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Abstract. A graphical Process Modeling Language (PML) is a language tailored for
modeling software systems by means of process models. It is said to be graphical because
the primary representation of models are diagrams obtained combining visual constructs
and previously defined components. Graphical PMLs are interesting as they open the
design space to new geometric representations of complex interrelated aspects like con-
currency and interaction. A Process-Aware Information System (PAIS) is a software sys-
tem driven by explicit process models with the aim to coordinate and support agents in
performing their activities. It is responsible for managing several process model instances
at the same time balancing the available resources. A PML is the primary interface of a
PAIS and a main concern in its design, because it is used by end-users, consultants, and
developers for understanding, implementing and enacting complex processes. The adop-
tion of PAIS technology may be severely limited by the weakness of PMLs in describing
complex use cases.

The overall aim of this thesis is to improve the design of graphical PMLs in order
to engineer more effective PAISs. This goal is pursued following three intertwined paths:
firstly, mainstream PMLs and their theoretical foundations are analyzed for exposing
their features and limits; secondly, a widespread PML verification method is consolidated
and then extended with a novel technique for automating process correction; finally,
an alternative PML design solution is explored through a proof-of-concept language,
called NestFlow, that improves both modularity and comprehensibility by providing
a more structured modeling approach. A modular approach is only possible if data-flow
dependencies are accepted as a main concern in PML design. NestFlow tries to ease
the modeling activity by providing a comprehensive set of tightly integrated control-flow
and data-flow constructs, promoting the latter as first-class citizens in process modeling.
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1

Introduction

The notion of process is fundamental in science and engineering: the primary activ-
ity of all sciences is extracting new knowledge about a certain process by proposing
a model of it and conceiving experiments to confirm or disprove its validity. Engi-
neering may be seen as a problem-solving activity focused on the control, support,
and automation of processes. Broadly speaking, a process can be defined as a series
of occurring changes in a system that span over time producing some measurable
effects. Any non-trivial process involves several entities that simultaneously change
their configuration and interact together following certain patterns. An explosion,
for example, is an highly concurrent process with a massive number of atomic in-
teractions that occur in a fraction of time. Undoubtedly, any specific domain has
its own notion of process, but it is hard to imagine a definition of process decou-
pled from the concepts of time and state. It is also hard to explain the emerging
behavior of a process without considering how the involved entities interact and
when the relevant events occur.

From a software engineering perspective, computer programs are crafted to
shape the behavior of machines that will be part of more or less complex pro-
cesses in the physical world [1]. These machines have to deal with the inherent
concurrency of such world and they have to interact with it to be of some help.
Not surprisingly, programming languages reflect this fact by offering specific lan-
guage constructs and special libraries of components that allow one to capture the
aforementioned concepts. Processes may also be adopted as basic building compo-
nents for designing concurrent interactive software systems. In such case the role
of processes is similar to the role of objects in the Object-Oriented Programming
(OOP) paradigm: OOP is based on the analogy between building a mechanical
model of a physical system from concrete objects and building a software model
of a physical system from software components [2]. Let us stress that there is no a
one-to-one correspondence between real entities and software components: recall-
ing the example of Abadi and Cardelli [2], a mechanical model of the solar system
may contain objects like springs and gears that are not part of the modeled reality.

A Process Modeling Language (PML) is a specialized language tailored for
modeling software systems in terms of processes; therefore, it has to offer a native
support for specifying the logic of components that can run in parallel and interact
among them and with the environment. The language is said to be specialized to
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emphasize that it is designed around few basic and precisely stated abstractions
in contrast to a more rich and ambiguous natural language. The term formal
is intentionally avoided because it is more suitable for qualifying mathematical
languages with a clearly stated formal semantics, and not all PMLs are formal.

A specialized language becomes necessary in unraveling complex systems where
several people have to agree upon a common design. Furthermore, if the produced
models are sufficiently formal, they can be simulated, verified, translated, and also
directly interpreted by machines. These considerations explain why modularity
cannot be neglected in the analysis of modeling languages that are, in their essence,
tools for tackling the inherent complexity of the design activity. Modularity is
the property of a system to be decomposed into smaller interrelated parts which
can be recombined in different configurations [3]. This notion can be applied to
a PML that is said to be modular if its models can be decomposed into smaller
reusable components which in turn can be recombined for exploring different design
alternatives. Modularity reduces the efforts needed to change a system; hence, it
improves its flexibility, i.e. the ability of adapting to new contingent needs [4].

This thesis focuses on graphical PMLs. A modeling language is said to be
graphical if the primary representation of a model is a diagram obtained combining
visual symbolic constructs and previously defined components. This is in contrast
with purely textual languages that allow one to express models only as a sequence
of symbols. Graphical PMLs are interesting because they open the design space
to new geometric representations of complex interrelated aspects like concurrency
and interaction. This feature should not be underestimated because reasoning
about concurrent entities is notoriously a very difficult cognitive activity: it is
well-known, for example, that multi-threaded programs with shared state become
soon incomprehensible to humans [5].

Context

From one hand, the thesis attempts to be neutral about PMLs, in the sense that it
focuses on the abstractions offered by a language and how they are implemented,
without any particular emphasis on their domain-specific meaning. At first glance,
for example, every language has its own notion of component that may be called
task, activity or workflow, to mention few names, but behind some implementation
details they are often realized in the same way.

On the other hand, the thesis is mostly centered on PMLs used to design
and implement information systems, more precisely on the theoretical and prac-
tical languages adopted in Process-Aware Information Systems (PAISs) [6] that
broadly speaking include Business Process Management Systems (BPMSs) [7] and
Workflow Management Systems (WfMSs) [8].

A Process-Aware Information System (PAIS) [6] is a software system driven
by explicit process models with the aim to coordinate and support agents in per-
forming their activities. In this context a process is a collection of interrelated
activities that are performed in an organizational and technical environment for
achieving a predefined goal [7]. Accordingly, a PML can be classified as a coordi-
nation language [9] for human and software agents, where classical computations
have a secondary role with respect to concurrency, interaction, and integration.
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Motivation

A PML is the primary interface of a PAIS as it is used by consultants, developers
and end-users: consultants can model existing or desired processes with the end-
users for understanding how the work is carried out. Developers can enrich such
models with further details and missing components for implementing the actual
system. End-users will run several instances of different process models to stream-
line their activities. A PML is also a primary concern in the design of a PAIS,
because most of its behavior is determined by the interpreted models than have
to specify in some way how process instances, data and resources are managed.

The overall aim of this thesis is to improve the design of graphical executable
PMLs in order to engineer more effective PAISs that better match the aforemen-
tioned vision. This goal is pursued following three intertwined paths that mostly
correspond to the three central chapters of this thesis: Firstly, mainstream PMLs
and their theoretical foundations are analyzed in order to expose their features
and limits. Secondly, a widespread PML verification method is consolidated and
then extended with a novel technique for automating process correction, called
Petri Nets Simulated Annealing (PNSA). Finally, an alternative PML design solu-
tion is explored through a prototypical modeling language, called NestFlow, that
leaves the widely accepted free-composition paradigm in favor of a more structured
approach that in turn enhances modularity and comprehensibility.

A modular approach is only possible if data-flow dependencies are accepted
as a main concern in PML design. Therefore, NestFlow promotes data-flow
constructs as first-class citizens in process modeling. Conversely, despite some no-
table exceptions like artifact-centric approaches [10] and case-handling [11], PMLs
usually focus on control-flow modeling: they provide a wide range of graphical
constructs for specifying the ordering relations among components, but very few
means for representing data dependencies. Data are considered implementation
details that have to be finally added to the specified control-flow structures in or-
der to obtain an executable model. This practice helps in obtaining simpler PMLs,
but actually there is no evidence that simple languages ease the modeling activity.
For example, Workflow Control-Flow Patterns (WCPs) [12], that capture recur-
ring process behaviors, are specified in high-level Coloured Petri Nets (CPNs) [13],
not in the simpler ordinary Petri Nets [14]. After the introduction of WCPs, some
domain-specific PMLs, like YAWL [15], have been designed to express some pat-
terns hard to obtain in CPNs. NestFlow tries to overcome these difficulties and
to ease the modeling activity by providing a comprehensive set of tightly integrated
control-flow and data-flow constructs.

Contribution

The first contribution of this thesis is a comprehensive and uniform analysis of
the state of the art about graphical PMLs and their theoretical foundation. This
analysis includes representative languages chosen from formal modeling languages,
academic research projects and industrial standards. In particular, it focuses on
Place Transition Nets (PTNs) [14], high-level Coloured Petri Nets (CPNs) [13],
Yet Another Workflow Language (YAWL) [15], and Business Process Model and
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Notation (BPMN) [16]. This chapter can be considered a detailed survey about
the essential design principles and features of these languages and the existing
relations among them.

Available graphical PMLs mostly adopt a free-composition paradigm accord-
ingly to which components and constructs can be put together by connecting them
with arrows of various forms, subject to very few syntactical constraints. Structure
cannot be enforced in these languages without reducing their expressiveness [17].
As a consequence, the resulting models are usually unstructured and are likely to
contain subtle errors that need to be detected and corrected. The first contribution
of Chap. 4 is a revisited notion of soundness that better classifies errors found in a
model. Based on this new definition, a refined version of the soundness check pro-
cedure is introduced and explained. This procedure is an important component of
the novel technique called Petri Nets Simulated Annealing (PNSA) that has been
published in [18], and is discussed in the remaining part of the chapter. PNSA is a
genetic programming technique inspired by Multi-Objective Simulated Annealing
methods. Given an unsound model and the results of the soundness check, PNSA
searches for a set of solutions that are structurally and semantically similar to the
original model but contain few errors.

Another contribution of the thesis is a detailed analysis of the limits underlying
unstructured PMLs and their adopted free-composition paradigm. This analysis
reveals that many arguments supporting such paradigm are not well founded,
and they are so widespread to prevent any further investigation about alterna-
tive approaches. This analysis has been published in [19,20] and deeply examined
in Chap. 5. This discussion leads to the development of NestFlow: an innova-
tive prototypical PML able to support a block-structured control-flow design with
positive effects for modularity and comprehensibility of models.

The NestFlow expressiveness is evaluated against the well-known workflow
control-flow patterns framework [12], but using a more objective evaluation method
which considers the effort needed to replicate the behaviour prescribed by a pat-
tern, rather than the availability of a particular language construct. The evalua-
tion method and the obtained results are published in [21] and further discussed in
Chap. 6. This chapter also presents two additional contributions published in [22]
and [23], which discuss the NestFlow applicability and extensions in the geo-
graphical and health-care domains, respectively.

Organization

Chapter 2 – Background. This chapter introduces the mathematical notation
adopted through the entire thesis to express concepts in a formal way. The chapter
also introduces basic mathematical structures that are used in the following chap-
ters and show how concepts can be encoded in the given functional-like notation.

Chapter 3 – Graphical Process Modeling Languages. This chapter is a comprehen-
sive introduction to PMLs and their related theoretical foundation. It focuses on
four representative languages, namely Place Transition Nets (PTNs) [14], Coloured
Petri Nets (CPNs) [13], Yet Another Workflow Language (YAWL) [15], and Busi-
ness Process Model and Notation (BPMN) [16]. Each language is introduced in
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an informal way, and then its essential features are analyzed in more formal terms.

Chapter 4 – Free Composition, Verification and Correction. Initially, the classical
soundness definition is discussed and some issues about it are exposed, then a re-
visited formalization is provided which ensures orthogonality of its characterizing
properties. This gives the opportunity to refine the existing soundness techniques
to produce more useful information about the detected errors. Subsequently, the
problem of automating the correction of the found errors is considered. The re-
maining part of the chapter discusses the PNSA solution together with some pre-
liminary experimental results.

Chapter 5 – Towards Structured Process Modeling Languages. The chapter starts
by showing what goes wrong with existing PMLs: pitfalls of unstructured process
modeling and myths surrounding unstructured modeling languages are deeply dis-
cussed with some examples. Then the chapter argues why structure is fundamental
for model comprehensibility, and it exposes the lack of modularity of certain PMLs.
These problems justify the search for alternative approaches in PML design. Ac-
cordingly, an innovative prototypical PML, called NestFlow, is proposed: this
language provides block-structure control-flow abstractions with message passing,
boosting up both modularity and comprehensibility.

Chapter 6 – NestFlow Expressiveness and Applications. The chapter discusses
the expressiveness of NestFlow in terms of workflow control-flow patterns and
its potential application in different domains, such as business process automation,
geo-processing, and health-care information systems. This analysis suggests that a
structured modeling language can be effectively built and applied for the modeling
of real processes.

Chapter 7 – Conclusion. The chapter summarizes the results presented in the
thesis and proposes future work.





2

Background

This chapter introduces the mathematical notation adopted in the following to
express concepts in a formal way. The notation is introduced here by discussing
basic mathematical notions and because it is fairly intuitive: the reader should feel
free to skip this part and come back later if some formal statement is not clear.

An object is any entity recognized as a single unit. A set is a group of objects
called elements that can be identified as a single unit, hence a set can be an element
of another set. It is common to represent objects with unique names or identifiers
and use them as elements to build abstract sets. An identifier that represents a
specific object is said to be a constant or value, while an identifier that stands for
an unknown object is called variable.

A different typeface is adopted to distinguish constants from variables whenever
necessary. In particular, the italic typeface is reserved for variables, while constants
and values are usually expressed in sans serif typeface or in its SMALL CAPS variant
depending on the context. Furthermore, as a general convention, lowercase letters
like a, x, σ are used to identify elements, while uppercase letters like A, X, Σ are
reserved for sets. This distinction should not be intended as a strict rule because
sets are also elements. When necessary, both kinds of identifiers are extended with
subscripts and superscripts, e.g. xi and Ak are also valid identifiers.

A finite set can be explicitly built listing its elements between curly braces
{ and }, where both the presence of duplicates and the order in which elements
appear is not relevant, e.g. {A, B, C} and {B, C, B, A} are the same set made of three
symbols representing the first letters of the alphabet. From the possible set struc-
tures, one can distinguish the empty set {}, denoted by the special symbol ∅, and
the set {x} made of a single element x known as unit set or singleton. An ordered
pair or simply a pair is a set of two elements constructed in such a way that it is
always clear which are the former and the latter. For every two elements x and y
the set {x, {x, y}} has this property and will be denoted as ⟨x, y⟩.

The usual membership operator ⋅ ∈ ⋅ is adopted to state that an element is a
member of or belongs to a set. In particular, for any variable x and any set S,
the term x ∈ S is unknown if x is not bound to an existing object, true when x
identifies an element of S, false otherwise.

The set containing all objects considered relevant for the discussion is called
universe of interest or simply universe and denoted by U . It is supposed that U
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contains as many constants as needed and all the objects that can be built from
them by defining new sets. In particular, ∅ ∈ U , for every element x ∈ U , {x} ∈ U
and for every couple of sets {α} ∈ U and {β} ∈ U , {α,β} ∈ U where α and β
represent the content of the sets.

It is assumed that the reader is familiar with first order logic; the book of
Mendelson [24] is taken as the primary source for the notation with some minor
changes. The symbols T and F are used to denote the truth values true and false,
respectively. The connectives negation ¬ ⋅, conjunction ⋅ ∧ ⋅, inclusive disjunction
⋅ ∨ ⋅, implication ⋅ ⇒ ⋅ and equivalence ⋅ ⇔ ⋅, together with the universal quantifier
∀ ⋅ and existential quantifier ∃ ⋅ with their usual meaning [24], are used to build
new terms from existing ones. In particular, if α and β are terms, x a variable
and S a set then (x ∈ S), (¬α), (α ∧ β), (α ∨ β), (α ⇒ β), (α ⇔ β), ((∀x)α)
and ((∃x)α) are also terms. Parentheses are necessary to obtain unambiguous
terms; however, they will be left implicit in most cases giving a different priority
to each logic operator. For restoring the missing parentheses, operators have to
be considered in this order: first all ∈ not part of a quantification, then ¬, ∧, ∨,
∀, ∃, ⇒, ⇔; connectives of the same kind from left to right, while consecutive
negations and similar quantifications from right to left. The dot symbol is
also adopted to mark the scope of a quantifier: in such case the scope extends
from the dot to the first unmatched close parenthesis or the end of the term if
such parenthesis does not exist. Furthermore, the abbreviation ((∀x ∈ S)α) is
used instead of ((∀x)((x ∈ S) ⇒ α)), similarly (x ∉ S) may replace terms like
(¬(x ∈ S)). Terms of the form ((x ∈ S) ∧ (y ∈ S)) can be contracted in (x, y ∈
S). Similarly, a sequence of quantifications of the same kind may be aggregated
under a single symbol. For example, by applying the given conventions the term
(((∀x)(x ∈ A) ⇒ ((∃y)(y ∈ B) ⇒ (α ∨ (¬β)))) ∧ ((∀x)(x ∈ A) ⇒ γ)) can be
compactly denoted as (∀x ∈ A ∃y ∈ B α ∨ ¬β) ∧ ∀x ∈ A γ.

New sentences can be built on previously defined objects and new classes of
objects can be declared by capturing their relevant properties with formal logic
expressions. The equivalence by definition operator ⋅ ▵⇐⇒ ⋅ enables the creation of
a new set S enclosing it in a single sentence of the form ((∀x ∈ U)((x ∈ S) ▵⇐⇒
α)), where x is used in α to state the properties of its elements. Parentheses
can be omitted following the conventions given above, obtaining the generic term
∀x ∈ U x ∈ S ▵⇐⇒ α that can be further restated in the more compact notation
S ≜ {x ∈ U ∣ α} whenever necessary. The introduced notation S ≜ {x ∈ U ∣ α}
is very similar to an intensional definition but it is safe to use. For example,
let us consider the Russell’s paradox: in naive set theory one can build a set
R = {x ∣ x ∉ x} made of all sets that do not belongs to itself. If R ∈ R then from
the definition R ∉ R which is a contradiction. Conversely, if R ∉ R then R ∈ R
which again produces a contradiction. With the given notation, one can define
R ≜ {x ∈ U ∣ x ∉ x} from which it follows ∀x ∈ U x ∈ R⇔ x ∉ x that in turn can be
rewritten as ∀x x ∉ U ∨ (x ∈ R⇔ x ∉ x). Assuming R ∈ R it follows R ∉ U ∨ (R ∈
R ⇔ R ∉ R); hence, R ∉ U because the second external operand is always false.
The same result holds starting from R ∉ R: in any case no contradiction is reached.

The containment operator ⋅ ⊆ ⋅ is used to state that all elements of a set A are
contained into another set B; using the introduced notation this can be defined as
∀A,B ∈ U A ⊆ B ▵⇐⇒ ∀x ∈ U x ∈ A⇒ x ∈ B. Similarly, the equality operator ⋅ = ⋅
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is used to denote a pair of sets with the same elements, namely ∀A,B ∈ U A =
B ▵⇐⇒ A ⊆ B ∧ B ⊆ A. Given two sets A and B the cartesian product operator
⋅ × ⋅ builds a new set of pairs such that the first element is contained in A while
the second one is contained in B: ∀A,B ∈ U A ×B ≜ {⟨x, y⟩ ∈ U ∣ x ∈ A ∧ y ∈ B}.
Finally, the power set operator ℘(⋅) applied to a set A returns the set of all subsets
of A, namely ∀A ∈ U ℘(A) ≜ {P ∈ U ∣ P ⊆ A}.

A relation between two sets A and B is any subset of their cartesian product,
i.e. R ⊆ A×B. The set of elements that appear as the first element in a relation pair
constitutes its domain and their are captured by the dom(⋅) operator as follows:
∀R ⊆ A×B dom(R) ≜ {x ∈ U ∣ ⟨x, y⟩ ∈ R}; while the set of elements that appear
as the second element in a relation pair represents its range which is captured by
the range(⋅) operator as: ∀R ⊆ A×B range(R) ≜ {y ∈ U ∣ ⟨x, y⟩ ∈ R}. A function
f is a relation between two sets A and B with the additional constraint that for
each element of its domain there exists one and only one corresponding element
in its range: ∀f ⊆ A×B ∀x ∈ A ∀y, z ∈ B ⟨x, y⟩ ∈ f ∧ ⟨x, z⟩ ∈ f ⇒ y = z. Since
there is a unique correspondence between an element x ∈ A and the corresponding
element y ∈ B such that ⟨x, y⟩ ∈ f , the element y is also denoted as f(x). A function
f ⊆ A×B is usually referred as f ∶ A→ B, while A→ B denotes the set of functions
with domain A and range B. In the following the notation ∃f ∶ A → B stands for
exists a function f with domain A and range B. A function is said to be partial if
it is not defined for all elements of its domain and it is denoted using the symbol
⇀, while the symbol ↑ stands for undefined.

The power of a finite set A ⊆ U is denoted by An and inductively defined as:

∀n ∈ N∪{0} An =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ε if n = 0

A if n = 1

A×An−1 otherwise

Notice that all power sets are disjoint, that is ∀n ∈ N∪{0}, An ∩ An+1 = ∅, this
also implies the fundamental assumption that ε ∉ A.

