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summary
The WNT signalling pathway is a complex system for transferring information for DNA expression from the 
cell surface receptors to cytoplasm and then to the nucleus. It is based on several proteins that work together as 
agonists and antagonists in order to maintain homeostasys and to promote anabolic processes.
The WNT system acts on all cellular lines involved in bone resorption and formation. WNT pathway can mainly 
be triggered by two different signalling cascades. The first is well known and is the so-called WNT-beta catenin 
system (or the canonical pathway), the second is known as the non canonical WNT pathway.
WNT proteins form a superfamily of secreted glycoproteins. The association with surface receptors, called 
Frizzled, that are members of the G protein-coupled receptors superfamily and co receptors like low-density 
lipoprotein receptor-related proteins 5 and 6 (LRP5/6) complete the WNT system. LRP5/6 show high affinity 
for WNT antagonists that modulate the activity of this pathway: DKK1 and sclerostin (SCL), that play a cru-
cial role in modulating the WNT system. The WNT-pathway and in particular its antagonists SCL and DKK1 
seems to play a key role in the regulation of bone remodeling during treatment with bone active agents such as 
bisphosphonates, but not only. Their effects become relevant especially in the course of long-term treatments.
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n	 INTRODUCTION 

This year is the thirtieth anniversary of 
the published report that announced 

the discovery of what proved to be the first 
mammalian WNT gene involved in mouse 
breast cancers with the evidence of its rule 
as proto-oncogene transcriptionally acti-
vated by viruses in multiple independent 
tumors (1).
Since then it was clear that WNT genes and 
components of WNT signalling pathways 
are implicated in a wide spectrum of impor-
tant biological phenomena, ranging from 
early organ development to cell behaviour 
in several diseases, not only cancers.
The WNT signalling pathway is a com-
plex system for transferring information 
for DNA expression from the cell surface 
receptors to cytoplasm and then to the nu-
cleus.
WNTs are a large family of 19 secreted gly-
coproteins that trigger multiple signalling 
cascades that are essential for embryonic 
development and tissue regeneration (2). 
WNTs represent the driving system of the 

embryo and determine body axes and drive 
organs growing in the right direction (3). In 
addition, WNT signalling orchestrate mor-
phogenesis during embryonic development 
and this signalling pathway is critical for 
the maintenance of adult stem cell com-
partments in the bone, hematopoietic and 
gastrointestinal system. Another important 
task of WNT system is the maintenance of 
self-renewing tissues such as bone marrow, 
gut and skin. 
The WNT pathway is a rather complex sig-
nalling system. On the plasma membrane 
of mammalian cells, any combination of 
19 soluble WNT ligands and 10 WNT re-
ceptors of the Frizzled (FZ) protein family 
and several co-receptors and at least four 
classes of secreted WNT signalling modu-
lators [secreted FZ-related protein family 
(SFRP), Dickkopfs (Dkks), Rspondins and 
WIF] can be present (4). 
Aberrant WNT signalling results in devel-
oping malformation and underlies different 
human pathologies such as colorectal can-
cer, osteoporosis and neurodegenerative 
disorders (3). Proteins involved in the am-

Non
-co

mmerc
ial

 us
e o

nly



review

220 Reumatismo 5/2013

review S. Tamanini, L. Idolazzi, D. Gatti et al.

plification and transduction of WNT sig-
nals are often altered in cancer or lineage 
progenitor cells, leading to abnormal cell 
cycle control and/or altered cell fate deci-
sions. 
Any mutations in several WNT pathway 
components might also contribute to hu-
man skeletal dysplasia (2) (Tab. I).

n	 WNT AND BONE

The molecular links between WNT signal-
ling and bone development and remodelling 
were discovered by observing mutations 
in the WNT coreceptor low-density lipo-

protein receptor-related protein 5 (LRP5). 
These mutations are linked to alterations 
in human bone mass (5-8). The discovery 
that activating and inactivating mutations 
in a WNT co-receptor can lead both to high 
bone mass and low bone mass in human 
beings, demonstrated that WNT signalling 
is a dominant regulator of bone density in 
humans and this point was then confirmed 
also in mouse genetic studies (9). Even 
small changes in the intensity, amplitude 
and duration of WNT signalling are able to 
interfere with skeletal development as well 
as bone remodelling, regeneration and re-
pair during life. In addition, a number of 
polymorphisms in different WNT pathway 

Table I - Human diseases associated with mutations of the WNT signaling components. 
Gene altered function Type of alteration Disease

PORCN Enhancing WNT lipid modification/
processing LOF X linked focal dermal hypoplasia

Wnt3 Enhancing ligands for WNT signaling LOF Tetramelia
Wnt4 Enhancing ligands for WNT signaling LOF Mullerian-duct regression and viriliation
Wnt5b Enhancing ligands for WNT signaling Unknown Type II diabetes
Wnt7a Enhancing ligands for WNT signaling LOF Fuhrmann syndrome
Wnt10a Enhancing ligands for WNT signaling LOF Odonto-onycho-dermal hypoplasia
Wnt10b Enhancing ligands for WNT signaling LOF Obesity
RSPO1 Enhancing WNT agonists LOF XX sex reversal - Hyperkeratosis

RSPO4 Enhancing WNT agonists LOF Autosomal recessive anonychia-
hyponychia congenita

SOST Inhibition of LRP 5/6 antagonists LOF Sclerostosis/Van Buchem disease

Norrin (NDP) Enhancing specific ligands during 
eye development LOF -

LRP5 Enhancing WNT coreceptors

GOF

LOF

Hyperparathyroid tumors
High bone mass
Osteoporosis-pseudoglioma
FEVR eye vascular defects
Early coronary disease and
osteoporosis

LRP6 Enhancing WNT coreceptors LOF Early coronary disease and 
osteoporosis

FZD4 Enhancing WNT receptors LOF Familial exudative vitreoretinopathy

Axin 1 Inhibition of beta-catenin 
degradation LOF Caudal duplication, cancer

Axin 2 Inhibition of beta-catenin 
degradation LOF Tooth agenesis, cancer

APC Inhibition of beta-catenin 
degradation LOF Familial adenomatous polyposis, 

cancer

WTX Inhibition of beta-catenin 
degradation LOF Wilms tumor

Beta-catenin 
(CTNNB1) Enhancing of pro oncogene action GOF Cancer

LOF, loss of function; GOF, gain of function; LRP, low-density lipoprotein receptor; FEVR, familial exudative 
vitreoretinopathy. Modified from MacDonald et al., 2009 (47).
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components have been identified and found 
to be linked to altered bone mineral density 
(10-14). So in the last few years the inter-
est for the WNT signalling pathways has 
been growing for their relevance in skeletal 
development, bone mass maintenance and 
potential therapeutic implications. 
The WNT pathways involve all bone cells: 
osteoblasts, osteocytes and osteoclasts. 
Mesenchymal stem cells (MSC) resident in 
the bone cavity give rise to most marrow 
stromal cell lineages, including chondro-
cytes, osteoblasts, fibroblasts, adipocytes, 
endothelial cells, and myocytes (15). Os-
teoblasts are responsible for bone forma-
tion. Osteocytes are terminally differenti-
ated osteoblasts embedded within the min-
eralized matrix that communicate changes 
in mechanical loading and extracellular en-
vironment to osteoblasts and osteoclasts on 
bone surface and so regulate bone remod-
eling and fracture repair (16). Osteoclasts 
originate from hematopoietic stem cells 
and are responsible for bone resorption 
(17). Several basic studies have suggested 
that WNT signalling enhances bone forma-
tion by regulating osteoblast and osteoclast 
proliferation and differentiation through 
well-characterized steps:
1) WNT signalling is crucial for the dif-

