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Abstract  
 

 

 

The work presented in this thesis is focused on the development and improvement of new 

wide band-gap luminescent materials used as fast scintillators in modern medical diagnostic 

techniques. The goal of this research consists in obtaining inorganic scintillators activated with 

trivalent preaseodymium (Pr3+) ion where a very fast interconfigurational d-f emission could be 

observed. 

The performance of scintillator materials is determined by the dissipation of high energy 

photons in a sequence of processes ultimately leading to the emission of visible or UV radiation. 

The understanding of the processes responsible for relaxation and migration of electronic 

excitations, and the transfer of energy to defects and impurity centers is crucial for successful 

development of new optical materials with enhanced performance, especially in terms of quantum 

efficiency, temporal response, radiation resistance, thermal and chemical stability.  

In the present work polycrystalline powders of Ca9LuPO4:Ce3+/Pr3+, K3Lu(PO4)2:Pr3+, 

KLuP2O7:Pr3+, X2SiO5:Pr3+ (X= Y, Lu) and single crystals of BaMgF4:Nd3+ were synthesized and 

characterized. A systematic study of time-resolved luminescence spectra and luminescence decay 

profiles of these materials was performed at the HASYLAB, DESY synchrotron facility in 

Hamburg (Germany) in order to understand the electronic structure of luminescent centers, the 

influence of defects, and the main mechanisms responsible for host-to-impurity energy transfer and 

relaxation of the host electronic excitation. The research proposed in this project will allow 

developing an adequate model of creation and relaxation of electronic excitations establishing the 

main principles for the synthesis of new materials with controllable optical and luminescence 

properties. 
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Riassunto 

 

 
Il lavoro presentato in questa tesi si pone l'obiettivo di studiare le proprietà ottiche e 

spettroscopiche di nuovi materiali luminescenti destinati ad applicazioni quali scintillatori veloci 

per moderne tecniche di diagnostica medica. Specificatamente la nostra attenzione è stata rivolta 

alla sintesi di materiali inorganici ad ampio band-gap attivati con lo ione trivalente praseodimio 

(Pr3+) il quale, in seguito ad opportuna eccitazione, può dare luogo ad emissioni radiative veloci 

(15-25 ns) potenzialmente utili nella realizzazione di scintillatori.  

Le prestazioni dei scintillatori sono determinate prevalentemente dalla dissipazione 

dell'energia assorbita in seguito all' irradiazione del materiale attraverso una sequenza di processi 

che portano infine all'emissione di radiazione visibile o ultravioletta. Lo studio e la comprensione 

dei meccanismi di rilassamento, migrazione e trasferimento dell'energia assorbita dal materiale ai 

difetti e/o impurezze è fondamentale per la progettazione di nuovi materiali ottici dalle prestazioni 

avanzate, soprattutto in termini di efficienza quantica, velocità di risposta, stabilità termica e 

chimica.  

Nel presente lavoro di tesi sono stati preparati e caratterizzati campioni di 

Ca9LuPO4:Ce3+/Pr3+, K3Lu(PO4)2:Pr3+, KLuP2O7:Pr3+, X2SiO5:Pr3+ (X= Y, Lu) come polveri 

policristalline e BaMgF4:Nd3+ come cristallo singolo. Per ciascun materiale è stato quindi condotto 

uno studio ottico sistematico mediante spettroscopia di luminescenza risolta nel tempo e dinamica 

di stato eccitato al fine di comprendere la struttura elettronica dei centri luminescenti, l'influenza 

dei difetti reticolari e i principali meccanismi responsabili dei trasferimenti energetici tra matrice e 

ione luminescente.  

L'attività di ricerca proposta in questo progetto di tesi porrà le basi per lo sviluppo di adeguati 

modelli sulle modalità di trasferimento energetico in nuovi materiali scintillatori attivati con ioni 

lantanidi, portando infine alla possibilità di progettare materiali dalle proprietà ottiche 

opportunamente selezionate e all'ottimizzazione delle prestazioni di materiali già in uso. 
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Chapter 1 
 

 

Introduction 

 
 

The development of new luminescent materials or phosphors for the conversion of various 

types of ionizing radiation into visible light has always been based on the deep understanding of 

processes responsible for absorption and dissipation of high energy photons, creation of intrinsic 

electronic excitations (free electrons and holes, e-h pairs, excitons), energy transfer to defects and 

impurities [1, 2]. These processes represent key problems in radiation physics of the solid state and 

are very important for improved performance of materials applied as X-ray phosphors and, 

especially, scintillators.  

The field of scintillators is currently quite extensive and diverse. This is due to the 

unprecedented demand on detectors of ionizing radiation (X- and γ-rays) following requirements 

imposed by the modern nuclear medical imaging techniques such as computed tomography (CT), 

single photon emission tomography (SPECT) and positron emission tomography (PET), high-

energy physics, security inspection, space applications etc. The modern technologies require 

increasingly superior characteristics of scintillators which are often well beyond those delivered by 

traditional ones, particularly in terms of quantum efficiency, temporal response, mechanical and 

chemical stability and radiation resistance.  

In the last two decades a strong research activity has given rise to the formulation of new 

scintillator materials based on complex oxide hosts doped with Ce3+ ions. These materials exhibit 

efficient and relatively fast (20-70 ns) 5d-4f electric-dipole emission in a broad spectral range (350-

600 nm) [3-6]. The introduction of new and faster scintillators such as Gd2SiO5:Ce3+ (GSO) and 

Lu2SiO5:Ce3+ (LSO) allowed the development of CT and PET scanners with significantly improved 

performance. Recently, much attention has been turned to the 5d-4f emission of Pr3+ ions in several 

wide band-gap hosts because of its shorter lifetime (typically 15-25 ns) allowing for the 

development of new scintillators which are two or three times faster than the commonly used ones 

activated with Ce3+ ions and which can show better performances for some applications. A number 

of Pr3+ doped oxidic materials, such as silicates (A2SiO5, Lu2Si2O7, Ca3A2Si3O12, A=Y, Lu, Sc) [7-
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10], garnets (Lu3Al5O12, Y3Al5O12) [11-14], aluminates (LuAlO3) [12, 15], double phosphate 

(M3La(PO4)3 and M9Lu(PO4)7, M = Ca, Sr, Ba) [16, 17], etc. have been recently studied to test their 

potentials for fast scintillator applications. 

This research project was conceived with the aim to provide insight into the nature and the 

time scale of the relaxation processes occurring after absorption of a high energy photon in Pr3+-

doped inorganic wide band-gap materials. This includes research on dynamics and spectroscopy of 

processes responsible for a fast feeding and radiative relaxation of 5d states of lanthanide ions (Pr3+ 

in particular), crystal structure defects and intrinsic electronic excitations (electrons, holes, e-h 

pairs, excitons) in wide band-gap crystal materials characterized by different dimensions, electronic 

structure and electron-phonon coupling. Our research also focuses on the understanding of 

photoionization phenomena and processes related to creation and relaxation of impurity trapped 

excitons. 

In order to achieve these objectives, the work of this research has been organized as follows: 

ü synthesis of polycrystalline wide band-gap inorganic materials activated with Pr3+ ions by 

conventional solid-state inorganic routes, both in nanocrystalline and bulk forms; 

ü structural characterization of the obtained materials by X-ray powder diffraction; 

ü study of the luminescence properties and excited state dynamics of the materials employing 

time-resolved VUV spectroscopy upon excitation with synchrotron radiation, by focusing 

on the following topics: i) the 5d-4f luminescence of the Pr3+ ion and the energetic position 

of the 4f
15d

1 configuration that is critical for photon cascade emission [18]; ii) the 

dopant/defect interactions as well as other processes responsible for the quenching of 

potentially useful luminescence; iii) host or defect excitation-induces emission of Pr3+ ion 

doped into complex oxide hosts.  

 

All these studies address fundamental issues that are central in the field of the optical and 

spectroscopic properties of wide-band gap inorganic materials, and are therefore scientifically 

relevant in the area of Physics of Condensed Matter. Additionally, it is hoped to obtain advances in 

the development of new materials yielding efficient and fast luminescence in the UV and visible 

regions, as they find numerous applications in many important technological fields. 

The host lattices selected for these studies are new complex oxides and fluorides with a wide 

band gap (7-9 eV), including the family of the oxyorthosilicates having general formula A2SiO5 (A 

= X1-Y, X2-Y and X2-Lu) as nano-powders, the double phosphates Ca9Lu(PO4)7, K3Lu(PO4)7 and 

KLuP2O7 as bulk powders and the fluoride BaMgF4 as single crystal. For some of these materials it 

has been explored the spectroscopy of other luminescent centers, i.e. Ce3+ and Nd3+, which, 
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together with Pr3+, represent excellent candidates for the realisation of new advanced fast 

scintillator materials.  
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Chapter 2 
 

 

Theory 
 

 

2.1 Scintillation and inorganic scintillators 

Inorganic scintillator materials are commonly used in today's radiation detectors for medical 

imaging, high-energy physics, geophysical exploration, interplanetary exploration, and security 

applications. In each application the scintillator is the primary radiation sensor that emits light or 

"scintillates" when struck by high-energy photon. The words scintillator and scintillation are 

derived from the word scintilla which is Latin for spark. An inorganic scintillator is essentially a 

luminescent material that absorbs high energetic radiation, such as α-, β-, γ-, X-rays, neutrons or 

high energetic particles, and convert this absorbed radiation into radiation with a wavelength in or 

around the visible spectral region. The emitted radiation is thus converted into an electric signal by 

a photomultiplier tube (PMT) or a charge coupled device (CCD) detector. 

The investigation described in this thesis are especially focused on the search for new 

scintillators material as radiation detectors for the X- and γ-ray imaging techniques, such as 

computed tomography (CT), single photon emission computed tomography (SPECT) and positron 

emission tomography (PET). The rapid evolution in medical imaging equipment has led to the 

requirement of increasingly fast and efficient scintillator materials in order to improve their 

radiation detection performance [1]. Some scintillators that are applied nowadays in the above-

mentioned medical diagnostics have serious drawbacks concerning afterglow, decay time, and the 

matching between emission wavelength and light detector sensitivity. If the scintillator 

characteristics are improved, the irradiation dose to be administer can be lowered and scanning 

times can be shortened, which is particularly beneficial for the patient.  

 

2.1.1  A brief history of scintillators 

The history of scintillators begins in 1895 with Röntgen's discovery of the barium 

platinocyanide fluorescence excited by X-rays. In the following year Becquerel discovered that 
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certain luminescent crystals containing uranium emit light spontaneously [2] and Pupin made first 

use of CaWO4 in X-ray intensifying screens [3]. It was only shortly thereafter that the works of 

Maria Sklodowska and Pierre Curie established the existence of radioactivity as a general 

phenomenon, stimulating an avalanche of discoveries that changed the face of modern physics. 

Crookes, in 1990, used ZnS to detect and count radioactivity, a method that was used some years 

later, in 1909, by Rutherford in his famous experiments on scattering of α particles [4]. While in 

the early days scintillations were evaluated visually, the combination of the photomultiplier tube 

(PMT) and new scintillator materials discovered after World War II established the scintillator 

counter as we know it today. It was Hofstadter's discovery of the thallium-activated alkali halides 

[5] that triggered a series of advanced research programs using modern solid state physics and 

spectroscopy, beginning, at long last, to develop a comprehensive understanding of the physical 

mechanisms behind the scintillation effect. Thallium doped sodium iodide, NaI:Tl, which was 

presented for the first time in 1948, was the most popular scintillator used in the detectors for the 

following tens of years due to its high light yield. 

The next great step in scintillator development took place in the early 1970's, with the 

discoveries of CaF2:Eu [6], BaF2 [7], and Bi4Ge3O12 (BGO) [8]. In particular BGO has had an 

extraordinary history, originally proposed in the late 1969 for nuclear medicine applications [9] and 

culminating in 1990 when 12000 crystals of this material (24 cm in length each) were used for the 

fabrication of the largest electromagnetic-radiation calorimeter in the world (CERN, Geneva). 

Today BGO serves as a standard material for comparison for newly developed scintillators. 

During the last decade the need for improved radiation detectors began to grow rapidly. High 

energy physics urgently sought new extremely radiation-resistant scintillator materials capable of 

recording very small cross-section events produced by high repetition rate collisions in a new 

generation of highly luminous accelerators (LHC at CERN, SSC, SLAC, FNAL and Cornell in the 

USA) [10]. Medicine, where the evolution of diagnostic radiology from simple X-ray photography 

into computed tomography, single photon emission computed tomography and positron emission 

tomography stimulated the early development of new scintillators and phosphors, now began to 

demand even denser, brighter and faster materials. Since the discovery of Lu2SiO5:Ce3+ by Melcher 

and Schweitzer in 1992 [11] a large number of Ce3+ doped Lu-compounds have been studied 

resulting in the discovery of other high-light yield scintillators like LuAlO3:Ce3+ [12] and 

LuPO4:Ce3+ [13].  

The newest scintillators LaCl3:Ce3+ and LaBr3:Ce3+ [14] were discovered at Delft University and 

provide record high energy resolution and ultrafast detection of gamma rays.  

In Fig. 2.1 the history of inorganic scintillators discovery is schematically reported.  
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Fig. 2.1. The history of inorganic scintillators discovery (adapted from [15]). 

 

2.1.2 The development of the medical imaging technologies 

The first medical image is the X-ray image that Röntgen took of his wife's hand in 1895 

using a photographic film to convert the X-ray into a form observable by the human eye [16] (Fig. 

2.2). 

                       

Fig. 2.2 On the left, a picture of Wilhelm Conrad Röntgen; on the right, one of the first X-ray photographs of 

the hand of the wife of Röntgen, Anna Berta Ludwig 
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One year later, powdered phosphors materials such as CaWO4 [17] replaced the photographic 

films previously used as the X-ray conversion material and have been an integral part of medical 

devices ever since. As matter of the fact, virtually all medical imaging modalities that require the 

detection of energetic photons (X- and γ-rays) utilize scintillator materials for their detection. These 

modalities include planar X-ray imaging, computed tomography (CT), single photon emission 

computed tomography (SPECT) and positron emission tomography (PET). With the increasing 

requirements for medical imaging equipment, the demand for the scintillators as the detection 

material in imaging has been became enormous. It has been documented [18] that about 175 metric 

tons of scintillators are required annually for medical diagnostic applications (Table I). 

Table I. Annual volume of scintillator required for medical imaging technologies [18] 

Modality Annual production 
(screen) 

Annual scint. 
(volume/m3) 

Planar X-ray 1000000 50 

CT 2000 0.15 

SPECT 2000 6 

PET 50 0.5 

 

In the field of medical imaging diagnostics, the energy of the photons detected is generally 

between 15 and 600 KeV.  The detection system has to be very efficient because there is an 

intrinsic limit of radiation dose that can be administered to a patient due to safety concerns. Thus 

the only way to improve the signal-to-noise ratio and then the image quality can be achieved by 

increasing the sensitivity of detector. The development of scintillators used in planar X-ray 

imaging, e.g. Gd2O2S:Tb and LaOBr:Tb, and used in CT, e.g. (Y,Gd)2O3:Eu, Pr and 

Gd2O2S:Pr,Ce,F seems relatively mature [19]. Nowadays, the attention is mainly focused on the 

improvement of the performance of the scintillators used in SPECT and PET imaging systems.  

SPECT is based on detecting individual photons emitted randomly by a radioactive element 

(such as 99mTc with the emission of 140 KeV photons) which is introduced into the body of the 

patient either by injection or inhalation. The emitted γ-rays are detected by two-dimensional 

position sensitive detectors based on a scintillator material (Fig. 2.3). The collimator and detector 

combination form what is known as a gamma-camera. The direction of the gamma rays is 

determined by a collimator placed between the detector array and the patient, while the photons 

that are not travelling in the desired direction are absorbed by the collimator. When the gamma-

camera is rotated around the patient and/or two opposed gamma-cameras are used, it is possible to 

construct a three-dimensional image. 
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Fig.2.3 On the left, a schematic gamma-camera. On the right, a typical SPECT scanner. 

 

Similar to SPECT, the patient for PET imaging is injected with a biological substance 

which is labelled with a positron emitter; most commonly used are 11C, 13N, 15O and 18F. 

Imaging of regional tracer concentration is accomplished by the unique properties of 

positron decay and annihilation. After the emission from the parent nucleus, the energetic 

positron traverses a few millimeters through the tissue until it becomes thermalized by 

electrostatic interaction between the electrons and the atomic nuclei of the media and 

combines with a free electron to form a positronium. The positronium decays by 

annihilation, generating a pair of gamma rays which travel in nearly opposite directions 

with an energy of 511 KeV each. The opposed photons from positron decay can be 

detected by using pairs of collinearly aligned detectors in coincidence (Fig. 2.4).  

 

            

Fig. 2.4 On the left, a schematic acquisition PET scheme. On the right, a typical PET scanner. 

 

This electronic collimation is the reason why PET is much more sensitive (factor >100) 

than the conventional nuclear medical technique such as SPECT. The detector pairs of a 

PET system are installed in a ring-like pattern, which allows measurements of 
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radioactivity along lines through the organ of interest (the so called Line of Response, 

LOR) at a large number of angles and radial distances. Subsequently, this angular 

information is used in the reconstruction of tomographic images of regional radioactivity 

distribution. Recently, special efforts have been made in the development of fast (τ ≤ 50 

ns) or even ultrafast (τ ≤ 5 ns) γ-ray PET detectors [20] based on scintillator materials in 

order to reduce the random coincidence rate (Fig. 2.5) and thus to improve the quality of 

the tomographic images. In the section 2.1.4. several aspects of scintillator performance, 

including the response time, will be addressed in more detail.  

 

 

                               TRUE COINCIDENCES         SCATTERED COINCIDENCES 

 

Fig. 2.5 Transaxial view of ring of detectors and organ of interest demonstrating the true coincident 

and random coincidence events. 

 

2.1.3 Basic scintillation mechanism 

Scintillation conversion is a complex process [21], which is usually simplified into three 

consecutive subprocesses (Fig. 2.6): 

i. Absorption/multiplication: absorption of a high-energy particle creates an inner shell hole 

and a primary electron; the multiplication of electrons and holes occurs by radiative decay, 

non-radiative decay (Auger processes), and inelastic electron/electron scattering. When the 

electron energies become less than the ionization threshold, electrons and holes thermalize 

into the bottom of the conduction band and the top of the valence band, respectively. The 

electrons and holes can remain free or combine to form free or self-trapped excitons. 

ii. Energy carrier migration: usually, the site of the absorption of incoming radiation and that 

of the final emission do not coincide; in that case, the energy has first to migrate before 
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transferring to a luminescent center. The speed and efficiency of the scintillation processes 

are influenced by the properties of the energy carriers. 

iii. Relaxation/emission: an excited emitting center releases its energy by emitting a photon or 

via non-radiative processes.  

 

 

 

Fig. 2.6 Sketch of scintillating mechanism (reproduced from [15]). 

 

These three stages of the scintillation process determine the overall scintillation efficiency of a 

scintillator, Yph, which is given by the number of photons produced per energy of incoming particle, 

Eincident (usually photon/MeV): 

 

                                                                                         (2.1) 

 

where Ne/h, S, Q and Ee/h are number of electron/hole pairs created during the multiplication stage, 

the efficiency with which an energy carrier is going to excite a luminescent center, the quantum 

efficiency of the luminescent center and the energy required to create one electron/hole pair, 

respectively. It is important to realize that the energy Ee/h which is necessary to create the average 

electron-hole pair is much larger than that of the pair, i.e., Ee/h = βEg (β > 1), where Eg is the band-

gap energy (in eV) and β represents a proportional constant.  Shockley estimated that 3Eg is needed 

per pair [22]; later, Robbins showed that this value can vary between 2.3Eg and 7Eg, depending on 
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the host lattice [23]. In addition the emitted radiation, Eem, generally will be situated at energies 

below Eg. Therefore Ne/h = (EemEg
-1

)(EgEe/h
-1

), where Eem is the energy of the emission maximum. 

For a given host lattice it is possible to estimate the value of β, so that the value of Ne/h can also be 

estimated, since the values of Eg and Eem can be easily obtained spectroscopically.  

 

2.1.3.1 Transfer process S 

Whereas Q is understood, S is a least well-known quantity governing the light yield of the 

conversion process. S is affected by non-radiative processes that are generally dependent on many 

parameters: energy carrier types, temperature and impurities. In particular S can be significantly 

degraded by the presence of defects, which can trap migrating electrons and holes thereby 

quenching or delaying the scintillating process. By better understanding the structure of traps, 

materials can be designed to minimize non-radiative transitions by lowering the concentration of 

traps/defects. The transfer efficiency S is equal to 1 only if the electron-hole pair is exclusively 

captured by the luminescent center. Obviously, as soon as the pair ends its life in a different way, 

the value of S becomes smaller than 1.  

We wish here to present the physics of transfer in a greatly abbreviated form. This enormously 

complex problem will be dealt with by considering three generic types of transfer and giving some 

indications of their relative importance. 

1. Radiative transfer occur whenever there is an overlap between the absorption of the 

luminescent center that emits the scintillation light and another emission originating 

elsewhere in the lattice. The most common example of this is self-absorption, where both 

absorbing and emitting centers are chemically identical. The phenomenon consists of the 

emission of a real photon and its reabsorption before leaving the medium, for which reason 

it is also known as radiation imprisonment or trapping. The effect is most noticeable in 

materials characterized by resonance radiation and has been extensively studied in gases 

(primarily Hg vapor [24]). 

2. Excitonic transfer: S is also influenced by the energy transfer such as transfers from self-

trapped hole (STH) or exciton (STE) to dopant ion [25]. These mechanisms (see Fig. 2.7) 

have been experimentally [26] and theoretically [27] demonstrated in several systems, 

mostly halides. As a function of the STH or STE properties the transfers can or cannot 

occur.  STH transfer is governed by the energy barriers of the hole trapping and the STH 

diffusion, respectively. STE energy transfer is governed by the dipole/dipole energy 

transfer probability from the STE to the dopant ion according to the eq. 2.2 
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                                                                                     (2.2) 

 

where τSTE is the lifetime of the STE and Rd-d depends on the overlap of the absorption of 

the dopant and the emission of the STE. If both mechanism are complex, it has been shown 

that they can be optimized by changing the dopant concentration and anion type [26]. 

Schematically, the dopant concentration decreases the distance between a STH (STE) and 

the dopant site, maximizing the energy barriers of STH trapping and migration or STE 

lifetime. STH energy barriers decrease in the row Cl → Br → I while STE lifetime 

increase. These trends provide useful information to maximize the probability for an 

efficient transfer from the lattice to the emitting center.  

