
University of Verona

DEPARTMENT OF COMPUTER SCIENCE
Graduate School of Science and Engineering

Doctoral Program in Computer Science

S.S.D. INF/01
Cycle XXVII, January 2012 – December 2014

A Model-Based Security Testing Approach for
Web Applications

Doctoral Student:
Michele Peroli

Tutor:
Prof. Luca Viganò

Coordinator:
Prof. Paolo Fiorini

Thesis submitted in 2015

Series N○: TD-05-15

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 - Verona
Italy

Without training, they lacked knowledge.
Without knowledge, they lacked confidence.

Without confidence, they lacked victory.

Julius Caesar

Abstract

Penetration testing is the most common approach for testing the security
of web applications, but model-based testing has been steadily maturing into
a viable alternative and complementary approach. Penetration testing is
very cost-efficient, in the sense that little pen-testing time usually is enough
to reveal several bugs, but the experience of the security analyst is crucial;
model-based testing relies on formal methods but the security analyst has
to first create a suitable model of the application under test.

In this thesis, I propose a formal and flexible model-based framework that
supports a security analyst in carrying out security testing of web applica-
tions. The main idea underlying this framework is that the use of model-
checking techniques can automate the research of possible vulnerable entry
points in the web application, i.e., it permits an analyst to perform security
testing without missing important checks. Moreover, the framework also al-
lows for reuse: the analyst can collect her expertise into the framework and
(re)use it during future tests on possibly different web applications, which
may be carried out by her or by members of the testing group of the ana-
lyst’s organization, if any. In this way, the potentiality of a single test is not
related to the expertise of the single analyst on a specific web application
but to the expertise of the entire testing group.

As concrete examples, I consider four case studies in order to show the
suitability and flexibility of the framework. Tests for a variety of vulnerabil-
ities has been performed and compared with the ones executed with three
benchmark security tools.

Contents

1 Overview 1
1.1 Introduction . 1

1.1.1 Motivation . 1
1.1.2 Thesis Approach . 2
1.1.3 Contributions . 5
1.1.4 Synopsis . 6

2 Preliminaries 7
2.1 Penetration Testing . 7

2.1.1 Black-box Testing . 7
2.1.2 Source Code Analysis and White-box Testing 8

2.2 Model-Based Testing . 8
2.3 Types of Tools . 9

2.3.1 Tools Survey . 11
2.4 Vulnerabilities . 14

2.4.1 Access Control Flaws . 14
2.4.2 Injection Flaws . 17
2.4.3 AJAX Flaw . 19
2.4.4 Other Vulnerabilities . 20

3 Modeling Web Applications 21
3.1 Phases of the Framework . 21
3.2 Modeling Web Applications via a Transition System 23

3.2.1 The Harrison, Ruzzo, Ullman Security Model 24
3.2.2 Models of Web Applications 25

3.3 Users . 27
3.3.1 Modeling a User . 27
3.3.2 Users’ Data . 28
3.3.3 Users’ Knowledge . 31
3.3.4 Knowledge Evolution . 32

i

ii Contents

3.3.5 Attackers . 34
3.4 Web Applications’ Behavior . 36

3.4.1 Modeling Web Applications’ Behavior 36
3.4.2 Web Applications’ Events 36
3.4.3 Events and Knowledge 38

3.5 Security Mechanisms & Testing-Related Information 39
3.5.1 Modeling Security Mechanisms 40
3.5.2 Modeling Testing-Related Information 41
3.5.3 Security Mechanisms’ Data 41
3.5.4 Assertions . 42
3.5.5 Atomic Propositions . 45

3.6 States . 45
3.6.1 States of a Web Application 45
3.6.2 Initial States . 47
3.6.3 Transitions and Reachable States 49

3.7 Actions . 49
3.7.1 Functionalities of Interest 51
3.7.2 Modeling Actions . 52
3.7.3 Primitive Transitions . 54

3.8 Modeling Approaches . 56
3.9 Small Conclusion . 58

4 Model Checking and Concretization 59
4.1 Defining the Models in Alloy . 59

4.1.1 Alloy . 59
4.1.2 Models in Alloy . 60
4.1.3 Data Used in the Model 60
4.1.4 States . 63
4.1.5 Actions . 65

4.2 Specifying Security Goals . 68
4.2.1 Access Control Goals . 70
4.2.2 Application Logic Goals 75
4.2.3 Cross-Site Scripting . 78
4.2.4 SQL-Injection . 83
4.2.5 OS Commands . 85
4.2.6 AJAX Flaw . 86
4.2.7 Brute Force . 86

4.3 Concretization Methodology . 87
4.3.1 Counterexamples . 87
4.3.2 Configuration Values . 89
4.3.3 Instantiation Library . 92

4.4 The Implementation of the Framework 94
4.5 VERA tool . 96

4.5.1 Modeling . 96

Contents iii

4.5.2 Examples of Low-level Attacker Models 101
4.5.3 Using VERA for Vulnerability Testing 103

4.6 Small Conclusion . 104

5 Case Studies 105
5.1 WebGoat . 105

5.1.1 General Model: WebGoat 106
5.1.2 Bypass a Path Based Access Control Scheme 108
5.1.3 Bypass Presentational Layer Access Control 110
5.1.4 Breaking Data Layer Access Control 112
5.1.5 AJAX Security: DOM-Injection 113
5.1.6 AJAX Security: Dangerous Use of Eval 115
5.1.7 Reflected XSS Attack . 116
5.1.8 XSS: Execute a Stored Cross-Site Scripting attack . . 117
5.1.9 XSS: Reflected XSS . 119
5.1.10 Command-Injection . 120
5.1.11 Numeric SQL-Injection 121
5.1.12 Log Spoofing . 122
5.1.13 XPATH-Injection . 123
5.1.14 String SQL-Injection . 124
5.1.15 SQL-Injection: String SQL-Injection 125
5.1.16 Insecure Configuration: Forced Browsing 126

5.2 Gruyere . 128
5.2.1 Model . 128
5.2.2 File Upload XSS . 129
5.2.3 Reflected XSS . 132
5.2.4 Stored XSS . 133
5.2.5 Stored XSS via HTML Attribute 134
5.2.6 Reflected XSS via AJAX 135
5.2.7 Information Disclosure via Path Traversal 136

5.3 Damn Vulnerable Web Application 137
5.3.1 Model . 137
5.3.2 Brute Force . 139
5.3.3 Command Execution . 141
5.3.4 File Inclusion . 141
5.3.5 SQL-Injection and Blind SQL-Injection 142
5.3.6 File Upload . 143
5.3.7 Reflected XSS . 144
5.3.8 Stored XSS . 145

5.4 OnlineShop . 145
5.4.1 Model . 146
5.4.2 Check Payment . 148
5.4.3 Skip Stages . 149

5.5 Case Studies Conclusion . 151

iv Contents

5.5.1 Models . 151
5.5.2 Types of Attacks . 151
5.5.3 Conclusions and Future Research Directions 154

6 Related work 157
6.1 Model-checking Driven Security Testing 157
6.2 Mutation Testing . 159
6.3 Formal Foundation of Web Security 161

7 Conclusion 163
7.1 Summary . 163
7.2 Future Work . 164

List of Figures

1.1 The proposed framework for model-based testing of web ap-
plications . 3

3.1 Features modeled regarding the data handled by the web ap-
plication. 26

3.2 Representation of reachable states in a transition system. . . . 49
3.3 Features of interest in the modeling of web applications. . . . 50

4.1 Workflow and data used in the implementation of the framework. 94
4.2 General injection low-level attacker model. 97
4.3 Configuration file for the WebGoat SQL-Injection lesson. . . . 100
4.4 Low-lever attacker model for a brute-force attack. 101
4.5 Low-lever attacker model for a path traversal attack. 103

5.1 WebGoat high-level model. 106
5.2 Gruyere high-level model. 128
5.3 DVWA high-level model. 139
5.4 OnlineShop high-level model. 146

v

List of Tables

2.1 Some tools categorized by their potentiality. 13

3.1 An example of actions for a user x and some parameters. . . . 53

4.1 States definition and initial state definition for the Alloy models. 64
4.2 Example of definition of an action in the Alloy models. 68
4.3 Operators used for specifying goals. 70
4.4 Relation between abstract and real data. 90

5.1 Definition of the actions for the WebGoat case study. 107
5.2 Definition of the actions for the Gruyere case study. 130
5.3 Definition of the actions for the DVWA case study. 138
5.4 Definition of the actions for the OnlineShop case study. 147
5.5 Results of the tests performed in the case studies. 152

vii

Chapter 1
Overview

1.1 Introduction

1.1.1 Motivation

Since the introduction of the internet, web applications have been con-
stantly increasing their number and the complexity of their services. Nowa-
days web applications offer services such as banking, shopping, information
gathering, web mail, and so on. Web applications security is critical (i)
for the users that entrust them with personal information, and (ii) for the
companies that provide services (implemented in web applications) as an
extension of their business.

On the internet we can find different types of attackers with different
technical knowledge, goals and motivations. Known vulnerabilities and at-
tack vectors make simple also for not so expert attackers to jeopardize the
security of web applications. Moreover, new vulnerabilities are discovered
very often. The research on web applications security tries to limit the ex-
ploitation of such vulnerabilities by attackers.

In the literature we can find an abundant number of tools and method-
ologies for aiding developers and penetration testers to discover and prevent
common software security vulnerabilities. At the beginning of “internet se-
curity” the majority of techniques were manual, but the need to automate
the verification process of web applications has emerged.

Nowadays penetration testing [59, 42] is the most common approach for
testing the security of web applications. Model-based testing [18, 65] is not
yet as widespread as penetration testing but it has been steadily maturing
into a viable alternative and complementary approach. Both these testing
techniques, however, require quite some effort of the security analyst carrying
out the tests, even when she may make use of existing tools, guidelines or
libraries of common security vulnerabilities and attacks such as [42]. In

1

2 Chapter 1. Overview

particular: penetration testing, which ranges from black-box to white-box,
has helped uncover several vulnerabilities, but the experience of the security
analyst carrying out the pen-tests is crucial for their success, especially in
the case of black-box testing; in model-based testing, a formal model of the
web application is used to formally derive test cases, but this requires the
security analyst to first create such a model, which may be quite a difficult
endeavor especially in the industrial setting.

Testers are also often confronted with situations where existing tools are
of little help because (i) they do not account for a particular configuration
of the web application and (ii) they do not include tests for certain vulner-
abilities.

In this thesis I propose a formal and flexible model-based security testing
framework that supports a security analyst in carrying out security testing
of web applications. The main focus is on how to reuse the expertise of the
penetration testers in a model-based environment with a particular attention
on how to simplify the usage of such techniques (i.e., make the framework
easily usable also for those analysts who are not accustomed to model-based
testing). This is possible through the use of a database of actions and their
low-level definition. I have formalized the modeling of web applications,
defined the concretization methodology, and discussed four case studies.

From these premises, the main idea is to use the model checker in order
to find a counterexample (representing which sequence of actions we have to
use in order to lead the web application into a probable insecure state) and
then use the VERA tool in order to test the application.

1.1.2 Thesis Approach

The framework that I propose (depicted in Figure 1.1, which is described
in detail in the next chapters) uses the actions of the web application both in
the modeling of the application and in the concretization of the test cases.

In the framework, the security analyst creates the models of the web
applications by defining actions; an action, intuitively, is an abstract repre-
sentation of a part of the web application providing some particular func-
tionality that can be “used”1 by users through a user interface or a web
browser.

Web applications offer various types of functionalities, ranging from gen-
eral purpose functionalities such as authentication, editing of private infor-
mation or searching information, to specific functionalities such as reading
a newsfeed or purchasing goods from an online shop. During the modeling
phase, one is usually not interested in all the implementation details of a
single action or in its position in the different pages of a web application in

1Using an action means that it is possible to perform a sequence of ordered HTTP
requests leading the user to access a functionality provided by the action.

1.1. Introduction 3

 Model

Actions

Model
Checker

Instantiation
Library

Configuration
Values

Definition

Identification

Selection

Web
Application

1

2 3

3

5

 Counterexample(s)

Low-level Definition

4

Test

7

Attack
Phase

Browsing
Phase

Test Execution Engine

6

Figure 1.1: The proposed framework for model-based testing of web ap-
plications (the arrows refer to interaction between elements or data passed
between them, the numbers are used in the text for the explanation of the
different phases).

order to consume it; rather, should focus attention on the interaction be-
tween actions themselves and between actions and the data they have access
to. For example, I specify that the authentication action requires creden-
tials in order to authenticate a user and that administrative actions such
as modifying the personal profile can be performed only after the action for
authentication (i.e., the editing profile action comes after the authentication
action). In the model the actions are decorated with (i) information describ-
ing the data they consume (e.g., credentials, text, id, etc.), (ii) the properties
describing their behavior (e.g., read from a database, write to a database,
etc.), and (iii) security-related information.

After using the actions in order to model the application, the model
itself is enriched with a security goal (that the web application must respect
during its execution) and it is then fed into a model checker, which will return
Counterexamples (CEs) if any, i.e., execution traces that violate the security
goal. However, both the actions themselves and the CEs are too abstract
to be directly employed for testing the web application. The framework
thus provides for a Test Execution Engine (TEE) that translates a CE in a
corresponding sequence of HTTP requests that can be performed on the web
application.

As will become evident below, actions are simple to identify and can
be easily reused. Hence, the presence of actions in my model-based testing

4 Chapter 1. Overview

framework brings along a number of advantages, including

• simplicity (e.g., of the modeling activity),

• scalability (the security analyst can identify existing functionalities
from a set of known actions or can define new ones to improve the
set of actions), and

• reusability (in the framework, actions are associated with data they
handle, properties they have, and thus reusing actions also means to
reuse these associations during the testing of different applications).

Actions are defined by the security analyst who decides the abstraction level
and the granularity she wishes to consider. As a concrete example of the ac-
tions’ characteristics (i.e., their use in the framework as well as the expertise
used in their creation), consider the “login” functionality. Web applications
usually use one of the following types of authentication mechanism (I also
add the attacks that the security analyst can exploit in order to attack the
action):

• Basic Authentication - the tester can try to perform a brute force
attack, and the password is sniffable if not passed via HTTPS.

• HTTP Digest Authentication - brute force attack and man-in-the-
middle attacks are possible.

• HTTP Client Certificate Authentication - on the client machine, an
attacker can use a legitimate authenticated session in order to attack
the web application.

• Form-based Authentication - injection vulnerabilities (e.g., Cross-Site
Scripting XSS [46], SQL-Injection [51], etc.) have to be tested, and the
attacker should try to capture the authentication token (i.e., session
tokens or cookies).

For each of these types of authentication, a security analyst can create an
associated action and also (re)use it later to test different models. In fact,
this simple example shows how, for a security analyst modeling the web
application, it should be simple to create an action for the different web
application functionalities (e.g., the authentication mechanism), or scale or
reuse some existing action (e.g., she can modify/extend a “Form-based Au-
thentication” action if the web application uses some particular data or has
different properties, or she can take an action for authentication from the
database). For concreteness, in the examples and the case studies that I
consider in Chapter 5, I will use the form-based authentication.

1.1. Introduction 5

1.1.3 Contributions

As I stated above, the main contribution of this thesis is the proposal of a
formal and flexible model-based framework that supports a security analyst
in carrying out security testing of web applications. I start by defining
a suitable methodology for modeling web applications for security testing
(i.e., I define a transition system for web applications that is used to derive
test cases for known vulnerabilities). The definition of such methodology is
used in order to define models that have to satisfy security goals that define
known vulnerabilities to be tested. For concreteness the Alloy analyzer [1] is
used as model checker, and the statements that compose its models are used
in order to define the transition system. The direct consequence in using
Alloy is that I define a standardized structure for web applications’ models
that can help a security analyst in defining her models.

Since the attack traces derived in the model checking phase are abstract,
in order to fill the abstraction gap between them and the implementation of
the web application I introduce a suitable concretization methodology, and
I present a preliminary version of the implementation of the framework. As
an initial proof of concept I show the application of the framework to four
case studies:

• WebGoat - A general model and various minimal (in the number of
functionalities) models are used in order to show (i) how the model
checking phase can be used to derive the attack traces, and (ii) the
testing capabilities of the framework.

• Gruyere - Its model (composed by a variety of functionalities) is used
in order to (i) test different vulnerabilities, and (ii) show the versatility
of the framework in testing these vulnerabilities.

• DVWA - This case study is not interesting for the model checking phase
but only for proving the testing capabilities of the framework.

• OnlineShop - It is a fictitious case study that is used in order to derive
counterexamples for logic flaws.

As an alternative test execution engine I propose the VERA tool. It has
beed developed during the SPaCIoS project [56], I mainly worked on the
graphical user interface. Since the VERA tool allows testers to define low-
level attacker models I discuss its suitability in becoming the test execution
engine of the proposed framework.

6 Chapter 1. Overview

1.1.4 Synopsis

This thesis is organized as follows:

• In Chapter 2, I give an overview of different approaches for testing a
web application and the vulnerabilities that are tested.

• In Chapter 3, I briefly present the phases of the proposed framework
and I show a methodology for modeling web applications for security
testing. The goal is to define a transition system for web applications
that is used to derive test cases for known vulnerabilities.

• In Chapter 4, I discuss how the transition system introduced in is de-
fined as an Alloy model, how security goals are defined, the concretiza-
tion methodology and an initial implementation of the framework.

• In Chapter 5, I discuss the application of the framework to the four
case studies.

• In Chapter 6, I discuss the related work.

• In Chapter 7, I summarize the contributions of the thesis and discuss
future work.

Chapter 2
Preliminaries

There exist several methodologies used by different tools for testing the
security of web applications. In the following sections, I give an overview of
three approaches that these tools use, and I categorize them based on the
knowledge needed for their use:

• In black-box testing, the knowledge of the application source code is
not needed.

• In source code analysis, the knowledge of the source code of the web
application is required.

• In model-based testing, the knowledge required can be a combination
of the previous approaches.

I discuss these three approaches in Sections 2.1 and 2.2. In Section 2.4, I
discuss the vulnerabilities that are in the scope of this thesis and are used
in the case studies.

2.1 Penetration Testing

Penetration testing [59, 42] is the most common approach for testing the
security of web applications, i.e., for generating a set of test cases (namely,
pairs of inputs and expected outputs) and executing them on the web ap-
plication under test in order to acquire more confidence about the secure
behavior of the application’s implementation or to discover failures (i.e., un-
expected behaviors).

2.1.1 Black-box testing (functional testing)

I use the term black box testing [59, 42] for describing test methods that
are not based directly on application architecture source code. This term

7

8 Chapter 2. Preliminaries

connotes a situation in which either the tester does not have access to the
source code or the details of the source code are irrelevant to the properties
being tested.

In this scenario the tester acquires information by testing the system
using test cases (i.e., pairs of input and the expected output). All the tests
are carried out from the from the point of view of a user (the external visible
behavior of the software), for example, they might be based on requirements,
protocol specifications, APIs, or even attempted attacks.

This kind of tests simulates the process of a real hacker but they are
time-consuming and expensive.

2.1.2 Source Code Analysis and White-box Testing

Source code analysis (see, e.g., [16]) is the process of checking source
code for coding problems based on a fixed set of patterns or rules that might
indicate possible security vulnerabilities. This process is a subset of white-
box testing (see, e.g., [29]), which is a method of testing applications by
checking the structure starting from the source code.

These testing techniques are interesting and useful but I mention them
in this section only for completeness as they have not (yet) been the focus
of my investigation.

2.2 Model-Based Testing

Model-Based Testing (MBT) [18, 65] consists in a variant of software
testing in which a model of the application under testing (web application) is
used to derive test cases for its implementation. In contrast to other testing
approaches that do not rely on an abstract model of the web application
the advantages of adopting MBT are many-fold and mainly related to the
involvement of model checkers in the testing process. The most important
advantage is the possibility to generate test cases having a specific purpose in
an automated way, thanks to the capability of the model checker to provide
attack traces. It is indeed possible to formalize the purpose of a test suite
in terms of goals and use them, with the model of the web application, in
order to cast the test case generation problem as a model checking problem.
For example, in the context of coverage testing, one can generate abstract
tests by using goals checking the execution of transitions. By doing so, the
model checker will provide every execution trace including such transition.

In general, MBT covers three majors tasks:

• automatic generation of abstract test cases from models,

• concretization of abstract tests in order to obtain executable tests, and

2.3. Types of Tools 9

• their execution on the web application by using manual or automatic
means.

Model-based testing is not yet as widespread as penetration testing but
it has been steadily maturing into a viable alternative/complementary ap-
proach.

2.3 Types of Tools

In the previous sections we have seen which methods are used by tools in
order to test web applications. In this section, we will consider what kind of
information are retrieved by the tools and what kind of tests are performed.

Following the partition from [66], I will discuss the following categories
(for each one I will show some tools as examples):

• Port scanners,

• vulnerability scanners,

• application scanners,

• web application assessment proxy, and

• packet sniffers.

This classification is not exclusive (some tools can be in more than one
category) but it covers all the security tools nowadays available.

Port Scanners

Port scanning tools are used to gather information on the target of the
test. Specifically, port scanners attempt to locate which network services are
available on each target host. They do this by probing each of the designated
(or default) network ports or services on the target system.

Most such tools can also target a specified list of ports and can be con-
figured for setting the speed and ports sequence that they have to scan.
Additionally, most port scanners are able to perform a variety of different
port probes. They can have the ability to deduce the operating system type
and often the version number based on watching the empirical behavior that
it exhibits when probed with variations of TCP flag settings.

Vulnerability Scanners

The primary distinction between a port scanner and a network-based vul-
nerability scanner is that vulnerability scanners attempt to exercise (known)
vulnerabilities on their targeted systems, whereas port scanners only produce
an inventory of available services.

10 Chapter 2. Preliminaries

Vulnerability scanners provide an essential means of meticulously probing
each and every available network service on the targeted hosts. Vulnerabil-
ity scanners work from a database of documented network service security
vulnerabilities, exercising each defect on each available service of the target
range of hosts.

Traditional vulnerability scanners are generally able to scan only target
operating systems and network infrastructure components, as well as any
other TCP/IP device on a network, for operating system level weaknesses.
They are not able to probe general purpose applications, as they lack any
sort of knowledge base of how an unknown application functions.

Some vulnerability scanners are able to attempt to exploit network trust
relationships by recursively scanning the targeted network on each compro-
misable host.

Host-based vulnerability scanners scan a host operating system for known
weaknesses and un-patched software, as well as for such configuration prob-
lems as file access control and user permission management defects. Al-
though they do not analyze application software directly, they are useful
at finding mistakes made in access control, configuration management, and
other configuration attributes, even at an application layer.

Application Scanners

Taking the concept of a network-based vulnerability scanner one step
further, application scanners began appearing several years ago. These probe
general purpose web-based applications by attempting a variety of common
and known attacks on each targeted application and page of each application.

Most application scanners can observe the normative functional behavior
of an application and then attempt a sequence of common attacks against
the application. The attacks include buffer overruns, cookie manipulation,
SQL insertion, cross-site scripting (XSS), and the like.

Since the testing is still performed in an entirely black box manner, the
utility of such tools is less than any serious testing process.

That is, although failing any of the tests is demonstrably a bad situation,
passing all of the tests can only provide, at best, a misplaced sense of security.

Web Application Assessment Proxy

Although they only work on web applications, web application assessment
proxies are perhaps the most useful of the vulnerability assessment tools
listed here. Assessment proxies work by interposing themselves between the
tester’s web browser and the target web server. Further, they allow the tester
to view and manipulate any and all data content flowing between the two.
This gives the tester a great deal of flexibility in trying different “tricks”
to exercise application weaknesses in the application’s user interface and

2.3. Types of Tools 11

associated components. This level of flexibility is why assessment proxies
are considered essential tools for all black box testing of web applications.

For example, the tester can view all cookies, hidden HTML fields, and
other data in use by a web application and attempt to manipulate their
values to trick the application into allowing access where the tester should
not be able to get to. Changing cookie values such as “customerID” can have
startling results on poorly developed applications.

Packet sniffer

Packet sniffers are commonly used to intercept and log traffic passing over
a digital network or part of a network. The sniffer captures every packet and,
if needed, decodes it showing the values of various fields in the packets.

The captured information is decoded from raw digital form into a human-
readable format that permits users of the packet sniffer to easily review the
exchanged information. Packet sniffers vary in their abilities to display data
in multiple views, automatically detect errors, determine the root causes of
errors, generate timing diagrams, etc.

Packet sniffers can also be hardware based, either in probe format, or
as is increasingly more common combined with a disk array. These devices
record packets (or a slice of the packet) to a disk array. This allows historical
forensic analysis of packets without the user having to recreate any fault.

2.3.1 Tools Survey

Following the initial categorization given above, I have collected some
tools:

• Some port scanners are:

– Nmap [33]

– Scapy [11]

• Some vulnerability scanners are:

– Tenable Nessus [37]

– Core Impact [63].

– Qualys’s QualysGuard [53].

– ISS’s Internet Scanner [53].

– Nikto [60].

– Wikto [32].

– Maltego [34].

12 Chapter 2. Preliminaries

• Some application scanners are:

– WebInspect [23].
– Rational Appscan [27].
– N-STEALTH [36].
– Metasploit [54].
– Canvas [28].
– Acunetix free ed wvs [2].
– Hailstorm [25].
– Beef [10].
– Wapiti [61].
– OWASP’s lapse [30].

• Some web application assessment proxy are:

– Paros Proxy [17].
– Zed Attack Proxy (ZAP) [40].
– OWASP’s WebScarab [39].
– Burp suite [31].
– Grendel-Scan [24].
– PAROS pro desktop [17].
– Selenium [55].

• Some packet sniffers are:

– Ettercap [21].
– Firesheep [22].
– Wireshark [67].

These tools are quite different and some of them cost money (free limit-
ed/demo/trial versions sometimes are available). We can see that the ma-
jority of tools belongs to the “Application scanners” category: a first way to
read this data is the fact that tools of this kind are very interesting for both
the white hat and black hat communities.1

After this generic distinction I will go a little bit into details. In Table 2.1
I have categorized tools listed before with respect to the ability of performing
some kind of actions.

From the data collected in Table 2.1, together with data from the cate-
gorization of the tools, some interesting facts arise:

1White hat hackers break security for non-malicious reasons (e.g., while working for
a security company) while black hat hackers violate security for malicious reasons (e.g.,
personal gain).

2.3. Types of Tools 13

Table 2.1: Some tools categorized into: A - Scripting / API capabilities,
B - handle a model, C - perform attacks.

A B C
Nmap X
Scapy X X
Tenable Nessus X
Core Impact
Qualys’s QualysGuard X
ISS’s Internet Scanner
Nikto
Wikto
Maltego
WebInspect X X
Rational Appscan X
N-STEALTH X
Metasploit X X
Canvas X
Acunetix free ed wvs
Hailstorm
Beef X
Wapiti
OWAPS Lapse
Paros Proxy
Zed Attack Proxy (ZAP) X X
OWASP’s WebScarab X X
Burpsuite X
Grendel-Scan
PAROS pro desktop
Selenium X X
Ettercap X X
Firesheep X X
Wireshark

• Tools have different goals and capability.

• Some features cross the boundaries of the categorization.

• The most commonly used tools cannot handle a model of a web appli-
cation.

• There is a balance between tools that can or cannot perform attacks.

14 Chapter 2. Preliminaries

2.4 Vulnerabilities

In this section, I introduce the vulnerabilities that are in the scope of
this thesis and that will be tested in the case studies in Chapter 5.

2.4.1 Access Control Flaws

Access control enforces the correct decisions about whether a request to
access a content or a function from a specific user has to be granted or not.
Access controls have to be implemented over functionalities and data. Some
of the factors that can make difficult the correct implementation of access
controls are:

• The web applications could support numerous user roles with specific
privileges for each role.

• Different users could have access to a subset of the total data held
within the application.

• The access to specific functions could be granted on the base of the
users’ identity.

For a given web application, the model for access control is tied to the context
in which the application works, and the functionalities that it provides.

Access controls can be divided into three broad categories: vertical, hor-
izontal, and context-dependent. In the following I give a brief explanation
for each category.

Vertical access controls allow one to differentiate the users by their
roles and give them specific functionalities on the base of their role. For
example, a simple differentiation can be between administrative and normal
users, where the administrators can access all the normal functionalities plus
the ones that permit them to manage the application or the server where it is
hosted. Of course more complex examples of vertical access controls can be
presented, for example we can use the roles used in WebGoat (Section 5.1):
admin, manager, employee and human resources, and granting to these roles
access to specific functions, or give to a user a combination of different roles.
Vertical privilege escalation occurs when a user can perform functions that
his assigned role does not permit him to.

Horizontal access controls allow users to access a certain subset of
a wider range of resources of the same type. Enforcing a horizontal access
control corresponds to permitting the access to a certain data only to the
owner and not to all the users of a system. For example, let A and B
be two users of a web application and both have an account that contains
private information; the web application should enforcing controls in order to
make A not able to access B’s account (and vice versa). Horizontal privilege

2.4. Vulnerabilities 15

escalation occurs when a user can view or modify resources to which he is
not authorized.

Context-dependent access controls ensure that users’ access is re-
stricted to what is permitted given the current application state. Examples
of context-dependent access controls can be: only one coupon can be used
per transaction, transactions in excess of $2000 has to be reviewed by a per-
son, etc. Business logic exploitation occurs when a user can exploit a flaw
in the application’s state machine to gain access to a key resource. In other
words, business logic vulnerabilities are ways of using the legitimate process-
ing flow of an application in a way that results in a negative consequence to
the organization.

Access controls are broken [59, 43] if any user (or an attacker) can gain
unauthorized access to functionality or data for which he is not authorized.
In the following, I give some specific access control issues that can be used
to bypass or exclude these controls. These attacks can be used against one
or multiple access controls and have to be used accordingly to the controls
that the tester (or an attacker) wants to target.

In [43], some specific access control issues are discussed:

• Insecure Id’s,

• Forced Browsing Past Access Control Checks,

• Path Traversal, and

• File Permissions.

In the following, I discuss briefly each one of these issues and give some
example of possible attacks.

Insecure ID’s

Most web sites use some form of ID, key, or index as a way to reference
users, roles, contents, objects, or functions. If an attacker can guess these
IDs, and the supplied values are not validated to ensure they are authorized
for the current user, the attacker can exercise the access control freely to see
what they can access. Web applications should not rely on the secrecy of
any IDs for protection.

Even if this methodology of attack can affect the security of a web ap-
plication in a variety of ways, in Section 4.2.1 I will use it in order to test
possible horizontal privilege escalations.

Forced Browsing Past Access Control Checks

Many web sites require users to pass certain checks before being granted
access to certain URLs that are typically “deeper” down in the site. These

16 Chapter 2. Preliminaries

checks must not be bypassable by a user that simply skips over the page
with the security check.

An attacker can search for unlinked contents in the domain directory,
such as temporary directories and files, and old backup and configuration
files. These resources may store sensitive information about web applications
and operational systems, such as source code, credentials, internal network
addressing, and so on, thus being considered a valuable resource for intruders.

Forced browsing [47] is an attack where the aim is to enumerate and
access resources that are not referenced by the web application, but are still
accessible.

Example 1 (Forced browsing). A scanning tool, like Nikto [60], has the
ability to search for existing files and directories based on a database of
well-know resources, such as:

/system/
/password/
/logs/
/admin/
/test/

When the tool receives an HTTP 200 message it means that such resource
was found and should be manually inspected for valuable information. △

File Permissions

Many web and application servers rely on access control lists provided
by the file system of the underlying platform. Even if almost all data are
stored on backend servers, there are always files stored locally on the web
and application server that should not be publicly accessible, particularly
configuration files, default files, and scripts that are installed on most web
and application servers. Only files that are specifically intended to be pre-
sented to web users should be marked as readable using the OS’s permissions
mechanism, most directories should not be readable, and very few files, if
any, should be marked executable.

Path traversal

Web applications often restrict user access to a specific portion of the file
system. These portion of file systems contain files and directories that are
(i) intended for user access, and (ii) are necessary to the web application’s
functionalities.

Path traversal attacks [50] aim to access files and directories that are
stored outside the web root folder. By browsing the application, the attacker
looks for absolute links to files stored on the web server. By manipulating

2.4. Vulnerabilities 17

variables that reference files with “dot-dot-slash (../)” sequences and its vari-
ations, it may be possible to access arbitrary files and directories stored on
file systems, including application source code, configuration and critical sys-
tem files, limited by system operational access control. The attacker uses
“../” sequences to move up to root directory, thus permitting navigation
through the file system.

Since browsers accept different encodings, a security analyst has the pos-
sibility of encode the “../” sequence. As an example, %2e%2e%2f represents
../ and %2e%2e%5c represents ..\. These two possible encodings are intro-
duced because the encoding of addresses of files and directories on the file
system is OS specific:2

Root directory Directory separator
Unix / /
Windows <partition>:\ / or \

Example 2 (Path traversal). The following examples show how an applica-
tion deals with the resources in use:

http://site.com/get-files.jsp?file=report.pdf
http://site.com/get-page.php?home=aaa.html
http://site.com/some-page.asp?page=index.html

In these examples, it is possible to insert a malicious string as the variable
parameter to access files located outside the web public directory.

http://site.com/get-files?file=../../../some dir/some file
http://site.com/../../../some dir/some file

The following URLs show examples of unix-like password file exploitation.

http://site.com/../../../../etc/shadow
http://site.com/get-files?file=/etc/passwd

△

2.4.2 Injection Flaws

Injection flaws [48] allow attackers to relay malicious code through a web
application to another system. These attacks include calls to the operating
system via system calls, the use of external programs via shell commands,
as well as calls to backend databases via SQL. Whole scripts written in
perl, python, and other languages can be injected into poorly designed web
applications and executed. Any time a web application uses an interpreter
of any type there is a danger of an injection attack.

Injection attacks can be very easy to discover and exploit, but they can
also be extremely obscure. The consequences can also run the entire range

2In a windows system an attacker can navigate only in a partition that locates web
root while in the Linux he can navigate in the whole disk.

18 Chapter 2. Preliminaries

of severity, from trivial to complete system compromise or destruction. In
any case, the use of external calls is quite widespread, so the likelihood of a
web application having an injection flaw should be considered high.

