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ABSTRACT 
 

Hematopoietic malignancies are highly dysregulated processes in which many molecular 

aspects are involved. Long non-coding RNAs (lncRNAs) are increasingly recognized as 

important regulators of gene expression. They are functional RNAs longer than 200 

nucleotides in length, with low coding potential. MIAT was originally identified as a long 

non-coding RNA expressed in neuronal cells and constitutes a component of the nuclear 

scaffold. Moreover it affects the kinetics of the splicing process. Recently, MIAT is 

genetically associated with heart disease. However the molecular basis of MIAT function 

as well as its role in human disease is still in the beginning.  

In the present thesis, Expression of MIAT was studied in leukemic cell lines as well as a large 

cohort of CLL patients. Quantitative analysis of MIAT, revealed extremely MIAT expression 

in B cell lymphoma, while other types of leukemia like AML, ALL and CML did not show 

considerable expression. Feasible prognosis of outcome in CLL sample groups was related to 

MIAT expression. Abundant expression of MIAT achieved in unfavorable outcomes group 

of CLL patient samples (trisomy 12, 17p13 deletion, 11q22 deletion) compared to 

favorable (13q deletion) cytogenetic group. Intriguingly, MIAT expression might be 

associate to aggressiveness and poor outcome in CLL which also empower a role for 

MIAT in leukemia. Since, genetic networks controlling MIAT expression was the focus of our 

intense interest, an association beyond the transcription factors, Oct4, and human MIAT 

transcript was also studied. We showed that mRNA and protein level of Oct4 is in direct 

modulation of MIAT expression in leukemic cell lines as well as CLL patient samples. RNAi 

mediated knockdown of MIAT transcript lead to robust changes in Oct4 mRNA level. We 

further characterized a regulatory feedback loop between Oct4 and MIAT by developing 

lentivirus shRNA to downregulate Oct4 level.  We showed that a reciprocal correlation of 

MIAT and Oct4 regulates their expression. Most importantly, We demonstrated that 

suppression of either Oct4 or MIAT induced apoptosis and reduced viability in lymphoma 

derived cell line. 

In haematological malignancies, More studies on lncRNAs MIAT, may help to identify patient 

populations at risk of leukemia, may classify patients into aggressive or mild cancer groups 

and may also promisingly facilitate the derivation of conventional therapeutic interventions by 

transfering lncRNA research to clinical oncology.  
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CHAPTER 1 : INTRODUCTION 

1.1. Leukemia  

Leukemia  is part of a broader group of neoplasms which affect the blood, bone marrow, 

and lymphoid system, known as tumors of the hematopoietic and lymphoid tissues. 

Leukemia usually begins in the bone marrow and results in high numbers of abnormal white 

blood cells. These white blood cells are not fully developed and are called blasts or leukemia 

cells. WBCs can be formed from different cell lineages, lymphoid or myeloid. In 2012 

leukemia developed in 352,000 people globally and caused 265,000 deaths. 

Both inherited and environmental (non-inherited) factors are believed to be involved (health 

september 2013). Risk factors include smoking, ionizing radiation, some chemicals (such 

as benzene), prior chemotherapy and Down syndrome as well as a family history of 

leukemia. Outcomes have improved in the developed world. The average five-year survival 

rate is 57% in the United States. In children under 15, the five-year survival is greater than 60 

to 85%, depending on the type of leukemia. The cell lineage affected by the cancer determines 

the kind of leukemia and the affect can be sudden or “acute” or can be developing slowly or 

“chronic”. This results in 4 subtypes: acute lymphocytic leukemia (ALL) – most common in 

children, acute myelogenous leukemia(AML,  #1) – most common in adults, chronic 

lymphocytic leukemia (CLL) – most an adult disorder, chronic myelogenous leukemia (CML) 

– most common in adults.  

 

1.1.1. Acute lymphoblastic leukemia (ALL) 

(Incidence, Causes and Risk Factors).  

Acute lymphoblastic leukemia (ALL), results from an acquired or a genetic injury to the 

DNA of a single cell in the marrow. The effects of ALL include uncontrolled and exaggerated 

growth and accumulation of cells called “lymphoblasts” or “leukemic blasts,” which fail to 

function as normal blood cells. The presence of the leukemic blasts blocks the production of 

http://en.wikipedia.org/wiki/Neoplasm
http://en.wikipedia.org/wiki/Lymphatic_system
http://en.wikipedia.org/wiki/Tumors_of_the_hematopoietic_and_lymphoid_tissues
http://en.wikipedia.org/wiki/Bone_marrow
http://en.wikipedia.org/wiki/White_blood_cell
http://en.wikipedia.org/wiki/White_blood_cell
http://en.wikipedia.org/wiki/Precursor_cell
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Smoking
http://en.wikipedia.org/wiki/Ionizing_radiation
http://en.wikipedia.org/wiki/Benzene
http://en.wikipedia.org/wiki/Down_syndrome
http://en.wikipedia.org/wiki/Five_year_survival_rate
http://en.wikipedia.org/wiki/Five_year_survival_rate
http://en.wikipedia.org/wiki/Acute_lymphoblastic_leukemia
http://en.wikipedia.org/wiki/Acute_lymphoblastic_leukemia
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normal cells. As a result, when ALL is diagnosed, the number of healthy blood cells (red 

blood cells, white blood cells and platelets) is usually lower than normal(Raetz 2014). (ALL) 

is the most common type of leukemia in young children. ALL occurs most often in the first 

decade of life but increases in frequency again in older individuals. A few factors have been 

associated with an increased risk of developing the disease. Exposure to high doses of 

radiation is one such factor. Also reducing children’s exposure to bacterial infections during 

the first year of  life and multiple diagnostic x-rays during childhood may have increased the 

risk of childhood. Previous chemotherapy and radiation treatment may be a cause of ALL in 

adults(Raetz 2014). Some cases of ALL relate to a mutation in a lymphocyte that occurs 

during the prenatal period (in utero).  

ALL Subtypes: 

ALL Subtypes include precursor B acute lymphoblastic leukemia, precursor T acute 

lymphoblastic leukemia, Burkitt's leukemia, and acute biphenotypic leukemia.  

Immunophenotyping, a process used to identify cells based on the types of proteins (antigens) 

on the cell surface, is necessary to establish the diagnosis of either B-cell ALL, T-cell ALL or 

acute myeloid leukemia (AML,  #2). Mature B-cell leukemia is also known as “Burkitt 

leukemia/lymphoma.” It accounts for 2%-3% of ALL patients. In some studies, ALL has been 

subdivided into CD10 (the common acute lymphoblastic leukemia antigen, abbreviated 

cALLa) positive and CD10 negative. Genetic classification of ALL cells is summarized in 

table 1.1. Translocations are the most common type of DNA change that is associated with 

ALL. In a translocation, the DNA from one chromosome breaks off and becomes attached to a 

different chromosome. Other chromosome changes such as deletions and inversions  can also 

lead to the development of ALL, but these changes are less common. In many cases of ALL, 

the genetic changes are not known(Raetz 2014).  

http://en.wikipedia.org/wiki/Precursor_B_acute_lymphoblastic_leukemia
http://en.wikipedia.org/wiki/Precursor_T_acute_lymphoblastic_leukemia
http://en.wikipedia.org/wiki/Precursor_T_acute_lymphoblastic_leukemia
http://en.wikipedia.org/wiki/Burkitt%252527s_leukemia
http://en.wikipedia.org/wiki/Acute_biphenotypic_leukemia
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Table 1.1: Genetic classification of ALL.   

 

 

  

 

 

 

 

 

 

 

 

 

1.1.2. Acute Myeloid Leukemia (AML) 

AML results from acquired changes in the DNA (genetic material) of a developing marrow 

cell. Once the marrow cell becomes a leukemic cell, it multiplies into 11 billion or more cells. 

These cells, called “leukemic blasts,” do not function normally. However, they grow and 

survive better than normal cells. The presence of the leukemic blasts blocks the production of 

normal cells (Karp 2011). 

(Incidence, Causes and Risk Factors). 

 Most patients diagnosed with AML have no clear-cut triggering event. Repeated exposure to 

the chemical benzene can be a factor in AML development. Benzene damages the DNA of 

normal marrow cells. A small but increasing percentage of AML cases arise following 

treatment with chemotherapy (especially with alkylating agents or topoisomerase II inhibitors) 
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or radiation therapy for other cancers, such as lymphoma, myeloma and breast cancer. But 

only a small proportion of people exposed to chemotherapy, radiation therapy and/or benzene 

develop AML. A theory about why AML develops in some people is that they have inherited 

genes that limit their ability to detoxify the causative agents. (Karp 2011). Genetic disorders, 

such as Fanconi’s anemia, Shwachman syndrome, Diamond-Blackfan syndrome and Down 

syndrome, are also associated with an increased risk of AML. AML may develop from the 

progression of other blood cancers, including polycythemia vera, primary myelofibrosis, 

essential thrombocythemia and myelodysplastic syndromes (MDS) (Karp 2011). AML is the 

most common acute leukemia affecting adults. The risk for developing AML increases about 

10-fold from ages 30 to 34 years (about 1 case per 100,000 people) to ages 65 to 69 years 

(about 10 cases per 100,000 people). For people over 70, the incidence rate continues to 

increase, peaking between the ages of 80 and 84.(Karp 2011). 

AML Subtypes: 

 Most people who are diagnosed with AML have one of the eight AML subtypes shown in 

Table 1.2. This table is based on the French, American, British (FAB) classification system . 

The World Health Organization (WHO) classification system for AML which is based on the 

expected outcomes include : 

AML with recurrent genetic abnormalities ,  AML with myelodysplasia-related changes 

,Therapy-related AML , AML not otherwise specified, AML with a translocation between 

chromosomes 8 and 21, AML with a translocation or inversion in chromosome 16, AML with 

changes in chromosome 11,Acute promyelocytic leukemia (APL, M3), which usually has a 

translocation between chromosomes 15 and 17. (Karp 2011). 
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Table 1.2: Subtypes of AML 

 

 

 

 

 

 

 

 

 

1.1.3. Chronic lymphocytic leukemia (CLL) 

Chronic lymphocytic leukemia (CLL) results from an acquired mutation to the DNA of a 

single marrow cell that develops into a lymphocyte. In 95 percent of people with CLL, the 

change occurs in a B lymphocyte. In the other 5 percent of people with CLL, the cell that 

transforms from normal to leukemic has the features of a T lymphocyte or a natural killer 

(NK) cell. Thus, any of the three major types of lymphocytes (T cells, B cells or NK cells) can 

undergo a malignant transformation that causes diseases related to B-cell CLL. The leukemic 

cells that accumulate in the marrow in people with CLL do not prevent normal blood cell 

production as extensively as is the case with acute lymphoblastic leukemia. This is an 

important distinction: It is the reason for the generally less severe early course of CLL 

comparing to ALL (Byrd 2014). 
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Incidence, Causes and Risk Factors.  

CLL has generally not been associated with any environmental or external factors. First-

degree relatives of patients with CLL are three to four times more likely to develop CLL than 

people who do not have first-degree relatives with the disease. However, the risk is still small. 

The incidence of the disease increases from less than one per 100,000 in individuals aged 40 

to 44 years to more than 30 per 100,000 in individuals aged 80 and older. Older patients tend 

to have a worse outcome due to being diagnosed with a more aggressive CLL and the inability 

to tolerate treatment and symptoms of the disease (Byrd 2014). 

Chromosomal Changes: 

About half of CLL patients who are tested with “G-banding karyotyping” are found to have 

CLL cells with chromosomal abnormalities. About 80 percent of CLL patients who are tested 

with “fluorescence in situ hybridization (FISH)” are found to have chromosomal 

abnormalities. The following examples are some of the more common chromosomal 

abnormalities: 

Del(13q) Deletions on the long arm of chromosome 13, del(13q), are the most common. 

Del(13q) with no other chromosomal abnormalities is associated with a relatively more 

favorable outcome. 

Trisomy 12 About 10 to 20 percent of patients have CLL cells with three copies of 

chromosome 12 (trisomy 12) instead of the expected two chromosomes. Trisomy 12 is 

associated with intermediate-risk CLL. Trisomy 12 with other chromosomal abnormalities is 

associated with a higher risk than trisomy 12 alone. 

Del(11q) Up to 20 percent of people with CLL have deletions in CLL cells in the long arm of 

chromosome 11, del(11q). The proportion of CLL patients with del 11q tend to be younger 

with large lymph nodes and have high-risk disease. 

Chromosome 14 or Chromosome 6 Structural abnormalities of chromosome 14 or 

chromosome 6 in CLL cells indicate higher-risk disease. 

Del(17p) About 5 percent of people with CLL at diagnosis have deletions in the short arm of 

chromosome 17, del(17p). The critical TP53 gene in this region is typically deleted. People 

who have CLL with del(17p) tend to have higher-risk disease and usually do not respond as 

well to standard initial therapy. Their CLL treatment needs to be approached in a different 
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manner. Other factors may be signs of faster-growing disease (higher-risk CLL) and indicate 

the need for closer follow-up with the doctor. For example: 

Blood lymphocyte doubling People with CLL whose lymphocyte number doubles in one year 

have higher-risk CLL and need closer follow up; a lymphocyte number that remains stable 

indicates a relatively lower risk. 

CD38 The expression of CD38 on CLL cells may be an indicator of higher-risk CLL. 

B2M A higher level of serum beta2-microglobulin (B2M), a protein that is shed from CLL 

cells, is associated with a greater extent of disease. Several studies have found that B2M and 

other serum markers, such as CD23, may help predict survival or progression-free survival.  

Un mutated IgHv The un mutated immunoglobulin heavy chain variable region gene (IgHv) 

suggests the likelihood of higher-risk disease. Forty percent of CLL patients at diagnosis will 

have this whereas 60 percent will have the more favorable IgHv-mutated disease. 

ZAP-70 (zeta-associated protein 70), when increased, may be associated with higher-risk 

disease. It should be noted that further study in clinical trials is needed to standardize the 

assessment of ZAP-70. The National Comprehensive Cancer Network (NCCN) guidelines 

state that the evaluation of ZAP-70 expression by flow cytometry can be challenging and is 

not recommended outside of a clinical trial. There are new tests such as ZAP-70 methylation 

which may represent a better way to measure this. Additionally, other prognostic markers such 

as CD49d expression have also been suggested as a better biomarker than ZAP-70 (Byrd 

2014). 

NOTCH1 gene Notch1 is a gene involved in the development of different type of blood cells. 

In CLL, approximately 10 to 15 percent of patients have mutations of this gene causing it to be 

more active than it should be.  

SF3B1 gene This gene is involved in the forming of select proteins in CLL and other blood 

cancers. It is mutated in several blood cancers including CLL, AML, and MDS. In CLL, 

approximately 10 to 15 percent of patients have mutations of this gene, resulting in 

dysfunctional protein processing. Several studies have suggested that CLL patients who have 

SF3B1 gene mutations may progress more quickly, requiring therapy and have a shorter 

remission and overall survival .  

TP53 gene mutations The TP53 gene is viewed as the gatekeeper to protecting the DNA of 

cells from damage. Mutated DNA of cancer cells lead to increased cancer growth and 
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resistance to chemotherapy cancer treatments. Mutation of the TP53 gene is very commonly 

seen in patients who also have del(17p) findings on their interphase cytogenetics. Some 

patients just have mutation of the TP53 gene and, in general, these patients have a higher 

likelihood of progressing more quickly, requiring therapy, not responding well to traditional 

therapies and having an overall shorter survival. Select newer therapies work better for 

patients who have del(17p) or the TP53 gene mutations (Byrd 2014). 

 

1.1.4. Chronic myeloid leukemia (CML) 

CML is a type of cancer that starts in the blood-forming cells of the bone marrow and invades 

the blood. The National Cancer Institute estimates 33,990 people in the United States are 

living with CML, with another 5,980 new cases expected in 2014. Chronic myeloid leukemia 

(CML) is called by several other names, including, Chronic myelogenous leukemia, Chronic 

granulocytic leukemia, Chronic myelocytic leukemia. CML results from an acquired or a 

genetic injury to the DNA of a single bone marrow cell. The mutated cell multiplies into many 

cells (CML cells). CML does not completely interfere with the development of mature red 

cells, white cells and platelets. As a result, chronic phase myeloid leukemia is generally less 

severe than acute leukemia, and often patients do not have any symptoms when diagnosed. 

 

Incidence, Causes and Risk factors:  

Most cases of CML occur in adults. The frequency of CML increases with age, from about 

less than 1.2 in 100,000 people until about 40 years, to about 2.4 in 100,000 people at 55 

years, to about 9.6 in 100,000 people at 80 years and older. No one is born with CML. 

Scientists do not yet understand why the BCR-ABL gene that leads to CML is formed in some 

people and not in others. However, in a small number of patients, CML is caused by exposure 

to very high doses of radiation. This effect has been most carefully studied in the survivors of 

the atomic-bomb blast in Japan. A slight increase in risk also occurs in some individuals 

treated with high-dose radiation therapy for other cancers, such as lymphoma. Most people 

treated for cancer with radiation do not go on to develop CML, and most people who have 

CML have not been exposed to high-dose radiation. Exposures to diagnostic dental or medical 

x-rays have not been associated with an increased risk of CML(Neil P. Shah 2014). 
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The Philadelphia Chromosome.  

CML was initially distinguished from other types of leukemia by the presence of a genetic 

abnormality of chromosome 22 found in the blood and marrow cells of patients with CML. 

In 1960, doctors from the University of Pennsylvania School of Medicine in Philadelphia 

discovered the 22nd chromosome in people with CML was shorter than it was in healthy 

people. This shortened 22nd chromosome was later named the “Philadelphia chromosome” or 

“Ph chromosome.”Figure 1.1. 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure1.1 Shown here is the set of chromosomes from a marrow cell of a female patient with CML.The arrow in 

the second row indicates chromosome 9,which is elongated.The arrow in the forth row indicates shortened arm of 

chromosome 22 (the Ph chromosome). 
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The BCR-ABL Cancer-Causing Gene Further studies of CML cells stablished that 

translocation of two chromosomes take place. The translocation of chromosome 9 and 

chromosome 22 is found only in the leukemia cells of CML patients and in some patients with 

acute lymphoblastic leukemia (ALL). One theory that scientists propose about why this switch 

occurs is that when the cells are dividing, chromosomes 9 and 22 are very close to each other, 

making this error more likely. The break on chromosome 9 leads to a mutation of a gene 

called “ABL” (for Herbert Abelson, the scientist who discovered this gene). The break on 

chromosome 22 involves a gene called “BCR” (for breakpoint cluster region). The mutated 

ABL gene moves to chromosome 22 and fuses with the remaining portion of the BCR gene. 

The result of this fusion is the leukemia-causing fusion gene BCR-ABL . Genes provide cells 

with instructions for making proteins. The BCR-ABL gene produces a dysfunctional protein 

called“BCR-ABL tyrosine kinase”. The BCR-ABL tyrosine kinase leads to the abnormal 

regulation of cell growth and survival and is responsible for the development of CML. For that 

reason, the BCR-ABL tyrosine kinase is a target for specific drug therapies that block its 

effects in many people with CML (Neil P. Shah 2014). 



         CHAPTER1: INTRODUCTION 

 

page11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 1.2. The process of translocation between the genes on chromosomes 9 and 22 

 

 

 

 

 

 

 

                 Figure 1.3. Leukemia causing process in a Marrow stem cell 
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Diagnosis 

Complete Blood Count (CBC). People with CML often have Decreased hemoglobin 

concentration, Increased white blood cell count, often to very high levels Possible increase or 

decrease in the number of platelets depending on the severity of the person’s CML, Specific 

pattern of white blood cells Small proportion of immature cells (leukemic blast cells and 

promyelocytes) Larger proportion of maturing and fully matured white blood cells 

(myelocytes and neutrophils).  

Bone Marrow Aspiration and Biopsy. These tests are used to examine marrow cells to find 

abnormalities and are generally done at the same time. The sample is usually taken from the 

patient’s hip bone after medicine has been given to numb the skin. Both samples are examined 

under a microscope to look for chromosomal and other cell changes.  

Cytogenetic Analysis. This test measures the number and structure of the chromosomes. 

Samples from the bone marrow are examined to confirm the blood test findings and to see if 

there are chromosomal changes or abnormalities, such as the Philadelphia (Ph) chromosome. 

The presence of the Ph chromosome (the shortened chromosome 22) in the marrow cells, 

along with a high white blood cell count and other characteristic blood and marrow test 

findings, confirms the diagnosis of CML. A small percentage of people with clinical signs of 

CML do not have cytogenetically detectable Ph chromosome, but they almost always test 

positive for the BCR-ABL fusion gene on chromosome 22 with other types of tests. 

FISH (Fluorescence In Situ Hybridization). FISH is a more sensitive method for detecting 

CML than the standard cytogenetic tests that identify the Ph chromosome. FISH is a 

quantitative test that can identify the presence of the BCR-ABL gene . FISH uses color probes 

that bind to DNA to locate the BCR and ABL genes in chromosomes. Both BCR and ABL 

genes are labeled with chemicals each of which releases a different color of light. The color 

shows up on the chromosome that contains the gene— normally chromosome 9 for ABL and 

chromosome 22 for BCR—so FISH can detect the piece of chromosome 9 that has moved to 

chromosome 22 in CML cells. Since this test can detect BCR-ABL in cells found in the blood, 

it can be used to determine if there is a significant decrease in the number of circulating CML 

cells as a result of treatment. 
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                                   Figure 1.4. Identifying the BCR-ABL gene using FISH 

 

Polymerase Chain Reaction (PCR) The BCR-ABL gene is also detectable by molecular 

analysis. Quantitative PCR is used to determine the relative number of cells with the abnormal 

BCR-ABL gene in the blood. This has become the most used and relevant type of PCR test 

because it can measure small amounts of disease, and the test is performed on blood samples, 

so there is no need for a bone marrow biopsy procedure.  

Blood cell counts, bone marrow examinations, FISH and PCR may also be used to track a 

person’s response to therapy once treatment has begun (Neil P. Shah 2014). 

CML-Related Disorders 

There are other subtypes of myeloid leukemia that have a chronic course and have some of the 

signs and symptoms of CML. These include 

Chronic myelomonocytic leukemia (CMML) 

Juvenile myelomonocytic leukemia (JMML) 

Chronic neutrophilic leukemia (CNL). 

These diseases are less common “myeloproliferative neoplasms.” People with these diseases 

do not have the BCR-ABL gene; the absence of the BCR-ABL gene is one of several 

distinguishing features used to make the correct diagnosis. In general, CMML, JMML and 

CNL create more severe changes in blood cell counts early in the course of the disease; these 

changes are not as well controlled with current drug treatments (Neil P. Shah 2014). 
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Other subtypes of Leukemia: 

Hairy cell leukemia (HCL) is sometimes considered a subset of chronic lymphocytic 

leukemia, but does not fit neatly into this pattern. About 80% of affected people are adult men. 

No cases in children have been reported. HCL is incurable, but easily treatable. Survival is 

96% to 100% at ten years.(Else, Ruchlemer et al. 2005)  

T-cell prolymphocytic leukemia (T-PLL) is a very rare and aggressive leukemia affecting 

adults; somewhat more men than women are diagnosed with this disease.(Matutes 1998) 

Despite its overall rarity, it is also the most common type of mature T 

cell leukemia;(Valbuena, Herling et al. 2005) nearly all other leukemias involve B cells. 

Large granular lymphocytic leukemia may involve either T-cells or NK cells; like hairy cell 

leukemia, which involves solely B cells, it is a rare and indolent leukemia.  

Adult T-cell leukemia is caused by human T-lymphotropic virus (HTLV), Like HIV, 

HTLV infects CD4+ T-cells and replicates within them; however, unlike HIV, it does not 

destroy them. Instead, HTLV "immortalizes" the infected T-cells, giving them the ability to 

proliferate abnormally. Human T cell lymphotropic virus types I and II (HTLV-I/II) are 

endemic in certain areas of the world. 

1.1.5.  Lymphoma 

Lymphoma is the name for a group of blood cancers that develop in the lymphatic system. 