ferentiation of osteoblasts from mes-
enchymal precursors (18), by shifting 
MSC differentiation from chondrocyte 
and adipocyte to osteoblast (19-23);

2) WNT signalling is associated with pro-
liferation, maturation and survival of 
osteoblasts. A subgroup of WNT in-
duces a cascade of intracellular events 
that stabilize beta-catenin, facilitating 
its transport to nucleus where it binds 
Lef1/Tcf transcription factors and alters 
gene expression to promote osteoblast 
expansion, proliferation, function, and 
survival (24);

3) WNT signalling is also implicated in 
the coupling of osteblast and osteoclast 
activity. The enhancing osteoblast dif-
ferentiation ensues in increased syn-
thesis and secretion of osteoprotegerin 
(OPG), a competitive inhibitor of re-
ceptor activator of nuclear factor kap-
pa B (RANKL). It also interferes with 

RANK-RANKL interaction which is 
essential for osteoclast maturation and 
activity. In this way WNT, indirectly, 
can block osteoclast differentiation. 
Thus, WNT signalling may be associat-
ed with both increased bone formation 
and inhibition of osteoclast-mediated 
bone resorption (25).

n	 THE WNT PATHWAYS

WNTs trigger different signalling cas-
cades. We can distinguish two different 
pathways: canonical and non-canonical 
which are depending on the typology of 
WNT, cell surface receptors present on re-
cipient cells and on local concentration of 
WNT antagonists.

The canonical WNT-beta catenin signal-
ling
The best-known pathway is the so-called 
canonical pathway that leads to stabiliza-
tion and nuclear translocation of the beta-
catenin, normally present in the cytoplasm. 
A key component of canonical WNT 
pathway is Axin which negatively regu-
lates WNT signalling by facilitating the 
phosphorylation and degradation of beta-
catenin. In absence of WNTs, beta-catenin 
is quickly sequestered and degraded by 
ubiquitin-mediated proteolysis (2, 24). 
Binding of certain WNTs (e.g. WNT3a) 
with specific cell surface receptors leads 
to inactivation of beta-catenin proteolysis 
also through the degradation of Axin (26). 
This way beta-catenin becomes stable, its 
cytoplasmic levels are increased and it can 
enter in the nucleus where it regulates the 
expression of target genes displacing co-
repressors from transcriptional factors (2). 
The WNT canonical pathway contributes 
to differentiation, proliferation and surviv-
al of osteoblasts (24) and it regulates the 
expression of OPG inhibiting osteoclast-
mediated bone resorption (25).
WNT pathways play a key role in determin-
ing the fate of MSC. In absence of β-catenin 
these cells do not differentiate into mature 
osteocalcin-expressing osteoblasts (19, 20) 
but only into chondrocytes. On the contrary, 
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WNT canonical signalling prevents progen-
itor cells differentiating down the chondro-
cyte lineage and targeting them instead to 
the osteoblast lineage (21, 22). WNT signal-
ling pathways promote osteoblastogenesis 
also by suppressing adipogene sis. Inducers 
of differentiation in one lineage often inhibit 
differentiation along the others. Thus, for 
example, peroxisome proliferator activated 
receptor gamma (PPAR-gamma) is a tran-
scription factor that induces adipogenesis 
and inhibits osteoblastogenesis (27). Both 
canonical and non-canonical WNT path-
ways induce osteoblastogenesis and sup-
press adipogenesis by reducing the expres-
sion of PPAR-gamma (23, 28) (Fig. 1).

The WNT-non-canonical pathways
Sometimes WNTs do not activate the beta-
catenin canonical pathway but they rather 
trigger alternative intracellular events (non 
canonical pathways). Beta-catenin inde-
pendent signalling are mediated by several 
kinases such as mitogen-activated protein, 
protein kinase and calcium/calmodulin-
dependent protein kinase (23). These path-

ways regulate cellular proliferation, differ-
entiation, migration and polarity (2). The 
effects on bone are subjected to intensive 
investigation but it is likely that also non-
canonical WNT signalling supports normal 
bone physiology in adults. In this context 
it should be emphasized that non canoni-
cal WNT ligands and their receptors are 
expressed in adult bone at level compara-
ble to those for canonical WNT signalling 
pathways (23) but its role in supporting os-
teoblastogenesis is still poorly understood. 
A non-canonical WNT ligand (WNT5A) 
strongly suppresses transcription of PPAR-
gamma and has emerged as an MSC fate 
determinant through shifting MSC differ-
entiation from adipocyte to osteoblast (29). 
The timing of this non-canonical WNT ac-
tion seems to be critical in inducing osteo-
blastogenesis over adipogenesis (23).

Tipology of WNT
WNTs are a family of secreted glycopro-
teins. The processing and secretion of all 
WNTs are under the control of seven-pass-
transmembrane protein called WNTless 
(30-32) that is expressed ubiquitously in 
human and rodent cells (33, 34). This in-
dicates that WNTs are important for all 
cell type both during foetal and postnatal 
growth. Cells recognize WNTs through 10 
Frizzled receptors and their co-receptors 
low-density lipoprotein receptor-related 
protein: LRP5 or LRP6 and potentially 
LRP4 (2). The large number of ligands 
and receptors and of their possible com-
binations contributes to widely variable 
cellular responses depending on the mol-
ecules present. Historically, two different 
metabolic pathways (canonical and non 
canonical) were identified based on their 
ability to activate beta catenin. In gen-
eral, WNT1, WNT3a, WNT5a, WNT7a, 
WNT8a and WNT10a are considered ac-
tivators of the canonical pathway, whereas 
WNT5a or WNT11 are best known for 
their ability to trigger non-canonical WNT 
signalling (23, 35). This distinction is not 
so clear since some WNTs may activate 
both pathways depending on the cellular 
contest and the presence of appropriate 
Frizzled receptors (2, 35).

