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Abstract- Starting from the classical Van der Pol equa-
tion, after suitable changes of variables, we derive a reaction-
diffusion type forced Van der Pol equation with values in a suit-
able infinite dimensional Hilbert space. In particular we will
perturb previous equation with a small additive Brownian noise.
After some preliminary results concerning the non trivial exis-
tence and uniqueness of a solution, due to the presence of a
non-Lipschitz non-linearity, we provide a rigorous asymptotic
expansions in term of the small parameter ε of the related solu-
tion up to order 3. We will then explicitly write the first three
order of the rigorous expansion and provide as well an upper
bound for the remainder.
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1 Introduction
A dynamical system exhibiting a stable periodic orbit is called
an oscillator. Oscillators play an important role in physic due
to the wide variety of phenomena they can model, from the har-
monic oscillator to its quantum counterpart. Within this frame-
work particular attention has been devoted to the study of the
so called Van der Pol oscillator, a particular model studied by
Balthazar van der Pol, see [24, 25, 26, 27], during his studies
on electronic circuits when he first noticed stable oscillations.

The Van der Pol model is characterized by a non-linear
damping of strength parameter µ , and it is governed by the sec-
ond order differential equation

ẍ−µ(1− x2)ẋ+ x = 0 . (1)

In what follows we will focus our attention on a general-
ization of the previous model, namely the forced Van der Pol

oscillator which is characterized by

ẍ−µ(1− x2)ẋ+ x = Asin(ωt) , (2)

where A is the amplitude of the wave function and ω is its
angular velocity. It is worth to mention that the dynamic of the
model is strictly related to the value of the damping parameter
µ .

In particular we will take into consideration the large damp-
ing case, namely when µ >> 1, which is usually referred as the
relaxation oscillations régime, see, e.g. [24]. Following [16] we
can reduce eq. (2) to a system of two equations. In particular
rescaling the time variable t = t

µ
and defining y := ẋ

µ2 +
x3

3 − x
we have that eq. (2) reads{

1
µ2 ẋ = y− x3

3 + x ,

ẏ =−x+Asin(ωµt) ,
, (3)

see, e.g. [16].
We would like to underline that eq. (1), up to suitable

modifications, is intensively used to describe spike generation
processes in giant squid axons, as well as in FitzHugh-Nagumo
type systems, see, e.g. [13, 21], in the Burridge–Knopoff model,
which is used to describe earthquake characterized by viscous
friction, see, e.g. [7], and to describe certain energy market
frameworks as pointed out in [19].

The work is structured as follows: in Sec. 2 we introduce
the infinite dimensional setting and we will prove some funda-
mental properties of the infinite dimensional stochastic Van der
Pol equation, while in Sec. 3 we will state the results which
show the validity of the asymptotic expansion in powers of a
small parameter ε , together with the existence and uniqueness
for the solution of the related equations, eventually in Sec. 4 we
will state the main results.
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2 The infinite-dimensional setting
We will consider the infinite dimensional stochastic reaction-
diffusion version of the forced Van der Pol equation (3) taking
values in a suitable Hilbert space H endowed with boundary
Neumann condition. In particular, according to the approach
introduced in [11], we will consider a stochastic partial differ-
ential equation (SPDE), with a smooth nonlinearity, driven by
a cylindrical Wiener process taking values in an infinite dimen-
sional Hilbert space. Eventually we will consider a small pa-
rameter ε in front of the Wiener process.

Setting δ := 1
µ

, taking the time, resp. space, variable
t ∈ [0,∞), resp. ξ ∈ [0,1], while v and w are real valued
random variables, γ is strictly positive phenomenological con-
stants, c and b are strictly positive smooth functions on [0,1]
and 0 < ξ1 < 1 is a characteristic value of the system such that,
denoting by b̄ := minξ b(ξ ), it holds that

3b̄− (ξ 2
1 −ξ1 +1)≥ 0 , (4)

and eq. (3) reads as follows



∂tv(t,ξ ) = ∂ξ (c(ξ )∂ξ v(t,ξ ))

− v(t,ξ )(v(t,ξ )−1)(v(t,ξ )−ξ1)+

−b(ξ )v(t,ξ )−w(t,ξ )+ ε∂tβ1(t,ξ ) ,
∂tw(t,ξ ) = δ (γv(t,ξ )−Asin(ω t))+ ε∂tβ2(t,ξ ) ,
∂ξ v(t,0) = ∂ξ v(t,1) = 0 , t ∈ [0,∞)

v(0,ξ ) = v0(ξ ), w(0,ξ ) = w0(ξ ) , ξ ∈ [0,1].