Similarly, the closure of a set A ⊆ U , denoted as A∗, is defined as follows:

A∗ = ⋃
n∈N∪{0}

An

An element σ ∈ A∗ is called sequence and it is represented as a list of A elements
separated by commas and enclosed between angled brackets ⟨a1, a2, . . . , an⟩, or
more compactly as ⟨ai⟩

n
i=1 for any n ∈ N∪{0}. For convention, whenever n = 0,

⟨ai⟩
0
i=1 = ⟨⟩ = ε. When is clear from the context, a sequence ⟨ai⟩

n
i=1 can also be

simply represented as list of elements a1a2 . . . an one after the other.
The elements of a sequence σ ∈ A∗ are denoted by set(σ), while a single indexed

element ai of a sequence σ = ⟨ai⟩
n
i=1 is called occurrence of σ. The inclusion of an

element a ∈ A in a sequence σ ∈ A∗ is denoted as a ∈ σ. The length of a finite
sequence σ ∈ A∗ is the number of occurrences in σ and is denoted as ∣σ∣, namely
∀σ ∈ A∗ ∣σ∣ = n ▵⇐⇒ ∃n ∈ N∪{0} σ ∈ An.

The concatenation of two sequences α,β ∈ A∗ is the sequence σ ∈ A∗ made of
the symbols of α followed by the symbols of β respecting their order, it is denoted
as α ○ β, or simply as αβ if it is clear from the context.
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∀α,β, σ ∈ A∗ α ○ β = σ ▵⇐⇒ (2.1)

α = ⟨ai⟩
n
i=1 ∧ β = ⟨bj⟩

m
j=1 ∧ σ = ⟨sk⟩

n+m
k=1 ∧

∀k ∈ [1, n] sk = ak ∧ ∀k ∈ [1,m] sn+k = bk

The tuple (A∗, ○, ε) is a monoid: the set is close under the concatenation of
sequences, ∀α,β ∈ A∗ α ○ β ∈ A∗, the concatenation is associative, ∀α,β, γ ∈
A∗ (α ○ β) ○ γ = α ○ (β ○ γ), and there exists an identity element ε such that
∀σ ∈ A∗ ε ○ σ = σ ○ ε = σ.

The restriction or projection [25] of a sequence σ ∈ A∗ with respect to another
set B ⊆ A is a new sequence denoted as π (B,σ) where all the occurrences not in
B are removed.

∀B ⊆ A ∀σ ∈ A∗ π (B,σ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ε if σ = ε

π (B,γ) if σ = γ ○ ⟨a⟩ ∧ a ∉ B

π (B,γ) ○ ⟨a⟩ if σ = γ ○ ⟨a⟩ ∧ a ∈ B

(2.2)

Clearly, π (∅, σ) = ε and π (A,σ) = σ. The projection can be extended to a set
of sequences in the following way: ∀S ⊆ A∗, π (A,S) = {π (A,σ) ∣ σ ∈ S}.

The number of occurrences of a set of symbols B ⊆ A in a sequence σ ∈ A∗ is
denoted by ∣σ∣B = ∣π (B,σ)∣. When B is the singleton {a}, the notation ∣σ∣a is used
instead of ∣σ∣{a}.

The prefixes [25] of a sequence σ ∈ A∗ is denoted with prefixes (σ) defined as:

prefixes (σ) = {α ∈ A∗ ∣ ∃β ∈ A∗ σ = α ○ β} (2.3)

This operation can be extended to set of sequences considering the union of the
prefixes of all these sequences: ∀S ⊆ A∗, prefixes (S) = ⋃σ∈S prefixes (σ).

The sequence notions given above can be applied in the language context using
a different jargon: the finite set of symbols Σ ⊆ U is called alphabet, any subset
of the closure of Σ, L ⊆ Σ∗ is said to be a language L over Σ, and each finite
sequence σ ∈ Σ∗ is said to be a string.

♢
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Structures

The following chapters make heavy use of mathematical structures in order to
formalize the expressed concepts. Mathematical structures are usually defined in
terms of tuples and operations on them; for instance, a graph is usually stated as a
pair G = ⟨V,E⟩ such that E ⊆ V×V , where the chosen symbols G, V , and E are not
relevant for the purpose of defining the structure. When two or more structures
of the same type are needed, it is a common practice to use subscripts and/or
superscripts for distinguishing them. For example, one may define the union of
two graphs G1 = ⟨V1,E1⟩ and G2 = ⟨V2,E2⟩, as G′ = ⟨V ′,E′⟩ such that V ′ = V1∪V2

and E′ = E1 ∪ E2. This mathematical notation can soon become cumbersome,
especially when one has to simultaneously deal with several different structures
having components with the same name.

In these chapters a different approach is adopted: a structure S is defined as
a set of objects, that in turn are tuples of the form ⟨Xi⟩ni=1, having the same
properties. Each component Xi of a tuple ⟨Xi⟩ni=1 ∈ S is denoted by a different
access function with signature fi ∶ S → ℘(Ci), called field that is nothing more
than a total function with domain the structure S and range the parts of the
domain Ci of its corresponding component Xi ⊆ Ci. The only drawback is that for
every structure S there exist n fields fi ∶ S → Ci, such that for every object s ∈ S
of the form s = ⟨Xi⟩ni=1, fi(s) = Xi. The set of all fields {fi}

n
i=1 of a structure S

is denoted by fields(S). For instance, the structure of a graph can be defined as
G = {(V,E) ∣ E ⊆ V ×V } where fields(G) = {vertices, edges}. In particular, for any
g ∈ G the access functions vertices ∶ G → ℘(U) and edges ∶ G → ℘(U) denote the
vertices and the edges of g, respectively. The signature of such functions can be
improved assuming that all vertices are chosen from a generic set V ⊆ U , hence
fields can be restated as vertices ∶ G → ℘(V), and edges ∶ G → ℘(V×V), making the
structure at hand even more explicit.

The union of two graphs g, h ∈ G can then be defined as the graph u ∈ G such
that vertices(u) = vertices(g) ∪ vertices(h), and edges(u) = edges(g) ∪ edges(h). In
this way, no subscripts or superscripts are needed; furthermore, different structures
can have access functions with the same name or symbol, since they can be distin-
guished by their domain. For instance, the union of graphs mentioned above may
be stated as a total function union ∶ G×G → G and denoted by ⋅ ∪ ⋅. This notation
should not surprise a reader familiar with general-purpose functional languages.

Pattern matching is used to retrieve the attributes of a tuple when considered
as a single unit. For example, given a structure S with two fields, the notation
∃u, v ∈ U ⟨u, v⟩ = s can be used to extract the attributes of any object s ∈ S. If an
attribute is not relevant for the context, it can be substituted by the underscore
symbol “ ” that is a placeholder for any fresh variable not referenced in the context,
i.e. ∃v ∈ U ⟨ , v⟩ = s stands for ∃u ∈ U ∃v ∈ U a = ⟨u, v⟩.

The remainder of this chapter introduces the multiset and the graph structures
in great details. The aim is twofold: to show how structures are declared in practice,
and to describe two basic structures extensively used in the following chapters. The
reader can safely skip this part without loss of continuity.



12 2 Background

Multiset

A multiset is usually defined as a total function m ∶ U → N∪{0} such that for each
element of the domain it returns the number of its occurrences. For demonstration
purposes, the same effect is obtained by considering functions defined over finite
objects, as in the following definition.

Definition 2.1 (Multiset). A multiset is a partial function f ∶ U ⇀ N over a
finite domain, namely f ⊆ U×N is a multiset if and only if ∣dom(f)∣ < ω, and for all
(u, i), (v, j) ∈ f it holds that u = v implies i = j. The set of all possible multisets is
denoted by M defined as:

M≜ {⟨f⟩ ∣ f ∶ U ⇀ N ∧ ∣dom(f)∣ < ω} (2.4)

Tab. 2.1 summarizes the main functions over the structure M. In particular,
this structure is so simple to have only one component and consequently only one
field pairs ∶ M → ℘(U×N) returning the internal representation of each multiset as
a finite set of pairs. The fields declaration becomes fields(M) ≜ {pairs}. The first

Table 2.1. Basic operations on multisets.

Symbol Function Description Ref

pairs ∶ M → ℘(U×N) The internal finite set of pairs
representing the multiset.

inline

elements ∶ M → ℘(U) Distinct elements contained in
the multiset.

inline

μ multiplicity ∶ M×U → N∪{0} Multiplicity of a particular ele-
ment.

inline

multiset ∶ U →M Multiset constructor. inline

⋅ ∈ ⋅ in ∶ M×U → B True if the element belongs to
the multiset, false otherwise.

inline

∣ ⋅ ∣ size ∶ M → N∪{0} Total number of elements in the
multiset.

Eq. 2.5

⋅ ∪ ⋅ union ∶ M×M→M Union between two multisets. Eq. 2.6

⋅ ∖ ⋅ subtract ∶ M×M→M Difference between two multi-
sets.

Eq. 2.8

column of the table contains an optional symbol that can be used to compactly
denote the function, the second column contains the function signature, the third
column contains a brief description of the function behaviour, and the last column
contains a reference to the expression that formally define the function. This last
column can contain the label inline which means that the function is defined inline
inside the text, rather than on a specific numbered equation. Fields are usually
declared inline, because they have a straightforward definition.

For any multiset m ∈ M, the function elements(m) = {u ∈ U ∣ ∃i ∈ N (u, i) ∈
pairs(m)} returns the set of elements contained in the multiset. The function
multiplicity ∶ M×U → N∪{0} returns the multiplicity of each element u in the
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multiset m, formally multiplicity(m,u) = i if ∃i ∈ N (u, i) ∈ pairs(m), 0 otherwise.
The function in ∶ M×U → B determines if an element u belongs to the multiset
m, formally in(m,u) = T if u ∈ elements(x), F otherwise. It worths noting that
∀u ∈ U in(m,u) = T ⇔ μ(m,u) > 0. The function multiset ∶ U → M builds a
multiset starting from a single element u ∈ U , formally ∀u ∈ U ∀m ∈ M m =
multiset(u) ▵⇐⇒ pairs(m) = {(u, 1)}.

The function size ∶ M → N∪{0} returns the total number of elements in the
multiset and is defined in Eq. 2.5.

size ∶ M → N∪{0} is (2.5)

∀m ∈ M size(m) = ∑
(u,i)∈pairs(m)

i

The union ∶ M×M → M operator returns a new multiset obtained from the
union of two other multisets, its definition is reported in Eq. 2.6.

union ∶ M×M→M is (2.6)

∀x, y, z ∈ M z = union(x, y) ▵⇐⇒

pairs(z) = {⟨u, i⟩ ⊆ U×N ∣ u ∈ elements(x) ∪ elements(y) ∧

i = μ(x,u) + μ(y, u)}

Notice that functions are defined on fields in order to decouple them from the
internal structure. Nevertheless, a function can be defined in more compact way
if fields can be inferred from the definition. For instance, the field pairs can be
defined as pairs(z) = {⟨u,μ(u)⟩ ∣ u ∈ U ∧ μ(u) > 0}, in this case the function union
can be rewritten as follows:

union ∶ M×M→M is (2.7)

∀x, y, z ∈ M z = union(x, y) ▵⇐⇒

∀u ∈ U μ(z, u) = μ(x,u) + μ(y, u)

Given the constructor function multiset ∶ U → M, the addition of a single
element u ∈ U to a multiset m ∈ M is compactly denoted as m ∪ u, which stands
for m ∪multiset(u).

Function subtract ∶ M×M→M returns a new multiset equal to the difference
between two given multisets, as defined in Eq. 2.8.

subtract ∶ M×M→M is (2.8)

∀x, y, z ∈ M z = subtract(x, y) ▵⇐⇒

∀u ∈ U μ(z, u) = μ(x,u) ⊖ μ(y, u)

where x⊖ y is the substraction operation defined on natural numbers.
Similarly to the previous operation, the subtraction of a single element u ∈ U

from a multiset m ∈ M is briefly denoted as m∖u, which stands for m∖multiset(u).
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A multiset m ∈ M can be extensionally defined by declaring its internal pairs
m ≜ ⟨{ei ↦ vi}

n
i=1⟩, or with an abuse of notation as m ≜ {ei ↦ vi}

n
i=1, where ei ∈ U

is an element of m, vi is its multiplicity, and n is the number of distinct elements
in m. A different and more compact notation for multiset is defined here, where
the two elements of each pair are putted together and separated by a reversed
superscript ‵, namely m = {vi

‵ei}
n
i=1.

Graph

The multiset definition and its functions should be intended as a basic example,
since a multiset as only one independent field. This section shows how to deal
with multiple fields and how a new structure can be defined by difference from an
existing one.

Definition 2.2 (Directed Graph). A directed graph G is a tuple ⟨V,E⟩ that
belongs to the set G defined as follows

G ≜ {⟨V,E⟩ ∣ V ⊆ U ∧E ⊆ V ×V } (2.9)

The basic operations on graphs are summarized in Tab. 2.2. In this case the
structure has two fields fields(G) ≜ {vertices, edges} with signature vertices ∶ G →
℘(U), and edges ∶ G → ℘(U×U), one for accessing vertices and one for edges, respec-
tively. For any graph g ∈ G such that g = ⟨V,E⟩, vertices(g) = V , and edges(g) = E.

Table 2.2. Basic operations on graphs.

Symbol Function Description Ref

vertices ∶ G → ℘(U) Vertices of the graph. inline

edges ∶ G → ℘(U×U) Edges of the graph. inline

predecessors ∶ G×U ⇀ ℘(U) Set of predecessors of a vertex. inline

successors ∶ G×U ⇀ ℘(U) Set of successors of a vertex. inline

is-predecessor ∶ G×U×U ⇀ B True if the first vertex is a pre-
decessor of the second one.

inline

is-successor ∶ G×U×U ⇀ B True if the first vertex is a suc-
cessor of the second one.

inline

⋅ ∪ ⋅ union ∶ G×G → G Compute the union of two
graphs.

Eq. 2.10

⋅ & ⋅ join ∶ G×G → G Compute the join of two graphs. Eq. 2.11

The function predecessors ∶ G×U ⇀ ℘(U) returns the set of vertices that are pre-
decessors of the given vertex, formally ∀g ∈ G ∀u ∈ vertices(g) predecessors(g, u) =
{v ∈ U ∣ (v, u) ∈ edges(g)}, undefined otherwise. Similarly, the successors ∶ G×U ⇀
℘(U) function returns the set of vertices that are successors of the given vertex,
hence ∀g ∈ G ∀u ∈ vertices(g) successors(g, u) = {v ∈ U ∣ (u, v) ∈ edges(g)}, un-
defined otherwise. The function is-predecessor ∶ G×U ×U → B returns true if the
first given vertex is a predecessor of the second one, formally ∀g ∈ G ∀u, v ∈
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vertices(g) is-predecessor(g, u, v) = T if v ∈ predecessors(g, u), F otherwise. Simi-
larly, the function is-successor ∶ G×U×U → B returns true if the first given vertex is a
successor of the second one, hence ∀g ∈ G ∀u, v ∈ vertices(g) is-successor(g, u, v) =
T if v ∈ successors(g, u), F otherwise. Both functions are undefined if one of the
first two given arguments is not a vertex of g.

The union ∶ G ×G → G operator performs the union between two graphs: in
particular, the resulting graph will contain the union of the original vertices and
edges. It is formally defined in Eq. 2.10.

union ∶ G×G → G is (2.10)

∀g, h, d ∈ G d = union(g, h) ▵⇐⇒

vertices(d) = vertices(g) ∪ vertices(h) ∧

edges(d) = edges(g) ∪ edges(h)

Finally, the join ∶ G×G → G operator given in Eq. 2.11 is similar to the union
one, but in this case an extra edge is created between each pair of vertices that
originally belong to a different a graph.

join ∶ G×G → G (2.11)

∀g, h, d ∈ G d = join(g, h) ▵⇐⇒

vertices(d) = vertices(g) ∪ vertices(h) ∧

edges(d) = edges(g) ∪ edges(h)∪

{(u, v) ∣ u ∈ vertices(g) ∧ v ∈ vertices(h)}

A function over a structure often returns a new structure similar to the original
one; hence, it may be useful to define a new structure by difference, assuming that
certain fields do not change. For instance, let us consider the function add-edge ∶
G ×U → G, which returns a new graph equal to the original one except for an
additional edge, it can be defined as follows:

add-edge ∶ G×U → G is (2.12)

∀g, h ∈ G ∀u, v ∈ vertices(g)

h = add-edge(g, u, v) ▵⇐⇒

∀f ∈ fields(G) ∖ {edges} f(h) = f(g) ∧

edges(h) = edges(g) ∪ {(u, v)}

The same definition can be obtained using:

add-edge ∶ G×U → G is (2.13)

∀g, h ∈ G ∀u, v ∈ vertices(g)

h = add-edge(g, u, v) ▵⇐⇒

h same as g except

edges(h) = edges(g) ∪ {(u, v)}

where “x same as y except” means that all fields are equal in the two structures
except for those listed below.
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Graphical Process Modeling Languages

Plenty of graphical PMLs have been proposed over the years: a complete analysis
concerning all of them cannot fit in a single chapter and is out the scope of this
thesis. Conversely, this chapter focuses on some well-known graphical modeling
languages that are valid representatives for the category. In particular, it provides
an overview of Petri Nets, Coloured Petri Nets (CPNs), Yet Another Workflow
Language (YAWL), and Business Process Model and Notation (BPMN). Petri
nets has been chosen because it is the most simple formal language able to model
many interesting aspects of concurrent systems in a graphical way. Furthermore,
it represents the theoretical foundation of many other modeling languages used in
the PAIS domain, including the ones considered here. Petri nets theory is also used
through the whole thesis and in particular in the next chapter. Several variants
of Petri nets have been proposed in literature; for this reason, a general language
called Place Transition Nets (PTNs) is introduced here, that captures many vari-
ants of interest in a complete and formal way. CPNs are a high-level variant of
Petri nets that is treated in a separate section, because it integrates a functional
language for representing and manipulating data. YAWL is both a modeling lan-
guage routed on Petri nets and a fully-fledged workflow system. It was born as an
academic research project to show how a PML can support many of the existing
workflow control-flow patterns in a uniform way. BPMN is an Object Management
Group (OMG) industrial standard adopted by many offerings, including GlassFish
Application Server [26] and JBoss jBPM Workflow Engine [27]. The set of con-
structs offered by the BPMN is quite large; hence, this chapter concentrates only
on the basic ones that have a clearly stated semantics. Each language is presented
in a similar way starting from the description of its graphical elements, together
with its syntax and an intuitive interpretation, then a formalization is provided in
terms of mathematical structures.

The aim is to give a sufficiently wide overview of the state of the art about
PMLs by providing a clear and uniform treatment of the four considered languages.

The remainder of this chapter is organized as follows: Sec. 3.1 discusses some
related work about PMLs classification and about other modeling languages not
considered here. Sec. 3.2 introduces the PTNs language from which many Petri
nets variants can be derived by adding syntactical restrictions. Sec. 3.3 is dedicated
to CPNs. YAWL is discussed in Sec. 3.4, while BPMN is treated in Sec. 3.5.
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3.1 Related Work

The workflow pattern initiative [28] was born with the aim to evaluate the suit-
ability of PMLs and workflow systems in terms of a set of recurring features, called
patterns. Many kinds of patterns have been defined, the principal ones cover three
different aspects: control-flow [29], data [30] and resources [31]. Several PMLs and
workflow systems have been evaluated using this methodology [32–35], providing
a useful starting point for their comparison.

In [36] Börger performs a critical analysis about BPMN, YAWL and workflow
patterns, claiming that they fail in realizing their original vision. In particular, to
be a standard, BPMN contains too much ambiguities in the original description
resulting in an underspecification of semantically relevant concepts. Furthermore,
the large number of offered constructs may aggravate this problem. Finally, the
main critics moved by Börger about YAWL is its strict dependency to the workflow
control-flow patterns and the lack of a completely formalized semantics.

Scientific Workflow Management Systems (WfMSs) are software systems de-
veloped for automating large-scale scientific experiments. Their main goals are
reusing domain specific functions and tools, and ease their integration through a
visual editor. Moreover, the nature of the defined computations may require clus-
ter of computers and remote resources; therefore, many scientific WfMSs provides
a support for transparently executing their tasks on a Grid environment. Some
representative scientific WfMSs are Kepler [37], Taverna [38] and Triana [39], they
have been analyzed and compared with respect to traditional WfMSs using work-
flow patterns in [35]. The presence of different systems is justified by their different
application domains: each system provides a set of reusable components for a spe-
cific science context, such as biology, chemicals, physics, and so on. They are not
treated here for several reasons. First of all, despite the rich set of components of-
fered for a specific application domain, the provided routing constructs are limited
and they can be simulated through CPNs structures [35]. Moreover, their main
aim is the automation of complex computations, rather than the coordination of
human agents. Finally, they are usually offered as stand-alone applications without
a client/server architecture.