Hodgkin lymphoma and non-Hodgkin lymphoma are the two main types. About 90 percent of 

people with lymphoma have non-Hodgkin lymphoma (NHL). The rest have Hodgkin 

lymphoma. The lymphoma cells pile up and form lymphoma cell masses. These masses gather 

in the lymph nodes or other parts of the body. Lymphadenopathy or swelling of lymph nodes 

is the primary presentation in lymphoma. B symptoms (systemic symptoms) can be associated 

with both Hodgkin lymphoma and non-Hodgkin lymphoma. They consist of Fever, Night 

sweats, Weight loss, Loss of appetite or anorexia, Fatigue, Respiratory distress or dyspnea, 

Itching(Walter 2013). 

http://en.wikipedia.org/wiki/Hairy_cell_leukemia
http://en.wikipedia.org/wiki/T-cell_prolymphocytic_leukemia
http://en.wikipedia.org/wiki/T_cell
http://en.wikipedia.org/wiki/T_cell
http://en.wikipedia.org/wiki/B_cells
http://en.wikipedia.org/wiki/Large_granular_lymphocytic_leukemia
http://en.wikipedia.org/wiki/NK_cell
http://en.wikipedia.org/w/index.php?title=Indolent_condition&action=edit&redlink=1
http://en.wikipedia.org/wiki/Adult_T-cell_leukemia/lymphoma
http://en.wikipedia.org/wiki/Human_T-lymphotropic_virus
http://en.wikipedia.org/wiki/Lymphadenopathy
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http://en.wikipedia.org/wiki/Fever_of_unknown_origin
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http://en.wikipedia.org/wiki/Anorexia_(symptom)
http://en.wikipedia.org/wiki/Fatigue_(medical)
http://en.wikipedia.org/wiki/Dyspnea
http://en.wikipedia.org/wiki/Itching
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WHO classification 

The current accepted definition, the WHO classification published in 2001 and updated in 

2008 is the latest classification of lymphoma and is based upon the foundations laid within the 

"Revised European-American Lymphoma classification" (Djebali, Davis et al.). This system 

attempts to group lymphomas by cell type (i.e. the normal cell type that most resembles the 

tumor) and defining phenotypic, molecular, or cytogenetic characteristics.  

Hodgkin Lymphoma 

Hodgkin lymphoma (HL), one of the most curable forms of cancer, was named for Thomas 

Hodgkin, a British pathologist, In 1832. It was officially renamed “Hodgkin lymphoma” in the 

late 20th century when it became evident that the disease results from an injury to the DNA of 

a lymphocyte . The damage to the DNA is acquired rather than inherited. The altered DNA in 

the lymphocyte produces a cancerous change that—if untreated—results in the uncontrolled 

growth of the cancerous lymphocytes. The accumulation of the cancerous lymphocytes results 

in the tumor masses that are found in the lymph nodes and other sites in the body(Carla Casulo 

2013). HL is distinguished from other types of lymphoma by the presence of “Reed-Sternberg 

cells”. Reed-Sternberg cells are usually B cells and have differences and variations to them.  

Incidence, Causes and Risk Factors 

HL is most likely to be diagnosed in people in their 20s or early 30s. It is less common in 

middle age but becomes more common again after age 65. The following are examples of risk 

factors. 

Patients who have a history of a blood test confirming mononucleosis have a 3-fold increased 

risk of HL compared to the general population. People infected with human T-cell 

lymphocytotropic virus (HTLV) or human immunodeficiency virus (HIV) also have increased 

probability of developing HL.  

There are occasional cases of familial clustering, as with many cancers, and there is an 

increase in the incidence of HL in siblings of patients with the disease. These cases are 

uncommon, but the concept of genetic predisposition is under study to determine its role in the 

http://en.wikipedia.org/wiki/Phenotypic
http://en.wikipedia.org/wiki/Molecular
http://en.wikipedia.org/wiki/Cytogenetic


         CHAPTER1: INTRODUCTION 

 

page16 

 

sporadic occurrence of HL in otherwise healthy individuals.  Epstein-Barr virus has been 

associated with nearly half of all cases. However, this virus has not been conclusively 

established as a cause of HL(Carla Casulo 2013). 

Diagnosis 

Imaging: The imaging test(s) may show enlarged lymph nodes in the chest or abdomen or 

both. Tumor masses can also occur outside the lymph nodes in lung, bone or other body tissue.  

Lymph node biopsy: HL can be confused with various types of non-Hodgkin lymphoma—

since the treatment is different, a precise diagnosis is needed. A biopsy of an involved lymph 

node or other tumor site is needed to confirm the diagnosis of HL. A needle biopsy of the 

lymph node is usually not sufficient to make a firm diagnosis.   

Immunophenotyping:“immunophenotyping” is sometimes used to distinguish HL from other 

types of lymphoma or other noncancerous conditions. The presence of Reed-Sternberg and 

Hodgkin cells can confirm a diagnosis of HL.(Carla Casulo 2013). 

Subtypes of Hodgkin Lymphoma 

There are two main HL subtypes: 

 Classical Hodgkin lymphoma 

 Nodular lymphocyte-predominant Hodgkin lymphoma.  

 About 95 percent of HL patients have the classical subtype.  

Classical Hodgkin Lymphoma: Classical HL can be further subdivided. Four major subtypes 

have been identified. 

Nodular Sclerosis.  

Mixed Cellularity.  

Lymphocyte-Depleted.  

Lymphocyte-Rich Classical. 

 

Nodular Lymphocyte-Predominant Hodgkin Lymphoma. The cells in NLPHL, known as 

“lymphocytic” and “histolytic” cells, are different from classic Reed-Sternberg B cells. 

Patients with this subtype may have no symptoms and are usually diagnosed with very limited 

disease. It is most common in young men. The NLPHL subtype is indolent and is associated 

with long-term survival (Carla Casulo 2013). 
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 Non-Hodgkin Lymphoma: 

Non-Hodgkin lymphoma (NHL) is the term used for a diverse group of blood cancers that 

share a single characteristic. They arise from an injury to the DNA of a lymphocyte parent 

cell. NHL generally develops in the lymph nodes or in lymphatic tissue found in organs such 

as the stomach, intestines or skin. The REAL/WHO (Revised European-American 

Lymphoma/World Health Organization) classification categorizes subtypes by the appearance 

of the lymphoma cells, the presence of proteins on the surface of the cells and genetic features. 

Follicular lymphoma and diffuse large B-cell lymphoma are the two most common types 

and together account for about 53 percent of cases. Lymphocytic or lymphoblastic leukemias 

and lymphomas are closely related. A cancer that originates in the lymphatic tissue in the 

marrow is designated “lymphocytic leukemia” or “lymphoblastic leukemia”; the acute and 

chronic forms of lymphocytic or lymphoblastic leukemia are the two major examples of this 

type of blood cancer. A cancer that begins in a lymph node or other lymphatic structure in the 

skin, the gastrointestinal tract or another site in the body is called a “lymphoma”(Carla Casulo 

2013) .
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Table 1.3. Diagnostic Designations for Non Hodgkin Lymphoma 
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Incidence, Causes and Risk Factors 

About 69,740 cases of non-Hodgkin lymphoma are expected to be diagnosed in the United 

States in 2013 (Surveillance, Epidemiology, and End Results [SEER] Program; National 

Cancer Institute, 2013). The incidence of NHL increases with age. In the 20- to 24-year 

age-group, 2.5 cases occur per 100,000 persons. The rate increases almost 20-fold to 44.6 

cases per 100,000 individuals by age 60 to 64 years, and over 40-fold to more than 100 

cases per 100,000 persons after age 75. While NHL is between 50 and 100 times more 

prevalent among people with HIV/AIDS than among uninfected individuals, newer 

therapies for HIV infection have lowered the incidence of AIDS-related lymphoma.There 

is  a higher incidence of NHL in farming communities. Studies suggest that specific 

ingredients in herbicides and pesticides such as organochlorine, organophosphate and 

phenoxy acid compounds are linked to lymphoma (Carla Casulo 2013). Exposure to 

certain viruses and bacteria is associated with NHL. It is thought that infection with a virus 

or bacterium can lead to intense lymphoid cell proliferation, increasing the probability of a 

cancer-causing event in a cell. for examples, Epstein-Barr virus (EBV) infection—in 

patients from specific geographic regions—is strongly associated with African Burkitt 

lymphoma. The role of the virus is unclear, since African Burkitt lymphoma also occurs 

among people who have not been infected with EBV. Epstein-Barr virus infection may 

play a role in the increased risk of NHL in persons whose immune systems are suppressed 

as a result of organ transplantation and its associated therapy. Human T-lymphotropic virus 

(HTLV) is associated with a type of T-cell lymphoma in patients from certain geographic 

regions in southern Japan, the Caribbean, South America and Africa. The bacterium 

Helicobacter pylori causes ulcers in the stomach and is associated with the development of 

mucosa-associated lymphoid tissue (MALT) lymphoma in the stomach wall. About a 

dozen inherited syndromes can predispose individuals to later development of NHL. 

Having autoimmune diseases such as Sjögren’s syndrome, lupus, or rheumatoid arthritis, 

may also increase a person’s risk of developing lymphoma (Carla Casulo 2013). 

Diagnosis 

A diagnosis of NHL is usually made by examining a lymph node biopsy specimen. the 

examination includes tests called “immunophenotyping” and “cytogenetic analysis.”  
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Lymph Node Biopsy: Non-Hodgkin lymphoma can involve parts of the body that do not 

involve lymph nodes. When lymphoma is detected exclusively outside of the lymph nodes, 

it is called “primary extranodal lymphoma,” and the biopsy specimen is taken from the 

involved tissue, such as the lung or bone (Carla Casulo 2013). 

Staging 

A physical examination, and the findings from imaging tests, computed tomography (CT) 

scans, tissue biopsies and blood tests are used to determine the extent of the patient’s NHL. 

This process is called “staging,” and the information is used to determine appropriate 

treatments (chemotherapy, radiation). FDG-PET scanning differs from x-rays, CT, MRI 

and ultrasonography, which only provide anatomical images; FDG-PET also measures 

altered tissue metabolism (activity). This imaging technique relies on a radioactive tracer 

called “FDG ([18F]-fluorodeoxyglucose).” FDG is a special form of glucose. The 

radioactive tracer is given intravenously to the patient and enters the cells. Cancer cells 

have a greater attraction to this glucose than normal cells, so cancer cells trap more of the 

radioactive tracer; then the local tracer concentration is measured. This technique allows 

the cancer cells to be separated from normal cells. Using FDG-PET to measure increased 

FDG uptake in lymphoma cells may provide a very sensitive and relatively rapid 

assessment of the lymphoma cells’ response to therapy. 

Blood and Marrow Tests. Blood tests determine whether lymphoma cells are present in 

the blood and if the immunoglobulins made by lymphocytes are deficient or abnormal. 

Check indicators of disease severity such as blood protein levels, uric acid levels and 

erythrocyte sedimentation rate (ESR). Assess kidney and liver functions and hepatitis A, 

hepatitis B and hepatitis C status. Measure two important biological markers, lactate 

dehydrogenase (LDH) and beta2-microglobulin, which are helpful prognostic indicators 

for several NHL subtypes. 

Most patients diagnosed with NHL will have a bone marrow biopsy to make sure there is 

no spread of the disease to the bone marrow and to evaluate the use of specific therapies 

including radioimmunotherapy (Carla Casulo 2013). 
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1.2. Non coding RNA 

Transcriptome analysis by tiling arrays and RNA sequencing has led to the amazing 

conclusion that while 70%–90% of the genome is transcribed, only 2% is dedicated to the 

transcription of protein coding sequences(Mattick 2001). This result has caused a great 

impression in a scientific community that is deeply proteocentric, i.e., is dedicated to the 

study of proteins and generally does not pay much attention to other molecules such as 

lipids or RNAs. 

Most cellular RNA is composed of highly expressed non-coding RNAs whose relevance in 

cell functionality has been well-known for years. However, their transcription requires a 

relatively small proportion of the genome. These housekeeping non-coding RNAs include 

transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), required for mRNA translation; 

small nuclear RNAs (snRNAs), essential for splicing; and small nucleolar RNAs 

(snoRNAs), involved in RNA modification. More recently, several small RNAs have been 

described as playing essential roles in gene expression and transposon silencing. These 

include microRNAs (miRNAs), small interfering RNAs (siRNAs) and piwi interacting 

RNAs (piRNAs). Less clear is the role and the molecular mechanisms involved in the 

function of other small RNAs derived from retrotransposons or 3' untranslated regions or 

associated with transcription start sites, promoters, termini or repeats. All these non-coding 

RNAs, with the exception of some of the housekeeping RNAs (some rRNAs and a few 

snRNAs and snoRNAs), share the common characteristic of being smaller than 200 nts. 

Therefore the remaining non-coding RNAs, longer than 200 nts, have been grouped under 

the name of long non-coding RNAs (lncRNAs). 

LncRNAs are not really long, just longer than the limit of 200 nts imposed by small RNAs. 

In fact, the average size of coding mRNAs is near 2500 nts while the average length of all 

the lncRNAs recently described by the Encode project is less than 600 nts(Dunham and 

Frietze 2012). Thus, most of the long non-coding RNAs are shorter than the coding 

mRNAs, even if some of the lncRNAs may be longer than 100 kbs. Apart from not being 

really long, it is difficult to determine whether lncRNAs are indeed non-coding. 

Traditionally, lncRNAs have been characterized by what they do not have: they lack open 

reading frames (ORFs) longer than 100 amino acids, conserved codons and homology to 

protein databases (Lin, Carlson et al. 2007),(Lin, Deoras et al. 2008). Therefore, they have 

poor coding potential, although they could still code for small open reading frames or non-

conserved peptides. Some authors have also analyzed coding capacities of specific 
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lncRNAs by matching their sequences with ribosome footprints or peptide fragments from 

mass spectrometry analysis. Hits would indicate translation(Pueyo and Couso 

2011),(Ingolia, Lareau et al. 2011),(Banfai, Jia et al. 2012),(Derrien, Johnson et al. 2012). 

In spite of these efforts, it should be borne in mind that what makes lncRNAs interesting 

for most scientists is not whether they can encode for proteins or not but the fact that they 

are functional as RNA molecules. The demonstration of function as an RNA should be 

required for annotation as an lncRNA, as a functional long RNA is the best definition for 

lncRNAs. To complicate things further, there are several cases of coding mRNAs that 

contain regulatory RNA elements and act as bifunctional RNAs; on one hand they code for 

a protein (p53, for instance) and on the other hand they have a function asRNAs(Kloc, 

Wilk et al. 2005),(Wadler and Vanderpool 2007),(Dinger, Pang et al. 2008),(Leygue 

2007),(Jenny, Hachet et al. 2006),(Candeias, Malbert-Colas et al. 2008). Furthermore, 

several coding genes are transcribed to non-coding alternative splicing variants. Functional 

or lncRNA genes are very similar to coding genes at the DNA and chromatin level as they 

share the same epigenetic marks. Similar to mRNAs, most lncRNAs are transcribed from 

RNA polymerase II, are capped at the 5' end, contain introns and approximately 40% are 

polyadenylated at the 3' end(Guttman, Amit et al. 2009). The lncRNAs recently described 

by Encode show a bias for having just one intron and a trend for less-efficient 

cotranscriptional splicing(Derrien, Johnson et al. 2012),(Kloc, Wilk et al. 2005),(Wadler 

and Vanderpool 2007),(Dinger, Pang et al. 2008),(Leygue 2007),(Jenny, Hachet et al. 

2006),(Candeias, Malbert-Colas et al. 2008),(Guttman, Amit et al. 2009),(Tilgner, 

Knowles et al. 2012). It has been estimated that there could be as many lncRNA genes as 

coding genes, but the number of lncRNAs is still growing and some authors consider that it 

could increase from ~20,000 to ~200,000(Gibb, Vucic et al. 2011),(Mercer, Dinger et al. 

2008). Compared to mRNAs, most lncRNAs localize preferentially to the nucleus, are 

more cell type specific and are expressed at lower levels(Djebali, Davis et al. 2012). In 

fact, there is less than one copy per cell of many lncRNAs. The low expression levels and 

the fact that the sequence of lncRNAs is poorly conserved have convinced many scientists 

that they are not relevant for cell functionality. However, although lncRNAs are under 

lower selective pressure than protein-coding genes, sequence analysis shows that lncRNAs 

are under higher selective pressure than ancestral repeat sequences with neutral selection. 

Moreover, promoters of lncRNAs have similar selection levels than promoters of protein 

coding genes(Derrien, Johnson et al. 2012). Even in the absence of strong sequence 
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conservation, the genomic location and structure of many lncRNAs is conserved together 

with short stretches of sequences, suggesting that lncRNAs could be under selective 

pressure to maintain a functional RNA structure rather than a linear sequence(Derrien, 

Johnson et al. 2012). Recent publications in the field have led to the hypothesis that many 

lncRNAs may be key regulators of development and may play relevant roles in cell 

homeostasis and proliferation. In fact, several lncRNAs have been described that function 

as oncogenes or tumor suppressors(Hauptman and Glavac 2013). It is expected that for cell 

biology the role of lncRNAs could be as revolutionary as the role of small non-coding 

RNAs such as miRNAs. miRNA studies have highlighted the relevance of gene regulation 

in cell homeostasis, differentiation and proliferation and may impact the clinic with new 

therapies and new diagnostic and prognostic tools for many diseases. The relevance of 

miRNAs has been clearly established for haematological malignancies(Agirre, Jimenez-

Velasco et al. 2008),(Agirre, Vilas-Zornoza et al. 2009).  

 

1.2.1. Classes of lncRNAs and lncRNA Functionality 

 

Classification by Genomic Location 

Under the name of lncRNAs there are RNAs with many different characteristics, which 

complicates classification. Therefore a well accepted method is based on genomic location 

rather than on functionality, conservation or origin. From a genetic point of view lncRNAs 

can be classified into one or more of the following categories:  

(a) sense, when overlapping with one or more exons of another transcript in the same 

strand;  

(b) antisense, when overlapping with one or more exons of another transcript in the 

opposite strand;  

(c) intronic, when derived from an intron of another transcript; 

(d) divergent or bidirectional, when they share a promoter with another transcript in the 

opposite strand and therefore are coregulated;  

(e) intergenic, when they are independent, located in between two other genes. Long 

intergenic non coding RNAs (lincRNAs) are a special class of intergenic lncRNAs whose 

genes have histone mark signatures of active transcription (trimethylation in lysine 4 and 

lysine 36 of histone 3: H3K4m3, H3K36m3)(Huarte, Guttman et al. 2010). 
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In the case of antisense transcripts, classification based on genomic location helps to 

predict functionality. 50%–70% of sense transcripts have natural antisense partners 

(Panzitt, Tschernatsch et al.) (Katayama, Tomaru et al. 2005),(Carninci, Kasukawa et al. 

2005),(Galante, Vidal et al. 2007). NATs are generally involved in the regulation in cis of 

the corresponding sense RNA by mechanisms that act at the transcriptional and post 

transcriptional level. NATs can induce transcriptional interference or recruit chromatin 

modifiers and remodelers to establish a local transcriptionally active or inactive chromatin 

conformation (Yap, Li et al. 2010). NATs can modify processing and induce or reduce the 

expression or the translation of their sense counterpart. Some intronic lncRNAs also 

regulate the expression of their genomic partners. Intronic lncRNAs may be generated by 

stabilization of the intron after splicing of the host gene but, more commonly, they are 

produced from independent transcription (Guil and Esteller 2012). 

 Classification by Specific Characteristics 

Most lncRNAs with special characteristics cannot be easily classified into a single group 

according to genomic location. These include enhancer RNAs (eRNAs), lncRNA-

activating (lncRNA-a) genes, transcribed ultraconserved regions (T-UCRs), pseudogenes, 

telomere-associated ncRNAs (TERRAs), circular RNAs, etc. eRNAs are transcribed by 

RNA polymerase II at active enhancer regions, characterized by H3 Lys4 mono 

methylation or Lys27 acetylation and binding of the regulatory protein p300 (Heintzman, 

Stuart et al. 2007), (Heintzman, Hon et al. 2009), (Visel, Blow et al. 2009), (Kim, Hemberg 

et al. 2010). eRNAs are not polyadenylated. Many are bidirectional and poorly expressed 

(Kim, Hemberg et al. 2010),(Wang, Garcia-Bassets et al. 2011),(De Santa, Barozzi et al. 

2010), but expression of several eRNAs seems to be tightly regulated (Kim, Hemberg et al. 

2010), (Wang, Garcia-Bassets et al. 2011). Although many eRNAs were thought to be by-

products of the presence of RNA pol II in enhancers, recent evidence suggests that some 

may function to control the expression of neighbouring genes (Orom, Derrien et al. 2010). 

LncRNA-a genes generally transcribe intergenic RNAs which are involved in the 

expression of neighbouring genes (Orom, Derrien et al. 2010). Thus, downregulation of the 

lncRNA-a results in downregulation of the neighbour gene. This effect requires expression 

of the Mediator complex and it has been shown that interaction of the lncRNA-a with 

Mediator is required for the upregulation of nearby genes (Lai, Orom et al. 2013). T-UCRs 

and pseudogenes are lncRNAs that share sequence similarity to other mammalian genomes 

or other regions of the same genome, respectively. There are 481 UCRs longer than 200 bp 
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that are absolutely conserved between human, rat, and mouse genomes (Bejerano, Pheasant 

et al. 2004). Pseudogenes originated from duplication of ancestor or parental coding genes 

(duplicated pseudogenes) or through retrotransposition of processed RNAs transcribed 

from ancestor genes (processed pseudogenes). Subsequently, they have lost their coding 

capacity as a result of the accumulation of mutations. When pseudogenes are expressed, 

they may regulate the expression and function of their parental gene by several 

mechanisms (Hirotsune, Yoshida et al. 2003), (Hawkins and Morris 2010). For instance, 

pseudogenes may act as miRNA decoys that lead to increased stability and translation of 

their parental gene (Harrison, Zheng et al. 2005),(Pink, Wicks et al. 2011), (He 2010), 

(Salmena, Poliseno et al. 2011). Circular RNAs, newcomers to the RNA list, can also 

function as RNA decoys (Ledford 2013), (Kosik 2013),(Memczak, Jens et al. 2013).  

Classification as cis or trans-Acting Molecules 

LncRNAs can also be classified according to their functionality as cis and/or trans acting 

molecules (Figure 5). Trans-acting lncRNAs function away from the site of synthesis while 

cis-acting lncRNAs function at the site of transcription to affect the expression of 

neighbouring genes. Several cis-acting lncRNAs guide epigenetic regulators to their site of 

transcription while they are being transcribed. Thus, lncRNA transcription is critical and 

rapidly creates an anchor to recruit proteins involved in chromatin re modeling (Chu, Qu et 

al. 2011), (Gabory, Jammes et al. 2010), (Mancini-Dinardo, Steele et al. 2006),(Pauler, 

Koerner et al. 2007). This molecular mechanism has tremendous advantages: (i) it 

responds very fast, as it only requires transcription of an RNA and a proper accumulation 

of nuclear chromatin remodelers; (ii) it is very specific, as the targeting does not involve 

RNA-DNA interactions other than those required for lncRNA transcription and (iii) it may 

function with just a single molecule of lncRNA per locus. This may explain the low 

abundance of cis-acting lncRNAs and the relatively high concentration of lncRNAs close 

to developmental genes whose expression is strictly controlled(Engstrom, Suzuki et al. 

2006). Thus, cis-acting lncRNAs control the epigenetic regulation of some imprinted 

genes. Imprinting depends on the parental origin of the imprinted genes, which play critical 

roles in mammalian development and therefore, their expression must be tightly regulated 

(Li and Sasaki 2011). Many imprinted gene loci express lncRNAs that appear to regulate 

the expression of neighbouring imprinted protein-coding genes in cis, allele specifically 

(Mohammad, Mondal et al. 2009). 
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Figure 1.5. Schematic representation of cis and trans-acting lncRNAs. cis-acting lncRNAs function 

at the site of transcription and affect the expression of neighbouring genes.Trans-acting lncRNAs 

function away from the site of synthesis. 

 

 

Trans-acting lncRNAs regulate gene expression on a genome-wide scale. A good example 

is HOTAIR, which binds the chromatin-modifying complexes PRC2, LSD1 and 

CoREST/REST (Khalil, Guttman et al. 2009), (Rinn, Kertesz et al. 2007), (Gupta, Shah et 

al. 2010), (Tsai, Manor et al. 2010). 

1.2.2. lncRNA Functionality 

 

Guiding chromatin remodeling factors seems to be the predominant function exerted by 

lncRNAs. In fact, it has been estimated that 20% of all lncRNAs may bind PRC2 (Khalil, 

Guttman et al. 2009). Several lncRNAs have also been shown to bind to PRC1, 

the CoREST/REST repressor complex (Khalil, Guttman et al. 2009), the histone  ethyl 

transferase associated with the activating trithorax complex, MLL1 (Bertani, Sauer et al. 