Figure 1 - The WNT pathway and cellular lines involved. It is showed 
how both the canonical and non-canonical pathways play a role in the 
maturation of osteoblasts and how the inhibition of WNT system can 
lead to a different fate for the mesenchymal stem cell.
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n	 WNT-RECEPTORS

Frizzleds
WNTs exert their biological effects by 
binding and then activating cell surface re-
ceptors, called Frizzled, that are members 
of the G protein-coupled receptors super-
family. Like the other G protein-coupled 
receptors also Frizzleds can be considered 
membrane receptors with three basic re-
gions (36):
1) the N-terminal, exofacial domains. 

These participate in binding WNT or 
other antagonists, with and without 
co-receptors like LDL receptor-related 
proteins: LRP5/6. The latter include 
members of the SFRP, of the Dkk fam-
ily ligands and sclerostin (SCL) (36). 
Activation of the canonical pathway is 
initiated when WNT associates with 
FZ and LRP5/6, while the activation 
of non-canonical pathway seems to in-
volve interaction of WNT with FZ but 
in absence of LRP5/6 (37);

2) a transmembrane central core com-
posed of seven, hydrophobic alpha-hel-
ices that span the lipid bilayers;

3) at least three intracellular loops and a 
C-terminal tail that constitute the cyto-
plasmic domains- They are intimately 
involved in signal propagation first to 
heterotrimeric G-proteins and then to 
downstream signalling elements found 
in the cellular cytoplasm (36, 38). 

Low-density lipoprotein receptor-related 
proteins
Low-density lipoprotein receptor-related 
proteins are plasma membrane receptors 
involved in lipid metabolism, transport and 
cellular signalling. The initiation of the 
WNT-beta catenin signalling cascade takes 
place when FZ form a complex together 
with WNT-ligands and with the WNT-core-
ceptors LRP5 or LRP6. These co-receptors 
exhibit a highly conserved domain struc-
ture and consist of a large extracellular do-
main, a small transmembrane region and a 
cytoplasmatic domain (39-41). LRP5 and 
6 show low affinity for WNTs and high af-
finity for soluble antagonists such as SCL 
and Dkk1 (2) which are therefore essential 

for the regulation of WNT activation and 
inhibition.
LRP5 is required for efficient WNT signal-
ling and beta-catenin activation in osteo-
blasts (2). It plays a key role in regulation 
of bone mass either through a direct control 
of osteoblast-lineage cells or indirectly in 
endocrine and paracrine manner, control-
ling bone formation by inhibiting serotonin 
synthesis in the duodenum (42). 
LRP6 share 70% amino acid identity with 
LRP5 and has many similar properties. 
This co-receptor contributes also to opti-
mal parathyroid hormone (PTH) signalling 
in osteoblasts (43). Recently it has been 
shown that LRP6 plays an essential role in 
WNT3a/beta catenin signalling and inhibi-
tion of adipogenic differentiation of stem 
cells actions that cannot be replaced by 
LRP5 (44).
LRP4 is an emerging regulator of bone 
mass. It can antagonize canonical WNT 
pathway in vitro (45) and modulates sever-
al signalling pathways in skeletal and tooth 
development especially in craniofacial or-
ganogenesis (46). 
The loss of function in LRP5 gene is in-
volved in the osteoporosis pseudoganglio-
ma syndrome, a recessive disorder charac-
terized by low bone mass and abnormal eye 
vasculature (5, 47, 48).
Conversely patients with autosomal domi-
nant high bone mass diseases harbor LRP5 
missense (gain-of-function) mutations 
(49), which are clustered in the LRP5 ex-
tracellular domain and render LRP5 resis-
tant to binding and inhibition by the antag-
onist SOST (50, 51) and DKK1 (52).

WNT-antagonists
Secreted WNT antagonists can inhibit 
WNT signalling by binding either WNTs 
or LRP5/6 co-receptors, leading in both 
cases to inhibition of the aggregation of the 
3 components of the WNT pathway.

Secreted frizzled-related proteins
Secreted frizzled-related proteins (SFRPs) 
include 5 members of secreted, cysteine-
rich glycoproteins SFRPs that directly bind 
to WNTs/FZ complex, preventing their 
functional association with FZs on the cell 
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surface (37). SFRP1 is the most extensive-
ly studied and its cysteine rich domain has 
homology with the FZ-WNT receptor (53, 
54). Study on KO animals and cell cultures 
showed that the lack of SFRP1 is associ-
ated with high trabecular bone density sim-
ilar to that seen during treatment with PTH 
(55,56) while its overexpression in mice 
is associated with decreased bone density 
and with the prevention of the anabolic ef-
fect of PTH (57). SFRP1 might be involved 
also in glucocorticoid induced osteoporosis 
since its expression is increased by dexa-
methasone (58). It was also suggested that 
SFRP1 may also bind RANKL and then 
block osteoblast-induced osteoclastogen-
esis (59). This way SFRP1 might inhibits 
both osteoblast and osteoclast activity (58). 

Dickkopfs
The Dickkopfs family comprises four 
members (Dkk1 to Dkk4) and a unique 
Dkk3 related protein named Soggy (37). 
DKK1 is the most studied member of the 
family, it is expressed and active in many 
tissue (60) and regulates bone mass in hu-
man. Dkk1 inhibits WNT-induced stabilisa-
tion of beta catenin by binding to LRP5/6. 
Dkk1 also interacts with another class of 
receptors (Kremen 1 and 2) to form a ter-
nary complex (Kremen-Dkk1-LRP6) that 
blocks WNT-LRP6 signalling by inducing 
endocytosis and removal of WNT recep-
tor from the plasma membrane (61). The 
internalisation of LRP5/6 with Kremen re-
ceptors seems to inhibit the degradation of 
Axin. Then it promotes the degradation of 
beta-catenin in order to inhibit the canoni-
cal WNT pathway (37). The antagonistic 
effect of Dkk1, mediated by LRP5/6, might 
be specific to the WNT beta-catenin path-
way since the activation of non-canonical 
WNT pathway is not affected (62).
Dkk1 counteracts the WNT-beta-catenin 
effects on bone differentiation by promot-
ing adipogenesis (60). WNT Beta-catenin 
pathway activation not only stimulates new 
bone formation but it also inhibits osteo-
clastogenesis by increasing OPG, the de-
coy protein for RANKL (25). In addition 
to bone formation impairment, Dkk1 over-
expression shifts the OPG:RANKL ratio to 

favour bone resorption. At variance with 
SFRP which blunts both bone formation 
and bone resorption, Dkk1 inhibits bone 
formation and favours osteoclastic bone 
resorption.
The role played by other DKKs is less 
clear. The activity of Dkk3 and 4 appear 
similar to the Dkk1 one, but is apparently 
not expressed by bone cells (2). The mo-
lecular functions of Dkk2 are more compli-
cated and vary with cellular context. Both 
Dkk1 and Dkk2 can bind to LRP6 (61) but 
Dkk2 can either antagonise either stimulate 
(37) WNT beta-catenin pathway. These op-
posing effects may be modulated by Kre-
mer 2 which converts Dkk2 from agonist 
to antagonist of LRP6 (63). Moreover in 
the presence of high WNT7b levels DKK2 
induce terminal osteoblast differentiation 
(64).