The aim of the WIDE project (Workflow on Intelligent Distributed database
Environment) [40,41] is to extends the technology underlying traditional DataBase
Management Systems (DBMSs) in order to support process-oriented applications.
The main interesting contributions of such project are: the introduction of the
business transaction notion, the support for exceptions, and the management of
temporal aspects. A business transaction is an extension of the traditional transac-
tion notion developed in the database context to the workflow domain. It is based
on two main concepts: atomicity and isolation. Atomicity regards the identifica-
tion of some process parts that have to be atomically executed, i.e. their execution
can only reach the end or be unrolled. Isolation implies that intermediate results
computed by some parts are hidden to the rest of the workflow and to the external
environment. The exception handling mechanism is based on the Event-Condition-
Action (ECA) paradigm: the event identifies when the exception has been thrown,
the condition is an expression that determines if the exception has to be handled,
and the action is the activity to be performed. Furthermore, each data item may
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have a temporal aspect related to it that becomes of particular importance during
exception handling. The WIDE model includes the definition of temporal instants,
temporal intervals, and durations.

A different design paradigm known as object-aware process management is
adopted in some PMLs. This approach gives great attention to the business ob-
jects manipulated during the process execution. More specifically, processes are
described in terms of object behaviors and object interactions. The behavior of an
object instance is captured by specific states and the transitions among them. The
execution of an activity depends on the current state of an object and determines
the activation of a subsequent state. Several approaches based on the object life
cycle (OLC) notion have been defined in literature, for instance: object-centric
process models [42], business artifacts [10], data-driven process coordination [43],
and object-process methodology [44]. These approaches typically associate to each
activity as set of pre/post-conditions related to object states. They usually cover
process modeling but do not provide a direct support for process execution. PHIL-
harmonicFlows [45] is a complete framework for object-aware process management.
It supports the definition of data and processes in separated, but well-integrated
models by explicitly considering the relationships between them. Furthermore, it
provides support for process modeling, execution and monitoring.

The ADEPTflex system [46], recently renamed as AristaFlow BPM Suite, has
been developed in the context of the ADEPT project [47] with the aim to improve
the flexibility of existing PAISs. Such system is able to support the process schema
evolution, namely the migration of process instances to a new schema version. This
ability is of paramount importance in contexts characterized by long evolving pro-
cesses or in which deviations from the standard procedures happens frequently,
such as in the heath-care domain. The underlying rationale is based on the defini-
tion of a comprehensive set of changing operations with pre/post-conditions which
ensure that, if the desired changes satisfies the preconditions, the resulting process
schema will again be correct. A process described with AristaFlow is character-
ized by a control-flow described as a direct structured graph, namely a symmetric
correspondence between split and join nodes is required, and data represented as
global variables. Moreover, tasks in different branches can be synchronized through
synchronization edges, e.g. delay dependencies. The use of structured forms speed-
ups the analysis required to perform a particular change by restricting the area to
be analyzed, and it simplifies the resulting structural adaptations.

♢
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3.2 Place Transition Nets

“We do not consider our list of important aspects of Petri nets
complete, and for each aspect claimed to be common to all Petri

net variants there might exist very reasonable exceptions.”

– Desel and Juhás, What Is a Petri Net? [48]

The original concept of Petri nets appears for the first time in the seminal work
of Carl Adam Petri, where the author proposes a novel approach to the theory
of computation that better matches the nature of physical information flow [49].
Nowadays, Petri nets can be better understood as a family of formal languages for
modeling a wide range of aspects concerning concurrent systems: several Petri nets
variants have been proposed, each one with its own set of features and analysis
methods, tailored for a specific research or application field.

Nevertheless, these languages share some common characteristics and they are
all driven by the same basic principles [50]. First of all, they have a graphical
notation directly mapped to a formal semantics stated in terms of mathematical
functions. They universally embody four principal language constructs, called here
place, transition, arc and token. A place is usually depicted as an ellipse, a transi-
tion as a rectangle, an arc as a curved line ending with a solid arrow and a token
as a small solid circle. An arc connects a place with a transition and vice versa
but no arc can connect two elements of the same type, while tokens are ideally
stored in places. A net is composed of such elements together with further textual
inscriptions such as identifiers, weights and capacities. Petri nets elements can be
interpreted in several ways depending on the underlying application domain [14];
for instance, they can be considered conditions, channels, counters, events, actions,
tasks, messages, threads and so on.

The behavior of a transition is determined by its locality that includes itself
and the places directly connected to it [50]. Transitions with disjoint localities are
guaranteed to be independent, hence they can occur concurrently. Depending on
the assumed semantics, this principle does not exclude either concurrent transitions
with overlapping localities or concurrent instances of the same transition.

The proliferation of Petri nets variants is triggered by the compromise be-
tween language expressiveness and the power of the related algorithmic solutions:
greater expressiveness enlarges the class of systems that can be captured, but at
the same time precludes the existence of general verification methods and hinders
the effectiveness of the existing ones.

The drawback of such richness is an undesired complexity of the Petri nets
theory in comparison to the intuitive semantics of nets, that can be easily described
in terms of tokens flowing from one place to the other through arcs by means of
local transitions. Ironically, Petri nets graphical notation may be ambiguous due
to the existence of many formal semantics [51,52]: the same net can be interpreted
in several ways; hence, the graphical representation of a model should be always
accompanied with formal definitions fixing the details about its semantics.

Several unification frameworks have been proposed to relate existing Petri nets
variants [53,54]: in particular, a large group of Petri nets can be seen as extensions
or restrictions of other ones. Extensions and restrictions that do not alter the class
of representable nets are usually introduced to capture some concepts in a more
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convenient way or to ease the verification of some desired properties. Conversely,
when the added features increase or reduce language expressiveness, i.e. the kinds
of representable nets, the proposed changes is said to be a proper extension or a
proper restriction, respectively.

To expose the full potentials of Petri nets in the process modeling context,
this section introduces them following the approach of Valk [55, 56] and Dufourd
et al. [57]: it initially describes a reasonably general yet formal language, called
here place transition nets, from which other Petri nets variants can be obtained
by imposing further syntactical and semantical restrictions. Such language is said
to be reasonably general, because there exist even more general extensions and
other variants that cannot be captured in this way. However, this cannot be con-
sidered a great limitation, since the primary purpose of such extensions if far be-
yond the modeling of processes. Place/Transition Systems are the most used Petri
Nets variants both from theoretical and practical perspectives [58]. This success
is probably due to their expressiveness and their simpler interleaved or sequential
semantics [51] where a transition is considered a single atomic change. Other Petri
nets variants such as Condition/Event Systems and Elementary Net Systems have
a so called step semantics [51, 58] where a step is a set of transitions that are
all enabled at the same time and occur together. Petri nets languages with a step
semantics are not treated further because they do not reflect the actual theoretical
basis of PMLs. Coloured Petri Nets are also excluded from this section because
will be discussed in Sec. 3.3.

3.2.1 Graphical Elements and Syntax

The graphical elements of PTNs together with their inscriptions are summarized
in the first column of Fig. 3.1 from (a) to (m); the remaining two columns depict
alternative representations of the same elements with some simplifying conven-
tions. Neither the size of graphical elements nor the position of the inscriptions is
relevant, provided that all inscriptions are close to their related constructs.

A place is depicted as an ellipse with a very close inscription of the form p/k
as in Fig. 3.1.a. The inscription includes a mandatory unique identifier p followed
by an optional number k ∈ N, called the capacity of the place. When present, the
capacity is separated by the place identifier with a slash symbol. As depicted in
Fig. 3.1.b, a place can be enhanced with a further custom label `, but such label is
only an aid for the end-user: its presence does not alter the behaviour of a place.
If the capacity is not specified as in Fig. 3.1.c it is assumed to be unlimited, i.e.
k = ω, where ∀n ∈ N ω > n.

A transition is depicted as a rectangle with a very close inscription t ∶ `, as
exemplified in Fig. 3.1.d. The inscription includes a mandatory unique identifier t
followed by an optional label `, preceded by a colon. The label ` can also be placed
inside the rectangle as in Fig. 3.1.e. A label can have different meaning depending
on the application domain, but it is usually interpreted as an action that can be
performed. An action does not need to be unique and when it is not specified as
in Fig. 3.1.f, it is assumed to be the special symbol τ , called silent action.

An arc is depicted as in Fig. 3.1.g: a straight or curved line with a solid arrow
at one end and a centered inscription of the form w ⋅ p̂ called instantaneous weight,
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Fig. 3.1. PTNs graphical elements. (a) Place with explicit capacity. (b) Place with an
additional label. (c) Place with implicit unlimited capacity. (d) Transition with explicit
label. (e) Transition with explicit internal label. (f) Silent transition. (g) Generic arc of
variable weight. (h) Generic double arc of variable weight. (i) Arc with implicit unitary
weight. (j) Arc of constant weight w. (k) Simple arc. (l) Representation of a token. (m) A
place marked with 3 tokens. (n) An alternative place marking. (o) A place marked with
a generic number of tokens, possibly zero.

where w ∈ N is the weight and p̂ is the place reference of the arc, i.e. the identifier
of an existing place. Two arcs with the same ends and inscription but different
orientation can be represented as a single arc with an arrow in both ends, as in
Fig. 3.1.h. Neither the weight nor the place reference are mandatory: when the
weight w is omitted, as in Fig. 3.1.i, it is assumed to be 1; when it is the place
reference p̂ to be omitted, as happens in Fig. 3.1.j, it is assumed to be the ideal
place θ: a place that always contains one and only one token, in short θ̂ = 1. An
arc like the one in Fig. 3.1.k with weight w = 1 and place reference p̂ = θ̂ is said to
be a simple arc.

A token is depicted as a small solid circle as in Fig. 3.1.l. One or more tokens
are used to mark a place, e.g. the place in Fig. 3.1.m is marked with 3 tokens;
it is also common to say that a marked place contains one or more tokens. An
alternative representation is given in Fig. 3.1.n where tokens are replaced with
their count: this becomes necessary when the number of tokens is too large to fit
in the place representation. When the number of tokens of a place is not known,
the place is marked with the name of a variable as happens in Fig. 3.1.o.
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Fig. 3.2. (a) Multiple arcs with the
same source and target are not supported
by PTNs. (b) A weighted arc can rep-
resent multiple weighted arcs having the
same orientation.

The PTNs syntax is pretty straight-
forward consisting of very few rules. A
net is a graph made of a finite number
of nodes eventually connected with arcs.
A valid net shall comply with two sim-
ple syntactical rules: (1) an arc shall not
connect two nodes of the same kind and
(2) two nodes shall not be connected by
more than one arc having the same orien-
tation, i.e. the underlying graph is not a
multi-graph. While the former is an essen-
tial rule shared by all Petri nets, the latter
may be limiting in certain contexts, e.g. when the Petri nets language supports
only constant arcs of unitary weight. Nevertheless, this is not a great limit in PTNs
thanks to weighted arcs and silent transitions. For instance, two constant weighted
arcs having the same source, target and orientation as in Fig. 3.2.a can be modeled
with a single arc of a constant weight equals to the sum of the previous weights, as
exemplified in Fig. 3.2.b. Notice that the white on black labels in Fig. 3.2 are not
part of the introduced language, they are used to specify additional information
about models.

In PTNs any specified arc shall be always connected to a source and a target
node, while a node is not required to be connected to another one through an arc,
i.e. the underlying graph may be not connected.

3.2.2 Bare Language Interpretation

The informal semantics of the PTNs language can be easily explained in terms
of states and transitions. The state of a net is given by the distribution of tokens
inside its places. In Petri nets literature, a state is frequently called marking, a
term better reflecting its graphical nature. Chosen the place identifiers p1 through
pm, a marking can be compactly expressed in polynomial-like form as ⟨∑m

i=1 cipi⟩
where ci is the number of tokens in the place pi and any component cipi of the
sum is omitted whenever ci = 0. For instance, the marking of the net in Fig. 3.3.a
can be written as ⟨3p1 + 5p2 + 2p3⟩. If places are ordered in some way, a marking
can also be represented as a vector, in the given example it becomes [3,5,2,0]T .

A marking is said to be valid w.r.t. a certain net if no place contains more
tokens than its capacity. A transition is said to be enabled if it satisfies its local
triggering conditions: each place connected to the transition with an incoming arc
shall contain a number of tokens greater than or equal to the arc instantaneous
weight, and each place connected to the transition with an outgoing arc shall have
enough space to accommodate the tokens prescribed by the instantaneous weight
of the arc, i.e. the instantaneous weight plus the tokens already present has to be
less than or equal to the place capacity. The execution of an enabled transition is
described by the so called firing rule : a transition fires as a single atomic step that
removes the tokens of each place connected with an incoming arc, and it adds new
tokens in each place connected with an outgoing arc. The number of removed or
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added tokens is determined by the instantaneous weight w ⋅ p̂ of the corresponding
arcs, namely w times the tokens currently stored in p in the enabling state.

The firing rule is exemplified in Fig. 3.3 by means of an intermediate phase
showing the instantaneous weight of each arc: Fig. 3.3.a represents the net in the
initial state, Fig. 3.3.b shows how instantaneous weights are computed, then the
triggering conditions are evaluated; in particular, p1 contains more than 1 tokens,
p2 contains more than 4 tokens and the tokens added to p3 and p4 do not exceed
their capacities, hence t1 is enabled and can fire. The resulting state of the firing
is depicted in Fig. 3.3.c.

Fig. 3.3. Example of the PTNs firing rule. (a) The original net configuration. (b) An
intermediate phase after the evaluation of all instantaneous weights. (c) The new net
configuration after the evaluation of the triggering conditions and the firing of t1.

The label ` associated to each transition can be interpreted as a visible action,
offered to the environment, i.e. the system waits indefinitely in the current state
until an external observer chooses one of the enabled actions. The only exception
are those transitions labeled with the special silent action τ that are executed
internally without the help of the environment.

The overall behavior of a net is given by the full range of interaction patterns
offered to an external observer that in turn depends on the visible actions available
on each reachable state. A good metaphor is given by a machine with buttons [59]:
an action can be seen as a labeled button, when the underlying transition is enabled
the button lights up and can be pressed by the user, otherwise the button is turned
off and cannot be pressed.

In any valid state, zero or more atomic transitions may be enabled at the
same time, but only one of them can fire, potentially altering the current token
distribution. If no transition is enabled in a certain state, such state is said to be
terminal and no further interactions are possible. If only one transition is enabled,
the interpretation is trivial and depends on the transition label: in case of a silent
action the system fires it and goes on, otherwise it waits until the only offered
action is performed. If more than one transition is enabled, the interpretation
becomes more complex, because visible actions may be duplicated and they may
be also mixed with silent ones. Several yet reasonable scheduling strategies can be
defined to face such case; for instance, the less frequently performed transition can
be chosen by tracking the number of firings of each transition. Another interesting
aspect is proving that the external visible behavior of a system does not depend
on the scheduling of silent transitions, and so on.



3.2 Place Transition Nets 25

Anyway, this chapter is only intended as an introduction to Petri nets: there-
fore, for sake of simplicity the focus is on a particular kind of nets with an easy
to understand interpretation, which is identified here by the notion of plain net.
A net is said to be simple if there is no state, reachable from the initial one, that
enables two transitions with the same action, including silent ones. A transition is
atomic and takes no time to fire unless it waits for an action from the environment:
hence, it can be assumed that the interpreter can run as many silent actions as
possible until a stable waiting state is reached. In general, it is not guaranteed that
such waiting state exists, i.e. the net can enter into an infinite internal loop. In a
simple net the interpreter can fire at most one silent transition at time, hence no
complex scheduling is required to choose the next internal step.

Example 3.1. A first example of process model specified in PTNs is the readers-
writers system in Fig. 3.4 originally proposed in [14] and reported here with some
minor changes. The net is clearly simple since any transition has a distinct action.
Such net describes a process involving x ∈ N programs that can access to a shared
portion of the memory.

Fig. 3.4. A readers-writers system originally proposed in [14] and modeled here as a
PTNs net with some minor changes, in particular a fixed number of system resources
w.r.t. the running programs x and a silent transition t5.

Up to 3 running programs can simultaneously read the shared memory, but only
one program at time can write it and only when no other ones are in the reading
state. When t1 fires, 1 out of x programs enters in the reading state removing one
token from p3. Since t3 requires 3 tokens from p3 to fire, no program can write the
shared memory while someone is reading it. Conversely, when t3 fires all tokens in
p3 are removed until the program does not exit from the writing state, hence no
other program can enter in the reading state by firing t1. The number of programs
in p1 is restored through the silent transition t5 that fires promptly as soon as a
token is placed in p5.
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Notice that the net in Fig. 3.4 models only quantitative aspects of the system,
because there is no way to distinguish individual tokens, e.g. it is not relevant
which program exits first from the reading state w.r.t. the entering order. 2

The model in Fig. 3.4 discussed in Ex. 3.1 is made only with arcs of con-
stant weights, the next example introduces a simple net that takes advantage of
instantaneous weights.

Example 3.2. Given a number x ∈ N, the recursive function fib ∶ N → N defined in
Eq. 3.1 returns the x-element of the Fibonacci sequence starting from 1. If it is
desired, the 0 element can be included in the sequence with slightly modification of
the recursive definition, while the algorithm and the net in Fig. 3.5 do not change.

∀x ∈ N fib(x) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if x ≤ 2

fib(x − 1) + fib(x − 2) otherwise
(3.1)

The function Eq. 3.1 is implemented in Fig. 3.5.a as an iterative algorithm
using three temporary variables. The same function is implemented with a PTNs
model where the argument is placed in p1 and the result is the number of tokens
in p3 when p1 becomes empty.

y ← fib(x)

1 y ← 0
2 z ← 1
3 while x > 0 do
4 w ← y
5 y ← z
6 z ← z +w
7 x← x − 1
8 end while
9 return y

p1 p2 p3

6 1 0

t1 5 1 1

t1 4 2 1

t1 3 3 2

t1 2 5 3

t1 1 8 5

t1 0 13 8

(a) (b) (c)

Fig. 3.5. (a) An iterative algorithm to compute Fibonacci numbers. (b) A net that
computes Fibonacci numbers, the result is the number of tokens that can be read from
p3 when the net halts because p̂1 = 0. (c) A complete run of the net for x = 6: in each
state, only t1 can be fired, hence the execution is easily representable in tabular form.

From the net in Fig. 3.5 it is easy to obtain a net able to compute the Fi-
bonacci sequence by reversing the arc (p1, t1): with the reversed arc, t1 can be fire
indefinitely from the initial state [0,1,0]T . After i ∈ N firings of t1, the marking
will be on the form [i,fib(i + 1),fib(i)]T . 2
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3.2.3 Formal Semantics

In this section the PTNs bare language semantics is formally stated in terms of
mathematical functions. The first part of the section defines what is a net, then it
introduces the notion of state or marking and finally, how a net is interpreted.

For obtaining more readable function signatures, three generic sets P ,T ,A ⊆ U
are introduced containing the possible identifiers for places, transitions and actions,
respectively. These sets are not further specified, it is only assumed that θ /∈ P and
τ ∉ A: in other words the ideal place θ cannot be used as a place identifier, and
the silent action τ cannot be used as an action identifier.

Definition 3.3 (Place Transition Nets). A place transition net is a tuple
⟨P,T,F ⟩ that belongs to the set N defined as follows:

∀a ∈ U a ∈ N ▵⇐⇒ (3.2)

a = ⟨P,T,F ⟩ ∧

P ∶ P ⇀ N∪{ω} ∧ T ∶ T ⇀ A ∪ {τ} ∧

V = dom(P ) ∪ dom(T ) ∧ ∣V ∣ = ∣dom(P )∣ + ∣dom(T )∣ < ω ∧

F ∶ V ×V ⇀ N×(dom(P ) ∪ {θ})

where: ⟨V,dom(F )⟩ ∈ G is a finite directed graph such that θ ∉ V , since it is a
reserved symbol that cannot be used as vertex identifier. P ∶ P ⇀ N∪{ω} is a
partial function that for every place in the net returns its capacity. The symbol
ω denotes the absence of a finite capacity. T ∶ T ⇀ A ∪ {τ} is a function that for
every transition in the net returns its action, eventually the silent one. Finally,
the function F ∶ V ×V ⇀ N×(dom(P ) ∪ {θ}) stores for each arc its instantaneous
weight. The symbol θ denotes an ideal place that always contains one and only
one token independently from the current state.

Table 3.1. Basic operations on PTNs nets.