Cross-Site Scripting

Cross-Site Scripting (XSS) [46] attacks are a type of injection in which
malicious scripts are injected into otherwise benign and trusted web sites.
XSS attacks occur when an attacker uses a web application to send malicious
code, generally in the form of a browser side script, to a different end user.
Flaws that allow these attacks to succeed are quite widespread and occur
anywhere a web application uses an input from a user (without validating
or encoding it) within the output (that the web application generates).

The end user’s browser has no way to know that the script should not be
trusted, and will execute the script. Because it thinks the script came from
a trusted source, the malicious script can access any cookies, session tokens,
or other sensitive information retained by the browser and used with that
site. These scripts can even rewrite the content of the HTML page.

Stored XSS Attacks are those where the injected script is permanently
stored on the target servers, such as in a database, in a message forum, visitor
log, comment field, etc. The victim retrieves the malicious script from the
server when he requests the stored information. Stored XSS is also sometimes
referred to as Persistent or Type-I XSS.

Reflected XSS Attacks are those where the injected script is reflected
off the web server, such as in an error message, search result, or any other
response that includes some or all of the input sent to the server as part of the
request. Reflected attacks are delivered to victims via another route, such
as in an e-mail message, or on some other web site. When a user is tricked
into clicking on a malicious link, submitting a specially crafted form, or even
just browsing to a malicious site, the injected code travels to the vulnerable
web site, which reflects the attack back to the user’s browser. The browser
then executes the code because it came from a “trusted” server. Reflected
XSS is also sometimes referred to as Non-Persistent or Type-II XSS.

SQL-Injection

A SQL-Injection (where SQL stands for “Structured Query Language”)
attack [51] consists of insertion or “injection” of a SQL query via the input
data from the client to the application. A successful SQL-Injection exploit
can read sensitive data from the database, modify database data (Insert/Up-
date/Delete functions), execute administration operations on the database,
such as shutdown the DataBase Management System (DBMS), recover the
content of a given file present on the DBMS file system and in some cases
issue commands to the operating system. SQL-Injection attacks are a type

2.4. Vulnerabilities 19

of injection attack in which SQL commands are injected into an input in
order to effect the execution of predefined SQL commands.

There are various type of SQL-Injection attacks:

• SQL-Injection - where the payloads are used in order to gain access to
data or modify them, and

• Blind SQL-Injection - where the attack aims to infer data from the
asking the database true or false questions and determines the answer
based on the applications response.

The latter category will not be discussed in this thesis.

Command-Injection

Command-Injection [45] is an attack in which the goal is to execute
arbitrary commands on the host operating system via a vulnerable web
application. Command-Injection attacks are possible when an application
passes unsafe user supplied data (forms, cookies, HTTP headers etc.) to
a system shell. In this attack, the attacker-supplied operating system com-
mands are usually executed with the privileges of the vulnerable application.
Command-Injection attacks are possible largely due to insufficient input val-
idation.

This attack differs from Code-Injection in that Code-Injection allows the
attacker to add his own code that is then executed by the application. In
Code-Injection attacks, the attacker extends the default functionalities of
the web application without the necessity of executing system commands.

2.4.3 AJAX Flaw

Asynchronous Javascript and XML (AJAX) is one of the latest techniques
used by web application developers to provide a user experience similar to
that of a traditional application. One of the main features of AJAX is that it
permits a web application to retrieve data from or to a server asynchronously.

Since AJAX is still a new technology, there are many security issues that
have not yet been fully researched. Some of the security issues in AJAX
include:

• Increased attack surface with many more inputs to secure than the web
applications that does not use AJAX functionalities.

• Exposed internal functions of the web application.

• Client access to third-party resources with no built-in security and
encoding mechanisms.

• Failure to protect authentication information and sessions.

20 Chapter 2. Preliminaries

• Blurred line between client-side and server-side code, possibly resulting
in security mistakes.

A brief introduction to AJAX attacks can be found in [52]. Among the
attacks that a security analyst should test for AJAX functionalities, it is
worth to mention:

• SQL-Injection,

• Cross-Site Scripting (XSS),

• Client-Side Injection Threats (e.g., XSS-, XML-, DOM-Injection),

• Cross-Site Request Forgery (CSRF), and

• Denial of Service.

2.4.4 Other Vulnerabilities

Brute Force

A brute force attack [44] can manifest itself in many different ways, but
primarily consists in an attacker configuring predetermined values, making
requests to a server using those values, and then analyzing the responses.
For the sake of efficiency, an attacker may use a dictionary attack (with or
without mutations) or a traditional brute-force attack (with given classes of
characters, e.g.: alphanumerical, special, case (in)sensitive). Considering a
given method, number of tries, efficiency of the system which conducts the
attack, and estimated efficiency of the system which is attacked, the attacker
is able to calculate approximately how long it will take to submit all chosen
predetermined values.

Brute-force attacks are often used for attacking authentication and dis-
covering hidden content/pages within a web application. These attacks are
usually sent via GET and POST requests to the server. In regards to au-
thentication, brute force attacks are often mounted when an account lockout
policy in not in place.

In the following chapters, I discuss the methodology used for modeling
web applications, the implementation of the framework, and the application
of this methodology to four case studies.

Chapter 3
Modeling Web Applications for
Security Testing

In this chapter, I show a methodology for modeling web applications for
security testing. The goal is to define a transition system for web applications
that is used to derive test cases for known vulnerabilities.

In order to model web application for security testing, I first discuss in
details the phases of the framework (Section 3.1). I discuss in Section 3.2 the
approach (i.e., what is a transition system, how I chose to define it and what
is a model), in Sections 3.3, 3.4 and 3.5 I present a discussion on (i) how I
chose to model the users of web applications regarding their knowledge and
the data they handle, (ii) the behavior that web applications can manifest
through the interaction with a user, and (iii) how to define in the models
those information that can be used in order to perform security testing;
I complete the modeling approach by defining the states of the transition
system (Section 3.6), and the actions that permit its evolution (Section 3.7).

3.1 Phases of the Framework

In this section, I give an overview of the phases of the framework (de-
picted in Figure 1.1) that will be discussed the following sections and chap-
ters.

The first thing that a security analyst has to do when using my framework
is to define actions from the web application (phase À in Figure 1.1). During
this phase, the security analyst has also to check, manually, if some of the
existing actions in the database can be (re)used in order to model the web
application (if two applications share the same functionality, then she can
reuse the associated action), and, if not, she has to insert into the database
the new action(s) (see Section 3.7 for further information about the definition
of actions).

21

22 Chapter 3. Modeling Web Applications

With the database populated with a proper set of actions, the security
analyst has the means to create the model of the web application (Á). The
model includes a selected subset of the defined actions (identified with re-
spect to the web application to be tested), the relation between them, and
a specification of the security goal to be tested.

The model is then passed to a model checker (Â). The framework is gen-
eral and thus it is not bound to a specific model-checking tool; for concrete-
ness, I employ the Alloy Analyzer [1], which takes a model, its constraints
and its security goal written in the Alloy syntax, checks the goal in the model
and generates one or more CEs if the goal is violated, i.e., a counterexample
shows for what instances of the system and for what actions the security
goal does not hold.

The fact that the counterexamples are indeed abstract gives, however,
rise to two problems (related to the level of abstraction) that I have to
tackle.

First, the counterexamples are at a level of abstraction that does not
permit us to directly test them on the web application, since it specifies the
actions used to violate the goal but not how these actions should be used in
the real implementation. The framework thus provides for a concretization
phase, which relies on the fact that I can define for each action a sequence
of HTTP requests to perform on the web application.

In the implementation of the framework, the definition of the relations
between actions and HTTP requests (Ä) is performed during the execution
of the test cases by a python engine (see Section 4.4 Page 94 for further
details).

Second, the counterexamples specify which actions have to be used,
but their level of abstraction does not allow for the specification of attack-
dependent data. If I have to use a specific payload, the Instantiation Library
(InstLib) provides it. The InstLib contains data such as attack strings (e.g.,
payloads for XSS), common malicious input (e.g., a set of passwords for a
brute force attack) and scripts to be used as test patterns (i.e., script to be
executed client-side in order to test the web application).

The final phase of the framework uses a TEE, an automatic test execution
technology that the security analyst can use in order execute the test cases
on the web application. The TEE provides a connection with the InstLib
and the data, contained in the Configuration Values (ConfVal), needed for
the interaction with the web application (Ã), and takes care of “translating”
(via the Low-level Definition Ä) the counterexample(s) (Ã) into executable
test cases. At the end of this phase, the information contained in the coun-
terexample(s), the actions and the HTTP requests are thus combined in the
creation of a suite of test cases (Å) that are run on the web application (Æ).

3.2. Modeling Web Applications via a Transition System 23

3.2 Modeling Web Applications via a Transition
System

In [9], the authors introduce a transition system (TS) as a model to
describe the behavior of systems. TSs are basically directed graphs where
nodes represent states, and edges model transitions, i.e., state changes.

Definition 1 (Transition System). A transition system TS is a tuple
(S,Act,→, I,AP,L) where

• S is a set of states (i.e., some information about a system at a certain
moment of its behavior),

• Act is a set of actions (whose names are used to describe informally
what is happening during a transition),

• →⊂ S ×Act×S is a transition relation (i.e., how the system can evolve
from one state to another),

• I is a set of initial states,

• AP is a set of atomic propositions (that intuitively express simple
known facts about the states), and

• L ∶ S → 2AP is a labeling function.

TS is called finite if S, Act, and AP are finite.

Once a transition system is defined (as will be shown in this chapter),
it can be used in order to derive executions (i.e., the result of resolving the
possible nondeterminism in the system). An execution describes a possible
behavior of the transition system. Formally:

Definition 2 (Execution Fragment). Let TS = (S,Act,→, I,AP,L) be
a transition system. A finite execution fragment % of TS is an alternating
sequence of states and actions ending with a state

% = s0α1s1α2 . . . αnsn such that si
αi+1ÐÐ→ si+1 for all 0 ≤ i < n,

where n ≥ 0. We refer to n as the length of the execution fragment %. An
infinite execution fragment % of TS is an infinite, alternating sequence of
states and actions:

ρ = s0α1s1α2 . . . such that si
αi+1ÐÐ→ si+1 for all 0 ≤ i.

24 Chapter 3. Modeling Web Applications

3.2.1 The Harrison, Ruzzo, Ullman Security Model

The Harrison, Ruzzo, Ullman security model (HRU model, [26]) is an op-
erating system level computer security model which deals with the integrity
of access rights in the system.

A protection system consists of the following parts: (i) a finite set of
generic rights R, (ii) a finite set C of commands of the form:

command α(X1, X2, . . ., Xk)
if r1 in (Xs1 ,Xo1) and

r2 in (Xs2 ,Xo2) and
...

rm in (Xsm ,Xom)
then

op1
op2

...
opn

end

where α is a name, and X1, . . . ,km are parameters. Each opi is one of the
primitive operations

enter r into (Xs, Xo)
delete r from (Xs,Xo)
create subject Xs

create object Xo

destroy subjectXs

destroy object Xo

ri are generic rights, and s0, . . . ,sm and o0, . . . ,om are integers between 1
and k.

A configuration of a protection system is a triple (S,O,P), where S is
the set of current subjects, O is the set of current objects, S ⊆ O, and P is
an access matrix,1 with a row for every subject in S and a column for every
object in O. P [s, o] is a subset of R, the generic rights. P [s, o] gives the
rights to object o possessed by subject s.

The “safety” problem for protection systems under this model is to de-
termine in a given situation whether a subject can acquire a particular right
to an object. Basically, safety means that an unreliable subject cannot pass
a right to someone who did not already have it (i.e., the owner gives away
certain rights to his objects).

1An access matrix can be envisioned as a rectangular array of cells, with one row per
subject and one column per object. The entry in a cell - that is, the entry for a particular
subject-object pair - indicates the access mode that the subject is permitted to exercise
on the object. Each column is equivalent to an access control list for the object; and each
row is equivalent to an access profile for the subject.

3.2. Modeling Web Applications via a Transition System 25

While using the HRU model, the granularity of protection mechanisms,
and the rules by which permissions can change are not of interest. On the
other hand, I take inspiration from the HRU model in order to specifying
and enforcing security policies that can be related to known vulnerabilities
of web applications (i.e., extending the access control schema with informa-
tion about the functionalities of a web application and the used information
technologies). From this perspective the HRU model is well suited to be
modified:

• The definition of the access matrix can remains unchanged.

• Commands can be instantiated with the functionalities offered by web
applications.

• The set of generic rights has to be redefined in order to express the
information that permit to relate web applications’ functionalities to
known vulnerabilities.

• The set primitive operations has to be changed accordingly to the
changes performed on the other concepts.

Similar approaches to the HRU model (with the motivation about their
non suitability to be applied in my approach) are:

• Biba model – The data integrity problem (i.e., if subjects can corrupt
objects in a level ranked higher than them) is not easily modifiable
since it deals only with read and write primitives.

• Bell-La Padula model – Data confidentiality and contents creation are
not the focus of this thesis.

• Capability-based security – Sharing of capabilities (between user pro-
grams in operating system infrastructure) differs significantly from the
web application environment.

• Clark-Wilson model – Preventing corruption of data items in a com-
puting system is not relevant in this thesis, the data computation (and
the associated policies) is not modeled.

3.2.2 Models of Web Applications

In this section, I introduce how the models of web applications are defined
and the information that they contain.

The main goal of this thesis is to create a framework for model-based
testing of web applications. When dealing with web applications, the expe-
rience of a penetration tester is sometimes stronger than the methodologies
employed by security tools (Section 2.3). In this thesis, I aim to replicate

26 Chapter 3. Modeling Web Applications

Database

File System

Operating
System

Security
Mechanisms

Abstract
or

Real

Client-Side Server-Side

Events

Data

Security
Mechanisms

Web Application

Test Info

Figure 3.1: Features modeled regarding the data handled by the web applica-
tion. Arrows depict the possible relation between data and the information
about the storage and the management by the web application they refer to.

the experience of penetration testers in a model-based testing environment.
Methodologies and approaches used by penetration testers will be the basis
for the analysis of web applications and for the definition of models.

The analysis on how to define a model (Á in Figure 1.1) starts from a
completely different question: “How can I simplify the definition of the model
for a penetration tester that never used model-based testing techniques?”. In
order to answer to this question, I started this thesis analyzing the data that
penetration testers consider important during their tests:

• first of all, the knowledge and the data that users can handle while
interacting with a web application are introduced (Section 3.3),

• then the behavior of the web applications (Section 3.4), and

• the security mechanisms and those information that can be used for
security testing (Section 3.5).

The data gained from the analysis of these “macro-areas” are used in the
models of web applications in order to define the set of atomic propositions
AP of a transition system TS . As an anticipation of the data gained from this
phase, in Figure 3.1 is depicted a high level representation of the features of
a web application (on the client-side and the server-side) that are introduced
in the model.

After the analysis of the different aspects of web applications to be mod-
eled, in order to define a transition system (Section 3.2), the set of states S
and the set of initial states I are defined in Section 3.6 adapting the HRU
model (discussed in Section 3.2.1) to the case of web applications rather than
operating systems.

3.3. Users 27

A modification to the HRU model is also used to define the transition
relation → and the set Act. Intuitively an action is a functionality of the
web application that

(i) can be accessed through the user interface of the web application, (e.g.,
using a browser), and

(ii) changes the state of the client (this can be done by a direct call of the
services on the server or via AJAX functionalities).

The informal definition of the actions is general enough to be applied to
a large variety of features of a web application. In Section 3.7, I give an
elucidation about the actions of interest in the framework.

Summing up, the model of a web application for security testing contains:

• A data structure containing the data that a web application (and its
users) handles,

• the information about the storage and the management of these data
by the web application,

• the functionalities that the web applications provides, and

• how these functionalities can be accessed by the users of the web ap-
plication.

In the following, the components of the model are presented. With regard
to the framework (Figure 1.1), the analysis of each component gives the
means for the definition of the actions and can be used by security analysts
in order to created their own models.

3.3 Users

3.3.1 Modeling a User

In the following, I describe what information about the users of web
applications are modeled in the proposed approach. The desirable features
that I want to describe for a user are: A user

• can interact with the web application (he has an unique identifier),

• can manage and use the data that the given web application uses,

• can interact with other users’ data, and

• can interact with only one application at a time.2

2The framework presented here can be extended to users interacting at the same time
with multiple applications, but this extension is not in the scope of this thesis.

28 Chapter 3. Modeling Web Applications

Users: The set UserName is defined as the set of unique identifiers of users
interacting with the web application. UserName contains the names of the
users that have an account on the application. Nowadays the majority of the
web applications allow anonymous browsing (i.e., the users are not logged
in); in order to identify this type of users, I introduce a special label (Anon).
An example of a possible instatiation of the set UserName is thus

UserName = {Alice,Bob,Anon}.

3.3.2 Users’ Data

Abstract Data

One of the main problems with model checking techniques is how to
choose the correct abstraction level of the model that has to be defined.
Regarding the data that a user can handle, the security analyst has to start
the analysis by establishing which abstract data are in the scope of the
analysis (i.e., the data that are part of the analysis). These data are abstract
representation of the data implemented in web applications that a user can
handle. I define MetaData as a set of meta-data that the security analyst
defines. The meta-data have to reflect the meaning of the data that the users
use in order to interact with the web application. An example of MetaData
is the following:

MetaData = {Credential ,User−Id ,Profile,Messages−List ,

User−Session,Uploaded−File, . . .}

In this example, the intended meaning for each element of MetaData is:

• Credential : The identification data belonging to a user that prove his
identity (e.g., username and password).

• User−Id : The identifier that the web application give to a user.

• Profile: The personal data associated with a user (e.g., a description
of the characteristics of the user).

• Messages−List : A list of messages stored on the server that the user
can access.

• User−Session: The abstract representation of the information inter-
change between the web application and the user.

• Uploaded−File: A file that can be uploaded on the server via the web
application.

The introduction of the meta-data in the beginning of the modeling phase is
meant to give to the security analyst the complete freedom in choosing the
abstraction level best suited for her analysis.

3.3. Users 29

Data Structure

The set MetaData has to be instantiated in an abstract record UserData
containing the data handled by a user (i.e., the data associated with the
elements of MetaData). The record UserData is thus the representation of
the abstract information in MetaData (at some level of abstraction) that a
user can handle. In other words, the record UserData is a container for the
knowledge that a user can gain from the web application.

Definition 3 (UserData). Let ∣MetaData ∣ = n be the number of elements in
MetaData, and

BasicTypes = {String , Int ,Bool , . . .}

be the set of concrete data types and StrucTypes = {Profile,Credential , . . .}
the abstract types of the elements of MetaData. I define the record UserData
as

UserData = (field1 , ...,fieldn)

where fieldi ∈ UserData is an instantiation (at some level of abstraction) of
the i-th element of MetaData and is in the form

fieldi = [(subfieldi .1 [, subfieldi .2], ...)]

where

• fieldi has type in StrucTypes or BasicTypes, and

• subfieldi .j are optional and have types in BasicTypes

By definition, the syntax of the record is context free; in the next section,
I will explain how to instantiate every variable for each user in UserName.

Example 3. As an example, a typical data structure and the corresponding
types of its variables are:

UserData =
(
cred = (user, pwd),
id,
prof = (name, ...),
mess = (m [, m]...[, m]),
param,
data = (d [, d]...[, d]),
file
)

Types:
cred : Credential
user : String
pwd : String
id : Id
prof : Profile
name : String
mess : List
m : Message
param : Parameter
data : List
d : Unknown
file : FileAddress

30 Chapter 3. Modeling Web Applications

When a security analyst models a web application, some of these fields
will remain unchanged, others will be modified (the choice will depend on the
web application in some cases and on the modeling choices in other cases).

As an example of modification of the data structure, the list of messages
can be modified in order to model a web application where each message has
a title:

UserData =
(
⋯
mess = ((t,m) [, (t,m)]...[, (t,m)]),
⋯
)

Types:
mess : List
t : Text
m : Text

The new list of messages can be used by the security analyst to (i) model a
fine-grained data structure, and (ii) lower the abstraction gap between the
model and the web application. △

Multi-Users Environment

Every user has access to his (and other users) meta-data through the user
interface of the web application. In a multi-user environment, the security
analyst has to be able to trace the “ownership” of the data and having only
the set UserData is not enough for this purpose.

Definition 4 (Data). The set Data is defined by instantiating every element
in UserData with each user in UserName, i.e.,:

Data = {x.y ∣ x ∈ UserName and y ∈ UserData}

The set Data thus contains all the possible data that users can handle
during their interaction with the web application.

As stated before, these information will be used in order to model the
knowledge of the users which must contain only constants. The possibility
of modeling structured data result in the fact that the modeled users can
know the subfields of these data without knowing the complete field (e.g.,
the name of a user can be known without the direct access to his profile) but
the modeling freedom that the proposed framework allows the omission of
some information from the record UserData. The security analyst can omit
the information that she does not wants to be part of the analysis during
the definition (in the model) of the set UserData.3

3The omission of data in the model can bring to a loss of expressiveness of the model
itself, the experience of the security analyst plays a crucial role in selection what data
have to be omitted.

3.3. Users 31

In order to manage the knowledge of subfields, I considered the possible
modeling choices in defining the subfields, i.e., how to manage the knowledge
of the user (the variables in the model) programmatically. In the following,
I present three possible solutions divided in two approaches.

Only one sub-field per field: In this case, I can delete the subfield and
manage the information contained in the sub-field in a variable that contains
the field and implicitly also the information contained in the subfield; for
example if the user Alice has a profile with one subfield name, then I can
delete Alice.prof.Alice and only use Alice.prof ;

Many sub-fields for a field: In this case, I have to deal with the possible
missing information in the subfields; I have two possibilities:

• Data contains only the known subfield(s) while the others are omit-
ted. The missing fields are not part of the model, and they are not
considered during the analysis.

• Data contains all the subfields, the ones that the user knows can be
used and instantiated, the others are described through free variables
(one for each subfield); until the values of these variables are not as-
signed they remain unknown and are not usable. In this scenario, the
data reflect the real data of the web application but a computational
load is given to the model checker since it has to process more variables.

As I will discuss in Chapters 4 and 5, the third choice is the best suited
for my purposes since the first two create confusion in the modeling and
concretization phases.

3.3.3 Users’ Knowledge

In the previous section, I have explained how to model the data that
the users can handle, in this section, I explain how the users can gain new
knowledge and how different types of knowledge are modeled.

During the interaction with a web application, a user could have access to
(or use) many types of knowledge. For example, he can use some information
that he already knows, extract information from the web application itself,
or, in borderline cases, even guess some information.4 We describe these

4From the perspective of an attacker, allowing that some data are guessable means
that the security analyst has to introduce in the model one (or more) ad-hoc actions that,
after their use, permit this type of analysis. The only difference between the “gained”
and “guessed” knowledge is the use of such actions in order to guess data, after that,
the knowledge can be used independently from its type; differentiating the knowledge in
gained and guessed has the purpose of introducing new possibilities in the analysis of web
applications.

32 Chapter 3. Modeling Web Applications

types of information with labels contained in the following set:

KSource = {Initial ,Gained ,Guessed}

The intended meaning for the labels in KSource refers the possible sources of
knowledge that can be modeled:

• Initial : The user knows the data from the beginning of his execution
(the origin of this knowledge is not discussed here and its definition is
demanded to the security analyst).

• Gained : The knowledge about a data is gained through the interaction
with the web application.

• Guessed : The value of the data has been guessed, this type of data
will be used only by the attacker.

We can thus express the knowledge of the users as a set of triplets:

UKnows = {(x, d, ksrc) ∣ x ∈ UserName, d ∈ Data and ksrc ∈ KSource}

Each triplet in UKnows states that user x knows the data d with some “as-
sumption” ksrc about the origin of the knowledge. In the following, no further
analysis on the assumption on the knowledge origin is made.

3.3.4 Knowledge Evolution

In order to explain how the knowledge of a user can evolve, I will formalize
the initial knowledge and, subsequently, describe two possible alternatives
to define the knowledge evolution.

Initial Knowledge

When a user starts to interact with a web application, he already knows
some information about the data that he will use. In the proposed framework
every user in UserName has an initial knowledge that, as I have presented
in the previous section, is labeled with Initial . Thus I can extract from the
set UKnows those data d such that ksrc = Initial ; the initial knowledge of a
user x ∈ UserName are those data

d ∈ Data such that (x, d, Initial) ∈ UKnows

The data belonging to the initial knowledge are defined by the security an-
alyst at the beginning of her analysis. In the following, I will use the set
initialK as a container for the initial knowledge of a user.

3.3. Users 33

Possible Evolutions

The evolution of a user’s knowledge is possible through the assignment of
labels to data in the set UKnows (excluding the data already labeled as initial
knowledge), this allow users to learn new information. The assignment of
labels is made through actions (intuitively a functionality provided by the
web application, for more details refer to Section 3.7); when an action is
“performed” by a user the labels in UKnows are changed accordingly to the
action (Section 3.7).

The evolution of the knowledge depends on what the security analyst
wants to model and how she decides to model it (refer to Section 3.3.4 for
the modeling approaches about knowledge). As will become evident in the
following sections, a security analyst can choose between different types of
modeling approaches (Section 3.8) and in what to model about the different
aspects of the web applications; these choices can result in different needs
about the evolution of the knowledge.

As stated before, the knowledge evolves through the application of actions
(that are also used for transitioning the transition system from a state to
another). I can thus define what is the knowledge of the users at a given
state:

Definition 5 (Knowledge snapshots). Let TS = (S,Act,→, I,AP,L) be
a transition system and % = s0α1s1α2 . . . αnsn (with n ∈ N) an execution
fragment:

• U si
Knows denotes the content of the set UKnows at state si.

• The knowledge of the users evolves as

U s0
Knows

α1Ð→ U s1
Knows

α2Ð→ . . .
αnÐ→ U sn

Knows

where s0 ∈ I, and the set U s0
Knows thus contains the initial knowledge.

• The knowledge of a user “usr ” at state si is the set:

{(x, d, ksrc) ∣ (usr , d, ksrc) ∈ U si
Knows}

The two main options for the knowledge evolution are

• monotone knowledge or

• non-monotone knowledge.

Definition 6 (Monotone Knowledge). Let TS = (S,Act,→, I,AP,L) be a
transition system and % an execution fragment where si

αi+1ÐÐ→ si+1 for all
0 ≤ i < n, (with n ∈ N). The knowledge of the users is monotone if

U i
Knows ⊆ U i+1

Knows for all 0 ≤ i < n

The knowledge of the users is non-monotone otherwise.

34 Chapter 3. Modeling Web Applications

With a monotone knowledge every piece of information that a user can
learn cannot be forgotten; on the other hand, a non-monotone knowledge
is well suited to be used in those cases where users can forget data during
their execution of the web application. The logout functionality is a good
example of these two possibilities:

• with a monotone knowledge, every information is permanently “stored”,
e.g., if the security analyst is modeling a session token, this will be
accessible in all the interactions (part of a session or not) with the web
application (even if it was not part of the initial knowledge);

• with a non-monotone knowledge, information can be deleted from the
knowledge;5 e.g., a session token can be deleted after a logout and
cannot be used for future executions. For a matter of speaking, the
“value” of the session token is forgotten in order to invalidate it. The
same, can be applied to all session data in the case that the security
analyst wants to model this particular behavior of web applications.
In this setup, the initial knowledge can not be deleted; as part of the
data that the security analyst defines in the model, I believe that the
initial knowledge is the basis of the analysis and, thus, too important
to be deleted.

A feature like the forgettable knowledge seems to disagree with many
model checking techniques that “does not forget anything” during the ex-
ecutions. In my opinion, this feature has a crucial role in modeling web
application, since in some cases some unrealistic assumption has to be made
in order to model behaviors that require to forget.

Some examples of possible scenarios where non-monotone knowledge is
required are:

• special functionalities that invalidate data after they are used (i.e.,
security checks on the data of the web application),

• gained information that are valid only for a session.

3.3.5 Attackers

In my approach, the concept of attacker is a bit blurry. Some research
fields introduce in the analysis a powerful ad-hoc attacker (e.g., the Dolev-
Yao attacker [19] for security protocols). In penetration testing, security
analysts have to assume that (i) all the users of the system are potential
attackers, and (ii) every point of the web applications can be used in order
to enter dangerous data to or extract data. The main difference between this

5In the proposed framework, knowing a data implies that the data itself can be used
during the interaction with the web application.

3.3. Users 35

approach and other types of analysis is that an attacker is not introduced in
the model as an entity or a channel.

As in penetration testing, the proposed framework uses one of the users
of the web application as an attacker and, if needed, other users for the
generation of attack traces with multiple users. Since every user can be an
attacker, the analysis of web applications does not require the introduction
of special users (or communication channels) than the ones that are used on
the web application; the modeled users are thus the ones that interact with
the modeled web application.

With these premises, some assumption about the interaction of the users
with a web application can be made. In the following, I present two assump-
tion that are used in the models of web applications.

Data can be dangerous When a user interacts with a web application,
the developers are expecting that the interaction is made in an harmless way.
From a penetration testing perspective, every interaction can be dangerous
and must be treated as such. Following this idea, during the model checking
phase of the framework, I have to make some assumption on the data that
the users can handle:

• every time the web application permits to write a data, I assume that
the same data can be modified in order to deliver a payload of an
attack,

• when the web application takes in input a data, it is not sanitized, and

• when the web application displays a malicious payload, it is not sani-
tized.

In Section 4.2, these assumptions are used in order to define the goals
that are used in the models.

Guessable data In Section 3.3.3, the possibility of guessing data has been
introduced. When a security analyst introduces in the model the possibility
of guessing data, she is defining how an attacker can differ his execution from
the knowledge constraints that the web application has; in other words, she is
giving to the attackers the means to attack the application. The introduction
of such possibility for the attackers (i.e., the users of the web application) has
not to be taken lightly, since it can give to the attackers too much freedom
in their execution. As an example, if the knowledge of a data is used as a
constraint for the access to certain functionalities, an attacker can guess these
data (in the model) and this it is not possible on the real web application,
then the model checking phase can return false positive counterexamples
(i.e., attack traces that are counterexamples in the model but not possible
to testable in the web application).

36 Chapter 3. Modeling Web Applications

3.4 Web Applications’ Behavior

3.4.1 Modeling Web Applications’ Behavior

In the previous section, I have explained how to model users; in this
section, the focus is on the web application (as the target of the tests) and
its behavior. The desirable features that I want to describe for a given web
application are: (i) it gives the means to access data (through an interface)
to the users, and (ii) it relies on its back end machinery (i.e., server-side
information technologies) for the storage and the management of the data.

In order to describe these features, my main focus is on the events of the
web applications that

• a specific user causes them to happen (i.e., the events are triggered),

• through the use of the functionalities (i.e., actions) of the web appli-
cation,

• regarding some data, and

• with respect to a specific “location” on the server.

3.4.2 Web Applications’ Events

Events describe what it is happening to the web application’s data (both
on client-side and the server-side).

Web applications’ events are related to actions; when an action α is
performed some events take place (i.e., the user triggers some events through
the use of the action). Let the syntax of the events be

x .event(parameters, location)

where x ∈ UserName, event is the name of the event, parameters ⊆ Data,
and location the location of the data regarding the web application informa-
tion technology. An action could write some data on the web application’s
database, in this case the event x .write(targetData,database) is related to
that action.

In order to simplify the notation for the actions (Section 3.7) the events
are specified in the target state of the action. As an example,

si
αi+{events}ÐÐÐÐÐÐÐ→ si+1

becomes
si

αi+1ÐÐ→ s′i+1

where in s′i+1 for each event in {events}, a label expressing the event and its
location is given to the event’s parameters. As done before for the knowl-
edge of the users, a set Event containing the possible labels for events is
introduced.

3.4. Web Applications’ Behavior 37

An interesting instantiation of the set Event (that could be expanded by
the security analyst) is the following:

Event = {ShowDB ,WriteDB ,ShowFS ,WriteFS ,

Exec,Edit ,WriteSD ,ShowSD}

The intended meanings for the elements in Event when used to label a data
are:

• ShowDB : The labeled data has been displayed as a result of a query
that reads from a database (e.g, the messages in an online forum that
read from a database).

• WriteDB : The labeled data has been written in a database (e.g., if a
user saves his profile on a database).

• ShowFS : The labeled data has been read from the file system and
displayed (e.g., the web application has a photo album whose photos
are read from the corresponding files).

• WriteFS : The labeled data has been written on the file system of the
server (e.g., photos, attached documents, etc.).

• Exec: The labeled data has been displayed and retrieved as part of
the execution of a command (e.g., the open function in PERL or the
Runtime class in Java).

• Edit : The labeled data has been retrieved by the application for editing
(e.g., a form that a user can edit).6

• ShowSD : The labeled data has been retrieved and displayed from a
local session of the browser (e.g., preferences or runtime state).

• WriteSD : The labeled data has been saved in the browser along with
the others pertaining a certain session.

The set Event gives us the means to define how the application works on
the data.Through the set Event , the security analyst can model her under-
standing of how the data are managed by the information technology (IT)
on which the web application relies on:

• databases that manage data,
6There is a slightly difference between a ShowDB (or the other types of “Shows”) and

an Edit ; the first refers to the fact that the data are only displayed, the latter to the fact
that a user can change the values of the data. We will use this event in those cases where
the web application permits to modify the values of the data in a page and can display
the same data (without the possibility to edit them) in another page (e.g., a form used in
order to send the new fields of a profile).

38 Chapter 3. Modeling Web Applications

• file systems for files,

• sessions for access control and volatile data,

• operating system that execute commands, and

• the web application’s user interface that retrieves data from the users.

I can define the set of events that are related to the user and the data he
is using:

WAEvent = {(x, d, e) ∣ x ∈ UserName, d ∈ Data and e ∈ Event}

Each triplet in WAEvent states that the event e happen on a data d and the
user x triggered it.

As stated before, the events are triggered by the application of actions
(that are also used for transitioning the transition system from a state to
another). I can thus define what the triggered events at a given state:

Definition 7 (Events snapshots). Let TS = (S,Act,→, I,AP,L) be a tran-
sition system and % = s0α1s1α2 . . . αnsn (with n ∈ N) an execution fragment:

• WAsi
Event denotes the content of the set WAEvent at state si.