Sclerostin
Bone remodeling is the physiological pro-
cess by which bone tissue is continually 
removed and replaced on the surface of 
trabecular bone and within the Haversian 
systems of cortical bone. 
This process requires the activity of three 
different types of cells - osteoclasts (bone 
resorbing cells), osteoblasts (bone form-
ing cells), and osteocytes. Osteocytes are 
former osteoblasts that were trapped in 
the newly formed bone matrix. They com-
municate with one another and with bone 
lining cells of bone surface through a net-
work of cytoplasmic connections (65) and 
are cells that detect loads applied to bone. 
Over loading is associated with local stim-
ulation of bone formation and vice-versa. 
This mechanoregulatory mechanism is me-
diated by SCL expressed almost uniquely 
by osteocytes. 
Sclerostin is a monomeric glycoprotein that 
antagonizes WNT/beta-catenin signalling 
(66) in osteoblasts as DKK1, by binding to 
LRP5 and LRP6 and preventing their asso-
ciation with FZ and WNTs. This results in 
the inhibition of osteoblast differentiation, 
activity, and survival (67).
SCL is the product of the SOST gene, which 
is mutated and down-regulated in patients 
with sclerosteosis and van Buchem’s dis-
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ease (68, 69) two rare bone sclerosing dis-
orders characterized by endosteal hyper-
ostosis, progressive generalized osteoscle-
rosis, and high bone mass associated with 
increased osteoblastic activity and elevated 
bone formation markers (70). 
As it often happens, identification of the 
genetic and molecular origin of a rare dis-
ease has revealed an important mechanism 
in normal physiological processes with po-
tential implication for the development of 
new treatments for common diseases. The 
concept that osteocytes have a mechano-
sensing role with sclerostin as a key signal-
ling protein for osteoblasts is supported by 
several preclinical studies (71). Bone load-
ing in animals is associated with decreased 
expression of SCL by osteocytes and with 
an increase in bone formation while bone 
unloading is associated with an increase 
in SOST transcription (72), up-regulation 
of sclerostin, and a decrease in WNT/beta-
catenin signalling (73). 
Bone density and mechanical strength are 
elevated in Sost knockout mice (74, 75) 
whereas transgenic overexpression of Sost 
induces osteopenia (76, 77).
All these data suggest that disuse osteopo-
rosis may in part be mediated by scleros-
tin-related inhibition of osteoblastic bone 
formation and that SCL is an important 
negative regulator of bone formation. 
Evidence points out that in addition to its 
anti-anabolic role, sclerostin has a cata-
bolic activity. Sclerostin dose-dependently 
up-regulates the expression of RANKL 
mRNA and down-regulates the expression 
of OPG mRNA, causing an increase in the 
RANK:OPG mRNA ratio (78), enhancing 
osteoclast activity. This action seems simi-
lar to DKK1 and is due to the inhibition 
of WNT canonical pathway in which beta-
catenin induces an increase in synthesis 
and secretion of OPG (25).
SCL seems also to be an important media-
tor of the anabolic effect of PTH in bone. 
PTH suppresses SCL expression both in vi-
tro and in vivo (79, 80) while over-expres-
sion of SOST prevent in rats the anabolic 
response to PTH administration (81, 82).
Unlike DKKs and SFRP, SCL is produced 
primarily by bone cells and is abundant es-

pecially in the osteocytic canalicular sys-
tem (83, 84) SCL has also been detected in 
cementocytes in teeth, mineralized hyper-
trophic chondrocytes in the growth plate, 
and osteoarthritic cartilage (85, 86). SCL 
may also be expressed by osteoclast pre-
cursors but not in by mature osteoclasts 
(87).
The WNT pathway with their several com-
ponents seem to have a key role in bone 
development, remodeling, and repair al-
though there is still much to understand 
and to study and much remains to be dis-
covered. However already now our knowl-
edge allows us to recognize this pathway as 
a possible source of new therapeutic strate-
gies for common disease characterized by 
altered bone mass as osteoporosis, of high 
socioeconomic burden (88). Some of these 
treatments are already in advanced stage of 
development (89).
Moreover this pathway is probably involved 
in the metabolic response to treatment with 
bone active agents used for the treatment 
of post-menopausal and male osteoporosis 
(90). In fact some of their effects on bone 
turnover are related with changes in the 
WNT/beta-catenin signalling. For example 
treatment with estrogens or raloxifene, but 

Figure 2 - The increase in serum sclerostin during treatment with ner-
idronate versus placebo. The association between neridronate treat-
ment and increased sclerostin levels suggests that the inhibition of 
bone formation observed after extended treatment with bisphospho-
nates might be mediated, at least in part, by an increase in sclerostin 
(modified from Gatti et al., 2011 (94)).
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not with androgens, is associated with a de-
crease in SCL levels (91, 92).
For this reason we decided to study both 
the changes in the WNT-antagonists serum 
levels (SCL and DKK1) during antiresorp-
tive (bisphosphonates and denosumab) and 
anabolic treatment (teriparatide) (93). 
Bisphosphonates are known to directly 
suppress osteoclastic activity, but the sup-
pression of bone resorption is typically as-
sociated with a later decrease of bone for-
mation. 
To determine whether this decrease in bone 
formation is associated with changes in se-
rum levels of SCL or DKK1, 107 patients 
were treated with either monthly intramus-
cular neridronate or placebo (88). Serum 
C-terminal telopeptide of type I collagen 
(sCTX, a bone-resorption marker) and bone 
alkaline phosphatase (bAP, a bone-forma-
tion marker) decreased, as expected, during 
neridronate treatment. Serum DKK1 re-
mained unchanged at all time points while 
serum SCL increased versus placebo group 
gradually and significantly only in patients 
treated with two upper doses (25 or 50 mg 
neridronate monthly), reaching 138-148% 
of baseline values (P<0.001) (Fig. 2). In 
consideration of the anti-anabolic effects 
of sclerostin on bone formation, the asso-
ciation between neridronate treatment and 
increased sclerostin levels suggests that the 
inhibition of bone formation observed after 
extended treatment with bisphosphonates 
might be mediated, at least in part, by an 
increase in sclerostin. Indeed we found a 
negative correlation (P<0.001) between the 
changes in bAP and sclerostin but causal 
link remains hypothetical (94).
This effect of bisphosphonates on WNT-
antagonist appears to be different from 
that we found in patients treated with de-
nosumab (95), an antiresorptive drug that, 
suppressing RANKL activity, lowers the 
number not only of actively resorbing os-
teoclasts (as bisphosphonates do) but also 
of osteoclast precursors. In our study deno-
sumab therapy was found to be associated 
with increasing SCL levels (as bisphospho-
nates treatment) but it was also associated 
with declining serum levels of DKK1 (95) 
and this might explain the apparent per-

