ∧ p.cn2(s))∨
7. ∃s0 ∈ sf.intSeg() ∪ sf.bnd()(s.eq3(s0) ∨ (s0.cop(s) ∧ s0.cn2(s))))

disjoint ¬INT◦◦(sf1, sf2) ∧ ¬INT∂∂(sf1, sf2)∧
surf/surf ¬INT∂◦(s1, s2) ∧ ¬INT◦∂(s1, s2)
DJ(sf1, sf2) INT◦◦(sf1, sf2) ≡

8. ∃p1 ∈ sf1.pat()(∃p2 ∈ sf2.pat()(p1.int3(p2) ∨ (p1.cop(p2) ∧ ¬p1.dj2(p2) ∧ ¬p1.tc2(p2))))∨
9. ∃s1 ∈ sf1.intSeg()(∃p2 ∈ sf2.pat()(p2.cop(s1) ∧ ¬p2.dj2(s1) ∧ ¬p2.tc2(s1)))∨
10. ∃s2 ∈ sf2.intSeg()(∃p1 ∈ sf1.pat()(p1.cop(s2) ∧ ¬p1.dj2(s2) ∧ ¬p1.tc2(s2)))∨
11. ∃v1 ∈ sf1.intVert()(∃p2 ∈ sf2.pat()(p2.cnt3(v1)))∨
12. ∃v2 ∈ sf2.intVert()(∃p1 ∈ sf1.pat()(p1.cnt3(v2)))∨
13. ∃s1 ∈ sf1.intSeg()(∃s2 ∈ sf2.intSeg()(s1.eq3(s2)∨
14. s1.int3(s2) ∨ (s1.cop(s2) ∧ ¬s1.dj2(s2) ∧ ¬s1.tc2(s2))))∨
15. ∃v1 ∈ sf1.intVert()(∃s2 ∈ sf2.intSeg()(s2.cnt3(v1)) ∨ ∃v2 ∈ sf2.intVert()(v1.eq3(v2)))∨
16. ∃v2 ∈ sf2.intVert()(∃s1 ∈ sf1.intSeg()(s1.cnt3(v2)))

INT∂∂(sf1, sf2) ≡
17. ∃s1 ∈ sf1.bnd()(∃s2 ∈ sf2.bnd()(s1.eq3(s2) ∨ (s1.cop(s2) ∧ ¬s1.dj2(s2))))

INT∂◦(sf1, sf2) ≡
18. ∃s1 ∈ sf1.bnd()(∃p2 ∈ sf2.pat()(p2.int3(s1) ∨ (p2.cop(s1) ∧ ¬p2.dj2(s1) ∧ ¬p2.tc2(s1))∨
19. (p2.cnt3(s1.start()) ∨ p2.cnt3(s1.end())))∨
20. ∃s2 ∈ sf2.intSeg()(s1.cop(s2) ∧ ¬s1.dj(s2)))

INT◦∂(sf1, sf2) ≡ INT∂◦(sf2, sf1)

touches ¬INT◦◦(sf1, sf2) ∧ (INT∂∂(sf1, sf2) ∨ INT∂◦(s1, s2) ∨ INT◦∂(s1, s2))
surf/surf for INT◦◦(sf1, fs2), INT∂∂(sf1, sf2), INT∂◦(sf1, sf2) and INT◦∂(sf1, sf2) see previous test.
TC(sf1, sf2)

in ¬INT◦−(sf1, sf2) ∧ INT∂◦(sf1, sf2)
surf/surf ¬INT◦−(sf1, sf2) ≡
IN(sf1, sf2) 21. ∀p1 ∈ sf1.pat()(∃p2 ∈ sf2.pat()(p1.eq3(p2) ∨ (p1.cop(p2) ∧ p2.cn2(p1))

for INT∂◦(sf1, sf2) see the disjoint test on surfaces.

disjoint ¬INT◦◦(sd1, sd2) ∧ ¬INT∂∂(sd1, sd2)
solid/solid INT◦◦(sd1, sd2) ≡
DJ(sd1, sd2) 22. ∃v1 ∈ sd1.vert()(mod2(v1.ray3(sd2)) = 1) ∨ ∃v2 ∈ sd2.vert()(mod2(v2.ray3(sd1)) = 1)∨

23. ∃p1 ∈ sd1.pat()(∃p2 ∈ sd2.pat()(p1.int3(p2)))
where mod2(x) returns the rest of the division by 2.

INT∂∂(sd1, sd2) ≡ INT◦◦(sd1.bnd(), sd2.bnd())
for INT◦◦(sd1.bnd(), sd2.bnd()) see the disjoint test on surfaces.

touches ¬INT◦◦(sd1, sd2) ∧ INT∂∂(sd1, sd2)

solid/solid for INT◦◦(sd1, sd2) and INT∂∂(sd1, sd2) see previous test.
TC(sd1, sd2)

scenarios (1, 1) and (5, 2) are covered by formula at line 15., (9, 2) by
formula at line 16., (13, 1) by formula at line 13., (13, 2) and (13, 3)
by formula at line 14., (17, 2) by formula at line 12., (19, 2) and (19, 3)
by formula at line 10., (21, 1), (21, 2) and (21, 3) by formula at line 8.,
(22, 2) by formula at line 11., (24, 2) and (24, 3) by formula at line 9..
Similarly for INT∂∂(sf1, sf2) the possible scenarios of Tab. 5 and 6 to be

