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Abstract: In this paper we establish an arbitrage-free prices interval for
American contingent claims in incomplete financial markets. Such an incom-
pleteness derives from considering uncertain volatility. We use the notion of
G-expectation, under which the corresponding canonical path is a G-Brownian
Motion, and the related Itô stochastic calculus on suitable stopping time inter-
vals, in a standard financial market characterized by a risk-less asset and one
risky stock.

AMS Subject Classification: 60G40, 60G44, 91G20, 91G80, 91B25
Key Words: American contingent claim, G-expectation, pricing, uncertain
volatility

1. Introduction

This paper aims at pricing and hedging American contingent claims under un-
certain volatility models (UVM, from now on), in a financial market consisting
in a risk-less asset and a risky stock price.
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We assume that the underlying price process St evolves according to the
Black-Scholes model, which means that St is an Itô process of the form St =
rStdt + σtStdWt, where the drift coincides with the risk-free interest rate r,
supposed to be constant, (Wt)t≥0 is the classical Brownian Motion and the
volatility parameter σt is unknown and belongs to finite interval of values,
namely σ ∈ [σ, σ], with 0 < σ < σ.

The volatility lower, resp. upper, bound, i.e. σ, resp. σ, can be consid-
ered as input data of the problem and they are chosen according to the users’
expectation as well as to the uncertainty of future prices fluctuations. As an
example, it is rather standard to take such bounds as the extreme values or
peaks of (historical) implied volatilities, see, e.g., [2].

One of the main reason behind the decision to consider UVM lies in the
need to overcome the drawbacks of Black-Scholes model and, in particular, the
assumption that the volatility surface, computed with respect to the variations
of strike prices and expiration dates, has to be flat.

On the other hand, even if stochastic-volatility are able to better capture
market empirical features, they typically implies the lack of market complete-
ness, therefore perfect hedging is generally impossible.

By following the way paved in [18] in the case of European contingent claims,
we obtain a closed interval for American contingent claim prices, within which
no arbitrage opportunity may occur.

In order to take into account model uncertainty characterizing our model,
we make use of the so-called G-expectations, with corresponding canonical path
indicated by G-Brownian Motion, that was first introduced by Peng [10] and,
then, developed by several authors, see, e.g., [6, 9, 16, 17]. We would like to
recall that G−expectations are in particular sublinear expectations, and that
such a family of expectations has gained a preeminent role in risk analysis.
Indeed, the notion of sublinear expectation, and, more generally, of nonlinear
expectation, is strictly connected with the concept, proposed at the end of the
nineties in [1], of coherent risk measure. From that moment on, such a nonlinear
approach was extensively applied in studying dynamic risk measures, see, e.g.,
[12] and [15], and to develop super-hedging and super-pricing approaches as,
e.g., in [4, 5].

The decision to favor sublinear expectations, rather than more general non-
linear g-expectations, although for the latter a rich literature was already avail-
able, can be found in [11, 13], where Peng explains that the G−framework is not
based on a classical probability space given a priori, while, in the g-framework,
one needs to consider a probability measure, among an uncountable number of
unknown ones essentially singular from each other, which has to be absolutely
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continuous with respect to a probability measure, typically a Wiener measure.
We want to recall that an American option with maturity T may be ex-

ercised at any time before the option expires. By virtue of this and in order
to define the corresponding payoff, it is essential to introduce the concept of
stopping time τ. Roughly speaking, this means that an event occurs at random
time τ if, at any time 0 ≤ t one can decide if the event has already occurred
and then τ ≤ t, or is yet to occur, hence τ > t, based on the information
given by the filtration, up to time t. In such a context, the G-framework, as
it was defined in [10], can not be used, as it provides the quasi-continuity of
random variables involved. Nevertheless, in [9] latter drawback has been solved
introducing an Itô stochastic calculus on stopping time intervals which allows
to handle Itô integrals of the form

∫ t∧τ
0 ηsdBs, where Bs is the G−Brownian

Motion previously cited. In particular, such a result allows to treat the Itô
integral for stochastic processes without assuming quasi-continuity and to deal
with Itô formula for a general C1,2-function.

The paper is organized as follows: in Section 2 we summarize the main
definitions and properties related to theG-expectation framework, as well as the
Itô stochastic calculus with respect to a stopping time interval, while in Section
3 the hedging problem for American contingent claims under uncertain volatility
is formulated and results about the arbitrage-free interval are provided.

2. G-expectations

2.1. Sublinear expectation

In what follows, we introduce the main definitions and results concerning G-
expectation theory. We will essentially proceed according to the scheme used
in [10, 14] and then taken up in [18].

Definition 1. Let Ω 6= ∅ be a given set of scenarios and consider a linear
space H of real functions defined on Ω, such that H contains all constants c
and such that X ∈ H implies |X| ∈ H.