sistent slight positive unbalance between 
suppressed bone resorption and formation 
during denosumab treatment (96).
The WNT-pathway is also involved in the 
response to bone anabolic agents. It has 
been reported that treatment with analogs 
of PTH or teriparatide is associated with 
decreases in serum SCL (97-99). These 
observations strongly suggest that the posi-
tive effect of PTH on osteoblast activity 
is at least in part mediated by changes in 
the WNT/β catenin signalling. It was also 
found that the effect of teriparatide on 
SOST disappears within a few months and 
that long-term treatment is associated with 
an increase in DKK1 (100). This might ex-
plains the loss of the bone anabolic effect 
of teriparatide after 18-24 months of con-
tinuous treatment. 
In conclusion the WNT-pathway and in 
particular its antagonists SCL and DKK1 
seems to play a key role in the regulation 
of bone remodeling in a number of clinical 
conditions and during treatment with bone 
active agents, such as bisphosphonates, 
but not only. Their effects become relevant 
especially in the course of long-term treat-
ments.

n	 REFERENCES 

1. Nusse R, Varmus HE. Many tumors induced 
by the mouse mammary tumor virus contain 
a provirus integrated in the same region of 
the host genome. Cell. 1982; 31: 99-109.

2. Monroe DG, McGee-Lawrence ME, Oursler 
MJ, Westendorf JJ. Update on Wnt signal-
ling in bone cell biology and bone disease. 
Gene. 2012; 492: 1-18.

3. Verkaar F, Zaman GJ. New avenues to target 
Wnt/β-catenin signalling. Drug Discov To-
day. 2011; 16: 35-41.

4. Verkaar F, Zaman GJ. A model for signalling 
specificity of Wnt/Frizzled combinations 
through co-receptor recruitment. FEBS Lett. 
2010; 584: 3850-4.

5. Gong Y, Slee RB, Fukai N, Rawadi G, Ro-
man-Roman S, Reginato AM, et al. LDL re-
ceptor-related protein 5 (LRP5) affects bone 
accrual and eye development. Cell. 2001; 
107: 513-23. 

6. Ai M, Holmen SL, Van Hul W, Williams BO, 
Warman ML. Reduced affinity to and inhibi-
tion by DKK1 form a common mechanism 
by which high bone mass-associated mis-

Non
-co

mmerc
ial

 us
e o

nly



Reumatismo 5/2013 227

reviewInsight into the WNT system and its drug related response

sense mutations in LRP5 affect canonical 
Wnt signalling. Mol Cell Biol. 2005; 25: 
4946-55.

7. Boyden LM, Mao J, Belsky J, Mitzner L, 
Farhi A, Mitnick MA, et al. High bone densi-
ty due to a mutation in LDL-receptor-related 
protein 5. N Engl J Med. 2002; 346: 1513-
21. 

8. Van Wesenbeeck L, Cleiren E, Gram J, Beals 
RK, Bénichou O, Scopelliti D, et al. Six nov-
el missense mutations in the LDL receptor-
related protein 5 (LRP5) gene in different 
conditions with an increased bone density. 
Am J Hum Genet. 2003; 72: 763-71. 

9. Baron R, Hesse E. Update on bone anabolics 
in osteoporosis treatment: rationale, current 
status, and perspectives. J Clin Endocrinol 
Metab. 2012; 97: 311-25.

10. Kiel DP, Ferrari SL, Cupples LA, Karasik D, 
Manen D, Imamovic A, et al. Genetic varia-
tion at the low-density lipoprotein receptor-
related protein 5 (LRP5) locus modulates 
Wnt signaling and the relationship of physi-
cal activity with bone mineral density in 
men. Bone. 2007; 40: 587-96. 

11. Riancho JA, Olmos JM, Pineda B, García-
Ibarbia C, Pérez-Núñez MI, Nan DN, et al. 
Wnt receptors, bone mass, and fractures: 
gene-wide association analysis of LRP5 and 
LRP6 polymorphisms with replication. Eur J 
Endocrinol. 2011; 164: 123-31. 

12. Rivadeneira F, Styrkársdottir U, Estrada K, 
Halldórsson BV, Hsu Y-H, Richards JB, et 
al. Twenty bone-mineral-density loci identi-
fied by large-scale meta-analysis of genome-
wide association studies. Nat Genet. 2009; 
41: 1199-206. 

13. Sims A-M, Shephard N, Carter K, Doan T, 
Dowling A, Duncan EL, et al. Genetic analy-
ses in a sample of individuals with high or 
low BMD shows association with multiple 
Wnt pathway genes. J Bone Miner Res. 
2008; 23: 499-506. 

14. Van Meurs JBJ, Trikalinos TA, Ralston 
SH, Balcells S, Brandi ML, Brixen K, et al. 
Large-scale analysis of association between 
LRP5 and LRP6 variants and osteoporosis. 
JAMA. 2008; 299: 1277-90. 

15. Del Fattore A, Capannolo M, Rucci N. Bone 
and bone marrow: the same organ. Arch Bio-
chem Biophys. 2010; 503: 28-34. 

16. Bonewald LF. The amazing osteocyte. J 
Bone Miner Res. 2011; 26: 229-38.

17. Colonna M. TREMs in the immune system 
and beyond. Nat Rev Immunol. 2003; 3: 
445-53.

18. Leucht P, Minear S, Ten Berge D, Nusse R, 
Helms JA. Translating insights from devel-
opment into regenerative medicine: the func-
tion of Wnts in bone biology. Semin Cell 
Dev Biol. 2008; 19: 434-43.

19. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, 

Long F. Sequential roles of Hedgehog and 
Wnt signaling in osteoblast development. 
Development. 2005; 132: 49-60. 

20. Rodda SJ, McMahon AP. Distinct roles for 
Hedgehog and canonical Wnt signalling in 
specification, differentiation and mainte-
nance of osteoblast progenitors. Develop-
ment. 2006; 133: 3231-4.

21. Day TF, Guo X, Garrett-Beal L, Yang Y. 
Wnt/beta-catenin signaling in mesenchymal 
progenitors controls osteoblast and chondro-
cyte differentiation during vertebrate skel-
etogenesis. Dev Cell. 2005; 8: 739-50. 

22. Hill TP, Später D, Taketo MM, Birchmeier 
W, Hartmann C. Canonical Wnt/beta-catenin 
signaling prevents osteoblasts from differen-
tiating into chondrocytes. Dev Cell. 2005; 8: 
727-38. 