, (5)

which has been studied in [1, 6].
We further prescribe Neumann boundary conditions and we

assume the initial values v0 and w0 to be in C([0,1]). Moreover
we consider a small parameter ε > 0 in front of the noise, where
we have denoted by β1 and β2 two independent Qi-Brownian
motions, i = 1,2, Qi being positive trace class commuting oper-
ators, we refer the reader to [11] for an detailed treatment of ran-
dom perturbations taking values in infinite dimensional Hilbert
spaces.

In order to rewrite (5) in a more compact form as an infinite
dimensional stochastic evolution equation, let us start consider-
ing a vector

u =

(
v
w

)
∈ H ,

where H is the separable Hilbert space

H := L2([0,1])×L2([0,1]) ,

endowed with the inner product

〈(v1,w1),(v2,w2)〉H = γ〈v1,v2〉L2 + 〈w1,w2〉L2 , (6)

where 〈·, ·〉 denotes the usual scalar product in L2([0,1]), and
the corresponding norm will be indicated by | · |, then we define
the operator A : D(A)⊂ H→ H as follows

A =

(
A0−b −I

δγI 0

)
, A0 = ∂ξ

(
c(ξ )∂ξ

)
,

with domain given by

D(A) := D(A0)×L2([0,1]) ,

D(A0) := {u ∈ H2([0,1]) : ∂ξ v(t,0) = ∂ξ v(t,1) = 0},

and the non-linear operator

F : D(F) := L6([0,1])×L2([0,1])→ H ,

given by

F
((

v
w

))
=

(
−v(v−1)(v−ξ1)

δγAsin(ω t)

)
.

From the separability of the Hilbert space H we have that it ex-
ists an orthonormal basis {ek}k∈N made of eigenvalues of A0
such that the following bound holds

∃M > 0, |ek(ξ )| ≤M,ξ ∈ [0,1],k ∈ N .

Let us thus consider the filtered probability space (Ω,F ,Ft ,P),
such that the two independent Wiener processes β1 and β2 are
adapted to the filtration Ft , ∀ t ≥ 0, and

βi ∈C
(
[0,T ];L2(Ω,L2(0,1))

)
, i = 1,2,

with L (βi(t)) ∼N
(
0, t
√

Qi
)
, i = 1,2, with Qi a linear oper-

ator on L2([0,1]). We can assume that the operators Qi are of
trace class and that they diagonalize on the same basis {ek}k∈N
of the Hilbert space H, namely Qiek = λ i

kek, i = 1,2. We also
assume that ∑

2
i=1 ∑

∞
k=1 λ i

k < ∞, and we denote by W (t) a cylin-
drical Wiener process on H and by Q the operator

Q =

(
Q1 0
0 Q2

)
.

Exploiting previously introduced notations, eq. (5) can be
rewritten as follows{

du(t) = [Au(t)+F(u(t))]dt + ε
√

QdW (t),
u(0) = u0 ∈ H , t ∈ [0,+∞) ,

; (7)

the main problem when dealing with eq. (7) is the non-linear
term F , since standard existence and uniqueness results for
equations of the type (7) are given for a Lipschitz non-linearity
F , which is not our case since we have to deal with a polynomial
of order 3.

Such a model is the basis for a pletora of applications span-
ning from statistical to quantum mechanics, from neurobiology
to finance, etc. The aim of the present work is to provide an
asymptotic expansions of the solution to all orders in the per-
turbation parameter ε , with explicit expressions both for the
expansion coefficients and the remainder. Latter type of results
are particularly relevant from a theoretical point of view as well
as from the numerical side since they allow for concrete and
accurate numerical simulations.
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3 Assumptions and Basic results
Let us first consider the following deterministic problem{

du0(t) = [Au0(t)+F(u0(t))]dt, t ∈ [0,+∞)

du0(0) = u0 ∈ D(F)
(8)

whit notations as in Sec. 1. We want to study a stochastic per-
turbation, characterized by a small intensity parameter ε , of the
eq. (8) writing its (unique) solution as an expansion in powers
of ε > 0 as ε goes to zero. In particular, taking t ∈ [0,+∞), we
are concerned with the following stochastic Cauchy problem on
the Hilbert space H{

du(t) = [Au(t)+F(u(t))]dt + ε
√

QdW (t),
u(0) = u0 ∈ H ,

(9)

for which we show that a solution u can be written in power
series as

u(t) = u0(t)+ εu1(t)+ · · ·+ ε
nun(t)+Rn(t,ε) , (10)

where u0(t) solves the deterministic problem (8), u1(t) solves{
du1(t) = [Au1(t)+∇F(u0(t))[u1(t)]]dt +