 

 

 

Fig 2.7  On the left, formation of self-trapped hole (STH) and followed by recombination on 

luminescent ion; on the right, formation of self-trapped exciton (STE) followed by recombination on 

luminescent ion. 

 

3. Sequential trapping of free charge carriers at activator ions, without the formation of 

excitons, is yet another mechanism of transfer. In this case migrating electron and holes 

can be trapped by the presence of the defects quenching or delaying the scintillating 

process. By better understanding the structure of traps, the materials can be designed to 

minimize non-radiative transitions by lowering the concentration of traps/defects. This 

mechanism is common in many luminescent materials and a comprehensive discussion of 

its role in rare earth doped scintillators has been given by Wojotowicz in a contribution at 

the International Conference on Inorganic Scintillators and their Application, SCINT95 

[28]. 

 

2.1.3.2 Luminescence Yield Q 

The luminescence process is described by the quantum yield Q, which is generally a well 

known quantity, particularly for the weak electron-lattice coupling characteristic of the RE ions. By 
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painstaking effort the quantum efficiency can be measured directly, but it is equally valid and far 

easier to obtain as the ratio of the overall decay time to the radiative lifetime τr: Q = τd/τr. The 

theoretical understanding of Q, or, equivalently, the nonradiative rates, is well grounded, especially 

for narrow band emitters such as the RE ions. For broad band emitters such as BGO, the theory is 

not in quite a good shape [29], but empirical data are abundant.  

 

2.1.3.3 Kinetics of the response 

The kinetics of the light response of a scintillator is clearly governed by the rate constants of the 

energy carrier migration (Rtfr) and emission (Rr) processes (see Fig. 2.6), as they are by far slower 

with respect to the initial absorption and multiplication stage. The decay rate of the luminescent 

centre itself is defined by its transition dipole moment from the excited-to-ground state and can be 

further enhanced by additional non-radiative quenching, or energy transfer process away from the 

excited state. Such quenching or energy transfer, however, results in the decrease of parameter Q in 

equation (1) and the overall conversion efficiency gets smaller. In the simplest case of exponential 

decay, the emission intensity I(t) is: 

                                                                                                                       (2.3)   

where A is a proportional constant and τ is called decay time. 

There is no fundamental limitation on the transfer rate. It can be instantaneous when the 

luminescence center is excited directly, with no intermediate steps like excitons or e-h pairs. Unlike 

the case of the transfer rate, there is a fundamental physical law that limits the radiative rate Rr  

(inverse of the Einstein coefficient A). For electric dipole emission the radiative lifetime τr = 1/Rr in 

ns is given by [30] : 

                                                                                                           (2.4) 

where f is the oscillator strength of the transition (summed over the final states and averaged over 

the initial states), λ is the wavelength of the transition in nanometers and n is the refractive index. 

For the fastest possible scintillators, therefore, two important conditions must be met: the optical 

transitions must be fully allowed by all relevant selection rules, with a high oscillator strength and 

consequently short radiative decay time τr; simultaneously the transfer time has to be significant 

shorter than τr to allow the radiative decay to govern the rate. 
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2.1.4 Requirements 

There is a variety of radiation detector applications that desire scintillators with high light 

output, good attenuation power, a low level of afterglow, and a fast scintillating decay time, but 

generally the specific properties of the scintillators are carefully chosen depending on the 

destination of the material. Scintillators are used in a wide range of applications, including medical 

imaging, high energy physics, space exploration and homeland security. The following aspects are 

important in the evaluation of the performance of a generic scintillator material: 

§ Stopping power (attenuation coefficient). For efficient absorption of high energetic 

radiation (from 100 KeV to 10 MeV) a scintillator should contain high atomic number (Z) 

elements (e.g. Ba, La, I, Lu, Cs, Pb, Bi) and posses a high density (ρ). As matter of the fact, 

elements with a high atomic number are characterized by higher electron densities and thus 

a higher absorption cross-section for X-rays and γ-rays. In order to evaluate the detection 

efficiency the linear attenuation coefficient µ is usually used, which is defined as the 

probability per unit length that a incident X- or γ-ray will be removed from the beam. This 

is just a sum of the probabilities for the three important ray-matter interaction modes (eq. 

2.5).   

µ = κphotoelectric + σcompton + τpair                                                                                            (2.5) 

As thoroughly argued by van Eijk in [31], considering the photoelectric effect, for an 

efficient and small scintillator detector, both a large density ρ and effective atomic number 

Zeff [32] is needed. For detection by Compton scattering one might be tempted to conclude 

that only the density should be large. For detection by means of pair production both a high 

ρ and a high Zeff is required. In Table II the dependence of the linear attenuation 

coefficients for the main interaction processes of X- and γ-rays with matter on the density ρ 

and the atomic number Z is summarized.  

 

Table II. Linear attenuation coefficients (cm-1). 

Photoelectric effect  

Compton scattering  

Pair production  

 

Concluding, it may be stated that in general both a high density ρ and a high effective 

atomic number Zeff are important. Of course it should be realized that the importance of the 

different interaction mechanisms for the primary interaction processes varies strongly with 
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energy. Photoelectric effect dominates at lower energies (≤100 KeV; µ = σ at 500 KeV for 

Z = 80 material), Compton scattering is most important as intermediate energies, and pair 

production can only occur above 1022 KeV. 

§ Chemical stability and mechanical strength. The chemical composition of a scintillator 

should not change over time due to exposure to the environment or high energy radiation. 

Changes due to absorption of water (for hygroscopic scintillators) or the change in valence 

states of activator ions in an oxidizing environment are examples of undesired chemical 

changes. Ruggedness and mechanical shock resistance are additional highly desirable 

characteristics.  

§ Light Output. The light output is generally given as the number of photons emitted per 

MeV of energy of incoming radiation (ph/MeV). According to equation (1) it is 

commendatory to study preferentially materials having a small Eg. For materials being 

build of ions having a noble gas configuration, Eg decreases roughly along the series 

fluorides (9-12 eV), oxides (5-9 eV), chlorides (6-8 eV), bromides (5-7 eV), iodides (4-6 

eV), sulphides (2-5 eV) and selenides (2-4 eV). In the search for new scintillator materials, 

mainly oxides and fluorides gained attention. Whereas high light yield may not be too 

critical for detecting very energetic particles, for applications where the particle energy is 

smaller or fixed, e.g. in positron emission tomography, increased light yield is important 

for improving accuracy, spatial- and energy-resolution.  

§ Decay time. Fast signal rise and decay times are important for good timing resolution and 

high counting rates or for time-of-flight modes of operation. Very short response time (< 

100 ns) is absolutely required in PET scanners where the coincident detection of γ-rays 

have to be realized.  

§ Afterglow. Persistent emission or afterglow is emission that continues for second, minutes 

or even hours after the excitation pulse and it should be avoided as much as possible. It is 

caused by the slow thermally activated release of trapped charge carriers that have been 

created under high energy excitation; this results in a lowering of the direct light output and 

leads to ghost images. The afterglow properties are strongly influenced by the synthesis 

procedure of the material, as it usually involves defects. 

§ Radiation damage. Stability and reproducibility of light output of a scintillator are critical 

to many applications. Radiation damage refers to the change of scintillation efficiency due 

to defect creation by the radiation dose. These defects are commonly color centers whose 

electronic structure imparts optical absorption bands at the scintillator wavelengths. As in 

the case of afterglow, the binding energy of the color center determines the longevity of the 

damage. In general, this energy is sufficiently large that damage can last from second to 
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days at room temperature. Although radiation damage typically decreases the scintillation 

efficiency, there are exceptional cases where the efficiency increases; this latter behaviour 

is likely due to the modification or neutralization of defect centers that otherwise reduce 

the scintillator's quantum efficiency. 

§ Emission wavelength. The emission of a scintillator has to be detected with the highest 

possible sensitivity. This depends on the wavelength of the emission and the type of the 

detector used. If the emission is detected by a PMT, the best signal to noise ratio is 

obtained in the UV-blue part of the spectra; on the other hand, if the detector is a CCD 

camera or a Si-photodiode, the emission should be in the green-red spectral region to 

obtain the best sensitivity. In the recent years an enormous development of semiconductor 

photodetectors has occurred and the latest generation of the back illuminated CCD from 

Hamamatsu announced for 2005 shows an enhanced sensitivity down to 200 nm. 

 

2.2 Materials 

Generally, one can group scintillator materials into two classes: 

· Intrinsic scintillators, in which the luminescence center is created by the structural 

unit or an intrinsic defect of the host. Examples are CsI, Bi4Ge3O12, CeF3, PbWO4 and 

BaF2. 

· Extrinsic scintillators, in which the luminescence center is a well defined impurity 

ion, introduced into a host lattice. A prime example of this kind of material is NaI:Tl; 

others include the more modern wide band-gap materials utilizing some RE3+ ions, 

such as Ce3+, Pr3+ and Nd3+.  

 

Obviously the border between intrinsic and extrinsic scintillators is not very rigid and may 

even be crossed deliberately. An example is provided by such materials as CexLa1-xF3, which can 

be prepared with active ion (Ce) concentration anywhere between 0 and 100%. 

 

2.2.1 The host lattice 

The choice of the type and morphology of the host lattice is crucial to determine the 

performance of the scintillation process. Nowadays oxide-based lattices are the major focus of 

attention for the realization of new and improved scintillator materials. There are essentially two 

reasons for such attention. One is that most oxides are particularly inert to ambient conditions of 
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handling and use. Typically they are quite hard, chemically inert, insoluble in water and 

particularly amenable to optical processing. In contrast, most halides tend to be relatively soft, 

water soluble, and vulnerable to attack by atmospheric moisture. While fluoride are less susceptible 

to these deficiencies, they are far more difficult to synthesize in pure form than oxides, and are 

particularly sensitive to the presence of even minute amounts of oxidic contamination, which 

severely degrades their emission properties.  

In this thesis most of the synthesized matrixes contain Lu3+ ion. As is obvious from the 

previous discussion (section 2.1.5), the Lu3+ ion is particularly favored as a major constituent of the 

host lattice because of its high atomic number, imparting a high density and concomitant stopping 

power to the lattice. In addition Lu ion, by virtue of its full 4f shell, has a much higher-lying core 

level (6.9 eV in free atom) than to the other  spectroscopically inert rare earths (Y, 25.6 eV; La, 

14.4 eV) [33]. While Robbin's theory of conversion [23] does not consider the core levels, such an 

easily ionizable electronic state could conceivably have a significant influence on the conversion 

and transport processes. Any attempt to answer this question is hindered by the fact that, with the 

one exception of YAlO3 (YAP), yttrium based compounds have received far less development 

effort than their Lu counterparts. 

Regarding the morphology of the scintillator, currently are known six types of materials used 

in radiation detection: single crystals, polycrystalline ceramics, glasses, powders, plastics, and inert 

gases. Despite of the best figure-of-merit of the single crystal scintillators, by far not all 

intrinsically efficient compounds can be grown in the form of bulk single crystals with sufficiently 

big dimension and manufacturing price affordable for practical applications [34, 35]. Too high 

melting temperatures, presence of phase transitions between the melting point and room 

temperature or stoichiometry problems coming from different volatility of binary constituents from 

the high temperature melt of complex compounds are just few examples of troubles which can 

make single crystal preparation impossible. Optical ceramics have been under development as an 

alternative to single crystal materials to provide bulk optical elements in the case where single 

crystals cannot form or when ceramic materials show superior properties, for example in the 

achievable concentration and homogeneity of the dopant. A wet chemical coprecipitation process is 

used to make the powders, and a special sintering process in instituted for transforming powder 

compacts into transparent luminescent ceramic.  In the case of cubic materials the technological 

progress allowed to obtain bulk samples virtually indistinguishable from single crystals and in 

some parameters (doping profile) even clearly superior. Development of optical ceramics for the 

scintillator applications was triggered by the needs of Computed Tomography medical imaging. 

The review of the results achieved mainly at the manufacturing and characterization of 
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(Y,Gd)2O3:Eu, Gd2O2S:Pr, Ce, F and Gd3Ga5O12:Cr, Ce ceramics was reported by Greskovich in 

[35].  

Another important approach in developing new scintillators materials, which will be addressed 

in detail in chapter 3, consists in getting a control of the material on a nanometric scale. It is indeed 

very important to control the concentration and the homogeneity of the luminescent ions 

throughout the host lattice and to control the size of the grains in the case of the powders. 

Numerous excellent reviews can be found in the recent literature concerning the scintillating 

response of a wide range of nanostructured materials, especially based on oxide matrixes. In 2008 

it was documented by Klassen et al. [36] that scintillator materials in the form of nanocrystalline 

powders are an emerging field of research as the nano-scale induces the appearance of new optical 

properties which, in turn, bring new conceptions for application of such materials and open 

opportunities for improvement of exploitation characteristics of the radiation detectors including 

their sensitivity, spatial and temporal resolutions, radiation hardness, etc. These potential 

advantages are attributed to the particular features of electron and phonon excitations, photon 

resonances, behaviour of point defects predetermined by nanoscopic dimensions of the particles, 

which are as small as typical spatial parameters of electrons, phonons and photons. Specific surface 

and structural effects as well as quantum and dielectric confinements occuring in the nanoparticles, 

particularly doped insulators, and their consequences on the optical and scintillating properties 

were reported and discussed in detail in a recent review by Dujardin et al. [37]. Manufacturing of 

nanopowders of scintillating materials attracts a certain interest of scientists and producers also for 

the possibility to fabricate transparent ceramics that could replace advantageously the 

corresponding single crystals whose production generally required longer manufacturing times and 

higher costs. Another very attractive solution is the direct preparation of scintillating thin films 

which recently have appeared to be an interesting alternative to reduce diffusion phenomena and to 

improve the scintillation properties of the commonly used phosphors. 

 

2.2.2  Lanthanides (Rare Earths) 

Lanthanides (numbers 57 to 71 in the periodic table of elements), together with scandium (21) 

and yttrium (39) are the group of elements with an incompletely filled 4f inner shell. The name 

"lanthanide" comes from the Greek word λαυϑαυειυ which means "to lie hidden". These elements 

are also called rare earths due to the fact that the minerals from which they were first isolated in the 

form of  "earths" (archaic term of oxide) were believed to be quite rare. However, even the most 

"rare" rare earth elements, thulium, is still more abundantly present in the earth crust than gold 
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[38]. Yet rare earth ores are rare in the sense that their concentrations are more difficult to find than 

those of most other ores. 

 The first report on lanthanide ions dates from 1788, when B. Geijer documented the analysis 

of a stone found near Ytterby, Sweden. This mineral was called yttria and its composition was 

analyzed by Gadolin and Arrhenius. It took several scientists and a considerable amount of time 

and perseverance to isolate all the different lanthanides in their pure form; such difficulty arises 

from the fact that these elements are characterized by very similar chemical properties and their 

chemical separation is not a trivial issue. Presently the lanthanides are obtained industrially by 

treating their ores monazite and bastnäsite with caustic soda and hydrochloric acid [39]; the 

resulting solutions of chlorides of the lanthanide ions are then subjected to column chromatography 

separating them according to decreasing atomic number, and the ions are eluted in the order Lu3+ to 

La3+.  

Lanthanide ions are most stable in the trivalent form (Ln3+) and have a [Xe]4f
n5s

25p
6 electron 

configuration with n varying from 0 to 14 (Table III). Nevertheless, the oxidation states II (Ln2+) or 

IV (Ln4+) are especially observed when they lead to: 

1. electronic configuration of Xe, i.e. Ce4+ (f 0) 

2. an half-filled 4f-shell, i.e. Eu2+ and Tb4+ (f 7) 

3. a completely filled 4f-shell, i.e. Yb2+ (f 14) 

 

In consequence of the lanthanide contraction phenomenon, in which the 4f-eigenfuction is 

contracted, the f-shell behaves as an inner shell and it is shielded by the filled 5s
25p

6 sub-shells 

(Fig. 2.8).  

 

Fig. 2.8  Square of the radial wavefunction times the squared radius for the 4f, 5s, 5p and 6s electrons in Gd+. 

For Ln3+ ions this picture will be contracted because of the larger effective nuclear charge.  
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Although this screening is small, f-electrons are weakly perturbed by charges of the 

surrounding ligands. They do not strongly interact with the environment and have little tendency to 

participate in chemical bond formation. The shielding of the 4f orbitals results in special 

spectroscopic properties with parity-forbidden 4f-4f absorption having very low molar absorption 

coefficients and characteristic narrow-line emission, mostly in the visible and near infrared ranges. 

The strategic importance of lanthanides is based on the unique optical and magnetic properties 

arising from the partly filled 4f shell. This has resulted in the widespread use of lanthanides in 

industrial and military applications. The optical properties are responsible for applications of 

lanthanides in lighting (fluorescent tubes, white light LEDs), displays (CRT, PDP), lasers, 

telecommunication (fiber amplifiers) and medical imaging (bio-labels, PET, CT). The magnetic 

properties are used in Nd, Tb and Sm based magnets with superior magnetic moments which find 

applications in e.g. wind turbines, hybrid cars and headsets. Other applications of lanthanides 

include catalysis (La, Ce), batteries (La), polishing agents (CeO2), in metallurgy as additive to 

strengthen steel (mixture of lanthanide) and in glass to realize a higher refractive index.  

 

Table III. Electronic configurations and Oxidation States of the Lanthanide Elements. 

Element Symbol  Electr. Conf. Ln Electr. Config. Ln3+ Oxidation States1 

Lanthanum La [Xe]5d
16s

2 [Xe]           +III 

Cerium  Ce [Xe]4f
15d

16s
2 [Xe]4f

1        +III   +IV 

Praseodymium Pr [Xe]4f
35d

06s
2 [Xe]4f

2         +III  (+IV) 

Neodymium Nd [Xe]4f
45d

06s
2 [Xe]4f

3 (+II)  +III 

Promethium Pm [Xe]4f
55d

06s
2 [Xe]4f

4 (+II)  +III 

Samarium Sm [Xe]4f
65d

06s
2 [Xe]4f

5 (+II)  +III 

Europium Eu [Xe]4f
75d

06s
2 [Xe]4f

6  +II    +III 

Gadolinium Gd [Xe]4f
75d

16s
2 [Xe]4f

7           +III 

Terbium Tb [Xe]4f
95d

06s
2 [Xe]4f

8           +III  (+IV) 

Dysprosium Dy [Xe]4f
105d

06s
2 [Xe]4f

9             +III   (+IV) 

Holmium Ho [Xe]4f
115d

06s
2 [Xe]4f

10           +III 

Erbium Er [Xe]4f
125d

06s
2 [Xe]4f

11             +III 

Thulium Tm [Xe]4f
135d

06s
2 [Xe]4f

12 (+II)  +III 

Ytterbium Yb [Xe]4f
145d

06s
2 [Xe]4f

13   +II   +III 

Lutetium Lu [Xe]4f
145d

16s
2 [Xe]4f

14           +III 

 
                                                           
1
 The most important oxidation states (commonly the most abundant and stable) are reported in bold. Other 

oxidation states, well characterized but less important, are reported in normal character. The less stable or 
still uncertain oxidation states are reported in brackets. 
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2.2.2.1 5d-4f  transitions in lanthanide ions 

More than a century of spectroscopy of lanthanide ions has involved detailed studies of the 

intraconfigurational 4f-4f transitions. Most of the aspects of these transitions are currently quite 

well understood. For the interconfigurational 5d-4f transitions the situation is more complicated. 

One of the reasons for this is the fact that these transitions are mainly located in the ultraviolet and 

vacuum ultraviolet spectral region, and were studied thoroughly only during the last two decades, 

triggered by an increased interest in the high-energy excited states of lanthanide ions. While the 

intraconfigurational 4f-4f transitions are electric-dipole forbidden and the corresponding 

luminescence decay times of the emitting 4f
n levels are typically in the µs to ms region, the 

interconfigurational 5d-4f transitions can be allowed and luminescence decay times in the ns time 

region are usually observed. For this reason 5d-4f emission of some lanthanide ions can be suitably 

exploited to realize new fast and advanced scintillation materials, especially for the medical 

diagnostic techniques where high timing resolution is required to improve the quality of the 

tomographic images. 

The energy of the numerous 4f-levels of the lanthanides doped LaCl3 can be found in the Dieke 

diagram (Fig. 2.9) [40] up to energies of 40000 cm-1. In the last decade, the diagram has been 

extended into the vacuum ultraviolet region for the lanthanides in LiYF4 by Meijerink et al. [41] 

(Fig. 2.10). 

The positions of the 4f
n-15d levels are much more influenced by the crystal field interaction than 

those of the 4f
n levels, which are well shielded from the crystalline environment. Due to the strong 

interaction of the 5d-electron with the neighboring anions in the compounds, the bonding strength 

changes upon 4f-5d excitation, giving broad absorption and emission bands instead of lines [42]. 

Typical bandwidths (full width at half maximum, FWHM) are 1000-4000 cm-1. Efficient emission 

from 4f
n-15d states has been observed for a limited number of lanthanide ions: Ce3+, Pr3+, Nd3+, Er3+ 

and Tm3+. The other lanthanide ions do not show 4f-5d emission due to the presence of 4f
n levels 

just below the lowest 4f
n-15d state, allowing fast non-radiative relaxation to the 4f

n levels. For Er3+ 

(4f
11) and Tm3+ (4f

12) the dominant 5d-4f emission is from the high spin state and their emission 

decay time are in the µs range due to the spin-selection rule. This leaves Ce3+, Pr3+ and Nd3+ as 

unique ions for which efficient and fast spin-allowed 5d-4f emission can be observed in the ns 

range. Of these three ions, the energy difference between the lowest 5d state and the 4f ground state 

is the smallest in Ce3+ (E ≤ 4.1 eV) and the largest in Nd
3+ (E ~ 6.8 eV) [43]. At a smaller 5d-4f 

energy difference more compounds are suitable as potential host lattices. Fluorides, oxides and 

chlorides are characterized by a bandgap Eg of respectively 8-11, 4-7 and 5-8 eV. Accordingly the 

lowest 5d/4f levels of Ce3+ fit in all of these band gaps, those of Nd3+ practically only in fluorides, 
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and Pr3+ is an intermediate case. A schematic energetic diagram of energy levels of Ce3+, Pr3+ and 

Nd3+ is shown in Fig. 2.11.  

 

 

 

Fig. 2.9  Dieke's diagram of all observed 4f
n energy levels for trivalent lanthanide ions in LaCl3 [40]. Levels 

from which emission was observed are indicated by a filled semicircle. 
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Fig. 2.10  Energy levels above 40000 cm-1 for the lanthanides in LiYF4 [41]. 