23. Takada I, Kouzmenko AP, Kato S. Wnt and 
PPARgamma signalling in osteoblastogen-
esis and adipogenesis. Nat Rev Rheumatol. 
2009; 5: 442-7. 

24. Westendorf JJ, Kahler RA, Schroeder TM. 
Wnt signalling in osteoblasts and bone dis-
eases. Gene. 2004; 341: 19-39.

25. Glass DA 2nd, Bialek P, Ahn JD, Starbuck 
M, Patel MS, Clevers H, et al. Canonical 
Wnt signaling in differentiated osteoblasts 
controls osteoclast differentiation. Dev Cell. 
2005; 8: 751-64. 

26. Mao J, Wang J, Liu B, Pan W, Farr GH 3rd, 
Flynn C, et al. Low-density lipoprotein re-
ceptor-related protein-5 binds to Axin and 
regulates the canonical Wnt signalling path-
way. Mol. Cell 2001; 7: 801-9.

27. Schwartz AV, Sellmeyer DE, Vittinghoff E, 
Palermo L, Lecka-Czernik B, Feingold KR, 
et al. Thiazolidinedione use and bone loss 
in older diabetic adults. J Clin Endocrinol 
Metab. 2006; 91: 3349-54. 

28. Bennett CN, Longo KA, Wright WS, Suva 
LJ, Lane TF, Hankenson KD, et al. Regula-
tion of osteoblastogenesis and bone mass 
by Wnt10b. Proc Natl Acad Sci USA. 2005; 
102: 3324-9. 

29. Takada I, Mihara M, Suzawa M, Ohtake F, 
Kobayashi S, Igarashi M, et al. A histone 
lysine methyltransferase activated by non-
canonical Wnt signalling suppresses PPAR-
gamma transactivation. Nat Cell Biol. 2007; 
9: 1273-85. 

30. Banziger C, Soldini D, Schutt C, Zipperlen 
P, Hausmann G, Basler K. Wntless, a con-
served membrane protein dedicated to the 
secretion of Wnt proteins from signalling 
cells. Cell. 2006; 125: 509-22.

31. Bartscherer K, Pelte N, Ingelfinger D, 
Boutros M. Secretion of Wnt ligands re-
quires Evi, a conserved transmembrane pro-
tein. Cell. 2006; 125: 523-33. 

32. Goodman RM, Thombre S, Firtina Z, Gray 
D, Betts D, Roebuck J, et al. Sprinter: a nov-

Non
-co

mmerc
ial

 us
e o

nly



review

228 Reumatismo 5/2013

review S. Tamanini, L. Idolazzi, D. Gatti et al.

el transmembrane protein required for Wg 
secretion and signaling. Development. 2006; 
133: 4901-11. 

33. Jin J, Morse M, Frey C, Petko J, Levenson 
R. Expression of GPR177 (Wntless/Evi/
Sprinter), a highly conserved Wnt-transport 
protein, in rat tissues, zebrafish embryos, 
and cultured human cells. Dev Dyn. 2010; 
239: 2426-34.

34. Yu HM, Jin Y, Fu J, Hsu W. Expression 
of Gpr177, a Wnt trafficking regulator, in 
mouse embryogenesis. Dev Dyn. 2010; 239: 
2102-9.

35. Rao TP, Kühl M. An updated overview on 
Wnt signalling pathways: a prelude for 
more. Circ Res. 2010; 106: 1798-806.

36. Wang HT, Liu T, Malbon CC. Structure-
function analysis of Frizzleds. Cell Signal. 
2006; 18: 934-41.

37. Kawano Y, Kypta R. Secreted antagonists of 
the Wnt signalling pathway. J Cell Sci. 2003; 
116: 2627-34.

38. Koval A, Purvanov V, Egger-Adam D, Ka-
tanaev VL. Yellow submarine of the Wnt/
Frizzled signalling: submerging from the G 
protein harbor to the targets. Biochem Phar-
macol. 2011; 82: 1311-9.

39. Brown SD, Twells RC, Hey PJ, Cox RD, 
Levy ER, Soderman AR, et al Isolation and 
characterization of LRP6, a novel member 
of the low density lipoprotein receptor gene 
family. Biochem. Biophys. Res. Commun. 
1998; 248: 879-88.

40. Kim DH, Inagaki Y, Suzuki T, Ioka RX, 
Yoshioka SZ, Magoori K, et al. A new low 
density lipoprotein receptor related protein, 
LRP5, is expressed in hepatocytes and adre-
nal cortex, and recognizes apolipoprotein E. 
J Biochem. 1998; 124: 1072-6.

41. He X, Semenov M, Tamai K, Zeng X. LDL 
receptor-related proteins 5 and 6 in Wnt/be-
ta-catenin signalling: arrows point the way. 
Development. 2004; 131: 1663-77.

42. Yadav VK, Ryu JH, Suda N, Tanaka KF, 
Gingrich JA, Schütz G, et al. Lrp5 controls 
bone formation by inhibiting serotonin syn-
thesis in the duodenum. Cell. 2008; 135: 
825-37.

43. Wan M, Yang C, Li J, Wu X, Yuan H, Ma H, 
et al. Parathyroid hormone signaling through 
low-density lipoprotein-related protein 6. 
Genes Dev. 2008; 22: 2968-79. 

44. Peröbner I, Karow M, Jochum M, Neth P. 
LRP6 mediates Wnt/β-catenin signalling 
and regulates adipogenic differentiation in 
human mesenchymal stem cells. Int J Bio-
chem Cell Biol. 2012; 44: 1970-82.

45. Johnson EB, Hammer RE, Herz J. Abnormal 
development of the apical ectodermal ridge 
and polysyndactyly in Megf7-deficient mice. 
Hum Mol Genet. 2005; 14: 3523-38.

46. Ohazama A, Porntaveetus T, Ota MS, Herz 

J, Sharpe PT. Lrp4: A novel modulator of 
extracellular signalling in craniofacial or-
ganogenesis. Am J Med Genet A 2010; 152: 
2974-83.

47. MacDonald BT, Tamai K, He X. Wnt/beta-
catenin signaling: components, mechanisms, 
and diseases. Dev Cell. 2009; 17: 9-2.

48. Laine CM, Chung BD, Susic M, Prescott T, 
Semler O, Fiskerstrand T, et al. Novel mu-
tations affecting LRP5 splicing in patients 
with osteoporosis-pseudoglioma syndrome 
(OPPG). Eur J Hum Genet. 2011; 19: 875-
81.

49. Levasseur R, Lacombe D, de Vernejoul MC. 
LRP5 mutations in osteoporosis-pseudoglio-
ma syndrome and high-bone-mass disorders. 
Joint Bone Spine. 2005; 72: 207-14.