18

considered as sufficient conditions are: cells (4, 1), (8, 2), (8, 4), (12, 2),
(12, 4), (16, 1), (16, 2), (16, 3) and (16, 4). In the proposed test (second
row of Tab. 3) scenarios (16, 1), (16, 2), (16, 3) and (16, 4) are covered
directly by formula at line 17., the other scenarios are covered indirectly
by the same formula since they can be detected as an instance of the
touches relation indeed two touching segments are always coplanar and
therefore they touches also in 2D (on the plane they lie). Finally for
INT◦∂(sf1, sf2) the possible scenarios of Tab. 5 and 6 to be considered as
sufficient conditions are: cells (3, 1), (7, 2), (7, 4), (11, 2), (11, 4), (15, 1),
(15, 2), (15, 3), (15, 4), (23, 2), (25, 2) and (25, 3). In the proposed
test (second row of Tab. 3) scenarios (25, 2) and (25, 3) are covered
by formula at line 18., (23, 2) by formula at line 19., (15, 1), (15, 2),
(15, 3) and (15, 4) by formula at line 20., the other scenarios are covered
indirectly by the same formula for the same reasons explained before.

• sf1 in sf2: this relation requires to test: INT◦−(sf1, sf2) and INT∂◦(sf1, sf2).
Only INT◦−(sf1, sf2) has not been considered yet. ¬INT◦−(sd1, sd2) is
true if for all patches of sf1 there exists a patch of sf2 that contains
it; sufficient conditions for obtaining this result are produced in the
following possible scenarios of Tab. 5: and 6 cells (21, 1) and (21, 2). In
the proposed test (forth row of Tab. 3) scenarios (21, 1) and (21, 2) are
covered by formula at line 21..

• sd1 disjoint sd1: this relation requires to test: INT◦◦(sd1, sd2) and
INT∂∂(sd1, sd2). The second test can be reduced to INT◦◦(sd1.bnd(), sd2.
bnd()). INT◦◦(sd1, sd2) is true if the interior of sd1 intersects at least
one primitive defining sd2 or viceversa; sufficient conditions for ob-
taining this result are produced in all the possible scenarios shown in
Tab. 7. In the proposed test (fifth row of Tab. 3) scenarios (1, 2), (2, 2),
(3, 2), (4, 2), (5, 2), (6, 2) are covered by formula at line 22., while (3, 3)
and (4, 3) are covered by formula at line 23.; finally also scenarios (2, 3)
and (4, 3) are indirectly covered by formula at line 23., since given two
solids if a segment of the polyhedral surface, that defines one of them,
intersects the interior of the other solid, then also the patch bounded
by it will intersect the other solid and viceversa.

19

Table 4: All possible scenarios to be considered to evaluate the existence of
a topological relation between rings and surfaces. In the table the following
symbols are used: v vertex, vi (vb) internal (or boundary) vertex of surfaces,
s segment, si (sb) internal (or boundary) segments of surfaces, p is a patch,
r is a ring, sf is a surface, sd is a solid.

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

1 r.v – sf.vi – – –

2 r.v – sf.vb – – –

3 r.v – sf.si – –

4 r.v – sf.sb – –

5 r.v – sf.p – –

6 r.s – sf.vi – –

7 r.s – sf.vb – –

8 r.s – sf.si

9 r.s – sf.sb

10 r.s – sf.p –

20

Table 5: All possible scenarios to be considered to evaluate the existence
of a topological relation between two surfaces (vertices and segments). For
symbol interpretation see Tab. 4.

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

1 sf1.vi – sf2.vi – – –

2 sf1.vi – sf2.vb – – –

3 sf1.vb – sf2.vi as 2 – – –

4 sf1.vb – sf2.vb – – –

5 sf1.vi – sf2.si – –

6 sf1.vi – sf2.sb – –

7 sf1.vb – sf2.si – –

8 sf1.vb – sf2.sb – –

9 sf1.si – sf2.vi – as 5 – as 5

10 sf1.si – sf2.vb – as 7 – as 7

11 sf1.sb – sf2.vi – as 6 – as 6

12 sf1.sb - sf2.vb – as 8 – as 8

13 sf1.si – sf2.si

14 sf1.si – sf2.sb

15 sf1.sb – sf2.si as 14 as 14 as 14 as 14

16 sf1.sb – sf2.sb

21

Table 6: All possible scenarios to be considered to evaluate the existence of
a topological relation between two surfaces (patches). For symbol interpre-
tation see Tab. 4.

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

17 sf1.p - sf2.vi – –

18 sf1.p – sf2.vb – –

19 sf1.p – sf2.si –

20 sf1.p – sf2.sb –

21 sf1.p – sf2.p

22 sf1.vi – sf2.p – as 17 – as 17

23 sf1.vb – sf2.p – as 18 – as 18

24 sf1.si - sf2.p – as 19 as 19 as 19

25 sf1.sb - sf2.p – as 20 as 20 as 20

Table 7: Additional possible scenarios (w.r.t. the content of Tab. 5) to
be considered to evaluate the existence of a topological relation between two
solids. For symbol interpretation see Tab. 4, in addition vl is used to indicate
the portion of 3D space occupied by the solid (i.e., the interior of the solid).

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

1 sd1.vl – sd2.v – – –

2 sd1.vl – sd2.s – –

3 sd1.vl – sd2.p – –

4 sd1.v - sd2.vl – as 1 – –

5 sd1.s – sd2.vl – as 2 as 2 –

6 sd1.p - sd2.vl – as 3 as 3 –

22

5.2 SQL Implementation of Templates

In this subsection we show how each of the constraint template presented in
Sec. 4 can be implemented in SQL. For each spatial constraint template SCr

∀,
we show the corresponding SQL template that is able to extract all the tu-
ples representing objects of the constrained class that violate the constraint.
The SQL template is instantiated and executed on a relational database im-
plementing the UML classes in relational tables. The relational schema has
been obtained by following some mapping rules that guarantee the ability of
representing all possibile states of the objects that describe an instance of
the given UML classes. For example, each constrained class X (constraining
class Y) is represented by one table TX (TY) containing all its (non-multi)
properties represented as columns with the same name of the properties.