2011), (Dinger, Amaral et al. 2008) and H3-K9 methyltransferase, G9a (Nagano, Mitchell 

et al. 2008), (Pandey, Mondal et al. 2008). However, lncRNAs have also been shown to 

exert several other functions in the cell nucleus and cytoplasm, including regulation of 

DNA bending and insulation, RNA transcription, splicing, translation and stability, 

organization of subnuclear structures and protein localization, among others. 
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DNA looping  CTCF can induce chromosomal bending and protect specific genes from the 

effects of distal enhancers and regulatory elements. The lncRNA SRA can interact with and 

enhance the function of CTCF (Yao, Brick et al. 2010). Also, endogenous but not 

exogenous nascent HOTTIP lncRNA, binds target genes via chromosomal looping (Wang, 

Yang et al. 2011).  

Transcription  LncRNAs may activate or inhibit transcription of specific targets. Some 

lncRNAs act as co activators that bind transcription factors and enhance their 

transcriptional activity (Feng, Bi et al. 2006),(Lanz, McKenna et al. 1999), (Caretti, Schiltz 

et al. 2006).This is the function of SRA lncRNA in the progestin steroid hormone receptor 

(Watanabe, Yanagisawa et al. 2001), (Lanz, Chua et al. 2003). However, some lncRNAs 

act as decoys of transcription factors (Kino, Hurt et al. 2010) and may move them to the 

cytoplasm to keep them away from their nuclear targets (Willingham, Orth et al. 2005). 

Thus, p53-induced lncRNA PANDA binds transcription factor NF-YA and prevents NF-

YA activation of cell death genes (Hung, Wang et al. 2011). Finally, the act of lncRNA 

transcription may interfere with transcription initiation, elongation or termination of 

another sense or antisense gene (Mazo, Hodgson et al. 2007). Transcriptional interference 

can also lead to activation of gene expression by inhibiting the action of repressor 

elements.  

Organization of subnuclear structures  LncRNAs can recruit protein factors to nuclear 

structures. This is the case of lncRNA MALAT1 and NEAT-1. MALAT1 recruits 

serine/arginine–rich splicing factors to nuclear speckles (Tripathi, Ellis et al. 2010). More 

importantly, NEAT-1 is an essential structural component of paraspeckles, subnuclear 

structure implicated in RNA splicing and editing (Mao, Sunwoo et al. 2011), (Bond and 

Fox 2009). Depletion of NEAT-1 leads to loss of paraspeckles while overexpression of 

NEAT-1 causes an increase in the number of paraspeckles (Clemson, Hutchinson et al. 

2009), (Chen and Carmichael 2009), (Sunwoo, Dinger et al. 2009). MALAT1 and NEAT-1 

are genomic neighbors over expressed in several tumors compared to healthy tissues. 

Surprisingly the mouse knockouts of either NEAT-1 or MALAT1 had no detectable 

phenotype, suggesting that there could be redundant or compensatory molecules 

(Eissmann, Gutschner et al. 2012), (Ip and Nakagawa 2012), (Nakagawa, Naganuma et al. 

2011), (Zhang, Arun et al. 2012).  

Splicing  Splicing can be inhibited by lncRNAs antisense to intron sequences that impede 

spliceosome binding causing intron retention (Annilo, Kepp et al. 2009), (Allo, Buggiano 
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et al. 2009),(Hastings, Milcarek et al. 1997), (Krystal, Armstrong et al. 1990), (Yan, Hong 

et al. 2005). Furthermore, alternative splicing can be altered by lncRNA-mediated 

sequestration or modification of splicing factors. Thus, MALAT1 binds splicing factors 

present in nuclear speckles and modulates the activity of SR proteins, involved in the 

selection of splice sites, and therefore regulates the splicing of many pre-mRNAs (Tripathi, 

Ellis et al. 2010). Some snoRNA-containing lncRNAs (sno-lncRNAs) are retained close to 

their sites of transcription where the splicing factor Fox2 is enriched. Changes in the level 

of the sno-lncRNA lead to a nuclear redistribution of Fox2 and to changes in alternative 

splicing. Thus, the sno-lncRNAs could function as a regulator of splicing in specific 

subnuclear domains (Yin, Yang et al. 2012). 

Translation  LncRNAs have been described that increase or inhibit translation of specific 

targets (Carrieri, Cimatti et al. 2012), (Yoon, Abdelmohsen et al. 2012).  

Stability  LncRNAs have been described that increase or decrease stability of specific 

targets(Kretz, Siprashvili et al. 2013), (Gong and Maquat 2011). Binding of lncRNAs 

containing ancestral Alu repeats to complementary Alu sequences in the 3´UTR of coding 

mRNAs forms a dsRNA recognized by the dsRNA binding protein Stau1, which induces 

Stau-mediated RNA decay (Gong and Maquat 2011). Instead, lncRNA TINCR localizes to 

the cytoplasm, where it interacts with Stau1 and promotes the stability of mRNAs 

containing the TINCR box motif (Kretz, Siprashvili et al. 2013).  

miRNA binding  LncRNAs can regulate mRNA stability and translation by binding to 

miRNAs and preventing their action. Besides the already described role of some 

pseudogenes and circular lncRNAs in miRNA sequestration, other lncRNAs such as linc-

MD1, have been shown to serve as “sponge” for miRNAs. Linc-MD1 binds two miRNAs, 

which downregulate transcription factors involved in muscle differentiation and therefore 

muscle differentiation is induced upon Linc-MD1 expression (Cesana, Cacchiarelli et al. 

2011). To date few lncRNAs have been described to have catalytic properties. The high 

number of lncRNAs and their heterogeneity helps them to exert such a myriad of 

functions. In fact, all lncRNA functions respond to just three different mechanisms: 

decoys, scaffolds and guides (Ma, Hao et al. 2012). Decoy-acting lncRNAs impede the 

access of proteins such as transcription factors and RNAs such as miRNAs to their targets. 

LncRNAs MD-1 and PANDA act as decoys for miRNAs and transcription factors, 

respectively (Hung, Wang et al. 2011), (Cesana, Cacchiarelli et al. 2011). Scaffold-acting 

lncRNAs serve as adaptors to bring two or more factors into discrete ribonucleoproteins 
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(RNPs) (Spitale, Tsai et al. 2011). LncRNA TERC, HOTAIR or NEAT-1 act as scaffolds to 

form the telomerase complex (Zappulla and Cech 2006), a silencing complex (Tsai, Manor 

et al. 2010) or the paraspeckle, respectively (Mao, Sunwoo et al. 2011), (Bond and Fox 

2009). Guide-acting lncRNAs are required to localize protein complexes at specific 

positions. XIST or AIR lncRNAs act as guides to target gene silencing activity in an allele-

specific manner. In many cases though, the secondary and tertiary structure of lncRNAs 

dictates their function. Thus, lncRNAs generally have complex structures with higher 

folding energies than those observed in mRNAs (Kertesz, Wan et al. 2010). Proteins are 

expected to be the major partners of lncRNAs to form functional RNP particles. RNA 

binding proteins represent more than 15% of the total amount of proteins (Castello, Fischer 

et al. 2012). In several cases studied to date, interaction between proteins and RNAs results 

in conformational changes to the protein, the RNA or both, which could endow the 

complex with a novel ability. LncRNA function impacts cell behaviour. LncRNAs have 

specially emerged as regulators of development. Some transcription factors involved in 

pluripotency bind promoter regions of more than 100 mouse lncRNAs (Guttman, Amit et 

al. 2009). 26 lincRNAs have already been described as being required for the maintenance 

of pluripotency in mouse (Guttman, Donaghey et al. 2011). Two lncRNAs regulated by 

pluripotency transcription factors such as Oct4 and Nanog are essential for pluripotency 

maintenance, as they, in turn, control the expression of Oct4 and Nanog (Sheik Mohamed, 

Gaughwin et al. 2010). Therefore, these lncRNAs participate in positive regulatory loops. 

Similarly, several lncRNAs have been implicated in human disease, including several 

cancers (Taft, Pang et al. 2010). Dysregulated lncRNAs have been described in heart 

disease, Alzheimer disease, psoriasis, spinocerebellar ataxia and fragile X syndrome 

(Faghihi, Modarresi et al. 2008), (Ishii, Ozaki et al. 2006), (Pasmant, Laurendeau et al. 

2007), (Sonkoly, Bata-Csorgo et al. 2005), (Daughters, Tuttle et al. 2009), (Khalil, Faghihi 

et al. 2008), and in several tumors including breast, brain, lung, colorectal, prostate and 

liver cancers, melanoma, leukaemia and others (Calin, Liu et al. 2007), (Gupta, Shah et al. 

2010), (Taft, Pang et al. 2010), (Kogo, Shimamura et al. 2011), (Chung, Nakagawa et al. 

2011), (Yang, Zhou et al. 2011), (Lai, Yang et al. 2012), (Calin, Pekarsky et al. 2007), 

(Khaitan, Dinger et al. 2011), (Huarte and Rinn 2010). LncRNAs have been described that 

function as oncogenes (Li, Feng et al. 2009), tumor suppressors (Huarte, Guttman et al. 

2010), (Yu, Gius et al. 2008) or drivers of metastatic transformation, such as HOTAIR in 
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breast cancer (Gupta, Shah et al. 2010). In this study we will concentrate on those 

lncRNAs whose expression is altered in haematological malignancies. 

 

1.2.3. LncRNAs Deregulated in Haematological Malignancies 

 

The impact of non-coding RNAs on haematological malignancies has been well described 

for microRNAs (Lawrie 2013), (Agirre, Martinez-Climent et al. 2012). The list of 

lncRNAs involved in the initiation and progression of blood tumors is still very short and 

expected to grow exponentially in the near future. Some of the lncRNAs that play a role in 

haematological malignancies are in fact host genes of miRNAs with oncogenic or tumor 

suppressor properties. Others endow oncogenic or tumor suppressor properties in the long 

non-coding RNA molecule. The mechanism of action of few of them has been studied in 

some detail. 

 

Host Genes of Small RNAs 

BIC and C13ORF25 

Some lncRNAs were described to have oncogenic properties in blood cells before the 

discovery of miRNAs. This is the case of the B cell Integration cluster (Banfai, Jia et al.) or 

host gene mir-155 (MIR155HG. BIC and miR-155 expression is increased in Hodgkin 

lymphoma, Acute Myeloid Leukemia (AML) and Chronic Lymphocytic Leukemia (CLL) 

but it is not detected in healthy samples (Elton, Selemon et al. 2013). Similarly, 

C13ORF25 or host gene mir-17 (MIR17HG) encodes the miR-17-92 cluster and its 

expression is increased in B-cell lymphoma(Ji, Rao et al. 2011), Mantle Cell Lymphoma 

(MCL) (Rinaldi, Poretti et al. 2007) and other tumors (Hayashita, Osada et al. 2005), 

(Humphreys, Cobiac et al. 2013). 

nc886 or vtRNA2-1 

vtRNA2-1, previously known as pre-miR-886, is a short ncRNA suppressed in a wide range 

of cancer cells that inhibits activation of protein kinase R (PKR) (Kunkeaw, Jeon et al. 

2013). vtRNA2-1 could be a tumour suppressor for AML and its role could be mediated by 

PKR. 



         CHAPTER1: INTRODUCTION 

 

page31 

 

Table 1.4. lncRNAs in hematopoiesis and hematological malignancies.  
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Figure 1.6. Schematic representation of the function of lncRNAs deregulated in haematological 

malignancies. (A) BIC. Myb transcription factor increases the expression of BIC in several 

leukemias and lymphomas. This results in increased levels of miR-155 and miR-155-mediated 

downregulation of several tumor suppressor genes; (B) ANRIL. The INK4 p15INK4b-p14ARF-

p16INK4a cluster transcribes for an antisense transcript named ANRIL; PcG complex (PRC2) is 

targeted to the INK4 locus by ANRIL, and locus expression is inhibited; (C) MEG3. MEG3, 

among other functions, stimulates p53-dependent tumor suppressor pathways by several 

mechanisms. MEG3 down-regulates MDM2 expression, therefore decreasing p53 MDM2-

mediated degradation. MEG3 increases p53 protein levels and stimulates p53-dependent 

transcription. MEG3 enhances p53 binding to some target promoters such as GDF15; (D) GAS5. 

GAS5 binds the DNA binding domain of glucocorticoid receptors (GR) and impedes GR binding to 

DNA and induction of GR-dependent genes such as cIAP2. 

 

 

 PVT1 

It is not clear whether the role of Plasmacytoma variant translocation 1 (PVT1) lncRNA in 

haematological malignancies depends exclusively on being a miRNA host gene. PVT1 is 

overexpressed, compared to healthy tissues, in breast and ovarian cancer, pediatric 

malignant astrocytomas, AML and Hodgkin lymphoma (Guan, Kuo et al. 2007), 

suggesting that PVT1 could be an oncogene. In fact, upregulation of PVT1 contributes to 

tumor survival and chemoresistance (Guan, Kuo et al. 2007), (Palumbo, Boccadoro et al. 

1990), (You, Chang et al. 2011) while its downregulation inhibits cell proliferation and 

induces a strong apoptotic response (Guan, Kuo et al. 2007). 
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1.2.3.1. LncRNAs with Oncogenic Properties 

 

ANRIL or CDKN2B-AS1 

Antisense Non-coding RNA in the INK4 Locus (ANRIL) or CDKN2B-AS1 is transcribed 

antisense to the p15INK4b-p14ARF-p16INK4a cluster, whose members are key effectors 

of oncogene-induced senescence. ANRIL is located in a genetic susceptibility locus (9p21) 

associated with several diseases, including coronary artery disease (Palumbo, Boccadoro et 

al.), atherosclerosis, intracranial aneurysm, type 2 diabetes, and several cancers, such as 

glioma, basal cell carcinoma, nasopharyngeal carcinoma, and breast cancer (Pasmant, 

Sabbagh et al. 2011). Several single nucleotide polymorphisms (SNP) in this locus alter 

ANRIL structure(Burd, Jeck et al. 2010) and ANRIL gene expression (Liu, Sanoff et al. 

2009), (Cunnington, Santibanez Koref et al. 2010), mediating susceptibility to disease. 

There is a statistically significant association between an ANRIL polymorphism and 

Philadelphia positive Acute Lymphoblastic Leukemia (Ph+ ALL) (Iacobucci, Sazzini et al. 

2011). Furthermore, 69% of samples (n = 16) from patients with ALL and AML showed 

relatively increased expression of ANRIL and downregulated p15 compared to controls(Yu, 

Gius et al. 2008). The expression of ANRIL, CBX7, and EZH2 is coordinated and elevated 

in preneoplastic and neoplastic tissues, leading to decreased p16INK4a expression and 

decreased senescence (Yap, Li et al. 2010). 

 

1.2.3.2. LncRNAs with Tumor Suppressor Properties 

 

MEG3 

The maternally expressed gene 3 (MEG3) was the first lncRNA proposed to function as a 

tumor suppressor. MEG3 is a paternally imprinted polyadenylated RNA, expressed in 

many normal human tissues as several alternative splicing variants (Miyoshi, Wagatsuma 

et al. 2000), (Zhang, Zhou et al. 2003). MEG3 expression was decreased compared to 

healthy tissues in various brain cancers (pituitary adenomas, glioma and the majority of 

meningiomas and meningioma cell lines) (Zhang, Gejman et al. 2010), (Gejman, Batista et 

al. 2008), bladder, lung, renal, breast, cervix, colon and prostate cancers and 

haematological malignancies such as MM, AML or myelodysplastic syndromes. 

Surprisingly MEG3 is overexpressed in Wilms tumor and may be increased or decreased in 
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different hepatocellular carcinomas versus healthy livers (Braconi, Kogure et al. 2011). 

MEG3 activates the tumor suppressor protein p53 at different levels. On one hand MEG3 

down-regulates MDM2 expression, therefore decreasing p53 MDM2-mediated 

degradation(Zhou, Zhang et al. 2012). On the other hand, MEG3 significantly increases 

p53 protein levels and stimulates p53-dependent transcription(Benetatos, Vartholomatos et 

al. 2011). Finally, MEG3 enhances p53 binding to some target promoters such as 

GDF15(Zhang, Rice et al. 2010), (Zhou, Zhong et al. 2007; Zhou, Zhang et al. 2012). In 

bladder cancer a negative correlation has been shown between MEG3 expression and 

autophagy (Ying, Huang et al. 2013). 

 

DLEU1 and DLEU2 

Deleted in leukemia 1 (DLEU1) and 2 (DLEU2) are two genes transcribed head to head in 

a 30-kb region located in the long arm of chrormosome 13 (13q14), which is lost in more 

than 50% of patients with CLL and that predicts a poor prognosis(Dal Bo, Rossi et al. 

2011). Recent studies show that DLEU1 and DLEU2 control transcription of their 

neighbouring candidate tumor suppressor genes, which may act as positive regulators of 

NF-kB activity (Garding, Bhattacharya et al. 2013). Increased expression of DLEU2 leads 

to reduced proliferation and clonogenicity (Lerner, Harada et al. 2009). 

 

 

GAS5 

Growth arrest specific 5 (GAS5) is induced under starvation conditions and is highly 

expressed in cells that have arrested growth(Coccia, Cicala et al. 1992), (Mourtada-

Maarabouni, Pickard et al. 2009). GAS5 modulates cell survival and metabolism by 

antagonizing the glucocorticoid receptor (GR)(Kino, Hurt et al. 2010). GAS5 binds the 

DNA binding domain of GRs directly, preventing GRs from binding to DNA, from 

functioning as transcription activators and from reducing cell metabolism(Kino, Hurt et al. 

2010). Expression of GAS5 is sufficient to repress GR-induced genes, such as the cellular 

inhibitor of apoptosis 2 (cIAP2) and sensitizes cells to apoptosis(Kino, Hurt et al. 2010). 

Thus, GAS5 behaves as a tumor suppressor. GAS5 expression is decreased in breast cancer 

and is almost undetectable in growing leukemia cells and increases after density-induced 

cell cycle arrest(Kino, Hurt et al. 2010),(Coccia, Cicala et al. 1992), (Mourtada-

Maarabouni, Pickard et al. 2009). Downregulation of GAS5 by RNA interference protects 
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leukemic and primary human T cells from the anti-proliferative effect of 

rapamycin(Mourtada-Maarabouni, Hasan et al. 2010). 

 

1.2.3.3. LncRNAs with Dual Functions 

H19 

H19 is an imprinted lncRNA located close to the IGF2 gene. H19 is expressed from the 

maternal allele and IGF2 from the paternal allele (Gabory, Jammes et al. 2010),  (Barsyte-

Lovejoy, Lau et al. 2006). A key feature of cancer is the loss of this imprinting, which 

results in the well documented overexpression of H19 in cancers of the colon, liver, breast 

and bladder and in hepatic metastases, compared to healthy tissues (Barsyte-Lovejoy, Lau 

et al. 2006), (Hibi, Nakamura et al. 1996), (Fellig, Ariel et al. 2005), (Matouk, DeGroot et 

al. 2007), (Berteaux, Lottin et al. 2005). Loss of H19 imprinting has been described in 

adult T-cell leukaemia/lymphoma (ATL) (Takeuchi, Hofmann et al. 2007) and decreased 

H19 expression was found in the bone marrow of patients with clinically untreated chronic 

myeloproliferative disorders, including chronic myeloid leukemia (CML), polycythemia 

vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) and chronic 

myelomonocytic leukaemia (CMML)(Nunez, Bashein et al. 2000), (Bock, Schlue et al. 

2003) and AML (Tessema, Langer et al. 2005). H19 can behave as an oncogene or as a 

tumour suppressor(Gabory, Jammes et al. 2010). H19 expression can be activated by the 

oncogene c-Myc(Barsyte-Lovejoy, Lau et al. 2006) and downregulated by the tumor 

suppressor p53(Dugimont, Montpellier et al. 1998), (Farnebo, Bykov et al. 2010). 

 

1.2.4. LncRNAs and Hematopoietic Malignancies 

1.2.4.1. LncRNAs Poorly Characterized in Haematological 

Malignancies 

 

LincRNA-p21: is a p53 activated lncRNA identified in mouse that binds to and guides 

hnRNP K to target genes. LincRNA-p21 bound hnRNP K acts as a transcriptional repressor 

that leads to the induction of apoptosis(Huarte, Guttman et al. 2010). As BCR-ABL1 

stimulates nRNP-K expression and stability and promotes tumor progression, it has been 
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suggested that lincRNA-p21 could play a relevant role in acute or chronic leukemia (Notari, 

Neviani et al. 2006), (Du, Wang et al. 2010). 

TCL6: T cell Leukemia/Lymphoma 6 (TCL6) is transcribed from a locus involved in 

translocations and inversions with T cell receptor (TCR) (Bhagwat and Ramachandran 

1975). These rearrangements in TCR commonly lead to activation of TCL6 lncRNA and 

other oncogenes related to T cell leukemogenesis (Saitou, Sugimoto et al. 2000). 

WT1-AS: is an antisense lncRNA to WT-1, a well-characterized developmental gene that 

is mutated in Wilms’ tumor (WT) and AML. WT1-AS has been shown to regulate WT1 

protein levels. WT1-AS binds the exon 1 of WT1 mRNA in the cytoplasm. It has been 

suggested that the abnormal splicing of WT1-AS in AML could play a role in the 

development of this malignancy(Dallosso, Hancock et al. 2007). 

CRNDE: is overexpressed, compared to healthy tissue, in more than 90% of colorectal 

adenomas tested, but also in hepatocellular, prostate, brain, kidney and pancreas 

carcinomas and different haematological neoplasia such as AML, MM and T cell 

leukemia(Ellis, Molloy et al. 2012).  

RMRP: Ribonuclease mitochondrial RNA processing (RMRP) is a lncRNA mutated in 

Cartilage-Hair Hypoplasia (CHH), an autosomal recessive chondrodysplasia with short 

stature, which entails a high risk of developing Non-Hodgkin lymphoma disease 

(Taskinen, Ranki et al. 2008), (Ridanpaa, van Eenennaam et al. 2001). 

SNHG5: is a precurssor of snoRNAs, involved in diffuse large B-cell lymphoma(Tanaka, 

Satoh et al. 2000). 

HOXA-AS2: In an acute promyelocytic leukemia (APL) cell line, HOXA-AS2 upregulation 

correlated with inhibition of apoptosis. Treatment with all-trans retinoic acid (ATRA) 

blocked the expression of HOXA-AS2 and increased apoptosis of the APL cell line (Zhao, 

Zhang et al. 2013). 

 

1.2.4.2. LncRNAs Involved in Hematopoiesis 

 

The best studied lncRNA in hematopoiesis is HOTAIRM1 (HOX antisense intergenic 

RNA myeloid 1). HOTAIRM1 is as an essential regulator of myeloid cell differentiation 

that locates at the 3' end of the HOXA cluster and controls HOXA1 expression(Zhang, Lian 

et al. 2009). HOXA genes are important transcriptional regulators in normal and malignant 

hematopoiesis and are known to be important for many cancers including leukemias 
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harbouring MLL rearrangements. HOTAIRM1 is expressed specifically in the myeloid 

lineage and is induced during the retinoic acid-driven granulocytic differentiation of the 

NB4 promyelocytic leukaemia cell line and normal human hematopoietic cells. 

Knockdown of HOTAIRM1 affects retinoic acid-induced expression of HOXA1 and 

HOXA4 (but not distal HOXA genes) and attenuates induction of myeloid differentiation 

genes (Zhang, Lian et al. 2009).  

Other lncRNAs involved in hematopoiesis have also been described. EGO (or EGOT in 

human) lncRNA was identified in mouse eosinophil differentiation of CD34+HSCs where 

it stimulated major basic protein and eosinophil-derived neurotoxin mRNA expression 

(Wagner, Christensen et al. 2007).  

The lncRNA PU.1-AS is an antisense transcript of PU.1 that negatively regulates PU.1 

mRNA translation by a mechanism similar to miRNAs (Ebralidze, Guibal et al. 2008). 

PU.1 is a master hematopoietic transcriptional regulator essential for normal hematopoietic 

development and suppression of leukaemia development.  