A sublinear expectation Ê on H is a functional Ê : H → R such that the
following properties hold

Monotonicity: if X ≥ Y, then Ê(X) ≥ Ê(Y )

Constant preserving: Ê(c) = c, c ∈ R

Sub-additivity: Ê(X + Y ) ≤ Ê(X) + Ê(Y )
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Positive homogeneity: Ê(λX) = λÊ(X), for λ ≥ 0

The triple (Ω,H, Ê) is a sublinear expectation space.

Remark 2. The last two properties are often referred to as the so-called
sub-linearity property and imply the convexity property, namely

Ê(λX + (1− λ)Y ) ≤ Ê(X) + (1− λ)Ê(Y ), for all λ ∈ [0, 1] .

The second and the third property guarantee the cash translatability prop-

erty which is expressed by

Ê(X + c) = Ê(X) + c, for any c ∈ R .

The sublinear expectation space looks like a classical probability space,
where the σ-algebra is replaced by the linear space H. Therefore, it makes
sense to consider typical concepts of probability theory associated with linear
expectations, such as the distribution of random variables, the independence
between them and so on.

In order to do this, let us introduce the space of all bounded and Lipschitz

continuous functions on R
n, n ≥ 1, denoted by Cb,Lip(R

n), for n ≥ 1.

Remark 3. The space Cb,Lip(R
n) is introduced just for the sake of con-

venience, that is to say, it could be replaced by other spaces of functions, such
as the space L∞(Rn) of bounded Borel-measurable functions, the space Cb(R

n)
of bounded continuous functions, the space Ck

b (R
n) of bounded and k times

differentiable functions, with bounded derivatives of all order less or equal to
k, the space Cunif (R

n) of bounded and uniformly continuous functions, the
space Cl,Lip(R

n) of locally Lipschitz functions or the space L0(Rn) of Borel
measurable functions, see [10] for further details.

Definition 4. Let X = (X1, . . . ,Xn) be a given n-dimensional random
vector on (Ω,H, Ê) and consider the functional F̂X [·] : Cb,Lip(R

n) → R such
that

ϕ ∈ Cb,Lip(R
n) 7−→ F̂X [ϕ] := Ê[ϕ(X)].

Then, the triple (R, Cb,Lip(R
n), F̂X [·]) forms a sublinear expectation space and

F̂X is the distribution of X.

If the distribution F̂X of X ∈ H is not a linear expectation, then we say
that X has a distributional uncertainty. Such a distribution is characterized by
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four parameters, namely

µ := Ê[X], µ := −Ê[−X], σ2 := Ê[X2]; σ2 := −Ê[−X2] .

In particular, µ and µ represent the mean-uncertainty of X, while σ2 and
σ2 describe the variance-uncertainty of X. In this paper, we focus on variance-
uncertainty, hence we set µ = µ.

Definition 5. Let X1 and X2 be two random vectors, defined respectively
in the sublinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). Such random
vectors are said to be identically distributed, in symbols X1 ∼ X2,, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], for all ϕ ∈ Cb,Lip(R
n) .

The independence of random variables under a sublinear expectation space
is a very interesting issue.

Definition 6. In a sublinear expectation space (Ω,H, Ê), a random vector
Y = (Y1, . . . , Yn) ∈ H is said to be independent to another random vector
X = (X1, . . . ,Xm) ∈ H under Ê if, for each test function ϕ ∈ Cb,Lip(R

m×R
n),

we have
Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ] .

It is important to notice that, unlike what occurs in the linear case, under
the sublinear expectation if X is independent to Y, this does not imply that
Y is independent to X, too. Hence, we define X̄ an independent copy of X if
X ∼ X̄ and X̄ is independent to X.

As well as in the classical probability theory, Gaussian distribution plays a
central role also under a sublinear expectation. For the sake of simplicity, here
we restrict ourselves to the one-dimensional case n = 1, but the generalization
to the n-dimensional, n > 1, case is straightforward.

Definition 7. In a sublinear expectation space (Ω,H, Ê) a random vari-
able X ∈ H with σ2 = Ê[X2] and σ2 = −Ê[−X2], is said to be G−normal
distributed, denoted by X ∼ N (0, [σ2, σ2]), if, for each independent copy Y of
X, we have

aX + bY ∼
√

a2 + b2X, ∀ a, b ≥ 0 . (1)

We recall that a G−normal distributed random variable X has no mean-
uncertainty, that is, Ê[X] = Ê[−X] = 0, see [10].
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Moreover, such a distribution on the sublinear expectation space is the
uniquely defined sublinear distribution on (R, Cb,Lip(R)) and it can be obtained
by solving a suitable parabolic partial differential equation (PDE), called the
G−heat equation. More rigorously, one can prove that, if X is a G-normal
distributed random variable, then

u(t, x) := Ê[ϕ(x+
√
tX)], (t, x) ∈ [0,∞)× R, ϕ ∈ Cb,Lip(R× R),

is the unique viscosity solution of

{
∂tu−G(∂2

xxu) = 0
u(0, ·) = ϕ(·) , (2)

see [10] for details.
The function G is the generating function of eq. (2), such that

G(y) :=
1

2
σ2y+ − 1

2
σ2y− , (3)

where σ2 = Ê[X2], σ2 = −Ê[−X2], y+ := max(0, y) and y− := max(0,−y).