 
 

 

 

Fig. 2.11  Energy levels of Ce3+, Pr3+ and Nd3+ in a host lattice (adapted from [43]). 
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Configuration-coordinate diagram 

 

The properties of a Ln3+ ion in a host lattice can be described more accurately by means of a 

configuration-coordinate diagram (Fig. 2.12). The configuration coordinate R is a measure of the 

distance between the lanthanide ion (Ln) and the neighbouring ions (L) of the host lattice. The 

potential energy of the lanthanide ion as a function of Q is represented by a parabola. This 

parabolic shape follows from the fact that the vibrational motion is assumed to be harmonic, i.e. the 

restoring force F is proportional to the displacement: F = -k(Q-Q0). A force of this form 

corresponds to a potential energy whose dependence on R is parabolic: E = ½·k·(Q-Q0)
2. The 

minimum Q0 of the parabola corresponds to the equilibrium distance in the ground state. The 

quantum mechanical solution of this problem (known as harmonic oscillator) yields for the energy 

levels of the oscillator Ev = (v + ½)·h·ν, where v = 0, 1, 2, ..., h is the Plank constant and ν is the 

frequency of the oscillator. Part of these levels are indicated in Fig. 2.12. For our purpose the more 

important information is that in the lowest vibrational level (v = 0) the highest probability of 

finding the system is at Q0, whereas for high values of v it is at the turning points, i.e. at the edge of 

the parabola [44]. 

In optical absorption the centre is promoted from its ground state to an excited state. It is 

important to realize that electrons move much faster than rearranging nuclei therefore transitions 

(within a good approximation) take place in static surrounding (i.e. only in the vertical direction). 

The optical absorption starts from the lowest vibrational level, i.e. v = 0. Therefore, the most 

probable transition occurs at Q0 where the vibrational wave function has its maximum value. The 

transition will end on the edge of the excited state parabola, since it is there that the vibrational 

levels of the excited state have their highest amplitude. This transition corresponds to the maximum 

of the absorption band. It is also possible, although less probable, to start at Q values larger or 

smaller than Q0. This leads to the width of the absorption band because for Q > Q0 the energy 

difference of the transition will be less than for Q = Q0, and for Q < Q0 it will be larger. If Q = Q0, 

the two parabola lie exactly above each other and the band width of the optical transition vanishes: 

the absorption band becomes a narrow line. 

After the absorption, the center return first to the lowest vibrational level of the excited state 

giving up the excess energy to the surroundings. The emission transition can be described in the 

same terms of that of absorption. From the lowest vibrational level of the excited state the system 

can return to the ground state spontaneously under emission of radiation. By emission, the center 

reaches a high vibrational state. Again relaxation occurs, but now to the lowest vibrational level of 

the ground state. The emission occurs at a lower energy than the absorption due to the relaxation 

processes. The energy difference between the maximum of the (lowest energy) excitation band and 
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that of the emission band is called Stokes shift. It will be immediately clear that the larger the value 

of ΔQ is, the larger the Stokes shift and the broader the optical bands involved. 

 

 

Fig. 2.12  Configuration coordinate diagram. 

 

Excitation of a 4f electron to a 5d state involves a strong change in the Ln─L bond strength due 

to the strong interaction of the 5d orbitals with the surrounding ligands. As a result the equilibrium 

distance Ln─L changes much more (ΔQ >> 0)  than observed for transitions between well shielded 

4f states (ΔQ ~ 0) and there is a strong coupling with vibrations, leading to strong vibronic 

transition both in absorption and emission. Actually the value of ΔQ represents a qualitative 

measure of the interaction between electrons and the vibrations of the optical center under 

consideration. It is usual to call the ΔQ = 0 situation the weak coupling scheme, ΔQ > 0 the 

intermediate coupling scheme, and ΔQ >> 0 the strong coupling scheme.  

To support efficient 5d-4f transition, the ΔQ value should not be too large as thermal occupation 

of the crossing of the parabolas introduces quenching of the emission. On the other hand a ΔQ 

value too small could lead to an overlap between the absorption and emission band and re-

absorption of an emitted photon by other lanthanide ions can occur. In general some re-absorption 

cannot be avoided [44]. 

 

 
Covalency and crystal field strength effects 

 

Most of the scintillators presently used in CT and PET scanners are based on materials activated 

with Ce3+ ion, which exhibits efficient and relatively fast (~20-70 ns) 5d-4f electric-dipole emission 



C h a p t e r  2  -  T h e o r y  

 

 
29 

 

in a broad spectral range (400-600 nm) [45]. Taking into account that the radiative decay time 

increases as the second or third power of the emission wavelength, the possibility to use shorter 

emission wavelengths (in the blue or near UV spectral regions) can gives rise to faster time 

emission decays. For this reason recently much attention has been turned on the study of the 5d-4f 

emission of Pr3+ ions in wide band-gap compounds. The emitting 5d state of Pr3+ ions is located at 

about 12240 cm-1 higher energy than that for Ce3+ in the same host [46] and its emission lifetime is 

about 2-3 times shorter [30] allowing faster time responses for scintillators. As a result, the choice 

of the Pr3+ ion as an activator ion for wide band-gap hosts may constitute a promising alternative to 

the Ce3+ one in the development of new scintillator materials for applications requiring time-

correlated registration of photons or working at higher count rate.  

It is worth to point out that the position of the 5d-4f emission band strongly depends on both the 

covalence effect and the crystal field strength induced by the ligands (Fig. 2.12). As a result of 

covalent bonding between the 5d levels and the ligand orbitals, the 5d orbitals expand by partial 

delocalization over the ligands and consequently the energy is lowered. This effect is known with 

the name of nephelauxetic effect (from greek "cloud expanding") and it constitutes a qualitative 

measure of the covalency of the lanthanide-ligand bond. It was found that the common ligands can 

be ranked according to their ability to induce the expansion of the cloud. This order, which is 

almost independent of the central ion, strictly depends on the polarizibility of the ligand as well as 

the charge density on the surrounding anions.  

The crystal field is responsible for the splitting of the 5d levels: the presence of ligands induces 

a splitting into a maximum of five crystal-field levels due to the differences in orientation of the d-

orbitals with respect to the negatively charged ligands (Fig. 2.13). The splitting depends on the type 

and the distance of the ligands and the symmetry. Accordingly, for the same lanthanide ion the 5d-

4f emission and thus the radiative decay time can vary strongly, depending on the type of host 

lattice.  

 

  

 

Fig. 2.13  Schematic representation of the influence of the covalence effect and the crystal field strength on 

the energy and the splitting of the 5d levels. 
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An illustrative example of these effects is clearly documented in [47] where the authors showed 

the shift exhibited by the lowest 5d energy level of Nd3+ ion by varying the type of the host lattice. 

Specifically, the authors observed that in phosphates MPO4 and borates MBO3 (where M =  La, Y, 

Lu, Sc) the Nd3+ 4f
25d

1 onset decreases in energy as the ionic radius of the metal ion decreases in 

the order Sc < Lu < Y < La, due to the increasing nephelauxetic effect. This causes the 4f
3 energy 

levels to decrease as well, but to a much lesser degree. Furthermore, the smaller ionic radius causes 

an increase in the 5d crystal field splitting, lowering the 4f
25d

1 onset even further. It was realized 

that when the energy gap between the lowest 4f
25d

1 state and the 2G(2)7/2 (4f
3) state is 4000 cm-1 or 

less (ScPO4 and all of the borates), efficient non-radiative relaxation occurred, populating the 
2G(2)9/2 (4f

3)  state and leading to efficient radiation from this 4f
3 level; conversely, when the energy 

gap is 7000 cm-1 or greater (LaPO4) no non-radiative relaxation occurred, and fluorescence is 

observed only from the lowest 4f
25d

1 state. For the systems LuPO4 and  YPO4, which are 

characterized by an energy gap of about 5000 cm-1, both competing processes occurred, so 

emission from both 4f
25d

1 level and 2G(2)9/2 are observed (Fig. 2.14). 

 

 

 

Fig. 2.14  Schematic energy level diagrams for Nd3+ in various MPO4 and MBO3 crystals, showing the 

positions of the 4f25d and 2G(2)J levels (see [47] and references therein). Levels exhibiting emission are 

marked by a semicircle. 

  

Also for the Pr3+ dopant ion the nephelauxetic effect and the crystal field strength are crucial to 

determine the efficiency of the scintillation process [48]. After high energetic excitation, for 

trivalent praseodymium two type of emission transitions can take place, i.e. either 4f5d→4f
2 or 
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4f
2
→4f

2. The type of transition depends on the host lattice and the energetic location of states of the 

4f5d electron configuration relative to the 1S0 level of the 4f
2 electron configuration, which is 

located at about 46500-46900 cm-1. In the case the energetically extended 4f5d states overlap with 

the 1S0 level (or are even energetically lower), the high-energetic excitation brings about the 

emission from the lowest state of the 4f5d configuration characterized by broad emission bands 

with emission lifetimes in the order of tens of nanoseconds. An efficient cascade emission due to 

the two-step intra-configurational 4f
2-4f

2 transitions (1S0→
1I6  followed by 3P0 →

3H4) can occur 

after high-energetic excitation, if the 1S0 level is located energetically lower than the lowest state of 

the 4f5d configuration (Fig. 2.15). This latter kind of emission has been observed mainly in fluoride 

hosts, where the high electronegativity of fluoride ions induces a small barycenter shift of the 

whole 4f5d electronic configuration.  

 

 

 

Fig. 2.15  Energy level scheme of Pr3+ showing the 4f2 levels and two possibilities for the position of the 

4f5d levels. On the left the lowest 4f5d level is above the 1S0 level making quantum cutting from the 1S0 level 

possible. On the right the 4f5d level is situated below the 1S0 level and fast UV 5d emission to the lower 4f
2 

levels is possible potentially being a good scintillator. 

 

As documented by S. Kück et al in [48], there are general considerations to evaluate, whether a 

host material lead to a 4f5d→4f
2 (scintillation process) or 4f

2
→4f

2 (quantum cutting) emission of 

the Pr3+ ion. From the physical point of view, a high coordination number of the Pr3+ ion generally 

leads to a small crystal field splitting of the 4f5d states, due to the fact that for a higher number of 

nearest neighbors, the spherical-symmetric part ε0 of the perturbation increases, whereas the non-

spherical-symmetric parte decreases: 
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                                                                                                          (2.6) 

 

                                                                                                        (2.7) 

 

where Δ = 10Dq is a measure for the energetic splitting and the number in brackets represents the 

coordination number (6 : octahedron, 8 : cube, 12 : cube-octahedron). As a result, for higher 

coordination numbers, the whole 4f5d-configuration is elevated and the splitting is reduced. This 

prevents the possibility of observing a direct 4f5d→4f
2 emission upon high-energetic excitation. 

In addition to this, there is another important approach to estimate the energetic position of the 

lowest 5d state of Pr3+ ion in an appropriate host lattice in order to know the energetic separation 

from this latter to 1S0 level, and thus to understand the most probable mechanism of energy 

relaxation after high-energetic excitation. This approach is based on the preliminary knowledge of 

the energy level scheme of Ce3+ ion, which is the most extensively investigated ion for scintillating 

materials. From the energetic position of the lowest 5d level in Ce3+-doped materials, the energetic 

position of the lowest 5d level of Pr3+ ion in the same host can be simply estimated by the 

Dorenbos' relation [46]: 

 

E [Pr3+, 5d] = E [Ce3+, 5d] + 12240 cm-1 ± 750 cm-1                                                                     (2.8) 

 

where E is the energy of the lowest 5d level of Pr3+ and Ce3+, respectively.  

In similar way we can estimate the energy position of the lowest 5d levels for other lanthanide 

ions. For instance, for Nd3+ ion, which is another possible luminescent candidate for scintillator 

materials, the lowest 5d state in a generic host is estimated to be localized at: 

 

E [Nd3+, 5d] = E [Ce3+, 5d] + 22700 cm-1 ± 650 cm-1                                                                    (2.9) 

 

The lowest 5d state of Nd3+ is generally located in the deep UV (see. Fig. 2.11), so the prevision 

of the energy location of the lowest 5d state (by the equation 2.9) is particularly important not only 

to know the energy location of the above-mentioned level from the lower lying 4f level, but also to 

identify if 5d level can lie within the conduction band of the host lattice. In this latter case Nd3+ ion 

will not be able to produce any luminescence and it cannot be used for the realization of 

scintillating materials.   
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Chapter 3 

 

 

Experimental 

 
 

3.1 Material synthesis 

The materials investigated in this thesis were synthesized mainly by solid-state reaction 

and sol-gel process. It is our intention to briefly discuss the key points of these preparation 

methodologies.  

 

3.1.1 Solid State Reaction (SSR) [1] 

The solid state reaction route is the most widely used method for the preparation of 

polycrystalline solids from a mixture of solid starting materials. Solids do not react together at 

room temperature over normal time scales and it is necessary to heat them to much higher 

temperatures, often to 1000 to 1500 °C in order for the reaction to occur at an appreciable rate.  

In order to understand the difference between reactions in solution and in the solid state, and the 

problem associated with the solid-state reactions, we have to consider the thermal reaction of two 

crystals of the compounds A and B which are in intimate contact across one face (Fig. 3.1) When 

no melt is formed during the reaction, the reaction has to occur initially at the points of contact 

between A and B, and later by the diffusion of the constituents through the product phase.  

The first stage of the reaction is the formation of nuclei of the product phase C at the interface 

between A and B . This may be difficult, if a high degree of structural reorganization is necessary 

to form the product. After nucleation of product C has occurred, a product layer is formed. At this 

stage, there are two reaction interfaces: one between A and C, and another between C and B. In 

order of further reaction to occur, counter-diffusion of ions from A and B must occur through the 

existing product layer C to the new reaction interfaces. As the reaction progresses, the product 

layer becomes thicker. This results in increasingly longer diffusion paths and slower reaction rates, 

because the product layer between the reacting particles acts as barrier. In the simple case where 
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the rate of the reaction is controlled by lattice diffusion through a planar layer, the rate law has a 

parabolic form: 

                                                                                                                                   (3.1) 

where x is the amount of the reaction (here equal to the thickness of the growing product layer), t is 

the time, and k is the rate constant.  

 

Fig 3.1 Reaction of two crystals (A and B) sharing one face. After initial formation of a product layer C, ions 

from A and B have to counter-diffuse through the product layer to form new product at the intefaces A/C and 

B/C (adapted from [1]). 

 

Ions are normally regarded as being trapped on their appropriate lattice sites, and it is difficult 

for them to move to adjacent sites. Only at very high temperatures the ions have sufficient energy 

to diffuse through the crystal lattice. As a rule of thumb, two-thirds of the melting temperature of 

one component are sufficient to activate diffusion sufficiently and hence to enable the solid-state 

reaction.  

The formation of the perovskite barium titanate (BaTiO3) by solid-state reaction of BaCO3 and 

TiO2 may serve as an example to illustrate this point, but also to show that such considerations are 

sometimes oversimplifying the facts. BaTiO3 is an important material for the fabrication of 

thermistors, capacitors and otpoelectronic devices. BaO (formed by decomposition of BaCO3) has 

the rock salt structure (cubic close packing of the oxide ions, Ba2+ ions in octahedral sites), while 

TiO2 (rutile structure) has a hexagonal close packing of the oxide ions and Ti4+ ions in half of the 

octahedral sites. The formation of BaTiO3 takes place in at least three stages: 

BA

A C B

Counter-diffusion of the ions of A and B

Product layer

Original interface
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1. First BaO reacts with the outer surface regions of TiO2 grains to form nuclei and a 

surface layer. This require reorganization of the oxide lattice at the TiO2/BaTiO3 

interface. 

2. Further reaction of BaO and the previously formed BaTiO3 leads to the formation of the 

intermediate Ba-rich phase Ba2TiO4. The formation of this phase is necessary for the 

migration of Ba2+ ions.  

3. Ba2+ ions from the Ba-rich phase Ba2TiO4 migrate into the remaining TiO2 to form 

BaTiO3. 

 

From the above discussion it is clear that reaction between two solids may not occur even if 

thermodynamic considerations favor product formation. There are three important factors that 

influence the rate of reaction between solids: 

1. The area of contact between the reacting solids and hence their surface areas. 

2. The rate of nucleation of the product phase. 

3. The rate of diffusion of ions through the various phases, and especially through the 

product phase. 

 

Apart from the problem arising from nucleation and diffusion, the ceramic methods suffer 

from several additional disadvantages: 

ü formation of the undesirable phases; 

ü the homogeneous distribution of dopants is sometimes difficult to achieve; 

ü there are limited possibilities for an in-situ monitoring of the progress of the reaction; 

ü in many systems the reaction temperature cannot be raised as high as necessary for 

reasonable reaction rates, because one or more components of the reacting mixture may 

volatilize.  

Additional information about the theoretical aspects of the solid-state reaction are extensively 

dealt in [1-3]. 

The basic steps involved in conventional solid-state route are described as follow: 

i. Accurately weighing of high purity starting materials, fine grain powders, in 

stoichiometric proportion; 

ii. grinding and mixing of the reactants by using an agata mortar with pestle (or ball 

milling) till complete homogeneity in colour and consistency; in some cases it is 

possible to use an inert dispersion medium such as ethanol or acetone; 
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iii. pressing of the powders under a pressure of about 10 tons to form a uniform and 

compact pellet; 

iv. calcination of the pellet at high temperatures in air or inert conditions by using a 

muffle furnace; in several cases the calcination process is repeated twice (or more 

times) with intermediated grinding.  

 

3.1.2 Sol-gel process 

In the last decade research has been focusing more on improving the performances of 

known scintillators rather than developing new materials. It appears that a good way to 

improve scintillators is to get a control of the materials on the nanometric scale. It is indeed 

very important to control the size of the grains in case of powders and to control the dispersion 

of the doping ions in the host. For luminescent materials, this latter requirement is crucial 

since the light emission is usually due to doping ions like rare earths or transition metal ions. 

Quenching concentration is usually found to be higher for sol-gel derived materials because of 

better dispersion of doping ions and thus higher average distance between emitting centers. In 

addition, the high versatility of the sol-gel process allows to reach various compositions and to 

vary the nature and the concentration of the doping ions easily. Materials prepared by sol-gel 

chemistry are also usually obtained at temperatures much lower than those required for 

traditional solid-state chemistry.  

The sol-gel process allows the obtainment of solid products by gelation rather than by 

crystallization or precipitation. The sol-gel process can be described as the creation of an oxide 

network by progressive polycondensation reactions or molecular precursors in a liquid 

medium, or as a process to form materials via sol, gelation of the sol and finally removal of the 

solvent. This method is considered as a "chimie douce" or soft chemical approach to the 

synthesis of metastable (amorphous) oxide materials. 

Before turning to the mechanisms by which solids are eventually formed, the processing 

steps and applications of the final materials, the terms "sol" and "gel" must be defined: 

ü a sol is a stable suspension of colloidal solid particles or polymers in a liquid; 

ü a gel consists of a porous, three-dimensionally continuous solid network surrounding 

and supporting a continuous liquid phase ("wet gel"). In general, the sol particles can 

be connected by covalent bond, van der Waals forces, or hydrogen bonds. Gels can 

also be formed by entanglement of polymer chains. In most sol-gel systems used for 

materials synthesis, gelation (= formation of the gels) is due to the formation of 
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covalent bonds and irreversible. Gel formation can be reversible when other bonds are 

involved in gelation. 

Figure 3.2 presents a scheme of the different processing routes leading from the sol a 

variety of materials: 

· thin layers (films) are applied by spin-coating or dip-coating; 

· by moulding the "sol" we obtain a wet gel that: 

o will form a dense ceramic structure after evaporation and heat treatment; 

o under super critical conditions, it will form a very porous material with an 

extremely low density (aerogel); 

· by adjusting the sol viscosity it is possible to manufacture ceramic fibres; 

· by precipitation, spray pyrolysis or emulsion techniques we will obtain ultra-fine and 

uniform ceramic powders. 

 

Fig. 3.2  Sol gel processing options 

 

In this thesis, the sol gel process has been exploited to obtained some silicate materials, 

i.e. Lu2SiO5 and Y2SiO5. The coordination number of silicon is generally four, although 

coordination expansion can occur in transition states. Compared to the transition metals, 

silicon is less electropositive and therefore it is not very susceptible for a nucleophilic attack. 

This makes silicon compounds quite stable and easy to handle.  
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The sol-gel process involving silicon alkoxide can be described in two steps, the 

hydrolysis of the alkoxide and its polycondensation. For a given alkoxide of general 

formula Si(OR)4, R being an alkyl chain, these reactions can be written as follows: 

Si(OR)4 + H2O → (HO)Si(OR)3 + R─OH                                                          (Hydrolysis) 

(HO)Si(OR)3 + Si(OR)4 → (RO)3Si─O─Si(OR)3 + R─OH                       (Condensation 1) 

(RO)3Si(OR)3 + (HO)Si(OR)3 → (RO)3Si─O─Si(OR)3 + H2O                  (Condensation 2) 

 

Usually, silicon alkoxides are very stable against hydrolysis. Step 1 thus requires 

catalysis  usually performed by using acids or bases. Excellent review can be found in [4]. 

Briefly, base-catalyzed hydrolysis occur through an SN2 mechanism involving a 5-fold 

coordinated silicon atom. On the other hand, acid catalysis proceeds through a limiting 

step corresponding to the protonation of an oxygen atom resulting in an SN1 mechanism. 

Acid catalysis leads to a much quicker hydrolysis than basic catalysis resulting in different 

structures for the gels networks.  

 

3.2 Instrumental setup 

 

3.2.1 Synchrotron VUV spectroscopy measurements (DESY) 

DESY (Deutsches Elektronen Synchrotron) is a renowned synchrotron facility located in 

Hamburg, Germany, which was established on 18 December 1959. The experimental 

measurements presented in this thesis were performed at the HASYLAB (Hamburger 

Synchrotronstrahlungslabor) laboratory at the Superlumi (I) station, using the radiation from the 

DORIS (Doppel-Ring-Speicher) III storage ring. The setup consists of a positron storage ring 

where positrons are accelerated using a series of linear accelerators (linac), bending magnets and 

wigglers. The Superlumi station (Fig. 3.3) is a beamline of choice when it comes to VUV 

luminescence with very good spectral resolution in the excitation mode (~0.02 nm) and a very good 

timing resolution of the emission decay measurements (320 ps). The description of the entire setup 

can be found in the paper by Zimmerer [5]. The accessible spectral range, depending on the 

monochromator-detector combination, is 115-750 nm for emission and 50-335 nm for excitation 

spectra. Using a liquid-nitrogen-cooled CCD camera one can extend the range of the emission 
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measured to about 1050 nm. Reflectance spectra can also be measured at Superlumi station. 