√
QdW (t),

u1(0) = 0, t ∈ [0,+∞) ,

(11)
where we have denoted by

∇F(x)[h] = lim
s→0

F(x+ sh)−F(x)
s

,

the Gâteaux derivative in the h direction, see, e.g. [1]. Eventu-
ally the k−th term uk(t) solves{

duk(t) = [Auk(t)+∇F(u0(t))[uk(t)]]dt +Φk(t)dt
uk(0) = 0

; (12)

where Φk(t) depends on u1(t), . . . ,uk−1(t) and the derivatives of
F up to order k. In order to guarantee existence and uniqueness
results for eq. (9) and the validity of the power expansion (10),
we need some regularity properties for the involved operators.
In particular we have the following result.

Proposition 1. Under the setting introduced in Sec. 1, we have

(i) A : D(A) ⊂ H → H generates an analytic semigroup etA of
strict negative type such that∥∥etA∥∥

L (H)
≤ e−ωt , t ≥ 0 (13)

with ω > 0 ;

(ii) The map F : D(F) → H is continuous, Fréchet differen-
tiable and there exist positive real numbers η and κ such
that for any u1,u2 ∈ D(F)

〈F(u1)−F(u2)−η(u1−u2),u1−u2〉< 0,

|F(u)|H ≤ κ(1+ |u|3H), u ∈ D(F),
; (14)

(iii) the term A+F is m−dissipative, namely we have ω−η >
0;

(iv) F is Fréchet differentiable and for any i = 0,1,2, . . .

‖∇(i)F(u)‖L (H,L (H,H)) ≤ κi(1+ |u|3−i
H ) , ; (15)

Proof. (i) Let us set
c̄ = min

ξ

c(ξ )> 0 ,

then we have that∫ 1

0
∂ξ (c(ξ )∂ξ u(ξ ))u(ξ )d ξ =

= c(ξ )u(ξ )∂ξ u(ξ )
∣∣1
0−≤−

∫ 1

0
c(ξ )

(
∂ξ u(ξ )

)2 d ξ

≤ c̄|Du|2L2 ≤ 0.

Setting then b̄ = minξ b(ξ )> 0 and taking u ∈ H, it fol-
lows that

〈Au,u〉= γ〈A0u1,u1〉− γ b̄〈u1,u1〉
− γ〈u1,u2〉+ γδ 〈u1,u2〉 ≤ −b̄|u1|2L2 ≤ 0 ,

which proves eq. (13);

(ii) D(F) = L6([0,1])×L2([0,1]), and being F is a polynomial
of degree 3, both continuity and the Féchet differentia-
bility are straightforward.

Taking then η := 1
3 (ξ

2
1 −ξ1 +1) we have that

〈F(u1)−F(u2)−η(u1−u2),u1−u2〉H =

− γ〈v1(v1−1)(v1−ξ1)

− v2(v2−1)(v2−ξ1),v1− v2〉L2

− γη〈v1− v2,v1− v2〉L2

− γη〈w1−w2,w1−w2〉L2 ,

denoting now p(x) := x(x−1)(x−ξ1), we have

p(v1)− p(v2)≤ sup
ζ

p′(ζ )(v1− v2) .

Therefore we have that

〈F(u1)−F(u2)−η(u1−u2),u1−u2〉H ≤

γ

[
sup

ζ

p′(ζ )−η

]
|v1− v2|2L2 − γη |w1−w2|2L2 ,

it can now be easily seen that supζ p′(ζ ) = 1
3 (ξ

2
1 −ξ1 +

1) = η , so that the first term vanish and the claim fol-
lows. The second estimate in eq. (14) immediately
follows from the fact that F is a polynomial of degree 3;

(iii) it follows from assumption (4) so that we have b̄−η > 0
and A+F is m-dissipative;
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(iv) From the particular form of F it immediately follows

∇
(1)F

((
v
w

))
=

(
−3v2 +2v(1+ξ1)−ξ1

0

)
,

∇
(2)F

((
v
w

))
=

(
−6v+2(1+ξ1)

0

)
,

∇
(3)F

((
v
w

))
=

(
−6
0

)
,

∇
( j)F

((
v
w

))
=

(
0
0

)
, j ≥ 4,

and estimate (15) follows since the k−th derivative is a
polynomial of order 3− k.