• The events triggered by a user “usr ” at state si is the set:

{(x, d, e) ∣ (usr , d, ksrc) ∈ WAsi
Event}

3.4.3 Events and Knowledge

Initial Events

When a user starts his interaction with a web application usually he
begins with the home page, thus the security analyst can use the home page
as a starting point for the tests (it is not unlikely that the starting point of
the tests has to be different from the home page, in this case she can use
another part of the web application as a starting point). In Section 3.3.4,
I assumed that the security analyst can define the initial knowledge of the
users, the same is possible for the events. The initial events have to be
aligned with the decided starting point, and have to be changed in the case
the security analyst decides to change the starting point of her analysis.

Knowledge Evolutions Through Events

When an event is triggered by a user, his knowledge (Section 3.3.3):

1. changes according to the event, and

2. has to be enforced to the data structure where the knowledge is “stored”
(Section 3.3.2).

3.5. Security Mechanisms & Testing-Related Information 39

In other words, the events can refer to subfields of a data, in scenarios like
this, some policies have to be introduced in order to decide the scope of the
event (i.e., what data are affected by the event). I present two policies for
the knowledge evolution:

• Writes When a WriteDB of a structured type occurs, then the write
is also applied to the corresponding basic type(s) (if present). For
example, if a profile is written on the database, also its subfields are
written at the same time.

• Shows When ShowDB of a structured type occurs, then the agent
learns the corresponding basic type(s) (if present). For example, if a
profile is shown on the database, also its subfields are shown at the
same time.

As stated in Section 3.3.4, the security analyst has two possibilities for
the evolution of knowledge in the model:

• a monotone knowledge and

• a non-monotone knowledge.

While the first has to be used in those scenarios where users do not forget
the data that they have access to, the latter is used when users can forget the
data, e.g., between different sessions (in this case, the logout functionality
plays a crucial role). As stated in Section 3.4.3, also events play a central
roles in the possible evolution of the knowledge since users can learn new
data from during the interaction with the web application. We define this
feature with a fact that has to be implemented in the model.

Definition 8 (Knowledge Evolutions Through Events). Let i, j ∈ N with
j = i+1, si, sj ∈ S two states of TS , i.e., the matrices M after the application
of, respectively, i and j actions (see Section 3.7), x ∈ UserName a user,
gainK si the set defining the knowledge that is gained from the interaction
with the web application for the user x in the state si (the same is valid for
sj), and d ∈ Data:

gainK sj = gainK si ∪ d ∈ ShowDB ∪ d ∈ ShowSD ∪ d ∈ ShowFS

3.5 Security Mechanisms & Testing-Related Infor-
mation

In the previous sections, I have explained how to model users’ knowledge
and web applications’ behaviors. These information alone are too general
to allow a complete analysis of the security of web applications (and after-
ward the actual tests). Penetration testers often target security mechanisms

40 Chapter 3. Modeling Web Applications

and technologies that are not expressed by the label introduced before, this
requires an additional analysis of these aspects of penetration testing.

In this section, I introduce two notions: security mechanisms and testing-
related information. The first (Section 3.5.1) refers to those mechanisms
(that are often concealed to the users) implemented in order to preserve the
security of the system (i.e., the security of the web application and its IT),
the latter (Section 3.5.2) refers to those information that are interesting from
a testing perspective but are not part of the knowledge or the behavior of
the web application. With these two concepts, I will show how a security
analyst can introduce in a model her knowledge about security measures (i.e.,
how web applications enforce a defense against attacks) and possible attacks
(i.e., tests that are not drivable from the data or the events). As will become
evident in the following sections, the introduction of these information in the
model is equivalent to decorating the actions (i.e., the functionalities of the
web application) of the transition system with labels.

3.5.1 Modeling Security Mechanisms

The modeling of a web application requires the integration of the possi-
ble security mechanisms that are enforced over the data that the application
handles. Penetration testers usually perform ad-hoc tests for different func-
tionalities, this “know how” is important for the success of a test and is not
drivable from the data or the events that I have already introduced in the
model, as an example, the users’ privileges (i.e., their roles) or the session
management for restricted ares are information not drivable from the data
and the events already introduced in the model).

The OWASP testing guide [42] states that a generic security test suite
might include security test cases to validate both positive and negative re-
quirements for security controls such as:

• Authentication & Access Control

• Input Validation & Encoding

• Encryption

• User and Session Management

• Error and Exception Handling

• Auditing and Logging

In Section 3.5.3, I focus the analysis on those security mechanisms (enforced
through/on some data) that refer to the above classes.

3.5. Security Mechanisms & Testing-Related Information 41

3.5.2 Modeling Testing-Related Information

Having introduced the security mechanisms into the model sometimes is
not enough in order to have a good coverage of the penetration tests that a
web application has to pass in order to have a good measure of its security.
As an example, let’s take into account the growing use of AJAX in nowadays
web applications: This type of functionalities suffer from a variety of attacks
(see Section 2.4.3 for further information) and penetration testers leverage
these functionalities in order to attack web applications. Likewise, I aim
to introduce in the model information like “use of AJAX functionalities” in
order to improve the testing of web applications. The information that I am
aiming to introduce in the model are those that came from the experience
in penetration testing of the security analyst. These information can be
used in order to (i) improve the attack surface (i.e., the sum of the different
points where the attacker can try to enter data to or extract data from
an environment), and thus the overall testing capability and efficacy of the
framework, in the model and not only during the testing phase, and (ii) reuse
the expertise of the security analyst in different models.

3.5.3 Security Mechanisms’ Data

As stated in Section 3.5.1, security mechanisms are enforced over the
data; this does not mean that they are only usable on the data data structure
for those data managed by the web application and accessible by the users
(Section 3.3.2).

In this section, an additional data structure is introduced. The new data
structure is meant for those data that belong to the users but implement the
security mechanisms of the web application.

As explained in Section 3.3.2, the security analyst can model the data
on different abstraction levels. The same is also applicable to the security
mechanisms that are implemented in web applications. In the following, I
present what abstract security mechanisms are of interest in this thesis, the
data structure to store these information, and later, how security mechanisms
and testing-related information are introduced in the model.

Abstract Security Mechanisms

While modeling the security mechanism, the security analyst has to take
into consideration a number of factors, for example:

• A web application can implement a multitude of security mechanisms.

• Not all the security mechanisms are implemented on data that the user
can see.

42 Chapter 3. Modeling Web Applications

• Some security mechanisms could be implemented as “actions” to be
performed and not as data to be used.

• Sometimes only a subset of the security mechanisms are in the scope
of the test.

As we will also see in the case studies (Chapter 5), I will use a secu-
rity mechanism for “Authentication & Access Control” (along with login and
logout functionalities) and one for “User and Session Management”, respec-
tively:

• an abstract data session that abstracts the idea of a session ID like
JSESSIONID (JEE), PHPSESSID (PHP), and ASPSESSIONID (Mi-
crosoft ASP), and

• an abstract data userType that abstracts some data implemented in
the web application in order to differentiate types of users interacting
with it.

Security Mechanisms Data

In order to store the security mechanisms’ data, the security analyst can
add them to the web application data UserData (see Section 3.3.2). As an
example, the following two are possible data that can be added to the set
UserData

• session models a session ID that is created for a certain user, and

• userType defines the specific role of a user.

The more scrupulous readers should now expect a section about the
“testing-related information” but this section is missing. Such information
does not give rise to data that have to be inserted in the model but only,
as I will explain in the following section, to assertions on the data already
present in the model.

3.5.4 Assertions on Security Mechanisms & Testing-Related
Information

Every time a user interacts with a web application, the interaction itself
is made via a browser. Even if the user is not aware of what is happening,
from a security perspective, a lot of information can be extracted from a web
application about how its data are handled and how the security mechanisms
are implemented. A security analyst can define assertions (in the form of
labels) about these information in order to define the set Assertion.

The strategy that a security analyst can follow while defining the set
Assertion is to identify the key attack surfaces that web applications can

3.5. Security Mechanisms & Testing-Related Information 43

expose. This strategy corresponds to mapping the attack surface of the web
application; some key areas to investigate during the mapping are:

• The web application’s functionalities (i.e., the actions that can be lever-
aged).

• The core security mechanisms (e.g., access controls, authentication
mechanisms, etc.).

• How the application processes user-supplied input.

• The technologies employed on the client side.

• The technologies employed on the server side.

As an example, the following set is the one that I use in the case studies
presented in Chapter 5:

Assertion = {Granted ,Checked ,AJAX ,Sanitized ,

Admin,User ,Echoed ,PageIncluded}

The intended meanings for the elements in Assertion are:

• Granted : Is used along with the data modeling the (HTTP) session
and means that the session is granted (i.e., the user has logged-in and
some session ID is used during the communication).

• Checked : If the data is used in a query on the database (or file system)
and may not be displayed by the user interface.

• Sanitized : If sanitization is enforced on the data before been saved or
displayed.

• isAdmin/isUser : If the role of the users of the web application is
checked (these assertions defines the values of the user data userType,
and are checked whenever an action requires these privileges).

• AJAX : If the data was displayed and its values are retrieved via
AJAX-functionalities.

• Echoed : If the data submitted through a request is reported identical
in the response page.

• PageIncluded : If in the URL/page there is a direct reference to a file
(then used as a web page) hosted on the server.7

7In Section 3.4.2, I have introduced the event ShowFS that could be seen as a repetition
of PageIncluded described here. The two concept are indeed similar but they differ in the
fact that I see the event ShowFS as some data that are parsed to be included in a page,
while the assertion PageIncluded refer to the actual files where web pages are saved (e.g.,
files with extension html, php, or asp).

44 Chapter 3. Modeling Web Applications

This type of information can be used by the security analyst in order to
derive from the model of a web application those execution fragments % that
bring the system in a state where penetration testing has to be used (i.e., the
actual attack is tested via penetration testing techniques), as an example:

• Echoed for XSS,

• PageIncluded for data harvest and alike, and

• AJAX for the ones presented in Section 2.4.3.

Through the labels contained in the set Assertion, the security can define
how security mechanisms and testing-related information are related to the
application’s functionalities and the data that these functionalities use.

The labels in Assertion, that a security analyst define, refer to asser-
tions that are related to actions and could have some parameters (subset of
UserData). As done for the set Event , the labels are specified in the target
state of the action where for each assertion, the label expressing the assertion
is given to the assertion’s parameters.

I can thus define the following set:

SECAssertion = { (x, d, p) ∣ x ∈ UserName, d ∈ Data and p ∈ Assertion }
stating that a certain user x has used a data d on which the security analyst
has made an assumption p about how the data d is handled from a security
perspective.

As stated before, the assertions are defined for the web application’s
actions (that are also used for transitioning the transition system from a
state to another). I can thus define what the assertions at a given state:

Definition 9 (Assertions snapshots). Let TS = (S,Act,→, I,AP,L) be a
transition system and % = s0α1s1α2 . . . αnsn (with n ∈ N) an execution frag-
ment:

• SEC si
Assertion denotes the content of the set SECAssertion at state si.

• The events triggered by a user “usr ” at state si is the set:

{(x, d, e) ∣ (usr , d, ksrc) ∈ SEC si
Assertion}

Knowledge Evolutions Through Assertions

In Section 3.5.4, I give an example of how a security analyst can define
security mechanisms and test related information, i.e., describe how “secu-
rity” is enforced over the data that the web applications use and how these
data are managed.

Assertions do not play a direct role in knowledge evolution, since users
do not gain direct knowledge from these information. As I will show in
Section 3.7, from a security analyst perspective, assertions are mainly used
in order to control which actions can be executed (i.e., what users are allow
to do during their executions) and for the writing of goals (Section 4.2).

3.6. States 45

Initial Assertions

When a user starts his interaction with a web application some initial
assumptions can be made about the initial state of the security mechanisms.
One of the assumption that I have used in all the case studies is that either
one of the users has a valid session with the web application (i.e., the web
application granted him a session token) or the anonymous user starts the
interaction with the web application. This came from the fact that my
modeling choices wanted to differentiate the possible actions that can be
performed inside a session, and to have some control about the user that
starts the interaction with the web application.

Even if the grant of a session to a user is one of the features that a security
analyst has to take care of, it is not impossible that a security analyst could
choose to start the interaction from a point of the web application where the
initial security assertions play a crucial role in the model checking phase. In
this case, the security analyst has to define which are the initial assertions.

3.5.5 Atomic Propositions

I can now define the set of atomic propositions AP of the transition
system TS .

Definition 10 (Atomic Propositions). I define the set of atomic proposition
as:

AP = {X ∣ X ∈ UKnows or X ∈ WAEvent or X ∈ SECAssertion}

where UKnows has been defined in Section 3.3.3, WAEvent in Section 3.4.2,
and SECAssertion in Section 3.5.4.

3.6 States

In the previous sections, I have presented what type of information I
want to model about users, web applications, and security mechanisms and
testing-related information, in order to define the set of atomic propositions
AP (Definition 10). In this section, I define the states of the transition
system (S).

3.6.1 States of a Web Application

Every state si ∈ S describes a particular snapshot of the web application
regarding the information about:

• The users (in UserName) and their knowledge in U si
Knows (Definition 5).

• The triggered events (in Event) on the data (WAsi
Event , Definition 7).

46 Chapter 3. Modeling Web Applications

• The assertions (in Assertion) about security mechanisms and testing-
related information SEC si

Assertion (Definition 9).

A state describes what is happening client-side during the interaction of a
user with the web application, with additional information about the server-
side technologies used.

As presented in Section 3.2.1, the HRU model uses an access matrix P
with a row for every subject, a column for every object, and right R that
can be assigned to P ’s cells.

The elements of the sets UKnows , SECAssertion and WAEvent refer to in-
formation that relate users, data and labels (respectively KSource , Event and
Assertion). In order to trace how these information evolve, I define a matrix
M as:

Definition 11 (States). For a given web application, a state of the TS is an
instance of the matrixM such that the rows names take values in UserName,
the column in every element of Data and the labels in KSource , Event and
Assertion are assigned to M ’s cells.

In other words, I define an access matrix M that (i) remodels the HRU
model (Section 3.2.1), and (ii) merges the information contained in the sets
UKnows , SECAssertion and WAEvent , i.e.,

• the subjects of the HRU’s protection system formalize the users of the
web application,

• the objects formalize the data (in Data) that the web application can
handle, and

• rights over objects formalize labels that express the information about
the knowledge, the web application behavior, security mechanisms and
testing related information.

Definition 12 (Initial States). Let TS = (S,Act,→, I,AP,L) be a transi-
tion system and M the matrix that defines the sates (Definition 11). The set
I of initial states is defined by the security analyst with the instantiation of
the matrix M .
Example 4. Recalling that the set Data is instantiated for every user of
the web application (Definition 4), let UserName = {Alice,Bob,Anon} and
Data = {Anon.session,A.session,A.profile,B .profile}. The matrix M that
instantiates the state of TS is:

Anon.session A.session A.profile B .profile
Anon
Alice
Bob

△

3.6. States 47

In the following I will use the following notation:

• M is the matrix containing the states of TS , and

• M[i, j] a cell of the matrix (where the first subscript is the row number
and the second is the column number)

Example 5. The following two instances of a matrix M are possible states
of TS :

Anon.session A.session A.profile B .profile
Anon
Alice Granted ShowDB
Bob

Anon.session A.session A.profile B .profile
Anon
Alice Granted ShowDB ,Edit
Bob

△

The matrices shown in latter example are small instances of states (i.e.,
for a small number of data); for a given web application the numbers of rows
and columns can be larger.

In the following, I discuss how a security analyst can define the initial
states I of the transition system TS .

3.6.2 Initial States

An initial state defines the initial knowledge of the users (Section 3.3.4),
the initial events (Section 3.4.3) and the initial state of the security mecha-
nisms and testing related information (Section 3.5.4). In order to define the
possible initial states, the security analyst has to define the possible initial
matrices M that instantiate these values with regard to the tests she wants
to perform. I denote an initial state (or initial matrix) with M0.

Since the initial states can vary considerably from web application to web
application, in the following I give some examples of initial states along with
some clarification about their meaning.

Example 6. The empty matrix (e.g., see Example 4) is a valid initial state.
The evolution of TS can start from an empty matrix; this means that the
transition relation of TS does not need to satisfy any condition in order to
move the system to another state. △

Example 7. The matrix

48 Chapter 3. Modeling Web Applications

Anon.session A.session A.ID A.profile
Anon Granted
Alice Initial
Bob

formalizes an initial state where the anonymous user starts interacting with
the web application, and two users are present (one whose has his ID as
initial knowledge). △
Example 8. The matrix

Anon.session A.session A.ID A.profile
Anon
Alice Granted Initial ShowDB
Bob

formalizes an initial state where to the user Alice a session has been granted
by the web application, Alice’s ID is part of her initial knowledge and the
web application is showing her profile (that is retrieved from the database).
This example shows the case where all three types of triplet that compose
AP (i.e., UKnows , SECAssertion and WAEvent) are used. △

State Space

Since the cells of the matrix M contain a subset of AP , I am stating
that each cell can contain multiple values and the state of TS can change
also in the case that a value from AP is appended to the values contained
in a single cell, i.e., the set of states S contains all possible instances of the
matrix M .

Definition 13 (State Space). Let UserName be the set of usernames, Data
the set of data, AP the set of atomic propositions, n,m ∈ N such that n =
∣UserName ∣ and m = ∣Data ∣ are respectively the number of rows and columns
of the matrixM . The set S of states is defined as the union of all the possible
instances of the m-by-n matrix M :

S = { M ∣ ∀i <m, ∀j < n . M[i, j] ⊆ AP}

It is possible to calculate the number of possible elements of S (i.e., ∣S∣).
Let n,m, p ∈ N such that n = ∣UserName ∣, m = ∣Data ∣, and p = ∣AP ∣, the
number of possible states in S is the number of elements in the power set
of AP times the number of elements in the power set (written P) of the
elements of the matrix M (i.e., the cells of M):

∣S∣ = P(AP) ⋅P(m ⋅ n) = 2n⋅m ⋅ 2p = 2(n⋅m)+p

As an example, let n = 3 be the number of users, m = 4 the number
of the modeled data, and p = 5 the number of atomic propositions. The
number of states in the transition system defined with this parameters is
∣S∣ = 2(2⋅4)+5 = 131072

3.7. Actions 49

Possible States

Legal States

Initial State

Figure 3.2: Representation of reachable states in a transition system.

3.6.3 Transitions and Reachable States

In the previous sections, I have described how the states of the transition
system are modeled. In order to describe the reachable states of a transition
system, the transition relation → (and the set Act of action names that
describe the transitions) has to be introduced.

Transitions describe how the system evolves from one state into another.
The security analyst defines the transitions through the definition of actions
(presented in Section 3.7). The definition of the actions correspond to the
definition of the transition relation (→) and the set Act at the same time.
As an initial definition, an action (i.e., transition) is a procedure that, given
a state, checks if it is possible to apply the action (i.e., if the conditions to
apply the action are satisfied), and calculates the next state of the transition
system.

The reachable states of a transition system are those that are reachable
through the application of all the possible transitions→ from the initial states
in I (i.e., initial states defined by the security analyst). In other words,
the reachable states are the ones that are part of an execution fragment
(Definition 2). In Figure 3.2, I depict the set of reachable states (immersed
in the state’s space) from an initial state through the application of actions.

3.7 Actions

In this section, I present how the security analyst has to define the tran-
sition relation and actions of the transition system in order to model the
functionalities of the web application.

Web applications offer various types of functionalities, ranging from gen-
eral purpose functionalities such as authentication, editing of private infor-
mation or searching information, to specific functionalities such as reading

50 Chapter 3. Modeling Web Applications

Operating System

Security Mechanisms

File System

Database

Web Server
Requests / Responses

Client

Forms

URLs
Users' Knowledge

Sessions

Pages

Security Mechanisms

Figure 3.3: Features of interest in the modeling of web applications.

a newsfeed or purchasing goods from an online shop. During the modeling
phase, I am not interested in all the implementation details of the single
functionality in order to consume it; rather (as I have explained in the previ-
ous sections), I focus my attention on the data that the functionalities have
access to, and the origin/use of these data on the web application.

As stated before, web applications’ functionalities can vary in a multitude
of ways, but some common features can be found (some of these have already
been discussed in the previous sections) both on client-side and on server-
side (as depicted in Figure 3.3). In the following, I present the features that
I take into consideration during the definition of the actions from the web
application perspective; the same is valid for the functionalities that the web
application implements. The client-side of the web application permits the
users to

• have access to the web pages in which the application is divided,

• interact with URLs (in the form of links or addresses),

• use some “hidden” data such as sessions and cookies,

• send/receive data through forms,

• have their own knowledge about the content and the data of the web
application, and

• interact with the security mechanisms that the application implements;

while, the client-side of the application permits the users to

• access the web server where the application is stored,

• access the file system of the server, and

• use the database(s) that manages the data of the web application.

3.7. Actions 51

In Sections 3.3, 3.4 and 3.5, I have defined all the data that a model
can contain. In the definition of the data, I have implicitly used a division
into levels of abstraction of the data handled by web applications and their
clients. In Figure 3.1, I depict the different features that I am modeling with
regard to the data handled by the web application. With regard to the level
of abstraction of the data:

• Data are always seen on the client side of the web application (even
when I refer to server side technologies).

• Data can refer to information accessible and modifiable by the users
(e.g., via a form); the security analyst can decide whether to abstract
the data or keep the “real” ones (i.e., parameters used by the application
that are not abstracted).

• Data can refer to information that are not accessible by the users (i.e.,
they are hidden to the users) and are used in the pages for security
purposes. This set of data can be informally defined as the combination
of the data that model the security mechanisms and the test related
information.

• Data are “produced” by the users as part of their initial knowledge or
by operations executed on the server side of the web application.

After this introduction, I discuss the functionalities that are of interest
and how to model actions in the framework.

3.7.1 Functionalities of Interest

The functionalities of a web application in which I am interested are:

• Functionalities that change the state of the web application (and thus
of the transition system) through the interaction with the information
technologies that the web application uses (i.e., the database, the file
system, etc.). These functionalities are common in web applications,
since they are needed for the navigation through pages, showing or
modifying information, and so forth. As an example, in a web forum
the following functionalities are present: on the database a user can
save texts or personal information (i.e., a profile), on the file system a
user can save an image.

• Functionalities that are needed in order to model the security mecha-
nisms implemented in the web application. These functionalities refer
(in the majority of the cases) to those information that the users do
not see (e.g., sessions and information stored in cookies) and are used
in order to implement the information technology security. As before,
let’s take the “login” functionality as an example. Even if the login is

52 Chapter 3. Modeling Web Applications

accessible through a form, the operations that concern a login phase
are mainly security related, e.g. check if the username exists, if the
password is correct, open a session for the user, and so on.

These two examples do not strictly divide the functionalities of a web appli-
cation into categories, since most of them are implemented as a combination
of the two.

Concluding, I will model actions that refer to functionalities that

• use server-side features of the web application, e.g.:

– read/write from a database, file system,

– execute commands,

– change pages, etc.

• are used for some security reasons (and thus are of interest during a
test).

3.7.2 Modeling Actions

Let the following set be a set of labels for the functionalities that I am
modeling:

functionName = {Login,ViewProfile,GetEdit ,EditProfile,

ListId ,Search,UpdateProfile,Logout}

The elements in functionName refer to the functionalities implemented in
the web application that are modeled as actions (in Figure 1.1 I labeled this
step as “identification phase”). These actions have to be instantiated with
respect to the data (contained in the set Data) of the web application. Even
though the functionalities are common to multiple web applications, the data
on which they are applied to can be different from case to case. In Table 3.1,
I give an example of actions and parameters for a general user x.

Actions also describe the transition relation →. The security analyst has
to define it in the set Action (of actions) that is introduced in the model.

Definition 14. Action An action α ∈ Action is defined as

α = name(agent ,parameters)/[Conditions]PrimitiveTransitions

where

• name ∈ functionName,

• agent ∈ UserName,

• parameters ⊆ Data,

3.7. Actions 53

Table 3.1: An example of actions for a user x and some parameters.

High-level action Functionality

Login(x , x .cred)
A user x ∈ UserName is authenticated on
the web application using the credential
x .Cred

ListId(x) The known IDs of a user are listed by
the graphical interface

ViewProfile(x ,data) A profile is selected with respect to some
data and displayed

GetEdit(x ,data) An editable instance of DATA is retrieved

Search(x , value) A search engine is called with parameter
value

Logout(x) The user no longer needs access to the
restricted area of the web application

UpdateProfile(x , x .prof)
The action is defined for a particular
functionality; in cases like this the action
is instantiated for ad-hoc parameters

54 Chapter 3. Modeling Web Applications

• Conditions is a set of conditions that have to be satisfied in order to
perform the action, and

• PrimitiveTransitions is a set of transitions that describe how the state
changes.

In order to write the actions in Action the following grammar has to be
used:

name(agent,parameters)
[if condition:]∗

tr
[tr]∗

end.

In the following, I present in detail how the sets PrimitiveTransitions
and Condition are discuss.

3.7.3 Primitive Transitions

Intuitively, applying an action to the matrix M , correspond to the use of
a functionality on the web application (being the HTTP protocol stateless
this feature follows the possibility of sending requests to the web application
without using the graphical interface).

The set PrimitiveTransitions contains the definition of the possible tran-
sitions of the transition system (i.e., the set of primitive operations that can
be performed on the matrix M).

Each element in PrimitiveTransitions can be in two forms; let M be a
matrix denoting a state of TS , X ∈ AP , A ∈ UserName and D ∈ Data, the
elements in PrimitiveTransitions are in the forms:

operation X [into/from] M [A,D]
operation X for A

where the above is used when the transition is applied to a single cell of M ,
and the latter when the transition is applied to all the cells in the row A.

As an example, the following primitive transitions are used for the defi-
nition of actions in the case studies (Chapter 5):

• Add X into M [A,D]
X is appended in the cell M [A,D] (it could contain other values),

• Del X from M [A,D]
X is deleted from the cell M [A,D], and

• Reset M for A
in the row A of M every value that differs from Initial or Gained or
Granted is deleted.

3.7. Actions 55

In the last operation, the values of the knowledge are not deleted as an
example of monotonic knowledge; in the case the security analyst wants to
model a non-monotonic knowledge different primitive transitions have to be
used; I also assume that the Granted assertion can be deleted only with the
application of an action.

Each operation changes the values of the matrix M but in the case mul-
tiple operations are applied, as needed in the next sessions, I consider as a
change of state only the result of the use of all the operations of an action,
e.g., let M be a matrix denoting a state of TS , M0,M1,M2,M3,M

′ possi-
ble instances of M , and op1, op2, op3 ∈ PrimitiveTransitions operations of an
action α:

M0
αÐ→M ′ = M0

op1ÐÐ→M1
op2ÐÐ→M2

op3ÐÐ→M3

whereM ′ =M3 as the result of the composite transition of all the operations
in α.

Conditions

As stated above, the set Conditions contains conditions that have to
be satisfied in order to perform the primitive operations associated with an
action.

LetM be a matrix denoting a state of TS , A ∈ UserName, D ∈ Data and
X ∈ AP . A condition is an expression of the form:8

if X ∈ / ∉ M [A,D]

Since X ∈ AP , the definition of conditions expresses three possible scenarios

• X ∈ KSource , i.e., conditions about the knowledge, if the action requires
some specific knowledge to be performed; this type of conditions can
restrict the evolution of the model regarding the knowledge of the users
(i.e., initial , gained , and guessed);

• X ∈ Event , i.e., conditions about the events of the web application, if
the action requires that an event occurred before it; this type of condi-
tions can bound the evolution of the model regarding the behavior of
the web application, e.g., the flow between the pages of the web appli-
cation (if the security analyst wants to model this kind of behavior);

• X ∈ Assertion, i.e., conditions about the security mechanisms and test
related information, if the action can be performed only in certain
scenarios described through the security of the web application, e.g., a
user with a session or with a particular role.

8In the following, the use of = and ≠ will be used as an abuse of notation for ∈ and ∉,
even if the cells of the matrix can contain multiple values. We use this notation in order
to stress the requirements of the actions.

56 Chapter 3. Modeling Web Applications

The following example explains the definition of the action Login.

Example 9 (Defining the action Login). It is straightforward that the ac-
tion’s name is “Login”. We want to maintain the functionality general enough
to be used by multiple agents, thus let x be the agent using it. We can choose
to use as parameters both “username, password” and “credential” (instanti-
ated for the user x). Assuming that we do not need to differentiate the
parameters use “credential”. We thus have:

Login(x , x .credential)

Usually, a login can be performed only if the user is not logged in yet (i.e.,
he is still anonymous to the application) and if he knows his credentials (i.e.,
the credentials are part of his knowledge):

if M [Anon,Anon.session] = Granted
if M [x , x .cred] = Initial

Once the above conditions have been fulfilled, I have to change the state
of the transition system. First of all, I delete the previous events from
the matrix (through the primitive reset), I then delete the Granted atomic
proposition from the Anon user (this also means that I assume that a user
can login only from an anonymous session) and I give the session to the user
requesting it. Since the “credentials” are checked (the low-level mechanism
is not important) I also add this information to the state and I can close the
action:

Reset M for x
Del Granted into M [Anon,Anon.session]
Add Granted into M [x , x .session]
Add Checked into M [x , x .cred]
End

△

3.8 Modeling Approaches

In the previous sections, I have explained how I model the states and the
actions of TS . As explained in Section 3.7.2, the conditions inside the action
can be used by the security analyst in order to model

• the navigation between pages, and

• the data constraints of the application, i.e., what has to be sent for a
specific functionality.

3.8. Modeling Approaches 57

During the model checking phase, the matrixM is used in order to define
the states of the web application regarding the functionalities that the web
application implements. Since the functionalities can be accessed through
HTTP requests, the information stored in the matrix M (i.e., the data that
define a state of TS) can refer to “page” or “part of the UI” where some data
are displayed or in which a user can access the functionalities of the web
application.

In order to define the relations between “pages” and functionalities (i.e.,
how they coincide), I introduce the notion of views: how the actions corre-
spond to the real implementation of the web application with regard to its
pages. With the definition of the views, I want to give the means to the
security analyst to model each functionality as a single action without the
need of defining one action referring to multiple functionalities.

An example of views can be found in WebGoat (Section 5.1). The two
functionalities Login and ListId can be defined; in the actual implementation,
the two functionalities are used concatenated in order to show the page after
a successful login, in other words, the security analyst has a concatenated
view of the two actions.

The security analyst has two possibilities for defining the views of a web
application:

• Pre-definition: the security analyst can merge the concatenated func-
tionalities in the model defining a new action containing the final result
or introduce a fact stating that the two actions have to be always con-
catenated.

• Post-definition: the definition of the concatenated actions remains the
same as defining the single actions and the security analyst deals with
the concatenation during the concretization phase.

Is intuitively correct that the analysis of a web application with both the
approaches is correct since:

• the first restricts the research space and follows the flow between pages
that the web application implements but is bounded by the constraints
introduced with the concatenation of actions.9

• the latter can miss to catch the concatenation in the counterexamples
(with the possibilities of having false positives counterexamples) but
follows the stateless status of the HTTP protocol.

9Restricting the research space of the model checker in order to follow the flow between
pages is correct for functional testing but it could bring to possible vulnerabilities to be
discarded.

58 Chapter 3. Modeling Web Applications

3.9 Small Conclusion

In this chapter, I have present a methodology for modeling web applica-
tions for security testing. A transition system suitable for the model-based
testing of web applications has been defined and explained in its components:

• The data structure that the web application and its users use.

• The atomic propositions that permit to model knowledge, events and
assertions.

• The states of the transition system as snapshots of the web application.

• The actions that permit the evolution of the transition system through
the states.

In the following chapter, the focus is on how to use the transition system
for model-based testing and on how fill the abstraction gap between the
abstract tests and the actual implementation of web applications.

Chapter 4
Bridging the gap: From High-level
to Low-level Verification

In the previous chapter, I have introduced how the transition system is
defined for web application. In this chapter, I discuss how the transition
system introduced in Chapter 3 is defined as an Alloy model (Section 4.1),
in Section 4.2 the focus is on the definition of the security goals that the
models have to satisfy. In Sections 4.3 and 4.4, I discuss the methodology
and the implementation of the framework used to fill the abstraction gap
between the abstract tests and the implementation of the web application.
In Section 4.5, I discuss a vulnerability testing tool that can be used as test
execution engine in the framework.

4.1 Defining the Models in Alloy

In the following section, I illustrate how models are defined using Alloy
in order to be used during the model checking phase of the framework (Â in
Figure 1.1).

4.1.1 Alloy

Alloy [1] is a structural modeling language based on first-order logic,
for expressing complex structural constraints and behavior. The Alloy an-
alyzer is a constraint solver that provides fully automatic simulation and
checking. Alloy has been developed by the Software Design Group at MIT.
The first Alloy prototype came out in 1997, and was a rather limited object
modeling language. Later versions added quantifiers, higher arity relations,
polymorphism, subtyping, and signatures (Alloy’s structuring mechanism).
The performance and scalability of the tool have gradually increased.

59

60 Chapter 4. Model Checking and Concretization

4.1.2 Models in Alloy

An Alloy model is a collection of constraints that describes (implicitly)
a set of structures, for example: all the possible security configurations of a
web application, or all the possible topologies of a switching network. The
Alloy analyzer is a solver that takes the constraints of a model and finds
structures that satisfy them. It can be used both to explore the model
by generating sample structures, and to check properties of the model by
generating counterexamples. Structures are displayed graphically, and their
appearance can be customized for the domain at hand.

The statements that compose an Alloy model (and that I will use during
the definition of web applications models) are:

• Signatures that define the vocabulary of a model by creating new sets;

• Facts that are constraints that are assumed to always hold;

• Predicates that are parameterized constraints, and can be used to rep-
resent operations;

• Assertions that are assumptions about the model that can be checked
using the Alloy analyzer.

In the following, I use the above statements in order to define the models
that the framework uses (Á in Figure 1.1).

4.1.3 Data Used in the Model

In Section 3.3.2, I have defined the data that I want to introduce in the
models of web applications:

• In Definition 3, the set UserData, of data handled by a user.

• In Definition 4, the set Data containing all the data that the users (in
a multi-user environment) can handle during their interaction with the
web application.

All the information contained in these sets compose the vocabulary of the
Alloy model. I start by defining the set UserData with an abstract signature.