Reflectance spectra can also be measured at Superlumi Station. 

 

 

Fig. 3.3 Schematic representation of the Superlumi beamline at DESY synchrotron in Hamburg. The 

excitation beam from the DORIS storage ring passes through a high resolution primary monochromator. 

Different emission monochromators and detectors are shown.  

 

The excitation source is pulsed and the typical number of bunches (or the number of positron 

packages traveling in the ring at the same time) selected in our experiments was 2 or 5 or 10, 

depending on the setting; the time interval between the incoming bunches is 480 ns, or 192 ns, or  

96 ns, respectively. These latter time values also correspond to the maximum timescale for the 

decay measurements in the three possible bunches modes used. Such time intervals are a result of 

the positron travelling with a speed very close to the speed of the light (3·105 Km/s) in a storage 

ring of circumference of 289.2 m; this means that a single bunch of positrons takes 0.964 µs to 

travel around the ring one time. The maximum initial current in the ring is about 150 mA. The 

current translates to the intensity of the incident beam of the synchrotron radiation and decrease 

linearly in the time with the intensity.  

The luminescence spectra can be measured in two distinct time windows ,TWs, fast and slow, 

making it possible to discriminate between fast and slow emissions. In case of the 2 bunches mode 

the times windows are set to select the signal within 4-35 (fast TW) and 248-415 ns (slow TW) 

relative to the beginning of SR pulse. At 5 bunches mode fast and slow TWs are set at 2-13 ns and 
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120-170 ns, respectively, whilst in case of 10 bunches mode the time windows are restricted to 2-

11 ns and 50-61 ns, respectively. 

Luminescence decay curves are recorded using time correlated photon counting with a time 

resolution of about 300 ps with a pulse length of about 130 ps. Time to Amplitude Conversion 

(TAC) is used for signal detection. TAC relies on ramping up a voltage linear in time after a 

trigger, simultaneously with the excitation pulse (the start pulse). When the detector measures a 

photon, a stop pulse is generated and the ramping of the voltage stops. The voltage is now a 

measure of the time elapsed between the excitation pulse and the emission of a photon. By 

measuring the voltage for many pulses and plotting the frequency for a voltage interval versus the 

voltage, a decay curve is obtained.  

The measurements were performed in the ultra-high-vacuum (UHV) chamber (~10-9 mbar) in the 

temperature range of 8-300 K. The excitation spectra were corrected for the wavelength-dependent 

variation of the SR intensity using the sodium salicylate (NaSal) signal. A background signal 

corresponding to the dark count of the MCP detector was subtracted from the original spectra and 

decay curves.  

 

 

3.2.2 X-ray powder diffraction (XRPD) 

X-ray powder diffraction is a powerful technique primarily used for phase identification of a 

crystalline material and can provide information on unit cell dimensions. The analyzed material is 

finely ground, homogenized, and average bulk composition is determined.  

X-ray powder diffraction is based on constructive interference of monochromatic X-rays and 

the electrons of the atoms of a polycrystalline compound. These X-rays are generated by a cathode 

ray tube, filtered to produce monochromatic radiation, collimated and directed toward the sample. 

The interaction of the incident rays with the sample produces constructive interference (and a 

diffracted ray) when conditions satisfy Bragg's Law:  

nλ = 2d sin θ                                                                                                                                   (3.2) 

where n is an integer, λ is the wavelength of incident wave, d is the spacing between the planes in 

the atomic lattice, and θ is the angle between the incident ray and the scattering planes. 

This law relates the wavelength of electromagnetic radiation to the diffraction angle and the 

lattice spacing in a crystalline sample. These diffracted X-rays are then detected, processed and 

counted. By scanning the sample through a range of 2θ angles, all possible diffraction directions of 
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the lattice should be attained due to the random orientation of the powdered material. Conversion 

of the diffraction peaks to d-spacings allows identification of the compound because each material 

has a set of unique d-spacings. Typically, this is achieved by comparison of d-spacings with 

standard reference patterns.  

Because the positions of the peaks in a powder pattern are determined by the size, shape, and 

symmetry of the unit cell and the peak intensities are determined by the arrangement of atoms 

within the cell, the powder pattern is a characteristic “fingerprint” of a phase. In a mixture of 

phases, the diffraction patterns overlap (but do not otherwise interfere), so it is possible to identify 

the components of a mixture. In practice, the experimental powder pattern is searched against the 

Powder Diffraction File, a database containing the patterns of > 700000 pure compounds, produced 

by the International Centre for Diffraction Data (www.icdd.com). 

As the concentration of a phase in a mixture varies, the intensities of all of the peaks from this 

phase vary in concert (ideally). Thus, the concentrations of phases in a mixture can be determined 

by measuring the intensities of peaks in the powder pattern by the Rietveld refinement. In a 

Rietveld refinement, we use the crystal structures of all of the phases and diffraction physics to do a 

least-squares modeling of the full diffraction pattern. Among the refined parameters are scale 

factors for each phase, from which the quantitative analysis is derived. The Rietveld method 

corrects for and/or models many of the systematic errors that can plague a powder pattern, and thus 

can yield more accurate and more precise results than traditional methods. With normal care, 

accuracy and precision of about ±2 wt% can be achieved, and with additional effort, accuracy and 

precision as good as ±0.1 wt% can be attained. When an internal standard is added to the sample, 

the concentration of amorphous material can also be quantified. 

The widths and shapes of the peaks in a powder pattern are determined by many factors, 

including contributions both from the diffractometer and the specimen. Once the instrumental 

factors are understood by measuring a sample having no size or strain broadening, the crystallite 

size and microstrain can be determined from the experimental peak widths.  

As the crystallites (coherently scattering domains, not necessarily the same size as the particles) 

get smaller, the diffraction peaks get broader. Using the know diffraction physics, we can work 

backward, and compute the average crystallite size from the observed peak widths. An “infinite” 

crystallite is ~2000 Å in diameter, and by the time the crystallites get as small as 30-50 Å the peaks 

are hard to see. So, for nanocrystalline and microcrystalline materials, accurate crystallite sizes can 

be obtained using X-ray diffraction. A common application is studying the sintering of metals in 
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supported catalysts. For simple materials, even crystallite size distributions can be derived by 

analyzing the details of the peak shapes.  

Microstrain broadening is the result of small changes in local lattice parameters resulting from 

defects, imperfections, and variations in the crystal structure. Solid solutions often exhibit 

microstrain broadening. The absolute value of mictostrain broadening may be hard to interpret, but 

changes in such broadening are often important practically. The dependence of mictrostrain 

broadening with diffraction angle is different than that of size broadening, so the two effects can be 

separated, if a large enough range of diffraction angle is observed.  

The X-ray powder pattern of a compound provides a convenient and characteristic fingerprint 

which can be used in qualitative analysis. Precise values of the d-spacing (which are properties of 

the materials itself, independent of the X-ray wavelength) and of estimated line intensities can be 

compared with those listed in the International Centre for Diffraction Data (ICDD), which contains 

thousands of X-ray powder patterns. Besides the routine identification of the phases, by X-ray 

powder diffractometer it is possible to determine their proportions by comparing the intensities of 

characteristic lines from each phase. Another important application concern the precise 

determination of the lattice parameters which contribute towards the overall characterization of a 

compound and the size of the particles 

X-ray diffraction patterns of the compounds dealt in this thesis were measured with a Thermo 

ARL X′TRA powder diffractometer, operating in the Bragg-Brentano geometry and equipped with 

a Cu-anode X-ray source (Kα, λ = 1.5418 Å) with a Peltier Si(Li) cooled solid state detector (Fig. 

3.4). The XRD patterns were collected with a scan rate of 0.4°/s and an exposure time of 0.72 s in 

the 5-90° 2θ range. The phase identification was performed with the PDF-4+ 2011 database 

supplied by the International Centre for Diffraction Data (ICDD). Polycrystalline samples were 

ground in a mortar and then put in a low background sample holder for the data collection. 

 

 

 

Fig. 3.4   X-ray powders diffractometer used for the characterization of the compounds of this thesis. 
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Chapter 4   
 

 

Results and Discussion 

 

 
In the last decade there has been a considerable interest in the investigation of the 5d-4f 

interconfigurational optical transitions of rare earth (RE) ions in numerous wide band-gap materials 

due to their potential applications in important technological fields such as scintillating detectors, 

converting ionizing radiation (X- and γ-rays) to UV and visible light. There is a variety of radiation 

detector applications that desire scintillators with high light output, good attenuation power and a 

low level of afterglow, but absolutely require a fast scintillation decay time [1]. This is particularly 

true for a medical diagnostic imaging technique such as Positron Emission Tomography (PET) 

where a very high timing resolution is required to suppress random coincidences of incoming γ-

rays allowing for high tomographic image quality.  

Many of the presently used scintillators are based on materials doped with Ce3+ ion which 

exhibits efficient and relatively fast 5d-4f electric-dipole parity-allowed emission transitions 

located in the UV and visible spectral regions. The highest figure-of-merit modern Ce3+ based 

scintillators have decay times of 30-70 ns [2]. Recently, parity-allowed 5d-4f emission of Pr3+ ion 

has become of interest due to shorter lifetime that allows development of scintillators with faster 

time response [3, 4]. The Pr3+ 5d-4f emission is shifted by about 1.5 eV towards higher energy with 

respect to the Ce3+ emission in the same host [5]. Appearance of Pr3+ 5d-4f emission is subject to 

sufficiently strong crystal field which shifts the lowest 5d1 state of Pr3+ below the 1S0 state of the 

ground 4f2 electronic configuration (situated around 210-215 nm).  

Our search for novel materials showing fast 5d-4f emission of RE3+ ion has led us to the 

synthesis, characterization and spectroscopic study of new RE3+-activated wide band-gap host 

lattices including the double phosphates Ca9Lu(PO4)7:Ce3+, Ca9Lu(PO4)7:Pr3+, K3Lu(PO4)7:Pr3+, 

KLuP2O7:Pr3+ as bulk powders, the oxyorthosilicates X1-Y2SiO5:Pr3+ and X2-Lu2SiO5:Pr3+ as 

nano-powders and X2- Y2SiO5:Pr3+ as ultrafine powder and the fluoride BaMgF4:Nd3+ as single 

crystal. 
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4.1  Ca9Lu(PO4)7:Ce
3+

 and Ca9Lu(PO4)7:Pr
3+ 

 

 

4.1.1 Introduction 

Ca9Lu(PO4)7 (CLuP) compound is characterized by a high effective atomic number (~60.6) that 

is similar to one for Lu3Al5O12 and potentially advantageous for gamma-scintillators. This host, 

belonging to the whitlockite family, has the rhombohedral crystal structure (space group R3c, No. 

161) with a=10.434 Å and c=37.34 Å, and is isotypic with tricalciumbis phosphate (TCP) b-

Ca3(PO4)2 with a substitution scheme (3Ca2+)®(2Lu3++1!) [6]. More detailed crystal structure 

analysis shows that, in principle, there are five possible cation sites (denoted as M1-M5 [7]) for the 

lanthanide dopants in the host due to the similarity between the ionic sizes of the Ca2+, Ce3+ and 

Pr3+ ions [8]. In Ca9Lu(PO4)7, as Bessière et al. recently reported [9], the Lu3+ ion shows a 

preferential occupation of the octahedral M5 site (C3 symmetry) (almost 52% of occupation 

reported as a percentage of total Lu3+ content). This ion occupies also the C1-symmetric M1, M2 and 

M3 sites (38%, 13% and 5% of occupation respectively) but not the octahedral C3 symmetric one 

(M4) . In addition, the Pr3+ ion in Ca9Pr(PO4)7 is found to occupy only the three bigger crystal sites 

with C1 point symmetry (M1, M2 and M3). In this case, M3 is the dominant site with an occupation 

of almost 60% for Pr3+ [9]. Finally, in the light of this evidence, we believe that the Pr3+ dopant ion 

in Ca9Lu(PO4)7 matrix should go only into M1-M3 sites. Reasonably, the occupation ratio of Pr3+ 

and Ce3+ for M1, M2 and M3 sites in Ca9Lu(PO4)7 can be speculated to be the same occupation ratio 

of these ions in Ca9Pr(PO4)7 and Ca9Ce(PO4)7, respectively. These values can be approximately 

read from the distribution diagram of lanthanide ions in all the possible doped sites (see Fig. 4 of 

Ref. [10]), and thus are 0.04: 0.18: 0.78 and 0.12: 0.25: 0.63, for Ce3+ and Pr3+ respectively.  

CLuP is expected to be suitably transparent in the UV region, as shown by several double 

phosphates constituted of lanthanide ions (Eg = 7.3-9.5 eV) [11]. Moreover, it has been 

demonstrated that this phosphate host is characterized by high chemical and thermal stabilities [12] 

allowing for its long-time resistance in technological uses.  

To the best of our knowledge a very little effort has been made so far on the synthesis and 

spectroscopic investigation of doped CLuP, although some other neat and doped complex 

phosphates have been thoroughly investigated [11, 13, 14] and some of them have been shown to 

be promising for several technological applications as potentially multifunctional materials, 

particularly phosphors and scintillators. Reports on luminescence properties of CLuP doped with 
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RE ions are limited by a few papers. Particularly, luminescence of Eu3+ doped CLuP was studied in 

[7]. Ce3+, Mn2+ and Eu2+, Mn2+ doubly doped CLuP compounds were studied in [15, 16] and found 

to be promising for application as red and white phosphors, respectively. At the same time, doped 

CLuP has never been studied in the context of potential scintillator applications. To fill in this gap 

we found it encouraging to perform a time-resolved spectroscopic study of Ce3+ and Pr3+ doped 

CLuP and investigate the efficiency and dynamics of 5d-4f emission as well as host-to-impurity 

energy transfer mechanisms occurred upon high-energy (VUV) excitation.  

 

4.1.2 Experimental details 

Polycrystalline samples of CLuP doped with 1 mol% of Ce3+ or 1 mol% of Pr3+, respectively 

(substituting for Lu3+), were synthesized using a solid state reaction at high temperature (1200°C, 

10 h) from CaCO3, (NH4)2HPO4 (all reagent grade), Lu2O3 (Aldrich, 99.99%), Ce(NO3)3·6H2O 

(Aldrich, 99.99%) and Pr6O11 (Aldrich, 99.999%) following the method described elsewhere [7]. 

The materials obtained have been characterized by XRD using a Thermo ARL X′TRA powder 

diffractometer, operating in the Bragg-Brentano geometry and equipped with a Cu-anode X-ray 

source (Kα, λ = 1.5418 Å). Time resolved VUV luminescence spectra have been measured using 

synchrotron radiation at the SUPERLUMI station of HASYLAB (DESY, Germany), described in 

more detail in section 3.2.1. The experimental results presented in this work were obtained in two 

different time periods when the storage ring was operated in different bunch modes that was out of 

our choice. Particularly, the  spectrum presented by curve 3 in figure 2, all spectra shown in figure 

5, decay curve recorded upon excitation at Eexc = 4.28 eV and the decay curve shown in figure 4 

were taken at reduced (2) bunch mode. All other data were recorded at normal (5) bunch mode. A 

full time range available between two sequential SR pulses was about 480 ns and 192 ns for the 

reduced and normal bunch modes, respectively. 

 

4.1.3 Structural characterization 

The structural characterization of the synthesized samples was performed by X-ray powder 

diffraction (XRPD). All the diffraction peaks in the XRD patterns of Pr3+ and Ce3+-doped CLuP 

samples are compatible with ICDD data on CLuP (PDF Card No. 04-001-9672) (Fig. 4.1). 

No other phases are detected, indicating that the samples synthesized are single phases. In 

addition, we observed a small expansion of the cell volume as a consequence of doping with Ce3+ 

or Pr3+. In fact, the cell parameters of the Pr3+ doped sample and the undoped one are 
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a=b=10.442(1) Å, c=37.378(3) Å and a=b=10.434 Å, c=37.34 Å (PDF Card No. 04-001-9672), 

respectively. As a consequence, the cell volume of the doped sample [3529.40(7) Å3] is slightly 

larger than for the undoped one (3520.52 Å3). The same effect was observed in the case of the 

sample doped with Ce3+, which was characterized by the cell parameters a=b=10.448(1) Å, 

c=37.379(3) Å and volume of 3533.56(5) Å3. 

 

 

Fig. 4.1 X-ray powder patterns of the CLuP: 1%Ce3+
, CLuP: 1%Pr3+ and simulated CLuP  

 

 

4.1.4 VUV Luminescence spectroscopy of CLuP:Ce3+ 

The time-integrated emission spectrum of Ce3+ in CLuP obtained at 300 K upon direct VUV 

excitation into the Ce3+ 5d levels at Eexc= 4.96 eV (see below) is presented in figure 4.2, curve 1. 

The intense and broad emission band extending from 2.95 to 4.00 eV and centered at about 3.49 eV 

is assigned to the interconfigurational radiative transitions from the lowest 5d energy level of Ce3+ 

to the states of the ground 4f1 electronic configuration (4f05d1
→4f

1). This observation is in good 

agreement with results presented in [15]. Generally the Ce3+ spectra demonstrate a doublet 

emission band due to the spin-orbit splitting of the ground state into 2F5/2 and 2F7/2 levels. At room 

temperature (RT) the double structure is mostly washed out because of thermal broadening. 

However, in the time-integrated emission spectrum recorded at nearly liquid He temperature 

(figure 4.2, curve 3) the doublet band becomes resolved and exhibits two maxima centered at 3.41 
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eV and 3.64 eV. The separation of about 0.23 eV between these maxima is in agreement with the 

typically observed spin-orbit splitting between 2F5/2 and 2F7/2 states of Ce3+ ions. The RT time-

integrated emission spectrum recorded upon excitation at 8.55 eV that corresponds to transitions 

above the band-gap (figure 4.2, curve 2) shows a profile very similar to that observed upon direct 

intra-centre excitation indicating an existence of energy transfer from host to impurity.  

 

Fig. 4.2 Time-integrated emission spectra of CLuP:Ce3+. Inset shows decay curves recorded monitoring Ce3+ 

emission at 3.54 eV upon intra-center (1, 3) and host excitation (2) at T=300K (1, 2) and T = 8K (3). 

 

With the aim of understanding the 5d energy level structure of Ce3+ in CLuP and the processes 

responsible for the host-to-impurity energy transfer we studied time-resolved UV-VUV excitation 

spectra for Ce3+ 5d-4f emission. When the Ce3+ ion is embedded in a crystalline host, the mean 

energy of the 5d configuration is shifted downwards relative to the free ion value and the 5d levels 

split into at most five different crystal field components.  

Figure 4.3 shows time-integrated and time-resolved excitation spectra of CLuP:Ce3+ recorded at 

300 K monitoring emission at 3.54 eV. The UV part of the time-integrated excitation spectrum is 

characterized by a broad structured band with well pronounced maxima at 3.95, 4.26, 4.68, 5.02 

and 5.59 eV. As it is seen from the time-resolved spectra, the band is dominated by a fast decaying 

emission signal. We assign this structured band to transitions from the ground 4f1 state of the Ce3+ 

ions to the five crystal field levels of 5d state. A weak feature located at about 6.14 eV (labeled 

with an asterisk) dominates in the fast time gated spectrum that suggests its possible intra-center 

origination. It may be tentatively assumed that this feature is connected with population of the 6s 

state of Ce3+.  
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Fig. 4.3. Time-resolved and time-integrated excitation spectra of CLuP:Ce3+ recorded monitoring Ce3+ 5d-4f 

emission at 3.54 eV. 

The VUV part of the CLuP:Ce3+ time-integrated excitation spectrum appears as an intense 

complex structure with low-energy onset at about 7.1 eV. The onset is quite sharp in the range of 

about 7.1 – 7.6 eV and becomes rather moderate at higher energy following by a well pronounced 

maximum at about 8.65 eV. The time-resolved spectra demonstrate a somewhat different behaviour 

around the onset. Particularly, the fast time gated spectrum reveals a faster rise in the range of 7.1 – 

7.3 eV compared to the slow time gated one. At higher energy the signal detected within slow time 

gate dominates and determines the shape of the time-integrated spectrum. An intense maximum in 

the time-integrated spectrum is observed near 8.65 eV. The behaviour shown by the excitation 

spectra suggest that onset at 7.1 eV represents the beginning of fundamental optical absorption of 

the host. The interplay between fast and slow time gated excitation spectra around the fundamental 

absorption edge is quite typical for complex oxides with low symmetry of the oxygen ion and 

results from a multiplet character and lack of uniformity of the valence band [17]. Although it is 

not straightforward to determine the band gap of CLuP from our experimental data, we may 

suppose that transitions to conduction band begin in the energy range of about 7.8 - 8.5 eV that is 

consistent with band gap values of other phosphates such as REPO4 and A3RE(PO4)2-type (RE - 

rare earth, A-alkali metal ions) [11]. Above 9 eV and up to about 15 eV the time-integrated and 

time-resolved spectra generally demonstrate a similar structure and moderate variation of intensity. 

The rise of intensity occurring above 15 eV may be caused by the development of multiplication of 

electronic excitations when each excitation photon creates more than one electron-hole pair [18]. 
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The inset in figure 4.2 displays the decay curves for the Ce3+ emission monitored at 3.54 eV at 

RT upon intra-center and host excitation at 4.28 and 8.55 eV, respectively. The decay curve 

corresponding to intra-center excitation is well fitted with a single-exponential function with 

lifetime τ of about 29 ns. The decay curve recorded upon host excitation shows a significant 

contribution of a slow decay component (probably of micro- or millisecond lifetime) presented as a 

piling-up. Meanwhile, the main decay component of the host excited emission is found to be 

characterized by a lifetime equal to the one obtained for the direct intra-center excitation. The slow 

decay component in the host excited Ce3+ emission shows the existence of delays in energy transfer 

processes which may occur due to retrapping of electronic excitations by defects. No build-up of 

the luminescence at very short time after the SR excitation pulse is observed neither upon intra-

center nor host excitation indicating that the population of the Ce3+ 5d emitting level occurs in less 

than 1 ns and the excited state does not experience any thermally assisted depopulation. It is worth 

noting that the lifetime of the Ce3+ emission measured upon direct 4f-5d excitation remains nearly 

the same when sample is cooled down to 8 K suggesting no thermal quenching for the 5d-4f 

emission within the temperature range 8 – 300 K. 