3.1 Preliminary results
Definition 2. Let u0 ∈ D(F); we say that u0 = u0(t) is a mild
solution of (8) if it is t−continuous and it satisfies

u0(t) = etAu0 +
∫ t

0
e(t−s)AF(u0(s))ds , ∀t ∈ [0,+∞) . (16)

A predictable H-valued process u(t), t ∈ [0,+∞) is said to be a
mild solution to (7) iff

u(t) = etAu0 +
∫ t

0
e(t−s)AF(u(s))ds

+ ε

∫ t

0
e(t−s)A

√
QdW (s) , P−a.s.

Remark 3. We would like to recall that the last term in the
previous equation, namely

WA(t) :=
∫ t

0
e(t−s)A

√
QdW (s) ,

is usually called stochastic convolution, and it is a well defined
(by Hypothesis) mean square continuous Ft−adapted Gaus-
sian process, see, e.g., [DPZ].

The following fundamental result ensures the existence and
the uniqueness of the solution to eq. (7)

Proposition 4. The Stochastic Convolution WA(t) is P−almost
surely continuous for t ∈ [0,+∞) and it verifies

E
[

sup
t≥0
|WA(t)|6H

]
=

= E
[

sup
t≥0
|
∫ t

0
e(t−s)A

√
QdW (s)|6

]
≤C .

(17)

Proof. Denoting by ‖ ·‖HS the Hilbert-Schmidt norm, see, e.g.,
[11], and by L (H) the standard operator norm and then exploit-
ing the Burkholder-Davis-Gundy inequality and the boundness
of Q, we have

E
[

sup
t≥0
|WA(t)|6H

]
=CmE

[
sup
t≥0
|
∫ t

0
‖e(t−s)A

√
Q‖2

HSds|3
]

≤CE
[

sup
t≥0

∫ t

0
‖e(t−s)A‖2

L (H)Tr(Q)6ds
]
,

where the last inequality follows from standard properties of a
Hilbert-Schmidt operator, see, e.g. [11]. Moreover, by Prop. 1,
point (i), we have that

∫ t

0
‖e(t−s)A‖2

L (H)ds≤ 1
2ω

+∞

∑
k=0

1
λk
≤C < ∞ ,

where C is a positive constant independent from t, hence, by
assumption on Q, we have that Tr(Q)6 < ∞ and the claim fol-
lows.

As previously outlined, we cannot apply standard existence
and uniqueness results in our setting since it is characterized by
a non-linear term which is not of Lipschitz type, nevertheless
such results can be retrieved exploiting an m-dissipativity argu-
ment, as proved in Prop. 1 (iii).

Proposition 5. It exists a unique mild solution to the determin-
istic eq. (8){

du0(t) = [Au0(t)+F(u0(t))]dt, t ∈ [0,+∞) ,

du0(0) = u0 ∈ D(F)
, (18)

furthermore we have that

|u0(t)|H ≤ e−(ω−η)t |u0|H , t ≥ 0 , (19)

Proof. The existence and uniqueness of eq. (18) follows from
Prop. 1 and by [11, Th. 7.13].

The estimate (19) follows from the Gronwall’s lemma ap-
plied to

d
dt
|u0(t)|2H ≤ 〈Au0(t),u0(t)〉dt + 〈F(u0(t)),u0(t)〉

≤ −2(ω−η)|u0(t)|2 .

Again applying Prop. 1 we have that an analogous result
holds for the stochastic Cauchy problem (9), in particular we
have

Proposition 6. There exists a unique mild solution u = u(t) of
(9) {

du(t) = [Au(t)+F(u(t))]dt + ε
√

QdW (t),
u(0) = u0 ∈ H

; (20)

s.t. u(t) ∈L p (Ω;C([0,T ];H)) and the following holds

E
[

sup
t≥0
|u(t)|pH

]
<+∞, (21)

for any p ∈ [2,∞).
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Proof. Existence and uniqueness follow from Prop. 1 and [11,
Th. 7.13].