Symbol Function Description Ref

places ∶ N → ℘(P×N∪{ω}) Places with their capacities. inline

transitions ∶ N → ℘(T ×A ∪ {τ}) Transitions with their action. inline

arcs ∶ N → ℘(U×U×N×P ∪ {θ}) Net arcs with their weight. inline

pls ∶ N → ℘(P) Vertices that are places. inline

trs ∶ N → ℘(T ) Vertices that are transitions. inline

vertices ∶ N → ℘(U) Vertices of the underlying graph. inline

edges ∶ N → ℘(U×U) Edges of the underlying graph. inline

ζ capacity ∶ N ×P ⇀ N∪{ω} Place capacity. inline

λ action ∶ N ×T ⇀ A Action associated to a transition. inline

Λ actions ∶ N → ℘(A) Set of declared actions. inline

weight ∶ N ×U×U ⇀ N∪{0} Weight coefficient of an arc. Eq. 3.3

The basic access functions are summarized in Tab. 3.1. In particular, a
PTNs net has three fields fields(N) = {places, transitions,arcs} with signature
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places ∶ N → ℘(P ×N∪{ω}), transitions ∶ N → ℘(T ×A ∪ {τ}), and arcs ∶ N →
℘(U×U ×N×P ∪ {θ}). For every a ∈ N such that a = ⟨P,T,F ⟩, places(a) = P ,
transitions(a) = T , and arcs(a) = F . The function pls ∶ N → ℘(P) returns the
set of place identifiers contained in the net, which can be formalized as pls(a) =
dom(places(a)). Similarly, the function trs ∶ N → ℘(U) stores the set of transition
identifiers used in the net and corresponds to trs(a) = dom(transitions(a)). The
functions vertices ∶ N → ℘(U) and edges ∶ N → ℘(U ×U) return the set of ver-
tices and edges of the underlying graph, respectively. They are formally defined as
follows: vertices(a) = pls(a) ∪ trs(a), while edges(a) = dom(arcs(a)).

The capacity ∶ N ×P ⇀ N∪{ω} operator returns the capacity associated to
each place in the net. It is defined only on existing places as follows: ∀a ∈ N ∀p ∈
pls(a) capacity(a, p) = k if (p, k) ∈ places(a), and is undefined otherwise. In similar
way, action ∶ N ×T ⇀ A ∪ {τ} is defined only on existing transitions as ∀a ∈
N ∀t ∈ trs(a) action(a, t) = ` if (t, `) ∈ transitions(a), and is undefined otherwise.
The symbols ζ and λ are used as shorthand for capacity and action, respectively.
Function actions ∶ N → ℘(A) returns the set of actions declared in the net: they are
obtained as ∀a ∈ N actions(a) = range(transitions(a)) ∖ {τ}, and briefly denoted
using the auxiliary symbol Λ.

The partial function weight ∶ N×U×U ⇀ N∪{0} is defined in Eq. 3.3: it returns
the weight coefficient of the arc if such arc exists, and is undefined otherwise.
Therefore, it can be used to check the presence of an arc.

weight ∶ N ×U×U ⇀ N∪{0} is (3.3)

∀a ∈ N ∀⟨x, y⟩ ∈ U×U

weight(a, x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

w if ∃w ∈ N ∃p ∈ pls(a) ∪ {θ} (x, y,w, p) ∈ arcs(a)

0 if x, y ∈ vertices(a)

↑ otherwise

The functions pre-set ∶ N ×U → ℘(U) and post-set ∶ N ×U → ℘(U) in Tab. 3.2
become useful to capture the locality of a transition in order to check its enabling
conditions.

Table 3.2. More operations on PTNs nets.

Symbol Function Description Ref

pre-set ∶ N ×U ⇀ ℘(U) Elements connected to the speci-
fied vertex with an incoming arc.

Eq. 3.4

post-set ∶ N ×U ⇀ ℘(U) Elements connected to the speci-
fied vertex with an outgoing arc.

Eq. 3.5

components ∶ N ×U ⇀ ℘(U) It return the vertices reachable
from the specified vertex.

Eq. 3.6

union ∶ N ×N → N Union between two nets. Eq. 3.7

These functions are defined over all vertices: hence, they can also be applied
to a place for obtaining the surrounding transitions. In particular, the pre-set of a
transition t is defined as the set of all places that have an incoming arc in t. In the
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same way, the pre-set of a place p is the set of all transitions having an incoming
arc in p. The post-set is defined in a similar way for both places and transitions.

pre-set ∶ N ×U ⇀ ℘(U) is (3.4)

∀a ∈ N ∀u ∈ U

pre-set(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

{v ∈ vertices(a) ∣ (v, u) ∈ edges(a)} if u ∈ vertices(a)

↑ otherwise

post-set ∶ N ×U ⇀ ℘(U) is (3.5)

∀a ∈ N ∀u ∈ U

post-set(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

{v ∈ vertices(a) ∣ (u, v) ∈ edges(a)} if u ∈ vertices(a)

↑ otherwise

The partial function components ∶ N ×U ⇀ ℘(U) returns the set of vertices
that are reachable from the specified vertex using the existing net arcs. Its formal
definition is given in Eq. 3.6.

components ∶ N ×U ⇀ ℘(U) is (3.6)

∀a ∈ N ∀v ∈ vertices(a) ∀u ∈ U

u ∈ components(a, v) ▵⇐⇒

u = v ∨ ∃z ∈ components(a, v) (z, u) ∈ edges(a)

Function union ∶ N×N → N performs the union between two nets, as formally
defined in Eq. 3.7.

union ∶ N ×N → N is (3.7)

∀a, b, c ∈ N c = union(a, b) ▵⇐⇒

vertices(a) ∩ vertices(b) = ∅

∀f ∈ fields(N) f(c) = f(a) ∪ f(b)

Markings

The notion of marking captures the state of a net. The marking definitions in
Petri nets literature are often decoupled from a particular net instance, i.e. the
state of a net can be also a valid state of another one. This can be obtained by
implicitly assuming that any place not considered in a marking is empty. Here a
more pragmatic approach is adopted: a marking of a net is defined as a function
with a finite domain that has at least to declare the content of all net places.

Definition 3.4 (Marking). Assuming that place identifiers are taken from the
set P , a marking is a partial function q ∶ P ⇀ N∪{0} of finite domain that for
each declared place returns the number of tokens in it and always returns 1 for
the ideal place θ. The set of all markings is denoted by Q defined as:

Q = {⟨f⟩ ∣ f ∶ P ⇀ N∪{0} ∧ ∣dom(f)∣ < ω ∧ f(θ) = 1} (3.8)
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Many useful operations can be defined on markings, the basic ones are sum-
marized in Tab. 3.3. In particular, a marking has only one field for accessing its
internal representation fields(Q) = {body}. Such function is defined as follows: for
every marking q ∈ Q such that q = ⟨f⟩, body(q) = ⟨f⟩.

Table 3.3. Common operations on markings.

Notation Function Description Ref

body ∶ Q → ℘(P×N∪{0}) Internal representation. inline

count ∶ Q×P ⇀ N∪{0} Tokens in the given place. Eq. 3.9

marked ∶ Q → ℘(U) Marked places. inline

∣ ⋅ ∣ size ∶ Q → N∪{0} The number of marked places. inline

⋅ ∈ ⋅ in ∶ U×Q → B Check if a place is marked. 3.10

⋅ ≥ ⋅ geq ∶ Q×Q → B Greater than or equal to relation. 3.11

⋅ > ⋅ ge ∶ Q×Q → B Greater than relation. 3.12

⋅ ≤ ⋅ leq ∶ Q×Q → B Less than or equal to relation. 3.13

⋅ < ⋅ le ∶ Q×Q → B Less than relation. 3.14

Since a marking is represented as a function with a finite domain, it can be
defined by enumerating its values: given a net a ∈ N with pls(a) ≜ {pi}

m
i=1, a

marking q ∈ Q can be declared as q ≜ {pi ↦ vi}
m
i letting by convention the angle

brackets, the element ⟨θ, 1⟩ and any element ⟨pi,0⟩ implicit. This is an alternative
mathematical notation to the usual polynomial-like notation which expresses q
as ⟨∑m

i=0 vipi⟩ for every vi ≠ 0. Whenever the current state q ∈ Q is clear from
the context, e.g. it is graphically represented as tokens in the net, the content
of a place pi is denoted as p̂i. The intuitive notation q(x) is adopted to obtain
the number of tokens inside the place x that is captured by the simple function
count ∶ Q×P ⇀ N∪{0} defined as:

count ∶ Q×P ⇀ N∪{0} is (3.9)

∀q ∈ Q ∀p ∈ marked(q) ∀n ∈ N∪{0}

n = count(q, p) ▵⇐⇒ (p,n) ∈ body(q)

The domain of a marking excluding θ is captured by the function marked ∶
Q → ℘(U) such that for any q ∈ Q, marked(q) = dom(body(q))∖{θ}, while the size
of a marking size ∶ Q → N∪{0} is defined as the number of its explicit places,
i.e. ∣q∣ = size(q) = ∣marked(q) ∣. The inclusion relation ⋅ ∈ ⋅ can be consistently
overloaded to check if a marking declares the number of tokens of a certain place:
such function is defined in Eq. 3.10.

in ∶ U×Q → B is (3.10)

∀u ∈ U ∀q ∈ Q in(u, q) =
⎧⎪⎪
⎨
⎪⎪⎩

T if u ∈ marked(q)

F otherwise

The remaining relations are defined in Eq. 3.11 through Eq. 3.14. Each one
overloads an existing mathematical symbol in a fairly intuitive way. The negation
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of such symbols are also used for reversing the operation result; for instance,
∀q, r ∈ Q q /≥ r⇔¬(q ≥ r).

geq ∶ Q×Q → B is (3.11)

∀q, r ∈ Q geq(q, r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

T if ∀u ∈ marked(q) ∩marked(r) q(u) ≥ r(u) ∧

∀u ∈ marked(r)∖marked(q) r(u) = 0

F otherwise

ge ∶ Q×Q → B is (3.12)

∀q, r ∈ Q ge(q, r) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T if q ≥ r ∧

(∃x ∈ marked(q) ∩marked(r) q(x) > r(x) ∨

∃y ∈ marked(q)∖marked(r) q(y) ≠ 0 )

F otherwise

leq ∶ Q×Q → B is (3.13)

∀q, r ∈ Q leq(q, r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

T if ∀u ∈ marked(q) ∩marked(r) q(u) ≤ r(u) ∧

∀u ∈ marked(q)∖marked(r) q(u) = 0

F otherwise

le ∶ Q×Q → B is (3.14)

∀q, r ∈ Q le(q, r) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T if q ≤ r ∧

(∃x ∈ marked(q) ∩marked(r) q(x) < r(x) ∨

∃y ∈ marked(r)∖marked(q) r(y) ≠ 0 )

F otherwise

These definitions are not redundant: it is easy to prove that ∀q, r ∈ Q q ≤ r⇒ q /> r,
but the contrary ∀q, r ∈ Q q /≤ r ⇒ q > r does not hold. For instance, the
two markings q ≜ {p1 ↦ 0, p2 ↦ 1} and r ≜ {p1 ↦ 1, p2 ↦ 0} cannot be compared:
q /≥ r because q(p1) < r(p1), as a consequence q /> r; conversely q /≤ r because
q(p2) /> r(p2) and this implies also q /< r.

Table 3.4. Common operations on markings.

Notation Function Description Ref

zero ∶ N → Q Empty marking for the given net. inline

⋅ + ⋅ add ∶ Q×Q ⇀ Q Add two markings. 3.15

⋅ ⊖ ⋅ subtract ∶ Q×Q ⇀ Q Subtract two markings. 3.16

∥ ⋅ ∥ norm ∶ Q → N∪{0} Total number of tokens in the given
marking.

3.17

Some common operations on markings that preserve their properties are sum-
marized in Tab. 3.4. For every net a ∈ N , the function zero ∶ N → Q returns a
marking q ∈ Q such that for any u ∈ U , q(θ) = 1, q(u) = 0 for all u ∈ pls(a) and
q(u) ↑ otherwise. Addition, safe substraction, and norm are defined in Eq. 3.15,
Eq. 3.16, and Eq. 3.17, respectively.
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add ∶ Q×Q ⇀ Q is (3.15)

∀q, r ∈ Q add(q, r) = s ∈ Q

∀u ∈ U s(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if u = θ

q(u) + r(u) if u ∈ q ∧ u ∈ r ∧ u ≠ θ

q(u) if u ∈ q ∧ u ∉ r

r(u) if u ∉ q ∧ u ∈ r

↑ otherwise

subtract ∶ Q×Q ⇀ Q is (3.16)

∀q, r ∈ Q subtract(q, r) = s ∈ Q

∀u ∈ U s(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 u = θ

max {q(u) − r(u),0} if u ∈ q ∧ u ∈ r ∧ u ≠ θ

q(u) if u ∈ q ∧ u ∉ r

0 if u ∉ q ∧ u ∈ r

↑ otherwise

norm ∶ Q → N∪{0} is (3.17)

∀q ∈ Q norm(q) = ∑
x∈marked(q)

q(x)

In particular, norm ∶ Q → N∪{0} returns the total number of tokens in its
marked places, ideal place not included, e.g. for all net a ∈ N ∥zero(a)∥ = 0.

Definition 3.5 (Valid Marking). A marking is said to be valid for a given net
a ∈ N if and only if it is defined for each place of the net and its value does not
exceed the place capacities. The set of all valid markings of a net is denoted by
the function markings ∶ N → ℘(Q) defined as follows

∀a ∈ N markings(a) ≜ (3.18)

{q ∈ Q ∣ ∀p ∈ pls(a) p ∈ marked(q) ∧ q(p) ≤ capacity(a, p) }

Definition 3.6 (Marked Net). A marked net is a pair ⟨a, q⟩ such that the former
element is a net a ∈ N and the latter one is a valid marking q ∈ markings(a). The
symbol N ● is used to denote the set of all marked nets which is defined as follows:

N ● ≜ { ⟨a, q⟩ ∣ a ∈ N ∧ q ∈ markings(a) } (3.19)

Notice that for all a ∈ N , the pair ⟨a, zero(a)⟩ ∈ N ●, hence N can be improperly
considered a subset of N ●; similarly, given a net a ∈ N ● such that a = ⟨b, q⟩, the first
element b ∈ N can be seen as the structure of a. The functions net ∶ N ● → N and
initial-marking ∶ N ● → Q capture such difference: for any ⟨b, q⟩ ∈ N ●, net(b, q) = b
and initial-marking(b, q) = q. The net ∶ N ● → N operator is left implicit whenever
a function accepting a net is used on a marked net, e.g. we can write pls(a) instead
of pls(net(a)) when a is marked.
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Formal Interpretation

This section explains how a net is interpreted. A run of a net is essentially a se-
quence of firings driven by external actions. At each step, the available actions are a
function of the current internal state which is altered by the performed transitions.

Definition 3.7 (Instantaneous Weight). The instantaneous weight of an arc
depends on the current state and it is defined as follows:

weight ∶ N ×U×U×Q ⇀ N∪{0} is (3.20)

∀a ∈ N ∀(u, v) ∈ U×U ∀q ∈ markings(a)

weight(a, u, v, q) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

w ⋅ q(p) if ∃w ∈ N ∃p ∈ pls(a) ∪ {θ} (u, v,w, p) ∈ arcs(a)

0 if u, v ∈ vertices(a)

↑ otherwise

The function is defined only for valid markings. For every net a ∈ N , if the argu-
ment (u, v) ∉ edges(a), the function evaluates to 0. It worths noting that when the
arc is constant, its instantaneous weight is equivalent to its weight coefficient:

∀a ∈ N ∀(u, v) ∈ edges(a) ∀q ∈ markings(a) (3.21)

is-const(a, u, v) ⇒ weight(a, u, v, q) = weight(a, u, v)

Definition 3.8 (Enabled Set). A transition t ∈ trs(a) of a net a ∈ N is said to be
enabled in q ∈ markings(a) if each place x ∈ pre-set(t) contains a number of tokens
q(x) greater than or equals to the instantaneous weight weight(a, x, t, q), and each
place y ∈ post-set(t) has enough space to store new tokens. The space is enough if
the existing tokens q(y) plus the new ones weight(a, t, y, q) are less than or equal
to the capacity capacity(a, y) minus the removed tokens, due to weight(a, y, t, q)
if the corresponding arc exists. The enabled set of a net a ∈ N is the set of all
transitions t ∈ trs(a) which are enabled in a given marking q ∈ markings(a). The
enabled-set is captured by the function enabled-set ∶ N ×U → ℘(U) defined as:

∀a ∈ N ∀q ∈ markings(a) ∀t ∈ trs(a) (3.22)

t ∈ enabled-set(a, q) ▵⇐⇒

∀x ∈ pre-set(a, t) q(x) ≥ weight(a, x, t, q) ∧

∀y ∈ post-set(a, t) q(y) ≤ ζ(a, y) −weight(a, t, y, q) +weight(a, y, t, q)

An enabled transition can fire potentially changing the current state of the
net. The concept of firing a transition to compute the next state is captured by
the following definition.

Definition 3.9 (Next State). Given a net a ∈ N , a transition t ∈ trs(a) which
is enabled in a state q ∈ markings(a), can fire moving the system from q to a next
state r ∈ markings(a), such that the necessary amount of tokens in pre-set(a, t)
have been consumed and some new tokens have been produced in post-set(a, t).
Formally the firing of a transition is defined as follows:
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fire ∶ N ×Q×U ⇀ Q (3.23)

∀a ∈ N ∀q ∈ markings(a) ∀t ∈ enabled-set(a, q) ∀r ∈ Q

fire(a, q, t) = r ▵⇐⇒ ∀x ∈ pls(a)

r(x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q(x) −weight(a, x, t, q) + if x ∈ pre-set(a, t) ∪ post-set(a, t)

+ weight(a, t, x, q)

q(x) if x ∉ pre-set(a, t) ∪ post-set(a, t)

↑ otherwise

Notice that the function fire ∶ N ×Q×U ⇀ Q is defined only for valid markings
and only for enabled transitions.

Definition 3.10 (Reachability Set). Given a net a ∈ N , a state r ∈ Q is said to
be reachable from q ∈ Q if it belongs to the reachability set defined in Eq. 3.24:

∀a ∈ N ∀q ∈ markings(a) ∀r ∈ Q (3.24)

r ∈ reachability-set(a, q) ▵⇐⇒

r = q ∨ ∃s ∈ reachability-set(a, q) ∃t ∈ enabled-set(a, s) r = fire(a, s, t)

The reachability set of a net a ∈ N starting from a marking q ∈ Q is shortly denoted
as ρ(a, q), while for a marked net b ∈ N ● it becomes ρ(b) that should be interpreted
as ρ(net(b), initial-marking(b)).

In the following, some basic notions are introduced to describe the execution
of a net in terms of fired transitions.

Definition 3.11 (Trace Set). A trace is a sequence of transitions. For conve-
nience, the set of all possible finite traces trs(a)∗ of a net a ∈ N is denoted as
TR(a), while the generic set of all finite traces is denoted as TR:

TR(a) = trs(a)∗ TR = ⋃
a∈N
TR(a) ⊆ T

∗ (3.25)

Similarly, the set of all possible finite observable traces of a net a ∈ N is denoted
as TA(a), while the generic set of all finite observable traces is denoted as TA:

TA(a) = actions(a)∗ TA = ⋃
a∈N
TA(a) ⊆ A

∗ (3.26)

Definition 3.12 (Forward Firing Relation). Given a net a ∈ N , the for-
ward firing relation is the set of possible triples ⟨q, σ, r⟩ made of a marking
q ∈ markings(a), a trace σ ∈ TR that can be executed by a starting from q, and the
resulting marking r ∈ Q obtained by firing σ. It is formally defined as follows:

fr ∶ N → ℘(Q×TR×Q) is (3.27)

∀a ∈ N ∀q, r ∈ Q ∀σ ∈ TR
⟨q, σ, r⟩ ∈ fr(a) ▵⇐⇒ q ∈ markings(a) ∧ (r = q ∨

∃s ∈ ρ(a, q) ∃η ∈ TR ∃t ∈ T

t ∈ enabled-set(a, s) σ = η ○ t ∧ (q, η, s) ∈ fr(a) ∧ r = fire(a, s, t))
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A triple ⟨q, σ, r⟩ ∈ fr(a) can be denoted as q
σ
→ r when the underlying net a ∈ N

can be inferred from the context, e.g. q is declared to belong to markings(a). For

sake of simplicity, when σ = ⟨t⟩, q
⟨t⟩
→ r is denoted as q

t
→ r.