LincRNA erythroid prosurvival (EPS) is one of the about 400 lncRNAs whose expression 

is modulated during red blood cell formation and is required for differentiation during 

hematopoiesis in mouse(Zhang, Lian et al. 2009), (Wagner, Christensen et al. 2007), (Hu, 

Yuan et al. 2011). EPS is an erythroid-specific lncRNA that represses expression of 

PYCARD, a proapoptotic gene, and therefore inhibits apoptosis(Hu, Yuan et al. 2011), 

(Paralkar and Weiss 2011). EPS is not well conserved among mammals. It is presently 

unclear whether a human version of EPS exists.  

Finally, THY-ncR1 is a thymus-specific lncRNA expressed in cell lines derived from stage 

III immature T cells in which the neighbouring CD1 gene cluster is also specifically 

activated(Aoki, Harashima et al. 2010). 

 

1.2.5. Regulation of the Expression of lncRNAs Involved in 

Haematological Malignancies 

Altered expression of lncRNAs, similar to that of coding genes, can be the result of 

genomic alterations, epigenetic regulation or a change in response to transcription factors 

or stability effectors such as miRNAs. The presence of mutations in the lncRNA primary 

sequence correlates highly with human diseases. In fact, most mutations in the genome 

occur in noncoding regions (Halvorsen, Martin et al. 2010). Mutations can be large or 

small. Large-scale mutations are deletions and amplifications of hundreds of nucleotides 
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and chromosomal translocations occurring at fragile sites. Genome-wide analyses looking 

for fragile sites in lncRNA genes have not yet been performed. However, it is expected that 

lncRNAs will have a clear association with common chromosomal aberrations similar to 

that found for miRNAs in human haematological malignancies and carcinomas (Calin, Liu 

et al. 2007). In fact, several studies have described lncRNAs affected by large scale 

mutations. One of the best examples is ANRIL, affected by a large germline deletion that 

includes the complete INK4/ARF locus. This deletion is associated with hereditary 

cutaneous malignant melanoma and neural system tumors syndrome (Pasmant, Sabbagh et 

al. 2011). DLEU1 and DLEU2 lncRNAs also locate in a region commonly deleted in CLL. 

 Small scale mutations are deletions or insertions of a few nucleotides. The relevance of 

small scale mutations for lncRNAs is obscured by the fact that little is known about the 

relevance of the primary sequence in lncRNA functionality and expression. It is expected 

that small mutations can lead to disease if they affect relevant linear sequences or they alter 

the structure of domains important in lncRNA functionality or accumulation. In fact, 

several disease-associated SNPs have been described as affecting the structure of the 5' and 

3' non-translated regions of coding genes(Halvorsen, Martin et al. 2010). Furthermore, 

GWAS studies have shown that SNPs in noncoding regions are associated with higher 

susceptibility to diverse diseases. Germline and somatic mutations in lncRNA genes have 

been identified in haematological malignancies and colorectal cancers (Wojcik, Rossi et al. 

2010). Genetic aberrations of the GAS5 locus have been found in melanoma, breast and 

prostate cancers (Morrison, Jewell et al. 2007), (Nupponen and Carpten 2001), (Smedley, 

Sidhar et al. 2000). Several lncRNAs are regulated at the transcriptional level. Thus, 

lncRNAs, such as lincRNA-P21, are activated in response to DNA damage by the direct 

binding of the tumour-suppressor protein p53 to the promoter (Huarte, Guttman et al. 

2010). Similarly, the expression of several lincRNAs responds to pluripotency factors or 

oncogenes. Epigenetic modifications are key regulators of lncRNA expression. This has 

been well described for MEG3 and DLEU1/DLEU2. Expression of the MEG3 locus is 

regulated by two regions, which are hypermethylated in several solid tumors leading to 

downregulation of MEG3 expression (Zhang, Zhou et al. 2003), (Kagami, O'Sullivan et al. 

2010), (Astuti, Latif et al. 2005). AML patients with aberrant hypermethylation of the 

MEG3 promoter showed decreased overall survival (Benetatos, Hatzimichael et al. 2010), 

(Khoury, Suarez-Saiz et al. 2010). Thus, MEG3 methylation status may serve as a useful 

biomarker in this leukemia. A similar MEG3 hypermethylation was observed in 35% of the 
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patients with myelodysplastic syndrome, but in this case there was no statistically 

significant correlation between MEG3 hypermethylation and prognosis (Benetatos, 

Hatzimichael et al. 2010). Demethylation correlated with transcriptional deregulation of 

the neighbouring candidate tumour suppressor genes. Finally, the expression of lncRNAs 

can be regulated by miRNAs. Several miRNAs have been described as regulating T-URC 

expression. This has been best described for miR-155, which is overexpressed in CLL 

compared to healthy cells. miR-155 targets T-UCRs both in vitro and in CLL patient 

samples (Calin, Liu et al. 2007). Interestingly, miR-29a has also been shown to regulate 

MEG3 expression in hepatocarcinoma cell lines(Braconi, Kogure et al. 2011). 

 

1.2.6. MIAT (myocardial infarction associated transcript) 

MIAT (myocardial infarction associated transcript), also known as RNCR2 (retinal non-

coding RNA 2) or Gomafu, is a long non-coding RNA. Single nucleotide 

polymorphisms (SNPs) in MIAT are associated with a risk of myocardial infarction.(Ishii, 

Ozaki et al. 2006).  It is expressed in neurons, and located in the nucleus (Sone, Hayashi et 

al. 2007). It plays a role in the regulation of retinal cell fate specification(Rapicavoli, Poth 

et al. 2010). This gene encodes a spliced long non-coding RNA that may constitute a 

component of the nuclear matrix. Altered expression of this locus has been reported to be 

associated with a susceptibility to myocardial infarction. It has also been proposed that 

pathways involving this transcript may contribute to the pathophysiology of schizophrenia. 

A similar gene in mouse has been associated with retinal cell fate determination. 

Alternatively spliced transcript variants have been identified. [provided by RefSeq, Dec 

2014]. 

MIAT transcript escapes from nuclear export, thereby constituting a component of the 

nuclear matrix. Recent studies have revealed that nuclear lncRNAs are essential for the 

maintenance of nuclear structures and can affect pre-mRNA processing and export, thereby 

regulating gene expression(Ip and Nakagawa 2012). It was suggested that the MIAT RNA 

regulates splicing efficiency by changing the local concentration of splicing factors within 

the nucleus. MIAT RNA binds to the SF1 splicing factor through a tandom repeats of 

UACUAAC sequence with a high affinity, which affects the kinetics of the splicing 

process(Ishii, Ozaki et al. 2006). Interestingly, single nucleotide polymorphisms in the 

human homologue of MIAT are associated with an increased risk of myocardial infarction, 

http://en.wikipedia.org/wiki/Long_non-coding_RNA
http://en.wikipedia.org/wiki/Single_nucleotide_polymorphisms
http://en.wikipedia.org/wiki/Single_nucleotide_polymorphisms
http://en.wikipedia.org/wiki/Myocardial_infarction
http://en.wikipedia.org/wiki/Neurons
http://en.wikipedia.org/wiki/Cell_nucleus
http://en.wikipedia.org/wiki/Retina
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and thus the gene has been named myocardial infarction associated transcript 

(MIAT)(Tsuiji, Yoshimoto et al. 2011). Recent studies characterized MIAT as a co-

activator of Oct4 in a regulatory feedback loop. Oct4 is considered a master transcription 

factor for pluripotent cell self-renewal. A defined Oct4 level controls the establishment of 

naive pluripotency as well as commitment to all embryonic lineages (Rapicavoli, Poth et 

al. 2010; Sheik Mohamed, Gaughwin et al. 2010; Radzisheuskaya, Chia Gle et al. 2013). 

Cloning and expression 

By screening a human fetal brain cDNA library, followed by 5-prime and 3-prime 

RACE, (Ishii, Ozaki et al. 2006) obtained 4 MIAT splice variants. Northern blot analysis 

detected a 10-kb transcript that was highly expressed in fetal brain and in adult brain and 

spleen. Weaker expression was detected in adult peripheral blood leukocytes, lung, liver, 

thymus, colon, and small intestine. In vitro translation resulted in no protein products, 

suggesting the MIAT variants may function as RNAs. 

Mapping 

By genomic sequence analysis, (Ishii, Ozaki et al. 2006) mapped the MIAT gene to 

chromosome 22q12.1. The MIAT gene is located on the long (q) arm of chromosome 

22 at position 12.1. More precisely, the MIAT gene is located from base pair 26,657,481 to 

base pair 26,676,477 on chromosome 22. 

 

 

 

 

 

Figure 1.7. MIAT gene location on long arm of chromosome 22 

 

http://ghr.nlm.nih.gov/chromosome/22
http://ghr.nlm.nih.gov/chromosome/22
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Molecular Genetics 

(Ishii, Ozaki et al. 2006) performed a case-control association study in 188 Japanese 

myocardial infarction (MI; 608446) patients and 752 controls using 52,608 haplotype-

based SNPs and identified a SNP (rs2301523) on chromosome 22q12.1 that was 

significantly associated with MI (p = 0.0006). Further analysis using a total of 3,464 MI 

patients and 3,819 controls confirmed the association with MI (chi square = 22.71; p = 

0.0000019; odds ratio, 1.36). Following linkage disequilibrium (LD) mapping, haplotype 

analyses revealed that 6 SNPs in this locus, all of which were in complete LD, showed 

markedly significant association with MI.  

In a case-control association study involving 3,464 Japanese myocardial infarction 

(608446) patients and 3,186 controls, (Ishii, Ozaki et al. 2006) identified a 6-SNP 

haplotype block, defined by the SNPs 5338C-T in intron 1, 8813G-A and 9186G-A in exon 

3, and 11093G-A, 11741G-A, and 12311C-T in exon 5 of the MIAT gene, that was 

significantly associated with myocardial infarction (p less than 0.0000030 for each SNP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8a. MIAT is located within novel subnuclear domains. It interacts with the 

splicing factor,SF1, and can affect the efficiency of splicing in vitro; therefore it may also 

have the ability to affect splicing in vivo 

 

  

http://omim.org/entry/608446
http://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs2301523;toggle_HGVS_names=open
http://omim.org/entry/608446
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Figure1. 8b. Genomic organization and splicing variant of MIAT. a, Genomic structure of MIAT. 

Base pair numbering at the top was based on an entry from Gene Bank DNA database 

NT011520,10.b, Four splicing variants of MIAT and their possible open reading frames. The 

longest ORF was shown in grey. inverted triangle and vertical line indicate ATG initiation codon 

and stop codon, respectively 

 



         CHAPTER1: INTRODUCTION 

 

page43 

 

1.3. Oct4 transcription factor 

 

Oct-4 (octamer-binding transcription factor 4) also known as POU5F1 (POU domain, class 5, 

transcription factor 1) is a protein that in humans is encoded by the POU5F1 gene.(Takeda, Seino 

et al. 1992) Oct-4 is a homeodomain transcription factor of the POU family. This protein is 

critically involved in the self-renewal of undifferentiated embryonic stem cells. As such, it is 

frequently used as a marker for undifferentiated cells. Oct-4 expression must be closely regulated; 

too much or too little will cause differentiation of the cells.(Niwa, Miyazaki et al. 2000). 

The octamer (made of eight units) in this family of transcription factors is the 

DNA nucleotide sequence "ATTTGCAT", the etymology for the naming of the octamer 

transcription factor(Petryniak, Staudt et al. 1990).  

During embryonic development, Oct4 is expressed initially in all blastomeres. Subsequently, its 

expression becomes restricted to the ICM and downregulated in the TE and the primitive endoderm. 

At maturity, Oct4 expression becomes confined exclusively to the developing germ cells (Pesce and 

Scholer 2001),(Pesce and Scholer 2000). Targeted disruption of Oct4 in mice has produced 

embryos devoid of a pluripotent ICM(Nichols, Zevnik et al. 1998), suggesting that Oct4 is required 

for maintaining pluripotency. Furthermore, quantitative analysis of Oct4 expression revealed that a 

high level of Oct4 expression drives ES cells towards the extra-embryonic mesoderm or endoderm 

lineages, while those with a low level of Oct4 become trophectodermal cells; ES cells with a normal 

level of Oct4 remain pluripotent(Niwa 2001)],(Niwa, Miyazaki et al. 2000). Thus, it has been 

proposed that Oct4 is a key regulator of stem cell pluripotency and differentiation(Pesce and 

Scholer 2001),(Pesce and Scholer 2000). Further investigation of Oct4 may help unravel the 

molecular and cellular mechanisms of stem cell pluripotency.  

Expression and Function 

Oct-4 transcription factor is initially active as a maternal factor in the oocyte but remains active in 

embryos throughout the preimplantation period. Oct-4 expression is associated with an 

undifferentiated phenotype and tumors.(Looijenga, Stoop et al. 2003) Gene knockdown of Oct-4 

promotes differentiation, thereby demonstrating a role for these factors in human embryonic stem 

cell self-renewal.(Zaehres, Lensch et al. 2005). Oct-4 can form a heterodimer with Sox2, so that 

these two proteins bind DNA together(Rodda, Chew et al. 2005). Mouse embryos that are Oct-4-

deficient or have low expression levels of Oct-4 fail to form the inner cell mass, lose pluripotency 

http://en.wikipedia.org/wiki/Octamer_transcription_factor
http://en.wikipedia.org/wiki/Transcription_factor
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Homeobox
http://en.wikipedia.org/wiki/POU_family
http://en.wikipedia.org/wiki/Stem_cell
http://en.wikipedia.org/wiki/Biomarker_(cell)
http://en.wikipedia.org/wiki/Oligomer
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Octamer_transcription_factor
http://en.wikipedia.org/wiki/Octamer_transcription_factor
http://en.wikipedia.org/wiki/Sox2
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and differentiate into trophectoderm. Therefore, the level of Oct-4 expression in mice is vital for 

regulating pluripotency and early cell differentiation since one of its main functions is to keep the 

embryo from differentiating. 

Implications in disease 

Oct-4 has been implicated in tumorigenesis of adult germ cells. Ectopic expression of the factor in 

adult mice has been found to cause the formation of dysplastic lesions of the skin and intestine. 

The intestinal dysplasia resulted from an increase in progenitor cell population and the upregulation 

of β-catenin transcription through the inhibition of cellular differentiation.(Hochedlinger, Yamada 

et al. 2005).  

Pluripotency in embryo development  

Animal model 

In 2000, Niwa et al. used conditional expression and repression in murine embryonic stem (ES) 

cells to determine requirements for Oct-4 in the maintenance of developmental potency.(Niwa, 

Miyazaki et al. 2000) Although transcriptional determination has usually been considered as a 

binary on-off control system, they found that the precise level of Oct-4 governs 3 distinct fates of 

ES cells. A less-than-2-fold increase in expression causes differentiation into primitive endoderm 

and mesoderm. In contrast, repression of Oct-4 induces loss of pluripotency and dedifferentiation to 

trophectoderm. Thus, a critical amount of Oct-4 is required to sustain stem cell self-renewal, and 

up- or down regulation induces divergent developmental programs. Niwa et al. suggested that their 

findings established a role for Oct-4 as a master regulator of pluripotency that controls lineage 

commitment and illustrated the sophistication of critical transcriptional regulators and the 

consequent importance of quantitative analyzes. The transcription factors Oct-4, Sox2 and Nanog 

are capable of inducing the expression of each other, and are essential for maintaining the self-

renewing undifferentiated state of the inner cell mass of the blastocyst, as well as in embryonic 

stem cells (which are cell lines derived from the inner cell mass).(Rodda, Chew et al. 2005). Oct-4 

is one of the transcription factors used to create induced pluripotent stem cells, together 

with Sox2, Klf4 and often c-Myc in mouse (Okita, Ichisaka et al. 2007),(Wernig, Meissner et al. 

2007),(Maherali, Sridharan et al. 2007) demonstrating its capacity to induce an embryonic stem 

cell-like state. It was later deterimined that only two of these four factors, Oct4 and Klf4 were 

sufficient to reprogram mouse adult neural stem cells. Finally it was shown that a single factor, Oct-

4 was sufficient for this transformation.(Kim, Sebastiano et al. 2009). 

In adult stem cells 

http://en.wikipedia.org/wiki/Ectopic_expression
http://en.wikipedia.org/w/index.php?title=Dysplastic_lesion&action=edit&redlink=1
http://en.wikipedia.org/wiki/Beta-catenin
http://en.wikipedia.org/wiki/Inner_cell_mass
http://en.wikipedia.org/wiki/Embryonic_stem_cell
http://en.wikipedia.org/wiki/Embryonic_stem_cell
http://en.wikipedia.org/wiki/Induced_pluripotent_stem_cell
http://en.wikipedia.org/wiki/Sox2
http://en.wikipedia.org/wiki/Kruppel-like_factors
http://en.wikipedia.org/wiki/Myc
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Several studies suggest a role for Oct-4 in sustaining self-renewal capacity of adult somatic stem 

cells (i.e. stem cells from epithelium, bone marrow, liver, etc.)(Tai, Chang et al. 2005) Other 

scientists have produced evidence to the contrary,(Lengner, Camargo et al. 2007) and dismiss those 

studies as artifacts of in vitro culture, or interpreting background noise as signal,(Lengner, Welstead 

et al. 2008) and warn about Oct-4 pseudogenes giving false detection of Oct-4 

expression.(Zangrossi, Marabese et al. 2007). Oct-4 has also been implicated as a marker of cancer 

stem cells.(Kim and Nam 2011), (Atlasi, Mowla et al. 2007).  

http://en.wikipedia.org/wiki/Adult_stem_cell
http://en.wikipedia.org/wiki/Adult_stem_cell
http://en.wikipedia.org/wiki/Pseudogene
http://en.wikipedia.org/wiki/Cancer_stem_cell
http://en.wikipedia.org/wiki/Cancer_stem_cell
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Fig 1.9. Structure and Function of Oct4 A. a schematic illustration of Oct4 domains. Note the C 

domain behaves differently from the N domain with respect to cell type-specific transactivation. B. The 

upstream regulatory elements of the Oct4 gene. DE, distal enhancer, and PE, proximal enahncer, are 

important for regulating Oct4 expression. There are 4 regions that are highly conserved among human, 

bovine and mouse Oct4 promoter/enhancer elements, shown as green box 1 through 4 relative to DE and PE. 

Conserved region 1 (CR1) is downstream of PE and immediately upstream of exon 1. Each enhancer 

contains multiple potential binding sites for transcription factors that can either activate (red) or repress Oct4 

expression. In addition, methylation in these regions represses Oct4 expression in differentiated cells. 

C.Modes of action of Oct4 on different target genes. Oct4 represses gene expression either indirectly by 

neutralizing activators such as FOXD3 (example 1), or directly by binding to promoters (example 2). Oct4 

also acts as an activator of gene transcription by binding to octamer sites located upstream (example 4 and 5) 

or downstream (example 3) of target genes. In the simplest mode, Oct4 binds to octamer sites immediately 

upstream of the promoter to activate gene expression directly (example 5). Alternatively, Oct4 can synergize 

with other factors like Sox2 to activate gene transcription (example 3). When located at a considerable 

distance, as in example 4, adaptor proteins must be involved to bridge Oct4 to the basic transcription 

machinery for transcriptional activation.  
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Fig 1.10. ES cells and Oct4 expression The isolation and differentiation of ES cells in vitro are illustrated 

schematically starting with the fertilization of an egg by a sperm to form a zygote. At the blastocyst stage, 

inner cell mass (ICM) becomes visible and can be extracted and cultured in vitro to form embryonic stem 

(ES) cells. Cultured ES cells can be induced to differentiate into various cell types that are negative for Oct4. 

The stages of Oct4 expression are noted and the cells with Oct4 expression are marked in red colour. There 

is a general correlation between Oct4 expression and totipotency.(Pan, Chang et al. 2002). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11. Long non- coding RNA(lncRNA) MIAT localized in pyramidal neurons in the cerebral cortex. 

Green: lncRNA 
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CHAPTER 2: SPECIFIC AIMS OF STUDY 
 

Long non-coding RNAs (lncRNAs) constitute a significant fraction of the transcriptional 

output from the mammalian genome; lacking considerable protein-coding abilities which 

mostly involved in transcriptional and post-transcriptional gene regulation (Ponting, Oliver et 

al. 2009; Lipovich, Johnson et al. 2010; Hu, Alvarez-Dominguez et al. 2012). MIAT (also 

referred to as RNCR2⁄Gomafu) was originally identified as a noncoding RNA which is widely 

and abundantly expressed in the nervous system throughout development, and its expression 

continues into adulthood(Sone, Hayashi et al. 2007). Recent studies have revealed that nuclear 

lncRNAs are essential for the maintenance of nuclear structures and can affect pre-mRNA 

processing and export, thereby regulating gene expression(Ip and Nakagawa 2012). However 

the molecular basis of MIAT function as well as its role in human disease is still in the 

beginning.  

 

We set two major specific aims: 

 

(i) Studying the differential expression of lncRNA MIAT in Leukemic malignancies. 

 

Quantitative Real Time PCR assay employ to established the differential expression of 

MIAT in available number of B and T cell lines derived from all types of leukemia . As 

well, analyzing the expression level of MIAT transcript in a large cohort of patient 

samples, will be done to establish the clinical significance of the dysregulation of MIAT 

non coding RNA in an aggressive form of Leukemia, CLL. Careful analysis of MIAT 

expression in different cytogenetically groups of CLL patient, also provide a guidelines 

to associate the lncRNAs  expression levels with malignancy prognosis as well as 

aggressiveness or even response to treatment. The present study also try to assess the 

effect of the dysregulation of MIAT long non coding RNA in abnormal behavior of 

cancerous cells, as proliferation and apoptosis programmed death.  This would be the 

first study, to our knowledge, where expression of lncRNA MIAT is evaluated in a 

hematopoietic malignancy.  
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(ii) Studying the regulatory correlation of the lncRNA MIAT and the master 

pluripotency and differentiation transcription factor , Oct4 . 

 

Oct4 is considered as a master transcription factor for pluripotent cell self-renewal. A 

defined Oct4 level controls the establishment of naive pluripotency as well as 

commitment to all embryonic lineages (Rapicavoli, Poth et al. 2010; Sheik Mohamed, 

Gaughwin et al. 2010; Radzisheuskaya, Chia Gle et al. 2013). Recent studies 

characterized mouse Gomfu/MIAT as a co-activator of Oct4 in a regulatory feedback 

loop. In this study we evaluate the relationships between human MIAT and Oct4 

expression. Towards this end, RNAi-mediated MIAT-silencing as well as shRNA Oct4 

knockdown will be performed in leukemic cell lines. Development of recombinant 

lentiviruses for delivery of shRNA guarantee the high and consistent suppression of 

targets. Affected cells will be analyzed for modulation in expression of MIAT and Oct4 

targets through real time analysis. Western blotting analysis following loss of function 

of either MIAT or Oct4 targets provide additional confirmation. Complementary study 

of correlation between MIAT and Oct4 will attain through gain of function studies. 

Thus, we will try to over-express MIAT by developing  an expression construction 

contains MIAT ORF. In conclusion, The expected results will be used to explain the 

molecular network in which MIAT regulated. It also might open a window to 

understanding the role of MIAT in differentiation of Leukemic cell. 
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CHAPTER 3. MATERIALS AND METHODS 
 

3.1. Plasmids 

 

pGIPZ lentiviral vector for Oct4 shRNA (GIPZ POU5F1 shRNA Transfection Starter 

Kit GE healthcare, dharmacon, USA, Cat# RHS4287-EG5460). 

This plasmid is designed to express short hairpin RNA (shRNA) constructs which 

designed based on microRNA-30 Hairpin. pGIPZ lentiviral vector adds a Drosha 

processing site to the hairpin construct and has been shown to greatly increase gene 

silencing efficiency(Boden, Pusch et al. 2004). The hairpin stem consists of 22 nucleotides 

of dsRNA and a 19 nucleotides loop from human miR-30. Adding the miR-30 loop and 

125 nucleotides of miR-30 flanking sequence on either side of the hairpin results in greater 

than 10-fold increase in Drosha and Dicer processing of the expressed hairpins when 

compared with conventional shRNA designs (Silva, Li et al. 2005). Increased Drosha and 

Dicer processing translates into greater shRNA production and greater potency for 

expressed hairpins. Use of the miR-30 design also allows the use of ‘rules-based’ designs 

for target sequence selection. One such rule is the destabilizing of the 5' end of the 

antisense strand, which results in strand specific incorporation of microRNA/siRNAs into 

RISC. pGIPZ lentiviral vector map shown in Figure 3.1. To assure the highest possibility 

of modulating the gene expression level, Oct4 gene is represented by four shRNA 

constructs, each covering a unique region of the target gene. Features of the vector 

depicted in Figure 3.2. 