 

 

4.1.5 VUV Luminescence spectroscopy of CLuP:Pr3+ 

Figure 4.4 shows time-resolved and time-integrated emission spectra of CLuP doped with 1% 

Pr3+ obtained at 300 K upon Pr3+ 4f2
→4f

15d1 excitation at 6.20 eV. The time-integrated mode 

emission spectrum is dominated by a broad band with two prominent maxima at about 4.44 and 

5.06 eV. These emission features are well pronounced in the fast time gated spectrum and are 

identified as the parity-allowed interconfigurational optical transitions from the lowest excited Pr3+ 

4f15d1 state to the 3HJ and 3FJ multiplets of the ground 4f2 electronic configuration (4f15d1
→4f

2). 

The weak broad band centered around 2.82 eV and dominating within the slow time gated 

spectrum is probably due to a defect related emission. Additionally, a very weak emission peak at 

2.04 eV present in the slow time gated spectrum is assigned to intraconfigurational Pr3+ 4f2
→4f

2 

transition from the 1D2 level to the ground state 3H6. It is interesting to point out an absence of 3P0 

emission that is likely to be quenched by multiphonon relaxation (MPR) to 1D2 multiplet, as 

observed in the case of the phosphates LaPO4 and LiLaP4O12 at similar dopant concentrations [19, 

20]. The MPR process can be very efficient because of the high phonon frequency of the host 

lattice; the typical maximum phonon frequency of the P-O stretching vibration of the PO4
3─ 

molecular group is in the range of 1200-1400 cm-1 [21].  
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Fig. 4.4 Time-integrated and time-resolved emission spectra of CLuP:Pr3+ recorded at T = 300K upon 

excitation at 6.20 eV. Inset shows decay curves recorded monitoring Pr3+ emission at 4.96 eV. 

Increasing the excitation energy to 8.27 eV, that corresponds to the intrinsic absorption of the 

host lattice, leads to significant transformation of the emission spectra (figure 4.5) due to the 

appearance of a broad emission band centered at 3.86 eV. The band clearly dominates in the slow 

TW spectrum and demostrates a little departure from Gaussian shape at its low-energy side that 

may be due to contribution of the 2.82 eV emission band. The band is tentatively assigned to a 

defect emission. We should note that the intra-center and host excited emission spectra revealed no 

obvious difference when recorded at RT and near He liquid temperature (not shown). 

 

 

Fig. 4.5  Time-integrated and time-resolved emission spectra of CLuP:Pr3+ recorded at T = 300K. 
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The decay curve of the of Pr3+ 5d-4f emission monitored at 4.96 eV and excited at 6.25 eV at 

RT is shown in the inset of figure 4.4. The time profile demonstrates a single exponential behaviour 

with approximate lifetime τ ≈ 17 ns that agrees well with Pr
3+ 5d-4f emission lifetime observed in 

other phosphates (17 ns in YPO4 [22], 16-17 ns in Sr3La(PO4)3 and Ba3Lu(PO4)3 [14]). The lifetime 

was found to remain nearly the same when sample is cooled down to 8 K. No build-up was 

observed either at RT or at T=8K. The lifetime of the Pr3+ 5d-4f emission is a factor 1.7 faster than 

observed for Ce3+ that is in line with the higher energy of Pr3+ emission as compared to Ce3+ (see 

above). Theoretically, the radiative lifetime of an excited center is proportional to λem
2 or λem

3 [23] 

that means a factor of 2-3 is to be expected in our case. 

Figure 4.6 shows the RT time-integrated and fast time gated excitation spectra recorded 

monitoring the Pr3+ 5d-4f emission at 4.81 eV and RT time-integrated excitation spectrum recorded 

monitoring the defect related emission at 2.82 eV. Excitation spectrum of Pr3+ 5d-4f emission taken 

within slow time gate did not reveal any remarkable features and appeared to be very weak (not 

shown). A strong structured excitation feature spread from about 5.3 to 7.5 eV and composed of 

few local maxima dominates in the fast time gated spectrum. We assign this feature to 

superposition of excitation bands corresponding to population of 4f15d1 states. As long as a 

maximum corresponding to the lowest energetic 4f-5d transition is not well pronounced we found it 

useful to compare excitation spectra of CLuP:Pr3+ and CLuP:Ce3+ around the energy range of 4f-5d 

transitions. It is well established that the spectral positions of the main 4f-5d excitation bands of 

Pr3+ can be predicted by simply blue shifting of the excitation spectrum observed for Ce3+ by about 

1.51 ± 0.09 eV (12240 ± 750 cm-1) [5]. We found a good correlation to be observed when shift of 

1.57 eV is applied (see confronted Ce3+ and Pr3+ excitation spectra in the inset of figure 4.6). 

Basing on this comparison we assign the low-energy shoulder of this band centered at 5.49 eV to 

the 4f-5d excitation transition occurred from 3H4 ground state to the lowest energetic 5d1 level of 

Pr3+. The higher energetic maxima at 5.80, 6.20, 6.60 and 7.12 eV are likely to represent 5d2, 5d3, 

5d4 and 5d5 crystal field states, respectively.  

The Stokes shift of the Pr3+ emission, calculated as energy difference between the maxima of 

the lowest energy Pr3+ 4f2
→4f

15d1 excitation band and the highest energy Pr3+ 4f15d1
→4f

2 emission 

band is about 0.384 eV (3100 cm-1). According to the model recently proposed by Srivastava et al. 

[24], the Stokes shift of the Pr3+ emission should be lower than ≈ 3200 cm
-1 to give rise to 

domination of radiative 4f15d1
→4f

2 transitions in the relaxation of Pr3+ 4f15d1 excited state over 4f-

4f transitions. A weak feature in time-integrated and fast-time gated excitation spectrum of Pr3+ 5d-

4f emission is observed as a sideband around 7.4 – 9 eV. This is completely different from what is 

observed in excitation spectra of Ce3+ (see figure 4.3) in the same energy range which corresponds 

to beginning of the host fundamental absorption. 
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Fig. 4.6  Excitation spectra of CLuP:Pr3+ recorded at T = 300K monitoring Pr3+ 5d-4f emission at 4.81 eV in 

integrated mode (1) and within fast time gate (2) and excitation spectrum of the defect-related emission at 

2.82 eV in integrated mode (3). The Inset shows confronted excitation spectra of CLuP:Pr3+ and CLuP:Ce3+ 

shifted by 1.57 eV towards higher energy. 

 

Above 9 eV no significant excitation features are observed. The absence of 5d-4f emission upon 

excitation over the bandgap is due to the inefficient energy transfer from intrinsic electronic 

excitations to the 4f15d1 levels of Pr3+ indicating that the host→Pr
3+ energy transfer is far from 

being the only way to release the energy absorbed by host. The time-integrated excitation spectrum 

of the intrinsic defect emission (Eem = 2.82 eV) recorded at 300 K shows a broad complex band in 

the range of 5.07 - 7.5 eV (figure 4.6). A weak structure is also observed in the range of 7.5 – 11 

eV that represents excitation (creation) of defects via host absorption. Increase of emission 

intensity upon excitation above 14 eV cannot be unambiguously interpreted at this stage without 

additional study. It can either occur due to correction procedure performed on a low intensity 

spectrum or could be connected with the manifestation of multiplication of photons [18] that is 

expected to be observed in this energy range. 

The analysis of the experimental data obtained for Ce3+ and Pr3+ doped CLuP suggests the 

existence of a factor limiting the efficiency of the host-to-impurity energy transfer; this factor 

appears to be strongly pronounced for Pr3+ doped sample and negligible for Ce3+ doped one. 

Indeed, excitation and emission spectra obtained for CLuP:Pr3+ demonstrate strong broad features 

related to the defect absorption. At the same time, no defect emission is observed for the 

CLuP:Ce3+. To explain these phenomena we propose the following model.  
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First of all, it should be noted that the energies of the 4f-5d transitions and the absorption of the 

defect states are very close; this results in the development of complex competitive relaxation 

channels for the excited states. Analysis of the emission and excitation spectra of CLuP:Pr3+ 

suggests the existence of multiple structure of the excited states of the defects, which experience 

significant Stokes shift. The absorption of the defects competes with 4f-5d transitions of Pr3+. At 

the same time the emission of the defects may be transferred to Ce3+. By taking into account that 

the defect states actively trap the host electronic excitations we suppose that in case of CLuP:Ce3+, 

the defect excited states relax non-radiatively to some of the Ce3+ 5d states causing an important 

fraction of the energy to be dissipated in the host. At the same time no emission from the defect 

states is observed for CLuP:Ce3+ as they are not the lowest energy ones. The 4f-5d emission of Ce3+ 

demonstrates significant contribution of slow decay component (see inset in figure 4.2) that reflects 

the dynamics of defect-to-Ce3+ ions feeding process. In the case of CLuP:Pr3+, the 4f15d1 states are 

shifted up towards higher energy for about 1.57 eV. In this case the defect excited states are likely 

to relax without transferring the energy to the Pr3+ 4f15d1 states and this process acts as a 

dominating relaxation channel for the host electronic excitations. Finally, as long as the defect 

states appear below 4f15d1 states, the defect emission occurs (see figures 4.5 and 4.6). 

We believe that the nature of defects present in CLuP is at least partially to be attributed to the 

disordered nature of the host. Similar spectroscopic manifestation of the disordered originated 

defects was observed by some of us in [14]. Obviously, the above suggested model may be further 

improved. To this end it may be useful to perform a more detailed temperature-dependent 

spectroscopic study for RE doped and undoped CLuP. Besides, study of thermoluminescence 

effects may be required to get more insight into the nature and energy structure of defects. 

 

 

4.1.6 Conclusions 

Ce3+ and Pr3+-activated CLuP samples have been synthesized by solid-state reaction. The time-

resolved VUV spectroscopic investigation of the luminescence properties of CLuP:Ce3+ and 

CLuP:Pr3+ was performed for the first time applying synchrotron radiation. Particularly, the 5d 

energy levels of Ce3+ and Pr3+ ions, host absorption and host→Ce
3+/Pr3+ energy transfer processes 

were investigated.  

Fast 5d-4f emission has been observed from both samples upon direct intra-centre VUV 

excitation but only in the case of CLuP:Ce3+ sample efficient host-to-impurity energy transfer has 

been revealed. Presumably, as shown by some of us for other double phosphates [14], the 

disordered nature of the host induces the presence of defects which actively trap the host electronic 
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excitations. As long as 5d states of Ce3+ are energetically situated below the defect excited states, 

they experience an efficient non-radiative feeding from defects. In case of Pr3+ doped CLuP, no 

efficient host→Pr
3+ energy transfer is observed due to the fact that the defect emission occurs at 

lower energies than the 4f-5d excitation.  

The decay kinetics of the 5d-4f emission upon VUV intra-centre excitation is characterized by 

a lifetime of 29 ns for Ce3+ and 17 ns for Pr3+. The lifetime has been found to be nearly temperature 

independent within the range 8-300 K for both Ce3+ and Pr3+ doped compounds. Although the Ce3+ 

doped CLuP demonstrates intense 5d-4f luminescence upon host excitation its decay dynamics is 

significantly contributed by the slower decaying component of micro- or millisecond lifetime. The 

latter fact is obviously unwanted for the scintillator materials.  

To get more benefits from CLuP as a potential host for scintillator application it may be 

challenging to study double codoped CLuP:Tb3+,Ce3+. Existence of Tb3+ ions may provide an 

additional effective channel for capturing of the host electronic excitation and is expected to 

provide faster energy transfer to Ce3+ ions (Tb3+
→ Ce

3+) in comparison with competitive defect-to-

Ce3+ channel. 
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4.2  K3Lu(PO4)2:Pr
3+ 

 

 

4.2.1 Introduction 

The K3Lu(PO4)2 (KLuP) is characterized by a high effective atomic number of ~44.5, that is 

higher than one for Y3Al5O12 (29.5) or YAlO3 (31.4) widely used as scintillator materials, and 

potentially advantageous for X- and γ-ray detection. This host crystallizes with a trigonal unit cell, 

space group P-3, density 3.9 g/cm3 at RT. In this case, the lutetium ion is six-coordinated by the 

oxygen atoms of the phosphate groups with two non-equivalent sites in the lattice. For this host 

material two phase transition are known to occur at lower temperature [25]. The first transition 

occurs at ~250 K and a monoclinic phase (P21/m space group) is obtained. The Lu ion retains the 

six-fold coordination but it occupies only one crystal site. The second phase transition occurring at 

~140 K leads to a crystal structure with the same monoclinic space group but coordination of the 

Lu ion changes to a 7-fold one. 

The absorption edge of KLuP is expected to be localized at rather high energy as shown by 

several double phosphates constituted of lanthanide ions (Eg = 7.3-9.5 eV) [11, 25] making this 

compound suitable as efficient host for various optical applications including fast scintillators and 

vacuum ultraviolet phosphors. To the best of our knowledge, the time-resolved spectroscopy and 

excited state dynamics of Pr3+ ion in KLuP upon VUV excitation with synchrotron radiation has 

not been reported in literature so far although the Pr3+ 5d-4f emission in KLuP:Pr3+ powders has 

been demonstrated in a recent paper [24]. It is also worth to mention that some scintillating and 

luminescent properties of Ce3+ in KLuP single crystals as well as in other double phosphate of 

A3Lu(PO4)2-type (A = Li, Rb, Cs) have been thoroughly studied elsewhere [25-27]. Meanwhile 

some RT VUV spectroscopic properties of Pr3+-doped ALuP2O7-type alkali lutetium diphosphates 

(A = Na, K, Rb, Cs), that are other compounds in the same Lu2O3-A2O-P2O5 system, have been 

investigated in [28] to demonstrate an efficient host-to-Pr3+ energy transfer.   

In this contribution the synthetic procedure and structural characterization of KLuP doped with 

Pr3+ ion are described in detail. Time-resolved emission and excitation spectra as well as 

luminescence decay curves at different temperatures measured upon selective excitation with 

synchrotron radiation (SR) in the UV-VUV region are presented and analyzed. The prospective 

applications of this luminescent material are discussed.  



C h a p t e r  4  -  R e s u l t s  a n d  D i s c u s s i o n  
 

 
60 

 

4.2.2 Experimental details  

Polycrystalline sample of KLuP doped with 1 mol% of Pr3+ (substituting for Lu3+) were 

synthesized using a solid state reaction from K2CO3, (NH4)2HPO4 (all reagent grade), Lu2O3 

(Aldrich, 99.99%) and Pr6O11 (Aldrich, 99.999%). Appropriate amounts of the reagents were mixed 

and heat treated in a horizontal furnace in air for 4 hours at 600 °C and 1 hour at 950 °C with 

intermediate regrinding. In between investigations the samples were stored at RT in dark and dry 

conditions. 

X-ray powder diffraction patterns (XRPD) were measured with a Thermo ARL X′TRA powder 

diffractometer, operating in the Bragg-Brentano geometry and equipped with a Cu-anode X-ray 

source (Kα, λ = 1.5418 Å). Preliminary synchrotron X-ray diffraction powder patterns of an 

undoped KLuP sample at RT and 220 K were collected in transmission geometry at the MCX 

beamline located at the multidisciplinary Synchrotron Light Laboratory (ELETTRA) in Trieste 

(Italy).  

Differential scanning calorimetry (DSC) experiments were performed to follow the phase 

behaviour of the sample under investigation using a Q1000, TA Instruments at a heating rate of 

10°C/min. The samples were sealed in aluminum DSC pan for the measurement. 

Time-resolved VUV spectroscopic measurements were carried out using the SUPERLUMI facility 

at HASYLAB of DESY (Hamburg, Germany), described in more detail in section 3.2.1. The time-

resolved spectra were recorded within two time gates (TGs): 2-11 ns (fast time gate) and 50-61 ns 

(slow time gate) relative to the beginning of the SR pulse. The time-integrated spectra were 

recorded counting the emission signal within the whole time period of 96 ns available between SR 

pulses at a 10 bunch mode (BM) of the storage ring.  

 

4.2.3 Structural characterization  

The structural characterization at RT of the synthesized Pr3+ doped sample was performed by 

means of X-ray powder diffraction (XRPD). All the diffraction peaks in the XRPD pattern of Pr3+-

doped KLuP sample are compatible with ICDD data of the trigonal (P-3 space group) KLuP (PDF 

Card No. 01-085-1586) (Fig. 4.7). No other phases are detected indicating that the sample 

synthesized is a single phase. In addition, we observed a small expansion of the cell volume as a 

consequence of substitution of Lu3+ ion (ionic radius 0.861 Å, in six-fold coordination [8]) with the 

larger Pr3+ one (0.99 Å, in six-fold coordination [8]). The cell volume of the Pr3+ doped sample and 

the undoped one are 617.07(1) Å3 and 616.66(1) Å3, respectively. 
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Fig. 4.7  Experimental XRPD pattern of the KLuP:1%Pr3+ powder at 300K (a) and simulated XRPD pattern 

of the trigonal KLuP (b). 

A supplementary structural characterisation has been performed by means of the Rietveld 

refinement on the synchrotron X-ray powder diffraction pattern. The corresponding results will 

form the groundwork of a future paper. For the present work an important issue worthy to be 

mentioned is that, on average, the Lu-O bond lengths in the case of trigonal phase are Lu(1)-O = 

2.16(1) Å and Lu(2)-O = 2.14(1) Å, whereas in the case of the monoclinic phase, stable in the 

temperature range 140-250 K, the average Lu-O bond length for the only available Lu3+ crystal site 

seems to be longer than in the case of the trigonal one. The Rietveld refinement on the powder 

pattern of the low-temperature monoclinic phase is only preliminary.  

The differential scanning calorimetry (DSC) of KLuP:Pr3+ sample is shown in Fig. 4.8.  

 

Fig. 4.8  DSC scan profile of CLuP:Pr3+ powders. Both up- and down-T scan rate are 10 K/min. 
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The DSC scan decreasing the temperature shows distinct exothermic peaks at approximately 

T1 = 238 K and T2 = 134 K associated with the two phase transitions documented in [25]. These 

crystal structural transformations appears to be fully reversible even though the scan increasing the 

temperature evidences a slight hysteresis for both transitions (T1 = 260 K and T2  = 173 K). 

 

 4.2.4 Luminescence spectroscopy and dynamics  

Fig. 4.9 gathers the RT time-resolved and time-integrated emission spectra of KLuP:Pr3+ 

recorded upon direct intra-centre and host excitation respectively. The RT spectra of KLuP:Pr3+ 

obtained upon direct intra-centre excitation at 190 nm (Fig. 4.9-a) are dominated by a broad band 

extending from 225 and 375 nm and centered at about 275 nm. This band is well pronounced in the 

fast TG spectrum and it is assigned to the parity-allowed interconfigurational transitions from the 

lowest excited 5d state to the states of the ground 4f2 electronic configuration of Pr3+ ion 

(4f15d1
→4f

2). The tail observed on the long wavelength side of the emission indicates the presence 

of another emission overlapping with the dominant Pr3+ emission, consistent with the availability of 

two distinct crystallographic sites for Pr3+ in the RT trigonal KLuP phase [25].  

 

Fig. 4.9 Time-integrated and time-resolved emission spectra of KLuP:Pr3+ powders recorded upon selective 

excitation at 190 nm (a) and 90 nm (b) at 300K. 
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Fig. 4.9-b presents the RT time-integrated and time-resolved spectra recorded upon excitation 

at 90 nm; this corresponds to transitions far above the band-gap (Eg). A typical bandgap energy for 

many double phosphates is about 7.3-9.5 eV (170-130 nm) as suggested in [11] by the analysis of 

VUV reflection spectra. The time-integrated spectrum is similar to that observed upon direct intra-

centre excitation showing a broad band extending from 225 and 380 nm, most relevant in the fast 

TG spectrum. A shoulder pronounced at about 325 nm reflects the presence of the two different 

Pr3+ emitting sites which are integrally excited under bandgap excitation. At the same time, the 

nearly twofold increase of the signal intensity detected within slow TG around the features related 

to the Pr3+ 5d-4f transitions indicates the existence of some delayed host-to-impurity energy 

transfer processes. Furthermore, it is worth noting that for both direct and host excitations no 

emission features associated with the 4f-4f transitions from the 3P0 and 1D2 levels are observed. 

This can be explained on the basis of the Stokes shift (see below). 

Fig. 4.10 collects the time-integrated emission spectra of KLuP:Pr3+ recorded at 8, 190 and 

300 K upon intra-centre excitation at 190 nm. Interestingly, the position and the profile of the Pr3+ 

5d-4f emission band become significantly different with increasing temperature from 8 to 300 K, in 

agreement with what was observed for KLuP:Ce3+ single crystals in [25].  

 

Figure 4.10 Time-integrate emission spectra of KLuP:Pr3+ powders recorded upon intra-centre excitation at 

190 nm at 8, 190 and 300K. 

Since in KLuP the dopant ions substitute only for the Lu3+ ions, the above-mentioned changes 
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4f15d1
→4f

2 emission band strongly depends on both the covalence effect and the crystal field 

strength induced by the ligands. As a result of covalent bonding between the 5d and the ligand 

orbitals, the 5d orbitals expand by partial delocalization over the ligands and consequently the 

energy is lowered (nephelauxetic effect). The red shift of the Pr3+ 5d-4f emission band observed 

with increasing temperature from 8 to 300 K is linked to a possible increase of the covalency of the 

Lu–O bonds moving from the monoclinic low temperature phase to the trigonal RT one. This 

hypothesis correlates with preliminary results of our structural study of synchrotron X-ray powder 

diffraction suggesting a decrease of the Lu-O bond length when crystal structure changes from the 

monoclinic to trigonal (see above).  

Fig. 4.11 shows time-integrated and time-resolved excitation spectra of KLuP:Pr3+ recorded 

monitoring emission at 320 nm for RT and at 280 nm for T = 8 K. The UV part of the time-

integrated excitation spectrum recorded at RT (Fig. 4.11-a) is characterized by a broad structured 

band consisting of maxima at about 231, 222 nm and low intensity features spread from about 170 

to 210 nm. As can be seen from the time-resolved spectra, the UV band is dominated by a fast 

decaying emission signal. We assign this structured band to transitions from the ground 4f2 state to 

the various 5d crystal field levels of Pr3+ ion (in the two possible Lu sites of the RT trigonal KLuP 

phase). 