In the following boxes for each constraint template the corresponding
SQL template is shown Parameters are written in italics, Fs1 and Fs2 are
the corresponding functions in PostGIS of s1() and s2(), respectively. The
functions Freli(g, f) are the implementation in PL/pgSQL of the relation
tests defined by Prop.5.1. They are based on the vector operations and
predicates that have been defined in Def. 5.3. Many of them are already
implemented in current GIS system (e.g., PostGIS), while some others require
an ad hoc implementation; in particular, sf.intSeg(), sf.intVert(), g.ray3(P),
g.eq3(g0), s.cnt3(v), p.int3(s), p.cnt3(v), p.cnt3(v), p1.int3(p2), p.cop(s) and
p.cop(p0) have to be implemented. In the following subsection we present
the implementation in PostGIS of each of them.

SC∃(X, σ1(x), g, s1(), {rel1|...|reln}, Y, σ2(x, y), f, s2())
SQL template
SELECT x.*

FROM TX as x

WHERE σ1(x) AND

NOT EXISTS (SELECT 1

FROM TY as y

WHERE σ2(x,y) AND

(Frel1(Fs1(x.g), Fs2(y.f)) OR

... OR Freln(Fs1(x.g), Fs2(y.f))))

23

SC ∀(X, σ1(x), g, s1(), {rel1|..|reln}, Y, σ2(x, y), f, s2())
SQL template
SELECT x.*

FROM TX as x

WHERE σ1(x) AND

EXISTS (SELECT 1

FROM TY as y

WHERE σ2(x,y) AND

NOT(Frel1(Fs1(x.g), Fs2(y.f)) OR

... OR Freln(Fs1(x.g), Fs2(y.f))))

SC r
∀(X, σ1(x), (r1, ..., rn), g, s1(), {rel1|..|reln}, Y, σ2(x, y), f, s2())

SQL template
SELECT x.*

FROM TX as x

WHERE σ1(x) AND

EXISTS (SELECT 1

FROM TY as y

JOIN Tn−1 as yn−1 ON yn−1.rn = y.ID

... JOIN T1 as y1 ON y1.r2 = y2.ID
WHERE x.r1 = y1.ID AND σ2(x,y) AND

NOT(Frel1(Fs1(x.g), Fs2(y.f)) OR

...OR Freln(Fs1(x.g), Fs2(y.f))))

Considering the Example 4.5 the query testing the first constraint of the
example, obtained by apply the previous SQL template, has the following
form:

SQL Query
SELECT x.* FROM T Building as x

WHERE true AND EXISTS(SELECT 1 FROM V Opening as y

JOIN V BoundarySurface as y1 ON y1.opening=y.ID

WHERE x.boundedBy = y1.ID AND true AND

NOT(FCN(ST Boundary(x.lod3Solid),

ST Boundary(y.lod3MultiSurface)))

5.3 Implementation of basic operations and predicates
in SQL

Each one of the following operations and predicates has to be implemented
in PostGIS, since it is not currently present in the system: sf.intSeg(),
sf.intVert(), g.ray3(sd), g.eq3(g0), s.cnt3(v), p.int3(s), p.cnt3(v), p1.int3(p2),
g.cop(s) (where g can be a patch or a segment) and p.cop(p0).

24

However, some of them can be derived from the others, thus as first
step we show the derived operations and predicates and then we show the
implementation of the basic ones as SQL functions.

Derived operations

• sf.intSeg() - The internal segments of a surface sf can be obtained
by subtracting from the set of all segments of sf (sf.seg()) the set of
segments representing its boundary (sf.bnd()):

sf.intSeg() ≡ sf.seg() \ sf.bnd()

• sf.intVert() - The internal vertices of a surface sf can be obtained
by subtracting from the set of all vertices of sf (sf.vert()) the set of
vertices of the segments representing its boundary (sf.bnd().vert()):

sf.intVert() ≡ sf.vert() \ sf.bnd().vert()

• p.cop(p0) - The patch p0 is contained in the patch p if at least two of
its segments s1, s2 ∈ p0.seg() are coplanar with p.

p.cnt3(v) ≡ ∃s1 ∈ p0.seg()(p.cop(s1)∧∃s2 ∈ p0.seg()(¬s1.eq3(s2)∧p.cop(s2)))

Therefore, the basic operations and predicates are: g.eq3(g0), s.cnt3(v),
p.int3(s), p.cnt3(v), p1.int3(p2), g.cop(s) and g.ray3(sd). In the following
boxes we show for each of the basic operations and predicates the corre-
sponding function implemented in PL/pgSQL.

25

g.eq3(g0)

SQL function
CREATE FUNCTION EQ 3 (geometry, geometry)

RETURNS boolean AS $$

DECLARE ...