Definition 3.13 (Net Traces). Given a net a ∈ N and an initial valid marking
q ∈ markings(a), a trace of a is a sequence of transitions σ ∈ TR(a) that can be
fired from q without interruption. The set of all finite transition traces of a net is
captured by the function traces ∶ N ×Q ⇀ ℘(TR) defined as follows:

traces ∶ N ×Q ⇀ ℘(TR) is (3.28)

∀a ∈ N ∀q ∈ markings(a) ∀σ ∈ TR
σ ∈ traces(a, q) ▵⇐⇒ ∃r ∈ ρ(a, q) ⟨q, σ, r⟩ ∈ fr(a)

Definition 3.14 (Action Sequence). Every transition t ∈ trs(a) of a net a ∈ N
is coupled with an action that can be obtained through the action ∶ N ×T → A
function defined in Sec. 3.2.3 and represented by the symbol λ. Such function can
be extended to traces as follows:

λ̂ ∶ N ×TR ⇀ TA is (3.29)

∀a ∈ N ∀σ ∈ TR

λ̂(a, σ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ε if σ = ε

λ(a, t) ○ λ̂(a, η) if ∃t ∈ trs(a) ∃η ∈ TR σ = t ○ η

↑ otherwise

Definition 3.15 (Observable Trace). Given a net a ∈ N and a trace σ ∈ TR, its
corresponding observable trace can be obtained using the function obs ∶ N×TR → TA,
defined as the projection of λ̂(a, σ) w.r.t. observable actions:

obs ∶ N ×TR → TA is (3.30)

∀a ∈ N ∀σ ∈ TR obs(a, σ) = π (actions(a), λ̂(a, σ))

Definition 3.16 (Trace Firing). Given a net a ∈ N , an initial valid marking
q ∈ markings(a), and a trace σ ∈ TR, the function fire-trace ∶ N ×Q×TR ⇀Q returns
the last state reached by firing the trace σ until it is possible:

fire-trace ∶ N ×Q×TR ⇀Q is (3.31)

∀a ∈ N ∀q ∈ markings(a) ∀σ ∈ TR

fire-trace(a, q, σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fire(a, q, t) if σ = ⟨t⟩ ∧ t ∈ enabled-set(a, q)

fire-trace(a, r, η) if σ = t ○ η ∧

∧ t ∈ enabled-set(a, q)

∧ r = fire(a, q, t)

q otherwise

The reachability graph of a marked net (a, q) ∈ N ● is an edge-labeled multi-
graph not necessarily finite, such that each node represents a state s reachable
from the initial one, i.e. s ∈ ρ(a, q), two nodes s and r are connected with an edge
if and only if there exists a transition t for which ⟨s, t, r⟩ ∈ fr(a), and t is used to
label the corresponding edge.
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Definition 3.17 (Marked Nets Equivalence). A pair of marked nets a, b ∈ N ●

are said to be in the relation Rg ⊆ N ●×N ● w.r.t. their reachability graphs, if there
exists an edge-preserving graph isomorphism f ∶ ρ(a) → ρ(b) between the two
reachability graphs. Formally,

∀a, b ∈ N ● (a, b) ∈ Rg
▵⇐⇒ (3.32)

∃f ∶ ρ(a) → ρ(b)

∀r ∈ ρ(b) ∃s ∈ ρ(a) f(s) = r ∧

∀r, s ∈ ρ(a) f(r) = f(s) ⇒ r = s ∧

∀r, s ∈ ρ(a) ∀t ∈ trs(a) ∪ trs(b) r
t
→ s⇔ f(r)

t
→ f(s)

The relation Rg is an equivalence relation and it is denoted by ⋅ ≃g ⋅.

A Simple Interpreter

Petri Nets are generally used to model existing or desired systems and check their
properties, for instance to know if a deadlock can occur during their execution. In
such cases, one is concerned with all possible interleaved executions of concurrent
entities, while the underlying scheduling strategy can be abstracted away. Con-
versely, when then language is used to model a new desired system, one may be
interested in how a net is interpreted, for instance for simulating its behaviour. In
this section an interpreter for simple nets is given.

Listing 3.1 PTNs interpreter for simple nets.

input: A net a ∈ N
input: An initial state q ∈ Q

Net-Interpreter(a, q)

1 if q ∉ markings(a) then
2 throw “illegal initial state”
3 end if
4 while enabled-set(a, q) ≠ ∅ do
5 if ∃t, h ∈ enabled-set(a, q) λ(t) = λ(t) ∧ t ≠ h then
6 throw “ambiguous step”
7 end if
8 if ∃t ∈ enabled-set(a, q) λ(t) = τ then
9 q ← fire(a, q, t)

else
10 h←Wait-Action(a, enabled-set(a, q))
11 q ← fire(a, q, h)
12 end if
13 end while
14 return
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Here, a net a ∈ N is said to be simple if and only if no reachable state r ∈ ρ(a, q)
enables two distinct transitions having the same action, including silent ones; i.e.,
for all r ∈ ρ(a, q) and for all t, h ∈ enabled-set(a, r) if λ(t) = λ(h) then t = h.

A simple interpreter for the PTNs language is given by the Net-Interpreter
procedure in Lis. 3.1. Such procedure requires two arguments, a net a ∈ N and an
initial state q ∈ Q.

The interpreter throws an exception if the initial state is not valid (line 1) and
it may also throw an exception if the net is not simple (line 5), and during the
computation an ambiguous state is encountered. The interpreter runs until a final
state is reached (line 4). When a silent transition is found (line 8), the interpreter
selects it ignoring alternative actions. Otherwise, the interpreter waits that the
environment selects one of the available actions through the Wait-Action pro-
cedure (line 10). The Wait-Action is considered a primitive procedure of the
run-time support; hence, no implementation details are given here.

The selected action determines the transition to fire. It is not guaranteed that
the interpreter is always reactive, i.e. it does not enter into a infinite loop, because
it could exist an unlimited sequence of states, each one enabling a silent transition.

More sophisticated interpreters can be given but this is not the focus of the
thesis. For example, one may allow multiple silent transitions at the same time,
and consider those nets that are independent from a particular scheduling strategy.

3.2.4 Core Language Elements

In this section the PTNs bare language is enriched with special arcs and groups.
Such constructs do not alter the language expressiveness, since they can be directly
mapped to basic PTNs elements.

Fig. 3.6. The new elements added to the PTNs bare language. (a-b) A reset arc from p
to t is a shorthand for a basic arc from p to t of instantaneous weight p̂. (c-d) An inhibitor
arc from p to t is a shorthand for a basic arc from p to t of instantaneous weight w ⋅ p̂
with w > 1. (e-f) A transfer arc from pi to pj passing through t is a shorthand for two
basic arcs with the same instantaneous weight p̂i, one from pi to t, the other from t to pj .

The reset arc [60] construct is denoted as a dashed straight or curved line with
a unfilled double arrow as in Fig. 3.6.a. It is always oriented from a place p to a
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transition t, never the contrary. Its purpose is to empty the source place p every
time the target transition t fires. The behavior of a reset arc is formally the same
of a basic arc from p to t with instantaneous weight p̂, as shown in Fig. 3.6.b.

The inhibitor arc [61] construct is denoted as a dashed straight or curved line
with a unfilled circle at one end as in Fig. 3.6.c. It is always oriented from a place
p to a transition t, never the contrary. Its purpose is to forbid the firing of the
target transition t whenever the source place p is not empty. The behavior of an
inhibitor arc is formally the same of a basic arc from p to t with instantaneous
weight 2 ⋅ p̂, as shows in Fig. 3.6.d. The choice of using 2 as a coefficient is not
relevant: the same effect can be obtained with any weight greater than 1.

The transfer arc [62] construct is denoted as a dashed straight or curved line
with a unfilled arrow at one end as shown in Fig. 3.6.e. A transfer arc connects a
source place pi with a target place pj always passing through a transition t. The
second part of the arc from t to pj is annotated with the identifier pi of the source
place. The behavior of a transfer arc is formally the same of two related arcs one
from the source place pi to the intermediate transition t and the other from t to
the target place pj . The instantaneous weight p̂i of both arcs is the number of
tokens in the source place. The place annotation can be usually omitted, but it
becomes mandatory when multiple transfer arcs pass through the same transition
in order to correctly identify from which source place they come from, as happens
in the net of Fig. 3.7.

Fig. 3.7. A net with multiple
transfer arcs passing through
the same transition.

A generic set of reset arcs or inhibitor arcs hav-
ing the same target transition can be also denoted
as a reset group or an inhibitor group, respectively.
A reset group is depicted as a dashed closed line
connected to the target transition with a reset arc,
as shown in Fig. 3.8.a. The closed line encloses the
source places that need to be reset when the tar-
get transition fires. An inhibitor group is denoted
in similar way but using an inhibitor arc to con-
nect the closed line with the target transition. The
behavior of reset and inhibitor groups is formally
defined in terms of reset and inhibitor arcs that in
turn can be mapped to basic arcs of the PTNs bare
language. For instance, the net in Fig. 3.8.a can be
translated without efforts to the net in Fig. 3.8.b.
In the given marking ⟨1p1 + 2p2 + 3p3⟩, the transition t1 turns out to be enabled
because p1 contains at least 1 token and both places p5 and p6 are empty. Places
p2, p3 and p4 in the reset group do not actually need to be considered in the acti-
vation of t1 because they always contains the exact number of tokens required by
their outgoing reset arcs. When t1 fires, all tokens in the reset group are removed
together with the token in p1 reaching the final marking ⟨1p7⟩.

The following example shows how these new arcs can be used to define a net
without the explicit use of place references. It also shows how a combination of
special arcs can be used to copy the content of a place to another one.
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Fig. 3.8. (a) A simple net with a reset and a inhibitor group. (b) The same net translated
in the PTNs bare language without special arcs.

Example 3.18. This example shows the use of all the three special arcs introduced
by the PTNs core language, in particular it shows how two transfer arcs can be
combined to implement a copy from one place to the other. The net in Fig. 3.9.b
implements the steps given by the iterative algorithm in Fig. 3.9.a that in turn
computes the simple function z = xy for any x ∈ N and y ∈ N∪{0} using only basic
arithmetical operators.

z ← Pow(x, y)

1 z ← 1
2 while y > 0 do
3 y ← y − 1
4 z ←∑x

i=1 z
5 end while
6 return z

(a) (b)

Fig. 3.9. (a) An iterative algorithm to compute the function xy. (b) A net with special
arcs that computes the same function following the logic of the given algorithm.

For any fixed number of tokens x ∈ N in p1, the behavior of the net in Fig. 3.9.b
can be described as follows. If y = 0 then the initial marking is also a final marking
and the result 1 can be read from the last place p6, indeed ∀x ∈ N x0 = 1. If y > 0
then only t1 is enabled: when it fires it consumes one token from p2, one from
p3 and it copies x tokens in p4. In the resulting configuration neither t1 can fire
because p3 is empty, nor t3 because p4 contains some tokens.
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p1 p2 p3 p4 p5 p6

2 3 1 0 0 1
t1 2 2 0 2 - -
t2 - - - 1 1 1
t2 - - - 0 2 1
t3 - - 1 0 0 2
t1 2 1 0 2 - -
t2 - - - 1 2 2
t2 - - - 0 4 2
t3 - - 1 0 0 4
t1 2 0 0 2 - -
t2 - - - 1 4 4
t2 - - - 0 8 4
t3 - - 1 0 0 8

Fig. 3.10. A complete run of the net given in
Fig. 3.9.b with x = 2 and y = 3.

At this stage only t2 is enabled
and can fire exactly x times copy-
ing the content of p6 in p5 until p4

becomes empty. Now p5 contains x
times the content of p6 and t3 is en-
abled because both p3 and p4 are
empty. When t3 fires it removes all
tokens from p6, it moves in it the
content of p5 and it produces a to-
ken in p3. The token in p3 disables
t3 due to the imposed capacity: if p3

had no such capacity limit, the tran-
sition t3 could be fired indefinitely, al-
tering the correct sequence of events.
With a new token in p3, the described
computation can start again from t1
as long as p2 is not empty, but this
time with a different value in p6. A
complete run of the net for x = 2 and
y = 3 is represented in tabular form
in Fig. 3.10 where the first row is the initial marking and each subsequent row
reports the fired transition followed by the obtained marking. 2

As happens for the PTNs bare language, multi-arcs are not supported by the
PTNs core language: special arcs cannot connect a transition with a place in its pre-
set. In some cases such connections have no sense, e.g. in Fig. 3.11.a the transition
tj1 can fire only if pi1 contains at least one token and is empty at the same time.
In other cases multi-arcs may be useful, e.g. in the fragment of Fig. 3.11.b tj1 can
fire whenever x ≥ w leading to a state in which pi1 is empty. The same effect can
be obtained adding some constructs as exemplified in Fig. 3.11.c: a new transition
tn+1 that fires immediately after tj1 can withdraw the tokens left in pi1.

Particular attention must be paid to preserve the semantics of reset arcs. For
instance, if there exists another transition tj2 that contains pi1 in its pre-set, tj2
is certainly disabled by the firing of tj1 in the case of Fig. 3.11.b, but not in the
case of Fig. 3.11.c. Indeed, certain transitions need to be disabled until the reset
is performed.

A generally applicable solution is exemplified in Fig. 3.11.d: for each transition
tj2, a new place pm+1+j2 with one token in it is added to the net; then, such place
is connected with a double arc to the related transition, with an outgoing arc
to the original transition tj1 and with an incoming arc from the new resetting
transition tn+1. The described construction can be applied whenever necessary to
offer a multi-arc support without altering the bare language.



3.2 Place Transition Nets 41

Fig. 3.11. (a) An inhibitor arc cannot connect a transition with a place in its pre-set.
(b) The restriction also holds for reset arcs, but in this case such connection may be
useful. (c) The reset effect can be emulated with an additional transition. (d) Conflicting
transitions shall be disabled for not altering the original net semantics.

3.2.5 Petri Nets Classification

Nets modeled in the PTNs language can be classified as self-modifying nets with
weighted arcs. The self-modifying nets language has been originally proposed by
Valk in [55]. PTNs can also be seen as a restriction of the generalized self-modifying
nets proposed in [57] by Dufourd et al. A generalized self-modifying net with
m places {pi}

m
i=1 is a Petri net in which the arc weights can be a generic finite

polynomial of the form ∑h
j=1 vj ⋅ x̂

ej

j where h ∈ N, and for all j ∈ [1, h] the coefficients
vj , ej ∈ N∪{0} and the variable xj ∈ {pi}

m
i=1.

In a net a ∈ N , an instantaneous weight w ⋅p̂ represents a polynomial of degree 1
in the form v ⋅ x̂+k, where x ∈ pls(a) and v, k ∈ N∪{0} are non-negative coefficients,
such that v + k > 0 and v ⋅ k = 0. As a consequence, the weight of an existing
arc cannot be zero unless p̂ = 0 and it can only be in two forms v ⋅ x̂ or k, both
representable as w ⋅ p̂ using the ideal place θ.

The remaining classes of Petri nets considered in this section are defined as
restrictions of PTNs. This classification does not claim to be exhaustive; in par-
ticular, it does not include condition/event systems, elementary net systems, and
other Petri nets with a step semantics [51] that are, for several reasons, less fre-
quently used in comparison with Petri nets languages with an interleaving seman-
tics, like PTNs. The latter ones are more studied from a theoretical point of view
and more adopted in practical applications because they produce more compact
models, thanks to special arcs and place counters. In this way one can capture the
behavior of systems having an infinite state space with a finite model [58].



42 3 Graphical Process Modeling Languages

Standard Nets and Initial Markings

Fig. 3.12. Initial marking
generic construction.

The definition of a net in PTNs does not include an
explicit initial state, since it is not strictly necessary: a
single transition with an empty pre-set can produce as
many tokens as needed, then it can be disabled forever.

Seen from a different perspective, any net a ∈ N
with m ∈ N places pls(a) = {pi}

m
i=1 and an initial mark-

ing q ≜ {pi ↦ vi}
m
i=1 can be transformed into an equiva-

lent net b ∈ N without a marking, by adding one transi-
tion tn+1, one place pm+1, and at most as many arcs as
the non-empty places in the original net. The construc-
tion is depicted in Fig. 3.12 where an arc ⟨tn+1, pi, vi, θ⟩
is present only if vi > 0. Formally, the b net can be
constructed using the function in Eq. 3.33:

unmark ∶ N ×Q → N is (3.33)

∀a ∈ N ∀q ∈ Q ∀b ∈ N b = unmark(a, q) ▵⇐⇒

places(b) = places(a) ∪ {⟨pm+1,1⟩}

transitions(b) = transitions(a) ∪ {⟨tn+1, τ⟩}

arcs(b) = arcs(a) ∪ {⟨tn+1, pm+1,1, θ⟩} ∪
⎛

⎝
⋃

p∈marked(q)
{⟨tn+1, p, q(p), θ⟩}

⎞

⎠

Definition 3.19 (Standard Net). A net is said to be standard [52] if all its tran-
sitions have at least an incoming arc of constant weight. This concept is captured
by the class of nets Nstd defined as follows:

∀a ∈ N a ∈ Nstd
▵⇐⇒ (3.34)

∀t ∈ trs(a) pre-set(a, t) ≠ ∅ ∧ ∃w ∈ N (p, t,w, θ) ∈ arcs(a)

On a standard net no transition can fire without tokens, hence an initial mark-
ing is mandatory in practice, otherwise the net has no chance to make progress.
It is always possible to transform a marked net a ∈ N ● to an equivalent marked
net b ∈ N ● with an initial marking of only one token. The construction is similar
to the one presented in Eq. 3.33 and exemplified in Fig. 3.12: essentially, the arc
⟨tn+1, pm+1⟩ should be reversed and the capacity of pm+1 should be removed. Then,
qs ≜ {pm+1 ↦ 1} can be taken as the default initial marking.

At the beginning, tn+1 is the only enabled transition in b, the state reached
when tn+1 fires is exactly the initial marking of a with an additional empty place
pm+1, namely

fire(b, tn+1, qs) = zero(net(b)) + initial-marking(a) (3.35)

The transition tn+1 fires one and only one time, from here b has the same
behavior of a.
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Pure Nets and Self-Loops

Definition 3.20 (Self-Loop). A self-loop on a net a ∈ N , is a pair of vertices
u, v ∈ vertices(a) mutually connected by two arcs of opposite orientation. The
fragment in Fig. 3.13.a is an example of self-loop.

Definition 3.21 (Pure Nets). A net a ∈ N is pure [63] if it does not contain
self-loops. This concept is captured by the class of nets Npure defined as:

∀a ∈ N a ∈ Npure
▵⇐⇒ (3.36)

∀t ∈ trs(a) pre-set(a, t) ∩ post-set(a, t) = ∅

It can be easily proven that for any net a ∈ N , if pre-set(a, t)∩post-set(a, t) = ∅
for all transitions t ∈ trs(a), then for all places p ∈ pls(a) it also holds pre-set(a, p)∩
post-set(a, p) = ∅. Indeed, if there exists a place g ∈ pls(a) such that pre-set(a, g)∩
post-set(a, g) is not empty, then there exists t ∈ trs(a) such that (t, g) ∈ edges(a)
and (g, t) ∈ edges(a), hence pre-set(a, t)∩post-set(a, t) ≠ ∅ which implies a ∉ Npure .

Pure nets are interesting because some PTNs variants may differ on how self
loops are considered [63]. Furthermore, pure nets have a simpler mathematical
representation based on transition matrices [14].

Fig. 3.13. (a) An example of self-loop (tj , pi). (b) Self-loop elimination through a
single weighted arc assuming w > v. (c) Self-loop elimination through additional dummy
constructs, useful when pi is connected with other transitions and w = v.

A self-loop can be usually removed exploiting arc weights or adding some
dummy constructs. For instance, consider the net in Fig. 3.13.a and assume w > v,
the self-loop can be replaced by a single arc from pi to tj of weight w − v, as
exemplified in Fig. 3.13.b. Conversely, if w < v the solution is similar, but the arc
has the opposite orientation and weight v −w.

This transformation does not work when the weights are equal or not constant.
A solution for this case is exemplified in Fig. 3.13.c where new constructs are added.
The exact behaviour of a self-loop is guaranteed if the transitions connected to pi

are disabled until tn+1 fires, restoring the initial value in pi. This can be done
using inhibitor arcs or similar constructions connected to pm+1. In presence of
instantaneous weights and places capacities, self-loops elimination is far from being
an easy transformation.
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Safe Nets and Place Capacities

Place capacity is a convenient construct but its presence does not alter the PTNs
language expressiveness: every net a ∈ N can be transformed into an equivalent one
without place capacities following the complementary place transformation [14].
In practice, every place p of limited capacity k is coupled with a new place h
containing k tokens. A quantity of x tokens can be stored in p only if h contains
at least x tokens when that happens.

Proposition 3.22 (Place Capacity Elimination). For every net a ∈ N and
every initial marking q ∈ markings(a), if a has n ∈ N places of limited capacity,
there exists a net b ∈ N and an initial marking r ∈ markings(b) such that b has the
same behavior of a when executed from r, but b contains n−1 places with limited
capacity.

∀a ∈ N ∀q ∈ markings(a) ∃b ∈ N ∃r ∈ markings(b) (3.37)

(a, q) ≃g (b, r) ∧ nlps(b) < nlps(a)

where nlps ∶ N → N∪{0} is the function that counts the number of non limited
places, namely ∀a ∈ N nlps(a) = ∣{p ∈ pls(b) ∣ capacity(b, p) < ω}∣.