2.2. G-Brownian Motion and G-expectations

Let (Ω,H, Ê) be a sublinear expectation space, then a stochastic process related
to (Ω,H, Ê), is nothing but a family of random variables Xt ∈ H, t ≥ 0.

Roughly speaking, a G-Brownian motion is a continuous stochastic process
with independent and stationary increments under a given sublinear expecta-
tion, namely the following definition holds

Definition 8. A process (Bt)t≥0 in a sublinear expectation space (Ω,H, Ê)
is called a G−Brownian motion if, for each n ∈ N, 0 ≤ t1, . . . , tn < ∞ and
Bt1 , . . . , Btn ∈ H, the following properties are satisfied:

(a) B0 = 0

(b) for each t, s ≥ 0, the increment Bt+s −Bt is independent to (Bt1 , . . . , Btn)
and N (0, [σ2s, σ2s])−distributed, for each n ∈ N and 0 ≤ t1 ≤ . . . ≤ tn ≤
t.

We note that the letter G stands for the generating function characterizing
the process, i.e.

G(y) := Ê[yB2
1 ], y ∈ R .
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For each fixed time horizon T ≥ 0, let us consider the space of real-valued
continuous paths, starting at zero, denoted by ΩT := C0([0, T ],R), and define
the space of finite dimensional cylinder random variables

Lip(ΩT ) := {ϕ(Bt1 , . . . , Btn) : ti ∈ [0, T ], ϕ ∈ Cb,Lip(R
n)} . (4)

We are going to show how a sublinear expectation on (ΩT , Lip(ΩT )) can be
defined, in such a way that the corresponding canonical process is a G-Brownian
Motion. Such a sublinear expectation is called G-expectation and it will be
indicated by EG.

Let us consider a sublinear expectation space (Ω̃, H̃, Ẽ) and a sequence
of G-normal distributed random variables ξi such that ξi+1 is independent to
(ξ1, . . . , ξi), for i ≥ 1.

In addition, let us define the canonical process Bt(ω) := ωt, t ∈ [0, T ], for
ω ∈ Ωt and set

X := ϕ(Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btn −Btn−1
) ∈ Lip(ΩT )

EG[X] := Ẽ

[
ϕ
(√

t1 − t0ξ1, . . . ,
√

tn − tn−1ξn

)]
,

for some ϕ ∈ Cb,Lip(R
n), 0 ≤ t1 ≤ . . . ≤ tn ≤ T.

It follows that the functional EG consistently defines a sublinear expecta-
tion on Lip(ΩT ). Such a sublinear expectation is called G-expectation and the
canonical process (Bt)t≥0 on the sublinear expectation space (ΩT , Lip(ΩT ),EG)
is called a G-Brownian Motion.

As it is well explained in [14, Ch.1, Sec.4], every sublinear expectation Ê can
be continuously extended to a Banach space (Ĥp, ‖ · ‖p), for each fixed p ≥ 1,

where it continues to be a sublinear expectation, with Ĥp is the completion of

H/Hp
0, Hp

0 :=
{
X ∈ H, Ê [|X|p = 0]

}
and ‖X‖p :=

(
Ê [|X|p]

)1/p
, for X ∈ H.

For our purpose, we will consider the following spaces:

• Ωt
T := {ω·∧t : ω ∈ ΩT }, for each t ∈ [0, T ]

• Bb(ΩT ) (resp. Bb(Ω
t
T )) the space of all bounded B(ΩT )-measurable real

functions (resp. the space of all bounded B(Ωt
T )-measurable real func-

tions), where B(ΩT ) is the Borel σ-algebra of Ω (resp. B(Ωt
T ) is the Borel

σ-algebra of Ωt)

• Lp
G(ΩT ), p ≥ 1, the completion of Lip(ΩT ), defined in eq. (4), under the

norm ‖X‖p := (EG [|X|p])1/p
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• Lp
∗(ΩT ), p ≥ 1, (resp. Lp

∗(Ω
t
T ), p ≥ 1,) the completion of Bb(ΩT ) (resp.

the completion of Bb(Ω
t
T )) under the norm ‖X‖p := (EG [|X|p])1/p

• Mp
∗ (0, T ), p ≥ 1, the completion of Mb,0(0, T ) under the norm

‖η‖Mp
∗
(0,T ) :=

(
EG

[∫ T

0
|ηt|pdt

])1/p

, (5)

where Mb,0(0, T ) represents the collection of simple processes

ηt(ω) :=

N−1∑

i=0

ξi(ω)1[ti,ti+1)(t), ∀ t ∈ [0, T ] , (6)

with {0, t1, . . . , tN−1, T} a partition of [0, T ] and ξi ∈ Bb(Ω
ti
T ), for i =

1, . . . , N − 1.