BEGIN

g1 := $1; g2 := $2;

IF NOT ST EQUALS(g1,g2) THEN RETURN false; END IF;

i := 1;

FOR p IN SELECT geom FROM ST DUMPPOINTS(g2) ORDER BY

ST X(geom),ST Y(geom),ST Z(geom) LOOP

pt2[i] := p;

i := i + 1;

END LOOP;

i := 1;

FOR pt1 IN SELECT geom FROM ST DUMPPOINTS(g1) ORDER BY

ST X(geom),ST Y(geom),ST Z(geom) LOOP

p := pt2[i];

IF ST X(pt1) <> ST X(p) OR ST Y(pt1) <> ST Y(p)

OR ST Z(pt1) <> ST Z(p) THEN

RETURN false;

ELSE

i := i + 1;

END IF;

END LOOP;

RETURN true;

END;

$$ LANGUAGE plpgsql;

26

s.cnt3(v)

SQL function
CREATE FUNCTION S CNT V 3 (geometry, geometry)

RETURNS boolean AS $$

DECLARE ...

BEGIN

s := $1; p := $2;

x0 := ST X(p); y0 := ST Y(p); z0 := ST Z(p);

IF ST X(p) < ST XMIN(s) OR ST X(p) > ST XMAX(s) OR

ST Y(p) < ST YMIN(s) OR ST Y(p) > ST YMAX(s) OR

ST Z(p) < ST ZMIN(s) OR ST Z(p) > ST ZMAX(s) THEN

RETURN false;

END IF;

p1 := ST STARTPOINT(s); x1 := ST X(p1); y1 := ST Y(p1); z1 := ST Z(p1);

p2 := ST ENDPOINT(s); x2 := ST X(p2); y2 := ST Y(p2); z2 := ST Z(p2);

IF (x2-x1) = 0 THEN deltay := 0; deltaz := 0;

ELSE deltay := (y2-y1)/(x2-x1); deltaz := (z2-z1)/(x2-x1);

END IF;

x3 := (x1+x2)/2 - 1; y3 := (y1+y2)/2 + deltay - 5;

z3 := (z1+z2)/2 + deltaz - 7;

a := (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);

b := -((x2 - x1)*(z3 - z1) - (z2 - z1)*(x3 - x1));

c := (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);

d := -(a*x1 + b*y1 + c*z1);

IF (abs(a*x0 + b*y0 + c*z0 + d) > 10-̂12) THEN

RETURN false;

END IF;

x3 := (x1+x2)/2 + 1; y3 := (y1+y2)/2 + deltay + 3;

z3 := (z1+z2)/2 + deltaz + 5;

a := (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);

b := -((x2 - x1)*(z3 - z1) - (z2 - z1)*(x3 - x1));

c := (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);

d := - (a*x1 + b*y1 + c*z1);

IF (abs(a*x0 + b*y0 + c*z0 + d) > 10-̂12) THEN

RETURN false;

END IF;

RETURN true;

END;

$$ LANGUAGE plpgsql;

27

p.int3(s) - 1 of 2

SQL function - first part
CREATE FUNCTION P INT S 3 (geometry, geometry)

RETURNS boolean AS $$

DECLARE ...

BEGIN

p := $1; s := $2;

p1 := ST STARTPOINT(s);x1 := ST X(p1);y1 := ST Y(p1);z1 := ST Z(p1);

p2 := ST ENDPOINT(s);x2 := ST X(p2);y2 := ST Y(p2);z2 := ST Z(p2);

IF (x2-x1) = 0 THEN deltay := 0; deltaz := 0;

ELSE deltay := (y2-y1)/(x2-x1); deltaz := (z2-z1)/(x2-x1);

END IF;

-- first plane

x3 := (x1+x2)/2 + 1;y3 := (y1+y2)/2 + deltay - 5;

z3 := (z1+z2)/2 + deltaz - 7;

a1 := (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);

b1 := -((x2 - x1)*(z3 - z1) - (z2 - z1)*(x3 - x1));

c1 := (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);

t1 := (a1*x1 + b1*y1 + c1*z1);

-- second plane

x3 := (x1+x2)/2 - 1;y3 := (y1+y2)/2 + deltay + 3;

z3 := (z1+z2)/2 + deltaz + 5;

a2 := (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);

b2 := -((x2 - x1)*(z3 - z1) - (z2 - z1)*(x3 - x1));

c2 := (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);

t2 := (a2*x1 + b2*y1 + c2*z1);

-- third plane

i := 1;

FOR pt IN SELECT geom FROM ST DUMPPOINTS(p) ORDER BY path[1] LOOP

IF (i > 3) THEN EXIT; END IF;

IF (i = 1) THEN x1 := ST X(pt);y1 := ST Y(pt);z1 := ST Z(pt);END IF;

IF (i = 2) THEN x2 := ST X(pt);y2 := ST Y(pt);z2 := ST Z(pt);END IF;

IF (i = 3) THEN x3 := ST X(pt);y3 := ST Y(pt);z3 := ST Z(pt);END IF;

i := i + 1;

END LOOP;

a3 := (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);

b3 := -((x2 - x1)*(z3 - z1) - (z2 - z1)*(x3 - x1));

c3 := (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);

t3 := (a3*x1 + b3*y1 + c3*z1);

det := (a1*b2*c3) + (b1*c2*a3) + (c1*a2*b3) -

(c1*b2*a3) - (a2*b1*c3) - (a1*b3*c2);

IF (det = 0) THEN RETURN false; END IF;

28

p.int3(s) - 2 of 2

SQL function - second part
xint := ((t1*b2*c3) + (b1*c2*t3) + (c1*t2*b3) -

(c1*b2*t3) - (t2*b1*c3) - (t1*b3*c2))/det;

yint := ((a1*t2*c3) + (t1*c2*a3) + (c1*a2*t3) -

(c1*t2*a3) - (a2*t1*c3) - (a1*t3*c2))/det;

zint := ((a1*b2*t3) + (b1*t2*a3) + (t1*a2*b3) -

(t1*b2*a3) - (a2*b1*t3) - (a1*b3*t2))/det;