Proof. The original net a has at least a place pi with a limited capacity, otherwise
there is nothing to do. The new net b is structurally identical to a except that:
(1) the capacity limit of pi is removed: capacity(b, pi) = ω, (2) a new place pm+1 is
added, (3) b has a differen initial marking r that is like q except for the new place
pm+1 initialized with r(pm+1) = capacity(a, pi) − q(pi) tokens; finally, (4) for every
arc involving pi and a transition t there exists a new arc with the same weight but
different orientation that connects t and pm+1. Given such construction, in every
reachable state s the invariant s(pm+1) + s(pi) = capacity(a, pi) is preserved. 2

Fig. 3.14. (a) A net fragment containing a place pi of limited capacity k ∈ N with
x ∈ N∪{0} initial tokens. (b) A fragment showing how the capacity k of pi can be
removed by adding a new place pm+1 and several new arcs.
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Definition 3.23 (Safe Nets). A place p ∈ pls(a) of a marked net a ∈ N ● is
safe [58] if and only if increasing its capacity does not alter the behavior of the
net. An entire marked net is safe when all its places are safe, i.e. the given capacities
do not constrain the behavior of the system, hence they can be removed. This class
of nets is denoted by N ●safe .

∀a ∈ N ● a ∈ N ●safe ▵⇐⇒ a ≃g uncaps(a) (3.38)

where uncaps ∶ N ● →N ● removes all the place capacities of the specified net.
A net a ∈ N is said to be structurally safe if and only if it is safe for every valid

initial marking. The set of structurally safe nets is denoted by Nsafe defined as:

∀a ∈ N a ∈ Nsafe
▵⇐⇒ ∀q ∈ markings(a) (a, q) ∈ N ●safe (3.39)

Nets with Special Arcs

Petri nets with special arcs are classified in post nets, inhibitor nets, reset nets,
and reset nets. Their formal definition is given below.

Definition 3.24 (Post Net). A net is a post net [55] if and only if all its tran-
sitions have incoming arcs of constant weight. The set of all post nets is denoted
by Npost ⊆ N and is defined as follows:

∀a ∈ N a ∈ Npost
▵⇐⇒ (3.40)

∀(x, y,w, h) ∈ arcs(a) x ∈ pls(a) ∧ y ∈ trs(a) ⇒ h = 0

Definition 3.25 (Inhibitor Net). A net a ∈ N is an inhibitor net [61] if and
only if its arcs are only weighted arcs or inhibitor arcs. The set of all inhibitor nets
is denoted by Ninhibitor ⊆ N and defined as follows:

∀a ∈ N a ∈ Ninhibitor
▵⇐⇒ ∀(x, y,w, h) ∈ arcs(a) (3.41)

(x ∈ pls(a) ∧ y ∈ trs(a) ⇒ h = θ ∨w > 1)∨

(x ∈ trs(a) ∧ y ∈ pls(a) ⇒ h = θ)

Definition 3.26 (Reset Net). A net a ∈ N is a reset net [60] if and only if its
arcs are only weighted arcs or reset arcs. The set of all reset nets is denoted by
Nreset ⊆ N and defined as follows:

∀a ∈ N a ∈ Nreset
▵⇐⇒ ∀(x, y,w, h) ∈ arcs(a) (3.42)

(x ∈ pls(a) ∧ y ∈ trs(a) ⇒ h = θ ∨w > 1)∨

(x ∈ trs(a) ∧ y ∈ pls(a) ⇒ h = θ)

Definition 3.27 (Transfer Net). A net a ∈ N is a transfer net [62] if and only
if its arcs are only weighted arcs or transfer arcs. The set of all transfer nets is
denoted by Ntransfer ⊆ N defined as follows:

∀a ∈ N a ∈ Ntransfer
▵⇐⇒ ∀(x, y,w, h) ∈ arcs(a) (3.43)

(x ∈ pls(a) ∧ y ∈ trs(a) ⇒ h = θ ∨ (w > 1 ∧ ∃d ∈ pls(a) (y, d, 1, x) ∈ arcs(a) ))∨

(x ∈ trs(a) ∧ y ∈ pls(a) ⇒ h = θ ∨ (w = 1 ∧ ∃(h,x, 1, h) ∈ arcs(a)))
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These definitions may differ from the ones given in the Petri nets literature in
terms of multi-arcs support and arc orientation. For instance, in [64] the authors
define reset arcs as a relation between transitions and places, hence a reset arc
points to a place and that place can be in the pre-set of the transition. Arc ori-
entation is not really relevant, while special arcs connected to the preset can be
simulated as explained in the previous sections.

Classic Nets

Petri nets without special arcs are said to be classic [14]. The most frequently used
classic Petri nets are basic or ordinary nets, free choice nets, marked graphs and
state machines. Their definition is given below.

Definition 3.28 (Classic Net). A net a ∈ N is classic [14] if and only if it has
no special arcs. The set of all classic nets is denoted by Nclassic ⊆ N , defined as:

∀a ∈ N a ∈ Nclassic
▵⇐⇒ ∀(x, y,w, h) ∈ arcs(a) h = θ (3.44)

Definition 3.29 (Basic or Ordinary Nets). A net a ∈ N is basic or ordinary
[14] if and only if all its arcs have constant weight 1. The set of all ordinary nets
is denoted by Nbasic ⊆ N and defined as follows:

∀a ∈ N a ∈ Nbasic
▵⇐⇒ a ∈ Nclassic∧ (3.45)

∀(x, y) ∈ edges(a) weight(a, x, y) = 1

Definition 3.30 (Extended Free Choice Net). A net a ∈ N is extended free
choice [14] if and only if the net is ordinary and for any pair of places p, h ∈ pls(a)
their post-sets can be only disjoint or equal:

∀a ∈ N a ∈ Nefc
▵⇐⇒ a ∈ Nbasic ∧ ∀p, h ∈ pls(a) (3.46)

post-set(a, p) ∩ post-set(a, h) ≠ ∅ ⇒ post-set(a, p) = post-set(a, h)

Definition 3.31 (Free Choice Net). A net a ∈ N is free choice [14] if and only
if the net is ordinary and for any pair of places p, h ∈ pls(a) their post-sets can be
only equal or have the same size:

∀a ∈ N a ∈ Nfc
▵⇐⇒ a ∈ Nbasic ∧ ∀p, h ∈ pls(a) (3.47)

post-set(a, p) ∩ post-set(a, h) ≠ ∅ ⇒ ∣post-set(a, p)∣ = ∣post-set(a, h)∣

Definition 3.32 (Marked Graph). A net a ∈ N is a marked graph [14] if and
only if the net is ordinary and each place can have only a transition in its pre-set
and only one transition in its post-set:

∀a ∈ N a ∈ Nmg
▵⇐⇒ a ∈ Nbasic∧ (3.48)

∀p ∈ pls(a) ∣pre-set(a, p)∣ = ∣post-set(a, p)∣ = 1

Definition 3.33 (State Machine). A net a ∈ N is a state machine [14] if and
only if the net is ordinary and each transition can have only a place in its pre-set
and only a place in its post-set:

∀a ∈ N a ∈ Nsm
▵⇐⇒ a ∈ Nbasic∧ (3.49)

∀t ∈ trs(a) ∣pre-set(a, t)∣ = ∣post-set(a, t)∣ = 1
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3.3 Coloured Petri Nets

Coloured Petri Nets (CPNs) is a graphical language for the modeling and vali-
dation of concurrent and distributed systems. It extends classical Petri nets with
inscriptions and expressions encoded into an high-level general-purpose program-
ming language. Such language is called CPN ML programming language and is a
a subset of the functional programming language Standard ML [65]. It supports
data types, data manipulation and simplifies the construction of compact models.

CPNs is an industrial strength modeling language best suited for the repre-
sentation of network protocols, concurrent systems, as well as business processes.
The main goal of CPNs is to produce executable models that allow one to analyze
the behavior of a concurrent system through simulation or by applying verifica-
tion methods to check the presence of desired properties. All these operations are
supported through a software tool called CPN Tools [66].

3.3.1 Graphical Elements and Syntax

The graphical elements of the CPNs language are summarized in Fig. 3.15, which
provides all variants of each element representation. The position of each inscrip-
tion is not arbitrary, but follows the CPNs conventions.

Fig. 3.15. CPN language elements

A place is depicted as an ellipse enriched with some annotations, as illustrated
in Fig. 3.15.a. In particular, a descriptive label ` for the place is specified inside
the ellipse, while the annotation T below it denotes the place type or colour set,
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i.e. the set of data values that a token inside it can have; finally mi is the initial,
eventually empty, marking associated to the place. Places are used to represent
the state of a system. For this purpose, each place can be marked with one or more
tokens, as exemplified in Fig. 3.15.m where, besides the initial place marking mi,
the current (eventually empty) place marking mk is specified, together with the
total number n of contained tokens. A place marking is represented as a multiset
of tokens each one characterized by a particular data value, called token colour.

A CPN model can be organized into a set of modules in a hierarchical way. A
module can be defined from scratch or starting from existing ones, and it can be
used in other context; anyway, it cannot be part of a recursive definition. A port
place representing the interface of a module is annotated by positioning next to it
a rectangular tag specifying whether the place is an input (In), output (Out), or
input/output (I/O) port, as in Fig. 3.15.b, Fig. 3.15.c, and Fig. 3.15.d, respectively.

A transition is represented as a rectangular box containing a descriptive label
` and eventually annotated with a guard expression g, as illustrated in Fig. 3.15.e.
The guard expression is written in square brackets and positioned next to the
transition. It can be any boolean expression written in ML. An enabled transition
is depicted as a thick square rectangle, as in Fig. 3.15.g. Finally, a substitution
transition is represented as a rectangular box with a double-lines border annotated
with a substitution tag t placed next to it, containing the name of the related
substitution module, as exemplified in Fig. 3.15.h. A substitution transition cannot
have a guard.

An arc between a place and a transition is annotated with an arc expression
exp, as in Fig. 3.15.i. A double headed arc, as the one in Fig. 3.15.l, can be used as
a shorthand for two oppositely directed arcs between the same place and transition
which share also the same arch expression exp.

Notice that markings, arc expressions, and transition guards are usually en-
coded using the CPN ML language. However, as stated in [13], the CPNs language
is independent from the chosen inscription language, and in the following the usual
mathematical notation is adopted.

3.3.2 Language Interpretation

As done for the PTNs language, the informal semantics of the CPNs language
can be described in terms of states and transitions. The state of the net is given
by the distribution of tokens inside the places. However, in CPNs a token has an
associated data value, called colour. In particular, each place in the net declares the
set of colours it can contains and tokens inside it can have only a value compliant
with such set. The content of a place is called place marking and is represented as
a multiset, while the state of the net is usually called marking.

The expression associated to each arc determines when a transition is enabled
in a given marking. More specifically, a transition is enabled when the expression of
all incoming arcs can be successfully evaluated. An arc expression can be evaluated
when all variables inside it can be bound to values of the correct type.

The execution of a transition removes tokens from its input places and adds
tokens to the output places. The colours of tokens that are removed from the input
places and added to the output places are determined by the corresponding arc
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expressions. Transition guards can also be used to put an extra constraints for
determining when a transition is enabled.

A binding is an assignment of values to all variables of a transition. In partic-
ular, the variables of a transition t are the free variables appearing in the guard
of t, together with the variables in the arc expression of the arcs connected to t.
A binding element is a pair composed of a transition and a binding for it.

A model is said to be deterministic if each reachable marking has exactly one
enabled transition, with exactly one enabled binding; otherwise, the existence of
a reachable marking with more than one enabled binding element makes a model
non-deterministic. Notice that it is the choice between the enabled transitions
that is non-deterministic, while the individual transition execution is deterministic.
Two transitions are in conflict if both of them are enabled in a given marking but
only one of them can occur, since each of them needs the same token colour in a
particular place p and there is only one token of this colour in p. Conversely, two
transitions can occur concurrently if they need disjoint set of input tokens, hence
they can execute without competition or interference. Let us notice that besides
the concurrency between two distinct transitions, a form of self-concurrency can
occur when there is non-determinism on which coloured token has to be used: a
place marking is implemented as a multiset and not as a queue, any token satisfying
the arc expression can be consumed at a certain point.

A non-empty, finite multiset of concurrently enabled binding elements is called
step. An interesting property of any CPNs model is that, given a set of concurrent
binding elements, the effects of their concurrent execution is the same as the sum of
the effects caused by their sequential execution. In other words, the model reaches
the same final marking running them concurrently or sequentially by performing
each binding element in any arbitrary order.

A CPNs model can be organized into a set of modules. This is an important
feature for three main reasons: (1) it can become impractical to draw a large system
with a single CPNs model, (2) designers need abstractions that make it possible
to concentrate on only few details at time, and (3) a module can be defined once
and used repeatedly in different context.

The interface of a module is determined by a set of places used for exchanging
tokens with the external environment. These tokens are called port places and as
explained in the previous section they can be recognized by the presence of a tag
which specifies its input, output or mixed type.

In a hierarchical net a module is represented using a substitution transition
which represents the compound behaviour of its corresponding submodule. The
input and output places of a substitution transition are called input and output
sockets, respectively. They represents the interface of the substitution transition
and have to be properly related with the port places of the corresponding sub-
module. A substitution transition cannot have a guard.

The relations between the port places of a submodule and the sockets of a
substitution transition is called port-socket relation. This relation implies that
connected ports and sockets represent different views of the same places; therefore,
they always have the same marking, besides to the same colour set. Moreover,
if a port place does not have an initial marking, it obtains its initial marking
form the related socket place. This mechanism can be used to obtain a sort of



50 3 Graphical Process Modeling Languages

parameterisation, since the initial marking of a socket place can be used to transfer
parameters to a submodule.

An important consequence of this module decomposition is that the same mod-
ule can be used as submodule of several substitution transitions, namely there can
be different instances of the same module in a given model. Places and transi-
tions in a certain module instance are referred to as place instances and transition
instances, and each instance is characterized by its own marking.

The relationships between modules in a hierarchical model can be represented
through a directed graph, where each node represents a module and each arc rep-
resents a substitution transition. The hierarchical graph is required to be acyclic:
namely, it is not possible for a module to be submodule of itself. This constraint
ensures that there is only a finite number of instances of each module when the
model is instantiated. Moreover, it is required that the number of instances of
each module is determined at design-time and it is not possible to instantiate new
modules during the simulation.

Finally, another interesting characteristics of hierarchical CPNs is the possibil-
ity to glue together places of different modules into one compound place. These
compound places are called fusion sets and they are similar to global variables:
places in the same fusion set always share the same marking and they shall have
identical colour sets and initial markings.

An important property of each hierarchical CPNs model is that it can be
always unfolded into an equivalent non-hierarchical CPNs model with the same
behaviour. This operation can be performed using the following steps: (1) each
substitution transition is replaced with the content of its associated submodule,
while the related ports and sockets are merged together, (2) the content of the
root of all module hierarchies are collected into a single module, and (3) the places
in a fusion set are merged into a unique place. A consequence of this property is
that any system which can be represented with a hierarchical CPNs model, can
also be represented using a non-hierarchical CPNs model; hence, CPNs modules
do not increase the language expressiveness.

A similar property holds also between CPNs models and low-level Petri nets:
every non-hierarchical CPNs model can be transformed into an equivalent, even-
tually infinite, Petri net [63]. The idea is that each CPNs place is replaced with as
many places as there are colours in the CPNs place type. Each CPNs transition
is replaced with as many transitions as there are possible bindings satisfying the
guard for the CPNs transition. It follows that for CPNs models with infinite colour
sets, the corresponding Petri net has an infinite number of places and transitions.

The following example illustrates how arc expressions can be used to reduce
the number of needed control-flow relations and to simplify the overall net con-
struction. Such example regards the realization of a network packet switch.

Example 3.34 (Network packet switch). The CPNs model in Fig. 3.16 switches the
received data value to one of its output places on the basis of a condition evaluation.
This condition regards the comparison between a control value received in input
and a constant parameter. The model has three input places par, in and data, and
two output places out1 and out2: if the value read from in is less than the value
read from par, then the data value read from data is placed into out1, else it is
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if h >= p
then l2^^[d]
else l2

if h < p
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Fig. 3.16. Example of if operator with parameter in CPN.

placed into out2. Places in, data, out1 and out2 contain a single token representing
a list of values, while par contains a single integer value equals to 7.
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Fig. 3.17. Example of if operator with parameter in CPN.

The use of a single token containing a list, whose value is updated by the
execution of each transition, ensures that its elements are consumed respecting
the insertion order. Indeed, each transition is connected with a double arc to those
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places, if the transition has to read a value from a place, it reads the list and
removes its head element by storing back the list tail; conversely, if the transition
has to write on a place, it reads the list and appends the new element at its end.
For instance, transition t2 reads the list n ∶∶ t1 from in, where n is the list head, and
writes back the list tail t1; similarly, transition t7 reads the list out from out1 and
writes back the list obtained by concatenating out and the element d, denoted as
out̂ [̂d]. It classical multiset of tokens are used in place of lists, the consumption
order does not necessarily reflect the production order.

At the beginning transition t1 is enabled, it reads the control value t, the
parameter p, and the data value d from its input places. If t < p, then d is placed
in out1, otherwise it is placed in out2.

The net in Fig. 3.17 performs the same operation but using control-flow rela-
tions in place of high-level arc expressions. Initially, transitions t1, t2 and t3 are
enabled, transition t1 inserts into p1 the value m read from place par and into p2

m void tokens. Similarly, transition t2 puts into p3 the input control value n read
from in1, and n void tokens into p4 . If n <m, then transition t5 is enabled, which
reads the number of tokens to consume from p3, and the corresponding number of
tokens from p2 and p4. Finally, transition t7 reads the data token and puts it into
out1. Otherwise, transition t4 is enabled which performs a symmetric operation by
consuming m tokens from p2 and p4. Finally, transition t6 reads the data token
and puts it into out2. The last transition reset resets the net and enables another
execution by placing a token into s1, s2 and s3. These tokens ensure that another
input is read only when the structure is completely clean. 2

3.3.3 Formal Semantics

A complete formalization of the CPNs language in terms of mathematical functions
can be found in [13]. This section summarizes its main semantical aspects following
the approach adopted in Sec. 3.2.3. Since the CPNs definition is independent from
the adopted concrete inscription language [13], this introduction can abstract from
the CPN ML language which is replaced by the usual mathematical notation for
expressing markings, transition guards, and arc expressions. In particular, the
notion of multiset, graph, and their related operations are taken from Chap. 2.
Moreover, in the following E ⊆ U denotes the set of available expressions, type ∶
E → U denotes the type of an expression e ∈ E , and var ∶ E → U denotes the set
of free variables in an expression e ∈ E . The set of all expressions e ∈ E such that
var(e) ⊆ V for a certain V ⊆ U is denoted as E(V ).

Definition 3.35 (Coloured Petri Nets). A non-hierarchical coloured Petri net
is a tuple ⟨V,E,Y,B,C,D,F,G,A, I,L⟩ that belongs to the set C defined as follows:

∀a ∈ U a ∈ C ▵⇐⇒ (3.50)

a = ⟨V,E,Y,B,C,D,F,G,A, I,L⟩ ∧

⟨V,E⟩ ∈ G ∧ Y ∶ V → {PL, TR} ∧

F ∶ P → C ∧ G ∶ T → E(V ) ∧

A ∶ E → E(V ) ∧ I ∶ P → E(∅)
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such that:

• ⟨V,E⟩ ∈ G is a finite directed graph.
• Y ∶ V → {PL, TR} is a total function that associates to each vertex its

type, where PL stands for place and TR for transition. The function Y in-
duces a partition of V composed of two disjoint sets P and T , such that
P = {v ∈ V ∣ Y (v) = PL} is the set of all places, T = {v ∈ V ∣ Y (v) = TR} is the
set of all transitions, V = P ∪ T and P ∩ T = ∅.

• B is a finite set of labels for places and transitions.
• C is a finite set of non-empty colour sets.
• D is a finite set of typed variables such that ∀v ∈ V type(v) ∈ C.
• F ∶ P → C is a colour set function that assigns a colour set to each place.
• G ∶ T → E(V ) is a guard function that assigns a guard expression to each

transition t such that ∀t ∈ T type(G(t)) = B.
• A ∶ E → E(V ) is an arc expression function that assigns an arc expression to

each arc e ∈ E, such that the type of each expression is a multiset whose values
belong to the colour set of the place p connected to e:

∀e ∈ E (e = (p, v) ∨ e = (u, p)) ∧ p ∈ P elements(type(A(e))) ⊆ F (p)

• I ∶ P → E(∅) is an initialization function that assigns an initialization expres-
sion to each place p, such that elements(type(I(p))) ⊆ F (p). Notice that the
initialization expression must be a closed expression: namely, it cannot have
free variables.

• L ∶ V → B is a label function that associates to each place or transition in the
net a unique label.

The basic access functions are summarized in Tab. 3.5 and they are defined as
follows: for any a ∈ C such that a = ⟨V,E,Y,B,C,D,F,G,A, I,L⟩, vertices(a) = V ,
edges(a) = E, places(a) = {v ∈ V ∣ Y (v) = PL}, and transitions(a) = {v ∈ V ∣ Y (v) =
TR}, while colour-sets(a) = C, and variables(a) =D.

Table 3.5. Basic operations on CPNs nets.