The features that make this vector a versatile tool for RNAi studies include: 

• Ability to perform transfections or transductions using the replication incompetent 

lentivirus . 

• TurboGFP (Evrogen, Moscow, Russia) and shRNA are part of a bicistronic transcript 

allowing the visual marking of shRNA expressing cells. 

• Amenable to in vitro and in vivo applications. 

• Puromycin drug resistance marker for selecting stable cell lines. 
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Antibiotic resistance conveyed by pGIPZ include:  

Antibiotic concentratio

n 

Utility 

Ampicillin(carbencillin) 100μg/ml Bacterial selection marker (outside 

LTRs) 

Zeocin 25μg/ml Bacterial selection marker (inside 

LTRs) 

Puromycin variable Mammalian selection marker 

 

 

 

 

 

Figure 3.1: Map of pGIPZ Vector 
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Vector 

Element 

Utility 

hCMV Human cytomegalovirus promoter drives strong transgene expression 

tGFP TurboGFP reporter for visual tracking of transduction and expression 

Puro Puromycin resistance permits antibiotic selecting pressure and 

propagation of stable integrants 

IRES Internal ribosomal entry site allows expression of TurboGFP and 

Puromycin resistance genes in a single transcript 

ShRNA micrRNA-adapted shRNA(based on miR-30) for gene knockdown 

5ˊLTR 5ˊ long terminal repeat 

3ˊSINLTR 3ˊself-inactivating long terminal repeat for increased lentivirus safety 

Ψ Psi packaging sequence allows viral genome packaging using lentiviral 

packaging systems 

RRE Rev response element enhances titer by increasing packaging efficiency 

of full-length viral genomes 

WPRE Woodchuck hepatitis post transcriptional regulatory element enhances 

trans gene expression in target cells 

 

  

Figure 3.2: Feature of pGIPZ Vector 
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3.2. Primers and Probes 

 

The Primers and probes that used in this study are listed in Table 3.1. 

Table 3.1:   List of primers and probes 

Name Sequence Application 

MIAT 

Forward 

 

5' tactcgAGCTACAAAGACGACGCCGGCTG3' 

 

 (XhoI equipped) 

 

 

Cloning steps of   

MIAT 

MIAT Reverse  

5' agacGCGTGAATTGATTTTTAATAGCAAA3' 

 

 (MulI equipped) 

35MIAT 

Forward 

 

5' ctcgAGCTACAAAGACGACGCCGGCTGCGCTCGCG 3' 

 

Cloning steps of   

MIAT 
2126MIAT 

Forward 

 

5' ctcGAGGACAGCTCCAGGGGTATGAGGGAGGCCTG 3' 

6274MIAT 

Forward 

 

5' ctcGAGGCCTGTTGGTCTAGACTCTAGACTGTGGAG 3' 

 

Cloning steps of   

MIAT 
10148MIAT 

Reverse 

 

5' acGCGTGAATTGATTTTTAATAGCAAAATGGCATT 3' 

MIAT prob TaqMan® Gene Expression Assays  

 Cat no:4331182 

  

   

 

Real Time PCR 
OCT4 prob TaqMan® Gene Expression Assays POU5F1  

Cat no:4331182 

Human TBP 

(TATA-box 

binding 

Protein) 

Endogenous Control (FAM™/MGB probe, 

 non-primer limited),  Cat no:433376 
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3.3. DNA and Protein Marker/Ladder  

 

• DNA Ladder(Gene Ruler)  

100 bp DNA Ladder,  (Invitrogen, Cat#15628-019) which  is suitable for sizing double-

stranded DNA from 100 to 1,500 bp.  

1 kb DNA Ladder(New England Biolabs,USA, Cat# N3232S) with effective size range 

between 500bp to 10,002bp.  

• Protein Marker 

Precision Plus Protein™ Kaleidoscope™ Standards #161-0375 which are a mixture of 

ten multicolor recombinant proteins (10–250 kD). 
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3.4. Cell lines and Cultures 

3.4.1. Cell lines 

 

The leukemic cell lines Were obtained from the American Type Culture Collection 

(ATCC, Manassas, VA,USA) or DSMZ (Deutsche Sammlung von Mikroorganismen und 

Zellkulturen, Germany) (Table 3.2). The human embryonic kidney cells HEK293FT 

transformed with the SV40 large T antigen were obtained from Invitrogen (Carlsbad, CA, 

USA).  

 

Table 3.2. leukemic cell lines. 

No Cell line Cell type Morphology Disease 

1 

GM1500 

lymphoblast B 

lymphocyte; Epstein-

Barr virus (EBV) 

transforme 

lymphoblast Lymphoma 

2 

B1 

Lymphoblastoid B 

cells 

Lymphoblastoid  CLL 

3 DB B lymphoblast lymphoblast large cell lymphoma 

4 

SU-DHL-6 

B lymphocyte lymphoblast-like large cell lymphoma; diffuse mixed 

histiocytic and lymphocytic 

lymphoma; follicular B cell lymphoma 

5 

ML1 

Myeloid leukemia 

lines 

Lymphoblastoid Human acute myeloblastic leukaemia 

6 

MOLM13 

acute myeloid 

leukemia 

most cells are round 

growing in suspension 

Acute myeloid  leukemia (Yuan, Loya 

et al.) 

7 

SEM 

B cell precursor  Round to polygonal 

single 

Acute lymphoblastic leukemia (ALL) 

8 CA-46 B lymphocyte lymphoblast Burkitt's lymphoma 
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9 

DOHH-2 

B cell lymphoma cells grow as single 

cells or in clumps in 

suspension 

immunoblastic B cell lymphoma 

progressed from follicular 

centroblastic/centrocytic lymphoma 

10 

MOLT4 

T cell leukemia round cells growing in 

suspension, singly or 

in clusters 

acute lymphoblastic leukemia (ALL) 

11 

NU-DHL-1 

 B lymphocyte early B-cell undifferentiated B lymphoma, non-

Burkitt's type 

12 SU-DHL-10 B Lymphocyte lymphoblast-like Large B Cell Lymphoma 

13 
SUPT11 

T-ALL  Small, polymorph cells T cell leukemia 

14 
Raji 

B lymphocyte Lymphoblast-like Burkitt lymphoma 

15 JURKAT T lymphocyte lymphoblast acute T cell leukemia 

16 Nalm-6   B cell precursor leukemia 

17 SU-DHL-8 B Lymphocyte lymphoblast-like Large B Cell Lymphoma 

18 

MV4;11 

macrophage lymphoblast biphenotypic B myelomonocytic 

leukemia 

19 
BL-41 

  Burkitt lymphoma 

20 
HL60 

  acute myeloid leukemia 

21 
WSU-DLCL-2 

B Lymphocyte Round to oval B cell lymphoma 

22 380 B Cell Precursor Round small cells B cell precursor leukemia 

23 BJAB   Burkitt lymphoma 

24 U937 Monocyte-like 

characteristics 

 Lymphoblast-like / 

Lymphocyte-like, 

round to polygonal, 

single cells 

histiocytic lymphoma 
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25 THP1 Monocyte Monocyte-like acute monocytic leukemia 

26 Namalwa   Burkitt lymphoma 

27 697 B cell leukemia rounded morphology B cell precursor leukemia 

28 MOLM14 acute myeloid 

leukemia 

most cells are round 

growing in suspension 

AML-M5a 

29 KARPAS-422 B cell Round to polygonal 

cells, growing singly 

or in small clusters 

Pleural effusion, B cell non-Hodgkin 

lymphoma (intra-abdominal, diffuse 

large cell lymphoma, refractory, 

terminal) 

30 CESS    

31 OCI-LY-19 B cell lymphoma single round cells 

growing in suspension 

Diffuse large B-cell lymphoma 

(DLBCL) 

32 RS4;11 B cell leukemia Lymphoblast-like / 

single, relatively small, 

round cells 

B cell precursor leukemia (ALL L2) 

33 KG1 Macrophage myeloblast acute myelogenous leukemia 

34 PER377 mature B-cell   ALL 

35 MEC1 Mature B cell round to polymorphic 

cells growing in 

suspension, singly or 

partly in small 

aggregates, a few cells 

are slightly adherent 

 chronic B cell leukemia  

36 MonoMac6   acute monocytic leukemia 

37 CCRF-SB   T cell leukemia 

38 DAUDI   Burkitt lymphoma 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDAQFjAD&url=http%253A%252F%252Fconnection.ebscohost.com%252Fc%252Farticles%252F8884049%252Ftwo-acute-monocytic-leukemia-aml-m5a-cell-lines-molm-13-molm-14-interclonal-phenotypic-heterogeneity-showing-mll-af9-fusion-resulting-from-occult-chromosome-insertion-ins-11-9-q23-p22p23&ei=UNPoVP3uIsHpUrKhg6AD&usg=AFQjCNFHwS_PjzzMhAGVLyytzrsO_7NKVQ
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39 REH B cell  Lymphoblast-like / 

small, round, single 

cells 

Peripheral blood, Acute lymphoblastic 

leukemia, non-T; non-B, (ALL at first 

relapse) 

40 CI-1    

41 K562 NK cells lymphoblast chronic myelogenous leukemia (CML) 

42 NB4    acute promyelocytic leukemia (M3) 

 

3.4.2. Cell cultures 

 

All leukemic cell lines were cultured in RPMI 1640, 20% FBS and 1% Pen/strep. Medium 

for OCI-LY-19 cell line was MEM α, GlutaMAX™ Supplement, no nucleosides. 

HEK293FT were Cultured in Dulbecco's Modified Eagle's Medium(DMEM) 

supplemented with 10% fetal bovine serum (FBS), 100U/ml 0.1% (v/v) 

penicillin/streptomycin (Sigma, St Louis, MO). Specification of media used in this study 

listed in Table 3.3.  Cells were maintained in a humidified incubator at 37°C and 5% CO2 

and sub-cultured every 2-3 days .Early passages (passage 4–7) were used in each steps of 

the study. Freezing Media was prepared as 90%FBS+10% DMSO and was used while 

keeping on ice.  

 

Table 3.3. Cell culture media and reagents  

Medium Catalog Number Company 

Dulbecco's Modified Eagle's 

Medium 

D5796 Sigma Aldrich 

MEM-α glutamax no 

nucleosidase medium 

32561102   life technologies 

RPMI-1640 Medium R8758 R8758   Sigma Aldrich 

 

Penicillin-Streptomycin 

P4333 Sigma Aldrich 

Fetal Bovine Serum F2442 Sigma Aldrich 
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3.4.3. Counting the Cell Number 

 

At the indicated times, cells were trypsinized, (exclude suspended cells ) and the total 

number of cells per ml of media were counted using Scepter 2.0 Handheld Automated Cell 

Counter (Millipore Corporation, Billerica, MA, USA). 

 

3.5. Development of Lentivirus for shRNA Against Oct4 

 

3.5.1. Plasmid Preparation  
 

For plasmid preparation, all GIPZ shRNA clones were grown at 37 °C in 2x LB broth (low 

salt) medium plus 100 μg/mL carbenicillin only. Plasmid DNA was isolated using Endo 

Free Plasmid Maxi Kit cat# 12362, Qiagen as follows: 

1. Overnight LB culture was harvested by centrifuging at 6000 x g for 15 min at 4°C.  

2. The bacterial pellet was completely re-suspend in 10 ml Buffer P1.  

3. 10 ml Buffer P2 was added and mixed thoroughly by inverting 4–6 times, and incubated 

at room temperature (15–25°C) for 5 min. Because of using LyseBlue reagent, the  

solution turned blue. 

4. 10 ml chilled Buffer P3 was added, mixed thoroughly by inverting 4–6 times. The 

solution was mixed until it got completely colorless.  

5.Tube was centrifuged at max speed(4.7K at 4°C for 30 min) and supernatant recovered 

(27 to 30 ml) into 50 ml tube. 

6. 2.5 ml Buffer ER was added to the collected lysate, mixed by inverting the tube  

approximately 10 times, and incubated on  ice for 30 min.  

7. Equilibrated a QIAGEN-tip 500 by applying 10 ml Buffer QBT, and the column 

allowed  to empty by gravity flow.  

8. The lysate was applied from step 6 to the QIAGEN-tip and allowed to enter the tip.  

9. The QIAGEN-tip was washed with 2 x 30 ml Buffer QC. 
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10. DNA was eluted with 15 ml Buffer QN into a 50 ml endotoxin-free or pyrogen-free 

tube.  

11. DNA was precipitated by adding 10.5 ml (0.7 volumes) room-temperature isopropanol 

to the eluted DNA and mix. Centrifuged at 4300 x g for 60 min at 4°C. The supernatant 

carefully was decanted.  

12. DNA pellet was washed with 1 ml of endotoxin-free room-temperature 70%  ethanol 

and centrifuged at ≥15,000 x g for 10 min. The supernatant carefully was decanted without 

disturbing the pellet.  

13. In sterile condition the pellet was air-dried for 5–10 min and the DNA re-dissolved in a 

250µl volume of endotoxin-free sterilized water. 

 

3.5.2. Production and Packaging of Lentiviral Particles 
 

Trans-Lentiviral Packaging Kits (Thermo Scientific, Cat# TLP5912) was used to generate 

lentiviral particles. The production of lentiviral particles was begun with co-transfection of 

the Thermo Scientific Trans-Lentiviral packaging mix with an shRNA vector into 

HEK293T packaging cells, using the calcium phosphate reagent. Following co-

transfection, replication-incompetent virions are released into the medium for collection 

and downstream use.  

 

3.5.3. Cell Plating 
 

HEK293T cells seeded in a 6-well plate for each transfer vector to be packaged into   

lentiviral particles. 

1. The day before transfection, cells  was diluted in normal growth medium (DMEM 

High Glucose, Sodium Pyruvate, 10% FBS, 1% Pen/Strep) to achieve the optimal cell 

density of about 85-95% confluence at time of transfection. For each well of a 6-well 

plate, 1 × 10
6
 cells were prepared in 2mL medium. 

2. Cells was incubated at 37 °C with 5% CO2 overnight. 



         CHAPTER3: MATERIAL AND METHODS 

 

Page61 

 

3.5.4. Co-Transfection with Calcium Phosphate Transfection Reagent 

  
The CaCl2 and 2x HBSS were thawed briefly in a 37 °C water bath. After thawing, both 

reagents may be stored for several weeks at 4 °C without detectable loss of function. 

Reagents should be brought to ambient temperature prior to proceeding with transfection. 

1. For each well of a 6-well plate, the indicated quantity of transfer vector DNA and 

Trans-Lentiviral Packaging Mix were prepared in a 5 mL (Fisher Scientific Cat #14-

959-1A) or 50 mL (Fisher Scientific Cat #14-432-23) polystyrene tube. Sterile water 

used to bring DNA mix to the indicated total volume. 

 

 Lentiviral Transfer 

Vector DNA 

(shRNA or ORF) 

Trans-Lentiviral 

Packaging Mix 

Total Volume 

(with sterile 

water) 

One well of a 6-

well plate 

6 µg 4.3 µL 135 µL 

 

2. The indicated volume of CaCl2 was added to the diluted DNA above: 

 Cacl2 

One well of a 6-well plate 15 

 

3. The tube was vortexed at a speed sufficient to thoroughly mix reagents without 

spillover. While vortexing, the indicated volume of 2x HBSS was added drop – wise: 

 2X HBSS 

One well of a 6-well plate 150 µL 
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4.Incubated at room temperature for 3 minutes. A light chalky precipitate was appeared 

during this incubation (the precipitate may not always be obvious). 

5. The total volume (300 µL) of transfection mix was added drop-wise to the cells.  

Note: The exact volume may be slightly less due to pipetting loss, but this will not 

negatively impact transfection efficiency.  

6. The cells were incubated at 37 °C with 5% CO2 for 10-16 hours (do not extend this 

time).  

7. After 16 hours of incubation, the cells were examined microscopically for the presence 

of a fluorescent reporter protein, TurboGFP as an indicator of transfection efficacy. 

Note: The color of the medium may be orange or orange/yellow; this does not affect viral 

production. 

8. Reduced serum medium was prepared as follows: 

a. High Glucose DMEM (Fisher Scientific Cat #SH30243.LS) 

b. 5% Fetal Bovine Serum (Fisher Scientific Cat #SH30070.03) 

c. 2 mM L-glutamine (Fisher Scientific Cat #SH30034.01) 

d. 1x Penicillin/Streptomycin (Fisher Scientific Cat #SV30010) 

9. Calcium phosphate-containing medium was removed from cells and replaced with the 

indicated volume of reduced serum medium: 

 Reduced serum medium 

One well of a 6-well plate 2ml 

 

10. The cells were incubated at 37 °C with 5% CO2 for an additional 48 hours. 

Note: Transfection efficacy can be determined by Fluorescent microscopy of GFP ,before 

harvesting 48 hours supernatant. 
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3.5.5. Viral Particle Collection and concentration 
 

1. Viral particle-containing supernatants was harvested 48 hours after the medium change 

by removing medium to a 15mL sterile, capped, conical tube and stored at 4
o
C. 

2. 2ml  reduced serum medium was added to each well again and the cells incubated at 

37°C with 5% CO2 for an additional 24 hours. 

3. Viral particle-containing supernatants harvested after 24 hours by removing medium to 

the last 15 mL sterile, capped, conical tube contains 48 hours supernatant.  

4. non-adherent cells were pelleted by centrifugation at 1600 × g at 4 °C for 10 minutes to 

pellet cell debris. 

5. After the low-speed centrifugation step, to remove any remaining cellular debris, 

filtration step was done in which supernatant was passed through a sterile 0.45 µM low 

protein binding filter ( Millipore Millex-HV 0.45 µM PVDF filters). 

6. Lenti-X™ Concentrator  (Clontech Cat. Nos. 631231 & 631232) was used for 

concentrating of virus particles.         

7. 1 volumes of clarified Viral supernatant from step 6 was mixed with 3 volume of the 

Lenti-X Concentrator and incubated overnight at 4°C.  

8. Sample was centrifuged at 1,500 x g for 45 minutes at 4°C. After centrifugation, an off-

white pellet will be visible. 

9. Supernatant was carefully removed. Residual supernatant was removed with either a 

pipette tip or by brief centrifugation at 1,500 x g. 

10. The pellet gently was re-suspend in 1/100th of the original volume using RPMI1640 

without serum and antibiotics. The pellet can be somewhat sticky at first, but will go into 

suspension quickly.(when add RPMI to the pellet, don’t shake or agitate it).  

11. The mixture was incubated at 4°C for overnight.  

12. The mixture was centrifuged at max speed ,4°C for 15 minutes. 

13. Supernatant was recovered and aliquoted into small volumes.  

14. single-use aliquots were immediately stored at –80°C. 
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3.5.6. Viral Iteration 
 

1. The day before transduction, a 24-well tissue culture plate was seeded with HEK293T 

Cells at 5 × 10
4
 cells per well in DMEM (10% FBS, 1% pen-strep). 

Note: The following day, each well should be no more than 40-50% confluent. 

2. Dilutions of the viral stock were made in a round bottom 96-well plate using serum-free 

media(Figure 3.3 A). The goal was to produce a series of 5-fold dilutions to reach a final 

dilution of 390,625-fold. 

3. 80 μL of serum-free media was added to each well. 

4. 20 μL of thawed virus stock was added to each corresponding well in column 1 (five-

fold dilution). 

Note: Pipette contents of well up and down 10-15 times. Discard pipette tip. 

5. With new pipette tips, 20 μL from each well of column 1 was transferred to the 

corresponding well in column 2. 

Note: Pipette up and down 10-15 times and discard pipette tip. 

6. With new pipette tips, 20 μL from each well of column 2 was transferred to the 

corresponding well in column 3. 

Note: Pipette up and down 10-15 times and discard pipette tip. 

7. Repeated transfers of 20 μL from columns 3 through 8, pipetted up and down 10-15 

times and changing pipette tips between each dilution. 

8. the dilutions of the virus stock was incubated for 5 minutes at room temperature. 

9. The 24-well plate was labeled as shown in (Figure3.3 B) using one row for each virus 

stock to be tested. 

10. Culture media was removed from the cells in the 24-well plate. 

11. 225 μL of serum-free media was added to each well. 

12. Cells were transduced by adding 25 μL of diluted virus from the original 96-well plate 

(Figure 3.3 a.) to a well on the 24-well destination plate (Figure 3.3 B.) containing the 

cells.  

13. Transduced cultures were incubate at 37 °C for 4 hours. 

14. Remove transduction mix from cultures and add 1 mL of DMEM (10% FBS, 1% Pen-

Strep). 

15. Culture cells for 48 hours. 

16. Count the TurboGFP expressing cells or colonies of cells. 
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Note: Count each multi-cell colony as 1 transduced cell, as the cells will be dividing over 

the 48 hour cultureperiod.  

17. Transducing units per mL (TU/mL) can be determined using the following formula: # 

of TurboGFP positive colonies counted × dilution factor × 40 = # TU/mL. 

 

 

  

Figure 3.3. (A). Five-fold serial dilutions of virus stock (B). Twenty-four well tissue culture 

plate, seeded with HEK293T cells, used to titer the virus. 
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3.5.7. Transduction of Recombinant Lentiviral Particle  

 

The day before transduction, 1 × 10
5
 HEK293T cells were seeded in a 12-well tissue 

culture plate in 1ml DMEM (10% FBS, 1% Pen/Strep). The following day, the wells 

should be no more than 40-50% confluent.  Transduction mix was prepared by adding 1μl 

Polybrene (Hexadimethrine bromide – Sigma #H9268) to desired amount of Viral particle 

and scaled up to 1ml with DMEM (without serum, 1% Pen/Strep). The media was 

aspirated and transduction mix was added gently onto the cells. plate was incubated for 4 

to 8 hours at 37
o
C. Transduction mix was removed from cultures and 1mL of DMEM 

(10% FBS, 1% Pen/Strep) added gently to each well. Cells kept in culture for 72 hours and 

GFP efficacy was monitored using fluorescent microscope. 

3.5.8. Infection of Target Cells  with Recombinant Lentiviral Particle  

 

1*10
5
 target cells was mixed with 0.5μl Polybrene (Hexadimethrine bromide – Sigma 

#H9268) and 500μl of RPMI in a capped cuture tube .Appropriate amount of recombinant 

viral particle or control virus was added to the mixture. Centrifuged in 2000g, Room 

Temperature (24
o
C) for 180 min. Then incubated overnight at 37

 o
C. After completing the 

incubation time, the mixture was centrifuged at 1000 rpm 10 min RT. The supernatant 

aspirated and the pellet was re-suspended in 0.5 ml RPMI with 10 % FBS and 1% 

antibiotics and seeded in 24 well for 48-72 hours. 

 

3.6. Cloning of MIAT ORF 

 

3.6.1. Restriction Enzyme Digestion 
 

A) Materials and Reagents  

• DNA sample in water or TE buffer 

• 10x digestion buffer 

• Restriction enzyme 
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B) Procedure 

1. The following reagents were pipetted into a microfuge tube: 

 

Material Final concentration 

Vector  0.1 to 4µg 

TE Buffer  (10X) 1X 

RE enzyme 1-5u/μg DNA 

ddH2O Rest of volume 

Final volume 30µl 

 

 

2. Incubated for 2 hours at 37◦C. 

3. 2 to 5 μl of the digested sample along with the uncut DNA and a DNA marker were 

run on agarose gel and checked for the exact size of resulted fragments. 

Tips: 

• For checking DNA, 0.1 μg DNA was used 

• For cloning, 4 μg DNA was used. 

 

3.6.2. Ligation 
 

Ligation was done with 50 ng of cut and purified vector in combination with 3-fold molar 

excess of insert in the presence of 1μl T4 ligase (Fermentase,USA) and 1μL of 10X T4 ligase 

buffer. Total volume was adjusted at 10μl with ddH2O. Ligation control was included with 

substituting the amount of insert with water. It allows evaluating the relegation efficiency. 

The ligation reactions were incubated at 15oC in a thermocycler for overnight. 

 

3.6.3. Competent Cells 

Transformation was done in DH5α-T1 bacterial competent cells. invitrogen cat# K4530-

20.  
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3.6.4. Transformation 
 

Transformation was done according to manual of One Shot® TOPO®TA Cloning® Kit for 

sequencing, invitrogen cat# K4530-20.  