 

Fig. 4.11 Time-integrated and time-resolved excitation spectra monitoring 5d-4f emission of Pr3+ in 

KLuP:Pr3+ powders at T=300K (a) and T=8K (b). 
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On the base of data on 4f-5d transition energy for the Ce3+ ion in KLuP at RT [25] and known 

energy shift of ~12240 cm-1 between 5d states of Ce3+ and Pr3+ [5] the first Pr3+ 4f-5d transition can 

be expected at 235 nm, which is in good agreement with the data presented in Fig. 4. The Stokes 

shift for the RT Pr3+ 5d-4f transitions was estimated after suitable deconvolution of the band 

profiles and resulted to be about 2800 cm-1. This is in agreement with the model for Pr3+ emission 

proposed by Srivastava et al. [24] which suggests that 5d-4f transitions dominate over 4f-4f ones 

when the Stokes shift is lower than ~3200 cm-1 

At near liquid He temperature the excitation spectra (Fig. 4.11-b) demonstrate significant 

change in the spectral range above 160 nm compared to the RT ones reflecting the above-

mentioned crystallographic structural phase transformation of KLuP and nephelauxetic effect. The 

lowest energy 4f-5d excitation maximum is observed at about 225 nm being blue-shifted relative to 

that at RT by about 1100 cm-1. Well pronounced maxima related to higher-energy 4f-5d transitions 

are observed at about 191 and 168 nm. 

Excitation processes related to energy transfer from the host electronic excitations are 

observed in the excitation spectra below ~160 nm and ~157 nm for RT and T = 8 K, respectively. 

This correlates with the bandgap energies reported for similar double phosphates in Ref. [11]. We 

note that the excitation spectra do not demonstrate any sharp rising excitation feature at the 

beginning of fundamental observation that indicate lack of the excitonic energy transfer 

mechanism. At the same time, a gradual rise of excitation spectra towards shorter wavelength 

suggests that host-to-Pr3+ energy transfer is dominated by the recombination mechanism. One of 

the reasons for domination of recombination mechanism may be connected with low energy of 

relaxed excitons that is insufficient for reabsorption by Pr3+ 5d states. We did not observe an 

exciton emission from our Pr3+ doped samples that is probably due to the fact that intrinsic 

electronic excitations are mostly captured by Pr3+ ions. At the same time, we were unable to find 

any published reports on exciton emission in KLuP. Nevertheless, by analogy with energy of self-

trapped exciton emission in other phosphates (~23800 cm-1 in YPO4 [29], ~22600 cm-1 in 

LiY(PO4)3 [30]) we suppose that in case of KLuP it is very probably located at energy much lower 

than that required for 4f-5d absorption of Pr3+ in this material (> 43000 cm-1).  

The temperature dependent decay curves of the Pr3+ 5d-4f emission upon both intra-centre and 

bandgap excitations are presented in Figures 4.12-a and 4.12-b, respectively. Based on the emission 

spectra recorded at different temperatures, we performed the decay measurements at spectral points 

best corresponding to Pr3+ 5d-4f emission in the particular phases: at λem = 320 nm for Pr3+ 

emission in the trigonal RT phase for T = 300 and 240 K, and at λem = 280 nm for Pr3+ emission in 

the monoclinic low temperature phase for T ≤ 190 K. At T = 8 K the intra-centre excited Pr3+ 5d-4f 
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emission demonstrates a nearly single exponential decay curve which can be suitably fitted with a 

lifetime τ = 14.8 ns.  

 

Fig. 4.12 Decay curves recorded monitoring 5d-4f emission of Pr3+ upon intra-centre excitation at 190 nm (a) 

and host excitation at 90 nm (b) at various temperatures. 

 

Interestingly, at higher temperatures the decay curves demonstrate a slight contribution from a 

shorter decay component that is likely due to a partial quenching of the emission by some 

quenching centers. We note that somewhat similar effect was observed in the decay curves 

recorded for KLuP single crystals and for other double phosphate of A3Lu(PO4)2-type (A = Li, Rb, 

Cs) doped with Ce3+ ions [25-27]. In addition, the emission decay profiles become progressively 

longer with temperature increasing, that correlates with the previously observed shift of the Pr3+ 5d-

4f emission band toward longer wavelengths (Fig. 4.10). To qualitatively analyse the effect of the 

temperature on the excited state dynamics of Pr3+ in KLuP we approximated the non-exponential 
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decay profiles as a sum of two exponential functions and quantified the decay processes by using 

an average decay time τavg as suggested in [31]: 

)/()( 2211
2

22
2

11 ttttt AAAAavg ++=                                                                                       (4.1)            

where τ1 and τ2 represent short- and long-lifetimes, respectively, and A1 and A2 the corresponding 

intensity coefficients. The calculated average decay time for the decay curves recorded at 90, 140, 

190, 240 and 300 K are summarized in Table I.  

 

Table I.  Average decay times for Pr3+ 5d-4f luminescence in KLuP at various temperatures upon both intra-

centre (λexc = 190 nm) and band-gap (λexc = 90 nm) excitation. 

T(K) λem (nm) τavg (ns) 

λexc = 190 nm            λexc = 90 nm 

90 280 15.1 15.2 

140 280 15.7 15.6 

190 280 16.0 16.5 

240 320 19.4 19.5 

300 320 20.3 19.9 

 

The lifetime for the 320 nm emission at RT is a factor 1.5 faster than that observed for 280 

nm emission at 8 K. On the basis of a recent analysis carried out by Zych et al. [32]; considering 

that the maximum emission intensity in the RT spectrum is located at λem = 275 nm and that 

revealed in the spectrum at 8 K is located at λem = 256 nm, a factor of 1.2 is to be expected in our 

case. 

The decay curves recorded upon host excitation at various temperatures (Fig. 4.12-b) show a 

significant contribution of a slow decay component (probably with a micro- or millisecond 

lifetime) presented as a piling-up, that could be related to the presence of defects (afterglow). 

Nevertheless, the main decay component is found to be characterized by an average decay time 

very similar to that calculated for the curves recorded upon direct excitation (see Table I). 

Furthermore, it is important to note that the decay curves do not display any significant rise of the 

emission intensity just after the excitation pulse indicating that the excitation energy is very rapidly 

transferred to the emitting centers; this is a crucial requirement to produce a good scintillator 

material for applications such as those based on time-correlated detection of photons.  
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4.2.5 Conclusions  

In summary, KLuP doped with Pr3+ ions has been synthesized by a solid state reaction. The 

time-resolved VUV luminescence spectroscopic properties of the material have been studied using 

synchrotron radiation. Upon both direct intra-centre and band-gap excitation the emission of 

KLuP:Pr3+ is dominated by Pr3+ 5d-4f interconfigurational radiative transitions. The VUV 

excitation spectra clearly demonstrated a high efficiency of the host-to-Pr3+ energy transfer in 

KLuP. Luminescence spectra as well as decay curves displayed significant changes with the 

temperature within the range 8-300 K reflecting the crystal phase transitions of this compound 

documented in [25]. The decay curves of the 5d-4f emission of Pr3+ recorded upon both direct and 

band-gap excitation at 8 K are characterized by decay times of about 15 ns. The increase of the 

lifetimes up to about 20 ns evidenced at  RT correlates with shift of the Pr3+ 5d-4f emission towards 

longer wavelength and is determined by the phase changes followed by increase of the covalency 

in the Pr-O bonds. Finally, the VUV spectroscopic properties of KLuP:Pr3+ along with its high 

effective atomic number revealed good potentialities for application of this material as a fast 

scintillator. To support the latter, additional experimental studies of scintillating properties such as 

energy resolution, light yield and decay time upon excitation with pulsed X- or gamma-ray sources 

are required.  
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4.3  KLuP2O7:Pr
3+ 

 

 

4.3.1 Introduction 

KLuP2O7 host is characterized by a high effective atomic number of ~52.3, similar to that of 

Lu3Al5O12, and potentially advantageous for γ-ray scintillators. Due to the wide band gap and the 

suitability for doping with rare earth activators, the optical properties of several alkali rare-earth 

phosphates belonging to the A2O-RE2O3-P2O5 (A = alkali metal ion, RE = rare earth metal) system 

have been recently investigated under VUV and X-ray radiation to demonstrate the potential as 

scintillating materials [27, 33] Some room temperature luminescence properties of Ce3+ and Pr3+ 

doped KLuP2O7 have been studied in [28, 34]. Particularly, it was shown that Ce3+ doped KLuP2O7 

produces efficient and fast d-f emission upon X-ray excitation with a lifetime of the dominating 

decay component of about 27 ns [34]. The results obtained for Pr3+ doped KLuP2O7 in [28] 

included intra-centre (4f-5d) excited emission spectrum and excitation spectra recorded down to 

about 140 nm. To the best of our knowledge, time-resolved vacuum ultraviolet (VUV) 

spectroscopy and excited state dynamics under excitation with synchrotron radiation (SR) of Pr3+ 

doped KLuP2O7 has not been reported in the literature so far. Moreover, this promising material is 

lacking a low-temperature study that would help to establish the nature of host-to-impurity energy 

transfer.  

In this contribution we present and analyze time-resolved emission and excitation spectra as 

well as luminescence decay curves measured at room and liquid helium temperature upon selective 

excitation with synchrotron radiation (SR) in the UV/VUV region (down to about 61 nm). In 

addition, the prospective applications of this luminescent material are discussed. 

 

4.3.2 Experimental details and structural information 

Powder crystalline materials having stoichiometry KLu0.99Pr0.01P2O7 (i. e. containing 1 mol % 

Pr3+ substituting for Lu3+) were obtained by solid state reaction from high purity KNO3, 

(NH4)2HPO4, Lu2O3 and Pr6O11 (the last two reagents 4N). Appropriate amounts of the reagents 

were mixed and heat treated in a horizontal furnace in air for 1 h at 400 °C and 24 h at 750 °C with 

intermediate regrinding.  
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Powder X-ray diffraction patterns were measured with a Thermo ARL X′TRA powder 

diffractometer, operating in the Bragg-Brentano geometry and equipped with a Cu-anode X-ray 

source (Kα, λ = 1.5418 Å) with a Peltier Si(Li) cooled solid state detector.  

All the diffraction peaks in the powder patterns of Pr3+-doped KLuP2O7 (Fig. 4.13) are 

compatible with ICDD data on KLuP2O7 (PDF Card No. 01-076-7386). No other phases were 

detected, indicating that the synthesized sample is a single phase. This compound crystallizes in a 

monoclinic structure belonging to space group P21/c (n° 14) [34]. 

 

 

Fig. 4.13  Experimental powder pattern of the KLuP2O7:1% Pr3+ powders (a) and simulated pattern of 

KLuP2O7 (PDF card number 01-076-7386) (b). 

 

 The crystalline structure of KLuP2O7
 offers only one site for Lu3+ (or Pr3+) with a 

coordination number of 6 of a C1 point symmetry. In addition, we observed a small expansion of 

the cell volume as a consequence of substitution of Lu3+ ion (ionic radius 0.861 Å, in six-fold 

coordination [8]) by the larger Pr3+ ion (0.99 Å, in six-fold coordination [8]). The cell volume of the 

Pr3+ doped sample and the undoped one are 666.45(1) Å3 and 665.94(1) Å3 (PDF Card No. 01-076-

7386 and [34]), respectively.  

Time-resolved VUV spectroscopic measurements were carried out at the SUPERLUMI 

station of HASYLAB (Hamburg, Germany) described in more detail in section 3.2.1. The time-

resolved spectra were recorded within two time gates (TG): 2-11 ns (fast TG) and 50-71 ns (slow 

TG) relative to the beginning of the SR pulse. The time-integrated spectra were recorded counting 
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the emission signal within the whole time period of 96 ns available between SR pulses at 10 bunch 

mode of the storage ring.  

 

4.3.3 Results and discussion 

Fig. 4.14 shows emission spectra of KLuP2O7:Pr3+ recorded upon SR excitation at T = 300 

K. The time-resolved and time-integrated spectra obtained upon direct intra-center excitation at 210 

nm (5.9 eV) (Fig. 4.14-a) show by a broad band located in the UV spectral region (225-350 nm). 

This band is well pronounced in the fast time gated spectrum, and it is assigned to the parity-

allowed 5d-4f transitions from the lowest excited state of the 4f15d1 configuration to the multiplets 

belonging to the 4f2 ground configuration of Pr3+. No emission features associated with 4f-4f 

transitions from the 3P0 and 1D2 levels which are expected to be located around 490 and 600-650 

nm, respectively, are observed.  

 

 

Fig. 4.14 Time-integrated and time-resolved emission spectra of KLuP2O7:Pr3+ powders recorded upon 

selective excitation at 210 nm (a) and 90 nm (b) at 300 K. 

Fig. 4.14-b presents room temperature time-integrated and time-resolved emission spectra 

recorded upon excitation at 90 nm (13.8 eV) that corresponds to excitation across the band-gap. 
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The latter is located around 7.7 eV (~160 nm) in many phosphates of the type AREP2O7 (RE = Y, 

Lu) [11] and in other complex phosphates does not exceed 9.3 eV (see [14] and references therein). 

The spectra show profiles quite similar to that observed upon direct intra-centre excitation, 

indicating a fast and efficient energy transfer from the host to the impurity.  

Time-integrated and time-resolved excitation spectra recorded for Pr3+ 5d-4f emission 

measured at 300 and 8 K are shown in Figs. 4.15-a and 4.15-b, respectively. The intra-centre Pr3+ 

4f-5d transitions to the crystal field components belonging to the 4f
15d

1 configuration are observed 

as an unresolved band in the UV region between 200 and 250 nm (5 - 6.4 eV) that is in agreement 

with the KLuP2O7:Pr3+ excitation spectrum presented in [28]. The lowest energetic maximum in 

this band that is most pronounced at low temperature is located around 230 nm (5.39 eV). This is 

consistent with the position (231 nm) predicted with the Dorenbos model [5], using the data on the 

energy of 4f-5d transitions for Ce3+ in the same host [28].  

 

 

Fig. 4.15 Time-integrated and time-resolved excitation spectra monitoring 5d-4f emission of Pr3+ in 

KLuP2O7:Pr3+ powders at T = 300 K (a) and T = 8 K (b). 

 

The time-integrated excitation spectrum recorded at T = 8 K shows a relatively broad 

excitation feature centered at 175 nm and most pronounced in the slow time gated spectrum. This 
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weak band can be attributed to the defect absorption. A gradual rise of the excitation spectra 

observed below 159 nm (> 7.8 eV) and 155 nm (> 8 eV) at T = 300 and 8 K, respectively, is likely 

to be connected with a beginning of the fundamental absorption of the host that correlates with the 

bandgap energies reported for similar double phosphates in Ref. [11]. The absence of an excitonic 

peak suggests that the host-to-impurity energy transfer mechanism is dominated by a 

recombination mechanism.  

The decay curves of the Pr3+ 5d-4f emission measured at 8 and 300 K upon both intra-centre 

and band-gap excitations are presented in Fig. 4.16. Upon direct excitation into the 4f15d1 states at 

210 nm (5.9 eV) the decay curves are single exponential with a lifetime of about 20 ns both at 8 

and 300 K (Figs. 4.16-a and 4.16-b) that suggests the absence of any intra-center quenching 

mechanisms up to T = 300 K. 

 

 

Fig. 4.16 Decay curves recorded monitoring 5d-4f emission of Pr3+ at 300 nm upon intra-centre excitation at 

210 nm and host excitation at 90 nm at T = 300 K (a) and T = 8 K (b). 

 

 This value is very close to the radiative lifetime [32] and this fact, together with the absence 

of temperature dependence, indicates clearly that non-radiative quenching processes are not 

operative in the material under investigation. On the other hand, the decay curves obtained upon 

band-gap excitation (Figs. 4.16-a and 4.16-b) demonstrate the existence of an additional faster 

decay component with lifetime τ1 = 4-5 ns whose intensity accounts for about 13-14 % in total 

decay process. The presence of a faster decay component can be tentatively explained as a result of 

surface quenching. The latter comes from the fact that VUV photons with energy exceeding the 

bandgap are absorbed in a very thin (submicron) layer of the sample due to very high host 

absorption. As a result some part of the electronic excitations transfer energy to Pr3+ ions localised 

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

t
2

 
~

 
20

 
ns (87%)

t
 
~

 
20

 
nst

 
~

 
20

 
ns

t
1

 
~

 
5

 
ns (13%)

T = 8
 
K

l
exc

 
=

 
90

 
nm

Time (ns)

In
te

n
s
it
y
 (

a
.u

.) l
exc

 
=

 
210

 
nm

T = 300
 
K a)

l
exc

 
=

 
90

 
nm

l
exc

 
=

 
210

 
nm

t
2

 
~

 
21

 
ns (86%)

t
1

 
~

 
4

 
ns (14%)

Time (ns)

  
b)



C h a p t e r  4  -  R e s u l t s  a n d  D i s c u s s i o n  
 

 
74 

 

in the vicinity of surface related defects which may play a role as quenching centers. We note that a 

somewhat similar effect was observed in the decay curves recorded for KLuP2O7 powders doped 

with Ce3+ upon X-ray excitation [34]. It may thus be concluded that host-to-Pr3+ energy transfer is 

characterized by a very fast dynamics that seems to be independent of excitation energy across the 

range from the beginning of fundamental absorption to the upper limit of the measurement (20.4 

eV). The letter is particularly suggested by the fact that the fast and slow time gated excitation 

spectra closely follow the time-integrated ones in this energy range at both T = 8 and 300 K. In 

addition, it is worth noting that the Pr3+ 5d-4f emission decay curves do not reveal any significant 

rise time within the time resolution capabilities of the setup (better than 1 ns). This indicates that 

excited Pr3+ 4f15d1 states do not experience any thermally assisted population of the emitting level 

that is typically connected with delocalisation of electrons from shallow traps. Overall, the results 

of the study of dynamic and time-resolved VUV spectroscopic properties of KLuP2O7 doped with 

Pr3+ revealed its potentials for fast scintillator applications. Obviously, additional experimental 

studies of scintillation properties such as energy resolution, light yield and decay time upon 

excitation with pulsed X- or γ-ray sources are required to establish the scintillation performance of 

the material.  

 

 

4.3.4 Conclusions 

In summary, KLuP2O7 doped with Pr3+ ions has been synthesized by solid state reaction. The 

time-resolved VUV luminescence spectroscopic properties of the material have been studied using 

synchrotron radiation. Upon both direct intra-center and band-gap VUV excitation the emission of 

KLuP2O7:Pr3+ is dominated by Pr3+ 5d-4f interconfigurational radiative transitions with a lifetime 

of approximately 20 ns. The lifetime is found to be temperature independent within the range 8–

300 K and no build-up of the luminescence at short time scale is observed. The VUV excitation 

spectra clearly demonstrated high efficiency of host-to-Pr3+ energy transfer in KLuP2O7:Pr3+. Due 

to the efficient and fast host-to-impurity energy transfer along with the good chemical stability of 

the matrix, KLuP2O7:Pr3+ may provide a new interesting addition to the arsenal of available dense 

scintillators for detection of γ-rays. 
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4.4  X2-Lu2SiO5:Pr
3+

 nanopowders 

 

 

4.4.1 Introduction 

Since its discovery by Melcher and Schweitzer in 1992 [35], lutetium oxyorthosilicate Lu2SiO5 

(LSO) activated with Ce3+ ions has stimulated a great interest as possible single crystal scintillator 

material due to its mechanical and thermal stabilities, high density (7.4 g/cm3), high light yield 

(~30000 photons/MeV) and short decay time (~40 ns). To the best of our knowledge, 5d-4f 

luminescence of Pr3+ ions in nanocrystalline LSO has not been reported in literature so far, 

although the luminescence spectroscopy of sol-gel prepared LSO powders doped with Ce3+ has 

been documented [36]. Meanwhile, luminescence and scintillation properties of single crystals of 

LSO:Pr3+ as well as Lu2Si2O7:Pr3+ (LPS), that is another compound in the same Lu2O3-SiO2 system, 

have been thoroughly investigated [37-39]. At the same time, we point out that scintillator 

materials in the form of nanocrystalline powders are an emerging field of research as the nano-

scale induces the appearance of new optical properties which, in turn, bring new conceptions for 

application of such materials and open opportunities for improvement of exploitation 

characteristics of the radiation detectors including their sensitivity, spatial and temporal resolutions, 

radiation hardness, etc. [40-42]. For these reasons, nanosized scintillating materials hold good 

promises for future applications in new generations of devices for medical diagnostics, security 

inspection, radiation monitoring, etc.  

Based on these considerations, we found it interesting to synthesize and study the spectroscopic 

properties of nanocrystalline X2-LSO doped with Pr3+. Since the optical properties of 

nanomaterials are strongly dependent on size, morphology, and synthesis conditions, we performed 

a transmission electron microscopy (TEM) study of the product synthesized. To evaluate the 

potential of nanocrystalline X2-LSO:Pr3+ for scintillator and X-ray phosphor applications we 

performed a luminescence spectroscopic investigation of the material upon VUV and X-ray 

excitation. Time-resolved experimental methods were used to investigate the dynamics Pr3+ 5d-4f 

emission of the host-to-impurity energy transfer. 

The material was synthesized by an innovative soft chemistry route, namely the sol-gel process 

[43], which allows producing nanocrystalline LSO:Pr3+ at a low cost with a higher morphology 

control of the particles and a better dispersion of doping ions throughout the host compared to the 

traditional methods. 
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4.4.2 Experimental details 

Nanocrystalline powders of X2-LSO doped with 1 mol% of Pr3+ have been prepared by the 

sol-gel process, slightly modifying the method described in [44]; the resulting amorphous powders 

were heat treated in air at 1100°C for 3 hours. In between investigations the samples were stored at 

RT in dark and dry conditions. 

X-ray diffraction patterns (XRPD) were measured with a Thermo ARL X′TRA powder 

diffractometer, operating in the Bragg-Brentano geometry and equipped with a Cu-anode X-ray 

source (Kα, λ = 1.5418 Å) with a Peltier Si(Li) cooled solid state detector.  

TEM analysis was performed using a Philips CM200 HR-TEM operating at an accelerating 

voltage of 200 kV. The nanocrystalline X2-LSO:Pr3+ powder was dispersed in ethanol and 

sonicated for 10 minutes to ensure a homogeneous dispersion. A small drop was deposited on a 

nickel grid of 200 mesh coated with an amorphous-carbon film and dried in vacuum before being 

put into the TEM chamber. The particle size was determined by measuring the nanoparticles from 

TEM images using “Image J” software. 