50. Ellies DL, Viviano B, McCarthy J, Rey JP, 
Itasaki N, Saunders S, et al. Bone density 
ligand, Sclerostin, directly interacts with 
LRP5 but not LRP5G171V to modulate Wnt 
activity. J Bone Miner Res. 2006; 21: 1738-
49. 

51. Semenov MV, He X. LRP5 mutations linked 
to high bone mass diseases cause reduced 
LRP5 binding and inhibition by SOST. J 
Biol Chem. 2006; 281: 38276-84.

52. Ai M, Holmen SL, Van Hul W, Williams BO, 
Warman ML. Reduced affinity to and inhibi-
tion by DKK form a common mechanism by 
which high bone mass-associated missense 
mutations in LRP5 affect canonical Wnt sig-
naling. Mol Cell Biol. 2005; 25: 4946-55.

53. Schulte G. International Union of Basic and 
Clinical Pharmacology. LXXX. The class 
Frizzled receptors. Pharmacol Rev. 2010; 
62: 632-67.

54. Banyai L, Patthy L. The NTR module: do-
mains of netrins,secreted frizzled related 
proteins, and type I procollagen C-protein-
ase enhancer protein are homologous with 
tissue inhibitors of metalloproteases. Protein 
Sci. 1999; 8: 1636-42.

55. Bodine PVN, Zhao W, Kharode YP, Bex FJ, 
Lambert A-J, Goad MB, et al. The Wnt an-
tagonist secreted frizzled-related protein-1 is 
a negative regulator of trabecular bone for-
mation in adult mice. Mol Endocrinol. 2004; 
18: 1222-37. 

56. Bodine PV, Seestaller-Wehr L, Kharode YP, 
Bex FJ, Komm BS. Bone anabolic effects of 
parathyroid hormone are blunted by dele-
tion of the Wnt antagonist secreted frizzled-
related protein-1. J Cell Physiol. 2007; 210: 
352-7.

57. Yao W, Cheng Z, Shahnazari M, Dai W, 
Johnson ML, Lane NE. Overexpression of 
secreted frizzled-related protein 1 inhibits 
bone formation and attenuates parathyroid 
hormone bone anabolic effects. J Bone Min-
er Res. 2010; 25: 190-9.

58. Wang F-S, Lin C-L, Chen Y-J, Wang C-J, 

Non
-co

mmerc
ial

 us
e o

nly



Reumatismo 5/2013 229

reviewInsight into the WNT system and its drug related response

Yang KD, Huang Y-T, et al. Secreted friz-
zled-related protein 1 modulates glucocorti-
coid attenuation of osteogenic activities and 
bone mass. Endocrinology. 2005; 146: 2415-
23. 

59. Hausler KD, Horwood NJ, Chuman Y, Fisher 
JL, Ellis J, Martin TJ, et al. Secreted friz-
zled-related protein-1 inhibits RANKL-de-
pendent osteoclast formation. J Bone Miner 
Res. 2004; 19: 1873-81. 

60. Pinzone JJ, Hall BM, Thudi NK, Vonau M, 
Qiang Y-W, Rosol TJ, et al. The role of Dick-
kopf-1 in bone development, homeostasis, 
and disease. Blood. 2009; 113: 517-25. 

61. Mao B, Wu W, Davidson G, Marhold J, Li 
M, Mechler BM, et al. Kremen proteins are 
Dickkopf receptors that regulate Wnt/beta-
catenin signalling. Nature. 2002; 417: 664-7. 

62. Semenov MV, Tamai K, Brott BK, Kuhl M, 
Sokol S, et al. Head inducer Dickkopf-1 is a 
ligand for Wnt coreceptor LRP6. Curr Biol. 
2001; 11: 951-61.

63. Mao B, Niehrs C. Kremen2 modulates Dick-
kopf2 activity during Wnt/LRP6 signalling. 
Gene 2003; 302: 179-83.

64. Li X, Liu P, Liu W, Maye P, Zhang J, Zhang 
Y, et al. Dkk2 has a role in terminal osteo-
blast differentiation and mineralized matrix 
formation. Nat Genet. 2005; 37: 945-52. 

65. Bonewald LF. Osteocytes. In: Rosen V, ed. 
Primer on the metabolic bone diseases and 
disorders of mineral metabolism, 7th ed. 
Washington DC: American Society for Bone 
and Mineral Research; 2008; 22-7.

66. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang 
J, et al. Sclerostin binds to LRP5/6 and an-
tagonizes canonical Wnt signalling. J Biol 
Chem. 2005; 280: 19883-7.

67. Baron R, Rawadi G. Targeting the Wnt/beta-
catenin pathway to regulate bone formation 
in the adult skeleton. Endocrinology. 2007; 
148: 2635-43.

68. Balemans W, Ebeling M, Patel N, Van Hul 
E, Olson P, Dioszegi M, et al. Increased bone 
density in sclerosteosis is due to the deficien-
cy of a novel secreted protein (SOST). Hum 
Mol Genet. 2001; 10: 537-43. 

69. Brunkow ME, Gardner JC, Van Ness J, 
Paeper BW, Kovacevich BR, Proll S, et al. 
Bone dysplasia sclerosteosis results from 
loss of the SOST gene product, a novel 
cystine knot-containing protein. Am J Hum 
Genet. 2001; 68: 577-89. 

70. Wergedal JE, Veskovic K, Hellan M, Nyght 
C, Balemans W, Libanati C, et al. Patients 
with Van Buchem disease, an osteosclerotic 
genetic disease, have elevated bone for-
mation markers, higher bone density, and 
greater derived polar moment of inertia than 
normal. J Clin Endocrinol Metab. 2003; 88: 
5778-83. 

71. Lewiecki EM. Sclerostin: a novel target for 

intervention in the treatment of osteoporosis. 
Discov Med. 2011; 12: 263-73.

72. Robling AG, Niziolek PJ, Baldridge LA, 
Condon KW, Allen MR, Alam I, et al. Me-
chanical stimulation of bone in vivo reduces 
osteocyte expression of Sost/sclerostin. J 
Biol Chem. 2008; 283: 5866-75.

73. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang 
J, et al. Sclerostin mediates bone response to 
mechanical unloading through antagonizing 
Wnt/beta-catenin signalling. J Bone Miner 
Res. 2009; 24: 1651-61. 

74. Krause C, Korchynskyi O, de Rooij K, Wei-
dauer SE, de Gorter DJJ, van Bezooijen RL, 
et al. Distinct modes of inhibition by scleros-
tin on bone morphogenetic protein and Wnt 
signaling pathways. J Biol Chem. 2010; 285: 
41614-26. 

75. Li X, Ominsky MS, Niu Q-T, Sun N, Daugh-
erty B, D’Agostin D, et al. Targeted deletion 
of the sclerostin gene in mice results in in-
creased bone formation and bone strength. J 
Bone Miner Res. 2008; 23: 860-9. 