Remark 9. We want to underline that the spaces Mp
∗ (0, T ), p ≥ 1, turn

to be useful in the construction of Itô integral with respect to a G-Brownian
Motion , see, e.g., [14], as we will see later on. The stochastic processes ηt(ω) :=∑N−1

i=0 ξi(ω)1[ti,ti+1)(t), for all t ∈ [0, T ] and for all ξi ∈ Lp
∗(Ωti), i = 1, . . . , N−

1, are also in Mp
∗ (0, T ).

Moreover, we have that

Mp
∗ (0, T ) ⊃ M q

∗ (0, T ), Lp
∗(ΩT ) ⊃ Lp

G(ΩT ) ,

for all 1 ≤ p ≤ q.

The following Proposition will be used in next Section and its proof can be
found in [9, Sec.3].

Proposition 10. For each p ≥ 1, let X, η ∈ Mp
∗ (0, T ), with η bounded.

Then, Xη ∈ Mp
∗ (0, T ).

2.3. Relationship between G-Brownian Motion and classical
Brownian Motion

Let us consider a given family of probability measures, say P, on the measur-
able space (Ω,B(Ω)), being B(Ω) the Borel σ-algebra. A sublinear expectation
Ê is the upper expectation of P if

Ê[X] = sup
P ∈P

EP [X], for each X ∈ Cb,Lip(R) .
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In our context we are interested in choosing such a family of probability
measures, with respect to which the G-expectation EG results to be an upper
expectation, therefore it is useful to formalize the link between the G-framework
and the classical probability setting.

Let (ΩT ,B(ΩT ), P ) be a probability space, with B(ΩT ) the related Borel
σ-algebra and consider a classical Brownian Motion W = (Wt)t≥0 defined on
it and such that it generates the filtration Ft = σ{Ws, 0 ≤ s ≤ t} ∨ N , N
being the collection of P -null subsets. For a fixed t ≥ 0, we define F t

s :=
σ{Wt+u −Wt, 0 ≤ u ≤ s} ∨ N together with F = (Ft)t≥0 and F

t = (F t
s)s≥0.

Moreover, let Θ := [σ, σ] and denote by AΘ
t,T the collection of all Θ-valued

F
t
s-adapted process on an interval [t, T ]. For each fixed θ ∈ AΘ

t,T , we define

Bt,θ
T :=

∫ T

t
θsdWs . (7)

Finally, we set P1 := {P θ : θ ∈ AΘ
t,T } and P := P1 the closure of P1

under the topology of weak convergence. Hence, P1 is tight and P is weakly
compact, as it is shown in [3, Prop. 50].

The following Proposition, proved in [3, Prop. 49], establishes that the
G-expectation can be equivalently defined in terms of upper expectation

Proposition 11. For any ϕ ∈ Cb,Lip(R
n), n ∈ N, 0 = t0 ≤ t1 ≤ . . . ≤

tn ≤ T, we have

EG[ϕ(Bt1 −Bt0 , . . . , Btn −Btn−1
)]

= sup
θ ∈AΘ

t,T

E
P [ϕ(B0,θ

t1 , . . . , B
tn−1,θ
tn )]

= sup
θ ∈AΘ

t,T

E
P θ

[ϕ(Bt1 −Bt0 , . . . , Btn −Btn−1
)]

= sup
P θ ∈P

E
P θ

[ϕ(Bt1 −Bt0 , . . . , Btn −Btn−1
)] ,

where P θ is the law of the process B0,θ
t :=

∫ t
0 θsdWs, t ≥ 0, θ ∈ AΘ

0,T .

We recall the standard capacity-related vocabulary, which is widely used
within the G-framework.

Definition 12. We say that a set A is polar if P (A) = 0, ∀P ∈ P. A
property holds quasi surely (q.s.) if it holds outside a polar set.



142 L. Di Persio, I. Oliva

Remark 13. Recall that a mapping X : ΩT → R is said to be quasi-

continuous (q.c.) if, for all ǫ > 0, there exists an open setO with supP ∈P P (O) <
ǫ, such that X|Oc is continuous. Moreover, X : ΩT → R has a quasi-continuous

version if there exists a quasi-continuous function Y : ΩT → R with X = Y
q.s. Then,

Lp
G(ΩT ) =

{
X ∈ L0(ΩT ) : lim

n→0
EG[|X|p1{|X|≥n}] = 0

}
, (8)

where L0(ΩT ) denotes the space of all Borel-measurable real-valued functions
on ΩT and X has a q.c. version.