Example 10 (Abstract signatures). As an example, the following code de-
fines the data structure used in Example 3:

abstract sig Data {}
abstract sig Id, Credential, Name, Addr, UserType,

Session extends Data {}

With the abstract signatures abstract sig Data{} I declare the set Data
that contains no elements other than the ones in its subsets (if any). In the
second line, I declare that the sets

4.1. Defining the Models in Alloy 61

Id, Credential, Name, Addr, UserType, Session

are disjoint subsets of Data (i.e., each element extends the set Data). As an
example, Id ⊂ Data, Credential ⊂ Data, and Id ∩ Credential = ∅. △

Having introduced in the model the set UserData, I have to instantiate
each variable for every user of the web application that I want to model.
In the following example, I introduce the signatures for Alice, Bob and the
anonymous user.

Example 11 (Users’ signatures). The signatures for Alice, Bob and the
anonymous user are

one sig AliceId, BobId, NoId extends Id {}
one sig AliceCredential, BobCredential,

NoCredential extends Credential {}
one sig AliceName, BobName, NoName extends Name {}
one sig AliceAddr, BobAddr, NoAddr extends Addr {}
one sig AliceSession, BobSession,

AnonSession extends Session {}

Where the sets defined in Example 10 are partitioned. With the statement
one sig I declare that the sets that I am defining are singleton sets. As an
example, Id = { {AliceId}, {BobId}, {NoId} }. △

Since the field Profile is composed by the subfields Name and Address
(Addr for short), I have to define first an abstract signature for the profile
and then to instantiate it for each user.

Example 12 (Users’ signatures II). The abstract definition of the signature
profile, and the instatiation for each user are:

abstract sig Profile extends Data {
name: one Name,
address: one Addr }

one sig BobProfile extends Profile{} {
name = BobName
address = BobAddr }

one sig JerryProfile extends Profile{} {
name = JerryName
address = JerryAddr }

one sig NoProfile extends Profile{} {
name = NoName
address = NoAddr }

△

62 Chapter 4. Model Checking and Concretization

With all the data introduced in the Alloy model as signatures, I define
the abstract data structure for the users as:

abstract sig User{
profile: one Profile,
id: one Id,
name: one Name,
credential: one Credential,
session: one Session,
initialK: set Data,
gainK: set Data

}
and instantiate each user with his data, e.g.:

one sig Bob extends User{
profile = BobProfile
ID = BobId
name = BobName
credential = BobCredential
session = BobSession
initialK = credential + BobId +

AliceId + AliceName + BobName
gainK = NoData

}
These signatures correspond to the elements of UserData, instantiated in

the Alloy model for each user, and to the two sets containing the knowledge
of the user:

• initialK , containing the initial knowledge of the user (i.e., those in-
formation that are known by the user before interacting with the web
application),

• gainK , containing the knowledge that a user gain during the interac-
tion with the web application.

As I have introduced in Section 3.3.4, the users knowledge can evolve
through events (Section 3.4.3). In order to introduce this feature in the
Alloy model, I have to introduce the following fact:

fact {
all s: State, s’: s.next{
s’.gainK[s.user] = (s.gainK[s.user] +

s.showDB +
s.showSD +
s.showFS) &&

(all u : User | (u != s.user)
implies s’.gainK[u] = s.gainK[u])

}
}

4.1. Defining the Models in Alloy 63

that defines how the set gainK evolves between the different states (intro-
duced in the next section) of the model. As will be introduced in the next sec-
tion, the set gainK is instantiated in each states for each user, i.e., gainK[u]
∀ u ∈ User. The fact specifies that for all states s and their successors s’
(such that s’ : s.next):

• For the user that is performing the action (i.e., s.user) his set gainK
in the successor state contains

– the knowledge already gained (i.e., s.gainK[s.user]) plus

– the elements of Data that are displayed by the web application
(i.e., the elements of the sets s.showDB, s.showSD and s.showFS).

• For the users that are not performing the action (i.e., u != s.user)

– their sets gainK remain unchanged.

4.1.4 States

As introduced in Section 3.6 and more specifically in Definition 11, a state
of the transition system is defined by a matrix M such that the row names
take values in UserName, the column names in every element of Data and
the resulting cells take values in AP . Since these sets can vary significantly
from one web application to another, in order to simplify the modeling phase,
I define the Alloy models’ states and the initial state as reported in Table 4.1.

The definition of a state in the Alloy model (left handed part of Table 4.1)
follows the following assumptions:

• In every state there is one user that had performed an action is specified
in order to simplify the definition of goals (user: one User).

• The state reports the action that has been used to reach it (i.e.,
action: one Action).

• Each elements of AP is defined as a set that takes values in Data (e.g.,
granted: set Data).

• The set gainK is defined as a relation between the elements of User
and the ones of Data (i.e., gainK: User -> set Data).

Since the set of atomic propositions (AP) is more likely to remain stable
(i.e., change slightly between the tests made in a long period of time), the
choice of modeling the states in such way simplifies the modeling activity of
the security analyst, since the states’ definition remains unchanged during
the testing of different web applications.

In Table 4.1, I also show an example of initial state where first.X refer
to the first state from which Alloy starts its execution:

64 Chapter 4. Model Checking and Concretization

Table 4.1: States definition and initial state definition for the Alloy models.

sig State {
//User
user: one User,
action: one Action,
//Sec. & Test Info
grant: set Data,
checked: set Data,
AJAX: set Data,
PageIncluded: set Data,
echo: set Data,
exec: set Data,
//Web applications’ Events
showDB: set Data,
writeDB: set Data,
edit: set Data,
writeSD: set Data,
showSD: set Data,
writeFS: set Data,
showFS: set Data,
noAttack: set Data,
gainK: User -> set Data

}

fact{
//User
first.user = Anon
first.action = NoAction
//Controls’ Predicates
first.granted = AnonSession
first.checked = NoData
first.PageIncluded = NoData
first.echo = NoData
first.exec = NoData
//Web applications’ Events
first.showDB = NoData
first.writeDB = NoData
first.edit = NoData
first.writeSD = NoData
first.showSD = NoData
first.writeFS = NoData
first.showFS = NoData
first.AJAX = NoData
first.noAttack = NoData
(all u:User | first.gainK[u]
= NoData)

}

• The first user is set with first.user = Anon.

• Since no action as been used, first.action contains the signature
NoAction that is used only as a starting point for the model checker.

• Every element in AP is instantiated with the initial elements (e.g.,
first.granted = AnonSession) as discussed for the initial knowledge
(Section 3.3.4), the initial events (Section 3.4.3), and the assumptions
about the initial state of the security mechanisms and testing-related
information (Section 3.5.4).

• The gained knowledge for the users is empty

(all u:User | first.gainK[u] = NoData).

In order to make possible the analysis of the actions for the Alloy ana-
lyzer, I have to introduce a fact stating which actions are usable.

Example 13. The following fact is introduce in order to define what actions
are usable during the Alloy’s executions.

4.1. Defining the Models in Alloy 65

fact {
all s: State, s’: s.next{

Login[s,s’] or ListId[s,s’] or GetEdit[s,s’] or
ViewProfile[s,s’] or UpdateProfile[s,s’] or
Search[s,s’] or GetSearch[s,s’] or Logout[s,s’]

}
}

The fact states that for all states of the model, in order to switch from a
state s to its successor (s’) an action (from all the possible actions defined
in the model) has to be used (always respecting the conditions to be satisfied
in order to use the single actions). As I will discuss in the following section,
actions are defined as predicates (i.e., as functions that return a boolean
value). With the definition of this fact I am stating that the conditions
inside the actions have to be satisfied (both in s and s’) and thus I permit
the evolution of the model from a state to another. △

4.1.5 Actions

As introduced in Section 3.7, an action is a functionality of the web
application. In order to make the actions accessible to the Alloy analyzer, I
declare their abstract signature:

abstract sig Action

and extend it with the names of the functionalities (functionName in Sec-
tion 3.7.2) implemented on the web application. As an example, I can intro-
duce in the model the following:

one sig Login, Logout, ListId, ViewProfile,
GetEdit, UpdateProfile, GetSearch,
Search, NoAction extends Action

In Section 3.7.2, I also have introduced the grammar used to write actions:

name(agent,parameters)
[if condition:]∗

tr
[tr]∗

end.

and in Section 3.7.3 the primitives used as operations, i.e., “Add X into
M [A,D]”, “Del X from M [A,D]”, and “Reset M for A”.

In order to introduce the actions (defined in Section 3.7) in the Alloy
model, their definitions have to be translated as Alloy predicates according
to the following rules:

• name - unchanged.

66 Chapter 4. Model Checking and Concretization

• agent - as a condition on the session granted in s.granted, as an
example,

s.granted = AnonSession

states that the action can be performed only if in the state s the session
has been granted to the user Anon.

• parameters - as a condition on the knowledge of the user at state s,
as an example,

u.credential in u.initialK

states that a user u has to have his credentials (i.e., u.credential) in
his initial knowledge (i.e., u.initialK) for the action to be performed.

• if condition - as a condition on the knowledge of the user at state s.

• Add X into M[A,D] - as an assignment of value in Data (M[A,D]) to
a variable in AP (X), as an example,

s’.showDB = u.info

assign to s’.showDB the value u.info (where u is a user and info is
an abstract signature for a user data).

• Del X from M[A,D] - as the assignment of the value NoData to target
element in AP (X):

s’.showDB = NoData

• Reset M for A - as the assignment of the value NoData to all the
elements of AP (that are not part of other operations) in the matrix.

In Example 9, the action login has been defined as

Login(x , x .cred)
if M [Anon,Anon.session] = Granted
if M [x , x .cred] = Initial

Reset M for x
Del Granted into M [Anon,Anon.session]
Add Granted into M [x , x .session]
Add Checked into M [x , x .cred]

End

The translation of this action in an Alloy predicate is:

4.1. Defining the Models in Alloy 67

Action Definition Alloy definition
Login(x , x .cred) pred Login[s, s’ : State]

if M [An,An.sess] = Granted s.granted = AnonSession

if M [x , x .cred] = Initial u.credential in u.initialK

Del Granted into M [An,An.sess] s’.granted = NoData

Add Granted into M [x , x .sess] s’.granted = u.session

Add Checked into M [x , x .cred] s’.checked = u.credential

Reset M for x Assignment of NoData to all
remaining elements

The complete action defined in Alloy is reported in Table 4.2.

In Section 3.8, I have introduced the possibility of having concatenated
actions (i.e., the security analyst models every functionality of a web appli-
cation but knows that two functionalities are always executed together). To
make this possible, in the case studies in Chapter 5, I have introduced an
Alloy fact stating which actions have to be concatenated. As an example, the
following fact is used in order to force the application of the action ListId
after the action Login:

fact {
all s: State, s’: s.next{

Login in s.action implies ListId in s’.action
}

}

Introducing this fact means that every evolution of the transition system not
compliant with it is discarded by the Alloy analyzer.

Introducing Alloy facts as the one presented above means to introduce
a constraint on the possible selection of the actions during the execution
of the Alloy analyzer. Since the actions in the model are predicates, the
security analyst has to be sure that in the concatenated action the conditions,
that needs to satisfied in order to execute the action, are met. If some
contradiction is present in the constrains, the model checker will return those
counterexamples that are compliant with the contradiction. As an example,
if the conditions in a ListId are not satisfiable after a Login, then the model
checker will be unable to perform a Login, since, after its use, it is impossible
to use the ListId (as the fact requires).

68 Chapter 4. Model Checking and Concretization

Table 4.2: Example of definition of an action in the Alloy models.

pred Login[s, s’ : State]{
one u : User-Anon |
s’.action = Login &&
s.granted = AnonSession &&
u.credential in u.initialK &&
s’.user = u &&
//SecMec TestInfo
s’.granted = u.session &&
s’.checked = u.credential &&
s’.pageInclusions = NoData &&
s’.echo = NoData &&
s’.exec = NoData &&
s’.noAttack = NoData &&
s’.AJAX = NoData &&
s’.Sanitised = NoData &&
// Events
s’.showDB = NoData &&
s’.writeDB = NoData &&
s’.edit = NoData &&
s’.writeSD = NoData &&
s’.showSD = NoData &&
s’.writeFS = NoData &&
s’.showFS = NoData

}

4.2 Specifying Security Goals

In the previous section, I have introduced all the concepts for the defini-
tion of the Alloy models. In this section, I introduce the last concept needed
in order to be able to do a security analysis of the web application: Security
goals (in the following “goals”).

From a security analyst perspective, the definition of a goal is equivalent
to defining a logical formula that

• has to be valid in every possible state describing the evolution of the
model, or

• has to be valid for every trace (i.e., the execution fragments of TS)

starting from an initial state. In other words, a goal models the flaws that
the security analyst is testing. Goals are written over the set of atomic

4.2. Specifying Security Goals 69

proposition AP and can represent:

• access control rules,

• application logic flaws, and

• known vulnerabilities.

Definition 15 (Goal: General definition). Recalling that a state in the
transition system TS is an assignment of atomic proposition AP in the ma-
trix M , and M i is the state after the application of i actions, a goal:

• has a unique name (identifying the vulnerability to be tested),

• gives rise to a logical formula that tests some condition on the state
M i (for more complex goals, it is possible to use multiple indexes, e.g.,
M i and M j), and

• is used by the model checker in order to return an attack trace (i.e., an
execution fragment %).1

In order to define goals, I list in Table 4.3 some operators (and the
associated connectives) that can help the security analyst. Most common
modeling languages are capable of dealing with these operators (along with
the general definition of a goal), which can thus be used with different model
checkers

In the proposed framework, the security analysts have the possibility of
specifying different types of goals; in the following I give some examples and
I discuss various typologies of goals. In order to write the goals, I make some
assumptions (from an attacker perspective) about the atomic propositions
used:

• A WriteDB (along with the other “writes”) of a data d is rewritten as
the malicious write of a modified data d (the name of the data remains
the same) containing the payload of the attack.

• The input data d of a WriteDB (along with the other “writes”) is not
sanitized by the web application.

• A ShowDB (along with the other “shows”) that displays a malicious
payload does not sanitize the output (if not stated through the testing
related information Sanitised).

1Stating that the model checker returns an execution fragment means that I always
deal with a trace starting from the initial state, ending in the state where the security
property is violated and (if the case) containing the states where part of the security
property is violated (i.e., in those cases where the security property has to be valid for the
traces of TS)

70 Chapter 4. Model Checking and Concretization

Table 4.3: Operators used for specifying goals.

Operator Connective Explanation
¬ !f negation
= f1 = f2 equality
≠ f1! = f2 inequality
∧ f1&f2 conjunction
∨ f1∣f2 disjunction
Ô⇒ f1 => f2 implication
∀ forall x1 . . . xn.f universal quantification
∃ exists x1 . . . xn.f existential quantification

neXt X(f) in the next state
Yesterday Y (f) in the previous state

Finally <> (f) at some time in the future
Once < − > (f) at some time in the past

Globally [](f) always
Historically [−](f) at all times in the past

∈ x1 in X set inclusion

4.2.1 Access Control Goals

As I have discussed in Section 2.4.1, access controls enforce decisions
about whether a request to access a content or a function from a specific
user has to be granted or not. In the following, I explain how to define the
security goals of the vulnerabilities and attacks discussed in Section 2.4.1.
Since the definition of goals depends on the security analyst, different (or
equivalent) goals can be defined.

Vertical privilege escalation

As introduced in Section 2.4.1, a vertical privilege escalation occurs when
a user can perform functions that his assigned role does not permit him to.

In order to test these vulnerabilities, I assume that the security analyst
takes care of labeling the actions of the transition system with labels that
reflect the typology of users that can perform them. With the label of
the action differentiating the users, I can test whether a vertical privilege
escalation is possible using a user with less permissions and making him
perform the actions that require higher permissions.

Example 14 (Vertical privilege escalation). As an example, let administra-
tor, manager and employee be the labels used in order to differentiate the
roles in access control scheme enforced on the application, and the possible
action for each category be respectively:

4.2. Specifying Security Goals 71

1. manageServer, addUser, deleteUser

2. createTask, deleteTask, completeTask, deleteMessage

3. addMessage

In order to test a vertical privilege escalation, the tester should try to perform
the sets of actions 1 and 2 with a user with privileges as “employee”, and the
set 1 with a “manager ”. △

Definition 16 (Vertical privilege escalation). Let d ∈ Data be a data of the
web application, x ∈ UserName, Label a set of labels defined by the security
analyst for the model, l ∈ Label, the matrix M0 the initial state, and M i the
matrix after the use of i actions. A vertical privilege escalation occurs when
there is a state M i at the end of an execution fragment

% =M0α1M
1α2 . . . αiM

i

such that l is associated with αi and the user performing αi has not the needed
permission.

Instantiated goal: Since the goal defined before is general, it has to be
instantiated regarding the model used during the analysis. As an exam-
ple, the following goal has be used in order to test the model presented in
Section 5.1.2:

assert AdminAction {
no s : State | some d : Data-NoData | some x : User{
s.granted = x.session &&
d in s.writeDB &&
s.guessedK[x] = NoData &&
isAdmin in s.checked
}

}

The goal is stating that I want an execution fragment where the fact of being
admin is checked. From a model checking perspective, the fact of having a
trace where an admin functionality is used is not a real flaw of the web
application, on the other hand, having this type of functionalities available
becomes interesting during the testing phase. Introducing this simple goal
reflects the choice of maintaining the model simple (i.e., omitting the needed
checks in order to handle the users’ roles) while shifting the resolution of the
problem to the concretization phase (where I have the final result about the
usability of these functions by a user with less privileges).

72 Chapter 4. Model Checking and Concretization

Horizontal privilege escalation

As introduced in Section 2.4.1, a horizontal privilege escalation occurs
when a user can view or modify resources to which he is not entitled. As
a comparison with the vertical privilege escalation, in this case the resource
can be accessed by other users with the same role but not by the user we are
testing. Since this type of vulnerabilities can vary significantly between dif-
ferent web applications, it is possible to express the related goals in different
ways. In the following, I give examples of some goals in this category.

Secrecy of a data When considering the horizontal privilege escalation
flaws, one of the issues that the model checking can help to tackle is the
secrecy of data.

Example 15 (Horizontal privilege escalation). Let’s assume that we are
modeling a web application where users have profiles containing private in-
formation such as credit card numbers and addresses. These data can be used
during the interaction with the web application but cannot be seen (i.e., ac-
cessed) by a user different from the rightful “owner”. If this circumstance can
happen during the interaction with the web application, the secrecy of the
private data can not be maintained and thus a horizontal privilege escalation
has occurred. △

Definition 17 (Horizontal privilege escalation). Let x, y ∈ UserName, x ≠ y,
PrivateData ⊂ Data, d ∈ PrivateData be a data of the web application that
must remain private, the matrix M0 the initial state, and M i the matrix
after the use of i actions. A horizontal privilege escalation occurs on the web
application when there is a state M i at the end of an execution fragment
% =M0α1M

1α2 . . . αiM
i such that ShowDB ∈M i[x, y.d].

In other words, I am expressing this goal as a secrecy assertion on a data:

assert Secrecy {
no s : State | some d : Data-NoData | some x,y : User{
s.granted = x.session &&
x != y &&
y.d in s.showDB
}

}

The goal is general, i.e., it checks if all the data of the web application cannot
be seen by a user different from the owner of the data. In order to focus the
tests, a security analyst can target the data that has to remain private, i.e.,
some d : PrivateData where PrivateData is the signature containing the
data that has to remain private.

4.2. Specifying Security Goals 73

Guessed data As explained in Section 2.4.1 (“Insecure ID’s”), a horizontal
privilege escalation can occur when an attacker can guess the IDs used by
the web application. The security analyst can test this type of flaws during
the concretization phase (see Section 4.3), but in order to do that, she has
to introduce in the model some ad-hoc actions in order to make the users
capable of guessing data.

Let’s assume that the user can see some IDs and use them to access
another user profile. In this case I can search for an execution fragment
that will be instantiated with a list of IDs (in a similar way as a brute force
attack) searching for a matching profile.

Definition 18 (Horizontal privilege escalation: Guessed data). Let x, y ∈
UserName, x ≠ y, d1, d2 ∈ Data be data of the web application, the matrixM0

the initial state, and M i the matrix after the use of i actions. A horizontal
privilege escalation occurs on the web application when there is a state M i

at the end of an execution fragment % =M0α1M
1α2 . . . αiM

i such that:

Guessed ∈M i[x,x.d1] ∧ ShowDB ∈M i[x, y.d2]

The goal states that a data d1 has been guessed by the attacker in order
to access the data d2. As an example, an instantiated goal is:

assert GuessedId {
no s : State | some d : Data-NoData | some x : User{
s.granted = x.session &&
d in s.guessedK[x] &&
d.(~id).profile in s.showDB
}

}

The goal has been instantiated for a web application where the security
analyst has decided to check if guesses are possible for a user that

• has a valid session on the web application (s.granted = x.session),

• has some ad-hoc actions to guess data (d in s.guessedK[x]), and

• these data are used in order to select other users’ profile
(d.(~id).profile in s.showDB).

Forced Browsing Past Access Control Checks

This type of attacks aims to enumerate and access resources that are not
referenced by the web application. I choose to define a goal that can be used
in order to test the web application for different types of attacks, i.e., with
the introduction in the model of the information “PageIncluded ” (i.e., in the
URL/page there is a direct reference to a file that is rendered by the browser
and displayed as a page) I can search for a valid entry point for those attacks

74 Chapter 4. Model Checking and Concretization

that use files or their addresses. Among these attacks it is worth to mention
the forced browsing (Section 2.4.1).

Definition 19 (Forced Browsing Attack). Let x ∈ UserName, FileAddress ⊆
Data, d ∈ FileAddress be a file used by the web application, the matrixM0 the
initial state, and M i the matrix after the use of i actions. A forced browsing
attack can be launched if there is a state M i at the end of an execution
fragment % =M0α1M

1α2 . . . αiM
i such that:

PageIncluded ∈M i[x,x.d]

The goal, in Alloy formalism, is translated as:

assert FileInclusion {
no s : State | some d : FileAddress | some x : User{

s.granted = x.session &&
d in s.pageInclusions

}
}

Since the methodologies used to test path traversal attacks (Section 2.4.1)
are similar to the ones for force browsing attacks, the goal introduced in
Definition 19 will be used also for path traversal attacks. The differences in
the payloads used by the two attacks are dealt with during the concretization
phase.

File Permissions

As introduced in Section 2.4.1, in order to find “file permission” flaws,
the attacker has to gain access to files that are not intended to be presented
to web users. This attacks can occur when an attacker can specify a path
used in an operation that uses the filesystem. By specifying the resource,
the attacker gains a capability that would not otherwise be permitted and
enables him to access or modify protected system resources.

Example 16 (Path Manipulation from [49]). The following code uses input
from an HTTP request to create a file name. The programmer has not
considered the possibility that an attacker could provide a file name such
as ../../tomcat/conf/server.xml, which causes the application to delete
one of its own configuration files:

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();

△

4.2. Specifying Security Goals 75

Since the security analyst can use as entry point every request that ac-
cesses a file, I choose to define a goal aiming at finding those entry points
and perform the tests directly in the concretization phase of the framework.

Definition 20 (File Permissions). Let x ∈ UserName, d ∈ Data be a data
of the web application, the matrix M0 the initial state, and M i the matrix
after the use of i actions. We can test if an attacker can have access to
restricted files if there is a state M i at the end of an execution fragment
% =M0α1M

1α2 . . . αiM
i such that:

ShowFS ∈M i[x,x.d]

This is described by the Alloy goal:

assert FileAccess{
no s : State | some d : Data-NoData | some x : User{
s.granted = x.session &&
d in s.showFS
}

}

4.2.2 Application Logic Goals

The goals that I specified so far mainly focus on the generation of test
cases for common and well know vulnerabilities. In this section, I discuss
another important class of vulnerabilities that rely on the exploitation of
logic flaws.

Logic flaws are usually not detected by the common penetration testing
tools mostly because they are difficult to characterize. While “traditional”
vulnerabilities (e.g. SQL-Injetion and XSS) have standardized definitions
and have security requirements common in all web applications (e.g. to
avoid XSS the web application has to sanitize all the user inputs), logic flaws
violate business level rules (that may be unique for each web application)
and they are extremely difficult to isolate and identify.

The detection of logic vulnerabilities requires real understanding of work-
flow and dataflow of the web application. Black box automatic tools cannot
understand the architecture of a web application that employs many different
technologies and resources. In my approach, in order to detect logic vulnera-
bilities, the security analyst has to define the security requirements that the
application should comply with. These requirements may be very different
for each web applications, for example, while in an e-commerce application
it is important that one payment is tied to only one order, in a e-health web
application we have to make sure that a subset of the documents are handled
by an authorized user (i.e., doctors and not nurses).

Each transaction of the process (defined through workflow and dataflow)
can be discovered and divided into steps by the security analyst. In order to
test this type of flaw the penetration tester usually:

76 Chapter 4. Model Checking and Concretization

• tries functions is a different order,

• tries to bypass some key functionalities,

• tries to make the web application process the transaction incorrectly.

In [59], the authors divide the tests for logic flaw in two approaches.

Test for Fail-Open Conditions: For each function in which the appli-
cation checks a user’s credentials, including the login and password change
functions, the security analyst should (i) walk through the process in the
normal way, using an account the tester controls, (ii) note every request
parameter submitted to the application, and in order to interfere with the
application’s logic, (iii) for each parameter, include the following changes:

• Submit an empty string as the value.

• Remove the name/value pair.

• Submit very long and very short values.

• Submit strings instead of numbers, and vice versa.

• Submit the same named parameter multiple times, with the same and
different values.

If one modification causes a change in the web application behavior, the
security analyst has to try to combine this with other changes to push the
application’s logic to its limits.

Test Any Multistage Mechanisms: If any authentication-related func-
tion involves submitting credentials in a series of different requests, the se-
curity analyst has to identify the apparent purpose of each distinct stage,
and note the parameters submitted at each stage. She also has to repeat the
process numerous times, modifying the sequence of requests in ways designed
to interfere with the application’s logic, including the following tests:

• Proceed through all stages, but in a different sequence than the one
intended.

• Proceed directly to each stage in turn, and continue the normal se-
quence from there.

• Proceed through the normal sequence several times, skipping each
stage in turn, and continuing the normal sequence from the next stage.

In order to use these two approaches during the tests, I show two possible
examples of goals.

4.2. Specifying Security Goals 77

Check Payment

Let’s assume that the security analyst is dealing with a web application
for electronic commerce that permits to order and pay for the delivery of
goods (i.e., the items sold by the organization). In an application like this,
it is presumable to have a multi-stage mechanism that enforces the busi-
ness logic that retrieves the needed information. In the following, I give
an example of goal that produces attack traces that break the application
logic in order to confirm an order without paying (i.e., entering the payment
information) for the items.

Definition 21 (Check Payment). Let ConfirmOrder ,Payment ∈ Data be
data of the web application referring to an order confirmation and the pay-
ment information, x ∈ UserName, the matrix M0 the initial state, M i and
M j matrices after the use of i and j actions with i > j. We can check if the
payment can be avoided on the web application if there is a state M i at the
end of an execution fragment % =M0α1M

1α2 . . . αiM
i such that:

WriteDB ∈M i[x,x.ConfirmOrder] ∧Checked ∉MJ[x,x.Payment]

stating that the a user can send a request for an order even if the application
does not check if the payment information are being provided.

As an example of goal instantiated in Alloy, the following is a direct
translation of the general goal in the Alloy formalism for the case study
discussed in Section 5.4.2:

assert CheckPayment {
no s : State | some d : Payment {
ConfirmOrder in s.action &&
s = last &&
d not in s.checked
}

}

Check Types

As an example of how to break the application logic, let’s assume to be
testing a web application where it is possible to transfer money from a user
to another (other examples are possible, the money transfer has been used
as an example of the logic attack in [59]).

Let the following action be the one defining the functionality that permits
the transfer of the money from a user to another:

MoneyTransfer(x , amount , y)
if M [x , x .session] = Granted
if x ! = Anon

Reset M for x
Add Checked into M [x , x .moneyTransfer]

End

78 Chapter 4. Model Checking and Concretization

where amount has type Int . With actions like the one above, I can define
security goals in order to raise a warning for possible flaws regarding the
inserted amount. In the example, the amount transferred from the user x to
the user y has to be checked for negative or non integer values.

Since this type of vulnerabilities can vary significantly regarding the mod-
eled web application, the instantiation library used is crucial for testing the
application, and the security analyst has to select a proper instantiation li-
brary for the different types of tests she wants to perform (as I have explained
for the tests for “fail-open conditions”).

The possible attack traces that have to be used in order to test the
basic types are found via model checking with the search of those execution
fragments that contain data referring to basic types.

Definition 22 (Check Types). Let x ∈ UserName, d ∈ Data be a data of the
web application, the matrix M0 the initial state, and M i the matrix after the
use of i actions. We can check the basic types of the web application if there
is a state M i at the end of an execution fragment % = M0α1M

1α2 . . . αiM
i

such that:
WriteDB ∈M i[x,x.d] ∧ d has a basic type

As an example, the goal can be instantiated in Alloy for the basic type
“integer” (int):

assert CheckBasicTypes{
no s : State | some d : Int | some x : User{
s.granted = x.session &&
d in s.writeDB
}

}

4.2.3 Cross-Site Scripting

As I have discussed in Section 2.4.2, cross-site scripting attacks are a
type of injection flaws, where malicious scripts are injected into otherwise
benign and trusted web sites. XSS attacks occur when an attacker uses a
web application to send malicious code, generally in the form of a browser
side script, to a different end user.

Stored XSS

Stored attacks are those where the injected script is permanently stored
on the target servers and the victim then retrieves the malicious script from
the server when it requests the stored information.

Example 17 (Possible entry points for a Stored XSS). Typical examples of
stored user input can be found in:

4.2. Specifying Security Goals 79

• Profile pages - since the data in the profiles are modifiable, they are
one of the first target of the tests for stored XSS.

• Files - if the application allows the upload of files (and their visualiza-
tion), a security analyst can create a file containing the payload and
try to trigger the attack retrieving the file.

• Forum/Message boards - posted messages can be used to store XSS
payloads.

• Logs - if the application maintain logs, payloads for XSS can be sub-
mitted to these logs.

△

Definition 23 (General Goal (one agent)). The general goal for a stored
XSS corresponds to the mapping of the possible entry points on the web ap-
plication. Let x ∈ UserName, x.d ∈ Data be a data of the web application,
i, j ∈ N with i < j the matrix M0 the initial state, M i and M j the matrices
after the use of i and j actions. A single user Stored XSS occurs on the web
application if there is a state M i at the end of an execution fragment

% =M0α1M
1α2 . . . αiM

iαi+1M
i+1 . . .M j−1αjM

j

such that:
WriteX ∈M i[x,x.d] ∧ ShowX ∈M j[x,x.d]

where

WriteX ∈ {WriteDB ,WriteFS ,WriteSD} and
ShowX ∈ {ShowDB ,ShowSD ,ShowFS} .

Definition 24 (General Goal (two agents)). Let i, j ∈ N with i < j, x, y ∈
UserName with x ≠ y, x.d ∈ Data be a data of the web application, and
% an execution fragment. A multiple-users stored XSS occurs on the web
application if there is a state M i at the end of an execution fragment

% =M0α1M
1α2 . . . αiM

iαi+1M
i+1 . . .M j−1αjM

j

such that:
WriteX ∈M i[x,x.d] ∧ ShowX ∈M j[y, x.d]

where

WriteX ∈ {WriteDB ,WriteFS ,WriteSD} and
ShowX ∈ {ShowDB ,ShowSD ,ShowFS} .

80 Chapter 4. Model Checking and Concretization

Specified Goal: On a database As an example of instance, a goal for
stored XSS (with two agents involved) via a database is:

assert StoredXSS {
no s : State | some d : Data-NoData |
some s’ : State| some x,y : User{

d in s.writeDB &&
s.granted = x.session &&
d in s’.showDB&&
s’.granted = y.session &&
x != y &&
lt[s, s’]

}
}

The goal is straightforward from the general goals above:

• A data has to be written on the database in a state s (d in s.writeDB)
by a user with a valid session (s.granted = x.session).

• The same data has to be retrieved and showed from the database in a
state s′ (d in s’.showDB) by a user with a valid session
(s’.granted = y.session).

• The users have to be distinct (x != y).

• The state where the data is written is antecedent to the one where it
is showed (lt[s, s’]).

The same goal can be rewritten in order to target the search of coun-
terexamples (and thus the testing phase) to a subset of data. The following
goal defines a stored XSS where only the profiles of the users can be used in
order to deliver and trigger the payloads.

assert StoredXSSaimed {
no s : State | some d : Profile |
some s’ : State| some x,y : User{

d in s.writeDB &&
s.granted = x.session &&
d in s’.showDB&&
s’.granted = y.session &&
lt[s, s’]
}

}

Specified Goal: via File Upload As another example, a stored XSS
vulnerability has to be tested also in those cases where the web application
allows the upload and visualization of files.

As before, the general goal for stored XSS is simply translated in an Alloy
goals describing the desired features:

4.2. Specifying Security Goals 81

assert XSS_FileUpload {
no s : State | some d : Data-NoData |
some s’ : State| some x : User{

s.granted = x.session &&
d in s.writeFS &&
s’.granted = x.session &&
d in s’.showFS &&
lt[s, s’]

}
}

Reflected XSS

Reflected XSS attacks are the subset of XSS attacks where the injected
script is reflected off the web server, such as in an error message, search
result, or any other response that includes some or all of the input sent to
the server as part of the request.

General Goal Since the possible entry points for a XSS attack can be
various, modeling server side technologies can be of help but the definition
of a general goal remain difficult. A security analyst can be confident in the
presence of this type of attacks only testing the web application providing
data as a client and checking if these data are used by server-side scripts to
parse and display a page of results.

Definition 25 (Reflected XSS). Let x ∈ UserName, d ∈ Data be a data of
the web application, the matrix M0 the initial state, and M i the matrix after
the use of i actions. A XSS attack occurs if there is a state M i at the end
of an execution fragment % =M0α1M

1α2 . . . αiM
i such that:

• d is used as parameter of αi, and

• d is used by server-side scripts and rendered to a page of result(s), i.e.,

M i[x,x.d] ≠ ∅ ∧ ShowX ∈M i[x,x.d]

where

ShowX ∈ {ShowDB ,ShowSD ,ShowFS} .

From these premises, I give examples of specified goal for

• Reflected data - when a data, that is part of a request, is displayed as
a duplicate, as part of a response, the security analyst can assume that
some server-side scripts are used to parse the data.