A) Materials and Reagents  

• The TOPO® Cloning reaction from Set up the TOPO® Cloning reaction 

• LB plates containing 50 µg/mL ampicillin or 50 µg/mL kanamycin  

• 15-mL snap-cap plastic culture tubes (sterile) (electroporation only)  

• 42°C water bath  

• 37°C shaking and non-shaking incubator  

• General microbiological supplies (e.g., plates, spreaders)  

Components supplied with the kit:  

• S.O.C. medium   

Prepare for transformation  

• A water bath to 42°C  was equilibrated (for chemical transformation)  

• The vial of S.O.C. medium warmed to room temperature.  

• Selective plates warmed at 37°C for 30 minutes .  

• 1 vial of One Shot® cells for each transformation thawed on ice.  

 

B) One Shot® chemical transformation procedure 

1. 2 µL of the TOPO® Cloning reaction was added into a vial of One Shot® 

chemically competent E. coli and mix gently. Do not mix by pipetting up and down.  

2. Incubated on ice for 5–30 minutes. Note: Longer incubations on ice do not seem to   

affect transformation efficiency.  

3. The cells were heat-shocked for 30 seconds at 42°C without shaking.  

4. The tubes immediately transferred to ice.  

5. 250 µL of room temperature S.O.C. medium was added. 

6. The tube was capped tightly and shaked horizontally (200 rpm) at 37°C for 1 hour.  
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7. 10, 25, 50 and 100µL from each transformation (and 50 µL  from negative) were 

spreaded on a pre-warmed selective plate and incubated overnight at 37°C.  

3.6.5. Glycerol Stocks Preparation 

Every plasmid construct, whether it was created or purchased, maintained as a glycerol 

stock. 

A) Materials and Reagents 

• Appropriate LB media, liquid & solid.  

• 80% Glycerol (80ml autoclaved glycerol was mixed with 20ml autoclaved ddH2O). 

 

B) Procedure 

1. A single colony of the clone picked off of a plate and grown in the appropriate 

selectable liquid medium for overnight (e.g., LB with desired antibiotic).  

2. The construct was labelled (clone ID # and date). Placed this label onto a sterile 

screw cap of cryo-vial and then placed on ice. 

3. 0.5ml of the o/n culture was added to 0.5ml of 80% sterile glycerol in the sterile 

screw cap micro centrifuge tube (on ice) and vortexed. 

4. the glycerol stock was freezed at –80°C  

5. All pertinent information (host strain, vector, cloning site(s), selection criteria, date 

prepared, origin/source and/or reference, and any other important information) 

regarding this accession were entered into the lab stock collection book. Also 

include a map or sequence if possible.  

To streak out from a glycerol stock  

1. The location of the construct was determined. 

2. the tube was took and placed onto dry-iced box  

3. A portion from the top of the frozen glycerol stock scraped off using a plastic 

inoculating loop and streaked onto plate. 
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3.6.6. Manipulation of DNA  
 

3.6.1.1. Plasmid Mini prep 

 

In cloning and sub-cloning steps of plasmid DNA, QIAGEN Plasmid Mini  kit 

(cat≠12125) (Qiagen, Hilden, Germany) was used according the manufacturer's instruction 

.  

3.6.1.2. Recovery of DNA fragments from the gel 

 

Recovery and of DNA fragments from the agarose gel was performed by dialysis method 

as follows:  

1. The gel was put into the dialysis membranes containing 0.5 ml buffer TBE 

2. Two sides of membrane were closed by clips  

3. The membrane was put in the electrophoresis tank contains 0.5 % TBE as  electrical 

flows go through negative to positive for 30 min at 100 V. 

4. Buffer included DNA was collected from bag(250µl) and transferred to a tube and 

DNA extracted as follows:  

3.6.1.3. Extraction of DNA by Phenol-Chloroform 

 

A) Materials and Reagents 

• phenol:chloroform:isoamyl alcohol (25:24:1) 

• chloroform isoamyl alchohol 

• TE buffer 

B) Procedure 

1. 200µl of phenol:chloroform:isoamyl alcohol (25:24:1) was added to the sample and 

vortexed or shakeed by hand thoroughly for approximately 20 seconds. 

2. Centrifuged at room temperature for 5 minutes at 16,000 × g. The upper aqueous 

phase was carefully aspirated and transferred to a fresh tube. Be sure not to carry 

over any phenol during pipetting. 100µl TE buffer was added to precipitate and 

mixed well. 
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3. Centrifuged at room temperature for 5 minutes at 16,000 × g. The upper aqueous 

phase was carefully aspirated and transferred to the previous separated aqueous 

phase. 

4. 300µl chloroform isoamyl alchohol was added to the tube and centrifuged at room 

temperature for 5 minutes at 16,000 × g. The upper aqueous phase was carefully 

aspirated and transferred to a fresh tube. 

5. Proceeded to Ethanol Precipitation. 

3.6.1.4. Ethanol Precipitation 

 

A) Material and Reagents 

Reagent Volume 

Glycogen (20 μg/μL) 1 μL 

7.5 M NH4OAc 25µl 

100% ethanol  

 

B) Procedure 

1. The reagents in the listed order in above table, were added to the aqueous phase of 

extraction procedure (see above). 

2. The tube was placed at –20°C overnight to precipitate the DNA from the sample. 

3. The sample was centrifuged at 4°C for 30 minutes at 16,000 × g to pellet the DNA. 

4. The supernatant was carefully removed without disturbing the DNA pellet. 

5. 500 μL of 70% ethanol was added and centrifuged at 4°C for 5 minutes at 16,000 × 

g. The supernatant was carefully removed. 

6. The pellet was dried at room temperature for 5–10 minutes. 

7. The pellet was resuspended in adequate volume of H2O . 

8. Centrifuged briefly to collect the sample, and was placed on ice. 
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3.6.1.5.  Quantification of DNA 

  

The amount of DNA was measured by a Nanodrop® spectrophotometer (ND-

1000)(Thermo scientific). 

 

3.7. Quantitative Molecular Assays 

 

3.7.1. RNA Assay 

 

3.7.2.1. RNA Extraction 

 

 RNA of cell lines were extracted using TRIzol method. In the case of cells infected with 

lentivirus, we used RNA Clean Up and Concentration Kit (Norgen Cat# 23600 ) 

• RNA Extraction using TRIzol®  

 

A) Material and Reagents 

• TRIzol®Reagent(Ambion®) (Invitrogen, Cat#: 15596-018)  

• Chloroform ( Sigma Aldrich, Cat#: C2432-500ML) 

• Isopropanol  100% 

• Ethanol   75% 

 

B) Procedure 

Cultured cells were harvested, washed with PBS and pelleted by centrifuging at 200×g for 

5 min. The cell pellet was dissolved in 1mL of TRIzol®Reagent. The homogenized 

samples were incubated for 5 minutes at room temperature to permit complete dissociation 

of the nucleoprotein complex. 0.2 mL of chloroform per 1mL of TRIzol was added and the 

tubes were shaked vigorously by hand for 15 seconds. After 2–3 minutes incubation at 
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room temperature, the samples were centrifuged  at 12,000×g for 15 minutes at 4°C. The 

aqueous phase of the samples were aspirated and placed  into new tubes. 0.5mL of 100% 

isopropanol was added to the aqueous phase, for 1mL of TRIzol® Reagent used for 

homogenization. The samples were incubated  at room temperature for 10 minutes 

followed by centrifuge at 12,000×g for 10 minutes at 4°C. The RNA pellets were washed 

with 500μL of 75% ethanol. The samples were vortexes briefly, then centrifuged at 7500 × 

g for 5 minutes at 4°C. The wash was discarded. the RNA pellets were air dried for 5–10 

minutes and re-suspended  in 30μl of in RNase-free water. Absorbance of RNA at 260 nm 

and 280 nm was used to determine concentration. Extracted RNA were qualified on the 

0.8% agarose gel. 

• RNA clean up and concentration kit(Norgen Cat# 23600) 

The Protocol for RNA Clean-up and Concentration from Phenol/Guanidine Based RNA 

(Trizol or Tri Reagent) Isolation Methods was followed as below: 

1. Sample Preparation 

a. RNA was Isolated using a phenol/guanidine-based reagent such as Trizol or Tri Reagent, 

according to manufacturer’s instruction. After the separation of the aqueous and organic 

phases, the upper (aqueous) fraction containing the RNA was collected into a new RNase-

free microcentrifuge tube . Note the volume. 

b. Added one volume of 70% ethanol (provided by the user) to the fraction from step 1a. 

Mixed by vortexing for 10 seconds. 

2. Binding to Column 

a. Assembled a column with one of the provided collection tubes.  

b. Applied up to 600 µL of the RNA mixed with the ethanol (from Step 1b) onto the 

column and centrifuged for 1 minute at ≥ 3,500 x g (~6,000 RPM). 

Note: Ensure the entire sample volume has passed through into the collection tube by 

inspecting the column. If the entire lysate volume has not passed, spin for an additional 

minute at 14,000 x g (~14,000 RPM). 

c. Discarded the flow through. Reassembled the spin column with its collection tube. 



         CHAPTER3: MATERIAL AND METHODS 

 

Page74 

 

d. If the volume of RNA mix is greater than 600 µL, repeat Steps 2b and 2c until all the 

remaining RNA mix has passed through the column. 

3. Column Wash 

a. Applied 400 µL of Wash Solution A to the column and centrifuged for 1 minute. 

Note: Ensure the entire Wash Solution A has passed through into the collection tube by 

inspecting the column. If the entire wash volume has not passed, spin for an additional 

minute.  

c. Discarded the flow through and reassemble the spin column with its collection tube. 

d. Repeated steps 3a and 3b to wash the column a second time. 

e. Washed column a third time by adding another 400 µL of Wash Solution A and 

centrifuging for 1 minute.  

f. Discarded the flow through and reassembled the spin column with its collection tube. 

g. Spined the column for 2 minutes in order to thoroughly dry the resin. Discarded the 

collection tube. 

4. RNA Elution 

a. Placed the column into a fresh 1.7 mL Elution tube provided with the kit.  

b. Added 20 µL of water to the column.  

Note: For higher concentrations of RNA, a lower elution volume may be used. A minimum 

volume of 20 µL is recommended. 

c. Centrifuged for 2 minutes at 200 x g (~2,000 RPM), followed by 1 minute at 14,000 x g 

(~14,000 RPM) Note the volume eluted from the column. If the entire volume has not been 

eluted, spin the column at 14,000 x g (~14,000 RPM) for 1 additional minute.  

 Note: For maximum RNA recovery, it is recommended that a second elution be  

performed into a separate micro centrifuge tube (Repeat Steps 4b and 4c).  

5. Storage of RNA 
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The purified RNA sample may be stored at –20°C for a few days. It is recommended that 

samples be placed at –70°C for long term storage. 

3.7.2.2. Quantification of the extracted RNA 

 

Quantified the RNA in Nanodrop and measured absorbance at 260 nm and 280 nm. 

(A260/280 of >1.8 was considered for assessment of quality of RNA. Partially dissolved 

RNA samples have an A260/280 ratio <1.6).  

 

3.7.2.3. DNaseI treatment of extracted RNA  

 

A) Materials and Reagents 

DNase I, Amplification Grade, manufactured by life technology, Unite size,100U 

Catalog #s 18068−015, Lot No. 1465877 

B) Procedure 

The following materials were added to an RNase-free, 0.5-ml microcentrifuge tube on ice: 

1 µg RNA sample 

1 µl 10X DNase I Reaction Buffer 

1 µl DNase I, Amp Grade, 1 U/µl 

DEPC-treated water to 10 µl 

Tube was incubated for 15 min at room temperature. The DNase I was inactivated by the 

addition of 1 µl of 25mM EDTA solution to the reaction mixture. Heated for 10 min at 

65°C. 

NOTE: It is important not to exceed the 15-minute incubation time or the room 

temperature incubation. Higher temperatures and longer time could lead to Mg++-

dependent hydrolysis of the RNA. Additionally, it is vital that the EDTA be added to at 

least 2mM prior to heat-inactivation to avoid this problem. 
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3.7.2.4. cDNA synthesis  

 

A) Materials and Reagents 

Super Script VILO DNA synthesis Kit (Invitrogen™ Cat #s 11754-050) 

B) Procedure 

For a single reaction, the following components were combined in a tube on ice. For 

multiple reactions, a master mix was prepared without RNA.  

 

 

component concentration 

5X VILO™ Reaction 

Mix 

1X 

10X SuperScript® 

Enzyme Mix 

1X 

RNA 100ng 

DEPC-treated water -- 

Total volume 10μl 

 

 

2. Tube contents was gently mix and incubated at 25°C for 10 minutes.  

3. Tube was incubated at 42°C for 120 minutes.  

4. The reaction was terminated at 85°C at 5 minutes.  

5. Stored at –20°C until use.  
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3.7.2.5. Real Time PCR 

 

A) Materials and Reagents 

1. Human TBP (TATA-box binding Protein) Endogenous Control (FAM™/MGB probe, 

non-primer limited), Life Technologies, Cat# 433376 

2. TaqMan Gene Expression Assays , Life Technologies, Cat# Hs00402814_m1  

3. TaqMan® Gene Expression Assays POU5F1, Life Technologies, Cat no:4331182 

4. Optical 96-Well Fast Thermal Cycling Plate with Barcode (code 128), part No. 

4346906. 

5. Fast advantage 2X real time master mix 

B) Protocol 

Components Final concentration 

2X TaqMan Universal Fast PCR Master Mix 1X 

20X Taq Man Gene Expression Assay for 

MIAT,TBP,OCT4 

1X 

cDNA Sample 1:4 diluted 

RNase-free Water Up to 20μl  

Each sample was loaded in triplicate. PCR was done in Biorad-Chromo4 thermal cycler 

real 

time PCR instrument as follows: 

Sample Volume: 20 No. of Cycles:  40 

Step UNG incubation Ampli Taq Gold Active. PCR 40 Cycle 

Action Hold Hold Denature Anneal/Extend 

Temperature 50 oC 95 oC 95o C 60o C 

Fast chemistry 

time 

2 min 20 min 1 min 20 min 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.lifetechnologies.com%2Forder%2Fgenome-database%2Fbrowse%2Fgene-expression%2Fgene%2FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.lifetechnologies.com%2Forder%2Fgenome-database%2Fbrowse%2Fgene-expression%2Fgene%2FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.lifetechnologies.com%2Forder%2Fgenome-database%2Fbrowse%2Fgene-expression%2Fgene%2FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
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3.7.2.6. polyA SpinTM mRNA Isolation kit( New England Biolabs, 

Cat#S1560S)  

 

polyA SpinTM mRNA Isolation was used for isolation of mRNA from other RNA (like 

rRNA, tRNA and snRNA) in a RNA samples. Isolation procedure was done according to 

the manual of instructor as follows:  

 • Allow oligo (dT)25-cellulose, column(s) and buffers to come to room temperature. 

• Prepare a 65–70°C bath and an ice bath.  

• Spin tube containing oligo (dT)25-cellulose in a micro centrifuge for 10 seconds. Using a 

micropipette remove storage buffer. Be careful  to avoid drawing of cellulose beads into 

pipette tip. 

• Equilibrate cellulose by adding 200 µl of Wash Buffer to cellulose beads, mix thoroughly 

then micro centrifuge for 10 seconds. Using a micropipette decant supernant.  

• Pre warm Elution Buffer in 70°C bath. 

Isolation Procedure 

1.100µl of Cl1 nuclear RNA(891 ng/µl) and 60µl of Cl1 cytoplasmic RNA( 485 ng/µl) 

were diluted with Elution Buffer to final volume of 450 µl. 

2 . Add 50 µl of 5M NaCl per 450 µl total RNA solution.  

3 . Heat at 65°C for 5 minutes and quickly cool in an ice bath for 3 minutes. 

4 . Apply total RNA solution to equilibrated oligo (dT)25 -cellulose, seal cap and mix 

thoroughly . Let stand at room temperature for 5 minutes agitating by hand or place 

horizontally on rotary shaker 5 . Micro centrifuge for 10 seconds .  Note: It is important to 

agitate beads during binding, washing and elution steps . 

6 . Pipet supernatant back into original micro centrifuge tube . Repeat steps 3 thru  . 

7 . Pipet supernatant back into original micro centrifuge tube for storage . It is 

recommended that no spin-column elutes be discarded until entire isolation procedure is 

completed and the results are evaluated . Elutes can be stored in sterile test tubes on ice . 
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8 . Add 400 µl of Wash Buffer to oligo (dT)25 -cellulose beads . Agitate by hand to 

resuspend the cellulose beads . Using a 1 ml micropipette with sterile pipette tip, transfer 

Wash Buffer and beads to the column reservoir of a clean micro centrifuge spin column 

unit (provided with kit) . 

9 . Let stand at room temperature for 2 minutes agitating by hand or place horizontally on 

rotary shaker . Micro centrifuge for 10 seconds . Remove column reservoir and transfer 

column eluent to a clean 13 x 100 mm test tube . 

10 . Add 400 µl of Wash Buffer to column reservoir and wash as in Step 9 three times . 

11 . Using the same method wash column once with 400 µl of Low Salt Buffer . 

 *Note: This wash step with 0 .1 M NaCl removes residual poly(A)– RNA which is bound 

to the cellulose column . This step can be omitted during a second round purification . 

12 . Remove spin-column reservoir and place in a clean micro centrifuge tube (provided 

with kit) .  

13 . Add 200 µl of pre warmed Elution Buffer to column reservoir . Agitate by hand 

resuspending the cellulose beads . Let stand for 2 minutes agitating by hand or place on 

rotary shaker . Micro centrifuge for 10 seconds .( we add 50 and 100µl in two independent 

rounds) 

14 . Repeat Step 12 using fresh pre warmed Elution Buffer. (we add 50µl in two 

independent rounds only for nuclear sample) 

15 . Place Elution Buffer eluate on ice. 

 

3.7.2. Protein Assay 

 

3.7.2.7. Protein Isolation 

  

Total protein from mammalian cell lines were prepared using RIPA lysis buffer (150mM 

NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40) (Sigma, St Louis, MO) with 
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complete protease and phosphatase inhibitor cocktails (Sigma, St Louis, MO,USA). 

Homogenates were then centrifuged at 13000 rpm for 15 min at 4°C and supernatants 

collected. Protein concentration was measured using Bradford Reagent and the BSA 

Protein for tracing a standard curve. 

3.7.2.8. Western Blotting 

 

A) Reagents and Solutions 

• SDS-PAGE Running Buffer 

Tris-base 3.0 g 

Glycine 14.4 g 

20% SDS 5 ml 

Add ddH2O to 1 L 

• Western Blot Transfer Buffer 

Tris-base 3.0 g 

Glycine 14.4 g 

Methanol 200 ml 

Add ddH2O to 1 L 

• TBS Buffer(pH 7.4) 

Tris-base 2.420 g 

NaCl 8.78 g 

Add ddH2O to 1 L 

Adjust the pH to 7.4 

• TBST Buffer  

0.05 % tween 20  

Add to TBS Buffer 

• Western Blot Blocking Buffer 

5% milk 

Add to TBS Buffer 

Mix well and filter 

• Ponceau Red Staining Solution 

Ponceau S 0.5g 

Acetic acid 25 ml 

Add ddH2O to 500 ml 
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B) Procedure 

Thirty micrograms of total extracted protein were loaded onto 4-15% Mini-

PROTEAN® TGX™ Precast Gels (Bio-Rad Laboratories,Hercules,CA94547). The 

separated proteins were transferred to PVDF membranes (BioRad) for 2h at 100mA. After 

blocking with 5% non-fat milk ,the membrane was incubated with Oct4 primary antibody 

(Anti- OCT4 antibody adcam cat# 19857) (concentration: 1µl/ ml), dilution 1:1000). 

GAPDH (mouse) (concentration dilution 1:15000) was used for normalization purposes at 

4
◦
C overnight. The membrane was washed three times in TBST buffer, each for 10min. 

Then followed by incubation  with Anti-Mouse IgG (whole molecule)–Peroxidase 

antibody produced in rabbit (Sigma Aldrich,A9044 dilution 1:10000) to recognize the 

primary antibodies for 1hr. at room temperature. Signals were developed with Precision 

Plus Protein Dual Color Standard (BIO-RAD) and Protein bands were visualized using the 

ChemiDoc
TM

MP Imaging System and quantified using Image lab 4.0 software (Bio-Rad 

Laboratories,Hercules,CA94547). 

 

3.8.  Quantitative Cell Analysis 

3.8.1. CellTiter-Glo® Luminescent Cell Viability Assay  

 

The CellTiter-Glo® Luminescent Cell Viability Assay is a homogeneous method to 

determine the number of viable cells in culture based on quantitation of the ATP present, 

which signals the presence of metabolically active cells. 20000 Leukemic Cells transferred 

to 96-white-walled microtiter plates. Cell viability was determined by adding 100μl of the 

CellTiter-Glo luminescent cell viability kit (catalog# G7571) from Promega Corporation 

(Madison, WI, USA) directly to cells suspended in serum-supplemented mediumand The 

plate was incubated for 90min at room temperature in a dark room to stabilize luminescent 

signal. For each sample, triplicate wells were considered. Also we considered wells 

without cells as a blank control as negative background controls. The contents were mixed 

for 2 minutes on an orbital shaker to induce cell lysis. Luminescence was recorded in 

Infinite F200 PRO multimode microplate reader(Tecan Group Ltd, Seestrasse 1038708 

Männedorf ,Switzerland). Calculation of results was done by subtracting the average of 

luminescence value of the culture medium background from all  Luminescence value of 

experimental wells. Data were confirmed in at least two independent experiments. 
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3.8.2. Caspase-Glo® 3/7 Apoptosis Assay 

 

The Caspase-Glo® 3/7 Assay is a luminescent assay that measures caspase-3 and -7 

activities in purified enzyme preparations or cultures of adherent or suspension cells. The 

assay provides a proluminescent caspase-3/7 substrate, which contains the tetrapeptide 

sequence DEVD. This substrate is cleaved to release aminoluciferin, a substrate of 

luciferase used in the production of light. The Caspase-Glo® 3/7 Reagent is optimized for 

caspase activity, luciferase activity and cell lysis. Addition of the single Caspase-Glo® 3/7 

Reagent in an "add-mix-measure" format results in cell lysis, followed by caspase cleavage 

of the substrate and generation of a “glow-type” luminescent signal. For preparation of the 

reagent the Caspase-Glo® 3/7 Buffer and lyophilized Caspase-Glo® 3/7 Substrate were 

equilibrated to room temperature before use. Then the contents of the Caspase-Glo® 3/7 

Buffer bottle was transferred into the amber bottle containing Caspase-Glo® 3/7 Substrate. 

The contents was mixed by swirling or inverting, until the substrate is thoroughly dissolved 

to form the Caspase-Glo® 3/7 Reagent.  

Caspase-3/7 activity was measured immediately after the detection of CellTiter-Blue® Cell 

Viability Assay (described above) on the same wells, by adding 100µl of the homogeneous 

Caspase-Glo® 3/7 assay Reagent (catalog#G8091)(Promega Corporation ,Madison, WI , 

USA) at the established time after transfection, to each well of a 96-well plate containing 

100µl of blank or negative control cells. Because of the sensitivity of this assay, the plate 

was covered with a plate lid. contents of wells gently was mixed using a plate shaker at 

300–500rpm for  30 seconds, depending upon the cell culture system. The optimal 

incubation period was determined empirically between 60, 90 and 120min. the 

luminescence of each sample was measured in a plate-reading illuminometer (infinite F200 

PRO) (Tecan Group Ltd, Seestrasse 1038708 Männedorf ,Switzerland), as directed by the 

luminometer manufacturer. The value for the blank reaction which show the background 

luminescence from experimental values was subtracted. Negative control reactions were 

important for determining the basal caspase activity of the cell culture system and vehicles. 

Caspase-3/7 activity is expressed as luminescence of treated sample / mock control×100. 

Data were confirmed in at least two independent experiments. 
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3.8.3. MTS assay 

 

The CellTiter 96® AQueous One Solution Cell Proliferation Assay(a) is a colorimetric 

method for determining the number of viable cells in proliferation or cytotoxicity assays. 

The CellTiter 96® AQueous One Solution Reagent contains a novel tetrazolium compound 

[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazoliu m, inner salt; MTS(a)] and an electron coupling reagent (phenazine ethosulfate; 

PES). PES has enhanced chemical stability. The experiment was established by adding 

20µl of CellTiter 96® AQueous One Solution Reagent into each well of the 96-well assay 

plate containing the samples in 100µl of culture medium. We used multichannel pipettes 

for convenient delivery of uniform volumes of CellTiter 96® AQueous One Solution 

Reagent to the 96-well plate. The plate was incubated at 37°C for 15 min in a humidified, 

5% CO2 atmosphere while covering to avoid light 96-well plate reader. Absorbance was 

measured at 490nm using a plate-reading illuminometer (infinite F200 PRO) (Tecan Group 

Ltd, Seestrasse 1038708 Männedorf ,Switzerland), as directed by the luminometer 

manufacturer.   