An analogous result holds when we consider the space Lp
∗(ΩT ) without re-

quiring the quasi-continuity property, that is,

Lp
∗(ΩT ) =

{
X ∈ L0(ΩT ) : lim

n→0
EG[|X|p1{|X|≥n}] = 0

}
, (9)

where L0(ΩT ) denotes the space of all Borel-measurable real-valued functions
on ΩT .

2.4. Stochastic calculus of Itô type

In [10, 14], the stochastic integral with respect to the G-Brownian Motion
(Bt)t≥0 is introduced, and then generalized in order to take into consideration
larger spaces of stochastic processes, see [9] for further details.

Definition 14. For any simple process η ∈ Mb,0(0, T ), the stochastic
integral with respect to the G-Brownian Motion (Bt)t≥0 is

I(η) =

∫ T

0
ηsdBs :=

N−1∑

j=0

ξj(Btj−1
−Btj ) . (10)

The mapping I : Mb,0(0, T ) → L2
∗(ΩT ) is a linear continuous mapping and

thus can be continuously extended to I : M2
∗ (0, T ) → L2

∗(ΩT ), with

EG

[∫ T

0
ηsdBs

]
= 0 (11)

EG

[(∫ T

0
ηsdBs

)2
]
≤ σ2

EG

[∫ T

0
η2sds

]
(12)
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Further properties shared by Itô integral with respect to a G-Brownian
Motion can be found in [9, Sec.3].

Due to its usefulness, we just report the following proposition, see [9, Prop.
3.7]

Proposition 15. The Itô integral
∫ t
0 ηsdBs, η ∈ M2

∗ (0, T ), for t ≤ T,
results to be continuous in t q.s. Furthermore, for every η ∈ M2

∗ (0, T ), we have

∫ ·

0
ηsdBs ∈ M2

∗ (0, T ) .

Because of its importance in what follows and since it characterizes the
statistic uncertainty component of the G-Brownian Motion , we are going to
introduce the so-called quadratic variation process of the G-Brownian Motion
(Bt)t≥0.

Definition 16. The quadratic variation process of Bt is an increasing
stochastic process such that

〈B〉t = B2
t − 2

∫ T

0
BsdBs, t ≤ T, with 〈B〉0 = 0 . (13)

A very interesting point of the quadratic variation process 〈B〉 is that

〈B〉t+s − 〈B〉s = 〈Bt+s −Bs〉t , for each s ≥ 0,

therefore the quadratic variation process has independent increments and we
also have that EG[〈B〉2t ] = σ2t2, hence the mean-uncertainty is concentrated
in itself and this could be applied to measure the mean-uncertainty of risky
positions.

It is possible to define a stochastic integral with respect to d 〈B〉t , by con-
sidering, for any stochastic process η ∈ M1

∗ (0, T ),

Q(η) =

∫ T

0
ηsd 〈B〉s :=

N−1∑

j=0

ξj

(
〈B〉tj−1

− 〈B〉tj
)

(14)

and

EG

[(∫ T

0
ηsdBs

)2
]
= EG

[∫ T

0
η2sd 〈B〉s

]
, ∀ η ∈ M2

∗ (0, T ) . (15)
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Because of the financial applications of such mathematical framework, which
will be examined in Section 3, it is necessary to introduce a stochastic calculus
concerning stopping times, by following [9, Sec. 4].

Recall that a stopping time τ relative to the filtration F is a map on ΩT

with values in [0, T ] such that, for every t ≤ T, {τ ≤ t} ∈ Ft. It is possible to
have a Itô’s integral defined on [0, τ ], where τ is a stopping time. In particular,
for each stopping time τ and for each stochastic process η ∈ Mp

∗ (0, T ), we have

∫ t∧τ

0
ηsdBs =

∫ t

0
1[0,τ ](s)ηsdBs q.s. (16)

Remark 17. Prop. (10) guarantees that, for each stopping time τ, the
stochastic process 1[0,τ ](·)η is an element of the space Mp

∗ (0, T ), for every η ∈
Mp

∗ (0, T ).

3. American contingent claims

3.1. The financial market

The standard model for financial markets provides for d+1 continuously traded
assets. One of these is the risk-less asset, the remaining d are subjected to
systematic risk.

For the sake of convenience, let us investigate a financial market M, con-
sisting in one risk-less asset, called bond or bank account, and one risky asset,
called stock, whose dynamics evolve according to

{
dγt = rγtdt, γ0 = 1
dSt = rStdt+ StdBt, S0 = x0

, (17)

where r is the interest rate, supposed to be a nonnegative integer constant,
and (Bt)t≥0 is the canonical G-Brownian Motion, introduced in Section 2, with
parameters σ > 0 and σ > 0.

In particular, hereafter consider the filtered sublinear expectation space
(ΩT ,B(ΩT ),F,P) together with the canonical G-Brownian Motion B = (Bt)t≥0.