Symbol Function Description Ref

vertices ∶ C → ℘(U) Vertices of the underlying graph. inline

edges ∶ C → ℘(U) Edges of the underlying graph. inline

places ∶ C → ℘(U) Vertices that are places. inline

transitions ∶ C → ℘(U) Vertices that are transitions. inline

colour-sets ∶ C → ℘(U) Set of non-empty colour sets. inline

variables ∶ C → ℘(U) Set of typed variables. inline

colour-set ∶ C×U ⇀ U Place colour. Eq. 3.51

guard ∶ C×U ⇀ E Transition guard. Eq. 3.52

arc-expr ∶ C×U×U ⇀ E Arc expression. Eq. 3.53

init ∶ C×U ⇀ U Place initialization. Eq. 3.54

label ∶ C×U ⇀ U Vertex label. Eq. 3.55
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The colour set function colour-set ∶ C×U ⇀ U is defined in Eq. 3.51: it returns
the colour set associated to a particular place.

colour-set ∶ C×U ⇀ U is (3.51)

∀a ∈ C ∀u ∈ U

colour-set(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

F (u) if u ∈ places(a)

↑ otherwise

The guard function guard ∶ C×U ⇀ E is defined in Eq. 3.52: it associates to each
transition a guard expression of boolean type.

guard ∶ C×U ⇀ E is (3.52)

∀a ∈ C ∀u ∈ U

guard(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

G(u) if u ∈ transitions(a)

↑ otherwise

The arc expression function arc-expr ∶ C×U×U ⇀ E associates to each arc in the
net an expression as illustrated in Eq. 3.53.

arc-expr ∶ C×U×U ⇀ E is (3.53)

∀a ∈ C ∀u, v ∈ U

arc-expr(a, u, v) =
⎧⎪⎪
⎨
⎪⎪⎩

A(u, v) if (u, v) ∈ edges(a)

↑ otherwise

The initialization function init ∶ C×U ⇀ U assigns an initialization expression
to each place as explained in Eq. 3.54.

init ∶ C×U ⇀ U is (3.54)

∀a ∈ C ∀u ∈ U a = ⟨V,E,Y,B,C,D,F,G,A, I,L⟩

init(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

I(u) if u ∈ places(a)

↑ otherwise

Finally, the label function label ∶ C×U ⇀ U assigns to each vertex in the net a
unique label. It is defined in Eq. 3.55.

label ∶ C×U ⇀ U is (3.55)

∀a ∈ C ∀u ∈ U a = ⟨V,E,Y,B,C,D,F,G,A, I,L⟩

label(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

L(u) if u ∈ vertices(a)

↑ otherwise

Definition 3.36 (CPNs Module). A CPNs module is a tuple ⟨C,Tsub, Pport, PT ⟩
that belongs to the set CM defined as follows:

∀a ∈ U a ∈ CM ▵⇐⇒ (3.56)

a = ⟨b, Tsub, Pport, PT ⟩ ∧

b ∈ C ∧ Tsub ⊆ transitions(C) ∧

Pport ⊆ places(C) ∧ PT ∶ Pport → {IN, OUT, I/O}
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such that:

• b ∈ C is a non-hierarchical coloured petri net.
• Tsub ⊆ transitions(b) is the set of substitution transitions.
• Pport ⊆ places(b) is the set of port places.
• PT ∶ Pport → {IN, OUT, I/O} is a port type function that assigns to each port

place its type.

Table 3.6. Basic operations on CPNs module.

Symbol Function Description Ref

net ∶ CM → C The contained coloured Petri net. inline

sub-transitions ∶ CM ⇀ U Set of substitution transitions. inline

port-places ∶ CM ⇀ U Set of port places. inline

port-type ∶ CM×U ⇀ U Type of a port place. inline

is-port ∶ CM×U ⇀ B True if the place is a module port,
false otherwise.

Eq. 3.57

is-substitution ∶ CM×U ⇀ B True if the transition is a substitu-
tion transition, false otherwise.

Eq. 3.58

socket-type ∶ CM×U×U ⇀ U It returns the type of a socket place
for a substitution transition

Eq. 3.59

trans-sockets ∶ CM×U ⇀ ℘(U) It returns the socket places of a sub-
stitution transition

Eq. 3.60

The basic access functions are summarized in table Tab. 3.6 and they are
defined as follows. For any CPNs module a ∈ CM such that a = ⟨b, Tsub, Pport, PT ⟩,
net(a) = b, sub-transitions(a) = Tsub, port-places(a) = Pport, and port-type(a, u) =
PT (u) if u ∈ port-places(a), or ↑ otherwise.

The function is-port ∶ CM×U ⇀ B determines if a place is a port for a CPNs
module or not, its behaviour is defined in Eq. 3.57.

is-port ∶ CM×U ⇀ B is (3.57)

∀a ∈ CM ∀u ∈ U

is-port(a, u) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

T if u ∈ places(a) ∧ u ∈ port-places(a)

F if u ∈ places(a) ∧ u ∉ port-places(a)

↑ otherwise

Function is-substitution ∶ CM×U ⇀ B returns true if the given transition is a
substitution transition, false otherwise. Its definition is reported in Eq. 3.58.

is-substitution ∶ CM×U ⇀ B is (3.58)

∀a ∈ CM ∀u ∈ U

is-substitution(a, u) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

T if u ∈ transitions(a) ∧ u ∈ sub-transitions(a)

F if u ∈ transitions(a) ∧ u ∉ sub-transitions(a)

↑ otherwise
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The function socket-type ∶ CM×U×U ⇀ U returns the type of a socket place for
a substitution transition. Its definition in given in Eq. 3.59.

socket-type ∶ CM×U×U ⇀ U is (3.59)

∀a ∈ CM ∀u, v ∈ U

socket-type(a, u, v) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

port-type(a, v) if is-substitution(a, u) ∧

(u, v) ∈ edges(a)

↑ otherwise

Finally, function trans-sockets ∶ CM×U ⇀ ℘(U) in Eq. 3.60 returns the socket
places of a particular substitution transition.

∀a ∈ CM ∀t ∈ U ∀u ∈ U (3.60)

u ∈ trans-sockets(a, t) ▵⇐⇒

a = (C,Tsub, Pport, PT ) ∧ is-substitution(a, t) ∧

is-port(a, u) ∧ ((t, u) ∈ edges(a) ∨ (u, t) ∈ edges(a))

Given the definition of CPNs module, the definition of hierarchical CPNs can
be given as follows.

Definition 3.37 (Hierarchical CPNs). A hierarchical coloured Petri net is a
tuple ⟨S,SM,PS,FS⟩ that belongs to the set H defined as follows:

∀a ∈ U a ∈ H ▵⇐⇒ (3.61)

a = ⟨S,SM,PS,FS⟩ ∧

S ⊆ CM ∧ SM ∶ Tsub → S ∧

PS ∶ Tsub×Psock → S×Pport ∧ FS ∶⊆ 2P }

such that:

• S ⊆ CM is a finite set of CPNs module. It is required that ∀x, y ∈ S x ≠
y (places(x) ∪ transitions(x)) ∩ (places(y) ∪ transitions(y)) = ∅.

• SM ∶ Tsub → S is a submodule function that assigns a submodule to each
substitution transition. It is required that the module hierarchy is acyclic.

• PS ∶ Tsub×Psock → S×Pport is a port-socket relation function that assigns to
each socket of a substitution transition t a port of its corresponding sub-
module SM(t) ∈ CM. It is required that ∀s ∈ S ∀t ∈ Tsub ∀(p, q) ∈
Psock(t)×Pport(SM(t)) socket-type(s, t, p) = port-type(s, q)∧ colour-set(s, p) =
colour-set(s, q) ∧ init(s, p) = init(s, q).

• FS ⊆ 2P is a set of non empty fusion sets such that ∀f ∈ FS ∀p, q ∈
f colour-set(p) = colour-set(q) ∧ init(p) = init(q).

The basic access functions are summarized in table Tab. 3.7 and they are
defined as follows: for any hierarchical CPNs module a ∈ H such that a =
(S,SM,PS,FS), modules(a) = S, and compound-places(a) = FS.

The function submodule ∶ H×U → U returns the submodule associated to a
particular substitution transition. Its behaviour is defined in Eq. 3.62.
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Table 3.7. Basic operations on hierarchical CPNs.

Symbol Function Description Ref

modules ∶ H → ℘(CM) The contained CPNs modules. inline

compound-places ∶ H×→℘(U) The set of compound places (fun-
sion sets) in the net.

inline

submodule ∶ H×U → U The submodule associated to a par-
ticular substitution transition.

3.62

module-port ∶ H×U×U×CM → U The module port associated to a
substitution transition socket.

3.63

submodule ∶ H×U → U is (3.62)

∀a ∈ H ∀u ∈ U

submodule(a, u) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

m if m ∈ S∧

∃t ∈ ⋃s∈S sub-transitions(s) SM(t) =m

↑ otherwise

The function module-port ∶ H×U×U×CM → U returns the module port associ-
ated to a particular substitution transition socket. It is defined in Eq. 3.63.

module-port ∶ H×U×U×CM → U is (3.63)

∀a ∈ H ∀t, u ∈ U ∀m ∈ CM

module-port(a, t, u,m) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p if t ∈ ⋃s∈S sub-transitions(s) SM(t) =m ∧

v ∈ trans-sockets(a, t) ∧ PS(t, v, u) = p

↑ otherwise

Markings

One of the main differences between low level Petri nets and CPNs is the notion
of token that in the latter case has its own identity because it carries a data value.
In the following, the notion of marking, binding, and binding element are initially
stated for a non-hierarchical CPNs model, then such definitions are extended to
hierarchical CPNs modules.

Definition 3.38 (Marking). Given a CPNs model a ∈ C, a marking is a function
q ∶ U → M that maps each place p ∈ places(a) to a multiset of values q(p) ⊆
colour-sets(p) ⊆ M representing the state of p. The individual elements in the
multiset are called tokens. The set of all markings is denoted by Q.

The notion of marking can be extended to the case of hierarchical CPNs mod-
els by considering the function compound-places instead of places in the previous
definition.

From the notion of marking it is clear that the values of the tokens contained
in a place p are required to match the type of the place.
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Definition 3.39 (Binding). A binding b ∶ U → U of a transition t is a function
that maps each variable v ∈ variables(t) to a value b(v) ∈ colour-set(v) belonging
to the type of the variable v. The set of all bindings for a transition t is denoted
as B(t), while the set of all binding elements in a CPNs model is denoted as B.

Definition 3.40 (Binding Element). A binding element is a pair (t, b) ∈ U×B
consisting of a transition t and a binding b of t. The set of all binding elements
for a transition t is denoted as Be(t), while the set of binding elements in a CPN
model is denoted as Be.

The concepts of binding and binding element can be extended to a hierarchical
CPNs model by substituting in the previous definitions the notion of transition
with the notion of transition instance for all transitions that are not substitution
transitions.

Definition 3.41 (Step). A step is a finite non-empty multiset of binding ele-
ments. In the following the set of all steps is denoted as Mbe.

Given the notions of binding element and step, we can now define when a
biding element and a step are enabled in a given marking. For this purpose, for
any expression e ∈ E , we write e⟨b⟩ to denote the evaluation of the expression e
considering the binding b.

Definition 3.42 (Enabled Binding Element). A binding element (t, b) ∈ Be is
enabled in a marking q ∈ Q if and only if the transition guard guard(t) associated
to t is satisfied when evaluated in the binding b, and there are sufficient tokens
in the input places of the transition. The last condition requires that for each
place p connected to t, the multiset of tokens obtained by evaluating the arc
expression arc-expr(p, t) in the binding b is contained in the multiset of tokens q(p)
representing the current marking of p. This concept is captured by the function
is-enabled ∶ C×Be×Q → B defined as:

∀a ∈ C ∀(t, b) ∈ Be ∀q ∈ Q

is-enabled(a, (t, b), q) ▵⇐⇒

guard(t)⟨b⟩ = T ∧

∀p ∈ places(a) arc-expr(p, t)⟨b⟩ ⊆ q(p)

The definition can be extended for a hierarchical CPNs model by considering
for the first condition the guard of the all instances of the transitions that are
not substitution transitions, and for the second condition the union of the tokens
contained in each compound place. When a binding element (t, b) is enabled in a
marking q ∈ M, it may occur leading to a marking r defined as in the following
definition.

Definition 3.43 (Next Marking). The execution of a binding element (t, b) ∈ Be
starting from a marking q ∈ Q produces a new marking r ∈ Q such that:

∀p ∈ places(a) r(p) = q(p) ∖ arc-expr(p, t)⟨b⟩ ∪ arc-expr(t, p)⟨b⟩ (3.64)
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Definition 3.44 (Enabled Step). A step M ∈ Mbe is enabled in a marking q ∈ Q
if and only if each binding element composing the step is enabled. In other words,
if the guard associated to each transition in the step is satisfied, and there are
sufficient tokens in the input places of each involved transition. These conditions
are captured by the following function.

∀a ∈ C ∀M ∈ Mbe ∀q ∈ Q (3.65)

is-enabled-step(a,M, q) ▵⇐⇒

∀(t, b) ∈M is-enabled(a, (t, b), q)

The notion of enabled step can be extended to a hierarchical CPNs model
by considering compound places and transition instances, instead of places and
transitions.

Definition 3.45 (Firing Rule). The execution of a step M ∈ Mbe starting from
a marking q ∈ Q produces a new marking r ∈ Q defined as follows:

∀p ∈ places(a) r(p) = q(p) ∖ ∑
(t,b)∈M

arc-expr(p, t)⟨b⟩ ∪ ∑
(t,b)∈M

arc-expr(t, p)⟨b⟩

(3.66)

♢
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3.4 Yet Another Workflow Language

“The original formal semantics of YAWL were specified as a
transition system, but more recently, the CPN formalism was

used to provide an operational semantics for newYAWL.”

– Surmounting BPM challenges: the YAWL story [67]

Workflow Management Systems (WfMSs) or more recently Process-Aware In-
formation Systems (PAISs) are software systems driven by an explicit workflow
or process specification. Roughly speaking a PAIS provides a graphical process
modeling language (PML), an editor, and a so called engine.

The graphical PML is tailored for describing business processes (BPs) in terms
of simple tasks constrained by a particular ordering relation. The editor is used to
design new process specifications or adjust existing ones to new contingent needs.
The engine is the run-time environment in which process specifications are exe-
cuted. An engine can manage several process instances simultaneously, each one
related to a particular process specification version. The engine has to balance ex-
isting resources and coordinating the available human agents in performing their
activities. The interaction with the end-user occurs through custom or automati-
cally generated graphical user interfaces.

The Yet Another Workflow Language (YAWL) [15, 68] together with its refer-
ence implementation YAWL System [69] are a good example of such architecture.
YAWL is a graphical PML tailored for workflow and business process design. This
language was born as an academic research project in the context of the Work-
flow Patterns Initiative [28] to show how a real software system can provide a
comprehensive support for workflow patterns [67].

The original YAWL language [68] may be considered an evolution of workflow
nets and reset workflow nets [67] where the basic Petri nets elements are enriched
with new control-flow constructs, among which we can cite: or-split and or-join for
advanced synchronization patterns, multiple instances, cancellation regions, and
more compact syntax to express routing patterns [67].

YAWL System [69] is a full-fledged WfMS built around the YAWL language
and can be actually considered its reference implementation. In particular, the
original YAWL language has been enriched with all those features needed to make
it executable, e.g. a way to declare and transform data, as well as a mechanism to
pass them around task, or the definition of scoping rules [15].

Following the evolution of workflow patterns [29], a revised version of YAWL,
called newYAWL, came to life [70, 71]. This new language version covers miss-
ing patterns with additional control-flow constructs, like thread split and merge;
however, for now such constructs are not yet supported by the YAWL reference
implementation.

3.4.1 Graphical Elements and Syntax

The graphical elements of YAWL language with their inscriptions are summarized
in Fig. 3.18, where component names are highlighted in bold. Neither the size of the
graphical elements, nor the position of the inscriptions is relevant, provided that
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all inscriptions are close to their related constructs. Models are usually oriented
from left to right, hence by convention labels are placed below the components.

A start element is depicted as a circle containing a triangle while a stop ele-
ment is depicted as a circle containing a square as in Fig. 3.18.a and Fig. 3.18.b,
respectively. A choice is represented as an empty circle like in Fig. 3.18.c.

Fig. 3.18. YAWL language elements.

Tasks have a rectangular form enriched with an optional label ` placed near
to it, as in Fig. 3.18.d. In the YAWL implementation [69] the label can represent
a generic task name or a unique identifier: in the former case the identifier is im-
plicit. Similarly, a composite task, representing the invocation of a sub-net defined
elsewhere, is depicted as a square with a double line border, as in Fig. 3.18.e. A
multiple instance task is represented using two partially overlapping squares, as in
Fig. 3.18.f, while a multiple instance composite task is represented by two partially
overlapping multiple instance symbols, as shown in Fig. 3.18.g.

Tasks are connected through arcs representing control-flow relations, depicted
using straight or curved lines with a solid arrow at one end, such as the one in
Fig. 3.18.n. The flow of control can also be modified by enriching tasks with some
routing elements. In particular, a routing element can be attached at the beginning
and/or at the end of a task, as illustrated in Fig. 3.18.h, where labels 1 and 2 in
white on black point out where routing elements can be placed. Such labels are not
part of the language and the two positions have to be inferred from the connected
arcs: the first position is on the side of the incoming arc, while the second position
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is on the side of the outgoing arc. The available routing elements are those from
Fig. 3.18.i to Fig. 3.18.m. If the element in Fig. 3.18.i is placed in position 1, the
task is preceded by an and-join construct, while if it is placed in position 2, the
task is followed by a xor-split. If the element in Fig. 3.18.l is placed in position
1, the task is preceded by a xor-join, while if it is placed in position 2, the task
is followed by an and-split task. Finally, if the element in Fig. 3.18.m is placed in
position 1, the task is preceded by an or-join task, while if it is placed in position
2, the task is followed by an or-split task.

The last graphical element is the cancellation region in Fig. 3.18.o, it is com-
posed of a rounded box with dashed line border which can contain any kind of
graphical elements, and a dashed line arc that connect the rounded box to the trig-
gering task. In the reference implementation cancellation regions are not explicitly
shown in the model.

The YAWL syntax requires that each net is a graph containing a finite set of
tasks connected by arcs, such that each task is in a path from the start symbol to
the end symbol. Each task can have only one incoming arc and one outgoing arc,
unless some routing elements have been attached to it. Relatively to Fig. 3.18.h,
if a routing element has been attached in position 1, then multiple incoming arcs
can be connected to the task, while if a routing element has been attached in
position 2, then multiple outgoing arcs can be connected to it. A condition can
be placed between any two tasks and it can have multiple incoming and outgoing
arcs. Each cancellation region shall be connected to a transition and can contain
any graphical element, except for the connected transition, the start and the end
elements.

YAWL system allows one to define some data aspects associated to a model
through a set of net variables. Net variables are visible to all tasks of a net. Tasks
can read and write such shared variables providing a primitive communication
mechanism that will be further described in the remainder of this section. In
YAWL no graphical notation is given for net variables, as well as for all the other
language constructs related to data manipulation. However, in order to give a
complete graphical representation of an executable model, in the following some
additional notations shall be introduced.

Fig. 3.19. Graphical representation of the YAWL data aspects.

Net variables are declared in a list near to the net, as in Fig. 3.19.a, in which
each declaration takes the form var ⟨n⟩ : ⟨Type⟩, where var is a keyword, n is
a unique valid identifier, and Type identifies the range of acceptable values. The
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mapping between global and task variables are specified as in Fig. 3.19.b: the input
mappings are specified in the box containing the white on black label 3, if the model
orientation is from left to right, or in the box containing the white on black label 1
if the orientation is from top to bottom. Similarly, output mappings are specified
in the box containing the white on black label 4, if the model orientation is from
left to right, or in the box containing the white on black label 2 if the orientation
is from top to bottom. Each mapping has the form x← y, if it is an input mapping
x is a local task variable and y is a global net variable, conversely if it is an output
mapping x is a net variable and y is a local task variable.

Depending on the involved routing constructs, incoming and outgoing arcs can
have an associated boolean condition. Similarly to net variables, conditions are not
explicitly represented in the YAWL reference implementation. Conversely, here an
arc is annotated as in Fig. 3.19.c, where ϕ(x̄) is a boolean formula defined on a
set x̄ of existing net variables.

3.4.2 Language Interpretation

A YAWL net is similar to a Petri net in which places can been omitted and tasks
can be directly connected through arcs. However, the YAWL language contains
some specific constructs whose behavior cannot be easily replicated by a low-level
Petri net, such as the or-join, net variables, and conditions that are managed
and evaluated at run-time. Finally, even if tasks can be compared to Petri nets
transitions, an important difference exists between them: transitions are assumed
to be instantaneous, while tasks represent real activities with a particular duration
that clearly requires time.