• Checked data - when the security analyst has the confidence that the
data are part of a request that is parsed on the web application, she
should test for XSS attacks.

82 Chapter 4. Model Checking and Concretization

• URLs - sometimes the URL of a resource contains the data that are
parsed in order to access the resource itself; in these cases XSS attack
could be possible.

Specified Goal: Reflected data While modeling reflected data on the
web application, the security analyst can use the testing-related information
“Echo” (Section 3.5). A simple goal that can be used in order to find those
traces that contain this type of data is the following:

assert XSS {
no s : State | some d : Data-NoData | some x : User{

s.granted = x.session &&
d in s.echo &&
NoData not in s.showDB

}
}

Specified Goal: Checked data Those functionalities that uses the data
provided by the users as part of a query can be used as entry points for XSS
attacks. In this scenario, the web application could use the provided data as
part of a script, and thus render the data triggering the XSS payloads.

The goal required for this type of analysis is the following:

assert XSScheck{
no s : State | some d : Data-NoData | some x : User{
s.granted = x.session &&
d in s.checked &&
NoData not in s.showDB
}

}

The goal has been defined for the search for counterexamples with the fol-
lowing features:

• A user must have a valid session (s.granted = x.session),

• The data used in the action is part of a query (d in s.checked).

• Some results (that can be different from the initial data) have to be
displayed (NoData not in s.showDB).

Specified Goal: XSS via URLs The last goal that I discuss for XSS
is the one concerning the URLs of the resources of the web application.
As I have explained in Section 3.5, when a page is read from the file sys-
tem, rendered and displayed, the security analyst can insert in the model
the testing-related information PageIncluded . Whenever this information is
found in a model, the test for XSS should be performed. The execution
fragments that permit this type of test can be found with the following goal:

4.2. Specifying Security Goals 83

assert urlXSS {
no s : State | some d : FileAddress | some x : User{

s.granted = x.session &&
d in s.PageIncluded

}
}

4.2.4 SQL-Injection

A SQL-Injection attack consists in the insertion or “injection” of SQL
queries via the input data from the client to the application (see Section 2.4.2
for further details).

General Goal This type of attacks rely on the fact that SQL commands
are injected into input in order to carry out the execution of predefined SQL
commands. In order to differentiate those execution fragments where SQL
commands can be injected, a security analyst can write a goal that searches
for those execution fragments where a data is verified on the database and
another is read (in this scenario, I restrict the range of possible web tech-
nologies, and assume the fact that some SQL query is involved).

Definition 26 (SQL-Injection). Let i ∈ N, x ∈ UserName, % be an ex-
ecution fragment and x.d1, x.d2 ∈ Data. A SQL-Injection occurs on the
web application if there is a state M i at the end of an execution fragment
% =M0α1M

1α2 . . . αiM
i such that:

Checked ∈M i[x,x.d1] ∧ ShowX ∈M i[x,x.d2]

where ShowX ∈ {ShowDB ,ShowSD ,ShowFS}.

Specified Goal: On a Database The first goal that I show is a direct
translation of the general goal in the Alloy formalism:

assert SQLInj {
no s : State | some d : Data-NoData | some x : User{

s.granted = x.session &&
d in s.checked &&
NoData not in s.showDB

}
}

where with NoData not in s.showDB I am stating that the set showDB has
not to be empty (i.e., a data has been retrieved from the database).

84 Chapter 4. Model Checking and Concretization

Specified Goal: SQL-Injection via File System As for the XSS at-
tack, also for SQL-Injection it is possible to deliver payloads via the file
system. One instance is the case where the application maintains logs of
some sort (where the request data is saved on the file system in order to
be retrieved by the application administrator) where the SQL-Injection pay-
loads can be submitted (an example can be found for DVWA in Section 5.3).

We can specify a security goal for the SQL-Injection via file system as
the following:

assert SQLInjFileSystem {
no s : State | some d : Data-NoData | some x : User{

s.granted = x.session &&
d in s.checked &&
(NoData not in s.showDB or NoData not in s.showFS)

}
}

The goal extends the SQL-Injection entry points adding the possibility of
delivery payloads in those cases where the data is used in a query that
retrieve data from the file system.

String SQL-Injection for the login phase Another instance where a
SQL-Injection can be possible is where a login functionality is implemented
on the web application. The majority of the authentication mechanisms rely
on databases for the storage of the credentials associated with the users. The
credentials provided by a user during the authentication phase are checked
along with those stored on the database by the web application. During the
login an attacker can try to bypass the authentication mechanism with the
injection of ad-hoc SQL statements.

Definition 27 (SQL-Injection for the login phase). Let i ∈ N, x ∈ UserName,
% be an execution fragment. We can check if a SQL-Injection can be used to
bypass a login phase if there is a stateM i at the end of an execution fragment
% =M0α1M

1α2 . . . αiM
i such that:

Checked ∈M i[x,x.Credential]

The goal is translated in the Alloy formalism as:

assert BypassLoginSQL {
no s : State |some d : Credential |some x : User{

s.granted = x.session &&
d in s.checked
}

}

4.2. Specifying Security Goals 85

4.2.5 OS Commands

Command-Injection (Section 2.4.2) is an attack in which the goal is exe-
cution of arbitrary commands on the host operating system via a vulnerable
application.

General Goal When the security analyst supposes that the web appli-
cation uses OS commands, as I have introduced in Section 3.5.2, she can
insert in the model the assertion Exec. In order to derive the execution frag-
ments containing this assertion the goal became a simple search of the states
containing Exec for some data.

Definition 28 (OS Commands). Let i ∈ N, x ∈ UserName, % be an ex-
ecution fragment and x.d ∈ Data. I launch attacks related to a command
execution if there is a state M i at the end of an execution fragment % =
M0α1M

1α2 . . . αiM
i such that:

Exec ∈M i[x,x.d]

The goal that can be used to search where to launch Command-Injection
attacks is translated in the Alloy formalism as:

assert CommandExec {
no s : State | some d : Data-NoData | some x : User{

s.granted = x.session &&
d in s.exec

}
}

Instantiate Goal: Command-Injection on special functions In the
previous goal, I have shown how the security analyst can target specific
areas of the web application with a Command-Injection attacks inserting in
the model the assertion Exec. Another entry point for this type of attacks
sometimes can be found in those functionalities that retrieve files from the
file system in order to display them. In this cases the security analyst can
test the web application for possible Command-Injections with the following
goal:

assert FileAccessCommandInjection{
no s : State | some d : Data-NoData | some x : User{

s.granted = x.session &&
d in s.showFS &&
d in s.exec

}
}

86 Chapter 4. Model Checking and Concretization

4.2.6 AJAX Flaw

As discussed in Section 2.4.3, AJAX technologies are young and suffer
from several security issues. A general definition for the flaws that concern
AJAX technologies is not possible. In the following I give some examples
that can be used during the testing of a web application.

Instantiate Goal: DOM-Injection One of the issues that I consider
concerns those functionalities that are disabled in the Document Object
Model (DOM). The security analyst can label these functionalities with the
assertion disabled and thus target the tests during the concretization phase.
The goal that I define for finding the execution fragments containing such
functionalities is the following:

assert AJAXdisabled{
no s : State | some d : Data-NoData | some x : User{

s.granted = x.session &&
d in s.AJAX &&
d in s.disabled

}
}

During the concretization phase the test execution engine has to consider
the possible causes that are blocking the functionalities and try to bypass
them.

Reflected XSS via AJAX AJAJ functionalities can be attacked with
XSS attacks. As I have explained before, when a data (as part of a request)
is displayed identical as part of a response, XSS should be tested. The goal
to use in such cases is the following:

assert AJAXxss {
no s : State | some d : Data-NoData | some x : User{

s.granted = x.session &&
d in s.AJAX &&
d in s.echo

}
}

The goal extends the one for XSS attacks (Section 4.2.3) in order to target
AJAX functionalities. This extension is due to the fact that I use the goal
name during the concretization phase of the framework in order to focus the
testing phase (i.e., restrict the tests to AJAX technologies).

4.2.7 Brute Force

From a model-based testing perspective, brute force is not an attack that
can be defined. This type of attacks can be used in various ways, and the data

4.3. Concretization Methodology 87

that are targeted can vary consequently. In this section, I show an instance
of goal for a brute force attack that searches the state where the credentials
of a user are used during the interaction with the web application. The aim
of the goal is to derive those execution fragments where we can launch the
attack and deal with the actual test during the concretization phase. Other
aimed attacks are possible, but determining if they are successful can be
done only in the actual testing phase.

Password Brute Force In the following goal, I assume that:

• The credentials are modeled through the signature Credential.

• The targets of the test are those entry points where the credentials are
used in a query on the database (define by the assertion Checked).

These assumption can be instantiated in Alloy with the following goal:

assert PasswordBruteForce {
no s : State | some d : Credential | some x : User{

s.granted = x.session &&
d in s.checked

}
}

4.3 Concretization Methodology

In the following section, I illustrate the concretization methodology em-
ployed for the test of web applications. The methodology uses

• the abstract data contained the Counterexample(s) (resulting from the
model checking phase),

• the Configuration Values needed for the correct interaction with the
web application, and

• the Instantiation Library containing the attack-related information to
perform the tests (i.e., payloads and scripts used during the actual
attack against the web applications).

In the framework these steps are depicted as Ã, Ä and Å in Figure 1.1.

4.3.1 Counterexamples

The output of the model checking phases is a set of Counterexample(s)
(CEs) that violate(s) the goal. A CE is not directly executable on the web
application, and I have to deal with the problem of filling the abstraction
gap between the CEs and the web application’s implementation. Every CE

88 Chapter 4. Model Checking and Concretization

generated by the Alloy analyzer contains the sequence of actions used in order
to violate the security goal and the set of states used (i.e., the instances of
the matrix M).

As an example, the following are two instances of traces of actions that
can be generated by Alloy:

[NoAction, Login, ListId, GetSearch, Search]

[NoAction, Login, ListId, ViewProfile, GetEdit,
UpdateProfile, Logout, Login, ListId, ViewProfile]

Every trace starts with “NoAction” and ends with the action that permits
to test the vulnerability (case above) or check if the attack can be triggered
in the web application (case below). In order to differentiate these two cases
from a the source code point of view, the Skolem constant (generated for
each trace2) are used.

As an example, the skolem constant

[4, AliceName, Alice]

refers to an attack trace where the attack is triggered on the same location
where the checks about its success can be made. More precisely, at state 4,
the web application can be attacked using the entry point AliceName and
the agent Alice. Another example of skolem constant is:

[5, AliceProfile, 9, Alice, Bob]

where the web application is attacked at state 5 using AliceProfile as an
entry point and Alice as user, and at state 9 the checks about the possibility
of triggering the attack are made using agent Bob.

Other useful information that is contained in the counterexample, are
the values of the set AP in the different states (I must recall here that in
Section 4.1.4, I changed the concept of state in an orthogonal way with
respect to the one presented in Section 3.6).

As an example, the following code refers to the evolution of the atomic
propositions WriteDB and ShowDB through the different states of the transi-
tion system:
ShowDB = [, , [BobId, AliceId], BobProfile]
CheckDB = [, AliceCredential, , BobId]

Merging the information contained in these sets, I can have a vision on what
is happening to the data handled by the web application. In the example, at
state 1, the credentials of Alice are checked on the database, at state 2, the
IDs of Alice and Bob are displayed, and at state 3, the ID of Bob is checked
and his profile displayed.

2In Alloy, quantified formulas can be reduced to equivalent formulas without the use
of quantifiers. This reduction is called skolemization and is based on the introduction of
one or more skolem constants or functions that capture the constraint of the quantified
formula in their values.

4.3. Concretization Methodology 89

4.3.2 Configuration Values

The Configuration Values are those information that are needed in order
to interact with the web application. In this section, I include as configura-
tion values all the information that are needed in order to create the correct
HTTP request(s) for each action regarding the web application and the low-
level definition of the actions as used in the implementation of the framework
(see Section 4.4). The notation used in this section thus reflects the python
code used to implement these values.

The starting point for the interaction with the web application is a URL:
starting_URL =

’http://127.0.0.1:8080/WebGoat/attack?Screen=71&menu=1100’

From this URL the actions that compose the attack trace are executed se-
quentially.

As I have discussed before, concatenated actions are possible. The secu-
rity analyst can insert this information with the following code.

views = {’Login’:’ListId’}

Since the data handled by the model can be abstract, it is not possible
to define a direct relation between them and the actual data handled by the
web application. In order to fill the gap between these two sets, different
strategies are possible:

• Manually define the relation between these data.

• Ask to the security analyst the data to fill the needed fields for each
HTTP requests that compose the counterexample.

• Harvest the values from the HTTP requests with a proxy (e.g., Wire-
shark) from a valid interaction of the security analyst with the web
application.

In the implementation of the framework, I choose to define all the relations
between real and abstract data. This choice (i) simplifies the implementation
of the framework (since no complex modules are required), and (ii) gives a
starting point for a future extension of the framework with the other possible
strategies.

As an example, the code in Table 4.4 defines the relation between the
abstract data handled by the model and the actual data handled by Web-
Goat.

For the readers familiar with python, the data structure used in Table 4.4
is implemented as a dictionary of dictionaries where for each user I store for
each abstract data the real ones used by the web application.

The last set of concretization values is the one concerning the low-level
definition of actions. In the following, I discuss two possible low-level defini-
tions, one that uses Selenium and another that uses Python.

90 Chapter 4. Model Checking and Concretization

Table 4.4: Definition of the relation between the abstract data handled by
the model and the actual data handled by WebGoat.

Data = {}
Data[’Tom’] = {

’Credential’:{
’employee_id’:’105’,
’password’:’tom’
},

’Profile’:{
’firstName’ :’Tom’,
’lastName’ :’Cat’,
’address1’ :’2211 HyperThread Rd.’,
’address2’ :’New York, NY’,
’phoneNumber’ :’443-599-0762’,
’startDate’ :’1011999’,
’ssn’ :’792-14-6364’,
’salary’ :’80000’,
’ccn’ :’5481360857968521’,
’ccnLimit’ :’80000’,
’description’ :’Co-Owner.’,
’manager’ :’105’,
’disciplinaryNotes’:’NA’,
’disciplinaryDate’ :’0’,
’employee_id’ :’105’,
’title’ :’Engineer’
},

’Name’ : {’search_name’ :’Tom’},
’Id’:{

’employee_id’:’105’
}

}

Selenium The first methodology uses Selenium [55] for the definition of
actions as HTTP requests. Selenium is a Firefox plugin that allows one to
record, edit, and debug tests. Selenium is allowed to record only actions that
can be performed through a web browser (e.g., clicking a button, selecting
from a drop-down menu).

The Selenium features that I use are (i) the recording of browser actions
in order to generate HTTP requests and (ii) the possibility to replicate these
actions. The concretization phase relies on the fact that the security analyst
can record, through Selenium, the set of browser actions that compose each
action. Two examples of actions recorded with Selenium are:

4.3. Concretization Methodology 91

Action Target Data
open page.php
type usernameForm bob
type passwordForm password
clickAndWait signinButton

Action Target Data
open page2.php
select optionsMenu label=bob
clickAndWait button
type Name Bob
type Surname Paulson
type Phone 123456
clickAndWait button

Using the browser actions also means to limit the investigation of possible
vulnerabilities only to the browser interface of the web application (i.e., I can
not change the HTTP requests that the user created by the user interface of
the web application).

Python The second methodology for the concretization of actions (and the
one used in the implementation of the framework), uses the python engine in
order to build HTTP requests. Since the data composing the HTTP request
are already present in the configuration values, in order to differentiate the
different actions I have to distinguish them as form actions (i.e., the ones
generated by HTML forms), functionalities, web pages, and so on. I clarify
this concept with the examples following below.

Example 18. These actions refer to HTML forms and are appended to the
URL of the page where the action as to be performed:

actions = {}
actionsURL = {

’NoAction’ : ’’,
’Login’ : ’&action=Login’,
’Logout’ : ’$action=Logout’,
’ViewProfile’ : ’&action=ViewProfile’,
...

}

These actions refer to PHP pages (the same can be done with similar
technologies such as ASP):

92 Chapter 4. Model Checking and Concretization

actionsURL = {
’NoAction’: ’’,
’Login’: ’index.php’,
’SelecProfile’:’dashboard.php’,
’ViewProfile’: ’profile.php’,
...

}

These actions refer to different technologies:

• form actions,

• functionalities implemented on the web application by special functions
(with or without fixed parameters), and

• HTML pages.

actionsURL = {
’NoAction’: ’’,
’Login’: ’login’,
’AddMessage’:’newsnippet.gtl’,
’ShowMessageAsUser’:’snippets.gtl’,
’ShowMessage’:’snippets.gtl?uid=caio’,
’ViewProfile’: ’editprofile.gtl’,
’UpdateProfile’: ’saveprofile?action=update&’,
’Logout’:’logout’,
’FileUpload’: ’upload.gtl’,
’FileAccess’:’caio/FileUploadXSS.html’,
’Refresh’: ’feed.gtl?’
}

△

4.3.3 Instantiation Library

The Instantiation Library (InstLib) contains data such as attack strings
(e.g., payloads for XSS), common malicious input (e.g., a set of passwords
for a brute force attack) and scripts to be used as test patterns (i.e., script
to be executed client-side in order to test the web application).

In addition to the payloads used during the attack, in the InstLib, I also
specify the expected result that the security analyst expects for each payload.
As an example, the following list of passwords can be used for a brute force
attack:

4.3. Concretization Methodology 93

P_B_F=[
["admin",’’], ["test",’’], ["administrator",’’],
["john",’’], ["12345",’’], ["asd",’’],
["qwerty",’’], ["qwertz",’’], ["watson",’’],
["Password",’’], ["password",’’], ["tom",’’]

]

Since different web applications can react differently after a successful login
(i.e., the success of the brute force attack is not related to the payload used),
I separate this feature of the framework and create a list of success criteria
such as the following:

P_B_F_CheckThis=[
’*bash*’,
’My Snippets’,
’Alice <Alice>’,
’Profile’,
’Welcome Back’,
’Welcome to the password

protected area admin’
]

This list is not meant to be exhaustive for all the possible web applications.
A security analyst can insert the success criteria that are best suited for the
web application she is testing. In order to do so, the security analyst has
to detect on the target web application which information discriminate a
successful login from an unsuccessful one.

Another example of InstLib is the one for XSS attacks:

S_XSS=[
[’alert(String.fromCharCode(88,83,83,65,116,116,65,99,107))’,
’XSSAttAck’],

[’<onmouseover="alert(1)"href="#">readthis!’,
’readthis!’],

[’alert("XsSatt");’,
’alert("XsSatt");’],

[’<script>alert("XSSatt");</script>’,
’<script>alert("XSSatt");</script>’],

[’<script>alert("veryDangerous");</script>’,
’veryDangerous’],

["red’onload=’alert(1)’onmouseover=’alert(2)",
’alert(1)’]

]

In this case the expected values are related to the payloads that can generate
them and thus are saved in the InstLib as couples.

94 Chapter 4. Model Checking and Concretization

Inst. Library

Model Checking I

II Extract Info

III Browsing phase

IV Attack phase

Check phaseV

Phases Files / Variables

 CE(s)

CE(s)
Conf. Values

 CEvar
 CONFvar

 INSTvar

Model

- Select Action
- Select Data
- Send Request

- Run Alloy

- Select Payload
- Send Request

- Trigger attack

Figure 4.1: Workflow and data used in the implementation of the framework.

4.4 The Implementation of the Framework

As an initial proof of concept, I have developed a preliminary version of
a tool written in python. The complexity of the code does not permit a full
explanation of the different modules that compose the tool, thus I present
the execution workflow (depicted in Figure 4.1) of the tool.

Phase I: Model checking In this phase the tool automatically runs the
Alloy analyzer on a prewritten model of a web application. During this phase,
I assume that the model contains the specification of web application along
with the security goal that has to be tested. If a counterexample is found,
it is saved in a text file containing all the information about the transition
system’s states. This phase is automatically executed by the python engine
and thus the security analyst has only to define the model with the goal.

Phase II: Information extraction If a counterexample has been found
during the first phase, the file containing the information about the CEs is
parsed, along with the configuration file, in order to populate the python
variables that will be used in the next phases.3 The extraction of these data

3In order to maintain a limited number of files used by the security analyst, in the
implementation of the framework the Configuration Files and the Low-Level definition of
the actions are merged in the same file.

4.4. The Implementation of the Framework 95

takes into consideration the scenario where multiple traces (i.e., multiple
counterexamples) are generated for the same goal. The data structure in
python reflects the number of traces present in the counterexample(s).

Phase III: Browsing Having all the information needed for the interac-
tion with the web application, this phase deals with the problem of reaching
the exact location where the attack has to be made. Knowing from the CE at
which state the attack has to be made (let us assume at state 5), the python
engine selects, one by one, the actions from the first to the one before the
attack (i.e., 4). For each action, the engine checks all the data used in the
model (i.e., the data type used during the modeling phase) and selects the
proper data from the ones available in its data structure with regard to the
possible input on the page (i.e., the possible HTTP requests that can be
made). If multiple data can be selected in order to use an action, the engine
automatically checks which data has to be used with a simple comparison
with the data displayed (or used) in the subsequent state of the transition
system. Once the correct data has been selected a HTTP request is sent to
the web application and the result retrieved.

Phase IV: Attack Once the browsing phase has been completed, the
python engine switches to the attack phase. In the implementation of the
framework I am not interested on complex implementation of this phase, and
I choose to force the attacks hardcoding the locations for each case study;
this particular choice reflects the possibility of using the VERA tool (see
Section 4.5) as an automatic vulnerability testing tool during this phase. I
should anticipate to the readers that, from the source code point of view,
all the results obtainable with the VERA tool can also be obtained with the
implementation of a complex python module that performs all the attacks
contained in the VERA low-level attacker models. As will become evident
in the next section, this scenario requires a complex maintenance of the tool
once a testing methodology for a new attack/vulnerability has to be coded
(i.e., the routines that tests a particular attack).

Phase V: Check After the delivery of every payload in the previous phase,
a check phase starts. If the information contained in the CE require that
the check for an attack has to be made in a different location of the web
application (i.e., the success of the attack is not verifiable in the received
HTTP response), an additional browsing phase (III) is called; if not (or after
the end of the browsing phase) the HTTP response from the web application
is checked in order to find the confirmation of the attack.

96 Chapter 4. Model Checking and Concretization

4.5 VERA tool

In this section, I present the VERA tool [12]4 standing for “VERA Exe-
cutes the Right Attacks”, which allows testers to define attacker models by
means of extended finite state machines (EFSM). In this way, testers can
define new tests where the payloads and the behavior are cleanly separated
and that abstract away from low-level implementation details such as HTTP
requests.

Testers are often confronted with situations where existing tools are of
little help because (i) they do not account for a particular configuration of
the System Under Test (SUT) or (ii) they do not include tests for certain
vulnerabilities. For instance, the SUT could use a particular authentication
mechanism (such as a proprietary protocol) and a recent/rare database ver-
sion. It is likely that most available tools will not cover the authentication
mechanism and might not have information about known vulnerabilities of
the database model used by the SUT.

In this situation the tester would benefit from extension mechanisms to
the available tools. Some tools (like the non-free version of Burp [31]) allow
one to write such extension plug-ins. These plug-ins must be written in the
programming language of the tool and imply the learning curve of the tool’s
API. The alternative consists in directly writing scripts for the task at hand.

4.5.1 Modeling

In the following I give brief presentation about the models that can be
executed using VERA, as originally described in [57]. Here the goal is to
illustrate the precise meaning of VERA models and not to perform formal
reasoning on them. Attacker models can be seen as an extension of Mealy
machines [35] with guarded transitions and variables. Similarly, one can see
similarities between the attacker models and UML statecharts. The formal
syntax and semantics given below however clarifies the differences between
attacker models and Mealy machines or UML statecharts (there are many
different semantics for UML statecharts; e.g. see [20, 64]). In particular,
attacker models do not have a notion of composition.

Example

To begin, we illustrate the semantics by using the example in Figure 4.2.
In the first transition the attacker starts the interaction with the system by
sending a message requesting a particular URL. Subsequently, a message is
received by the attacker that does not trigger an immediate reaction, but
only a change in the configuration. With the new configuration (the new

4The VERA tool has beed developed during the SPaCIoS project, I mainly worked on
the graphical user interface.

4.5. VERA tool 97

Figure 4.2: General injection low-level attacker model.

values of x, l and i) we have two possible transitions: (i) to the final state
and (ii) the one to the third state.

The transition to the final state is triggered when there are no more
fields to check (or the page pointed by URL doesn’t contain any fields), and
the attacker gives up by outputting failure. The two transitions, outgoing
and ingoing, to and from the state represent a configuration change for the
variables j, l′ (for the outgoing vertex) and i (for the ingoing vertex).

In the lower-right state the attacker sends a message with the j-th pay-
load in IO (to be delivered to the i-th field in the page) without receiving a
message.

Subsequently the attacker receives a message and changes his state (thus
he reacts) according to its content. If the message doesn’t contain the ex-
pected output the state will change in order to check the next payload or the
next field; on the other hand if the attacker receives the expected output he
has found a vulnerability thus outputting success.

Formal syntax and semantics for attacker models that can be executed
using VERA can be found in [12].

Implementation

The VERA tool is an extensible framework based on the concept of
extended finite state machines that allows for the creation and execution
of attacker models targeting generic vulnerabilities of web applications in
a black-box fashion, in essence reproducing a penetration testers actions.
These attacker models can be collected in libraries targeting specific vul-
nerability types across multiple types of web applications. Besides allowing
semi-automatic online testing using the provided libraries, VERA can also
be used in fully automated scripts by interfacing directly with the provided
back-end or importing and using the libraries provided by the framework.

The back-end of the VERA framework consists of a python program
which parses:

98 Chapter 4. Model Checking and Concretization

1. Selected Instantiation library containing data values used to interact
with SUT.

2. Configuration file containing system specific information needed to
test a SUT.

3. Model file An XML file containing the attacker model to be tested.

Then the framework creates an instance of the attacker model, and runs it
online against the SUT by using the values from the three files and the user
if needed.

Instantiation library

While the basic functionality of an attack is encapsulated within the at-
tacker models described above, an actual attack quite often needs additional
data that is ill suited to automata. An example for this would be a list of
passwords in a brute force attack. A decision was taken to outsource this
type of information, which is not application specific, into standardized in-
stantiation libraries. These can be accessed by the attacker model as arrays,
basically instantiating the attacks with specific values.

If an attack, or parts of an attack, can be performed multiple times
with different values, in order to test whether one of these values triggers a
vulnerability, these values should be moved into an instantiation file. This
file can then be extended by the different security experts.

In some cases it makes sense to use multiple instantiation libraries, which
can be used by the security expert in different circumstances. We have iden-
tified two common scenarios where the use of multiple instantiation libraries
helps the security expert during a vulnerability assessment:

• If the same steps can be performed to create completely different at-
tacks, then it makes sense to use different instantiation libraries for
these kinds of attacks. An example for this would be the use of in-
jection attacks (e.g. SQL-, X-Path-, Command-Injection). It makes
sense to not have a single big library, but rather have different instan-
tiation libraries. An example for this would be the use of Command-
Injection attacks: While the attack itself, injecting some kind of code
into HTTP requests, is the same, the actual values injected can target
a wide variety of attacks. In order to perform tightly focused attacks,
it makes sense to not have a single big library, but rather have differ-
ent instantiation libraries for JavaScript-Cross-Site-Scripting attacks,
SQL-Injection, X-Path Injection, Command-Line-Injection, etc.

• If there are a large number of values, and these can be divided based
on information which might be available during the test time, such
as the back-ends used, it might make sense to split the instantiation

4.5. VERA tool 99

library. An example for this would be file enumeration, where different
instantiation libraries might exist for the different kinds of platforms
available. This can help an analyst perform targeted attacks as well as
improve the efficiency of testing. If no information is available during
the test, all instantiation libraries can be used, resulting in the same
functionality as without such a split.

The VERA framework allows a user to run an instance of the attacker
model with an instantiation library, though the GUI allows the user to select
a number of instantiation libraries which are then run sequentially. This
instantiation library consists of a simple text file containing an array called
IO of either single values or tuples. Which kind of data is in the array depends
largely on the attacker model it was created for. An example instantiation
library for file enumeration is:

IO = [
.htaccess,
.htaccess.bak,
.htpasswd,
.meta,
.web,
conf,
apache/logs/access.log ,
apache/logs/access_log,
apache/logs/error.log ,
apache/logs/error_log,
access_log,
cgi

]

Configuration values

While the goal of the attacker model introduced is to be as generic as
possible, once the testing has to be performed, the use of system specific
knowledge is unavoidable. This information is stored in special configuration
files which specify a number of variables and their values in the following
format: Name=Value. Comments can be added using the # sign. These have
to be assigned by the security expert before the tests can be performed.

For convenience, we have defined a number of parameters that should
be used by all models, allowing the expert to create a single file contain-
ing all necessary values and then run all selected attacker models and their
instantiation libraries using that same file:

• URL – This contains the target URL for the attacker model. Depend-
ing on the attacker model, this URL might just be used as a starting
point used to crawl through the entire site.

100 Chapter 4. Model Checking and Concretization

Figure 4.3: Configuration file for the WebGoat SQL-Injection lesson.

• Cookie – This contains the cookies necessary for the web application,
such as a session ID.

• Header – If additional headers are needed for the correct functioning
of the web application, such as authentication headers, they can be
defined in this variable.

• Domain – The argument for this is a URL restricting the scope of the
instantiation library. Only sites within the scope should be targeted
by the attacker model.

Creators of new attacker models are strongly encouraged to use these
default parameters, and refrain from extending the list unnecessarily, as this
would complicate the interoperability of the different attack models used. If
additional information is required the user should be prompted.

An example configuration file targeting the SQL-Injection lesson from
WebGoat can be seen in Figure 4.3.

Attacker model

The attacker model has been implemented following the data structure
presented in Section 4.5.1. The model is saved as an XML that uses the
following tags:

<statechart> </statechart>

delimiting the parsed attacker model,

<node id="start"/>

a node in the diagram with its identifier,

<transition from="start"
guard="True"
input=""
output=""
to="send"> </transition>

4.5. VERA tool 101

ϵ/ {password ; i=0; flag=0; l=length(IO)}
[(i < l) AND (¬flag)]

ϵ/ snd_urlconnect(URL, Cookie, {Username, IO[i], POST) }

[¬τ]

[τ]

ϵ/ ϵ

ϵ/ {password = IO[i];
 flag=1[(i == l) OR (flag)]

ϵ/ password

τ := s.doesExist

rcv(s)/i++

Figure 4.4: Low-lever attacker model for a brute-force attack.

the transition between two nodes with the corresponding values,

<action value="files=[]"/>

the actions to be performed during a transition.
In the graphical editor the information needed for the correct execution

are saved in a SCM file (State Chart Model file).

Interfaces

Currently there are two possible ways to use the VERA tool. On the
one hand, it is possible to directly call the command line backend written in
python. This allows experienced users to use the VERA framework in various
ways, for example by integrating it in more complex scripts, parsing the
output using command line utilities or creating automated security scans at
certain times. On the other hand, I created a graphical user interface which
uses Eclipse as a back end. This graphical interface guides the user through
the different options and provides the security analyst with an overview of
the attacker models as well as the results.

4.5.2 Examples of Low-level Attacker Models

In the following I show two examples of low-level attacker models from [58].

Password Brute Force

A low level attacker model to perform a password brute-force attack
(Section 2.4.4) is depicted in Figure 4.4.

The password brute-force attack model iteratively tests the login pass-
word for user accounts against a list of predictable values. This is achieved by

102 Chapter 4. Model Checking and Concretization

sending corresponding HTTP requests iteratively to the application based
on the given instantiation library. The HTTP response received from the
application is analyzed to find the correct password to the user account.

The instantiation library consists of a list of common/predictable pass-
word values for user accounts. This list serves as an input for the execution
of the model. For specific executions, the list can be adjusted to incorporate
more or context specific values as per requirement.

The password brute force attacker model uses the following values from
the configuration file to perform the automated attack:

• URL: Contains the target application URL

• Header: HTTP Request Header Content-Type

• Relative URL: Redirection URL on a successful login

• Form fields: Provide the name and value of the username field for the
account to be tested, and additionally the name of the password field
within the login form

The attacker model iterates over the instantiation list. For each password
value within the list, it builds a valid HTTP Request and sends it to the
vulnerable application. Apart from the URL, Headers values, etc., each
HTTP request consists of the username of the user account supplied in the
configuration file, and the password value taken from the instantiation list for
the current iteration. The model waits for the HTTP response and analyzes
it for the validity of the password that was sent in the HTTP request. The
model checks and verifies the HTTP Status code sent in the response. If the
HTTP response reveals a redirection to a valid user account page, the current
password is marked as the valid password for the user account. Otherwise,
the model continues to iterate against the list until either a valid password
is found or the list has been exhausted.

Path Traversal

A low level attacker model to perform a path traversal attack (Sec-
tion 2.4.1) is depicted in Figure 4.5.

In the first step, the path traversal attack model executes the necessary
steps to gather all the input fields available within the login web form ac-
cessible at the given URL. As the next step, the model fixes the known
field’s value to the value provided in the configuration file and iteratively
tests the targeted field’s value against the instantiation list. As an exam-
ple, given a web form with the “username” and “password” fields, the model
fixes the value of the “username” field and performs an iterative test to find
out the correct value of the “password” field against the instantiation list.
This is achieved by sending corresponding HTTP requests iteratively to the

4.5. VERA tool 103

 rcv(s) /
{x=listForms; l=len(listForms); i=0}ϵ / snd (URL, Cookie, nill, GET)

 [i < l]
ϵ / {y=listFields(x[i]); l2=len(y); j=0}

 [j==l2]
ϵ / i = i + 1

 [k==l3]
ϵ / j = j + 1

 [j<l2]
 ϵ /
{k=0; l2=len(IO)} [i==l]

ϵ / failure

 [E(s)]
rcv(s) / success

 [!E(s)]
rcv(s) / k=k+1

 [k < l2]
 ϵ /
snd(x[i].action,Cookie,{y[j]:IO[k]},x[i].method)

[E(s)] := contains(s, IO[k][1])

start
init itForms

itFields

itIO

finish

Figure 4.5: Low-lever attacker model for a path traversal attack.

application for every value provided within the instantiation library. The
HTTP response received from the application is analyzed to find whether
the traversal and thereby the file operation was successful.