Recall that ΩT := C0([0, T ],R), B(ΩT ) is the corresponding Borel σ-algebra,
F := (Ft)t≥0 is the filtration generated by B and P is the set of probability
measures, with respect to which the G-expectation EG is an upper expectation,
as we have already pointed out in Sec. 2.
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Let us observe that the non-risky asset follows a deterministic dynamic,
hence we are able to provide the corresponding price, by integrating the first
equation in (17), so that γt = ert. We denote by γ−1

t the discount factor, that
is, γ−1

t = e−rt.

We require t ∈ [0, T ], where 0 < T < ∞ is the time horizon, unless
explicitly stated otherwise.

Definition 18. An F-adapted valued process π : L1
∗(ΩT ) → R is called

portfolio process.

A nonnegative F-adapted process C : L1
∗(ΩT ) → [0,∞) with increasing,

right-continuous paths and C0 = 0, CT < ∞ q.s. is called cumulative consump-

tion process.

Definition 19. Given a capital y, a portfolio process π and cumulative
consumption C, the solution X· := Xy,π,C

· of the following linear stochastic
equation

dXt = Xt(1− πt)
dγt
γt

+Xtπt
dSt

St
− dCt, X0 = y (18)

defines the wealth process corresponding to the triple (y, π,C).

From a financial point of view, πt represents the amount of the agent’s
wealth that is invested in the stock at time t, and this amount may be positive or
negative, which means that short-selling of stocks is permitted, whereas Xt−πt
is the amount not invested in stocks and put into the bank-account, whose
negative values correspond to borrowing rather than saving, at the interest
rate r.

Let us observe that eq. (18) can be written in the following slightly different
form using eq. (17)

dγt
γt

= rdt ,
dSt

St
= rdt+ dBt .

Replacing last equalities in (18), we obtain

dXt = Xt(1− πt)rdt+Xtπt[rdt+ dBt]− dCt

= rXtdt+XtπtdBt − dCt . (19)

Hereafter, we will refer to eq. (19) as the wealth equation. Such an equation
can be expressed also in integral form, when we refer to the discounted wealth
process γ−1

t Xt.
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Recall that, given two Itô processes Y 1
t and Y 2

t , the product rule ensures
that

d(Y 1
t Y

2
t ) = Y 1

t dY
2
t + Y 2

t dY
1
t + dY 1

t · dY 2
t .

In our case, Y 1
t := γ−1

t , so that dY 1
t = −rγ−1

t dt, while Y 2
t := Xt, whose

differential is given by eq. (19). Therefore,

d(γ−1
t Xt) = γ−1

t dXt +Xtdγ
−1
t + dγ−1

t · dXt

= γ−1
t [rXtdt+XtπtdBt − dCt]− rγ−1

t Xtdt

− rγ−1
t dt[rXtdt+XtπtdBt − dCt]

= γ−1
t XtπtdBt − γ−1

t dCt − r2γ−1
t Xt(dt)

2

− rγ−1
t Xtπt(dt · dBt) + rγ−1

t (dt · dCt)

= γ−1
t XtπtdBt − γ−1

t dCt ,

where last equality holds by virtue of standard stochastic calculus. Then, by
taking into account the initial conditions γ0 = 1 and X0 = y, we get

γ−1
t Xt = y +

∫ t

0
γ−1
u XuπudBu −

∫ t

0
γ−1
u dCu . (20)

Definition 20. A portfolio/consumption process pair (π,C) satisfying
conditions of Def. 18 and 19 is said to be admissible in M for the initial wealth
y if (πtX

y,π,C
t ) ∈ M2

∗ (0, T ) and there exists a nonnegative random variable

L ∈ L2
∗(0, T ) such that the wealth process Xy,π,C

t satisfies

Xy,π,C
t ≥ −L, t ≤ T, q.s. . (21)

The class of all admissible portfolio/consumption process pairs is denoted by
A(y).

Finally, let us define the class Ss,t of F-stopping times τ : Ω → [s, t], with
0 ≤ s < t ≤ T. In particular, we set S := S0,T .

The class of portfolio/consumption process pair (π,C) such that the stopped
process Xy,π,C

·∧τ satisfies eq. (21) for any stopping time τ ∈ S, is called A(y, τ).

3.2. Interval of no-arbitrage prices

Roughly speaking, an American contingent claim H is a contract which obliges
the seller to pay a certain amount Hτ ≥ 0 if the buyer of that claim decides to
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exercise it at a (stopping) time τ. In such a framework, one could be interested
in establishing how this amount should be, in the sense that it should neither
be too expensive from the buyer’s point of view, nor too cheap from the seller’s
side. In other words, the goal is to determine the fair price to pay to the seller
for his obligation at time t = 0, to deliver the amount Hτ ≥ 0 to the buyer at
a stopping time τ, chosen by the buyer himself.