3.9. Statistical Analysis 

 

Significance was determined by the two-tailed Student’s test. A p-value threshold < 0.05 

was considered significant. All real time PCR (assayed in triplicate), Western blotting, and 

transfection experiments were repeated twice, and reproducible results were obtained. 

Values were presented as the mean ± standard deviation (Carninci, Kasukawa et al.). 
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CHAPTER 4. RESULTS 

4.1.  LncRNA MIAT is Differentially Expressed Among 

Leukemic Cell Lines 

 

A total of 42 leukemic cell lines were analyzed for MIAT expression including 7 ALL,  2 

CLL, 10 AML, one CML, 19 B cell lymphoma and 4 T cell leukemia cell lines. 

The 7 ALL cell lines included 380,697, RS4;11, SEM, Nalma6 with the characteristic of  B 

precursor leukemic cells, PER377 which originated from mature B cell and REH which 

derived from the peripheral blood of a non B, non T acute lymphoblastic leukemia (ALL at 

first relapse) patient.  

In the group of CLL , MECI derived from the peripheral blood of a patient with B-chronic 

lymphocytic leukemia (B-CLL) in prolymphocytoid transformation to B-PLL. B1 cell 

characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV 

infection. 

The 10 AML cell lines included NB4, HL-60 as promyeloblast leukemic cell type, 

Monomac6, U937,THP-1, MOLM13, MOLM14 that derived from peripheral blood of a 

patient with acute monocytic leukemia, CESS with lymphoblast cell type from 

myelomonocytic leukemia and KG1, MV4;11 with cell type of macrophage and ML-1 

which originated from lymphoblast. 

The only CML cell line, K562, derived from a CML patient in blast crisis. Analysis of 

properties of B and T lymphocytes showed that K562 is not a B cell line, while it has some 

T cell properties. 

The 19 B cell lymphoma included BJAB,BL41,Raji,Daudi,CA46,Nalmava, CI-1 belong to 

Burkitt lymphoma, DoHH2,SU-DHL-6 from follicular B cell lymphoma, NU-DHL1 early 

B cell from non-differentiated B lymphoma, GM1500, WSU-DLCL-2 with lymphoblast 

morphology and DB, SU-DHL-8, SU-DHL-10, OCI-LY-19,Karapas form large B cell 

lymphoma.  

The Four T Leukemia cell lines included CCRF-SB, SUP11, MOLT4 and JURKAT.  
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Total RNAs of cell lines were extracted and treated by DNase I, Amplification Grade Kit in 

order to eliminate genomic DNA contamination. 80 ng of purified total RNAs was used in 

cDNA synthesis reaction using Super Script VILO DNA synthesis Kit (Invitrogen™ Cat 

#s 11754-050) (see material and methods for details). Real Time PCR was done providing 

TaqMan Gene Expression Assays probe for MIAT (Life Technologies, Cat# 

Hs00402814_m1), in three replicates for each samples. Human TBP (TATA-box binding 

Protein)( FAM™/MGB probe, non-primer limited (Life Technologies, Cat# 433376)) was 

selected as endogenous Control. The results were depicted in Figure 4.1. The lowest level 

of MIAT was detected in ALL and AML as well as CML cell lines. MECI cell line 

belonging to CLL type, showed moderate level of MIAT.  In B cell lymphoma variable 

expression of MIAT from low to high was detected. B lymphoma cell lines with Low 

expressed MIAT mostly had Lymophoblast-like morphology. Two cell lines, SU-DHL-6 

and DOHH2 originated from follicular B cell lymphoma fell down in category of moderate 

MIAT expression. Other member of B lymphoma cell lines with moderate level of MIAT  

expression originated from Burkitt lymphoma or Large B cell lymphoma. In the group of 

high MIAT expression which included CI1,DB and Nalmava, the highest level belonged to 

CI1 cell lines. CI1 cells are at intermediate stages of B-cell differentiation with 

abnormalities involving chromosomes 2, 8 and 22 and its karyotype was 46, XX, t(2;8) 

t(14;22). The t(2;8) had the same breakpoints as those reported in some cases of Burkitt's 

lymphoma. DB cell line which established from ascites of a 45-year-old caucasian man 

with diffuse large cell lymphoma; assigned to GCB-like lymphoma subtype (germinal 

center B-cell) was stand for the second high MIAT expression B Lymphoma. Nalmava  

belonged to Burkitt lymphoma ,too. It also did not seem a correlation between MIAT 

expression and differentiation stage of B cells. T cell leukemia cell lines showed also a 

variable level of MIAT expression from low to moderate.  

In conclusion, CLL and B cell lymophoma cell lines express significant high level of 

MIAT whereas AML,ALL and CML cell lines did not show a considerable MIAT 

expression. T cell leukemia cell lines are variable in MIAT expression (Figure 4.2.). 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
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Figure 4.1: MIAT expression in Leukemic cell lines. Differential expression of MIAT in leukemic cell lines was examined through Real time PCR using specific taqman probe for MIAT and 

normalized according to TBP (TATA binding protein) expression. Data are represented as mean values +/- SD from three replicates. Percentage of of 2
-Δct

 was used to explain the MIAT 

expression. 

 



         CHAPTER4: RESULTS 

 

 

Page87 

 

ALL CLL AML CML BL Low BL Moderate BL High T leukemia
0

20

40

60

80

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: MIAT expression in different type of Leukemia cell lines. Data are 

represented as mean values +/- SM from each group.   
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4.2. CLL Patients Differentially Express MIAT Transcript  

 

80 CLL patient’s RNA were subjected for survey of MIAT expression. The study was 

approved by the Ethics Committee of the Ohio State University of Medical Center (OSUMC), 

and written informed consent was obtained from all patients and subjects. The expression 

level of MIIAT was evaluated by Real Time PCR. The experiment was done in triplicates for 

each samples. The percentage of 2
-Δct 

of MIAT target gene and TBP as normalizer gene was 

used to compare the differential expression of MIAT in representative CLL patients (Figure 

4.3A). CLL patient’s samples were classified according to four main cytogenetic changes to 

11q del, 12 trisomy, 13q del and 17p del. As depicted in Figure 4.3B. Evaluation of mean of 

MIAT expression in each group revealed that mean of  MIAT expression in group of 17p del 

is significantly higher than Del(13q) by 61% (p value 0.001). Predicting features of CLL 

patients with 17p del showed more aggressiveness, poor prognosis and outcome and these 

patients tend to have higher-risk disease. As well CLL patient with cytogenetic abnormality of 

17p del usually do not respond to standard initial therapy whereas CLL patients with 13q del 

with no other chromosomal abnormalities are associated with a relatively more favorable 

outcome(1). MIAT expression in 11q del and 12 trisomy, were relatively high comparing to 

13q del by 37% (p value: 0.014) and 57% (p value: 0.002) respectively. The proportion of 

CLL patients with del 11q tend to be younger with large lymph nodes and have high-risk 

disease. Regarding to these information, Suggested that there should be a relation between 

MIAT expression in CLL patients and prognosis features of the disease.
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Figure 4.3. MIAT expression in CLL patient. A: relative expression of MIAT in four of cytogentic different group 

of CLL patients.B: mean of lncRNA MIAT expression in each cytogenetic groups of CLL patients. Results were 

shown as mean+/- SD . Expression of MIAT were significantly higher in 11q del (p value 0.014), 12 trisomy (p value 

0.002) and 17pdel (p value: 0.001) respect to 13q del. 
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4.3.  Transcription Factor Oct4 Modulates MIAT Expression  

 

For an in-depth understanding the molecular pathway of MIAT function the expression of 

transcription factor Oct4  was studied which is suggested as regulator of long non coding 

RNA of Gomafu in mouse Esc(2). Providing cDNAs which synthesized in step 3.1 and 3.2, 

expression level of Oct4 were analyzed in CLL patients as well as Leukemic cell lines by 

using specific probe for human Oct4 (TaqMan® Gene Expression Assays POU5F1, Life 

Technologies, Cat no:4331182) in a real time PCR reaction. TBP (Life Technologies, Cat# 

433376) was used as reference gene. The mean expression of MIAT and Oct4 in each four 

cytogenetic types of CLL was compared. Interestingly we found that the expression of 

Oct4 was highest in 17p del group and gradually decreased in 12 trisomy and 11q del 

toward 13q del (Figure 4.4 A). This results was in accordance with expression of MIAT in 

different cytogenetic groups of CLL samples that  were analyzed in this study, suggesting a 

possible transcriptional regulation of MIAT by Oct4. Analyzing the Oct4 expression in 

leukemic cell lines revealed the same results, as in CLL and B lymphoma were detected 

the highest expression of Oct4 as well as MIAT(Figure 4.4 B). Next, western blot analysis 

was used to compare protein levels of Oct4 in leukemic cell lines.  leukemic cell lines 

CI1,MEC1 and DB with high expression of MIAT  and  leukemic cell lines NU-DHL-1, 

BJAB and BL-41 with low expression of MIAT were cultured and proceed to protein 

extraction as described in material and method (Figure 4.5.). We observed higher 

expression of Oct4  protein level in CI1 and DB cells that also had been shown higher 

expression of  MIAT transcribed during Real time PCR (Step 3.1). The lowest Oct4 protein 

was observed in BL-41 and NU-DHL-1 with very low expression of MIAT expression. 

While BJAB with low expression of MIAT transcript still showed moderate Oct4 

expression in protein level. These results validated that Oct4 and MIAT transcript could 

participate in a feedback regulation. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
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          Figure 4.4: Quantities real time PCR for Oct4 transcript and MIAT. Result were 

established through as mean values +/- SD from three replicate (p value<0.05). A:  Oct4 

transcript expression in CLL patients. Oct4 as well as MIAT express highly in 17pdel 

CLL samples. The least expression of Oct4 was achieved in 13q del CLL patients that was in 

accordance with MIAT expression. B: Oct4 expression in Leukemic cell lines. The mean of 

Oct4 expression in each category of leukemic cell lines represent the same pattern of lncRNA 

MIAT expression.   
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Figure 4.5. Western Blot analysis of POU5F1(Oct4) protein in leukemic cells. CI1 , MECI and 

DB which express lncRNA MIAT at highest level showed higher expression of Oct4 at protein level. 

NUDHI1 did not show any expression of Oct4 protein. Oct4 expression in BL41 was low. BJAB cell 

line showed medium level of Oct4 protein. The latest three cell lines distinguished as low expressing 

MIAT leukemic cell lines. GAPDH was employed as reference normalize 
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4.4. Knockdown of lncRNA MIAT in leukemic cell lines 

 

4.4.1. Figuring out the most Effective Leukemic Cell Line for Chemical 

Transfection of Synthetic Oligos like siRNAs 

 

As the transfection in suspend cell lines like leukemic cell lines is not feasible as adherent cell 

lines, Leukemic cell lines that showed high expression of MIAT were selected as DB, CI1 and 

MEC1 to be checked for transfection efficacy with different chemical reagents for 

transfection. Transfection of BLOCK-iT™ Fluorescent Oligo(invitrogen) using lipofectamine 

2000(invitrogen) and Dharmafect (GE) and reverse transfection using Neo FX Rt 

reagent(invitrogen) were compared in DB,CI1,MEC1. 4.5*10
4 

DB, CI1 and  MEC1 cells were 

seeded into 96 well plates on the day of transfection for transient transfection. HEK-293 cell 

line which known as easily transfect among adherent cell lines, transfected with BLOCK-iT™ 

Fluorescent Oligo in parallel, to compare the efficiency of different chemical transfection 

reagents and stability of BLOCK-iT oligo during times (Data not shown). For HEK-293,  

0,8*10
4
 cells were seeded into 96 well plate on the day before transfection for transient 

transfection, however for reverse transfection using Neo FX Rt reagent (invitrogen), 2.5*10
4
  

cells  were used on the day of transfection. The cells were monitored during 5 days using 

florescent microscope. After 24,48,72,96 and 120 hours post-transfection, transfection 

efficiency was determined under florescent microscope. Among leukemic cell lines, DB and 

CI1 were detected as the best transfectable cell lines in comparison with MEC1 (Figure 4.6.). 

On the base of transfection efficacy, DB and CI1 cell lines were selected for the next steps. 

Also we checked three different concentrations of BLOCK-iT™ Fluorescent 

Oligo(invitrogen) (10nM,50nM, and100nM), and different volume (0.2μl,0.5μl and 1μl) of 

lipofection reagents of Lipofectamine 2000(invitrogen) and Dharmafect (GE) in DB and CI1 

cell lines. Our goal was set up the best effective transfection situation with the least 

cytotoxicity. According to Figure 4.7 the results showed the best transfection efficacy with 

100nM concentration of  BLOCK-iT™ Fluorescent Oligo trasfected using 1μl of  Dharmafect 

(GE) reagent. 
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Figure 4.6. Transfection effiency of leukemic cell lines. DB, CI1 and MEC1transfected with BLOCK-iT 

florescent oligos to compare  the efficiency of transfection. Features of transfected cells after 48 hours 

visualized under light microscope(10X) . DB and CI1 were detected as most efficient during lipofection 
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Figure 4.7. Set up analysis for lipofection of synthetic oligos.  10μM ,50μM and 100μM Block-iT oligos 

were transfected with different concentration as well as reagents available for lipofection. Efficiency of 

transfection was revealed 48h after transfection under florescent microscope (10x). 100μM oligo trasfected 

using 1μl of Dharmafect reagent showed to be the most efficient . 
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4.4.2. MIAT Knockdown in CI1 and DB Cell Lines 
 

100nM of Human MIAT siRNA was transfected in DB and CI1 cell lines (5*10
5
 DB and CI1 

cells in 24 well plates) using Dharmafect (GE) Transfection reagent. We used a pool of 4 

siRNAs reaction to achieve the most effective knockdown of MIAT. In this experiment 

Negative controls was established for verification of experiment. Negative control cells were 

transfected by ON-TARGETplus Non-targeting siRNA in the same concentration and 

condition of target siRNA. Cell lines harvested in different time points 24h,48h,72 and 96 

hours and subjected for analysis of MIAT expression level through Real Time PCR. The 

experiment was done in biological triplicates. Technical replicate for Real Time PCR reaction 

was also considered. The results are shown in Figure 4.8 for DB and CI1 cell lines. According 

to the real time PCR results single transfection of 100nM siRNA against MIAT was able to 

inhibit the expression of MIAT by 26% (p value: 0.01) in DB cells and 14% (p value: 0.04) in 

CI1 cells, for 24 hours. However at longer time their effect diminished, suggesting degradation 

of synthetic siRNA by RISC complex. To reach the most efficient knockdown of MIAT, we 

increased the amount of siMIAT and transfected it in DB for 24 hours. ON-TARGETplus 

Non-targeting siRNA as negative controls were considered for verification of experiment. This 

result showed that the best rate of knocking down of MIAT was seen in 150nM of siRNA 

against MIAT respect to negative control. The value of down regulation was achieved by 

32.7% (p value=0.01) in time point 24 hours (Figure 4.9). 

 

 

 

 

 

 

 

http://dharmacon.gelifesciences.com/sirna/on-targetplus-non-targeting-control-sirnas/?productId=E0D5E741-43BE-4D78-A69B-11341A6695AA
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Figure 4.8.Directected know down of MIAT in DB and CI1 cells. DB and CI1 cell lines were 

transfected with 100nM MIAT siRNA and negative oligo as control. Real Time PCR of transfected 

cells for 24,48,72 and 96 hours showed that MIAT down regulation was achieved for 24h post 

transfection. The value of down regulation was higher in DB by26% respect to 14% in CI1(P 

value<0.05). 
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4.4.3. Directed Knockdown of the lncRNA MIAT Promotes Down 

Degulation of Oct4  

 

To check whether the lncRNA MIAT might participate in a feedback loop affecting the level 

of Oct4 transcription factor, we examined if RNAi against MIAT could change Oct4 mRNA 

levels in leukemic cell lines. siRNA transfection was done in DB leukemic cell lines. 5*10
5
 

DB cells were seeded into 24 well plates on the day of transfection. Transfection was done 

using 100nM of Human MIAT siRNA and transferred to the cell by Dharmafect (GE) 

Transfection reagent. The same concentration of ON-TARGETplus Non-targeting siRNA #1 

Figure 4.9. Different concentration of siRNA for know down of MIAT in DB cells. DB 

cell line was transfected with 75nM, 100nM and 150nM of MIAT siRNA and negative oligo 

as control. Real Time PCR of transfected cells after 24 hours post transfection revealed using 

150nM of siRNA, we can  down regulate MIAT expression by 32.70% (P value=0.013).  
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were transfected in negative control cells. Cells  harvested after 24 hours and level of lncRNA 

MIAT and mRNA of Oct4 were analyzed through Real Time PCR providing specific probes 

for MIAT and Oct4 and TBP as normalizer. The results showed that siRNA of MIAT resulted 

in reduced mRNA level of Oct4 (Figure 4.10.). Interestingly, increasing concentration of 

RNAi against MIAT, affected the RNA level of Oct4 as well as MIAT down regulation 

(Figure 4.10.). That means transcription of MIAT and Oct4 are regulated in a potential 

synergistic feedback mechanism.  

 

 

 

Figure 4.10. RNAi mediated know down of MIAT, down regulate the expression of Oct4. DB cell line 

was transfected with 75nM, 100nM and 150nM of MIAT siRNA and negative oligo as control. Real Time 

PCR was done for Oct4 and MIAt as well. 12.9% and 9.6% down regulation of Oct4 expression were 

observed using 100nM and 150nM of siRNA against MIAT respectively. Knockdown efficiency of MIAT 

was validated by showing  32.7% and 22.07% reduction of MIAT expression level in samples transfected by 

100nM and 150nM of siRNA against MIAT respectively. *P value<0.01, **P value<0.05.  
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4.4.4. Directed Knockdown of the lncRNA MIAT Decreased cell 

Proliferation and Induced Apoptosis in Leukemic Cell Lines 

 

To check whether lncRNA MIAT transcript level reduction is correlated with alteration in  

cell viability and programmed cell death levels, three sequential rounds of transfection of  

Human MIAT siRNA in DB cell lines was employed. We proposed that continuous 

transfection ensure the highest and continuous inhibition over the 72-hour time course ,that 

is needed for cell function studies. 5*105 DB cells were seeded into 24 well plates on the 

day of transfection and 150nM of Human MIAT siRNA was transfected by Dharmafect 

(GE) Transfection reagent. In this experiment, Negative scrambled oligo was used as 

control (ON-TARGETplus Non-targeting siRNA # Dharmacon). Three sequential rounds 

of transfection of Human MIAT siRNA (GE company) were done at 0, 24h and 48h. To be 

sure that repeating transfection by lipofection reagent has no considerable toxic effect,  the 

viability of cells were analyzed by MTS Assay during the time points (Data not shown).  

Before each rounds of transfection, cells washed gently with complete media and seeded in 

wells again. After 72 hours cells harvested and proceed to RNA extraction step by 

NORGEN RNA Clean Up and Concentration Kit. Real Time PCR reaction was done in 

significant statistical replicates for each samples. The results showed that triple transfection 

of siMIAT, significantly depleted endogenous level of MIAT by 51% relative to 

nonsilencing control siRNA-transfected (p value=0.001), confirming that these lncRNAs 

are susceptible to Dicer-mediated suppression (Figure 4.11A). Furthermore, we showed the 

co-downregulation of MIAT and Oct4 RNA level is still detected (Figure 4.11A), which 

powering the hypothesis of existence of a potential synergistic feedback mechanism 

between lncRNA MIAT and transcription factor, Oct4. 

Also we showed that lncRNA MIAT RNAi induced apoptosis by 40%(P value0.007) 

corresponding to negative control treated cells(Figure 4.11BI) after 96 hours from starting 

point of experiment. Consistently the number of viable cells decreased by 10% (P value 

0.05) (Figure 4.11 BI). The lesser effects was observed in 72 time point (Figure 4.11 BII). 
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Figure 4.11. Cell based assay mediated knockdown of MIAT by siRNA. A: Down regulation of MIAT 

as well as Oct4 were detected following triple transfection of DB cells with siRNA against MIAT. B: 

Apoptosis and cell proliferation assay following directed knockdown of MIAT by siRNA. BI . After 96 

hours from the start point of experiment, 40% (P value 0.007) induction in apoptosis and 10%(P value 0.05) 

decrease in viability were observed.  BII. Apoptosis and viability of cells transfected with siRNA through 

three days did not show any significant chang related to the control.  Control was considered as not 

transfected DB cells 
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4.5. Oct4 Knockdown by shRNA Mediated Lentiviral delivery: 

in vitro Study 

 

4.5.1. Development of Recombinant Lentivirus for shRNA against Oct4  

 

ShRNA against Oct4 were delivered as 4 individual constructs of : V3LHS-311240, 

V3LHS-311241, V3LHS-311243 and V2LHS-222507. A set of four expression constructs 

were used to guarantee that at least one of the four, offered an efficient knockdown for 

Oct4 with 50% or more. Lentivius for shRNA clone collection against Oct4 as well as 

control viral particles were produced in HEK-293T Cells, providing Thermo Scientific 

Trans-Lentiviral shRNA Packaging Kit including helper plasmids which co-transfected 

with expression constructs using  Calcium Phosphate Transfection Reagent (see details in 

material and methods). Transfection efficacy of four individual constructs were monitored 

48h post-transfection for GFP reporter under fluorescent microscopy (Figure 4.12.). 

Transient transduction of four recombinant lentiviral particles were done in HEK293 cells 

to determine the most efficient viral particle for transduction of target cells. For each 

individual viral particle, transduction efficiency of 1*10
5
,2*10

5
 and 4*10

5
 IU were 

compared. The efficacy of transduction monitored under fluorescent microscopy, 72 hours 

post transduction. The results showed  that the most efficient  transduction of recombinant 

lentiviral particle achieved using 4*10
5
 IU compare to IU 2*10

5
 and 1*10

5 
(Figure 4.13.A). 

Infected cells with recombinant lentiviral particle at IU 4*10
5
 were trypsinized and 

harvested 72 hours post infection and proceed to protein extraction. Western blot analysis 

of Oct4 was done by using Oct4 antibody (Anti- OCT4 antibody adcam cat# 19857) 

(concentration: 1µl/ ml), dilution 1:1000). GAPDH (mouse) (concentration dilution 

1:15000) was used for normalization ( Figure 4.13.B).  The results showed that lentivirus 

V3LHS-311241 knockdown Oct4 effectively compared to other viral particles. 
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Figure 4.12. Transfection efficiency of four Oct4 shRNA expression constructs. Untransfected 

sample considered as a negative control for GFP expression. 
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Figure 4.13. A.Transduction efficiency of four Oct4 shRNA lentivirus. DB cells were infected with recombinant  

Lentivirus at 1*10
5
,2*10

5
 and 4*10

5
 IU. Infection efficiency and concentration of  each particle were compared by 

florescent features of GFP reporter expression. B. Western blot analysis for Oct4. Functionality of four recombinant 

particles for Oct4 knockdown was determined at protein level, 72h after infection. Mouse GAPDH was used for 

normalization. The most efficient viral paricle was determined as LentiV3LHS-311241. 

A 

B 



         CHAPTER4: RESULTS 

 

 

Page105 

 

4.5.2. Lentiviral Delivery of shRNA Suppress the Expression of Oct4 in 

Leukemic cell line 

 

The ability of shRNA mediated lentiviral delivery to knock-down endogenous Oct4 was 

assessed in DB cells. toward this end, Virus no V3LHS_311241 was selected  for 

transduction because of its higher efficacy in transduction of HEK293 cells (see section 

3.5.1.). pGIPZ non-silencing shRNA lentiviral control virus  RHS 4346 was used as 

Negative control in our experiment. 100000 cells were mixed with 0.5ml RPMI and 0.5 µl 

of Polybrene in one tube for each well of 24 well plate. Recombinant virus was added to 

the mentioned mixture with different IU 1*10
5
, 2*10

5
, 4*10

5
 and 10*10

5
. Centrifuged in 

2000g, Room Temperature for 180 min followed by Incubation over night at 37. The day 

after, Centrifuged at 1000 rpm 10 min RT. Aspirated supernatant and resuspended  pellet 

in 0.5 ml RPMI with 10 % FBS and 1% antibiotics and seeded  in 24 well plate. 