The time-resolved VUV spectroscopic measurements were carried out at the SUPERLUMI 

station of HASYLAB (Hamburg, Germany) described in more detail in section 3.2.1. The time-

resolved spectra were recorded within two time gates (TGs): 2-13 ns (fast time gate) and 120-170 

ns (slow time gate) relative to the beginning of the SR pulse. The time-integrated spectra were 

recorded counting emission signal within the whole time period of 192 ns available between SR 

pulses at normal (5) bunch mode (BM) of the storage ring. The decay curves were recorded at 

reduced (2) BM allowing a longer time range.  

X-ray induced luminescence was stimulated using a Tungsten tube (Philips) operated at 35 

kV, 25 mA with a 0.7 mm thick aluminium filter in the beam. The X-ray excited steady-state 

spectra were recorded at room temperature (RT) using an Ocean Optics 4000B spectrometer with 

the light guided to the spectrometer via an optical fibre. 

All the emission spectra presented in the paper were recorded using 420 nm long pass filter 

to eliminate the second-order effects of the UV emission. 

 

4.4.3 Structural characterization 

The structural characterization of the synthesized sample was performed by X-ray powder 

diffraction (XRPD). All the diffraction peaks in the XRPD patterns of Pr3+-doped X2-LSO 

nanopowders are compatible with the monoclinic X2 phase of LSO  [45] (Fig. 4.17), as proved by 
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Rietveld calculations (MAUD program) [46]. No other phases are detected, indicating that the 

sample synthesized is single phase. 

 

 

Fig. 4.17  Experimental XRPD pattern of the X2-LSO: 1%Pr3+ nanocrystalline powders (a) and XRPD 

pattern of X2-LSO simulated from the X-ray single crystal structure reported in [45]). 

 

X2-LSO crystallizes in the monoclinic system with space group C2/c (no. 15). Lutetium ions 

occupy two crystallographic sites of low symmetry (C1) with seven and six oxygen neighbours, 

respectively [45]. It is worth noting that the site with 7-fold coordination is larger than the one with 

6-fold coordination. According to the substitution of 1% of Lu3+ (ionic radius 0.97 Å, in 8-fold 

coordination [8]) with the same amount of the larger Pr3+ ion (1.14 Å, in 8-fold coordination [8]), 

we observed a small expansion of the cell volume. In fact, the lattice parameters of the doped and 

the undoped sample are a=14.239(2) Å, b=6.644(1) Å, c=10.272(1) Å, β=122.137(6)° and 

a=14.2774 Å, b=6.6398 Å, c=10.2465 Å, β=122.224° [45], respectively. As a consequence, the cell 

volume of the doped sample [822.90(1) Å3] is slightly larger than that of the undoped one (821.74 

Å3). Several representative TEM images of X2-LSO:Pr3+ nanoparticles are gathered in Fig. 4.18. 

The nanoparticles are fairly uniform and tend to loosely aggregate. The size of nanoparticles was 

measured over 80 nanoparticles using an oval shape approximation. Results showing the average 

major and minor sizes as well as the size distribution are presented in Fig. 4.19. Average 

dimensions of the nanoparticles are about 35 x 44 nm in the oval shape approximation. An average 

minor-to-major size ratio is about 80% with quite narrow distribution of about 12%. Note, the 

monoclinic structure of X2-LSO can be seen in the high-resolution TEM images.  
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Fig. 4.18  TEM images of X2-LSO: 1%Pr3+ nanoparticles. The white scale bars were added to the images by 

the image processor of Philips CM200 HR-TEM at the time of measurement. The black scale bars were 

added manually for easier reading. 

 

 

Fig. 4.19  Size distribution measured over 80 nanoparticles using an oval shape approximation (vertical 

bars); average major and minor sizes of the nanoparticles and standard deviation (top of the graph, values 

with standard error bars). 
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4.4.4 Luminescence spectroscopy and dynamics 

Fig. 4.20 gathers emission spectra of nanocrystalline X2-LSO:Pr3+ recorded upon SR and X-

ray excitation at T = 300 K.  

 

 

Fig. 4.20 Time-integrated and time-resolved emission spectra of X2-LSO:Pr3+ nanopowders recorded upon 

selective excitation at 240 nm (a) and 170 nm (b) with SR and X-ray excited steady-state emission spectrum. 

All the spectra were recorded at T = 300 K. 
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Time-resolved and time-integrated emission spectra of nanocrystalline LSO:Pr3+ obtained 

upon direct intra-centre excitation at 240 nm (Fig. 4.20-a) are dominated by a broad band located in 

the UV region. The band is well pronounced in the fast TG spectrum and is assigned to the parity-

allowed 5d-4f transitions from the lowest excited 5d state to the multiplets of the 4f2 ground 

configuration of Pr3+. Additionally, very weak emission features around 490 and 600-650 nm 

present in the slow time gated spectrum are assigned to 4f-4f transitions from the 3P0 and 1D2 

levels. Fig. 4.20-b presents RT time-integrated and time-resolved emission spectra recorded upon 

excitation at 170 nm, that corresponds to transitions across the band-gap. The latter (Eg) is located 

at about 6.6 - 6.8 eV (~ 184 nm) as suggested by the analysis of available VUV reflection and 

excitation spectra and band-structure calculations (see [47, 48] and references therein). The spectra 

show spectral profiles quite similar to that observed upon direct intra-centre excitation. No 

additional spectral features nor change of the relative intensity of the Pr3+ emission components 

related to 5d-4f and 4f-4f transitions are observed in the host excited spectra. At the same time, one 

may notice a nearly twofold increase of the intensity of signal detected within slow TG around the 

features related to Pr3+ 5d-4f transitions indicating the existence of some delayed host-to-impurity 

energy transfer processes. Fig, 4.20-c shows the X-ray excited steady-state emission spectrum of 

the X2-LSO:Pr3+ nanopowder. Apart from the different relative intensities of the emission features, 

the spectrum is generally similar to the above discussed SR excited time-integrated emission 

spectra. The different profile of the X-ray and SR excited spectra is due to the different spectral 

sensitivity of the employed emission spectrometers. It is worth noting that the intensity of the 

measured X-ray excited emission signal was well above average for the setup; this is useful for the 

discussion about the efficiency of the energy transfer from host electronic excitations to Pr3+ ions. 

Time-integrated and time-resolved excitation spectra recorded for Pr3+ 5d-4f emission at 300 

K are presented in Fig. 4.21. The time-resolved spectra are scaled by factor 3 for better 

representation. Intra-centre Pr3+ 4f-5d transitions to the lowest energetic 5d1 and 5d2 crystal field 

components are presented in the spectra by a doublet excitation band in the UV region. As can be 

seen from the time-resolved spectra this band is mainly formed by the signal detected within the 

fast TG. The intense onset observed in the time-integrated and the time-resolved spectra near 195 

nm represents the beginning of fundamental optical absorption of the host, particularly creation of 

free excitons [49]. In these conditions the quantum yield of the nanopowder is close to the one 

observed upon direct 4f-5d excitations of Pr3+ ions. Below about 184 nm, where the exciting 

photons create separate electron-hole pairs, the time-integrated and fast TG excitation spectra 

demonstrate a tendency to rise gradually until about 105 nm. This observation suggests the 

presence of quite efficient host-to-impurity energy transfer that is dominated by a recombination 

mechanism. 
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Fig. 4.21 Time-integrated and time-resolved excitation spectra monitoring 5d-4f emission of Pr3+ in X2-

LSO:Pr3+ nanopowders at T = 300 K. 

 

Following the well developed conception of migration losses [50-52] it may be expected to 

observe an opposite behaviour of the spectra, particularly a decrease of quantum yield caused by 

the increase of the mean distance between “genetically” connected (created with the same photon) 

electrons and holes due to increased escape during the thermalization stage. The slow TG spectrum 

demonstrates the development of a delayed energy transfer processes whose contribution (fraction) 

is nearly constant upon excitation across the band gap. The drastic increase of excitation efficiency 

below about 92 nm that corresponds to 2Eg is related to the multiplication of electronic excitations 

when inelastic scattering of primary electronic excitations results in creation of secondary ones [50-

53]. 

The fact that the intensity of the 4f-5d excitation bands is noticeably lower than that for the 

host-related VUV features in the time-integrated spectrum may be connected with the wavelength 

dependent Rayleigh scattering of excitation light on nanoparticles as suggested elsewhere for 

nanophosphors of similar size [54]. This problem, however, requires further experimental and 

theoretical investigation to get insight into the nature of light interaction with assembled 

nanoparticles and their aggregates. 

The decay curves of the Pr3+ 5d-4f emission taken upon both intra-centre and band-gap 

excitations at different temperatures are presented in Fig. 4.22-a and Fig. 4.22-b, respectively. At T 

= 8 K the intra-centre excited Pr3+ 5d-4f emission demonstrates an approximate single exponential 

decay curve which can be satisfactory fitted with a lifetime τ = 20 ns. This is somewhat shorter 

than the lifetime of 25 ns reported for LSO:Pr3+ single crystal [26, 37]. The 8 K decay curve 
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recorded upon band-gap excitation shows the appearance of slower decay components. The band 

gap excited decay curve can be fitted using a double exponential function with τ1 = 20 ns and τ2 = 

88 ns. The τ1 parameter was kept fixed at 20 ns in the fitting and was regarded as an intrinsic 

radiative lifetime (τrad), a fundamental characteristic of an emitting centre which is supposed to be 

independent on excitation energy. The values of other parameters used to fit the 8 K decay curves 

can be found in Fig. 4.22. We note that the 8 K band-gap excited decay curve also demonstrates the 

existence of a much slower decay component (possibly of (micro- or millisecond range) which 

appears as an increased constant level (piling) due to overlay of the emission decay pulses excited 

by continuous sequences of excitation pulses arriving with a high repetition rate (see [26] for 

details). The conditions for the decay measurements with reduced BM available at the DORIS III 

storage ring give rise to a minimization of this effect in comparison to usual timing conditions 

available at the facility. 

At higher temperatures the intra-centre decay curves show a departure from the exponential 

behaviour reflecting the development of a complex quenching processes. In addition, the decay 

curves are characterized by a slight increase of the intensity of the slower (sub-microsecond) decay 

components. A fitting of such decay curves can be quite ambiguous, mainly due to the fact that the 

choice of an adequate fitting function able to match the real physical processes lying behind the 

quenching of emission in nanoparticles is obviously a very challenging task. We suppose that in 

nanocrystalline X2-LSO:Pr3+ the typical quenching of Pr3+ 5d-4f emission observed in LSO:Pr3+ 

single crystals induced by photoionization [37, 55] is accompanied by a quenching due to surface 

defects, as commonly expected for nanophosphors (see [40], [56, 57] and references therein). We 

should note, however, that in some cases the extent of surface related quenching effect may be 

controlled by the preparation method [58]. The appearance of the slower decay components 

observed in higher temperature decay curves even upon intra-centre excitation is probably related 

to retrapping of delocalized 5d electrons by non-parent Pr4+ ions. 

To qualitatively analyze the temperature induced quenching of intra-centre excited 

luminescence we quantified the decay processes by using an average decay time τavg as suggested 

in [59] 

 

òò
¥¥

=
00

)()( dttItdttIavgt ,                                                                                                      (4.2)                   

  

where I(t) represents the luminescence intensity at time t.  

At T = 8 K the average decay time is equal to the lifetime obtained with single exponential 

fitting function (see above). When the temperature increases up to 300 K a substantial shortening 
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down to 11 ns occurs (Fig. 4.22-a). The temperature dependence of the Pr3+ decay time in 

nanocrystalline LSO:Pr3+ is different from that reported for LSO:Pr3+ single crystals [37, 38]. 

Particularly, the onset of temperature quenching observed near 70 K for the nanocrystalline X2-

LSO:Pr3+ occurs at lower temperature than that for LSO:Pr3+ single crystal (~220 K). At the same 

time the slope of the temperature dependence is steeper in case of the crystal. This, however, can be 

related to obvious limitations in the evaluation procedure which integrates effects resulting in both 

the thermal quenching of the Pr3+ 5d-4f emission and slow sub-microsecond processes related to 

retrapping of 5d electrons.  

 

 

Fig. 4.22  Decay curves recorded monitoring Pr3+ 5d-4f emission at 283 nm upon intra-centre excitation at 
240 nm (a), host excitation at 170 nm (b) at different temperatures; temperature dependence of the average 
decay time for intra-centre excited Pr3+ 5d-4f emission with the solid line as a guide for the eye (c). The 8 K 
decay curves in panels (a) and (b) are confronted with the fitting functions I(t) = I0 + A1∙exp(-t/τ1) and I(t) = 
I0 + A1∙exp(-t/τ1) + A2∙exp(-t/τ2), respectively. Rounded-off values of the fitting parameters are shown in the 
panels. The inset in panel (c) shows a zoom-in of IRF compared with the host excited 300 K decay curve. 

 

Some degree of the non-exponential decay is also observed for the band-gap excited decay 

curves of the Pr3+ 5d-4f emission recorded at T = 140 K and T = 300 K. A simple recombination of 

electron-hole pair on an impurity centre is a single-exponential process. Hence, the deviation from 

the exponential behaviour observed in the band-gap excited decay curves is determined by the host-

to-impurity energy transfer and quenching processes. Given the fact that the effective diffusion 

length of the host electronic excitations is comparable with the size of nanoparticles we may 

suppose that this increases the possibility of their transfer to Pr3+ ions localised near the surface of 

the nanoparticles. Such ions, in turn, may experience some degree of non-radiative quenching on 
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defects related to small perturbations on surfaces of the nanoparticles [60]. It is also worth 

mentioning the quite often observed  tendency of impurity ions, and lanthanides in particular, to 

segregate on the surface of nanoparticle phosphors (see [61-63] for reference). This may also give 

rise to quenching of luminescence due to increased number of closely spaced emitting centres. 

As a last remark regarding to dynamics of the host-to-impurity energy transfer in 

nanocrystalline X2-LSO:Pr3+, we note that no significant build-up of the luminescence is observed 

upon band-gap excitation. This is shown by example in the 300 K band-gap excited decay curve 

compared with the instrumental response function (IRF) in Fig. 4.22-c, Inset. Although time the 

sampling interval of the registration system was not especially adjusted to record the build-up stage 

in more details, the data presented suggest that the population of the Pr3+ 5d emitting levels occurs 

in less than 1-2 ns. This is useful for scintillator applications based on time-correlated detection of 

photons. 

The overall results on the time-resolved VUV spectroscopy and X-ray excited emission 

suggest that nanocrystalline X2-LSO:Pr3+ demonstrates quite promising luminescence properties in 

terms of efficiency of host-to-impurity energy transfer that can be favourable for X-ray phosphor 

and scintillator applications. 

 

 

4.4.5 Conclusions 

In summary, nanocrystalline powders of monoclinic X2-LSO:Pr3+ have been successfully 

synthesized using the sol-gel process. The structural characteristics and nanoscale morphology 

have been studied with XRD and TEM. The X2-LSO:Pr3+ nanoparticles have shown to 

characterized by an oval shape with average dimensions of 35x44 nm.  

The investigation of the luminescence properties of the nanocrystalline X2-LSO:Pr3+ powders 

has been based on time-resolved VUV spectroscopy and accompanied by measurement of X-ray 

induced emission. The experimental results revealed efficient and fast transfer of host electronic 

excitations to emitting Pr3+ ions. Some evidence of thermally induced quenching processes has 

been observed and mainly attributed to surface related defects. Finally, nanocrystalline X2-

LSO:Pr3+ belongs to a new class of nanosized optical materials with potential scintillator and X-ray 

phosphor applications. 
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4.5  X1- and X2-Y2SiO5:Pr
3+

 nanopowders 

 

 

4.5.1 Introduction 

Structural studies show that YSO contains isolated SiO4 tetrahedral and non-silicon-bonded 

oxygen. This compound crystallizes in two different monoclinic structures depending on the heat 

treatment temperature: X1 type (synthesized at temperature less than 1190°C), space group P21/c 

[64] and X2 type (synthesized at temperature above 1190°C), space group B2/b [65]. In each of 

these two phases there are two possible Y3+ sites in the YSO matrix, Y1 and Y2. These two sites 

are attributed to the differences in coordination numbers (CN). In X1-YSO, Y1 and Y2 sites are 

coordinated by 9 and 7 oxygen atoms, respectively and in X2-YSO by 7 and 6 oxygen atoms, 

respectively.  

YSO  is characterized by a density of about 4.5 g/cm3 and a effective atomic number of ~39 

[66], which is similar to that of YPO4 (32.5) [66] and YAlO3 (31.4) [66] widely used as scintillator 

materials and particularly interesting for fast γ-ray detection in nuclear medicine. The luminescence 

and scintillation properties together with the polycristalline powder preparation and single crystal 

growth of the Ce3+-doped YSO and LSO or (Lu,Y)2SiO5 structures were the subject of numerous 

studies in the recent years [38, 67-70] because of the efficient and fast 5d-4f luminescence of Ce3+ 

center in these hosts and their possible application in the field of luminescent phosphors and 

scintillators.  This fact has initiated an effort to investigate the Pr3+-doped analogues  in order to 

obtain a potential faster emission which can be used in modern PET scanners. To the best of our 

knowledge, 5d-4f luminescence of Pr3+ ions in nanocrystalline YSO has not been reported in 

literature so far, although the optical and luminescence properties  of Pr3+-doped YSO single crystal 

have been thoroughly investigated from several authors [38, 71, 72]. To evaluate the potential of 

nanocrystalline X2-YSO:Pr3+ for scintillator applications we performed a luminescence 

spectroscopic investigation of the material upon VUV excitation by using synchrotron radiation as 

excitation source. Time-resolved experimental methods were used to investigate the dynamics Pr3+ 

5d-4f emission of the host-to-impurity energy transfer. 
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4.5.2 Experimental details and structural characterization 

In a typical experiment stochiometric amounts of Y(NO3)3·6H2O (Aldrich, 99%) and 

Si(OC2H5)4 (Aldrich 98%) were dissolved in a water/ethanol (v/v = 1/5) solution; 1 mol% of Pr3+ 

ion (ionic radius 1.14 Å, in eight-fold coordination [8]) as Pr(NO3)3·6 H2O (Aldrich, 99.99%) was 

introduced substituting for Y3+ ion (ionic radius 1.015 Å, in eight-fold coordination [8]). The 

solution was stirred at 70°C for 3h to form a precursor complex gel which was dried at 100°C for 

24h. The formation of X1 and X2 phases were confirmed by XRD analysis of the powders 

annealed at 1000°C and 1500°C, respectively (Fig. 4.23 and Fig. 4.24). In between investigations 

the samples were stored at RT in dark and dry conditions. 

X-ray diffraction patterns (XRPD) were measured with a Thermo ARL X′TRA powder 

diffractometer, operating in the Bragg-Brentano geometry and equipped with a Cu-anode X-ray 

source (Kα, λ = 1.5418 Å) with a Peltier Si(Li) cooled solid state detector. All the diffraction peaks 

in the powder patterns of Pr3+-doped X1 and X2-YSO are compatible with ICDD data on YSO 

(PDF Card No. 00-052-1810 and 00-036-1476, respectively). No other phases were detected, 

indicating that the synthesized samples are single phases. The estimated size of the crystallites, 

from the XRD pattern, is 54 nm for X1 phase and >150 nm for X2 phase.  

 

 

Fig. 4.23. X-Ray powders patterns of the synthesized X1-YSO:Pr3+ and simulated X1-YSO 
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Fig. 4.24 X-Ray powders patterns of the synthesized X2-YSO:Pr3+ and simulated X2-YSO 

 

 

The time-resolved VUV spectroscopic measurements were carried out at the SUPERLUMI 

station of HASYLAB (Hamburg, Germany) described in more detail in section 3.2.1. The time-

resolved spectra were recorded within two time gates (TGs): 2-13 ns (fast time gate) and 120-170 

ns (slow time gate) relative to the beginning of the SR pulse. The time-integrated spectra were 

recorded counting emission signal within the whole time period of 192 ns available between SR 

pulses at normal (5) bunch mode (BM) of the storage ring. The decay curves were recorded at 

reduced (2) BM allowing a longer time range.  

 

 

4.5.3 Luminescence spectroscopy and dynamics 

Fig. 4.25 presents RT time-integrated and time-resolved emission spectra of both X1 and X2 

phases recorded upon excitation at 170 nm, that corresponds to transitions across the band-gap. The 

latter (Eg) is located at about 6.7 eV (~ 180 nm) as suggested by the analysis of available VUV 

reflection and excitation spectra [73]. Time-integrated spectra are dominated by a broad band 

located in the UV spectral region and characterized by two prominent maxima located at about 290 

and 339 nm in the X1-YSO:Pr3+ and 277 and 314 nm in the X2-YSO:Pr3+. These emission features, 

which were found to be characterized by a fast decaying emission signal (2-13 ns range), are 

identified as the parity-allowed interconfigurational transitions from the lowest excited 5d1 state to 

the multiplets of the ground 4f2 electronic configuration of Pr3+ ion. The energy shift observed 

between the two emission maxima in X1- and X2-YSO:Pr3+ emission spectra is connected with the 
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different crystal field strength around the Pr3+ dopant ions and due to the different coordination 

number of the two available Y1 and Y2 crystallographic sites in X1-YSO and X2-YSO (see section 

4.5.1). These spectral features which are very similar to that observed upon direct intra-centre 

excitation (not shown) indicate an efficient energy transfer from host-to-impurity. Further 

emissions were observed in the visible spectral region and centred around 500 and 610 nm for both 

the compounds. These latter features, which were attributed to the intraconfigurational Pr3+ 

4f2
→4f

2 transitions from the 1D2 and 3P0 levels to the ground state 3H4, are obviously not influenced 

by the crystal field strength and result localized at around the same wavelengths in X1- and X2-

phase. The broad and weak emission band located around 400 nm in the X1-YSO:Pr3+ time-

integrated spectrum was tentatively assigned to a defect emission.   

 

 

Fig. 4.25.  RT-time-resolved and time-integrated emission spectra of X1-YSO:Pr (a) and X2-YSO:Pr (b) 

upon band-gap excitation at 170 nm. 

 

The time-integrated excitation spectra of Pr3+ 5d-4f emission (Fig. 4.26) in X1- and X2-YSO 

are characterized by a strong doubled band in the UV region, which is assigned to the transitions 

from the ground 4f state 3H4 to the lowest 5d1 and 5d2 crystal field levels of Pr3+, and by a broad 

structured band spread over the VUV range with low-energy onset near 180 nm which represents 

the beginning of fundamental optical absorption of the host. It is worth nothing that the spectra 

show a different location of the lowest 4f-5d2
 transition for the two phases (219 nm in X1-phase 
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and 208 nm in X2-phase) indicating a different splitting of the Pr3+ 5d states. Consequently, the 

energy separation between the 5d1 and 5d2 levels suggests a weaker host-dopant interaction in the 

case of the Pr-doped X1-YSO.  The lowest energetic 5d1 band is located at nearly the same energy 

in the two phases (247 and 246 nm). These values are consistent with the positions (252 and 249 

nm for X1- and X2-YSO:Pr3+, respectively) predicted with the Dorenbos model [5], using the data 

on the energy of 4f-5d transitions for Ce3+ in the same hosts. 