Definition 21. An American contingent claim is an F-adapted random
variable Ht ∈ L2

∗(ΩT ) with continuous paths. We shall denote the price of the
American contingent claim at time t = 0 by H0.

Definition 22. For any σ ∈ [σ, σ], consider the probability measure
P σ ∈ P such that P σ = P0 ◦ (B0,σ)−1, where P0 is the probability measure in
the probability space (Ω,B(Ω), P0) and B0,σ

· =
∫ ·
0 σsdBs, as defined in eq. (7).

We can define the function

uσt := sup
τ ∈St,T

E
Pσ [

γ−1
τ Hτ

]
, 0 ≤ t ≤ τ ≤ T , (22)

as the American contingent claim price at time t, when the underlying S has
volatility rate σ.

Recall that we are considering financial markets whose dynamic evolves
according to stochastic volatility models. The resulting volatility uncertainty
implies the incompleteness of the financial market, which implies, in turn, the
existence of more than one fair price for general contingent claims, American
contingent claim included.

For these reasons, we have to establish an interval of no-arbitrage prices
for American contingent claims . In order to do this, we introduce the lower

hedging class and the upper hedging class.

Definition 23. Given an American contingent claim H, the lower hedging
class is defined as

L :=
{
y ≥ 0 | ∃ τ ∈ S, (π,C) ∈ A(−y, τ) : X−y,π,C

τ ≥ −Hτ q.s.
}

.

In an similar way, the upper hedging class is defined as

U :=
{
y ≥ 0 | ∃ (π,C) ∈ A(y) : Xy,π,C

τ ≥ Hτ q.s., ∀ τ ∈ S
}

.

The largest amount y ≥ 0 that enables an agent to recover the debt he incurred
at t = 0 by purchasing the claim is called lower hedging price for the American
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contingent claim

hlow := sup{y : y ∈ L}.

The smallest value of initial capital y ≥ 0 that allows an agent to fulfill his
obligation without risk and whenever the buyer should choose to ask for the
payment, is called upper hedging price for the American contingent claim

hup := inf{y : y ∈ U}.

Remark 24. As it has been pointed out in [8], there exists an asymmetry
in the definition of the classes L and U , since the no-arbitrage condition holds
just for some stopping time τ ∈ S in L, while the same condition holds for any
stopping time τ ∈ S in U .

It is interesting to note that the sets U and L are connected intervals, in
fact, analogously to what can be proven in the constrained market case, see,
e.g., [7, Thm. 4.3], we have

Proposition 25. y ∈ L and 0 ≤ z ≤ y implies z ∈ L. Analogously,
y ∈ U and z ≥ y implies z ∈ U .

The terms lower and upper arise by the fact that they actually represent the
endpoints of an interval in which the American contingent claim price ranges,
as it is guaranteed by the following result

Theorem 26. For σ ∈ [σ, σ], the American contingent claim price at

time t = 0, uσ0 , is such that

0 ≤ H0 ≤ hlow ≤ uσ0 ≤ hup ≤ ∞ (23)

Proof. If U = ∅, then trivially hup = ∞ and hup ≥ u0. Hence, we can
suppose U 6= ∅. By definition of U , we deduce that there exists a pair (π,C) ∈
A(y) such that Xy,π,C

τ ≥ Hτ q.s., for all τ ∈ S.
Hence, we have, for τ ∈ S, EG[γ

−1
τ Xy,π,C

τ ] ≥ EG[γ
−1
τ Hτ ], thanks to mono-

tonicity of the G-expectation.

On the other hand, Prop. (11) ensures that the G-expectation is an upper
expectation with respect to a measure P ∈ P, so that

EG[γ
−1
τ Xy,π,C

τ ] ≥ sup
Pσ ∈P

E
Pσ

[γ−1
τ Hτ ] ≥ E

Pσ

[γ−1
τ Hτ ], ∀ τ ∈ S .
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Hence, by definition of supremum over S and by eq. (22), we have

EG[γ
−1
τ Xy,π,C

τ ] ≥ uσ0 . (24)

At the same time, it results

EG

[
γ−1
τ Xy,π,C

τ

]
= EG

[
y +

∫ T∧τ

0
γ−1
t Xy,π,C

t πtdBt −
∫ T∧τ

0
γ−1
t dCt

]

≤ EG

[
y +

∫ T∧τ

0
γ−1
t Xy,π,C

t πtdBt

]

≤ y + EG

[∫ T∧τ

0
γ−1
t Xy,π,C

t πtdBt

]
. (25)

thanks to eq. (20) and the monotonicity property of G-expectation.
Let us observe that the Itô integral depending on a stopping time satisfies

eq. (16), in particular

EG

[∫ T∧τ

0
γ−1
t Xy,π,C

t πtdBt

]
= EG

[∫ T

0
1[0,τ ](t)γ

−1
t Xy,π,C

t πtdBt

]
q.s. ,

where the integrand function 1[0,τ ](t)γ
−1
t Xy,π,C

t πt is inM2
∗ (0, T ), forX

y,π,C
t πt ∈

M2
∗ (0, T ) and Remark 17. Then we have

EG

[∫ T∧τ

0
γ−1
t Xy,π,C

t πtdBt

]
= 0 ,

by virtue of eq. (11), and we can use such an information in eq. (25) and then
compare with eq. (24) to obtain y ≥ uσ0 , for all y ∈ U . From the arbitrariness
of y, we have hup ≥ uσ0 .