The instantiation library consists of a list of attack vectors that can be
used to modify the meaning of the path and hence let the attacker break out
of the web root.

4.5.3 Using VERA for Vulnerability Testing

The possible use of the VERA tool in the scope of the framework, is
as an automatic test execution engine for the attacks that can be found
via the model checking phase. The introduction of the VERA tool for the
vulnerability testing brings along various advantages and make the tool itself
coping with small problems it can suffer during the testing of complex attacks
in web applications.

How can the tool be embedded in the framework? The VERA tool
needs some parameters, defined in a configuration file (e.g., URL,Cookie,
Header, and Domain), in order to correctly interact with the web applica-
tion during the test. These parameters can be instantiated real time with
the values available in the data structure of the python engine already imple-
mented (even though it has been developed as an initial proof of concept).

Why should I use it? With the use of the VERA tool, one can keep
separated the definition of the attacks (i.e., the low-level attacker models)
and the parts of the framework that deal with (i) finding the attacks, (ii)
“preparing” the web application to be attacked (i.e., the browsing phase),
and (iii) controlling if the attack has succeeded (i.e., the check phase). With
this setting the overall modularity of the framework brings the liberty of
introducing new methodologies of attack (in general new features) without
rewriting large parts of the code.

104 Chapter 4. Model Checking and Concretization

Are the low level attacker models reusable? Some adjustments are
required on both the low-level attacker models and the python engine in or-
der to permit the correct functioning of the VERA tool. However a security
analyst can reuse the modified low-level attacker models outside the frame-
work (i.e., in the case she wants to perform only a vulnerability testing).
It is a matter of inserting in the already available models the information
about the correct exchange of messages with the python engine.

Why not using only VERA? As an example, the cases where the attack
is triggered on a different part of the web application are not covered by the
VERA tool in its low-level attacker models that I have developed so far.
Introducing this feature in the models bring a loss in their generality, can
be not trivial, and brings a lack of reusability that could result in a new
definition of every model for every web application that the security analyst
wants to test.

4.6 Small Conclusion

In this chapter, I have presented how to fill the abstraction gap between
the abstract tests (resulting from the model checking phase) and the actual
implementation of web applications. The concretization methodology starts
with the definition of the model in Alloy, and through the implementation of
the framework and the low-level definition of the actions permits to perform
tests on real web applications. In the following chapter, I show how the
framework can be applied to four case studies.

Chapter 5
Case Studies

In this chapter, I discuss the application of the framework to the four
case studies WebGoat, DVWA, Gruyere and OnlineShop. Since the tests
have been performed with the preliminary implementation of the framework,
I aim to show the range of tests that can be performed with this approach
rather than an analysis of the performances of the tests (e.g., duration in
time, number of requests, etc.).

In order to show the capabilities of the framework, I use three security
tools as benchmarks for the various tests:

• Burp suite [31] (free version 1.3.03),

• OWASP Zed Attack Proxy [40] (ZAP, version 2.3.1), and

• Paros [17] (version 3.2.13).

These three tools are mainly proxy tools used to intercept and analyze the
HTTP traffic from and to a web application, but they also provide some
basic vulnerability scanning techniques that we employed for the tests. I am
aware of the fact that they are not the most powerful tools for performing
vulnerability scanning, but still they are the main general-purpose free al-
ternatives currently available. Regarding the Burp suite, during the tests I
have used the intruder functionality since the free version does not allow the
use of the analyzer.

5.1 WebGoat

In this section, I show the definition of the model, the results of the model
checking phase and the tests for the WebGoat case study.

WebGoat [41] is a deliberately insecure web application maintained by
the Open Web Application Security Project (OWASP) [38] designed to teach
web application security lessons. In each lesson, users must demonstrate

105

106 Chapter 5. Case Studies

Anon.Login(cred);ListId() usr.ViewProfile(usr'.id)

usr.EditProfile(usr'.prof,data)

usr.Logout()

usr.ListId()

usr.Logout()

usr.UpdateProfile(usr'.prof);
ViewProfile(usr'.id)

usr.Search(name)

usr.GetEdit(usr'.prof)

usr.Logout()

usr.Logout()

usr.GetSearch()

usr.Logout()

Figure 5.1: WebGoat high-level model.

their understanding of a security issue by exploiting a real vulnerability. For
example, in one of the lessons the user must use SQL-Injection to steal fake
credit card numbers. The application is a realistic teaching environment,
providing users with hints and code to further explain the lesson.

The primary goal of the WebGoat project is simple: create a de-facto
interactive teaching environment for web application security. In the fu-
ture, the project team hopes to extend WebGoat into becoming a security
benchmarking platform and a Java-based Web site Honeypot.1

5.1.1 General Model: WebGoat

The general model of WebGoat (depicted in Figure 5.1) refers to the
lessons where the user can interact through a graphical interface that permits
one to:

• Login to a restricted area,

• display and modify his profile,

• display (and for a subset of users, modify) other users’ profiles, and
1A honeypot is a trap set to detect and deflect attacks to an information systems.

It consist of a computer, data, or a network site that resemble a legitimate part of the
network (i.e., it seems to contain information or resources of value to attackers), but is
actually isolated and monitored.

5.1. WebGoat 107

Table 5.1: Definition of the actions for the WebGoat case study.

Login(x , x .credential)
if M [Anon,Anon.session] = Granted
if M [x , x .credential] = Initial
Reset M for x
Del Granted into M [Anon,Anon.session]

Add Granted into M [x , x .session]

Add Checked into M [x , x .credential]
End

ListId(x)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , y.id] = Initial ∣∣

M [x , y.id] = Gained
Reset M for x
Add ShowDB into M [x , y.id]

End

ViewProfile(x , y.id)

if M [x , x .session] = Granted
if x ! = Anon
if M [x , y.id] = ShowDB
Reset M for x
Add ShowDB into M [x , y.profile]

End

GetEdit(x , x .prof)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , y.profile] = ShowDB
Reset M for x
Add Edit into M [x , x .profile]

End

GetSearch(x)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , y.name] = Initial ∣∣

M [x , y.name] = Gained
Reset M for x
Add Edit into M [x , y.name]

End

Search(x , y.name)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , y.name] = Edit
Reset M for x
Del Edit into M [x , y.name]
Add Checked into M [x , y.name]
Add ShowDB into M [x , y.profile]

End

UpdateProfile(x , x .prof)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , x .profile] = Edit
Reset M for x
Add WriteDB into M [x , x .name]

End

Logout(x)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Del Granted into M [x , x .session]

Add Granted into M [Anon,Anon.session]

End

• search other users’ profiles.

The tuple that contains the data used in the model is:

UserData =
(
cred,
id,
prof = (name, ...),
session,
)

stating that each user has some credentials (modeled as an unique entity),
one identifier, a profile (where the only field needed in the model is the
name), and a session with the web application (granted through the login
phase).

108 Chapter 5. Case Studies

It is interesting to note that this model gives the means to show two
possible ways of modeling the same functionality (i.e., the ListId). In the
specific, while defining the actions for the listing of users (i.e., their IDs), I
can have two possible scenarios:

• all the users can see the other user IDs, or

• the users see only a subset of the available IDs.

In the first case, the modeling of such functionality is straightforward since
the action shows, to the requesting user, all the IDs. In the latter, a security
analyst introduces the known IDs in the initial knowledge of each user and
shows them every time a ListId action is used. The second scenario has been
used for the instantiation of the actions that I report in Table 5.1.

Even though this model can be used during different tests, some of the
lessons reported in the following do not use it. This is due to the fact that
these lessons contains only one functionality (modeled as a single action),
and thus are not interesting for what concerns the possible interaction with
the web application but only for the testing capabilities of the framework.

In the following:

• I refer to “lesson” as a subset of the pages of WebGoat (indicated in
the title of the section).

• I discuss the counterexample for those check statements with the min-
imum number of states.

• In the result section I discuss

– the success (✓) of the tests, i.e., if the tests have been able to
find the vulnerability,

– the causes of their failure (X),

– the problems that make the test ineffective (∼), and
– if the tests are inapplicable (represented with NA).

5.1.2 Bypass a Path Based Access Control Scheme

Model and Goal

The model of this lesson is composed by a single action that permits one
to display a file from a list of available files.

Since the model is simple the initial state instantiates a session to a guest
user (the one that WebGoat uses for the real users that use the platform):

Guest .session
Guest Granted

5.1. WebGoat 109

The goal of the lesson is to access a resource that is not in the list given by
the lesson (the attack is similar to the File Inclusion attack in DVWA 5.3).
In order to perform the model checking phase I use the FileAccess goal
introduced with the ones for File Permissions among the goals of Section 4.2.1
Page 70.

Attack trace(s)

The first check statement that returns a counterexample is:

check FileAccess for 2 State, 1 User, 2 Data

where I test the goal searching for counterexamples with 2 states, using
one user and 2 data (i.e., the file address and the session). The resulting
counterexample and skolem constant are:

Trc0=[NoAction, FileAccess]
Sko0=[1, GuestFileAddress, Guest]

In Trc0 the only available action is used and the skolem constant express
that at state 1 I can attack the application using the GuestFileAddress
data and using Guest as user.

Concretization parameters

As concretization parameters, for this lesson I used as payloads a list of
resources containing (among the others) the payload ../../main.jsp (i.e.,
the one that complete the lesson). In order to check the correct completion
of the lesson, the checking phase of the framework has been carried out
with the check statement Lesson completed (i.e., the message displayed by
WebGoat once a lesson has been solved).

Results and comparison with other tools

The results of the tests performed with the framework and with the other
tools are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ ✓ X

Paros was the only tool that was not able of solving the lesson (i.e., not
able to find the vulnerability), while the others completed it without any
problem.

Similar results are obtainable with ad-hoc scripts that try to retrieve the
resources described in the payloads. Such testing methodology targets one
entry point at a time and thus has to be relaunched for every entry point
of the web application under test. The use of the framework permits the
automatic selection of such entry point and their subsequent test without
the need for a security analyst to relaunch the test.

110 Chapter 5. Case Studies

Small conclusion

The main objection that I see in this lesson is the simplicity of the model
(the same can be said for the lessons with the same structure that I will
introduce later in this chapter). Having only one action in the model narrows
the search space of the model checker to a singe path, and result in the forced
choice of the action to be performed. I believe that the modeling choice of
having a single action is supported by the fact of wanting to show the testing
capability of the framework rather than the capabilities of the model checker
(even though the same results can be obtainable with the analysis of more
complex models).

5.1.3 Role Based Access Control:
Bypass Presentational Layer Access Control

Model and Goal

The model used in this lesson is the one presented in Section 5.1.1. In
order to differentiate the different users, the general model has been extended
with a signature used in order to differentiate the administrator (isAdmin).
This signature is checked in the conditions of the action DeleteProfile in
order to check if it can be performed (or not) by the users.

The goal of the lesson is to access the “Delete” function as a regular
employee “Tom” (the employee do not see a button with this functionality
in his interface) exploiting a weak access control.

The initial state of the transition system is:

Anon Tom Jerry John
Anon.Session Granted
Tom.Credential Init
Tom.Id Init Init Init
Tom.Name Init Init
Jerry .Credential Init
Jerry .Id Init Init
Jerry .Name Init Init
John.Credential Init
John.Id Init Init
John.Name Init

The goal used in this model is the “Specified goal” AdminAction discussed
with the ones for vertical privilege escalation in Section 4.2.1 Page 70.

Attack trace(s)

Since the model is more complex than the one presented in the previous
section, the check statement (and thus the model checking phase) requires
an augment in the number of states, users and data:

5.1. WebGoat 111

check AdminAction for 4 State, 4 User, 21 Data

The resulting counterexamples and skolem constants are:

Trc0=[NoAction, Login, ListId, DeleteProfile]
Sko0=[3, TomProfile, John]
Trc1=[NoAction, Login, ListId, DeleteProfile]
Sko1=[3, JohnProfile, John]
Trc2=[NoAction, Login, ListId, DeleteProfile]
Sko2=[3, JerryProfile, John]

In the counterexamples, we can see how Trc0, Trc1 and Trc2 are the same and
refer to the actions that permit one to use the functionality DeleteProfile
while in the three skolem constants the functionality is accessed by the ad-
ministrative user John on the three available profiles.

Concretization parameters

Since the model checking phase deals with finding those execution frag-
ments of the transition system that contain functionalities accessible only
by administrative users, the concretization of such traces does not use any
payload. In order to concretize the attack traces, the python code (i.e., the
test execution engine) switch the information of a user admin with the ones
of a normal user (i.e., not admin).

Results and comparison with other tools

The results of the concretization phase and the tests with other security
tools are:

Framework Burp OWASP ZAP Paros
Result ✓ X X X

Even though the proposed framework was the only one that completed the
WebGoat lesson, the fact that the other tools did not manage to find the
attack confirms its complexity. I believe that for the security tools used as
benchmark it is acceptable but is an added value for the proposed framework.

In this example, the success in finding the vulnerability relies in the fact
that I have introduced the signature to differentiate the administrator in the
model. With such signature I can reason about roles (as abstract security
constraints) and derive traces that are interesting tests. I believe that the
benchmark tools focus their analysis on raw data and do not reason about
the meaning of the data they are handling.

112 Chapter 5. Case Studies

Small conclusion

From a model checking perspective, the counterexamples are valid exe-
cution fragments of the real application (as stated before, the goal is to find
those actions that are usable by admin users). The following switch between
users’ types (during the concretization phase) makes the test justifiable from
a security perspective.

This example shows that it is possible to test weak access controls on the
functionalities of a web application in a simple way. The main reason for
this contribution resides in the model of the web application (that has been
extended with a signature for the administrative role).

5.1.4 Role Based Access Control: Breaking Data Layer Ac-
cess Control

Model and Goal

The model used in this lesson has the same structure of the one pre-
sented in Section 5.1.1. In order to make possible for a user to guess the
values of the IDs of other users, the model has been extended with two ac-
tions, ListIdGuessed and ViewProfileGuessed, that can be executed by a
user and have the same behavior of, respectively, ListId and ViewProfile.
In order to maintain the knowledge of the users correctly handled by the
model checker (i.e., without the possibility of data belonging to different
types of knowledge), a transition definition for the possible guesses has been
introduced:

fact { all s: State, s’: s.next{
ListIdGuessed in s’.action implies (
s’.guessedK[s.user] = (s.guessedK[s.user] +

(Id - s.user.initialK - NoId)) &&
(all u : User | (u != s.user) implies

s’.guessedK[u] = s.guessedK[u])
)}}

where for a user that performs a ListIdGuessed, the possible guesses are
the IDs that are not part of the initial knowledge.

The initial state of the model is the same that I presented for the “By-
pass Presentational Layer Access Control” in Section 5.1.3, and the goal is
GuessedId in “Guessed data” as vertical privilege escalation in Section 4.2.1
Page 70.

Attack trace(s)

During the model checking phase the following check has been used:

check GuessedId for 4 State, 4 User, 21 Data

5.1. WebGoat 113

The resulting counterexamples are:

Trc0=[NoAction, Login, ListIdGuessed, ViewProfileGuessed]
Sko0=[3, JerryId, Tom]
Trc1=[NoAction, Login, ListIdGuessed, ViewProfileGuessed]
Sko1=[3, JohnId, Tom]

In the counterexamples, the attack traces are identical while the skolem
constants refer to the user Tom that tries to guess the IDs of Jerry and John
(not part of his initial knowledge).

Concretization parameters

As parameters for the test, I have used an array of possible IDs.

Results and comparison with other tools

The results of the concretization phase and the tests with other security
tools are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ ∼ X

where

• The framework and Burp completed the lesson.

• With ZAP, I was unable to automatically replicate the attack (i.e., it
was only possible by manually changing the request(s)).

• Paros did not find the attack.

Small conclusion

Within this model, I introduced the possibility for the users of guessing
data. In this way I also augment the model checking capabilities of the
framework with the possibility of extending the range of possible execution
fragments that are derivable from the model. Regarding the concretization
phase and the test, they are similar to brute forcing the valued of the IDs of
the other users (the real values could not be known to the security analyst)
but the use of such techniques is supported by the intended meaning of such
data in the model.

5.1.5 AJAX Security: DOM-Injection

Model and Goal

The model used in this lesson is a “one action” model where the web
application takes an activation key that allows the users to access a restricted

114 Chapter 5. Case Studies

functionality. The goal of the lesson is to enable the activate button and send
a fake key to the web application.

In the Alloy model I have the possibility to insert the statement disabled
in this action (i.e., the functionality) in order to deal with this problem
during the test of the web application.

The initial state is the one where a guest user is interacting with the web
application with a valid session:

Guest .session
Guest Granted

The goal used is AJAXdisabled shown in Section 4.2.6 Page 86.

Attack trace(s)

During the model checking phase the following check has been used:

check AJAXdisabled for 2 State, 1 User, 2 Data

The resulting counterexample is:

Trc0=[NoAction, SendLicenseKey]
Sko0=[1, GuestLicenseKey, Guest]

The counterexample contains the action that is disabled, and thus permits
the test execution engine to perform tests for disabled functionalities.

Concretization parameters

From a programmatic perspective the functionality is disable in the input
form:

<input disabled="" id="SUBMIT" value="Activate!"
name="SUBMIT" type="SUBMIT">

Sending requests with python permits one to circumvent this limitation since
the request is not sent via the user interface (i.e., a browser).

Results and comparison with other tools

The results of the tests with the security tools are:

Framework Burp OWASP ZAP Paros
Result ✓ X X X

The problem that the tools found with this type of test was the impossibility
of using the functionality before the test. This made impossible for these
tools to register the presence of the functionality, and thus using it during
the tests.

5.1. WebGoat 115

Small conclusion

In this model, I give an example on how different typologies of func-
tionalities can be modeled in our framework and how a security analyst can
leverage information that other security tools can not see. Another possible
extension of the tool leverages its modularity; in the preliminary version that
I have implemented, the attack phase is hard coded, but a more complex im-
plementation is possible. I can thus envision an automatic engine that can
reason about the causes that are blocking the functionality.

5.1.6 AJAX Security: Dangerous Use of Eval

Model and Goal

In this lesson the security analyst is required to send some input con-
taining a script and make it to reflect to her browser (which will execute the
script).

The model contains two actions (i.e., the functionalities accessible in the
page) even if they use the same parameters and have the same behavior.
The initial state is again the one with the Guest user having a valid session:

Guest .session
Guest Granted

Since the page uses AJAX functionalities and the input is reflected on
the page, in order to test this model I use the AJAXxss goal presented in
Section 4.2.6 Page 86.

Attack trace(s)

During the model checking phase the following check has been used:

check AJAXxss for 2 State, 1 User, 8 Data

The resulting counterexamples are:
Trc0=[NoAction, UpdateCart]
Sko0=[1, GuestItem, Guest]
Trc1=[NoAction, Purchase]
Sko1=[1, GuestCC, Guest]

The counterexamples reveal that both the functionalities used in the model
can be tested for XSS attacks.

Concretization parameters

In order to test the web application, I have introduced in the python
engine a set of payloads that are specific for AJAX functionalities. As an
example (and solution of the WebGoat lesson), the following payload is be-
tween those whose are been tested:

116 Chapter 5. Case Studies

’);alert(document.cookie);(’

Results and comparison with other tools

The results of the tests performed with the framework and the security
tools are:

Framework Burp OWASP ZAP Paros
Result X ✓ ∼ X

In this case, the outcome of the tests for each tool is

• WebGoat did not accept the payload sent by the framework even if
correct (the problem resides the test execution engine encoding the
payloads before sending them).

• Burp completed the lesson (with the same payload).

• ZAP found a reflected XSS but the WebGoat lesson was not reported
as completed.

• Paros did not found the attack.

Small conclusion

In this model the outcome of the test has two main results. The test
execution engine has been proved to be flawed while dealing with complex
payloads (encoding the payloads could bring the web application to misin-
terpret them), on the other hand the model checking phase has been able of
dealing with this typology of attacks.

5.1.7 Reflected XSS Attack

Model and Goal

The model used for this attack is the same as in the previous lesson
(dangerous use of eval) with the difference that the web application does not
implement the actions update and purchase through AJAX technologies.

Starting from the same initial state, the goal of this lesson is to find a
reflected XSS attack (that can be expressed via the goal XSS presented in
Section 4.2.3 Page 78).

Attack trace(s)

During the model checking phase the following check has been used:

check XSS for 2 State, 1 User, 4 Data

The resulting counterexamples are:

5.1. WebGoat 117

Trc0=[NoAction, UpdateCart]
Sko0=[1, GuestItem, Guest]
Trc1=[NoAction, Purchase]
Sko1=[1, GuestCC, Guest]

As in the precious model, the skolem constants reveal that both the func-
tionalities have to be tested for XSS.

Concretization parameters

The payloads used for this lesson are contained in a list of scripts; as an
example, the following list contains some of the payloads used during the
tests:

alert(String.fromCharCode(88,83,83,65,116,116,65,99,107))
<onmouseover="alert(1)"href="#">readthis!
alert("XsSatt");
<script>alert(String.fromCharCode(88,83,83));</script>
red’onload=’alert(1)’onmouseover=’alert(2)
<script>alert("XSSatt");</script>

For every payload in the list, an expected values is saved in order to check
if the attack can be triggered, e.g., the first payload should be executed and
decoded as “XSSAttAck ” by the browser.

Results and comparison with other tools

The results of the tests are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ ✓ ✓

All the tools solved the lesson without any problem.

Small conclusion

Having a simple lesson and a well known attack, the results of the tests
were expected. Regarding the tests performed with the Burp intruder, all
payloads returned the status code 200, it was impossible to see whether the
payloads triggered the actual attack (it was possible after a manual revision
requests made by the intruder).

5.1.8 XSS: Execute a Stored Cross-Site Scripting attack

Model and Goal

In this lesson, the security analyst is required to execute a Stored XSS
attack against the Street field on the EditProfile page (as Tom) and verify
that the user Jerry is affected by the attack.

118 Chapter 5. Case Studies

The model of this lesson is the general model presented in Section 5.1.1.
The initial state is defined as:

A.ses T .cred T .id T .name J .cred J .id J .name
Anon Granted
Tom Init Init Init
Jerry Init Init Init Init Init

Having to find a stored XSS the goal used is the StoredXSS for two agents
(as required by the lesson) presented in Section 4.2.3 Page 78.

Attack trace(s)

Having two sessions, the number of states (i.e., the number of actions
used during the attack) is higher than the previous cases:

check StoredXSS for 10 State, 2 User, 21 Data

and it is reflected on the counterexamples returned by the model checker:

Trc0=[NoAction, Login, ListId, ViewProfile, GetEdit,
UpdateProfile, Logout, Login, ListId, ViewProfile]

Sko0=[5, TomProfile, 9, Tom, Jerry]

Concretization parameters

The concretization parameters used in this lesson are the same as the
ones presented in the previous lesson (XSS). This is due to the fact that I
am testing in the same attack but I am trying to trigger (i.e., provoke the
script to run) it in a different way.

Results and comparison with other tools

Having to trigger the attack in a different location from the one where
the payload is delivered, the results of the tests are positive only for the
framework:

Framework Burp OWASP ZAP Paros
Result ✓ X X X

Small conclusion

Even though the results of this lesson seems to elect the framework as
the winner, I should add that the Burp Scanner can detect a stored XSS,
with a full scan of the application, but this feature is not available in the
free version used here.

In this example, the success of the framework resides in the attack traces
that are generated by the model checker. The fact that the checking phase

5.1. WebGoat 119

can be made in a different location from the one used during the attack phase
makes the framework able of dealing with those vulnerabilities that require
a complex control on the entry points of the attack and the pints where the
attack has to be triggered.

5.1.9 XSS: Reflected XSS

Model and Goal

In this lesson, the general model presented in Section 5.1.1 is used along
with the initial state presented in Section 5.1.8.

The goal of the lesson is to trigger a reflected XSS attack of the Search
Staff page. In order to model check the model, I use the XSScheck goal for
the checked data that is presented in Section 4.2.3 Page 78.

Attack trace(s)

During the model checking phase the following check has been used:

check XSScheck for 5 State, 3 User, 21 Data

The resulting counterexamples are:

Trc0=[NoAction, Login, ListId, GetSearch, Search]
Sko0=[4, TomName, Tom]
Trc1=[NoAction, Login, ListId, GetSearch, Search]
Sko1=[4, TomName, Jerry]
Trc2=[NoAction, Login, ListId, GetSearch, Search]
Sko2=[4, JerryName, Tom]
Trc3=[NoAction, Login, ListId, GetSearch, Search]
Sko3=[4, JerryName, Jerry]

Concretization parameters

The concretization of the attack is performed with the same payloads of
the Stored XSS.

Results and comparison with other tools

The results of the tests performed with the tools are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ ✓ X

From the tests, the success of the framework, Burp and ZAP emerged, while
Paros failed to find the vulnerability.

120 Chapter 5. Case Studies

Small conclusion

Even in this case, as for other simple vulnerabilities, the suitability of
the framework is aligned with other tools even though for Burp all payloads
returned the status code 200, making difficult to know for sure whether a
payload could be triggered.

5.1.10 Command-Injection

Model and Goal

In this lesson, input data are used in an OS command that retrieve a
file from the file system; the goal is to inject a command into the operating
system.

The model is composed by one action and has for initial state:

Guest .session
Guest Granted

The goal used in this model is FileAccessCommandInjection presented
in Section 4.2.5 as an instantiation of the general goal for Command-Injection
on special functions.

Attack trace(s)

During the model checking phase the following check has been used:

check FileAccessCommandInjection for 2 State, 1 User, 2 Data

The resulting counterexample is:

Trc0=[NoAction, FileAccess]
Sko0=[1, GuestFileAddress, Guest]

Concretization parameters

The payloads used in order to test this vulnerability are contained in
a list of OS commands that the test execution engine tries to fetch from
the web application. As an example, the following list is a portion of the
instantiation library used in this example:

" & netstat -an & ipconfig
" & ifconfig
|| ls
ls

5.1. WebGoat 121

Results and comparison with other tools

The results of the tests performed with the framework and the other tools
were unsuccessful:

Framework Burp OWASP ZAP Paros
Result X X X X

Small conclusion

In this example, the attack was blocked by the security restriction in the
server machine hosting WebGoat. This test has to be considered invalid even
though the framework has been proven to been able to cope with this type
of vulnerabilities. In order to test attacks that need special permissions on
the target server an addition analysis is required.

5.1.11 Numeric SQL-Injection

Model and Goal

This model is composed by a single action as the web application displays
a single form that allows a user to view some data. The goal of the lesson is
to inject a SQL string that results in all the data being displayed.

As usual for the simple model the initial state is:

Guest .session
Guest Granted

The goal used in order to check the model is the SQLInj goal presented
as a specification of the general goal in Section 4.2.4 Page 83.

Attack trace(s)

During the model checking phase the following check has been used:

check SQLInj for 2 State, 2 User, 5 Data

The resulting counterexamples are:

Trc0=[NoAction, SelectStation]
Sko0=[1, GuestStation, Guest]

Concretization parameters

As payloads for the tests, an array of general purpose SQL queries (or
parts of them) has been used. As an example, the following list is part of
the instantiation library used during the tests:

122 Chapter 5. Case Studies

Administrator’--"
root’--
’ HAVING 1=1 --"
1’ or ’1’=’1"
1 or 1=1"
101 or 1=1!

Results and comparison with other tools

The results of the tests are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X X

The tests performed with the framework and Burp gave positive results,
while the ones performed with ZAP and Paros did not manage to solve the
lesson (i.e., find the vulnerability).

Small conclusion

In this scenario the framework is aligned with the Burp suite; this is due
to the fact that the payloads used for the tests are the same even though a
manual check of the success of the tests is required with Burp. The success
of the attack is due to the payloads used during the tests. It is important to
mention that tools like Paros are not updated too often and the introduction
of new payloads is thus difficult. With the instantiation library used in the
framework the task of introducing new payloads (or vulnerabilities) as simple
as copying them into a textual file.

5.1.12 Log Spoofing

Model and Goal

This lesson displays two ares: (i) a login form and (ii) an area that
represents what is going to be logged in the web server’s log file. The goal is
to make the web application believe that a username “admin” has succeeded
in logging in and add a script to the log file.

The model is composed by a single login action, and has as initial state:

Guest .session
Guest Granted

The goal used in the model is SQLInjFileSystem presented in Section 4.2.4
Page 83.

5.1. WebGoat 123

Attack trace(s)

During the model checking phase the following check has been used:

check SQLInjFileSystem for 2 State, 1 User, 2 Data

The resulting counterexample is:

Trc0=[NoAction, Login]
Sko0=[1, GuestCredential, Guest]

Concretization parameters

The payloads used in this lesson are a combination of a log spoofing
attack:

Smith%0d%0aLogin Succeeded for username: admin

and a XSS attack:

<script>alert(document.cookie)</script>

Both payloads are required in order to complete the lesson.

Results and comparison with other tools

All tools were able of solving the lesson.

Framework Burp OWASP ZAP Paros
Result ✓ ✓ ✓ ✓

Small conclusion

The web application implemented in this lesson, even though very sim-
ple, takes into consideration a vulnerability that is increasingly common in
web applications since the login functionality often lacks the proper input
sanitization. The fact that ad-hoc payloads can be delivered with the frame-
work (and the related attack discovered) increases the strength of the testing
capabilities of the framework itself.

5.1.13 XPATH-Injection

Model and Goal

In this model (composed of a single action) the security analyst can
test another vulnerability that can affect the login functionality of a web
application. The login functionality is used in order to display some data
belonging to a user that delivers correct credentials. The lesson’s goal is to
display also the data of other employees..

The initial state of the model is defined as:

124 Chapter 5. Case Studies

Guest .session
Guest Granted

Regarding the goal, in this model I have used the SQLInj goal (the correct
selection of the payloads related to this goal is made during the concretization
phase).

Attack trace(s)

During the model checking phase the following check has been used:

check SQLInj for 2 State, 1 User, 6 Data

The resulting counterexample is:

Trc0=[NoAction, Login]
Sko0=[1, GuestCredential, Guest]

Concretization parameters

The payloads used in this lesson are the ones for the SQL-Injection.

Results and comparison with other tools

The results of the tests performed with the framework and the security
tools are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X X

where only the framework and Burp were able to solve the lesson.

Small conclusion

With this lesson, I have shown another vulnerability of the login func-
tionality. As I will show in the string SQL-Injection and brute force examples
a security analyst can check different attacks against the same functionality
(e.g., Login). In order to do so, a security analyst has to change the goal
that is checked during the model checking phase. The tests of the resulting
counterexamples are thus performed for the attacks the goals refer to. This
feature can be leveraged when a thorough analysis of a web application has
to be performed.

5.1.14 String SQL-Injection

Model and Goal

In this lesson, the web application is implemented as a single form that
allows users to view their credit card numbers. The goal is to inject a SQL

5.1. WebGoat 125

string that results in all the credit card numbers being displayed. As for the
other types of SQL-Injection, the model starts in a state where the only user
of the system already has a valid session (the goal remain SQLInj).

Attack trace(s)

During the model checking phase the following check has been used:

check SQLInj for 2 State, 1 User, 6 Data

The resulting counterexample is:

Trc0=[NoAction, Search]
Sko0=[1, GuestName, Guest]

Concretization parameters

The payloads used in this lesson are the ones for the SQL-Injection.

Results and comparison with other tools

The results of the tests performed with the framework and the other tools
are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X X

Small conclusion

With this lesson, I show another vulnerability that could affect the web
applications that use a non-sanitized SQL query. The framework has been
proven successful in the test and aligned to the burp suit. I believe that the
results are due to the fact that the payloads used during the tests performed
with the framework and Burp were the same. This remarks the importance
of having the possibility of expanding the instantiation library of the frame-
work.

5.1.15 SQL-Injection: String SQL-Injection

Model and Goal

The model used in this lesson is the one presented as a general model for
WebGoat in Section 5.1.1. The initial state of the model has been defined
as:

A.ses T .cred T .id T .name J .cred J .id J .name
Anon Granted
Tom Init Init Init Init Init
Jerry Init Init Init Init Init

126 Chapter 5. Case Studies

Since the goal of the lesson is to use a String SQL-Injection to bypass
the authentication mechanism the goal used in the model is BypassLoginSQL
presented in Section 4.2.4 Page 83.

Attack trace(s)

During the model checking phase the following check has been used:

check BypassLoginSQL for 2 State, 2 User, 6 Data

The resulting counterexamples are:

Trc0=[NoAction, Login]
Sko0=[1, Jerry]
Trc1=[NoAction, Login]
Sko1=[1, Tom]

Concretization parameters

The payloads used in this lesson are the ones for the SQL-Injection.

Results and comparison with other tools

The results of the tests performed with the security tools are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X X

Small conclusion

In this lesson, I have presented how the framework can use String SQL-
Injection to bypass the authentication mechanism in order to gain access to
an account without knowing the password of the target user. The versatility
of the framework permits to test the login functionality for a variety of
attacks (depending on the goal selected during the model checking phase).

5.1.16 Insecure Configuration: Forced Browsing

Model and Goal

In this lesson, the goal is to guess the URL for the “config” interface
that is only available to the maintenance personnel (the application does
not check for horizontal privileges).

The model is composed by a single action (FileInclusion), and its initial
state is the one where a user of the system has a valid session. The goal used
in this lesson is FileInclusion (as the only action available in the model).
In order to test this type of vulnerabilities, I use the location of the action
as a base for launching a forced browsing attack (see Section 4.2.1 Page 73
for further details on the goal).

5.1. WebGoat 127

Attack trace(s)

Since the model is composed by a single action, the check statement and
the resulting counterexample are again minimal in the number of states:

check FileInclusion for 2 State, 1 User, 1 Data

Trc0=[NoAction, FileInclusion]
Sko0=[1, GuestFileAddress, Guest]

Concretization parameters

As an example, the following payloads are part of the instantiation library
used during the tests:

.htpasswd

.meta

.web

../../../../../../etc/passwd
apache/logs/access.log

Results and comparison with other tools

The results of the tests are depicted in the following table:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ ∼ X

where

• The framework and Burp were able to solve the lesson.

• With ZAP the lesson was not completed (even though ZAP is able of
performing the attack the successful payload was not available in the
tested lists).

• Paros was not able to solve the lesson.