It is important to point out that the contribution of fast time gated signal in the time-integrated 

one remains similar to that observed for direct 4f-5d excitation (not shown). These facts indicate an 

efficient and fast energy transfer of the host electronic excitation to the emitting Pr3+ 5d state and 

suggest good potentials of X1- and X2-YSO:Pr3+ to become promising scintillators as nano- and 

ultafine-powders.  

 

 

Fig. 4.26. RT-time-resolved and time-integrated excitation spectra of X1-YSO:Pr3+ (a) and X2-YSO:Pr3+ (b) 

monitoring Pr3+ 5d-4f emission at 295 nm. 

 

The decay curves of the Pr3+ 5d-4f emission taken upon intra-centre excitation at RT and 8K 

were found to deviate from an exponential behaviour (Fig. 4.27). This is likely to be caused by a 

quenching of emission due to surface defects as obviously expected for nanophosphors  (see [40] 

and references therein). We do not exclude that the complex profile of the decay curves can also be 
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due to the presence of two crystallographic sites for Pr3+ in the two YSO structure. The decay 

curves were thus quantified using an average decay time τavg previously expressed in equation 4.2. 

At T = 8 K the decay kinetics of the Pr3+ 5d-4f emission taken upon direct intra-centre 

excitation is characterized by an average decay time of 14 ns in X1-YSO and 21 ns in X2-YSO. 

This latter value is very similar to the leading Pr3+ 5d-4f emission decay component found by 

Novoselov [74] and Pejchal [38] in X2-YSO single crystals grown by the micro-pulling down 

method (0.25 at.% of Pr3+ in the melt). About the decay kinetics of Pr3+ in X1-YSO single crystals 

no data was found in literature to make a comparison with our results. The lower average decay 

time found for Pr3+ in X1-phase is likely due to the smaller size of the particles that induce a greater 

contribution of the surface defects and then a greater emission quenching compared to that found 

for Pr3+ in the bigger X2-phase particles. When the temperature increases up to 300 K no 

significant changes in average decay time was observed suggesting the absence of any intra-center 

quenching mechanisms up to T = 300 K. This behaviour is in line with that found by Pejchal et al. 

in [38] for bulk crystals where a substantial shortening in decay time was observed just over 350 K 

and induced by photoionization process.  

 

     

Fig. 4.27  Decay curves of 5d-4f emission of Pr3+ in X1- and X2-YSO upon direct excitation at 240 nm at 8K 

(a) and at room temperature (b). 

A slight non-exponential behaviour  was also observed for the band-gap excited decay curves 

of the Pr3+ 5d-4f emission recorded at RT (Fig. 4.28). A simple recombination of electron-hole pair 

on an impurity centre is a single-exponential process. Hence, the deviation from the exponential 

behaviour observed in the band-gap excited decay curves could be determined by the host-to-

impurity energy transfer and quenching processes, as mentioned in case of LSO:Pr3+. The 

calculated average decay times for X1-YSO: Pr3+  (τavg ~ 20 ns)  and X2-YSO:Pr3+ (τavg ~ 33 ns)   

have resulted to be slightly longer than those calculated for the curves obtained upon direct 
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excitation and possibly due to the afterglow. As matter of the fact afterglow has been demonstrated 

to be quite common in several oxyorthosilicates [68, 75] after irradiation with γ- and X-rays or 

deep UV light and it severely limits the effectiveness and energy resolution of the corresponding 

scintillators. Besides, a study of thermoluminescence may be required to get more insight  into the 

energy structure of any trapping centers responsible of the afterglow. Furthermore, it is important 

to note that the decay curves do not display any significant rise of the emission intensity just after 

the excitation pulse indicating that the excitation energy is very rapidly transferred to the emitting 

centers. 

 

 

Fig. 4.28  RT decay curves of 5d-4f emission of Pr3+ in X1- and X2-YSO upon band-gap excitation  

 

4.5.4 Conclusions 

In summary, X1-YSO:Pr3+  as ultrafine powders and X2-YSO:Pr3+ as nanocrystalline powders 

have been successfully synthesized using the sol-gel process. The investigation of the luminescence 

properties of the these materials have been based on time-resolved VUV spectroscopy by using 

synchrotron radiation as excitation source. The experimental results revealed efficient and fast 

transfer of host electronic excitations to emitting Pr3+ ions. The lifetimes (14 ns for X1- and 21 ns 

for X2-phase) are found to be nearly temperature independent within the range 8–300 K and no 

build-up of the luminescence at short time scale is observed. In conclusion, due to the efficient and 

fast host-to-impurity energy transfer along with the good chemical stability of the matrixes, X1- 

and X2-YSO:Pr3+ as nano- and ultrafine-powders, respectively, may provide a new interesting 

addition to the arsenal of available dense scintillators.  
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4.6  BaMgF4:Nd
3+

 single crystal 

 

 

4.6.1 Introduction 

BaMgF4 (BMF), one of the few ferroelectric fluorides reported up to now, is a nonlinear 

crystal which exhibits an extraordinary transparency range extended from the deep UV (~125 nm) 

to the mid-infrared (~13 µm) [76]. This constitutes an exceptional window for the observation of 

optical processes or transitions not possible in other systems, and offers a unique chance to 

fabricate optical devices operating in the UV and mid-IR, where other nonlinear materials cannot 

be used. Regarding its photonic applications, frequency conversion processes in both visible and 

UV spectral region have been recently reported by using different schemes. Namely, a collinear 

second harmonic generation (SHG) as well as conical Cerenkov SHG processes have been recently 

achieved by using 1D and 2D ferroelectric domain structures, respectively. Further, a very efficient 

UV third harmonic generation (THG) at 385 nm has been also demonstrated by means of a c(3) 

process [77].  

In this context, the use of this BMF ferroelectric crystal as a host matrix for optically active 

ions appears as a very interesting subject [78, 79]. In the last years there has been an increasing 

interest in the study of the parity-allowed 5d-4f transitions of various trivalent rare earth ions 

(RE3+) incorporated in wide band-gap host lattices for potential applications in the field of 

scintillators, UV and VUV phosphors and lasers [80-82]. The VUV-UV broad band emission 

resulting from the interconfigurational 5d-4f transitions of appropriately chosen RE3+ ions, 

combined with the use of the compact pumping sources, may provide the possibility to realize 

coherent and tunable VUV-UV radiation sources. Among these dopant ions, Nd3+ ion seems a 

particularly promising candidate in the development of potential self-frequency converted all solid-

state lasers operating in the UV and VUV and mid-IR spectral region. The potential use of Nd3+-

doped BMF single crystals for self-frequency-doubling lasers has already been documented in a 

recent paper [83] where the spectroscopy properties of this material have been thoroughly 

investigated under excitation in the near IR region. However, to the best of our knowledge the 

spectroscopic characteristics of the interconfigurational 5d-4f transitions of Nd3+ ion in BMF have 

not been reported in literature so far, although the Nd3+ laser action in VUV-UV spectral region 

based on the 5d-4f transitions has already been demonstrated in other similar fluoride single 

crystals such as LaF3 and LiYF4 [84, 85]. In this contribution we investigate the 5d-4f transitions of 

Nd3+ ions in BMF crystals upon selective excitation with synchrotron radiation in the VUV-UV 
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region in order to understand the basic spectroscopic and dynamical properties of the highly excited 

Nd3+ dopant states, therefore exploring the possibility of obtaining tunable VUV-UV solid state 

optical devices. 

 

4.1.1 Instrumental details and structural information 

Luminescence measurements were carried out at the SUPERLUMI station of HASYLAB 

(Hamburg, Germany) described in more detail in section 3.2.1. The measurements were performed 

at the reduced (two) bunch mode of the storage ring that allowed better time separation for time-

resolved spectroscopic measurements that was performed employing time-correlated single photon 

counting (TCSPC) technique. The time-resolved spectra were recorded within two time windows 

(TWs): 3-35 ns (fast TW) and 248-430 ns (slow TW) relative to the beginning of the SR pulse. The 

time-integrated spectra were recorded detecting emission signal within the whole time period of 

480 ns available between SR pulses.  

BMF crystallizes in the orthorhombic system, with space group Cmc21 [86]. The room 

temperature structure is non-centrosymmetric, with 4 molecules per unit cell. The Ba2+ ion has a 

coordination number of  9, while Mg2+ is octahedrally coordinated. The ionic radius of Nd3+ is 

much closer to the one of Ba2+, and therefore the dopant ion was proposed to enter into the Ba2+ 

sites [83]. The charge compensation required by Nd3+ doping could be achieved by cation 

vacancies or by interstitial F- ions [87]. For this research two Nd3+ doped BaMgF4 single crystals 

were grown using the Czochralski technique under CF4 atmosphere [76]. One of the samples 

contained 0.02 mol% of Nd3+ ions relative to Ba2+. Another sample contained 0.02 at% of Nd3+ ions 

and 0.15 mol% of Na+. The latter was used for charge compensation.  

 

 

4.6.3 Results and discussion 

The time-integrated emission spectrum of BMF:Nd3+, recorded in the UV spectral region 

(200-430 nm) at room temperature (RT) upon VUV intra-centre excitation (λ = 164 nm), is 

dominated by a strong double band extending from 210 to 300 nm and a weaker and unresolved 

band centered at about 370 nm (Fig. 4.29). These emission features, which were found to be 

characterized by a fast decaying emission signal, are identified as parity-allowed 

interconfigurational transitions from the lowest 4f25d1 state to the multiplets belonging to the 

ground 4f3 electronic configuration of Nd3+ dopant ions. In particular, the band peaking at 226 nm 

is assigned to the transition to the 4FJ (4f3) states, whilst the one peaking at 257 nm is assigned to 
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the transition to the 4GJ (4f3) states [88]; finally, the weak and unresolved band located at 370 is 

attributed to the transitions to the 4DJ (4f3) states [88].  

 

 

Fig. 4.29  RT time-resolved and time-integrated emission spectra of BMF:Nd3+ crystal upon excitation at 164 

nm. Inset shows the decay curve recorded monitoring Nd3+ emission upon direct excitation at 300 K. 

 

We point out that we were unable to record emission features related to the transition to the 

ground multiplet 4IJ (4f3), which are expected to be located at about 175-185 nm for Nd3+ ion in a 

fluoride host. The reason for this were technical issues during our beamtime. Nevertheless, it is 

reasonable to state that the VUV emission features related to transitions to 4IJ (4f3) terminating 

states are the strongest ones in the 5d-4f emission spectrum of BMF:Nd3+. This was observed in 

many different oxide and fluoride hosts and it is well proven by calculation of oscillator strengths 

for Nd3+ 5d-4f transitions (see [21, 88-90] and references therein).The low temperature spectrum 

did not reveal any noticeable difference compared to the spectrum recorded at RT (Fig. 4.30).  

200 250 300 350 400

4
D

J

4
G

J

 integrated

 fast TG

 slow TG

 Wavelength (nm)

In
te

n
s
it
y
 (

a
rb

. 
u

n
it
s
)

l
exc

= 164 nm

T = 300 K 

4f
2
5d

4
F

J

 

6 5,5 5 4,5 4 3,5 3 2,5

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

In
te

n
si

ty
 (

a
rb

.u
n
its

)

Time (ns)

t ~ 14 ns

l
exc

 = 164 nm

l
em

 = 259 nm

T = 300 K

 

  

 Photon Energy, eV



C h a p t e r  4  -  R e s u l t s  a n d  D i s c u s s i o n  
 

 
95 

 

 

Fig. 4.30 Time-resolved and time-integrated emission spectra of BMF:Nd3+ crystal upon excitation at 164 nm 

at 8 K. Inset shows the decay curve recorded monitoring Nd3+ emission upon direct excitation at 8 K. 

 

Fig. 4.31 shows the time-integrated and time-resolved excitation spectra recorded monitoring 

Nd3+ 5d-4f emission at RT. The time-integrated spectrum is characterized by a strong structured 

feature spread in the range 135-175 nm with the lowest energy maximum at 165 nm. The feature is 

predominantly formed by a signal detected in the fast TW and is assigned to the transitions from 

the ground state 4I9/2 to the levels belonging to the 4f25d1 configuration of Nd3+. 

On the basis of experimentally observed spectral position of the first excitation maximum for 

Ce3+ in BMF when substituting the Ba2+ sites (~260 nm, 38460 cm-1) [91, 92], which agrees with 

the theoretical calculation [93] , and the energy difference between the first 4f-5d transition of Nd3+ 

and Ce3+ (22700 cm-1 [5]), we estimate a first 4f-5d excitation maximum to be at about 164 nm 

(61160 cm-1). This is in excellent agreement with our experimental data. On the other hand, the 

spectroscopic data documented in Refs. [91], [92] and [94] allow estimating a Stokes shift for Ce3+ 

5d-4f emission in BMF that is about 4400 cm-1. Assuming that the Stokes shift for the rare earth 

ions having very close ionic radius should be pretty much the same, we can approximately locate 

the first emission maximum related to the ground 4I9/2 (4f3) terminating state as ~176 nm (56760 

cm-1). 
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Fig. 4.31  RT time-resolved and time-integrated excitation spectra of BMF:Nd3+ and Na+ co-doped 

BMF:Nd3+ crystals recorded monitoring Nd3+ 5d-4f emission at 258 nm. 

 

The excitation peak at 125 nm (9.93 eV) is well pronounced in the spectrum recorded within 

slow TW. In fact, excitation of BMF:Nd3+ crystal at about 125 nm or at shorter wavelengths gives 

rise to an emission spectrum which is virtually lacking any features related to Nd3+ 5d-4f transitions 

and it is composed of a nearly symmetrical broad band extending from about 210 to 475 nm and 

centered near 310 nm (Fig. 4.32). This emission band is dominated by a signal detected within slow 

TW. A nature of this emission band as well as the excitation feature at 125 nm is most likely 

connected with intrinsic electronic excitations in BMF.  

To the best of our knowledge BMF lacks a systematic spectroscopic study of the host absorption 

characteristics. However, some publications report transmission and excitation spectra of undoped 

BMF which suggest that the fundamental absorption edge of the host should start at about 9.5 eV 

[76, 92]. As long as BMF represents a BaF2-MgF2 system, it should keep carrying some electronic 

properties of the binary components (although the crystal structure of BMF is different from BaF2 

and MgF2) including a large band gap which is about 11 eV for BaF2 [95] and 12.8 eV for MgF2 

[96]. The optically recorded beginning of fundamental absorption can be connected with excitonic 

absorption. In the case of binary fluorides characterised by a strong exciton-phonon interaction this 

implies an observation of broad (up to 1.5-2 eV) excitonic features in excitation or absorption 

spectra [97]. On this basis, the observed feature in the excitation spectrum at 125 nm (Fig. 4.31) 
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can be connected with excitonic absorption of BMF. In turn, the 310 nm emission band observed 

upon excitation into this feature (Fig. 4.32) can be tentatively assigned to self-trapped exciton 

(STE). This is worth comparing with position of a STE emission band in BaF2 (~307 nm) and 

MgF2 (~387 eV) (see [97] and references therein). Nonetheless, based on our experimental results, 

a defect nature for the 310 nm emission band cannot be ruled out. The unambiguous assignment of 

this emission requires further investigation in undoped BMF crystals being beyond the scope of this 

work.  

 

Fig. 4.32   RT  time-resolved and time-integrated emission spectra of BMF:Nd3+ upon excitation at 125 nm. 

 

Nevertheless, it is clear that energy transfer from the host electronic excitations to Nd3+ 5d states 

is not observed in BMF:Nd3+ crystal. This can be due to the fact that energy of relaxed (self-

trapped) exciton in BMF is too low to excite 4f-5d transitions in Nd3+ that requires energy higher 

than 7.1 eV. The efficiency of recombination energy transfer depends on the absolute location of 

ground state of the dopant ion [98]. Unfortunately, to the best of our knowledge information on 

absolute location of rare earth energy levels in BMF is not available in literature. It is known, 

however, that Nd3+ ground state is located at about 3 eV in CaF2 [99] 2.5 eV in BaF2 [100], 3.5 eV 

in K3YF6 [101] , 2.7 eV in NaLaF4 [102] that allows supposition that the Nd3+ ground state in BMF 

is likely located at quite high energy too. The latter prevents more-or-less effective capture of (self-

trapped) holes from the valence band and makes the recombination energy transfer mechanism 
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hardly possible. Thus, we deal with a system where intrinsic electronic excitations predominantly 

relax via exciton or defects without transferring energy to Nd3+ ions. 

The time profile of the Nd3+ 5d-4f emission at RT, monitored at 257 nm and excited at 164 nm, 

demonstrates a single exponential behaviour with an approximate lifetime of 14 ns (see the inset in 

Fig. 4.29), that agrees well with Nd3+ 5d-4f emission lifetime observed in other single crystal 

fluorides (14 ns in BaY2F8 , [103] 15.3 ns in SrF2, 12.3 ns in BaF2 and 17.7 ns in CaF2 [104]). We 

note that the time profile in Fig. 4.29 is shown just within 200 ns (not in a whole time scale of 480 

ns) for better representation. The lifetime remains nearly the same when the sample is cooled down 

to 8 K (see the inset in Fig. 4.30), suggesting no thermal quenching for the Nd3+ 5d-4f emission 

within the temperature range of 8-300 K. In addition, it is worth noting that the Nd3+ 5d-4f 

emission decay curves do not reveal any significant rise time within the time resolution capabilities 

of the synchrotron setup (better than 1 ns), indicating that excited Nd3+ 4f25d1 states do not 

experience any thermally assisted population of the emitting level.  

Finally, it should be pointed out that no significant influence of codoping with Na+ (added as a 

charge compensator to eliminate defect-distorted NdBa sites) in BMF:Nd3+ was observed neither in 

the emission spectra nor in the decay curves. A small difference was observed in a time-integrated 

excitation spectrum of the Na+ co-doped crystal. The difference, however, is just in a relative 

intensity of the spectral features not in their spectral positions (Fig. 4.31). The different relative 

intensity of the spectral features probably originates from a saturation effect that depends on 

thickness, orientation and surface quality of the crystal. 

 

4.6.4 Conclusions 

In this study we have shown that BaMgF4 is an excellent host for fast and efficient 5d-4f 

luminescence of  Nd3+ ions. The Nd3+ 5d-4f emission has been shown to decay with a lifetime of 14 

ns while experiencing no thermal quenching of the luminescence within the temperature range 8-

300 K. The host-to-impurity energy transfer has been found to be inefficient. Nevertheless, the 

overall spectroscopic and dynamic characteristics recorded for BMF:Nd3+ single crystal in 

combination with its nonlinear optical properties suggest that this system can be a good candidate 

for the development of optical devices active in the VUV-UV regions, including tunable VUV-UV 

solid state lasers.  
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Chapter 5   
 

 

Conclusions 

 
 

The purpose of this thesis work was the development and improvement of new fast  

inorganic scintillator materials for applications in modern medical diagnostic techniques such as 

positron emission tomography. This work has included the synthesis and the research on the 

processes responsible for a fast feeding and radiative relaxation of 5d states of lanthanide ions, 

crystal structure defects and intrinsic electronic excitations (electrons, holes, e-h pairs, excitons) in 

wide-gap crystal materials characterized by different dimensions, electronic structure and electron-

phonon coupling.  

Several materials have been investigated including the double phosphates Ca9Lu(PO4)7:Ce3+/ 

Pr3+, K3Lu(PO4)7:Pr3+
  and KLuP2O7:Pr3+ as bulk powders, the oxyorthosilicates X1-Y2SiO5:Pr3+, 

X2-Y2SiO5:Pr3+ and X2-Lu2SiO5:Pr3+ as nanopowders and the fluoride BaMgF4:Nd3+ as single 

crystal. 

The fast 5d-4f emission of Pr3+ and Ce3+ in Ca9Lu(PO4)7 stable within temperature range 8-

300 K has been observed from both Ce3+ and Pr3+ doped samples upon direct intra-centre VUV 

excitation but only in the case of Ca9Lu(PO4)7:Ce3+ sample efficient host-to-impurity energy 

transfer has been revealed. The analysis of time-resolved emission and excitation spectra has 

suggested the existence of multiple structure of the excited states of the defects, which experience 

significant Stokes shift and at the same time capture a significant fraction of host electronic 

excitations. The low excitation energy of Ce3+ 5d states allows efficient non-radiative energy 

transfer from the excited states of defects. This is not the case for Ca9Lu(PO4)7:Pr3+ where 

absorption of the defects competes with Pr3+ 4f-5d transitions. The results obtained in this work 

clearly showed that defects present in Ca9Lu(PO4)7, which are at least partly attributed to the 

disordered nature of the host, substantially govern the dynamics and efficiency of the energy 

transfer processes. 
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K3Lu(PO4)2 and  KLuP2O7  revealed fast and efficient host-to-Pr3+ energy transfer suggesting 

good potentialities for application of these materials as fast scintillators. In the case of 

K3Lu(PO4)2:Pr3+ luminescence spectra as well as decay curves showed significant changes with the 

temperature within the range 8-300 K reflecting the two crystal phase transitions of this compound. 

The experimental results on nanopowders of sol-gel derived X1-Y2SiO5:Pr3+, X2-

Y2SiO5:Pr3+ and Lu2SiO5:Pr3+  revealed efficient and fast transfer of host electronic excitations to 

emitting Pr3+ ions, short Pr3+ 5d-4f emission decay time and absence of luminescence build-up. In 

the case of X2-Lu2SiO5:Pr3+ some evidences of thermally induced quenching processes have been 

observed and mainly addressed to surface related defects.  

The Nd3+ 5d-4f emission in BaMgF4 single crystal has been shown to decay with a lifetime of 

14 ns while experiencing no thermal quenching of the luminescence within the temperature range 

8-300 K. The host-to-impurity energy transfer has been found to be inefficient. Nevertheless, the 

overall spectroscopic and dynamic characteristics recorded for this material in combination with its 

nonlinear optical properties suggest that this system can be a good candidate for the development 

of optical devices active in the VUV-UV regions, including tunable VUV-UV solid state lasers.  
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