IF xint < ST XMIN(s) OR xint > ST XMAX(s) OR

yint < ST YMIN(s) OR yint > ST YMAX(s) OR

zint < ST ZMIN(s) OR zint > ST ZMAX(s) THEN

RETURN false;

END IF;

pxy := ST FORCE 2D(p);

gt1 := ’SRID=’||ST SRID(p)||’;POLYGON((’; gt2 = gt1;

FOR pt IN SELECT geom FROM ST DUMPPOINTS(p) ORDER BY path[1] LOOP

gt1 := gt1||ST X(pt)||’ ’|| ST Z(pt)||’,’;

gt2 := gt2||ST Y(pt)||’ ’|| ST Z(pt)||’,’;

END LOOP;

gt1 := substring(gt1 from 1 for length(gt1)-1);

gt2 := substring(gt2 from 1 for length(gt2)-1);

gt1 := gt1 || ’))’; gt2 := gt2 || ’))’;

pxz := ST GEOMFROMEWKT(gt1); pyz := ST GEOMFROMEWKT(gt2);

areaxy := 0; IF ST ISVALID(pxy) THEN areaxy := ST AREA(pxy); END IF;

areaxz := 0; IF ST ISVALID(pxz) THEN areaxz := ST AREA(pxz); END IF;

areayz := 0; IF ST ISVALID(pyz) THEN areayz := ST AREA(pyz); END IF;

IF areaxy > areaxz THEN

IF areaxy > areayz THEN xc := xint; yc := yint; pch := pxy;

ELSE xc := yint; yc := zint; pch := pyz;

END IF;

ELSE

IF areaxz > areayz THEN xc := xint; yc := zint; pch := pxz;

ELSE xc := yint; yc := zint; pch := pyz;

END IF;

END IF;

pint := ST GEOMFROMEWKT(’SRID=’||ST SRID(p)||’;POINT(’||xc||’ ’||yc||’)’);

RETURN ST WITHIN(pint, pch);

END; $$ LANGUAGE plpgsql;

29

p.cnt3(v) - 1 of 2

SQL function - first part
CREATE FUNCTION P INT S 3 (geometry, geometry)

RETURNS boolean AS $$

DECLARE ...

BEGIN

p := $1; v := $2;

x0 := ST X(v); y0 := ST Y(v); z0 := ST Z(v);

i := 1;

FOR pt IN SELECT geom FROM ST DUMPPOINTS(p) ORDER BY path[1] LOOP

IF (i > 3) THEN EXIT; END IF;

IF (i = 1) THEN x1 := ST X(pt); y1 := ST Y(pt); z1 := ST Z(pt); END IF;

IF (i = 2) THEN x2 := ST X(pt); y2 := ST Y(pt); z2 := ST Z(pt); END IF;

IF (i = 3) THEN x3 := ST X(pt); y3 := ST Y(pt); z3 := ST Z(pt); END IF;

i := i + 1;

END LOOP;

a1 := (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);

b1 := -((x2 - x1)*(z3 - z1) - (z2 - z1)*(x3 - x1));

c1 := (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);

d1 := - (a1*x1 + b1*y1 + c1*z1);

IF (abs(a1*x0 + b1*y0 + c1*z0 + d1) > 10-̂12)) THEN

RETURN false;

END IF;

pxy := ST FORCE 2D(p);

gt1 := ’SRID=’ || ST SRID(p)::text || ’;POLYGON((’;

gt2 = gt1;

FOR pt IN SELECT geom FROM ST DUMPPOINTS(p) ORDER BY path[1] LOOP

gt1 = gt1||ST X(pt)||’ ’||ST Z(pt)||’,’;

gt2 = gt2||ST Y(pt)||’ ’||ST Z(pt)||’,’;

END LOOP;

gt1 := substring(gt1 from 1 for length(gt1)-1);

gt2 := substring(gt2 from 1 for length(gt2)-1);

gt1 := gt1 || ’))’; gt2 := gt2 || ’))’;

pxz := ST GEOMFROMEWKT(gt1); pyz := ST GEOMFROMEWKT(gt2);

areaxy := 0; IF ST ISVALID(pxy) THEN areaxy := ST AREA(pxy); END IF;

areaxz := 0; IF ST ISVALID(pxz) THEN areaxz := ST AREA(pxz); END IF;

areayz := 0; IF ST ISVALID(pyz) THEN areayz := ST AREA(pyz); END IF;

30

p.cnt3(v) - 2 of 2

SQL function - second part
IF areaxy > areaxz THEN

IF areaxy > areayz THEN xc := x0; yc := y0; pch := pxy;

ELSE xc := y0; yc := z0; pch := pyz;

END IF;

ELSE

IF areaxz > areayz THEN xc := x0; yc := z0; pch := pxz;

ELSE xc := y0; yc := z0; pch := pyz;

END IF;

END IF;

vc := ST GEOMFROMEWKT(’SRID=’||ST SRID(p)||’;POINT(’||xc||’ ’||yc||’)’)

RETURN ST WITHIN(vc, pch);

END; $$ LANGUAGE plpgsql;

31

p.int3(p0) - 1 of 3

SQL function - first part
CREATE FUNCTION P INT P 3 (geometry, geometry)

RETURNS boolean AS $$

DECLARE ...