In order to prove estimate 21, let us define z(t) := u(t)−
WA(t), then we have that z solves{

z′(t) = Az(t)+F(z(t)+WA(t) ,
z(0) = u0 ;

then by Prop. 1 (i)− (ii), we have that

d
dt
|z(t)|2a

H = 2a
〈
z′,z
〉
|z|2a−2

H =

= 2a〈Az+F +WA,z〉 |z|2a−2
H

≤−2aω|z|2a
H +2a〈F +WA,z〉 |z|2a−2

H

≤−2a(ω−η)|z|2a
H +2a |F(WA)| |z|2a−1

H

≤−2a(ω−η)|z|2a
H +

2a
ξ̄

Ca |F(WA)| |z|2a
H +

+Ca2aξ |z|2a ,

where, exploiting the inclusion of Lp spaces over bounded do-
mains and with no loss of generality, we have set p := 2a and
ξ̄ > 0, s.t.

−2a(ω−η)+2aCaξ̄ < 0 ,

therefore by 4 and Gronwall’s lemma, we obtain

|z(t)|2a
H ≤ e(−2a(ω−η)+ξ̄Ca2a)t |u0|2a

H +

+
2aCa

ξ

∫ t

0
e−2a(ω−η)(t−s)|F(WA(s))|2a

H ds ,

and by eq. (14), see Prop. 1, we have

|F(WA(t))|2a
H ≤

≤Ca(1+ |WA(t)|3)2a ≤Ca,3(1+ |WA(t)|6a
H ) ,

and thus exploiting Prop. 4, we can write

E
[

sup
t≥0

∫ t

0
e−2a(ω−η)(t−s)|F(WA(s))|2a

H ds
]

≤ C̃E
[

sup
t≥0

∫ t

0
e−2a(ω−η)(t−s)ds+

+ C′a

∫ t

0
e−2a(ω−η)ds

]
≤ C̄

(22)

which concludes the proof.

Previously obtained results allow us to study the non-linear
term F and write its Taylor expansion around the (mild) solution
u0(t) of{

du0(t) = [Au0(t)+F(u0(t))]dt, t ∈ [0,+∞) ,

du0(0) = u0 u0 ∈ D(F)
;

in terms of powers of a small parameter ε .

3.2 The asymptotic expansion

In this section we follow the approach developed in [1] to
present rigorous results concerning the validity of the asymp-
totic expansion for the reaction-diffusion Van der Pol equation.
Let us define for 0≤ ε < 1, the function

h(t) =
n

∑
k=1

ε
kuk(t) ,

where the functions uk(t) are H−valued, p−mean integrable
continuous stochastic processes on [0,+∞) for p ∈ [2,∞), then
we have that the non-linear map F can be written in terms of its
Gâteaux derivatives as

F(u0(t)+h(t)) = F(u0(t))+ ε∇F(u0(t))[h(t)]+

+
1
2

ε
2
∇
(2)F(u0(t))[h(t),h(t)]+ . . .

. . .+
1
n

ε
n
∇
(n)F(u0(t))[h(t),h(t), . . . ,h(t)]+

+R(n)(u0(t),h(t)) ,

(23)

and, taking into account the multilinearity of the Gâteaux
derivative, namely

1
j!

∇
( j)F(u0(t))[h(t), . . . ,h(t)︸ ︷︷ ︸

j−terms

] =

=
1
j!

n j

∑
k1+···+k j= j

ε
j
∇
(ki)F(u0(t))[uk1(t), . . . ,uk j(t)] ,

we can rearrange eq. (23) in order to obtain

F(u0(t)+h(t)) = F(u0(t))

+
n

∑
k=1

ε
k
∇F(u0(t))[uk(t)]+

+
n

∑
j1, j2∈N

j1+ j2=2

ε j1+ j2

2!
∇
(2)F(u0(t))[u j1(t),u j2(t)]+ . . .

+
n

∑
ji∈N

∑
k
i=1 ji=k

ε j1+···+ jk

k!
∇
(k)F(u0(t))[u j1(t), ...,u jk(t)]

+ . . .+
εn

n!
∇
(n)F(u0(t))[u1(t), . . . ,u1(t)]+

+R(n)
1 (u0(t),h(t),ε) .

(24)

where we have introduced

R(n)
1 (u0(t),h(t),ε) =

=
n

∑
j=2

n j

∑
i1+···+i j=n+1

ε
i1+···+i j×

× 1
j!