Small conclusion

In this example, the framework has been able of performing a forced
browsing attack from a given location against the web application. Since
this type of attack mainly depends on the instantiation library (i.e., the set
of locations to be tested), the completion of the lesson only gives a valid
indicator of the successfulness of the payloads used and the possibility of
performing this type of tests.

128 Chapter 5. Case Studies

usr.Logout()

usr.FileUpload(f)

usr.UpdateProfile(usr.prof)

usr.ViewProfile(usr.id)

usr.ShowMessageAsUser(usr')

usr.AddMessage(m)

Anon.Login(cr)

usr.Logout()

usr.ViewProfile(usr.id)

usr.ChangePwd(usr.pwd1,usr.pwd2)

Anon.ShowMessage(usr')

usr.Refresh()

usr.FileAccess(f)
usr.FileInclusion(f)

Figure 5.2: Gruyere high-level model.

5.2 Gruyere

In this section, I show the definition of the model, the results of the model
checking phase and tests for the Gruyere case study.

Gruyere [13] is a small web application that allows its users to publish
snippets of text and store assorted files. Gruyere has multiple security bugs
ranging from cross-site scripting and cross-site request forgery, to information
disclosure, denial of service, and remote code execution. The goal of this
codelab is to guide the user through discovering some of these bugs and
learning ways to fix them both in Gruyere and in general.

Gruyere is written in Python, however, the security vulnerabilities cov-
ered are not Python-specific and the user can do most of the lab without
even looking at the code.

5.2.1 Model

The Gruyere model (depicted in Figure 5.2) is composed by actions that
permit users to

• add/delete messages (snippets),

• upload files,

• modify their profile, and

• see other user profiles.

5.2. Gruyere 129

The definition of the actions is reported in Table 5.2.
The data used in the model are the ones in the following tuple:

UserData =
(
credential,
id,
profile,
fileAddress,
password1,
password2,
text,
session,
)

The data used in the model depict a system where each user has creden-
tials, one identifier, a profile, two distinct passwords (used in order to change
his password), some text he can use to write messages, and a possible session
with the web application (granted through the login phase).

For this model, I have defined three distinct users (the Anon user and
two agents Usr1 and Usr2) and defined the initial state of the transition
system as the one where none of the users have a valid session with the web
application:

Guest Usr1 Usr2
Guest .ses Granted

Usr1 .Pwd1 Init
Usr1 .Pwd2 Init
Usr1 .Cred Init
Usr1 .Text Init
Usr2 .Pwd1 Init
Usr2 .Pwd2 Init
Usr2 .Cred Init
Usr2 .Text Init

The DVWA web application, as the target of the tests, has been modeled
in the general model (that includes the initial state). This model is used in
all the scenarios that I discuss in the following sections.

5.2.2 File Upload XSS

Goal

The objective of this attack is to upload a file that allows one to execute
an arbitrary script in the web application. In order to test this type of vul-
nerability, I use the XSS_FileUpload goal presented in Section 4.2.3 Page 78
as a specified goal for XSS attacks.

130 Chapter 5. Case Studies

Table 5.2: Definition of the actions for the Gruyere case study.

Login(x , x .credential)
if M [Anon,Anon.session] = Granted
if M [x , x .cred] = Initial
Reset M for x
Del Granted into M [Anon,Anon.session]

Add Granted into M [x , x .session]

Add Checked into M [x , x .credential]
End

ViewProfile(x)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add ShowDB into M [x , x .profile]
Add Edit into M [x , x .profile]

End

Logout(x)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Del Granted into M [x , x .session]

Add Granted into M [Anon,Anon.session]

End

UpdateProfile(x , x .prof)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , x .profile] = Edit
Reset M for x
Add WriteDB into M [x , x .profile]

End

ChangePwd(x)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , x .profile] = Edit
if M [x , x .Pwd1] = Initial
Reset M for x
Add Checked into M [x , x .Pwd1]

Add WriteDB into M [x , x .Pwd2]

End

AddMessage(x , x .text)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add WriteDB into M [x , x .text]

End

ShowMessage(x , y)
if M [x , x .session] = Granted
if y ! = Anon
Reset M for x
Add ShowDB into M [x , y.text]

End

ShowMessageAsUser(x , y)
if M [x , x .session] = Granted
if y ! = Anon
if x ! = Anon
Reset M for x
Add ShowDB into M [x , y.text]

End

FileUpload(x)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add WriteFS into M [x , x .fileAddr]

End

FileAccess(x)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add ShowFS into M [x , x .fileAddr]

End

Refresh(x)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , x .text] = showDB
Reset M for x
Add ShowDB into M [x , x .text]
Add AJAX into M [x , x .text]
Add echo into M [x , x .text]

End

FileInclusion(x)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add PageIncluded into M [x , x .fileAddr]
Add ShowFS into M [x , x .fileAddr]

End

5.2. Gruyere 131

Attack trace(s)

During the model checking phase the following check has been used:
statement:

check FileUpload for 3 State, 3 User, 21 Data

The resulting counterexamples are:
Trc0=[NoAction, Login, FileUpload, FileAccess]
Sko0=[2, Usr2FileAddress, 3, Usr2]
Trc1=[NoAction, Login, FileUpload, FileAccess]
Sko1=[2, Usr1FileAddress, 3, Usr1]

Concretization parameters

The exploitation of this vulnerability is made possible by the fact that
an attacker can upload HTML files and these files can contain scripts. In
order to concretize the attack, I have created an HTML file containing the
script:

<script>
alert(document.cookie);

</script>

and submitted it (via the python engine) to the web application.

Results and comparison with other tools

The results of the tests performed with the security tools and the frame-
work are:

Framework Burp OWASP ZAP Paros
Result ✓ NA NA NA

In this scenario, the proposed framework was able to test the vulnerability
and check the presence of the attack; for the other tools, even though they
were not able to find the attack, I do not give a negative response because
this type of attack is usually tested manually and thus results out of scope.

Small conclusion

With this example, I show how it is possible to automatize the research of
not trivial attacks through the framework using all the phases that compose
it:

• the model checking phase in order to find the entry points,

• the concretization phase in order to define the payloads, and

• the python engine to check the presence of the actual attack.

132 Chapter 5. Case Studies

5.2.3 Reflected XSS

Goal

Gruyere suffers from a possible reflected XSS attack launched via a URL.
In order to check this vulnerability, I use the urlXSS goal that I have defined
as a specification of possible XSS attacks in Section 4.2.3 Page 78.

Attack trace(s)

During the model checking phase the following check has been used:

check urlXSS for 3 State, 1 User, 1 Data

The resulting counterexamples are:

Trc0=[NoAction, Login, FileInclusion]
Sko0=[2, Usr1FileAddress, Usr1]
Trc1=[NoAction, Login, FileInclusion]
Sko1=[2, Usr2FileAddress, Usr2]

Concretization parameters

For this example the payloads for XSS presented in the previous sections
have been used.

Results and comparison with other tools

The results of the tests are:

Framework Burp OWASP ZAP Paros
Result ✓ X X ∼

where:

• The framework was able to test and confirm the attack.

• Burp delivered all the payloads but it was not possible to trigger the
attack.

• ZAP did not find the attack.

• Paros did find an attack but on a different location of the web appli-
cation.

deletesnippet?index=
/snippets.gtl?uid=

5.2. Gruyere 133

Small conclusion

In this scenario, the location of the entry point for the attack is a ma-
jor problem for the benchmark tools. The framework was able to find and
confirm the attack primarily for the used concretization methodology. Specif-
ically, being able to control where the attack has to be launched makes the
testing for a distinct vulnerability stronger than a broad research of many
vulnerabilities.

5.2.4 Stored XSS

Goal

The goal used in this example is StoredXSS for one agent presented in
Section 4.2.3 Page 78.

Attack trace(s)

During the model checking phase the following check has been used:

check StoredXSS for 4 State, 2 User, 21 Data

The resulting counterexamples are:

Trc0=[NoAction, Login, AddMessage, ShowMessageAsUser]
Sko0=[2, Usr1Text, 3, Usr1, Usr1]
Trc1=[NoAction, Login, AddMessage, ShowMessageAsUser]
Sko1=[2, Usr2Text, 3, Usr2, Usr2]

Concretization parameters

For this attack, I use the payloads for XSS presented in Section 5.1.7
Page 116.

Results and comparison with other tools

Framework Burp OWASP ZAP Paros
Result ✓ ∼ X X

In this case, the Burp intruder was able to deliver the payloads but I had
to check manually if it was possible to trigger the attack. As before, during
the tests I used the Burp intruder not the Burp analyzer (which is able of
analyzing multiple locations and thus to find stored XSS attacks).

Small conclusion

When the attack is triggered in a different location from the one used as
entry point the tested tools did not find the attack while the framework is
able to perform and complete the test.

134 Chapter 5. Case Studies

5.2.5 Stored XSS via HTML Attribute

Goal

In this example, the aim of the attack is to inject a value in an HTML
attribute of a profile. For this attack, the goal for stored XSS has been
rewritten in order to target the search of counterexamples (and thus the
testing phase) to a subset of data (StoredXSSaimed in Section 4.2.3 Page 78).

Attack trace(s)

During the model checking phase the following check has been used:

check StoredXSSaimed for 5 State, 2 User, 21 Data

The resulting counterexamples are:

Trc0=[NoAction, Login, ViewProfile, UpdateProfile, ViewProfile]
Sko0=[3, Usr1Profile, 4, Usr1, Usr1]
Trc1=[NoAction, Login, ViewProfile, UpdateProfile, ViewProfile]
Sko1=[3, Usr2Profile, 4, Usr2, Usr2]

Concretization parameters

For this attack, I use the payloads for XSS presented in Section 5.1.7
Page 116.

Results and comparison with other tools

The comparison in finding the vulnerability for the framework and the
security tools is:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X X

In this scenario, the framework and Burp were able to find the vulnerability,
while ZAP and Paros were not. A special note has to be made for Paros
that reports a possible SQL-Injection

saveprofile?action=new&uid=1%20AND%201=2&is_author=True

even if Gruyere does not use a database (the server is run via python). I
believe that Paros mistake relies in the facts that it tests web applications
with general payloads and methodologies, and probably it assumes the tech-
nologies used from the locations of the tests.

5.2. Gruyere 135

Small conclusion

In this example, I have shown how the framework can be used in order
to target specific areas of a web application. In the case a security analyst
decides to use the general goal for stored XSS (StoredXSS) (along with the
same check statement used in this example), the framework tests both the
counterexamples presented in the previous section (Stored XSS) and the ones
presented here.

5.2.6 Reflected XSS via AJAX

Goal

The aim of this example is to find an XSS attack that uses a bug in
Gruyere’s AJAX code. The attack should be triggered when the user clicks
the refresh link on the page (modeled as an action).

In this scenario, the goal used is AJAXxss presented in Section 4.2.6
Page 86.

Attack trace(s)

During the model checking phase the following check has been used:

check AJAXxss for 4 State, 1 User, 21 Data

The resulting counterexamples are:

Trc0=[NoAction, Login, ShowMessageAsUser, Refresh]
Sko0=[3, Usr1Text, Usr1]
Trc1=[NoAction, Login, ShowMessageAsUser, Refresh]
Sko1=[3, Usr2Text, Usr2]

Concretization parameters

For this attack, I use the payloads for XSS along with some payloads for
AJAX technologies.

Results and comparison with other tools

Framework Burp OWASP ZAP Paros
Result ✓ X X X

Among the tested tools, the framework was the only one able to find the
attack.

Small conclusion

In this case, the location and the procedure used to deliver the payload
and trigger the attack make the framework successful in finding the attack.

136 Chapter 5. Case Studies

5.2.7 Information Disclosure via Path Traversal

Goal

In this example, Gruyere asks to find a way to read a file (“secret.txt”)
from the server.

As before, the attack used is FileInclusion because I use the location of
the action as a base for launching the path traversal attack (see Section 4.2.1
Page 73 for further details on the goal).

Attack trace(s)

During the model checking phase the following check has been used:

check FileInclusion for 3 State, 1 User, 1 Data

The resulting counterexamples are:

Trc0=[NoAction, Login, FileInclusion]
Sko0=[2, Usr1FileAddress, Usr1]
Trc1=[NoAction, Login, FileInclusion]
Sko1=[2, Usr2FileAddress, Usr2]

The counterexamples returned by the Alloy analyzer state that it is possible
to launch the attack after a login, and the attack trace (since Trc0 = Trc1)
has to be tested for both the available users.

Concretization parameters

For this attack, I use the payloads for “force browsing” presented in the
previous sections (and modified for path traversal) with the addition of the
payload ..%2fsecret.txt (required for the example).

Results and comparison with other tools

Framework Burp OWASP ZAP Paros
Result ✓ X ∼ ∼

The results of the tests performed with the tools are not unexpected since
the payload to be used is too specific to be available in the tools’ lists of
directory/files. The only problem arises with the Burp intruder, which failed
to find the attack even if the proper name of the file was given (this behavior
is due to an encoding of the URL that Gruyere failed to interpret correctly).

Small conclusion

As for the force browsing lesson in WebGoat, also in this example, the
framework has been able of performing a forced browsing attack from a given
location against the web application.

5.3. Damn Vulnerable Web Application 137

5.3 Damn Vulnerable Web Application

In this section, I show the definition of the model, the results of the
model checking phase and tests for the Damn Vulnerable Web Application
(DVWA) case study.

Damn Vulnerable Web Application (DVWA) [62] is a PHP/MySQL web
application that suffers for various vulnerabilities. Its main goals are to
be an aid for security professionals to test their skills and tools in a legal
environment, help web developers better understand the processes of securing
web applications and aid teachers/students to teach/learn web application
security in a class room environment.

5.3.1 Model

The general model of DVWA (depicted in Figure 5.3) shows that the
application is developed as a set of pages. Every page contains a vulnerable
entry point (i.e., one of the functionalities available to the users) accessible
by the security analyst. The model depicted in Figure 5.3 is a simplified
version of the model used in this example since the state s0 is reachable
through a login phase on the web application (used to log in the user that
performs the attacks); the first login phase is deliberately not attackable. A
NoAttack statement has been introduced in the model in order to skip the
first login action during the research of counterexamples. This is due to the
fact that another login functionality is implemented in the web application
and the first one is not meant to be attacked.

The definition of the actions in Figure 5.3 is reported in Table 5.3.
The data used by the actions of DVWA are the ones in the following tuple:

UserData =
(
credential,
id,
profile,
fileAddress,
password1,
password2,
text,
ip,
message,
session,
)

Since the functionalities are “stand alone” (i.e., in the model every single
data is used only by one functionality) and one single user is required to
attack the application. The initial state for the transition system that I use
is the one where a Guest user has a valid session with the web application

138 Chapter 5. Case Studies

Table 5.3: Definition of the actions for the DVWA case study.

Login(x , x .credential)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , x .cred] = Initial
Reset M for x
Add Granted into M [x , x .session]

Add Checked into M [x , x .credential]
End

LoginNoAttack(x , x .credential)
if M [Anon,Anon.session] = Granted
if M [x , x .cred] = Initial
Reset M for x
Del Granted into M [Anon,Anon.session]

Add Granted into M [x , x .session]

Add Checked into M [x , x .credential]
Add NoAttack into M [x , x .credential]

End

Logout(x)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Del Granted into M [x , x .session]

Add Granted into M [Anon,Anon.session]

End

SearchForm(x , y.id)

if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add Checked into M [x , x .id]

Add ShowDB into M [x , y.profile]
End

ChangePwd(x , x .pwd1 , x .pwd2)

if M [x , x .session] = Granted
if x ! = Anon
if M [x , x .pwd2] = Initial
Reset M for x
Add Checked into M [x , x .pwd1]

Add WriteDB into M [x , x .pwd2]

End

PingBox(x , x .ip)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add Exec into M [x , x .ip]
Add ShowSD into M [x , x .message]

End

InputEcho(x , x .text)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add Echo into M [x , x .text]

End

FileUpload(x , x .fileAddr)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add WriteFS into M [x , x .fileAddr]

End

SendMessage(x , x .message)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add WriteDB into M [x , x .message]
Add ShowDB into M [x , x .message]

End

FileInclusion(x , x .fileAddr)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add PageIncluded into M [x , x .fileAddr]

End

FileAccess(x , x .fileAddr)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add showFS into M [x , x .fileAddr]

End

5.3. Damn Vulnerable Web Application 139

usr.FileUpload(ads)

usr.FileInclusion(adr)

usr.PingBox(ip)

usr.Login(cr)

usr.ChangePwd(pwd1, pwd2)

usr.SendMessage(m)

usr.SearchForm(id)

usr.FileAccess(adr)

usr.InputEcho(text)

Anon.LoginNoAttack(cr)

usr.Logout()

Figure 5.3: DVWA high-level model.

and knows some credentials (that will be used in order to test a second login
phase) and a password:

Anon Admin
Guest .ses Granted
Adm.Cred Init
Adm.Pwd1 Init

5.3.2 Brute Force

Goal

In this example, the application displays a login form that the security
analyst can test through brute-forcing techniques.

The goal used in order to test this type of attack is PasswordBruteForce
(described in Section 4.2.7 Page 86).

Attack trace(s)

The check statement used in this model and the resulting counterex-
ample reflect the simplicity of the model (i.e., the small number of states
required to find a counterexample):

140 Chapter 5. Case Studies

check PasswordBruteForce for 3 State, 2 User, 15 Data

Trc0=[NoAction, LoginNoAttack, Login]
Sko0=[2, AdminCredential, Admin]

Concretization parameters

In order to test this attack, I use a list of passwords, e.g.,

admin
test
john
12345
qwerty
qwertz
asd
administrator
watson

and the message

Welcome to the password protected area

as an indicator for the success of the attack.

Results and comparison with other tools

The results of the tests are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ ∼ NA

The results have to be read as follows:

• The framework and Burp completed the task successfully (with Burp
a manual check of the results was needed).

• With ZAP the attack is possible with some work on the payloads.

• Paros does not permit security to the analyst to perform brute force
attacks.

Small conclusion

In this example, I show how the framework can be used in order to
automatize brute forcing attacks. The possibility of defining how an attack
has to be checked (i.e., if it is successful or not) makes the framework able
of bringing the automatization a step further and lowering the discovery of
false positive attacks (even if a good knowledge of the web application is
required for the security analyst).

5.3. Damn Vulnerable Web Application 141

5.3.3 Command Execution

Goal

In this part of the web application, a form permits the user to ping an IP
address. The attack aims at executing a command on the target server. In
order to test this vulnerability, the goal used in the model is CommandExec
presented in Section 4.2.5 Page 85.

Attack trace(s)

During the model checking phase the following check has been used:

check CommandExec for 3 State, 2 User, 21 Data

The resulting counterexample are:

Trc0=[NoAction, LoginNoAttack, PingBox]
Sko0=[2, AdminIp, Admin]

Concretization parameters

The payloads used in this example are the ones for Command-Injection
presented in Section 5.1.10.

Results and comparison with other tools

The results of the tests are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X X

In this scenario only the framework and the Burp intruder were able of
successfully completing the tests (i.e., find the vulnerability).

Small conclusion

As already discussed for the WebGoat lesson in Section 5.1.10, the pay-
loads used during the tests of this type of attack are one of the key factors
in discovering the vulnerability. The capability of the proposed framework
to perform this type of analysis is confirmed.

5.3.4 File Inclusion

Goal

In this example, the displayed page is loaded through a ‘page parameter
(i.e., ?page=index.php), the goal is to determine which files are included.

The goal used in the model is FileInclusion (Section 4.2.1 Page 73 and
as already used in Section 5.1.16).

142 Chapter 5. Case Studies

Attack trace(s)

During the model checking phase the following check has been used:

check FileInclusion for 3 State, 2 User, 1 Data

The resulting counterexample is:
Trc0=[NoAction, LoginNoAttack, FileInclusion]
Sko0=[2, AdminFileAddress, Admin]

Concretization parameters

The payloads used are the same as the forced browsing attack in Sec-
tion 5.1.16 for WebGoat (i.e, a list of resources to be tested).

Results and comparison with other tools

The test results show the capability of the framework (along with Burp)
of finding the vulnerability:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X X

Small conclusion

The framework has been able of performing the attack. This only gives
a valid indicator on the possibility of performing this type of tests since they
depend on the set of payloads used rather than on the testing methodologies.

5.3.5 SQL-Injection and Blind SQL-Injection

Goal

The goal used in this example is SQLInj (see Section 4.2.4 Page 83).

Attack trace(s)

During the model checking phase the following check has been used:

check SQLInj for 3 State, 3 User, 21 Data

The resulting counterexample are:
Trc0=[NoAction, LoginNoAttack, SearchForm]
Sko0=[2, AdminId, Admin]

Trc1=[NoAction, LoginNoAttack, SearchForm]
Sko1=[2, AdminId, Admin]

The functionalities used for the two attacks are the same. In the blind SQL-
Injection (Trc1 and Sko1) the error messages from the database are filtered
and thus also the counterexamples of the two attacks are the same.

5.3. Damn Vulnerable Web Application 143

Concretization parameters

The payloads used are the ones for SQL-Injection presented in the pre-
vious sections for this type of tests.

Results and comparison with other tools

The results of the tests are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X ✓
Result ✓ ✓ X ✓

Small conclusion

The results of the tests are not unexpected (apart from the unsuccessful
test with ZAP). SQL-Injection vulnerabilities are well known and the testing
methodologies of the tools are mature. In this example, the framework is
aligned with the benchmark tools.

5.3.6 File Upload

Goal

The goal used for this example is XSS_FileUpload defined as a specifi-
cation of XSS attack in Section 4.2.3 Page 78.

Attack trace(s)

During the model checking phase the following check has been used:

check FileUpload for 4 State, 3 User, 21 Data

The resulting counterexample are:

Trc0=[NoAction, LoginNoAttack, FileUpload, ’FileAccess’]
Sko0=[’2’, ’AdminFileAddress’, ’3’, ’Admin’]

Concretization parameters

The payload used is the one presented in Section 5.2.2.

Results and comparison with other tools

As in the example presented in Section 5.2.2, the proposed framework
was able to test the vulnerability and check the presence of the attack:

Framework Burp OWASP ZAP Paros
Result ✓ NA NA NA

144 Chapter 5. Case Studies

Small conclusion

With this example, I show how it is possible to automatize the research
of not trivial attacks. For the benchmark tools, I do not give a negative eval-
uation because this type of attack is for them out of scope. The possibility
of performing this type of tests with the framework is an added value for
the security analysts that can automatize the tests without performing them
manually (with a considerable investment of time).

5.3.7 Reflected XSS

Goal

In this example, the page contains a form that takes an input and returns
a message containing the input data. The goal used in the model is XSS
presented in Section 4.2.3 Page 78.

Attack trace(s)

During the model checking phase the following check has been used:

check XSS for 3 State, 3 User, 21 Data

The resulting counterexample is:

Trc0=[NoAction, LoginNoAttack, InputEcho]
Sko0=[2, AdminText, Admin]

Concretization parameters

The payloads used for this example are the ones for XSS presented in
Section 5.1.7.

Results and comparison with other tools

The results of the tests are:

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X ✓

where only ZAP was not able to find the vulnerability.

Small conclusion

In this example, the suitability of the framework in performing a reflected
XSS attack is aligned with the benchmark tools. As for other examples,
this attack is well known and modern security tools are using mature testing
methodologies. In this scenario, the framework can be used as an alternative
to such tools.

5.4. OnlineShop 145

5.3.8 Stored XSS

Goal

In this example, the target functionality is a form that the user can use
to leave a message on a guestbook. The goal used is StoredXSS presented
in Section 4.2.3 Page 78.

Attack trace(s)

During the model checking phase the following check has been used:

check StoredXSS for 4 State, 3 User, 21 Data

The resulting counterexample are:

Trc0=[NoAction, LoginNoAttack, SendMessage, SendMessage]
Sko0=[2, AdminMessage, 3, Admin, Admin]

Concretization parameters

The payloads used for this example are the ones for XSS presented in
Section 5.1.7.

Results and comparison with other tools

Framework Burp OWASP ZAP Paros
Result ✓ ✓ X ✓

Also in this case, only ZAP was not able to find the vulnerability.

Small conclusion

As I presented in the previous instances of stored XSS, the framework
has been able of finding the vulnerability but, in this case, two of the tested
tools were also able to find the vulnerability. This is due to the fact that
the messages delivered through the functionality are directly displayed as
the result of the submission and thus the tools are able to directly check the
attack.

5.4 OnlineShop

In this section, I discuss the model and the model checking results for
the OnlineShop case study.

The OnlineShop is a fictitious case studies where I assume to be modeling
a web application for electronic commerce. This made up application has
the features that most online shops have, i.e.,

146 Chapter 5. Case Studies

usr. ShowCatalog(x)

usr.ShowItem(itemId)

usr.AddItem(itemId)
usr.ShowBasket()

usr.FinalizeOrder(basket)

usr.EnterPayment(payment)

usr.EnterDelivery(profile)

usr.ConfirmOrder(basket)

Figure 5.4: OnlineShop high-level model.

• a catalog of products to be sold, and

• a basket for each user where items can be added before the purchase.

For this web application, I assume that, in order to purchase some goods,
a user has to (i) finalize the order (i.e., confirming the will of purchasing
the items contained in the basket), (ii) enter the payment information and
the delivery information, and in the end (iii) confirm the order (i.e., the
information that he gives during this process).

This section does not contain any result for the tests because the model
has been defined for a generic web application and thus the concretization
of counterexamples (from the model checking phase) has not been tested on
any real web application.

5.4.1 Model

The general model of OnlineShop (depicted in Figure 5.4) refers to the
expected workflow that a user has to follow in order to complete a transaction
with the web application (i.e., purchase some items). The actions contained
in the model (the definition of which is given in Appendix 5.4) refer to the
functionalities of a web application where a user can browse a catalog of
items, view an item, add an item to his basket, send delivery and payment
information, and conclude the order.

The data structure used in this model is:

5.4. OnlineShop 147

Table 5.4: Definition of the actions for the OnlineShop case study.

ShowCatalog(x)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add ShowBD into M [x , x .catalog]

End

ShowItem(x , itemId)

if M [x , x .session] = Granted
if x ! = Anon
if M [x , x .catalog] = showDB
Reset M for x
Add ShowSD into M [x , x .item]

End

AddItem(x , itemId)

if M [x , x .session] = Granted
if x ! = Anon
if M [x , x .item] = showSD
Reset M for x
Add WriteSD into M [x , x .basket]

End

ShowBasket(x)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add ShowSD into M [x , x .basket]

End

FinalizeOrder(x , x .basket)
if M [x , x .session] = Granted
if x ! = Anon
if M [x , x .basket] = showSD
Reset M for x
Add Checked into M [x , x .basket]

End

EnterPayment(x , payment)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add WriteDB into M [x , x .payment]
Add Checked into M [x , x .payment]

End

EnterDelivery(x , x .profile)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add WriteDB into M [x , x .profile]
Add Checked into M [x , x .profile]

End

ConfirmOrder(x , x .basket)
if M [x , x .session] = Granted
if x ! = Anon
Reset M for x
Add WriteDB into M [x , x .basket]
Add Checked into M [x , x .basket]

End

148 Chapter 5. Case Studies

UserData =
(
catalog = (itemId, ...),
userId,
profile = (name, surname, address),
payment = (bankAccount,...),
basket = (itemId, ...),
item = (itemId, description, name,...),
session,
)

The initial state of the transition system that I use is the one where a
user has a valid session with the web application:

Anon Admin
Usr .ses Granted

In this case study, I do not model multiple users and thus the model checking
phase is carried out with a single user that already has a valid session with the
web application. In the following, I show the results of the model checking
phase with respect to the logic flaws discussed in Section 4.2.2 Page 75.

5.4.2 Check Payment

Goal

One of the security requirements for a web application like the one I
am modeling is that it is not possible to confirm an order without paying.
The Alloy goal used in order to test this flaw is CheckPayment (discussed in
Section 4.2.2 Page 77).

Attack trace(s)

During the model checking phase the following check has been used:

check CheckPayment for 8 State, 1 User, 20 Data

The resulting counterexample is:

Trc0=[NoAction, ShowCatalog, ShowItem, AddItem, ShowBasket,
FinalizeOrder, EnterDelivery, ConfirmOrder]

Sko0=[7, UserPayment]

Small conclusion

This example shows how the framework can be used in order to test logic
vulnerabilities where important checks are skipped by the web application.
The definition of the goal reflects the understanding of the security analyst

5.4. OnlineShop 149

of the process workflow (implemented by the web application) and thus rep-
resents the actual flaw (i.e., it contains the assumption on the workflow that
the flaw exploits). The benchmark tools used in the previous sections focus
their tests on well known vulnerabilities and lack in understanding the “logic”
behind a tested web application. With this example I show that the model
checking phase of the framework can be used in order to derive possible tests
for logic flaws (I believe, with promising results).

5.4.3 Skip Stages

Model and Goal

As discussed in Section 4.2.2, one of the possible tests for multistage
mechanisms (as the one modeled in this case study) is to proceed directly to
each stage in turn, and continue the normal sequence from there.

In this example, I modify the initial model by introducing a fact to force
the workflow of the process. For each action in the workflow, I have defined
an Alloy fact that states which is the next action to be performed. As
an example the following fact states that the action ShowCatalog must be
followed by the action ShowItem:

fact {
all s: State, s’: s.next{
ShowCatalog in s.action implies ShowItem in s’.action

}
}

Another assumption that I make about the possible evolutions of the
model is that each execution fragment must contain only one instance of
every action. The Alloy fact that forces this behavior is:

fact {
all s: State, s’: s.next, x:Action{

x in s.action implies x not in s’.^next.action
}

}

In Section 4.2.2, the possible goal for the flaw that I am addressing in
this section has not been presented. This is due to the fact that the goal that
I am introducing here does not contain any information about any flaws but
is only used in order to launch the model checking phase. Since the evolution
of the model is forced by the facts introduced before, the following goal only
checks if with a fixed numbers of sates, the action ConfirmOrder (as the last
action of the workflow) can be “executed”:

150 Chapter 5. Case Studies

assert CheckWorkFlow {
no s : State {

ConfirmOrder in s.action && s = last
}

}

Attack trace(s)

The check statements used during the model checking phase and the
resulting counterexamples are:

check CheckWorkFlow for 2 State
Trc0=[NoAction, ConfirmOrder]

check CheckWorkFlow for 3 State
Trc1=[NoAction, EnterDelivery, ConfirmOrder]

check CheckWorkFlow for 4 State
Trc2=[NoAction, EnterPayment, EnterDelivery, ConfirmOrder]

...

check CheckWorkFlow for 8 State
Trc6=[NoAction, ShowItem, AddItem, ShowBasket, FinalizeOrder,

EnterPayment, EnterDelivery, ConfirmOrder]

check CheckWorkFlow for 9 State
Trc7=[NoAction, ShowCatalog, ShowItem, AddItem, ShowBasket,

FinalizeOrder, EnterPayment, EnterDelivery, ConfirmOrder]

As we can see, the traces show that the actions are selected with respect to
the workflow with an increasing number of states.

Small conclusion

In this example, I show how a model can be used in order to derive attack
traces where in the final state a security property is not invalidated. In this
case the execution fragment itself can be seen as a possible attack trace
since the workflow (that the developer wants a user to follow) of such traces
is not followed. The main objection to this example is that the modeled
web application is fictitious and thus a proper testing phase has not been
performed. I believe that without an analysis of the results in testing real
web applications with such approach, the results of the tests still require a
validation by a security analyst.

5.5. Case Studies Conclusion 151

5.5 Case Studies Conclusion

5.5.1 Models

In this section, I discuss the models of the case studies.

• WebGoat (I) - The general model of WebGoat discussed in Section 5.1.1
and depicted in Figure 5.1 has been used in order to test various lessons
(for some of them a slightly modified version of the original model has
been used). This model is well suited for our proof of concept since
its behavior follows the one of a real web application where a user can
login, manage a profile and see other users profile. The roles that are
given to the users also help the testing of access control vulnerabilities.

• WebGoat (II) - One action models have been defined for different
lessons of WebGoat. This choice reflects the structures of WebGoat
(presenting an attack for each lesson even if it is composed only by
one functionality). This type of models helps the proof of concept in
showing the testing capabilities of the framework rather than its model
checking phase.

• Gruyere - The Gruyere model (discussed in Section 5.2.1 and depicted
in Figure 5.2) is composed by actions that permit users to add/delete
messages (snippets), upload files, modify their profile, and see other
user profiles. This variety of functionalities helps in (i) testing different
vulnerabilities, and (ii) showing versatility of the framework in testing
these vulnerabilities.

• DVWA - This model (discussed in Section 5.3.1 and depicted in Fig-
ure 5.3) follows the division into pages of the real web application
(where every page contains a vulnerable entry point for a known vul-
nerability). From a model checker perspective the selection of the
different actions during the model checking phase is quite simple. The
variety of vulnerabilities makes it interesting for proving the testing
capabilities of the framework.

• OnlineShop - This model (discussed in Section 5.4.1 and depicted in
Figure 5.4) of a fictitious case study is used in order to derive coun-
terexamples for logic flaws and thus proves that the model checking
phase can be used also in this direction.

5.5.2 Types of Attacks

In this section, I summarize the results of the tests performed on the case
studies dividing them by typology of attack. A tabular representation of the
success of these attacks is reported in Table 5.5.
Access control flaws:

152 Chapter 5. Case Studies

Table 5.5: Results of the tests performed in the case studies (Chapter 5).
Legenda: CS – case studies; F – Framework, B – Burp Suite, Z – OWASP
ZAP, and P – Paros; WG – WebGoat, GR – Gruyere, DV – DVWA, and OS
– OnlineShop; ✓ – success of the tests, X – failure of the tests, ∼ – ineffective
test, and NA – the tests are inapplicable to the case study.

CS F B Z P
Access Control Flaws

Path Based Access Control Scheme WG ✓ ✓ ✓ X
Presentational Layer Access Control WG ✓ X X X
Data Layer Access Control WG ✓ ✓ ∼ X

AJAX Security
DOM-Injection WG ✓ X X X

WG X ✓ ∼ X
Reflected XSS via AJAX GR ✓ X X X

Cross-Site Scripting
WG ✓ X X X
GR ✓ ∼ X XStored XSS
DV ✓ ✓ X ✓

Targeted stored XSS GR ✓ ✓ X X
WG ✓ ✓ ✓ ✓
WG ✓ ✓ ✓ X
GR ✓ X X ∼Reflected XSS

DV ✓ ✓ X ✓
GR ✓ NA NA NA

File Upload XSS DV ✓ NA NA NA
Injection Flaws

WG X X X X
Command-Injection (or Execution) DV ✓ ✓ X X

WG ✓ ✓ X X
WG ✓ ✓ X X
WG ✓ ✓ X X
WG ✓ ✓ X X

SQL-Injection (string, numeric, . . .)