BEGIN

p1 := $1; p2 := $2;

i := 1;

FOR pt IN SELECT geom FROM ST DUMPPOINTS(p1) ORDER BY path[1] LOOP

IF (i > 3) THEN EXIT; END IF;

IF (i = 1) THEN x1 := ST X(pt); y1 := ST Y(pt); z1 := ST Z(pt); END IF;

IF (i = 2) THEN x2 := ST X(pt); y2 := ST Y(pt); z2 := ST Z(pt); END IF;

IF (i = 3) THEN x3 := ST X(pt); y3 := ST Y(pt); z3 := ST Z(pt); END IF;

i := i + 1;

END LOOP;

a1 := (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);

b1 := -((x2 - x1)*(z3 - z1) - (z2 - z1)*(x3 - x1));

c1 := (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);

d1 := - (a1*x1 + b1*y1 + c1*z1);

i := 1;

FOR pt IN SELECT geom FROM ST DUMPPOINTS(p2) ORDER BY path[1] LOOP

IF (i > 3) THEN EXIT; END IF;

IF (i = 1) THEN x1 := ST X(pt); y1 := ST Y(pt); z1 := ST Z(pt); END IF;

IF (i = 2) THEN x2 := ST X(pt); y2 := ST Y(pt); z2 := ST Z(pt); END IF;

IF (i = 3) THEN x3 := ST X(pt); y3 := ST Y(pt); z3 := ST Z(pt); END IF;

i := i + 1;

END LOOP;

a2 := (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);

b2 := -((x2 - x1)*(z3 - z1) - (z2 - z1)*(x3 - x1));

c2 := (x2 - x1)*(y3 - y1) - (y2 - y1)*(x3 - x1);

d2 := - (a2*x1 + b2*y1 + c2*z1);

IF (a1*b2)-(a2*b1) = 0 AND (a1*c2)-(a2*c1) = 0 AND

(b1*c2)-(b2*c1) = 0 THEN

RAISE NOTICE ’coplanar planes’; RETURN false;

END IF;

32

p.int3(p0) - 2 of 3

SQL function - second part
-- intersecting planes: compute straight line of intersection

xs := ST XMIN(p1);

IF (ST XMIN(p2) < xs) THEN xs := ST XMIN(p2); END IF;

xe := ST XMAX(p1);

IF (ST XMAX(p2) < xe) THEN xe := ST XMAX(p2); END IF;

det := (b1*c2)-(b2*c1);

t1 := -d1 - a1*xs; t2 := -d2 - a2*xs;

ys := ((t1*c2)-(t2*c1))/det;

zs := ((b1*t2)-(b2*t1))/det;

t1 := -d1 - a1*xe; t2 := -d2 - a2*xe;

ye := ((t1*c2)-(t2*c1))/det;

ze := ((b1*t2)-(b2*t1))/det;

-- analyzing first patch

pxy := ST FORCE 2D(p1);

gt1 := ’SRID=’ || ST SRID(p1)::text || ’;POLYGON((’; gt2 = gt1;

FOR pt IN SELECT geom FROM ST DUMPPOINTS(p1) ORDER BY path[1] LOOP

gt1 = gt1||ST X(pt)||’ ’||ST Z(pt)|| ’,’;

gt2 = gt2||ST Y(pt)||’ ’||ST Z(pt)|| ’,’;

END LOOP;

gt1 := substring(gt1 from 1 for length(gt1)-1);

gt2 := substring(gt2 from 1 for length(gt2)-1);

gt1 := gt1 || ’))’;

gt2 := gt2 || ’))’;

pxz := ST GEOMFROMEWKT(gt1);

pyz := ST GEOMFROMEWKT(gt2);

areaxy := 0; IF ST ISVALID(pxy) THEN areaxy := ST AREA(pxy); END IF;

areaxz := 0; IF ST ISVALID(pxz) THEN areaxz := ST AREA(pxz); END IF;

areayz := 0; IF ST ISVALID(pyz) THEN areayz := ST AREA(pyz); END IF;

IF areaxy > areaxz THEN

IF areaxy > areayz THEN xs0 := xs; ys0 := ys; xe0 := xe; ye0 := ye; pch := pxy;

ELSE xs0 := ys; ys0 := zs; xe0 := ye; ye0 := ze; pch := pyz;

END IF;

ELSE

IF areaxz > areayz THEN xs0 := xs; ys0 := zs; xe0 := xe; ye0 := ze; pch := pxz;

ELSE xs0 := ys; ys0 := zs; xe0 := ye; ye0 := ze; pch := pyz;

END IF;

END IF;

ints := ST GEOMFROMEWKT(’SRID=’||ST SRID(p1)||

’;LINESTRING(’||xs0||’ ’||ys0||’,’||xe0||’ ’||ye0||’)’);

IF NOT (ST CROSSES(pch,ints) OR ST CONTAINS(pch,ints)) THEN RETURN false; END IF;

33

p.int3(p0) - 3 of 3

SQL function - third part
-- analyzing second patch

ints := ST INTERSECTION(pch,ints);

xs := ST X(ST STARTPOINT(ints));

xe := ST X(ST ENDPOINT(ints));

t1 := -d1 - a1*xs; t2 := -d2 - a2*xs;

ys := ((t1*c2)-(t2*c1))/det;

zs := ((b1*t2)-(b2*t1))/det;

t1 := -d1 - a1*xe; t2 := -d2 - a2*xe;

ye := ((t1*c2)-(t2*c1))/det;

ze := ((b1*t2)-(b2*t1))/det;

pxy := ST FORCE 2D(p2);

gt1 := ’SRID=’ || ST SRID(p2)::text || ’;POLYGON((’; gt2 = gt1;

FOR pt IN SELECT geom FROM ST DUMPPOINTS(p2) ORDER BY path[1] LOOP

gt1 = gt1||ST X(pt)||’ ’||ST Z(pt)||’,’;

gt2 = gt2||ST Y(pt)||’ ’||ST Z(pt)|| ’,’;