76. Loots GG, Kneissel M, Keller H, Baptist M, 
Chang J, Collette NM, et al. Genomic dele-
tion of a long-range bone enhancer misregu-
lates sclerostin in Van Buchem disease. Ge-
nome Res. 2005; 15: 928-35. 

77. Winkler DG, Sutherland MK, Geoghegan 
JC, Yu C, Hayes T, Skonier JE, et al. Osteo-
cyte control of bone formation via sclerostin, 
a novel BMP antagonist. EMBO J. 2003; 22: 
6267-76. 

78. Wijenayaka AR, Kogawa M, Lim HP, Bone-
wald LF, Findlay DM, Atkins GJ. Sclerostin 
stimulates osteocyte support of osteoclast 
activity by a RANKL-dependent pathway. 
PLoS One. 2011; 6: e25900.

79. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, 
O’Brien CA, et al. Chronic elevation of para-
thyroid hormone in mice reduces expression 
of sclerostin by osteocytes: a novel mecha-
nism for hormonal control of osteoblasto-
genesis. Endocrinology. 2005; 146: 4577-83. 

80. Keller H, Kneissel M. SOST is a target gene 
for PTH in bone. Bone. 2005; 37: 148-58.

81. Kramer I, Loots GG, Studer A, Keller H, 
Kneissel M. Parathyroid hormone (PTH)-
induced bone gain is blunted in SOST over-
expressing and deficient mice. J Bone Miner 
Res. 2010; 25: 178-89.

82. O’Brien CA, Plotkin LI, Galli C, Goellner 
JJ, Gortazar AR, Allen MR, et al. Control of 
bone mass and remodeling by PTH receptor 
signaling in osteocytes. PLoS ONE. 2008; 3: 
e2942. 

83. Van Bezooijen RL, Roelen BAJ, Visser A, 
van der Wee-Pals L, de Wilt E, Karperien 
M, et al. Sclerostin is an osteocyte-expressed 
negative regulator of bone formation, but 
not a classical BMP antagonist. J Exp Med. 
2004; 199: 805-14. 

Non
-co

mmerc
ial

 us
e o

nly



review

230 Reumatismo 5/2013

review S. Tamanini, L. Idolazzi, D. Gatti et al.

84. Winkler DG, Sutherland MK, Geoghegan 
JC, Yu C, Hayes T, Skonier JE, et al. Osteo-
cyte control of bone formation via sclerostin, 
a novel BMP antagonist. EMBO J. 2003; 22: 
6267-76. 

85. Chan BY, Fuller ES, Russell AK, Smith SM, 
Smith MM, Jackson MT, et al. Increased 
chondrocyte sclerostin may protect against 
cartilage degradation in osteoarthritis. Os-
teoarthr Cartil. 2011; 19: 874-85. 

86. Van Bezooijen RL, Bronckers AL, Gortzak 
RA, Hogendoorn PCW, van der Wee-Pals L, 
Balemans W, et al. Sclerostin in mineralized 
matrices and van Buchem disease. J Dent 
Res. 2009; 88: 569-74. 

87. Pederson L, Ruan M, Westendorf JJ, Khosla 
S, Oursler MJ. Regulation of bone formation 
by osteoclasts involves Wnt/BMP signalling 
and the chemokine sphingosine-1-phos-
phate. PNAS. 2008; 105: 20764-9.

88. Rossini M, Piscitelli P, Fitto F, Camboa P, 
Angeli A, Guida G, et al. Incidence and so-
cioeconomic burden of hip fractures in Italy. 
Reumatismo. 2005; 57: 97-102.

89. Padhi D, Jang G, Stouch B, Fang L, Posvar 
E. Single-dose, placebo-controlled, random-
ized study of AMG 785, a sclerostin mono-
clonal antibody. J Bone Miner Res. 2011; 26: 
19-26.

90. Adami S, Bertoldo F, Brandi ML, Cepollaro 
C, Filipponi P, Fiore E, et al. [Guidelines for 
the diagnosis, prevention and treatment of 
osteoporosis]. Reumatismo. 2009; 61: 260-
84. 

91. Mödder UI, Clowes JA, Hoey K, Peterson 
JM, McCready L, Oursler MJ, et al. Regu-
lation of circulating sclerostin levels by sex 
steroids in women and in men. J Bone Min-
eral Res. 2011; 26: 27-34. 

92. Chung YE, Lee SH, Lee SY, Kim SY, Kim 
HH, Mirza FS, et al. Long-term treatment 
with raloxifene, but not bisphosphonates, 
reduces circulating sclerostin levels in post-

menopausal women. Osteoporos Int. 2012; 
23: 1235-43.

93. Viapiana O, Fracassi E, Troplini S, Idolazzi 
L, Rossini M, Adami S, et al. Sclerostin and 
DKK1 in primary hyperparathyroidism. Cal-
cif Tissue Int. 2013; 92: 324-9. 

94. Gatti D, Viapiana O, Adami S, Idolazzi L, 
Fracassi E, Rossini M. Bisphosphonate treat-
ment of postmenopausal osteoporosis is as-
sociated with a dose dependent increase in 
serum sclerostin. Bone. 2012; 50: 739-42.

95. Gatti D, Viapiana O, Fracassi E, Idolazzi 
L, Dartizio C, Povino MR, et al. Sclerostin 
and DKK1 in postmenopausal osteoporosis 
treated with denosumab. J Bone Miner Res 
2012; 27: 2259-63.

96. Rossini M, Gatti D, Adami S. Involvement 
of WNT/β-catenin signaling in the treatment 
of osteoporosis. Calcif Tissue Int. 2013; 93: 
121-32.

97. Drake MT, Srinivasan B, Mödder UI, Pe-
terson JM, McCready LK, Riggs BL, et al. 
Effects of parathyroid hormone treatment 
on circulating sclerostin levels in postmeno-
pausal women. J Clin Endocrinol Metab. 
2010; 95: 5056-62.

98. Yu EW, Kumbhani R, Siwila-Sackman E, 
Leder BZ. Acute decline in serum sclerostin 
in response to PTH infusion in heakthy men. 
J Clin Endocrinol Metab. 2011; 96: E1848-
51.

99. Piemonte S, Romagnoli E, Bratengeier C, 
Woloszczuk W, Tancredi A, Pepe J, et al. 
Serum sclerostin levels decline in postmeno-
pausal women with osteoporosis following 
treatment with intermittent PTH. J Endocri-
nol Invest. 2012; 35: 866-8.

100. Gatti D, Idolazzi L, Fracassi E, Rossini M, 
Adami S. The waning of teriparatide effect 
on bone formation markers in postmeno-
pausal osteoporosis is associated with in-
creasing serum levels of DKK1. J Clin En-
docrinol Metab. 2011; 96: 1555-9.0Non

-co
mmerc

ial
 us

e o
nly