∇
( j)F(u0(t))[ui1(t), . . . ,ui j(t)]+

+R(n)(u0(t),h(t)) ,

(25)
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with the remainder |R(n)(u0(t),h(t))|H ≤C(u0,n)|h|nH , see, e.g.,
[18]. We underline that eq. (24) can be also rewritten as follows

F(u0(t)+h(t)) = F(u0(t))+

+
n

∑
j=2

n j

∑
i1+···+i j=n+1

ε
i1+···+i j times

× 1
j!

∇
( j)F(u0(t))[ui1(t), . . . ,ui j(t)]+

+R(n)(u0(t),h(t)) ,

(26)

see, e.g. [1].

Lemma 7. Let be R(n)
1 (u0(t),h(t),ε) as in eq. (25), then for

all p ∈ [2,∞) there exists a constant C > 0, depending on
u0, . . . ,un,∇F(1), . . . ,∇F(n), p, s.t.

E

[
sup

t∈[0,+∞)

|R1(u0(t),h(t),ε)|pH

] 1
p

≤Cε
n+1 ,

for all 0≤ ε ≤ 1.

Proof. See, e.g., [1, lemma 4.1].

To go forward in the formal expansion, we rewrite u(t) as:

u(t) = u0(t)+ εu1(t)+ · · ·+ ε
nun(t)+Rn(t,ε) , (27)

where the processes ui(t), i = 1 . . . ,n can be found by the Taylor
expansion of F around u0(t), and matching terms in the equa-
tion for u.

Given the stochastic processes v0(t), . . . ,vn(t) let

Φk(t) [v0(t), . . . ,vn(t)] :=

=
k

∑
j=1

∑
i1,...,i j∈{1,...,n}

∑
j
l=1 il=k

∇
( j)F(v0(t))[vi1(t), . . . ,vi j(t)] , (28)

then, exploiting Prop. 1−(iv), we have that ∇(k) = 0, for
k ≥ 4, hence, if we take n = 3, we have the following

Proposition 8. Let us consider Φk as in eq. (28) and set n = 3,
then

Φ2(t) [v0(t), . . . ,v3(t)] =

=∇
(1)F(v0(t))[v2(t)]+

1
2

∇
(2)F(v0(t))[v1(t),v1(t)],

Φ3(t) [v0(t), . . . ,v3(t)] =

= ∇
(1)F(v0(t))[v3(t)]+∇

(2)F(v0(t))[v1(t),v2(t)]

+∇
(3)F(v0(t))[v1(t),v1(t),v1(t)] ,

Proof. It is a straightforward application of eq. (28) together
with Prop. 1.

Previous result implies that, taking n = 3, the terms
u1(t), . . . ,u3(t) defined in (27), are solution to

du1(t) = [Au1(t)+∇F(u0(t))[u1(t)]]dt +
√

QdW (t),

u1(0) = 0 ,

dui(t) = [Au2(t)+∇F(u0(t))[ui(t)]]dt +Φi(t)dt,

ui(0) = 0, i = 2,3 ,

with Φ j(t) := Φ j(t)[u0(t), . . . ,u j−1(t)] as in Prop. 8 with-
out the v j−th term, namely

Φ2(t) =
1
2

∇
(2)F(v0(t))[v1(t),v1(t)] ,

Φ3(t) = ∇
(2)F(v0(t))[v1(t),v2(t)]+

+∇
(3)F(v0(t))[v1(t),v1(t),v1(t)] .

(29)

Proposition 9. We have that

∇F(u0(t))[uk(t)] =

=
(
−3u2

0(t)+2u0(t)(ξ1 +1)−ξ1
)

uk(t) ,

for any k = 1,2,3, . . . . Furthermore we have

Φ2(t) = (−3u0(t)+ξ1 +1)u2
1(t),

Φ3(t) = (−6u0(t) +

+ 2(ξ1 +1))u1(t)u2(t)−6u0(t)u3
1(t) .

Proof. From Prop. 1 (iv) we immediately have that

∇F(u0(t))[uk(t)] =

=
(
−3u2

0(t)+2u0(t)(ξ1 +1)−ξ1
)

uk(t) , ,

∇
(2)F(v0(t))[vi(t),v j(t)] =

= (−6u0(t)+2(ξ1 +1))ui(t)u j(t) ,

∇
(3)F(v0(t))[vi(t),v j(t),vk(t)] =

= 6u0(t)ui(t)u j(t)uk(t) ,

, (30)

substituting now (30) into eq. (29) we prove the claim.