DV ✓ ✓ X ✓
DV ✓ ✓ X ✓

Log Spoofing WG ✓ ✓ ✓ ✓
Insecure Configuration

WG ✓ ✓ ∼ X
Forced Browsing DV ✓ ✓ X X
Path traversal GR ✓ X ∼ ∼

Miscellaneous
Password Brute Force DV ✓ ✓ ∼ NA

Logic Flaws
Missing Checks OS ✓ NA NA NA
Skip Stages OS ✓ NA NA NA

5.5. Case Studies Conclusion 153

• Path based access control scheme - The framework is able to access
resources that are not referenced by a web application and thus au-
tomatize this type of attack.

• Presentational layer access control - The framework is able to test
those functionalities that are accessible by users with high privileges
(i.e., roles) using users with less privileges.

• Data layer access control - In this example, I introduced the possibility
for the users of guessing data and thus augment the testing capabilities
of the framework.

AJAX security:

• DOM-Injection - The framework is able to perform tests for blocked
functionalities and try to bypass the restrictions coded in the DOM.

• Reflected XSS via AJAX - In one of the attacks, the implementation
of the test execution engine has been proved to be flawed while it was
able of discovering a vulnerability in another case.

Cross-Site Scripting (XSS):

• Reflected XSS - The framework has been able of finding the vulnera-
bilities.

• Stored XSS - The framework has been able to trigger XSS attacks (also
on targeted data) in different locations from the ones used to deliver
the payload.

• File upload XSS - The framework has been able of uploading a file that
allows for the execution of an arbitrary script in the web application.

Injection flaws:

• Command-Injection (or execution) - In one of the attacks, the imple-
mentation of the test execution engine has been proved to be flawed
while was able of discovering a vulnerability in another case.

• SQL-Injection (string, numeric, XPATH) - In the different instances
of reflected SQL-Injection attacks the framework has been able of per-
forming the tests with success.

• Log spoofing - The framework has been able of performing a log spoof-
ing attack (combined with a XSS attack).

Insecure configuration:

154 Chapter 5. Case Studies

• Forced browsing - The framework has been able of performing forced
browsing attacks from given locations against the web applications
under test.

• Path traversal - The framework has been able of performing path
traversal attack.

Other vulnerabilities:

• Password brute force - The framework can be used in order to autom-
atize brute forcing attacks.

Logic flaws:

• Missing checks - The framework has been used in order to test logic
vulnerabilities where important checks are skipped by the web appli-
cation.

• Skip stages - The framework has been able of deriving tests for multi-
stage mechanisms.

5.5.3 Conclusions and Future Research Directions

As I have discussed in the previous sections, a variety of scenarios and at-
tacks have been used during the initial proof of concept of the framework. In
the following I discuss some conclusion for the different phases that compose
the framework.

Modeling phase: As I have shown in the case studies, the behaviors that
security analysts can model using the framework follow the ones of real
web applications. The identification phase of the framework (i.e., identify
which functionalities have to be modeled) has resulted to be simple and
straightforward from the definition of the action. I believe that the examples
of actions and their structure in the Alloy model (along with the definition
of the transition system state) will help the security analysts in defining the
actions for their analyzes. Moreover, the defined goals are general enough to
be reusable in different models.

As future research directions I see the following:

• The definition of a larger database of actions (with the related param-
eters) will help the investigation on how the granularity of the actions
(i.e., the different levels of abstraction that I can have in my models)
changes the testing effectiveness of the framework.

• Since the set of atomic propositions has been proven to be satisfactory
for the performed tests, an analysis on how to infer a model from a
real web application could be of interest for future researches.

5.5. Case Studies Conclusion 155

Concretization Methodology: The counterexamples derived from the
model checking phase contain enough information to permit different con-
cretization methodologies.

The methodology implemented in the preliminary version of the frame-
work (i.e., counterexamples + hard coded configuration values and low-level
definitions + instantiation level) has been able to deal with a variety of func-
tionalities and types of attacks. The instantiation library can be extended
with additional payloads without too much effort and thus is well suited to
be customized by security analysts. Once a security analyst has developed
suitable sets of payloads for the various attacks, the framework helps in her
analysis by testing automatically the payloads for every possible entry point
found for a given attack.

An investigation of the possible extensions in order to increase the testing
coverage of the framework is also required. In this direction, an analysis on
how to infer and gain data runtime from a web application should be made.

Test execution engine: The test execution engine has been able to per-
form a variety of tests for different vulnerabilities. The results of the test
proved to be aligned with the results of the tests performed with the bench-
mark tools:

• The tests for well known vulnerabilities gave results comparable with
the benchmark tools.

• In one case, the implementation of the test execution engine has proven
to be flawed. The flaw was caused by a forced encoding on the data
that the web application misinterpreted.

• In one instance, the security controls implemented on the server (not
in the web application) blocked the attack.

• For two XSS attacks via file uploads and one instance of stored XSS,
the test execution engine has proven to be efficient and successful in
testing this type of attacks.

I believe that the small problems with the text execution engine can be
solved with the extension of the framework with the VERA tool. As stated
in Section 4.5.3, some adjustments are required on both the low-level attacker
models and the python engine in order to permit the correct functioning of
the VERA tool. Since the test execution engine suffers from some flaws (it
has been used only as a proof of concept), a thorough analysis of the needed
adjustments is required. During this analysis there is the possibility of having
to reengineer the code of the test execution engine. On the other hand, with
this extension the framework can be used by real testing group and helps
analysis of web applications. One of the main advantages that the framework

156 Chapter 5. Case Studies

can bring in a testing environment is its usability as a valid alternative to
other security tools (even though a certain experience is required).

Chapter 6
Related work

I have already mentioned a number of works in the areas of model-based
and penetration testing, and I now discuss the differences between some
approaches and the proposed framework.

6.1 Model-checking Driven Security Testing of
Web-based Applications

One of the main problems of using model checking tools is to effectively
test the implementation of the software be that a protocol, a program or, as
in this thesis, a web application.

Considering protocols, an import line of work is presented in [4, 5]. While
[4] focuses on how model checking could be applied to the security testing of
web-based applications (e.g. SAML-based Single Sign-On for Google Apps),
[5] focuses more on how to automatically concretize the counterexample pro-
duced by the model checker.

Models: The model used in [4, 5] describes the HTTP requests and re-
sponses that a client and a server exchange during the execution of a security
protocol. The formal specification of a security protocol is used in order to
define the model. After the model checking phase if counterexamples are
found the implementation of the protocol is analyzed during a testing phase.
In [4] the protocols are specified using HLPSL (the specification language of
the AVISPA Tool [8]) while in [5] they are specified using ASLan [7] (a spec-
ification language developed in the context of the AVANTSSAR Project [6]).

The main difference that the model of the framework has with this ap-
proach resides in the fact that the level of abstraction of the model is dif-
ferent. A similarity can be found in the fact that both approaches are not
interested in the implementation details of a protocol/functionality until the

157

158 Chapter 6. Related work

testing phase.

Model checking phase: In [4, 5], test cases are generated by checking if
a security property (e.g., confidentiality, authenticity, authorization) of the
model could be violated by a Dolev-Yao attacker.

Regarding the models, the major differences with this approach reside
in:

• The goals used in the framework’s models refer to known vulnerabili-
ties.

• The model checking phase does not use an attacker entity during the
analysis of a model.

• Since my approach uses known vulnerabilities, the model checking
phase of the framework is used to derive those execution fragments
that refer to known vulnerabilities. This means that new vulnerabili-
ties (i.e., that have not been already discovered and formalized) cannot
be found with my approach. Approaches like the one presented in [4, 5]
can be used in order to building the set of vulnerabilities that are re-
lated to certain functionalities and can be tested with the framework.

Concretization methodology: In the specification of security protocols,
the behavior of the agents involved in the communication is represented
with abstract messages. The operations to check incoming messages and to
generate outgoing ones are thus implicit.

In ASLan, message checks are realized by pattern matching procedures
on fields:

• Received message must match some expressions stored in the state of
the agent.

• Outgoing messages are calculated without specifying which operations
are performed to compute it.

In order to interact with a system under test, they manually define the pat-
tern matching procedures for these messages using a pseudo-language com-
posed of statements such as if-then-else, foreach and the like. The test exe-
cution engine uses the same pseudo-language in order to execute the defined
procedures and is thus specific to model checker but protocol independent.
This means it could be applied generally to the analysis of different security
protocols.

The difference in the concretization methodology used in the framework
relies on the fact that the counterexamples that have to be concretized are on
a different level of abstraction. The counterexamples for security protocols

6.2. Mutation Testing 159

derived with the methodology of [4, 5] are more congruent to HTTP messages
than the functionalities that I model.

Concluding, the methodology proposed in [4, 5] is focused on binding
the specification of security protocols to actual implementations; the results
are particularly promising but not directly comparable to mine, since my
framework is at a different level of abstraction.

6.2 Mutation Testing

In [14, 15], the authors present an approach and a tool (SPaCiTE) for
model-based security testing of web applications closely related to mutation
testing.

Models: In [14, 15], the authors assume that security properties (e.g.,
confidentiality, authenticity, authorization) have to be provided with the
model and that the model has to be secure with regard to these properties
(i.e., if the model checker is run on this model no counterexample is found).
The security analyst has to define the model by using abstract messages.
These messages represent common actions a user of the web application can
perform. The idea is that these abstract messages are sent to the server to
tell it which action the client wants to perform. Models of web applications
are defined using ASLan++ [7] (a language created for modeling security
protocols). All users of the web application and the server are defined as
entities. Since the model is created with a tool designed for security protocols
it describes one possible interaction (the exchanged messages) between users
and a web application.

Regarding the models, the major differences with this approach reside
in:

• The model that I propose has not to be a secure model since my ap-
proach relies on the fact that counterexamples can be generated from
a newly defined model.

• The goals used in the framework’s models refer to known vulnerabilities
while in this approach the goal is defined by the security analyst on
the base of the content of the model.

• The conditions and operations that are used in order to define the
functionalities of a web application describe both the client-side and
the server-side of the application where the messages exchanged are
not important.

• In my approach, defining the possible functionalities that can be ac-
cessed by a user while interacting with a web application do not require
a user to follow a predefined sequence of actions (we give to the security

160 Chapter 6. Related work

expert the freedom in deciding where the actions have to be concate-
nated).

Model checking phase: The generation the attack traces is made via
mutation operators that are used in order to automatically introduce vul-
nerabilities in the model, i.e., invalidate the security properties. Mutants
operators presuppose that standardized ASLan++ facts (i.e., facts like check
permission or has role) have been used in order to define the model. Once a
mutation operator has been applied to the model, the model checker verifies
if the mutated model is still secure for the original goal. In this approach
an implicit relation between the goals and the mutation operators is intro-
duced: If the mutant operator is not in the scope of the goal (i.e., they use
different facts) then the model results secure even if a vulnerability has been
introduced.

Regarding the model checking phase, some differences reside in

• The goals defined for the framework are defined as representations of
known vulnerabilities and are used in order to derive those execution
fragments that permit to test known vulnerabilities. If a goal fails to
find a counterexample then it will fail until new functionalities or data
are introduced in the model.

• The goals defined for the framework can be used in different models
(i.e., the goals are not model dependent).

• My approach does not mutate the model in the model-checking phase.

Concretization methodology: The authors propose a concretization method-
ology divided in two phases. In the first phase the WAAL language is used
to map the exchanged abstract messages between agents into actions that a
user performs in a web browser, i.e.,

• browser interface actions – which are similar to API methods from
Selenium, and

• verification actions – which are used to verify whether an observed
response matches with an expected one.

In the second phase the WAAL sequence of actions is mapped to executable
source code (this mapping is done once and for all).

The difference in the concretization methodology used in the framework
relies on the fact that the abstraction gap between the model and the imple-
mentation of web application is filled directly by using the HTTP requests
that the functionalities use.

My framework provides to the security analyst the means to create a
model of web application with actions that are used in all of the testing

6.3. Formal Foundation of Web Security 161

phases, whereas the approach in [14, 15] needs more expertise in its creation,
and does not provide a standard methodology for doing it. On the other
hand, the approach of [14, 15] is more mature than mine.

6.3 Formal Foundation of Web Security

[3] proposes a methodology for the analysis of several sample web mecha-
nisms and applications, which relies on the Alloy analyzer but, again, resides
on a different level of abstraction than my framework since they model net-
work infrastructures rather than web applications.

Models: The modeling is devised to give the security analyst the abil-
ity of modeling network infrastructures and messages exchanged by entities
connected to the network. The models describe what could occur if a user
navigates the web and visits sites in the ways that the web is designed to be
used. The model is composed by three parts:

• Web concepts that model the server and the browser.

• Threat models that define a web attacker and a network attacker.

• Security goal that define a security invariant and the session integrity.

The main difference between this approach and the framework is that the
latter focuses on the interaction between the functionalities that compose a
single web application, and how data types are handled.

Model checking phase: In [3], the authors identify two main security
goals for web applications security:

• Security invariant - The web contains a large number of existing web
applications that make assumptions about web security. They formal-
ize these goal as a set of invariants expected to remain true during the
model checking phase.

• Session integrity - When a server takes action based on receiving an
HTTP request, the server often wishes to ensure that the request was
generated by a trusted principal and not an attacker. They formalize
this goal by recording the “cause” of each HTTP request and checking
whether the attacker is in this casual chain.

Concretization methodology: In [3], the concretization methodology
is not defined. A manual reproduction of the attacks found in the model
checking phase is thus required in order to execute the test cases.

Chapter 7
Conclusion

7.1 Summary

In this thesis I have proposed a formal and flexible model-based security
testing framework that supports a security analyst in carrying out security
testing of web applications. During the analysis for the definition of my
framework the principal goal has been to create a methodology that permits
to reuse the expertise of the penetration testers in a model-based environ-
ment. A particular attention has been put in the simplification of the usage
of model-based testing for those analysts who are not accustomed to such
techniques.

The dissertation started with the definition of a suitable methodology for
modeling web applications for security testing. I have introduced the formal
definitions about the information that are modeled:

• The knowledge that users can acquire during the interaction with a
web application, and the data that the users handle.

• The behavior that a web application can manifest through the inter-
action with a user.

• Those information that can be used in order to perform security testing.

These information have been used in order to define a state of the transi-
tion system that has been used during the analysis. I have completed the
modeling approach by defining the actions (i.e., abstract representations of
parts of the web application providing some particular functionalities) that
permit the evolution of the transition system.

For concreteness the transition system has been instantiated as an Alloy
model. I have defined the security goals (that the models have to satisfy)
as flaws that a security analyst can tests and gave examples for a variety of
vulnerabilities.

163

164 Chapter 7. Conclusion

In order to fill the abstraction gap between the attack traces and the
implementation of the web applications I have introduced a suitable con-
cretization methodologies, and presented a preliminary version of the imple-
mentation of the framework.

As an initial proof of concept, I have shown the application of the frame-
work to the four case studies WebGoat, DVWA, Gruyere and OnlineShop,
and used three security tools as benchmarks for the various tests.

As illustrated by the case studies, the use of actions has a positive im-
pact on all the phases of the framework that I propose, resulting, I believe,
in a quite simple and flexible methodology for testing the security of web
applications.

One of the strengths of my approach is the reusability of actions and of
the sets UKnows , WAEvent and SECAssertion that compose the set of atomic
proposition (AP , Definition 10). The expertise required in order to populate
the InstLib is automatically “reused”. The reusability of actions has also
an implicit impact on scalability: the security analyst can identify existing
parameters for the web application from a set of known actions (with asso-
ciated parameters) or she can define new ones and then improve the set of
actions.

If this strength may sound trivial for the more skilled penetration tester,
I believe that the adoption of my framework by a testing group can result in
a non-indifferent improvement for the testing capability of the whole group.
New attack techniques and payloads can be inserted into the framework
without changing (or compromising) the testing methodology.

Regarding the security goals, I am aware that a basic knowledge of logic is
required in order to write them, but their reusability compensates the efforts
put in their definition. As stated before, the security goals are a high-level
representation of vulnerabilities, thus, a security analyst can use the same
goal in models of different web applications without any problems.

To summarize, I believe that modeling web applications using actions,
rather than using messages representing the underlying protocol, has a lot
of potential but further work is, of course, still needed.

7.2 Future Work

Various future research directions are possible in all the phases of the
framework. In the following I give an overview of the possible future work.

Modeling phase: Regarding the modeling phase the main task is to create
a larger database of actions with the related parameters. Actions can be
defined at some level of abstraction, thus multiple actions at different levels of
abstraction can be added to the database for the same functionality (i.e., for a
functionality one has to instantiate actions at different levels of abstraction).

7.2. Future Work 165

With the definition of such database it is possible to investigate how the
granularity of the actions changes the testing effectiveness of the framework
while dealing with models with different levels of abstraction. This task will
also give useful inputs on the possible extension of the remaining phases of
the framework.

As an additional direction of research, the analysis on how to infer a
model from a real web application could be of interest. Since the set of atomic
propositions has been proven to be satisfactory for the performed tests, the
idea is to search for the relations between the real web application’s source
code and the atomic propositions that have been defined. Even if interesting
as a research direction, dealing with the source code of web applications is
not a simple task. The variety of technologies used and the complexity of
the code require a thorough investigation of the possible scenarios where the
definition of these relations is possible.

Concretization Methodology: This phase of the framework is probably
the one that requires more efforts in the future.

In this thesis, various attacks and flaws have been presented and tested.
One possible direction is to investigate what extensions are required in order
to increase the testing coverage of the framework, i.e., extend the possible
attacks that the framework can test.

Another possible direction is to infer and gain data runtime from the
web application under test. Implementing this feature in the framework has
various benefits:

• The security analyst can interact with the framework only in those
cases where the tests requires data that cannot be extracted from the
web application.

• The framework can achieve a higher simplicity of use and at the same
time lower the amount of work that is needed for a security analyst to
test a web application with the framework.

Test execution engine: Since the test execution engine suffers from some
flaws (it has been used only as a proof of concept), a thorough analysis of
the needed adjustments is required:

• The test execution engine has to be able to use the different encodings
that web applications use (e.g., HTML entity encoding, URL encoding
or Unicode encoding), and leverage the possible outcomes that derive
from the use of such encodings. The introduction of this feature re-
quires an investigation on how to relate the different encodings with
the functionalities that the test execution engine can request.

166 Chapter 7. Conclusion

• For the browsing and check phases of the framework the python en-
gine is implemented as a recursive function. In the check phase, the
cookie management can be problematic when the test execution en-
gine is dealing with multiple users. In order to solve this problem (i)
an analysis of complex attack traces is required in order to derive the
possible scenarios that can be obtained, and (ii) it possible that it
will be necessary to reengineer the code of the test execution engine
(i.e., the code of the functions that implement the browsing and check
phases of the framework has to be rewritten).

Another promising direction of work is to introduce the VERA tool as
test execution engine. Also in this case some adjustments are required:

• Since the low-level attacker models are defined to be used only by the
VERA tool, using them within the framework requires one to introduce
some ad-hoc functions in order to permit the correct execution of both
the framework python engine and low-level attacker model itself.

• Also the python engine has to be modified in order to permit the correct
functioning of the VERA tool.

Even if the first task could appear trivial, the introduction of the functions
that manage the correct exchange between the execution of the python engine
and the VERA tool is subordinated to the resolution of the flaws that the
python engine has. Thus the introduction of the VERA tool as test execution
engine has to wait until further analysis will be done.

Bibliography

[1] Alloy: A language & tool for relational models. alloy.mit.edu/alloy/,
2015.

[2] Acunetix. Acunetix web application security. http://www.acunetix.
com/vulnerability-scanner/.

[3] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell, and
Dawn Song. Towards a formal foundation of web security. In Proceed-
ings of the 2010 23rd IEEE Computer Security Foundations Symposium,
CSF ’10, pages 290–304, Washington, DC, USA, 2010. IEEE Computer
Society.

[4] Alessandro Armando, Roberto Carbone, Luca Compagna, Keqin Li,
and Giancarlo Pellegrino. Model-checking driven security testing of
web-based applications. In ICSTW ’10: Proceedings of the 2010 Third
International Conference on Software Testing, Verification, and Vali-
dation Workshops, pages 361–370, Washington, DC, USA, 2010. IEEE
Computer Society.

[5] Alessandro Armando, Giancarlo Pellegrino, Roberto Carbone, Alessio
Merlo, and Davide Balzarotti. From model-checking to automated test-
ing of security protocols: bridging the gap. In TAP’12: Proceedings of
the 6th international conference on Tests and Proofs, pages 3–18, Berlin,
Heidelberg, 2012. Springer-Verlag.

[6] Automated VAlidatioN of Trust and Security of Service-oriented AR-
chitectures. http://www.avantssar.eu/.

[7] AVANTSSAR. Deliverable 2.3 (update): ASLan++ specification and
tutorial, 2011. Available at http://www.avantssar.eu.

[8] Automated Validation of Internet Security Protocols and Applications.
www.avispa-project.org.

167

alloy.mit.edu/alloy/
http://www.acunetix.com/vulnerability-scanner/
http://www.acunetix.com/vulnerability-scanner/
http://www.avantssar.eu/
http://www.avantssar.eu
www.avispa-project.org

168 Bibliography

[9] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[10] Beef: The Browser Exploitation Framework Project. http://
beefproject.com/.

[11] Philippe Biondi. Scapy. http://www.secdev.org/projects/scapy/.

[12] Abian Blome, Martín Ochoa, Keqin Li, Michele Peroli, and Moham-
mad Torabi Dashti. VERA: A flexible model-based vulnerability test-
ing tool. In 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, Luxembourg, Luxembourg, March
18-22, 2013, pages 471–478, 2013.

[13] Mugdha Bendre Bruce Leban and Parisa Tabriz. Gruyere: Web Ap-
plication Exploits and Defenses. https://www.owasp.org/index.php/
Category:OWASP_WebGoat_Project, 2015.

[14] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Semi-
automatic security testing of web applications from a secure model.
In Sixth International Conference on Software Security and Reliability,
SERE 2012, Gaithersburg, Maryland, USA, 20-22 June 2012, pages
253–262, 2012.

[15] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. SPaCiTE
- web application testing engine. In 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, Montreal,
QC, Canada, April 17-21, 2012, pages 858–859, 2012.

[16] Steven R. Lavenhar Christoph Michael and Howard F. Lipson. Source
Code Analysis Tools - Overview. https://buildsecurityin.us-cert.
gov/bsi/articles/tools/code/263-BSI.html, 2009.

[17] Chinotec Technologies Company. Paros - web application security as-
sessment. http://www.parosproxy.org/.

[18] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guil-
herme H. Travassos. A survey on model-based testing approaches: A
systematic review. In Proceedings of the 1st ACM International Work-
shop on Empirical Assessment of Software Engineering Languages and
Technologies: Held in Conjunction with the 22Nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE) 2007,
WEASELTech ’07, pages 31–36, New York, NY, USA, 2007. ACM.

[19] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, 29(2):198–207,
1983.

http://beefproject.com/
http://beefproject.com/
http://www.secdev.org/projects/scapy/
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://buildsecurityin.us-cert.gov/bsi/articles/tools/code/263-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/tools/code/263-BSI.html
http://www.parosproxy.org/

Bibliography 169

[20] Rik Eshuis. Reconciling statechart semantics. Science of Computer
Programming, 74(3):65 – 99, 2009.

[21] Ettercap. http://ettercap.sourceforge.net/.

[22] Firesheep. http://codebutler.github.com/firesheep/.

[23] HP Fortify. HP WebInspect. https://www.fortify.com/products/
web_inspect.html.

[24] Grendel-Scan. http://grendel-scan.com/.

[25] Cenzic Hailstorm Professional. http://www.cenzic.com/products/
cenzic-hailstormPro/.

[26] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Pro-
tection in operating systems. Commun. ACM, 19(8):461–471, August
1976.

[27] IBM. Rational AppScan. http://www-01.ibm.com/software/
awdtools/appscan/.

[28] Immunity Inc. Immunity CANVAS. http://www.immunitysec.com/
products-canvas.shtml.

[29] Girish Janardhanudu and Ken van Wyk. White box test-
ing. https://buildsecurityin.us-cert.gov/bsi/articles/
best-practices/white-box/259-BSI.html, 2009.

[30] LAPSE: The Security Scanner for Java EE Applications. https://www.
owasp.org/index.php/OWASP_LAPSE_Project.

[31] PortSwigger Ltd. Burp suite. http://portswigger.net/burp/.

[32] SensePost Pty Ltd. Wikto. http://www.sensepost.com/labs/tools/
pentest/wikto.

[33] Gordon Lyon. Nmap security scanner. http://www.nmap.org/, 2011.

[34] Maltego. http://www.paterva.com/web5/.

[35] George H. Mealy. A method for synthesizing sequential circuits. Bell
System Technical Journal, 34(5):1045–1079, 1955.

[36] N-Stalker. N-Stalker Web Application Security Scanner. http://www.
nstalker.com/products/editions/.

[37] Tenable network security. Tenalbe Nessus. http://www.nessus.org/
products/nessus.

http://ettercap.sourceforge.net/
http://codebutler.github.com/firesheep/
https://www.fortify.com/products/web_inspect.html
https://www.fortify.com/products/web_inspect.html
http://grendel-scan.com/
http://www.cenzic.com/products/cenzic-hailstormPro/
http://www.cenzic.com/products/cenzic-hailstormPro/
http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
http://www.immunitysec.com/products-canvas.shtml
http://www.immunitysec.com/products-canvas.shtml
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/white-box/259-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/white-box/259-BSI.html
https://www.owasp.org/index.php/OWASP_LAPSE_Project
https://www.owasp.org/index.php/OWASP_LAPSE_Project
http://portswigger.net/burp/
http://www.sensepost.com/labs/tools/pentest/wikto
http://www.sensepost.com/labs/tools/pentest/wikto
http://www.nmap.org/
http://www.paterva.com/web5/
http://www.nstalker.com/products/editions/
http://www.nstalker.com/products/editions/
http://www.nessus.org/products/nessus
http://www.nessus.org/products/nessus

170 Bibliography

[38] OWASP. Open Web Application Security Project. https://www.
owasp.org.

[39] OWASP. WebScarab. https://www.owasp.org/index.php/Category:
OWASP_WebScarab_Project.

[40] OWASP. Zed Attack Proxy Project (ZAP). https://www.owasp.org/
index.php/OWASP_Zed_Attack_Proxy_Project.

[41] OWASP. WebGoat Project. https://www.owasp.org/index.php/
Category:OWASP_WebGoat_Project, 2011.

[42] OWASP. OWASP Testing Guide. https://www.owasp.org/index.
php/OWASP_Testing_Project, September 2014.

[43] OWASP. Broken access control. https://www.owasp.org/index.php/
Broken_Access_Control, 2015.

[44] OWASP. Brute force attack. https://www.owasp.org/index.php/
Brute_force_attack, 2015.

[45] OWASP. Command-Injection. https://www.owasp.org/index.php/
Command_Injection, 2015.

[46] OWASP. Cross-site Scripting. https://www.owasp.org/index.php/
XSS, 2015.

[47] OWASP. Forced browsing. https://www.owasp.org/index.php/
Forced_browsing, 2015.

[48] OWASP. Injection Flaws. https://www.owasp.org/index.php/
Injection_Flaws, 2015.

[49] OWASP. Path manipulation. https://www.owasp.org/index.php/
Path_Manipulation, 2015.

[50] OWASP. Path traversal. https://www.owasp.org/index.php/Path_
Traversal, 2015.

[51] OWASP. SQL-Injection. www.owasp.org/index.php/SQL_Injection,
2015.

[52] OWASP. Testing for AJAX Vulnerabilities. https://www.owasp.org/
index.php/Testing_for_AJAX_Vulnerabilities_(OWASP-AJ-001),
2015.

[53] QualysGuard IT Security. http://www.qualys.com/products/qg_
suite/.

https://www.owasp.org
https://www.owasp.org
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Broken_Access_Control
https://www.owasp.org/index.php/Broken_Access_Control
https://www.owasp.org/index.php/Brute_force_attack
https://www.owasp.org/index.php/Brute_force_attack
https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/Forced_browsing
https://www.owasp.org/index.php/Forced_browsing
https://www.owasp.org/index.php/Injection_Flaws
https://www.owasp.org/index.php/Injection_Flaws
https://www.owasp.org/index.php/Path_Manipulation
https://www.owasp.org/index.php/Path_Manipulation
https://www.owasp.org/index.php/Path_Traversal
https://www.owasp.org/index.php/Path_Traversal
www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Testing_for_AJAX_Vulnerabilities_(OWASP-AJ-001)
https://www.owasp.org/index.php/Testing_for_AJAX_Vulnerabilities_(OWASP-AJ-001)
http://www.qualys.com/products/qg_suite/
http://www.qualys.com/products/qg_suite/

Bibliography 171

[54] Rapid7. Metasploit Framework. http://www.metasploit.com/.

[55] SeleniumHQ: Web Application Testing System. http://seleniumhq.
org/.

[56] SPaCIoS: Secure Provision and Consumption in the Internet of Services.
www.spacios.eu, 2015.

[57] SPaCIoS: Definition of Attacker Behavior Models (Deliverable 2.4.1),
2012.

[58] SPaCIoS: Methodology and technology for vulnerability-driven security
testing (Deliverable 3.3), 2013.

[59] Dafydd Stuttard and Marcus Pinto. The Web Application Hacker’s
Handbook: Finding and Exploiting Security Flaws, 2nd Edition. John
Wiley & Sons, Inc., New York, NY, USA, 2011.

[60] Chris Sullo and David Lodge. Nikto. http://www.cirt.net/nikto2.

[61] Nicolas Surribas. Wapiti. http://wapiti.sourceforge.net/, 2006.

[62] DVWA team. Damn Vulnerable Web App (DVWA). http://www.dvwa.
co.uk, 2015.

[63] Core Security Technologies. Core Impact. http://www.coresecurity.
com/content/core-impact-overview.

[64] Jennifer Tenzer and Perdita Stevens. On modelling recursive calls and
callbacks with two variants of unified modelling language state dia-
grams. Formal Asp. Comput., 18(4):397–420, 2006.

[65] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy
of model-based testing approaches. Software Testing, Verification and
Reliability, 22(5):297–312, August 2012.

[66] Kenneth R. van Wyk. Penetration Testing Tools. https://
buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/
657-BSI.html, 2007.

[67] Wireshark. http://www.wireshark.org/.

http://www.metasploit.com/
http://seleniumhq.org/
http://seleniumhq.org/
www.spacios.eu
http://www.cirt.net/nikto2
http://wapiti.sourceforge.net/
http://www.dvwa.co.uk
http://www.dvwa.co.uk
http://www.coresecurity.com/content/core-impact-overview
http://www.coresecurity.com/content/core-impact-overview
https://buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/tools/penetration/657-BSI.html
http://www.wireshark.org/

	Contents
	Overview
	Introduction
	Motivation
	Thesis Approach
	Contributions
	Synopsis

	Preliminaries
	Penetration Testing
	Black-box Testing
	Source Code Analysis and White-box Testing

	Model-Based Testing
	Types of Tools
	Tools Survey

	Vulnerabilities
	Access Control Flaws
	Injection Flaws
	AJAX Flaw
	Other Vulnerabilities

	Modeling Web Applications
	Phases of the Framework
	Modeling Web Applications via a Transition System
	The Harrison, Ruzzo, Ullman Security Model
	Models of Web Applications

	Users
	Modeling a User
	Users' Data
	Users' Knowledge
	Knowledge Evolution
	Attackers

	Web Applications' Behavior
	Modeling Web Applications' Behavior
	Web Applications' Events
	Events and Knowledge

	Security Mechanisms & Testing-Related Information
	Modeling Security Mechanisms
	Modeling Testing-Related Information
	Security Mechanisms' Data
	Assertions
	Atomic Propositions

	States
	States of a Web Application
	Initial States
	Transitions and Reachable States

	Actions
	Functionalities of Interest
	Modeling Actions
	Primitive Transitions

	Modeling Approaches
	Small Conclusion

	Model Checking and Concretization
	Defining the Models in Alloy
	Alloy
	Models in Alloy
	Data Used in the Model
	States
	Actions

	Specifying Security Goals
	Access Control Goals
	Application Logic Goals
	Cross-Site Scripting
	SQL-Injection
	OS Commands
	AJAX Flaw
	Brute Force

	Concretization Methodology
	Counterexamples
	Configuration Values
	Instantiation Library

	The Implementation of the Framework
	VERA tool
	Modeling
	Examples of Low-level Attacker Models
	Using VERA for Vulnerability Testing

	Small Conclusion

	Case Studies
	WebGoat
	General Model: WebGoat
	Bypass a Path Based Access Control Scheme
	Bypass Presentational Layer Access Control
	Breaking Data Layer Access Control
	AJAX Security: DOM-Injection
	AJAX Security: Dangerous Use of Eval
	Reflected XSS Attack
	XSS: Execute a Stored Cross-Site Scripting attack
	XSS: Reflected XSS
	Command-Injection
	Numeric SQL-Injection
	Log Spoofing
	XPATH-Injection
	String SQL-Injection
	SQL-Injection: String SQL-Injection
	Insecure Configuration: Forced Browsing

	Gruyere
	Model
	File Upload XSS
	Reflected XSS
	Stored XSS
	Stored XSS via HTML Attribute
	Reflected XSS via AJAX
	Information Disclosure via Path Traversal

	Damn Vulnerable Web Application
	Model
	Brute Force
	Command Execution
	File Inclusion
	SQL-Injection and Blind SQL-Injection
	File Upload
	Reflected XSS
	Stored XSS

	OnlineShop
	Model
	Check Payment
	Skip Stages

	Case Studies Conclusion
	Models
	Types of Attacks
	Conclusions and Future Research Directions

	Related work
	Model-checking Driven Security Testing
	Mutation Testing
	Formal Foundation of Web Security

	Conclusion
	Summary
	Future Work