Cytotoxicity of recombinant virus was assessed by using MTS viability method which did 

not show any considerable cytotoxicity effect.  After 48  hours GFP expression studied in 

florescent microscope and DB cell line with more than 4*10
5
 IU of virus was selected for 

proceeding the experiment (data not shown). 

10*10
5
  DB cell lines were infected by 5*10

6
 virus expressing shRNA of Oct4 and control 

virus as well. Experiment was done in triplicate in 12 well plate . Figure 4.14A shows the 

efficacy of transduction which is monitored by GFP expression under fluorescent 

microscopy. Infected cells peletted 72 hours post infection and followed for RNA and 

protein extractions. The significant reduction of Oct4 mRNA by shRNA  resulted in Real 

Time PCR (-18,64 ± 5,634 difference between means shRNA oct4 v. control, P value= 

0.02 relative to control virus infected cells, N = 3 replicates). Lentivirus delivery of shRNA 

against Oct4 also significantly reduced protein level of Oct4 (P < 0.001 relative to control 

virus infected cells). These data demonstrated that shRNA against Oct4 provides an 

effective knockdown.  
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Figure 4.14. shRNA-Oct4 knockdown mediated lentivirus delivery. A. Fluorescent features of 10*10
5
  DB 

cell lines which infected by 5*10
6
 virus(10X) represent the percentage of infected cells.  B. Real time PCR 

analysis for Oct4 mRNA. shRNA directed Oct4 knockdown resulted in around 18,64 ± 5,634 fold reduction of 

Oct4 mRNA, compared with the control virus infected samples, 3 d post-infection (p value <0.01). C. Western 

blot analysis of POU5F1/Oct4 protein, confirmed an robust downregulation of protein level of Oct4 in 

comparison with control virus in DB cells. GAPDH protein was employed as reference normalize. 
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4.5.3. Oct-4 knockdown Modulates MIAT Expression 

 

To further explore whether MIAT modulation following Oct4 knockdown was concordant 

with Oct4 mRNA silencing using RNAi MIAT (see section 3.4.3.),  we examined whether 

shRNA against Oct4 mediated lentiviral delivery could change lncRNA MIAT transcript 

level in leukemic cells. Indeed, shRNA against Oct4 (Fig. 4.15) resulted in reduced levels 

of MIAT as shown by real time PCR(P <0.01). In conjunction with RNAi MIAT-mediated 

suppression of Oct4, the result suggests the potential for an auto feedback loop between 

lncRNA MIAT and Oct4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.15.  Differential expression of lncRNA MIAT upon robust Oct4 shRNA knockdown. 

shRNA-directed Oct4 knockdown resulted in down-regulation of MIAT compared with the non 

target control virus infected, 3 d post-infection. (Asterisks) Significant difference from control 

samples(*, P < 0.05; **, P < 0.01).  
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4.5.4. Induced Apoptosis and Depleted Cell Viability Following Oct4 

Knockdown 

 

To establish whether Oct-4 knockdown induced changes in biological properties of 

leukemic cell lines, DB cells were infected with lentivirus express shRNA against Oct4( 

IU=10*10
5
). Cell apoptosis and viability were analyzed after 24,48,72 and 96 hours post 

infection. 20000 infected cells in each time points were used for caspase3/7 apoptosis as 

well as cell viability. At 24h time point the effect of Oct4 shRNA was not enough to show 

significant difference in apoptosis and viability, means that knockdown of the target OCT4 

transcripts was also time dependent. However after 48h, Oct4 knockdown leads significant 

specific effects on number of viable cells and cells went to programmed death(Figure 

4.16A).  Higher effect also observed at 72 h after infection (Figure 4.16A). Real Time PCR 

was done on harvested cells at 72 h to show that the existence differences in apoptosis and 

viability are consequences of Oct4 knockdown(Figure4.16B).   
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Figure 4.16.  Apoptosis induction and proliferation inhibition following Oct4 knockdown. A. Apoptosis 

and viability of DB cells infected with shRNA against Oct4 mediated lentivirus at IU 10*10
5
  significantly 

changes regards to control virus infected cells. Greater induction in apoptosis and inhibition of proliferation 

observed after 72 h post infection. B. Increase in apoptosis and Decrease in viability was a consequence of 

Oct4 as confirmed by real time PCR.   
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4.6. Development of Vectors for Over-expression of lncRNA 

MIAT  

 

We next asked whether over-expression of lncRNA MIAT coding sequence could 

modulate tumorogenesity-associated transcript levels. Moreover,  over-expression of 

MIAT introduce a new possibility for breakthrough in understanding the correlation 

between MIAT and Oct4 expressions.  In this step leukemic cell lines which express MIAT 

at high level were used as a source of MIAT template.  

4.6.1. LncRNA  MIAT is Enriched in the Nucleus  

There is growing evidence that lncRNAs are recruited to chromatin and epigenetically 

regulate gene expression(4). Thus, lncRNAs expected preferentially localized in the 

chromatin and nuclear RNA fractions, in contrast to protein-coding mRNAs that are 

trafficked to the cytoplasm for translation(5). There are also evidences that show spliced 

mature Gomafu RNA is localized to the nucleus despite its mRNA-like characteristics(6). 

We checked the localization of MIAT transcript in leukemic cell lines in which express 

high level of MIAT as DB, CI1 and MECI.  The cultured cells were dissolved in hypotonic 

solution and homogenized in homogenizer tubes. Centrifuging of homogenized solution 

separated the cytoplasmic and Nuclear compartments. Both cytoplasmic and nuclear 

fractions were followed for extraction of RNA using Trizol and Trizol LS (Invitrogen) 

reagents, respectively(see material and methods for details). 40ng of extracted RNAs were 

reverse transcripted to cDNA by  Super Script VILO DNA synthesis Kit (Invitrogen™ Cat 

#s 11754-050). Synthesized cDNAs were amplified in Real time PCR procedure using 

TaqMan specific probes for MIAT (Life Technologies, Cat# Hs00402814_m1) and TBP 

(Life Technologies, Cat# 433376) as reference control. Analysis of the Real time PCR data 

for nucleus and cytoplasm from three different B cell lines indicates that indeed the MIAT 

transcript is abundant in the nucleus over the cytoplasm. In Figure 7.17 we displayed the 

mean of percentage of 2
-Δct 

for three technical replicates of each samples. In all cell lines 

we observed a robust and highly statistically significant enrichment of lncRNAs in the 

nucleus (p value<0.05).  Highest differential ratio was belonged to DB by 50.7% MIAT 

enrichment in nuclear over cytoplasmic compartment(p value= 1,24E-05). 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
http://genome.cshlp.org/content/22/9/1775.full#F8
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4.6.2. Cloning of MIAT ORF  

 

4.6.2.1. Isolation of polyA+ RNA from RNA Component  of Nucleolus 

 

LncRNAs possess mRNA-like features, as they generally undergo splicing, are transcribed 

by RNA polymerase II, and are polyadenylated. Most RNA component  of nucleolus  

included ploy(A)- RNAs like ribosomal RNA (rRNA), transfer RNA (tRNA) and 

small nuclear RNA (snRNA). Thus, we employed polyA Spin™ mRNA Isolation Kit  to 

isolate poly(A)+ RNA, like  lncRNA MIAT from total RNA of nuclear component. 

Poly(A)+ RNA selection kit (New England Biolabs,  Cat#S1560S) functions through 

affinity chromatography using pre-packed oligo (dT)25-cellulose beads.  PolyA Spin™ 

mRNA Isolation Kit was used according to manufacturer’s instruction. Because of their 

poly(A) tails and other mRNA-like features, lncRNAs are represented in typical cDNA 

cloning. We utilized poly(A) tails of lncRNA MIAT to made cDNA.  cDNA Synthesis was 

done by providing 0.5 µg/µl oligo(dT) 12–18 as well as random Primers in the 

SuperScript™ First-Strand cDNA synthesizing protocol.  PolyA
+
 RNA content of both 

Figure4.17. LncRNAs MIAT are enriched in the cell nucleus. the chromatin/cytoplasm expression ratios of lncRNAs 

in MECI, DB and CI1 cell lines. Data are represented as percentage of 2-Δct ratios of MIAT and TBP expression.  
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nuclear and cytoplasmic compartment were applied as template for reverse transcription. 

Then, the products of cDNA synthesis step were subjected for real time PCR using specific 

probes for MIAT (Life Technologies, Cat# Hs00402814_m1)  and TBP (Life 

Technologies, Cat# 433376) as a reference gene. As expected the load of MIAT in 

cytoplasmic compartment was lower than nucleus. Either Oligo(dT) or Random primers in 

PCR reaction did not effect on the amount of final product of polymerase reaction.  

 

4.6.2.2. Amplification of MIAT ORF 

We designed Forward primers from start point of MIAT transcript (NCBI Reference 

Sequence: NR_003491.2) and equipped it to XhoI restriction site and reverse primers from 

a few nucleotide upstream of polyA tail and equipped it to MluI restriction site. cDNA 

synthesized with oligo(dT) primer in step3.6.2.1. was used as template in a PCR reaction. 

As the size of our amplicon(MIAT) estimated to be between 9 to 10kb,  polymerization 

was done providing high fidelity, advantage HD polymerase(2.5U/µl) (clontech , cat# 

639241). PCR was done in three-Step as 98°C for 10 sec, 55°C for 5 sec and 72°C for 

10min(1 min/kb) for 30 cycles. At the end 1μl of Taq polymerase and dATPs was added 

and incubation was continued by a single extension at 72°C for 20min to add 3ˊA 

overhang to amplicons, which will facilitate cloning steps of PCR products in commonly 

use TOPO®TA Cloning vectors. Amplification of a 10kb PCR product was illustrated on 

agarose gel 0.8% in TBE 0.5x along with 1kb DNA ladder( Figure 4.18A). The 10kb and 

heavier bands were cut from the gel and kept in separate tubes (Figure 4.18B). Gel pieces 

transferred into the dialysis membrane containing 0.5 ml buffer TBE and the two sides of 

membrane closed thoroughly by clips.  The membrane lay down in the electrophoresis tank 

contains TBE 0.5x as  electrical flows go through negative to positive for 45 min 100 V 

Tank. the Buffer included DNA collected from bag and transferred to a tube.  

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=http%253A%252F%252Fwww.lifetechnologies.com%252Forder%252Fgenome-database%252Fbrowse%252Fgene-expression%252Fgene%252FMIAT&ei=ZQv2VJiXH4u-ygOTg4DYBA&usg=AFQjCNG-064Ykk7u7xfp6Vjr5QQCQPyZZg&bvm=bv.87519884,d.bGQ
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Figure4.18.  PCR Amplification of MIAT ORF with around 10kb length, using MIAT forward and reverse primers 

digned in this study. Ploy A+RNA reverse transcript to cDNA using oligodt primers and subjected for amplification as a 

template. A. Eletophoresis of PCR product revealed a 10kb band. B. 10kb amplicon was cut from the gel for further 

cloning steps. 
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4.6.2.3. Engineering the clones, contain MIAT ORF 

DNA from previous step ,proceeded to Ethanol Precipitation (see material and methods for 

details). Cloning steps was done into TOPO®TA Cloning vector. The Ligated  products 

were then transformed into DH10β cells and allowed to grow overnight on ampicillin 

plates to select for cells containing plasmids. Screening of appropriate recombinant clones 

were done by PCR and restriction digestion analysis. Colony PCR screening was performed 

with primers flanked full sequence of MIAT transcript. polymerization was done providing 

high fidelity, advantage HD polymerase(2.5U/µl) (clontech , cat# 639241) in three-Step as 

98°C for 10 sec, 55°C for 5 sec and 72°C for 10min(1 min/kb) for 30 cycles. The PCR 

product visualized on the agarose gel 0.8% after electrophoresis at 80v for 45 min. As 

Figure 4.19A show, it seemed three over four clone contains our interest fragment. 

Restriction digestion screening of all four clones was done using EcoRI (New England) 

according to it’s manual. Two of four clones confirmed as correct clone after illustrating 

the digested PCR on gel agarose 0.8% along with 1kb DNA marker( Figure 4.19B). 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Screening of recombinant construct contains MIAT. A. PCR screening, clone 1, 3 and 4 

contain our interest fragment with the size of 10kb. B. Restriction digestion screening. Red circle show the 

expected yielding fragments after cut with EcoRI. M: 1kb DNA marker. 
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CHAPTER 5. DISCUSSION 
 

Leukemia is cancer of the body's blood-forming tissues, including the bone marrow and 

the lymphatic system. The disease develops when blood cells produced in the bone 

marrow,  grow out of control. Approximately every 3 minutes one person in the United 

States (US) is diagnosed with a blood cancer. 71% of men survive leukemia (all subtypes 

combined) for at least one year, and this is predicted to fall to 54% surviving for five years 

or more. Survival for women is slightly lower, with 66% surviving for one year or more 

and 58% predicted to survive for at least five years. Traditionally biologists have 

concentrated their efforts on understanding the functions of coding genes. It may therefore 

be a little surprising that only a tiny fraction of the human genome encodes proteins, yet in 

contrast recent studies showed that the majority of our genome is transcribed into non-

coding RNAs (ncRNAs). NcRNAs include highly abundant and functionally important 

RNAs, such as ribosomal RNAs (rRNAs), transfer (tRNAs), small nuclear RNAs 

(snRNAs), and small nucleolar RNAs (snoRNAs). However, two classes of recently 

discovered ncRNAs, microRNAs (miRNAs) and long ncRNAs (lncRNAs), appear to play 

a significant role in the regulation of gene expression programs that occur in higher 

eukaryotes. LncRNAs, which are abundantly encoded in mammalian genomes, numbering 

in the tens of thousands, in contrast to microRNA-encoding genes, which are an order of 

magnitude less numerous. However, functionalizing the rich repertoire of long non-

protein-coding transcripts remains a challenge. LncRNAs may also be involved in all 

levels of gene expression regulation within the cell and, eventually, they have also been 

implicated in many diseases, including cancers. EGO was one of the first lncRNA to be 

identified in the hematopoietic system [63]. This lncRNA was identified in eosinophil 

differentiation of CD34+ HSCs where it stimulated differentiation and mature cell function 

by transcriptionally regulating eosinophil granule protein expression [62]. However, its 

mode of action has not yet been described. 

Nowadays, Long non-coding RNAs (lncRNAs) are increasingly recognized as important 

regulators of gene expression, chromatin structure and nuclear architecture. Although 

many thousand lncRNAs have been identified over the last years, little is known about 

their biological relevance in normal and cancerous development. 

http://www.hindawi.com/journals/scientifica/2012/925758/#B63
http://www.hindawi.com/journals/scientifica/2012/925758/#B62
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LncRNA MIAT/AK028326 has been previously described as retinal noncoding RNA 2 

(RNCR2), strongly expressed in the developing retina(Blackshaw, Harpavat et al. 2004). 

Subsequent studies have demonstrated that RNCR2/AK028326 is a 3′ terminal fragment of 

a ∽9-kb lncRNA, Gomafu/Miat, widely expressed in central nervous system 

neurons(Sone, Hayashi et al. 2007).  

Another study showed that RNCR2/AK028326 is also expressed in mESCs and may be 

regulated by ES-associated transcription factors. (Sheik Mohamed, J., P. M. Gaughwin, et 

al. (2010). Their original annotations described AK028326 as the nearest target to the Oct4 

ChIP-PET-supported binding site in the region; in addition, during the early stages of their 

work, EST evidence was lacking to conclusively link AK028326 to the Gomafu/Miat 

transcriptional unit (Sone et al. 2007). Both AK028326 and the Gomafu/Miat cDNAs were 

derived from a 5 cap-trapped, dT-primed cDNA library, suggesting that multiple 

transcriptional initiation and termination events, generating a variety of mature transcripts, 

including possibly the original AK028326 isoform, may take place at this locus. 

Although their results explore the synergy of Oct4 and AK028326 expression, they portray 

an apparently contradictory increase in mRNA levels of several differentiation markers 

when AK028326 is over expressed. While this particular finding may be due to over 

expression far beyond maximum endogenous levels that saturates the regulatory 

network and leads to unanticipated cell differentiation triggers, their results also do not 

exclude functional outcomes associated with the longer transcripts from this locus, whose 

expression did not investigate. 

Of potential relevance to their AK028326 work is the finding that MIAT, an lncRNA 

encoded at the human chromosome 22 locus orthologous to AK028326/Gomafu, is 

genetically associated with heart disease (Ishii et al. 2006) and, similarly to 

AK028326/Gomafu, exhibits multiple alternative transcription initiation and termination 

sites, which are supported by cDNA evidence and are accompanied in EST data by 

different expression specificities of the different transcripts encoded at the locus. It is 

therefore remarkable that RNAi and over expression of even a partial fragment of this 

particular lncRNA are sufficient to promote mESC differentiation under self-renewing 

conditions, and to promote meso- and ectodermal gene transcription, respectively. 

http://www.ncbi.nlm.nih.gov/nuccore/AK028326
http://www.ncbi.nlm.nih.gov/nuccore/AK028326
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The mechanisms by which AK028326 exert its impact, remain unknown but worthy of 

future studies. 

Our study provides the first evidence that MIAT/AK028326 is also expressed during 

hematopoetic malignancy, and may be regulated by ES-associated transcription factors 

(Oct4), expanding our understanding of this particular lncRNA by implicating it in 

regulatory networks outside of the central nervous system. 

In our quantitative analysis of the expression patterns of MIAT transcript in leukemic cell 

lines, the highest expression were shown to belong to B cell lymphoma. AML and ALL 

cell lines revealed the lowest level of MIAT expression.  

Gomafu is evolutionarily conserved from mammals to birds and amphibians (Rapicavoli et 

al. 2010; Tsuiji et al. 2011). The previous studies revealed that In contrast to NEAT1 and 

MALAT1, which are expressed in a wide range of tissues, Gomafu is only expressed in 

subsets of neurons (Blackshaw et al. 2004; Rapicavoli et al. 2010; Tsuiji et al. 2011). But 

in this study we showed that MIAT is expressed in lymphoma cell lines as well. 

We also associated the aberrant expression of MIAT with clinical significance by 

analyzing 80 Chronic lymphocytic leukemia (CLL) patient samples from four different 

cytogenetic abnormalities. CLL is the most prevalent type of leukemia which is  

characterized by a extremely variable clinical course: while some patients present quick 

progressive evolutions, others have an indolent course with more than 30 years of survival. 

51.7% of the CLL patients present chromosome abnormalities. The most important 

numerical and structural abnormalities found in CLL include trisomy 12 and deletions in 

several chromosome regions, such as 13q14, 11q, and 17p13, as well as other less 

frequently occurring aberrations. The most frequent observed aberration is del 13q14 

observed in 34.5% of cases and It is associated to other alterations in 17.2%. 17p13 

deletions are found in 17.2% and trisomy 12 in 13.8% (in isolation in 6.9% and associated 

to del 13q14, in 6.9% of the cases). An 11q22 deletion was found in one case associated to 

a 13q14 deletion.  

Nascimento et al evaluated the relationship between chromosome aberrations and other 

prognostic factors in CLL. They considered two cytogenetics groups: in isolation and no 

alteration) and unfavorable outcomes (trisomy 12, 17p13 deletion, 11q22 deletion and two 

http://www.ncbi.nlm.nih.gov/nuccore/AK028326
http://www.ncbi.nlm.nih.gov/nuccore/AK028326
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simultaneous alterations).The unfavorable alterations were more frequently seen among 

young individuals (<60y). 

We identified abundant expression of MIAT in unfavorable outcomes (trisomy 12, 17p13 

deletion, 11q22 deletion) compared to favorable (13q deletion) cytogenetic group. By this 

mean, MIAT expression might be associated to aggressiveness and poor outcome in CLL 

which also empower a proposed role for lncRNA MIAT in development and regulation of 

leukemiasis. Expanding this experiments may also issue MIAT to identify patient 

populations at risk of development of cancer and may classify patients into aggressive or 

mild cancer groups. 

Thus, analysis of the function of lncRNAs is expected to have a tremendous impact on the 

management of human disease, we also performed functional studies. Recently, the role of 

lncRNAs in pluripotency was examined in another study by interpreting the genomic 

context of the ncRNAs relative to nearby protein-coding genes and expression upon 

embryoid body (EB) differentiation. Out of the 945 ncRNAs expressed during EB 

differentiation, 174 were differentially expressed, many correlating with pluripotency and 

cell fate decisions (Dinger et al. 2008b). AK028326 (synonyms: Gomafu, MIAT) was 

among the 174 differentially expressed lncRNAs, but it was not singled out for in-depth 

regulatory or functional analysis in that study.  

In CLL patient samples and Leukemic cell lines, we showed the strong correlation between 

MIAT transcript and mRNA of Oct4. The mean expression of MIAT and Oct4 in each four 

cytogenetic types of CLL was compared. Interestingly we found that the expression of 

Oct4 was highest in 17p del group and gradually decreased in 12 trisomy and 11q del 

toward 13q del. This results was in accordance with expression of MIAT in different 

cytogenetic groups of CLL samples that  were analyzed in this study, suggesting a possible 

transcriptional regulation of MIAT by Oct4. Analysis of protein was somehow in 

accordance with quantitative transcript expression. We observed higher expression of Oct4  

protein level in CI1 and DB cells that also had been shown higher expression of  MIAT 

transcribed during Real time PCR . The lowest Oct4 protein was observed in BL-41 and 

NU-DHL-1 with very low expression of MIAT expression. These results validated that 

Oct4 and MIAT transcript could participate in a feedback regulation. 

Given the recent evidence that lncRNAs such as NRON, Evf-2, and MEG3 may directly 

co-regulate transcription factors, testing for direct interactions between Oct4 and 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811662/#B10
http://www.ncbi.nlm.nih.gov/nuccore/AK028326
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AK028326/Gomafu in the nucleus is a promising potential avenue for future investigation, 

especially given that nuclear localization of several other functional lncRNAs, including a 

regulatory lncRNA that forms a ribonucleoprotein complex with transcription factors in 

vivo (Bond et al. 2009), has been highlighted in recent studies (Hutchinson et al. 2007; 

Clemson et al. 2009). In view of these precedents, testing for interactions of the lncRNA 

Gomafu (MIAT) with the Oct4 protein may be promising and can be accomplished by gain 

and loss of function studies. 

We used RNAi to knockdown MIAT transcript in leukemic cell lines and showed that 

mRNA of Oct4 affected by this treatment to be significantly downregulated. Providing the 

timely Oct4 knockdown by developing lentiviruses express shRNA against Oct4 we 

validated regulation of MIAT and Oct4 in a potential synergistic feedback mechanism.  

The relevance to our  work is the finding that characterized mouse Gomafu/MIAT should 

be  as a co-activator of Oct4 in a regulatory feedback loop. In one study was demonstrated 

that these lncRNAs are not merely controlled by mESC transcription factors, but they 

themselves regulate developmental state(Sheik Mohamed, 2010 #195). We analyzed the 

similarity of MIAT sequence of human and Gomafu of mouse that supposed to be 

participated in the same feedback loop with Oct4, and demonstrate only ∽200bp 

resemblances in  these two long non coding RNA with more that 9kb length. However  the 

mechanisms by which MIAT and Oct4 feedback loop exert their impact remain unknown 

but worthy of future studies. Our study was also demonstrated concordance impression of 

the cancerous cellular features like apoptosis and cell viability after knockdown of either 

Oct4 or MIAT, that also presented a unique results to our knowledge. The results  showed 

that lncRNA MIAT RNAi induced apoptosis corresponding to negative control treated 

cells. Consistently the number of viable cells decreased. In addition, oct4 knockdown leads 

significant specific effects on number of viable cells and cells went to programmed death. 

The observation that existence differences in apoptosis and viability are consequences of 

Oct4 knockdown was proved by Real Time PCR on harvested cells. 

Our findings elucidate strong associations between lncRNA MIAT and a life threatening  

human diseases as leukemia. It also should help to explain the mechanisms by which 

lncRNAs MIAT can function as a modulator of pluripotency. Such future studies of 

transcription factors and their lncRNA targets should expand our grasp of regulatory 

http://www.ncbi.nlm.nih.gov/nuccore/AK028326
http://www.ncbi.nlm.nih.gov/nuccore/AK141205
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networks in which MIAT plays a role and potentially facilitates the derivation of rational 

therapeutic interventions and transfers lncRNA research to clinical oncology.  
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