Let us notice that while u1(t) is the solution of a lin-
ear stochastic differential equation, the processes u2,u3 are
solutions of differential equations with a stochastic non-
homogeneus term in the following sense

Definition 10. Let i = 1,2, then a predictable H-valued
stochastic process ui = ui(t) , t ≥ 0 is a solution of problem:{

dui(t) =[Aui(t)+∇F(u0(t))[ui(t)]]dt +Φi(t)dt ,
ui(0) = 0

;

if for almost every ω ∈Ω it satisfies

ui(t) =
∫ t

0
e(t−s)A

∇F(u0(s))[ui(s)]ds+

+
∫ t

0
Φi(s)ds, t ≥ 0 , i = 2,3 ,

with Φi as in eq. (29).

The following result will be used to estimate the norm of
Φi in H by means of the norms of the Gâteaux derivatives
of F and the norms of (H-valued stochastic process) v j(t),
j = 1, . . . , i−1.
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Lemma 11. Let v0(t),v1(t),v2(t) be H-valued stochastic pro-
cesses. Then we have the following inequalities

|Φ2(t) [v0(t),v1(t)]|H ≤
≤C2|v0(t)|H8(2+ |v1(t)|H |H) ,
|Φ3(t) [v0(t),v1(t),v2(t)]|H ≤
≤C3|v0(t)|H27(3+ |v1(t)|2H + |v2(t)|2H),

C2 depends on ‖∇(2)F‖L (H;L (H2;H)) and C3 depends on
‖∇(i)F‖L (H;L (H2;H)), for i = 2,3.

Proof. The rigorous proof can be found in [1, Lemma 4.3], the
claim follows taking into account applying Lemma 4.3 together
with eq. (29) to the present setting.

4 Main results
Exploiting the preparatory results obtained so far, in what fol-
lows we shall show our main contributions

Proposition 12. For any p≥ 2, the equation{
du1(t) = [Au1(t)+∇F(u0(t))[u1(t)]]dt +

√
QdW (t) ,

u1(0) = 0, t ∈ [0,+∞)
;

(31)
has a unique mild solution which satisfies the following esti-
mate:

E

( sup
t∈[0,+∞)

|u1(t)|pH

)1/p
<+∞ , (32)

Proof. The proof is a slight modification of that given in [11],
we gain the case p= 2 by using the m−dissipativity of F proved
in Prop. 1. Estimate (32) is analogous to the one given in Prop.
6.

Theorem 13. Let i = 2,3 and let u1 be the solution of the
problem (31). Then there exists a unique mild solution ui(t),
t ∈ [0,+∞), of

{
dui(t) =[Aui(t)+∇F(u0(t))[ui(t)]]dt +Φi(t)dt ,
ui(0) = 0

;

(33)
which ∀p ∈ [2,∞) satisfies

E

( sup
t∈[0,+∞)

|ui(t)|pH

) 1
p
<+∞. (34)

Proof. The proof proceed iteratively and it is based on classi-
cal fixed point theorem for contraction, where the contraction is
given by

Γ(y(t)) :=
∫ t

0
e(t−s)A

∇F(u0(t))[y(t)]ds+

+
∫ t

0
e(t−s)A

Φk(s)ds ,

on the space L p(Ω;C([0,T ]);H). Proceeding as in Prop. 6
we have the existence and uniqueness of a mild solution for eq.
(33), see, e.g. [1, Th. 5.2].

The estimate (34) is obtained exploiting smoothness prop-
erties of the operator ∇F , then, see also Prop. 6, we have

d
dt
|uk(t)|2a

H ≤−2aC1
a |uk(t)|2a

H +C2
a |Φk(t)|2a

H , (35)

with C1
a = ω− γ(1+ |u0|).

By estimate (32) on u1(t) and lemma 11 we have that

E

( sup
t∈[0,+∞)

|Φ2(t)|2a
H

) 1
2a
<C′a <+∞ .

Taking the expectation in inequality (35) and by Gronwall’s
lemma we obtain

E

( sup
t∈[0,T ]

|u2(t)|2a
H

) 1
2a
≤C′ae−2aC1

a T <Ca ,

where Ca is a positive constant independent of T . The case i= 3
is treated analogously, then exploiting the bound on u2, see also
[1, Th. 5.2], we have the thesis.