END LOOP;

gt1 := substring(gt1 from 1 for length(gt1)-1);

gt2 := substring(gt2 from 1 for length(gt2)-1);

gt1 := gt1 || ’))’;

gt2 := gt2 || ’))’;

pxz := ST GEOMFROMEWKT(gt1);

pyz := ST GEOMFROMEWKT(gt2);

areaxy := 0; IF ST ISVALID(pxy) THEN areaxy := ST AREA(pxy); END IF;

areaxz := 0; IF ST ISVALID(pxz) THEN areaxz := ST AREA(pxz); END IF;

areayz := 0; IF ST ISVALID(pyz) THEN areayz := ST AREA(pyz); END IF;

IF areaxy > areaxz THEN

IF areaxy > areayz THEN xs0 := xs;ys0 := ys; xe0 := xe;ye0 := ye;pch := pxy;

ELSE xs0 := ys;ys0 := zs; xe0 := ye;ye0 := ze;pch := pyz;

END IF;

ELSE

IF areaxz > areayz THEN xs0 := xs ys0 := zs; xe0 := xe;ye0 := ze;pch := pxz;

ELSE xs0 := ys;ys0 := zs; xe0 := ye;ye0 := ze;pch := pyz;

END IF;

END IF;

ints := ST GEOMFROMEWKT(’SRID=’||ST SRID(p1)||

’;LINESTRING(’||xs0||’ ’||ys0||’,’||xe0||’ ’||ye0||’)’);

IF NOT (ST CROSSES(pch,ints) OR ST CONTAINS(pch,ints)) THEN

RETURN false; END IF;

RETURN true;

END; $$ LANGUAGE plpgsql;

34

Ray3(v, sd) - 1 of 2

SQL function- first part
CREATE FUNCTION Ray 3 (geometry,geometry)

RETURNS integer AS $$

DECLARE ...

BEGIN

p := $1; sup := $2; nint := 0;

x0 := ST X(p); y0 := ST Y(p); z0 := ST Z(p);

FOR pat IN SELECT geom FROM ST DUMP(sup) LOOP

i := 1;

IF (ST XMAX(pat) >= x0) THEN

FOR pt IN SELECT geom FROM ST DUMPPOINTS(patch) LOOP

IF (i > 3) THEN EXIT; END IF;

IF (i = 1) THEN x1 := ST X(pt); y1 := ST Y(pt); z1 := ST Z(pt); END IF;

IF (i = 2) THEN x2 := ST X(pt); y2 := ST Y(pt); z2 := ST Z(pt); END IF;

IF (i = 3) THEN x3 := ST X(pt); y3 := ST Y(pt); z3 := ST Z(pt); END IF;

i := i + 1;

END LOOP;

a := (y2 - y1)*(z3 - z1)-(z2 - z1)*(y3 - y1);

b := -((x2 - x1)*(z3 - z1)-(z2 - z1)*(x3 - x1));

c := (x2 - x1)*(y3 - y1)-(y2 - y1)*(x3 - x1);

d := - (a*x1 + b*y1 + c*z1);

IF (a = 0) THEN CONTINUE; END IF;

xint := -(d + b*y0 + c*z0)/a;

patxy := ST FORCE 2D(pat);

gt1 := ’SRID=’ || ST SRID(pat)::text || ’;POLYGON((’; gt2 = gt1;

FOR pt1 IN SELECT geom FROM ST DUMPPOINTS(pat) ORDER BY path[1] LOOP

gt1 = gt1||ST X(pt1)||’ ’||ST Z(pt1)||’,’;

gt2 = gt2||ST Y(pt1)||’ ’||ST Z(pt1)||’,’;

END LOOP;

gt1 := substring(gt1 from 1 for length(gt1)-1);

gt2 := substring(gt2 from 1 for length(gt2)-1);

gt1 := gt1 || ’))’; gt2 := gt2 || ’))’;

patxz := ST GEOMFROMEWKT(gt1);

patyz := ST GEOMFROMEWKT(gt2);

areaxy := 0; IF ST ISVALID(patxy) THEN areaxy := ST AREA(patxy); END IF;

areaxz := 0; IF ST ISVALID(patxz) THEN areaxz := ST AREA(patxz); END IF;

areayz := 0; IF ST ISVALID(patyz) THEN areayz := ST AREA(patyz); END IF;

35

Ray3(v, sd) - 2 of 2

SQL function- second part
IF areaxy > areaxz THEN

IF areaxy > areayz THEN

p0 := ST GEOMFROMEWKT(’SRID=’||ST SRID(p)||’;POINT(’||xint||’ ’||y0||’)’);

IF ST WITHIN(p0,patxy) THEN

IF (abs(a*x0 + b*y0 + c*z0 + d) <= 10(̂-12)) THEN

RETURN 0;

END IF;

nint := nint + 1;

END IF;

ELSE

p0 := ST GEOMFROMEWKT(’SRID=’||ST SRID(p)||’;POINT(’||y0||’ ’||z0||’)’);

IF ST WITHIN(p0,patyz) THEN

IF (abs(a*x0 + b*y0 + c*z0 + d) <= 10(̂-12)) THEN

RETURN 0;

END IF;

nint := nint + 1;

END IF;

END IF;

ELSE

IF areaxz > areayz THEN

p0 := ST GEOMFROMEWKT(’SRID=’||ST SRID(p)||’;POINT(’||xint||’ ’||z0||’)’);