Analogously we can prove the remaining inequality. In fact, let us suppose
that y ∈ L 6= ∅, then, by definition, there exist τ ∈ S, (π,C) ∈ A−(−y, τ)
such that X−y,π,C

τ ≥ −Hτ q.s. Therefore, proceeding as before we have

−y ≥ EG

[
−y +

∫ T∧τ

0
γ−1
t X−y,π,C

t πtdBt

]

≥ EG

[
γ−1
τ X−y,π,C

τ

]
≥ EG

[
−γ−1

τ Hτ

]

≥ − sup
τ ∈S

E
Pσ [

γ−1
τ Hτ

]
= −uσ0 ,

then y ≤ hup, for all y ∈ L and the thesis follows thanks to the arbitrariness
of y.
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The main goal of this Section is to achieve a free-arbitrage prices interval
for American contingent claims . In order to do this, the definition of arbitrage
opportunity has to be presented.

Definition 27. Let u > 0 be the price of an American contingent claim
H in the market M at time t = 0. There is an arbitrage opportunity in the
financial market (M, u,H) if there exists either

(i) an admissible pair (π,C) ∈ A(y) such that

Xy,π,C
τ ≥ Hτ q.s., ∀ τ ∈ S, for some 0 < y < u,

P
(
Xy,π,C

τ −Hτ > 0
)
> 0, for at least one P ∈ P , (26)

or

(ii) a stopping time τ ∈ S and a pair (π,C) ∈ A(−y, τ) such that

Xy,π,C
τ +Hτ ≥ 0 q.s., for some y > u

P
(
Xy,π,C

τ +Hτ > 0
)
> 0, for at least one P ∈ P . (27)

Let us give a couple of clarifications concerning the above Definition. First
of all, the second condition in eqs. (26) and (27) is just the negation of the
previous one. This allows to exclude that Xy,π,C

τ ±Hτ equals zero q.s.
Moreover we have a clear economical interpretation since, in the first case,

an agent can sell the contingent claim at time t = 0 for u > y, i.e., for more
than is required to hedge it without risk throughout the interval [0, T ]. While,
in the second case, an agent can buy the contingent claim for u < y, that is, for
less than the amount which allows him to recover his initial debt without risk,
by exercising his option to the claim at some stopping time τ ∈ S. It follows
that, in both cases, there exists an opportunity for creating wealth without risk.
Clearly, any price u > 0 that leads to such an arbitrage opportunity should be
excluded and this is ensured by the following result.

Proposition 28. For any price u0 such that u0 > hup or u0 < hlow, there
exists an arbitrage opportunity, while it does not happen for u0 > 0 within the

interval [hlow, hup].

Proof. Lemma 25 ensures that U and L are intervals. Therefore, suppose
there exists a price u > 0 of an American contingent claim such that u > hup(K)
and let y ∈ (hup(K), u). This is equivalent to impose that hup(K) < y < u.
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The first inequality guarantees that y ∈ U , so that, by definition, there
exists a pair (π,C) ∈ A+(y) such that Xy,π,C

τ ≥ Hτ q.s., for all τ ∈ S. This
means that there exists a measure P ∈ P with P (Xy,π,C

τ ≥ Hτ ) = 1.

On the other hand, since y < u, then there exists a > 1 such that ay = u ∈
U and so Xay,π,aC

τ = aXy,π,C
τ . Hence,

1 = P (Xy,π,C
τ ≥ Hτ ) ≤ P (Xay,π,aC

τ > Hτ ) + P (Xy,π,C
τ = Hτ )

or, equivalently,

P (Xay,π,aC
τ > Hτ ) ≥ 1− P (Xy,π,C

τ = Hτ ) > 0,

which says that there exists an arbitrage opportunity.

The interval [hlow(K), hup(K)] is called arbitrage-free price interval.

4. Conclusion

In this work we retrieve an inequality for American contingent claim prices
at time t = 0, involving the supremum, hlow, and the infimum, hup, of two
different suitable sets, U and L, respectively, when such derivatives are traded
in a financial market with uncertain volatility and in the nonlinear expectation
G-framework.

The next step, which belongs to our ongoing research, will be to find the
explicit expression of both the upper and the lower bounds of the free-arbitrage
price interval.
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