Collecting previously obtained results we are now in posi-
tion to prove the following main theorem

Theorem 14. The solution u(t) of (7) can be expanded in the
following form

u(t) = u0(t)+ εu1(t)+ ε
2u2(t)+ ε

3u3(t)+R3(t,ε),

where u0 solves{
du0(t) = [Au0(t)+F(u0(t))]dt, t ∈ [0,+∞) ,

du0(0) = u0 ∈ D(F)
; (36)

u1 is the solution of{
du1(t) = [Au1(t)+∇F(u0(t))u1(t)]dt +

√
QdW (t) ,

u1(0) = 0
;

(37)
while ui, i = 2,3, is the solution of{

dui(t) = [Aui(t)+∇F(u0(t))ui(t)]dt +Φi(t)dt ,
ui(0) = 0

;

(ACP(k))
with

∇F(u0(t))[uk(t)] =

=
(
−3u2

0(t)+2u0(t)(ξ1 +1)−ξ1
)

uk(t) , k = 1,2,3 ,

Φ2(t) = (−3u0(t)+ξ1 +1)u2
1(t),

Φ3(t) = (−6u0(t)+2(ξ1 +1))u1(t)u2(t)−6u0(t)u3
1(t) .

(38)
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Furthermore we have that R3(t,ε) is given by

R3(t,ε) = u(t)−u0(t)−
3

∑
i=1

ε
iui(t)

=
∫ t

0
e(t−s)A (F(u(s))−F(u0(s))+

−
3

∑
i=1

ε
i
∇F(u0(t))[ui(s)]− ∑

i=2,3
Φi(s)

)
ds ,

(39)

and it verifies the following inequality

E

( sup
t∈[0,+∞)

|R3(t,ε)|pH

)1/p
≤C(p)ε4,

where C(p) is a constant depending on p

Proof. It follows from [1, 5.3] applying Prop. 1 and Prop. 8.
In particular we have that the mild solutions for u, u0, u1, uk,
k = 2,3 are respectively given by

u(t) = etAu0 +
∫ t

0
e(t−s)AF(u(s))ds+ εWA(t) ,

u0(t) = etAu0 +
∫ t

0
e(t−s)AF(u0(s))ds ,

u1(t) =
∫ t

0
e(t−s)AF(u0(s))[u1(s)]ds+ εWA(t) ,

uk(t) =
∫ t

0
e(t−s)AF(u0(s))[uk(s)]ds+

+
∫ t

0
e(t−s)A

Φk(s)ds , k = 2,3 ,

then the particular forms of F(u0(s))[uk(s)] and of Φi given in
eq. (38), follow from Prop. 9.

Eventually from eq. (39) and exploiting Prop. 1 (i), we
have that

E

[
sup

t∈[0,+∞)

|R3(t,ε)|pH

]
≤

≤ E sup
t∈[0,+∞)

∣∣∣∣∫ t

0
e(t−s)AR(n)

1 (u0(s);h(s),ε)ds
∣∣∣∣p
H

≤ E sup
t∈[0,+∞)

∫ t

0

∥∥∥e(t−s)A
∥∥∥p

L (H,H)

∣∣∣R(n)
1 (u0;h,ε)

∣∣∣p
H

ds

≤Cn,pε
p(n+1)E sup

t∈[0,+∞)

∣∣∣R(n)
1 (u0(s);h(s),ε)

∣∣∣p
H
,

and the claim follows by Lemma 7.

5 Conclusion
In the present work we have studied the infinite dimensional
stochastic reaction-diffusion equation of the Van der Pol type,
with external forcing, perturbed by a Brownian motion whose
intensity is governed by a small parameter ε . For such a model
we have provided an explicit expression for the related expan-
sion in power series with respect to a small parameter ε . It

is worth to mention that analogous results can be investigated
when a more general noise has been considered, as in the case
where the driving noise is a general Lévy type process, see, e.g.
[3]. In particular we would like to underline that the case of
a general Lévy process is highly interesting from a financial
point of view, where this kind of equation is exploited in order
to study energy markets, namely market which are character-
ized by high uncertainty with empirical evidence showing the
occurrence of jumps and systematic seasonal effects, see, e.g.
[8, 19, 20]. A different possible application concerns the neu-
rostochastics framework, when the reference equation is as in
the FitzHugh-Nagumo model, see, e.g., [6].
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