IF ST WITHIN(p0,patxz) THEN

IF (abs(a*x0 + b*y0 + c*z0 + d) <= 10(̂-12)) THEN

RETURN 0;

END IF;

nint := nint + 1;

END IF;

ELSE

p0 := ST GEOMFROMEWKT(’SRID=’||ST SRID(p)||’;POINT(’||y0||’ ’||z0||’)’);

IF ST WITHIN(p0,patyz) THEN

IF (abs(a*x0 + b*y0 + c*z0 + d) <= 10(̂-12)) THEN

RETURN 0;

END IF;

nint := nint + 1;

END IF;

END IF;

END IF;

END IF;

END LOOP;

RETURN nint;

END; $$ LANGUAGE plpgsql;

36

6 Conclusions and future work

This paper proposed an approach to deal with the problem of specifying
spatial integrity constraints at conceptual level in 3D city models written
in UML and validating them at physical level (in particular, when data are
stored in a spatial DBMS, like PostGIS). The approach is based on OCL tem-
plates that allow the model designers to specify semantic properties without
using OCL directly. Regarding the implementation of data and their vali-
dation procedures, the paper proposed a reference vector model describing
the vector types, together with some basic vector operations and predicates
that are necessary in order to implement the topological relation tests that
are required by the OCL templates. Prop.5.1 showed that using them the
topological relation tests used in the examples can be implemented. The
proposed set of operations and predicates is not minimal, but this issue is
out of the scope of this paper. We prefer to keep some derivable operations
and predicates for sake of paper readability. Finally, the feasibility of the im-
plementation on current technology is demonstrated, by choosing PostGIS as
representative system of open source spatial databases, and showing the SQL
query automatically generated by one of the OCL templates instantiated as
an example.

Future work will regard: (i) the extension of the OCL templates to other
cases, including also distance based properties in OCL constraint specifica-
tion; (ii) the implementation of validator tools for city data stored in spatial
DBMS; (iii) the testing the approach on huge datasets.

References

[1] A. Belussi, M. Negri, and G. Pelagatti. An ISO TC 211 Conformant
Approach to Model Spatial Integrity Constraints in the Conceptual De-
sign of Geographical Databases. In Advances in Conceptual Modeling -
Theory and Practice, pages 100–109. 2006.

[2] A. Belussi, M. Negri, and G. Pelagatti. Modelling Spatial Whole-Part
Relationships using an ISO-TC211 Conformant Approach. Information
& Software Technology, 48(11):1095–1103, 2006.

[3] B. Demuth, H. Hussmann, and S. Loecher. OCL As a Specification Lan-
guage for Business Rules in Database Applications. In Proceedings of the
4th Int. Conf. on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, pages 104–117, 2001.

37

[4] M. Duboisset, F. Pinet, M.-A. Kang, and M. Schneider. Precise Mod-
eling and Verification of Topological Integrity Constraints in Spatial
Databases: From an Expressive Power study to Code Generation Prin-
ciples. In Conceptual Modeling – ER 2005, pages 465–482. 2005.

[5] M. J. Egenhofer. Topological relations in 3D. Technical report, National
Center for Geographic Information and Analysis, 1995.

[6] M. J. Egenhofer and R. Franzosa. Point-set topological spatial relations.
International Journal of Geographic Information Systems, 2(5):161–174,
1991.

[7] European Commission Joint Research Centre. INSPIRE Data Specifi-
cation for the spatial data theme Building, 2013. version 3.0.

[8] G. Gröger and L. Plümer. How to Achieve Consistency for 3D City
Models. GeoInformatica, pages 137–165, 2011.

[9] G. Gröger and L. Plümer. CityGML – Interoperable Semantic 3D City
Models. ISPRS Journal of Photogrammetry and Remote Sensing, 71:12–
33, 2012.

[10] J. Herring. The OpenGIS Abstract Specification, Topic 1: Feature Ge-
ometry (ISO 19107 Spatial Schema), 2001. Version 5. OGC Document
Number 01-101.

[11] OMG (Object Management Group). Object Constraint Language
(OCL), 2014. Version 2.4. OMG Document Number: formal/2014-02-03.

[12] Open Geospatial Consortium Inc. OpenGIS Implementation Standard
for Geographic Information - Simple feature access - Part 1: Common
architecture, 2011.

[13] Open Geospatial Consortium Inc. OGC City Geography Markup Lan-
guage (CityGML) Encoding Standard, 2012.

[14] G. Pelagatti, M. Negri, A. Belussi, and S. Migliorini. From the Con-
ceptual Design of Spatial Constraints to Their Implementation in Real
Systems. In Proc. of the 17th ACM SIGSPATIAL Int. Conf. on Ad-
vances in Geographic Information Systems, pages 448–451, 2009.

[15] A. Stadler and T. H. Kolbe. Spatio-Semantic Coherence in the Integra-
tion of 3D City Models. In Proc. of the 5th Int. ISPRS Symposium on
Spatial Data Quality (ISSDQ 2007), ISPRS Archives, 2007.

38

[16] D. Wagner, M. Wewetzer, J. Bogdahn, N. Alam, M. Pries, and V. Coors.
Geometric-Semantical Consistency Validation of CityGML Models. In
Progress and New Trends in 3D Geoinformation Sciences, pages 171–
192. 2013.

[17] D. Xu. Design and Implementation of Constraints for 3D Spatial
Database: Using Climate City Campus Database as an Example. Mas-
ter’s thesis, OTB Research Institute for the Built Environment, 2011.

39

University of Verona
Department of Computer Science
Strada Le Grazie, 15
I-37134 Verona
Italy

http://www.di.univr.it