YAWL has a token-based semantics routed on Petri nets, even if such tokens
are not explicitly represented. Tokens are threads of control that flow inside the
net enabling the encountered tasks. In general, a task is enabled when it receives
the necessary tokens required by the routing constructs attached to it. Excluding
routing constructs, an atomic or composite task is enabled when a token is present
in its incoming arc. An enabled atomic or composite task can be activated and
start its execution by suspending the current thread of control and releasing it at
completion by putting a new token on its outgoing arc. An atomic task can be
seen as a function x̄ ← f(ȳ) that reads a set of net variables ȳ in input, performs
some operations on them eventually using other local variables, and then stores
the final outputs into a set of net variables x̄, not necessarily different from ȳ.
Similarly, a composite task can be seen as a function composition.

A multiple instance task denotes the parallel executions of the same atomic
task multiple times: some or all these instances should need to be synchronized
before the thread of control can pass to the subsequent tasks. Finally, a multiple
instance composite task represents the parallel execution of several instances of
the same composite task defined elsewhere. A multiple instance (composite) task
is enabled when a token is present in its incoming arc; an enabled multiple instance
(composite) task generates a token for each instance that has to be executed: then
the generated tokens are synchronized at completion and a unique token is placed
in the outgoing arc.

Special treatment should be reserved to tasks with routing constructs which
have different activation behaviour. An and-split is enabled when its related task
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completes and it generates a token on each outgoing arc, producing multiple con-
current threads of control. A xor-split is enabled in the same way, but it produces
a token in only one of its outgoing arcs, on the basis of the evaluation of the con-
dition associated to each of them; if no condition is true, the last arc is considered
the default one and a token is produced in it anyway. Finally, an or-split is enabled
as the other split constructs, but it produces a token on each outgoing arcs for
which the corresponding condition evaluates to true; at least one condition has to
be true, otherwise the default arc is enabled; conversely not all arc conditions have
to be true, since the default arc is disabled if at least one condition is true.

An and-join is enabled when a token is present in each incoming arc, while a
xor-join is enabled when a token is present in any of its incoming arcs; finally, an
or-join is enabled when at least one of its incoming arcs contains a token and it is
not possible to reach a state where an not yet marked arc also receives a token and
all incoming arcs that were already marked remain marked. When a join construct
is enabled, the attached task is also enabled.

A choice can be used between any two or more tasks and it assumes differ-
ent meanings on the basis of the specific configuration. If a choice has a single
incoming and a single outgoing arc, it has the same function as a place between
two transitions and it can be safely removed. If a choice has several incoming arcs
and only one outgoing arc, it works as an xor-join, because it is enabled as soon
as a thread of control is available in any of its incoming arcs. Finally, a choice
with several outgoing arcs is used to represent the behavior of a deferred choice.
In this case the choice is enabled when a token is present in its incoming arc,
but the choice of on which outgoing arc the token will be placed is not taken by
the system, but is postponed and leaved to the user. In other words, while with
a xor-split only one of the connected tasks will become enabled, with a deferred
choice all the connected tasks are enabled until one of them is chosen, after this
choice the other tasks are withdrawn.

The cancellation region can contain any element of the net, it allows one to
define the cancellation of individual tasks, arcs, portions of a process or even an
entire process. It is always attached to a specific task, when this task completes
any thread of control residing inside the cancellation region is aborted and any
executing task within the cancellation region is terminated.

A net terminates when the end element is reached by a token. As soon as this
happens all the remaining threads of control and running tasks are terminated.

3.4.3 Language Formalization

YAWL was originally born as a compact notation for specifying workflows [72].
Its semantics has been given by mapping its constructs on classical Petri nets,
then transition systems and CPNs models as long as more complex constructs
was added [67]. Subsequently, YAWL was evolved into a full-fledged PML and
workflow system, by integrating all necessary constructs for data manipulation,
resource management, user interface generation, and so on.

Although YAWL semantics is explained in terms of Petri nets, its formal se-
mantics is officially given through (labeled) transition systems [68]. The reference
implementation can help in figure out how YAWL works when the formalization
does not contains the needed information.
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In 2009 newYAWL has been defined by adding new constructs for covering
the remaining workflow patterns. The semantics of newYAWL and its run-time
support is claimed to be given in terms of CPNs [71]. Anyway, the complete CPNs
model has not been officially published, as pointed out by Börger in [36], probably
due to its complexity. For this reasons, it is not possible to give here the complete
formalization of the YAWL language. Instead, this section focuses on control-flow
aspects with special attention to the or-join semantics, whose formalization is
particularly challenging.

In the following the set of YAWL component types is denoted as Ytypes{AT, CT, MI,
MIC, C, AS, AJ, OS, OJ, XS, XJ, SA, SO}, where the symbols are defined in Tab. 3.8.

Definition 3.46 (YAWL net). A YAWL net is a tuple (V,E,Y,A,L,R) that
belongs to the set Y defined as follows:

∀a ∈ U a ∈ Y ▵⇐⇒ (3.67)

a = (V,E,Y,A,L,R) ∧

(V,E) ∈ G ∧ Y ∶ V → Ytypes ∧

L ∶ T → A ∪ {τ} ∧ R ∶ T → ℘(V ×E)

such that:

• (V,E) ∈ G is a finite directed graph such that each vertex must be in a path
from the start to the end element. Formally: ∃s ∈ V Y (s) = SA ∧ ∃z ∈ V Y (z) =
SO ∧ ∀z ∈ V ∃{vi}ni=1 ⊆ V v1 = s ∧ vn = z ∧ ∀i ∈ [1, n − 1] (vi, vi+1) ∈ E.

• Y ∶ V → Ytypes is a total function that associates to each vertex its type.
The function Y induces a partition on the set V , in particular the set T =
v ∈ V ∣ Y (v) ∈ {AT, CT, MI, MIC} denotes the set of tasks.

• A is a set of labels such that τ ∉ A, where τ denotes that the label is missing.
• L ∶ T → A ∪ {τ} is a total function that associates to each task its name.
• R ∶ T → ℘(V ∪E) is the function that associate to each task its cancellation

region that may include tasks and arcs.

Table 3.8. YAWL component types in Ytypes.

Symbol Meaning Symbol Meaning

AT atomic task CT composite task

MI multiple instance task MIC multiple instance composite task

C condition AS and split

AJ and join OS or split

OJ or join XS xor split

XJ xor join SA start

SO stop

The basic access functions are summarized in Tab. 3.9 and they are defined as
follows: for any a ∈ Y such that a = (V,E,Y,A,L,R), vertices(a) = V , edges(a) = E,
Function type ∶ Y ×U ⇀ Ytypes associates to each vertex in the net its type, its



66 3 Graphical Process Modeling Languages

Table 3.9. Basic operations on YAWL nets.

Symbol Function Description Ref

vertices ∶ Y → ℘(U) Vertices of the underlying
graph.

inline

edges ∶ Y → ℘(U) Edges of the underlying
graph.

inline

type ∶ Y×U ⇀ Ytypes Vertex type. Eq. 3.68

tasks ∶ Y → ℘(U) Set of task elements. Eq. 3.69

label ∶ Y×U ⇀ A ∪ {τ} Task label. Eq. 3.70

canc-region ∶ Y×U ⇀ ℘(U) Cancellation region associ-
ated to the given transition.

Eq. 3.71

components ∶ Y×U → ℘(U) Set of components reachable
from the start element.

Eq. 3.72

behaviour is reported in Eq. 3.68.

type ∶ Y×U ⇀ Ytypes is (3.68)

∀a ∈ Y u ∈ U a = (V,E,Y,A,L,R)

type(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

Y (u) if u ∈ vertices(a)

↑ otherwise

Function tasks ∶ Y → ℘(U) returns the set of YAWL components that are
atomic, composite, multiple instance, or multiple instance composite tasks. Its
behavior is formally defined in Eq. 3.69

tasks ∶ Y → ℘(U) is (3.69)

∀a ∈ Y u ∈ U u ∈ tasks(a) ▵⇐⇒

a = (V,E,Y,A,L,R) ∧

type(a, u) ∈ {AT, CT, MI, MIC}

Function label ∶ Y×U ⇀ A∪{τ} returns the label associated to each task in the
net. Its behavior is defined in Eq. 3.70.

label ∶ Y×U ⇀ A ∪ {τ} is (3.70)

∀a ∈ Y u ∈ U a = (V,E,Y,A,L,R)

label(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

L(u) if u ∈ tasks(a)

↑ otherwise

Function canc-region ∶ Y ×U ⇀ ℘(U) is the function that associates to each
transition its cancellation region. Its behavior is defined in Eq. 3.71.

canc-region ∶ Y×U ⇀ ℘(U) is (3.71)

∀a ∈ Y u ∈ U a = (V,E,Y,A,L,R)

canc-region(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

R(u) if u ∈ tasks(a)

↑ otherwise
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Finally, function components ∶ Y×U → ℘(U) returns the components of a YAWL
net that are reachable from the start element, as formally described in Eq. 3.72.

components ∶ Y×U → ℘(U) is (3.72)

∀a ∈ Y ∀u ∈ vertices(a) type(a, u) = SA

∀v ∈ U v ∈ components(a, u) ▵⇐⇒

u = v ∨

∃x ∈ components(a, u) (x, v) ∈ edges(a)

♢
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3.5 Business Process Model and Notation

“The execution semantics are described informally (textually),
and this is based on prior research involving the formalization

of execution semantics using mathematical formalisms.”

– BPMN 2.0 Specification [16]

The Business Process Modeling Notation (BPMN), recently renewed as Busi-
ness Process Model and Notation [16], is an Object Management Group (OMG)
standard that provides among all the following features: (1) an object model suit-
able for the business process domain; (2) a wide range of graphical constructs for
defining business process diagrams; (3) an XML-based interchange format for en-
hancing vendor tools compatibility; (4) an executable semantics for BP diagrams;
(5) a way for translating BP models into the Web Services Business Process Exe-
cution Language (WS-BPEL).

The BPMN standard treats so many aspects about business process modeling,
that there is no way to produce an introduction that is both compact and exhaus-
tive. To give an idea about this, consider that the latest BPMN specification [16]
is about five hundred pages long, and one of its parts is directly related to the
WS-BPEL specification [73], which alone contains over than two hundred pages,
without considering auxiliary specifications. For such reason, this section focuses
only on those aspects of the BPMN standard related to the design of internal pro-
cesses inside a single organization, while other aspects related to the coordination
of multiple processes, like choreographes and orchestrations, are not treated.

3.5.1 Graphical Elements and Syntax

The main graphical elements of BPMN core language are summarized in Fig. 3.20,
and collected into five groups: event, task, gateway, data, and connector. These
groups are part of the more general syntactical categories defined in [16]: flow
objects, data, connecting objects, swim lanes, and artifacts.

Flow objects includes the main graphical elements for defining the behaviour
of a process, such as: events, tasks, and gateways. Several types of events can be
found in a BPMN model, their representation changes on the basis of the position
in which they are placed and the nature of the event. A start event is represented
like in Fig. 3.20.a, as a circle with a thin border and an empty content, while a
generic intermediate event is characterized by a double line border as in Fig. 3.20.b,
and an end event by a thicker border as in Fig. 3.20.c. A particular variant of end
event is the stop event which is represented, as in Fig. 3.20.g, by placing a filled
circle inside an end event element. Other kinds of events can be represented by
placing a specific icon inside these circles; for instance, Fig. 3.20.e depicts a message
event, Fig. 3.20.f depicts a timer event, and finally Fig. 3.20.g depicts a error event.

An atomic task is depicted as a rounded rectangle as exemplified in Fig. 3.20.h,
a sub-process or composite task is depicted in a similar way, but it is characterized
by a small square with an inner plus symbol placed on the bottom of the rounded
rectangle, as in Fig. 3.20.i.

An exclusive gateway is depicted as a diamond containing a cross, an inclusive
gateway is characterized by a circle inside the diamond, a parallel gateway con-
tains a plus symbol inside the diamond, while the decision gateway has a double
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Fig. 3.20. BPMN main graphical elements.

circle with an empty pentagon inside the diamond, as shown from Fig. 3.20.l to
Fig. 3.20.m, respectively.

A data object produced or consumed by a task is represented as a paper sheet
with a folded upper-right corner, like the one in Fig. 3.20.n. Data objects consumed
or produced by a process or task are represented by placing an empty or filled arrow
inside the paper, respectively, as happens in Fig. 3.20.o and Fig. 3.20.p.

Two kinds of connecting objects are considered here: sequence flow and asso-
ciation. A sequence flow is depicted with a solid line as in Fig. 3.20.q, while an
association is depicted as a dotted line with an open arrowhead, as in Fig. 3.20.r,
which connects a data object to a task and vice-versa.

The BPMN elements for message exchange are not considered here, because
they cannot be used to model a single process, but only to represent the interaction
among several processes, as stated in [16]: “A message flow must connect two sepa-
rate pools. They connect either to the pool boundary or to flow objects within the
pool boundary. They must not connect two objects within the same pool”. A pool
is a graphical representation of a participant; hence, no message exchanges can be
defined inside the same process. The only considered message-related construct is
the message event, in order to represent the case in which an event is waited from
the external environment, but no further assumptions are given about the event
generation. Graphical elements related to role management are not considered ei-
ther, because of marginal interest for the core BPMN semantics. As a consequence,
elements such as pools and swim lanes are omitted. Artifacts are also discarded in



70 3 Graphical Process Modeling Languages

this introduction, since they are used only for documentation purposes, and they
do not influence the execution.

With such assumptions at hand, a BPMN net is a directed graph containing
a finite number of tasks, gateways and events connected through sequence flows.
Moreover, tasks can be associated through an association arc to a data object
element. Even if the BPMN specification [16] does not preclude the ability of
connecting a task or event with several incoming or outgoing sequence flows, here
it is assumed that at most one flow can enter a task or event, and only one flow
can exit from it. This is reasonable, because the same logic induced by multiple
sequence flows can be implemented with one or more gateways. Furthermore, each
net shall start with one or more start events; a start event cannot have an incoming
flow but only one outgoing flow, and shall end with one or more end or termination
events, which can have only an incoming flow and no outgoing flows. A gateway
can have several incoming branches and one outgoing branch, or one incoming
branch and several outgoing branches.

3.5.2 Language Interpretation

Similarly to the previous languages, the BPMN informal semantics can be ex-
plained in terms of tokens that flows inside the net activating tasks. A token is
nothing more than a thread of control, it is ideally produced by each start event
and injected into the net through the outgoing sequence flow. Note that two start
events are alternative: a process instance is triggered by one of the start events
and it does not wait for the other ones. An atomic or composite task is ready
when the required number of tokens is available in its incoming sequence flow.
A task changes its status from ready to active, when the necessary data inputs
become available. In other words, a ready task will be executed only when its
input data becomes available. Finally, when all associated operations have been
performed, the task changes its status in complete and the specified number of
tokens is produced through its outgoing sequence flow, generating the required
data outputs.

As regards to data aspects, data objects are the primary construct for modeling
data within a process or task. The lifecycle of a data object is strictly related to
the process or task lifecycle: when a process or task is instantiated, all data object
instances contained within it are also instantiated; similarly, when a process or
task is disposed, the data object instances contained inside it are also disposed.
Moreover, each process or task can define one or more input-set and output-set,
representing its interface. Each input-set and output-set refers to zero or more data
input and data output objects, respectively. The specification [16] requires that a
process or task cannot start until the input-set is available, while the output-set
becomes available at task or process completion.

When a thread of control reaches an intermediate event, it is suspended until a
particular event occurs: for instance, the reception of a message from the external
environment, or a timeout expiration. An end event consumes the incoming to-
kens, without producing anything. The net execution terminates when one of the
following three conditions holds: (1) all tokens have been consumed by the existing
end events, or (2) when no other task can be enabled, or (3) immediately when a
stop element is reached by a token.
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The behaviour of each gateway depends on the number of connected incoming
and outgoing flows. An exclusive gateway with one incoming branch and several
outgoing branches acts as a split which redirects the received threads of control
on only one of its outgoing branches on the basis of the the associated condition
evaluation. Assuming an evaluation order from top to bottom or left to right, the
first true condition determines the activation of its corresponding branch. At least
one default branch has to be specified, otherwise the gateway throws an exception
whenever all conditions are false. Conversely, if the exclusive gateway has several
incoming branches and only one outgoing branch, it acts a merge which places a
token into its outgoing branch as soon as a token is available in any of its incoming
branches.

An inclusive or gateway with one incoming branch and several outgoing
branches represents a conditional split in which more than one outgoing branches
can be enabled, on the basis of the evaluation of the associated conditions. As for
the exclusive or gateway, at least one branch has to be marked as the default one,
in order to avoid the raising of an exception. Similarly, if the inclusive or gate-
way has several incoming branches and one outgoing branch, it act as a generic
join which waits the completion of all incoming branch that can complete, before
producing a token on its outgoing branch.

A parallel gateway with one incoming branch and several outgoing branches
represents a fork which generates a new thread of control on its outgoing branches.
Conversely, if it has several incoming branches and only one outgoing branch, it
denotes a join which waits for the completion of all its incoming branches, before
placing a token in its outgoing branch.

Finally, a decision gateway with one incoming branch and several outgoing
branches represents an inclusive or gateway in which the different alternatives
have an associated event which determines its activation.

3.5.3 Language Formalization

The formalization of the BPMN semantics is notoriously challenging, probably due
to its complexity. The last BPMN specification [16] claims to solve inconsisten-
cies and ambiguities of the previous version, although many questions about the
BPMN semantics seem to be left unspecified. For instance, it explicitly states that
BPMN is not a data-flow language, despite that the flow of data is represented by
means of message exchanges and data artifact associations. Nevertheless, inside
the execution semantics, it claims that if no input-set is available for a task, then
its execution will wait until this condition is met, and this is a typical data-flow
language behaviour.

The latest specification describes the BPMN execution semantics in two dif-
ferent ways: in the first approach the execution semantics is given in textual form
with explicit references to the workflow control-flow patterns [29]. Conversely, the
second approach is based on a recursive function that translates BPMN elements
into WS-BPEL executable code, exploiting the meaning of its constructions.

Börgher in a recent paper [74] discusses several weak points of the standard,
claiming the BPMN does not fulfil the intended goals, especially for what concern
interoperability, and it fails to be a valid medium for sharing knowledge about the
domain among the different stakeholders.
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In the remainder of this section a BPMN net is formalized in terms of a graph.
For this purpose the set Btypes = {SE, IE, EE, TE, AT, CT, XG, OG, AG, DO, DI, DU} is intro-
duced which collects all the considered component types defined in Tab. 3.10.

Table 3.10. BPMN component types in Btypes.

Symbol Meaning Symbol Meaning

SE start event IE intermediate event

EE end event TE stop event

AT atomic task CT composite task

XG exclusive or gateway OG inclusive or gateway

AG parallel gateway DG decision gateway

DO data object

DI data input object DU data output object

Definition 3.47 (BPMN net). A BPMN net is a tuple (V,E,Y,X,A,L,D) that
belongs to the set B defined as follows:

∀a ∈ U a ∈ B ▵⇐⇒ (3.73)

a = (V,E,Y,X,A,L,D) ∧

(V,E) ∈ G ∧ Y ∶ V → Btypes ∧ X ∶ E → {S, A} ∧

L ∶ T → A ∪ {τ} ∧ D ∶ T → ℘(DO×DI×DU) }

such that:

• (V,E) ∈ G is a finite directed graph.
• Y ∶ V → Btypes is a total function that associates to each vertex its type.

The function Y induces a partition on the set V , for instance the set T =
{v ∈ V ∣ Y (v) ∈ {AT, CT}} denotes the set of tasks, while D = {v ∈ V ∣ Y (v) ∈
{DO, DI, DU}} is the set of data objects.

• X ∶ E → {S, A} is a total function that associate to each edge its type, where S

denotes a sequence flow, and A is an association.
• A is a set of labels such that τ ∉ A where τ denotes the silent action.
• L ∶ T ∈ A∪{τ} is a total function that associates a label to each task, eventually

the silent one.
• D ∶ T → ℘(DO×DI×DU) is the function that associates data objects to tasks.

The basic access functions are summarized in Tab. 3.11 and they are defined
as follows: for any a ∈ B such that a = (V,E,Y,X,A,L,D), vertices(a) = V ,
edges(a) = E. Function tasks ∶ B → ℘(U) returns the set of components in a model
that are atomic or composite task; formally tasks(a) = {v ∈ V ∣ Y (v) ∈ {AT, CT}}.
Similarly, function events ∶ B → ℘(U) returns the set of components in a model
that are events, namely events(a) = {v ∈ V ∣ Y (v) ∈ {SE, IE, EE, TE}}; while function
gateways ∶ B → ℘(U) returns the set of components in a model that are gateways,
gateways(a) = {v ∈ V ∣ Y (v) ∈ {XG, OG, AG, DG}. Function data-objects ∶ B → ℘(U)
determines the set of components in a model that are data objects, formally
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data-objects(a) = {v ∈ V ∣ Y (v) ∈ {DO, DI, DU}}. Finally, function seq-flows ∶ B →
℘(U) returns the set of sequence flows in a model, seq-flows(a) = {e ∈ E ∣ Y (v) = S},
and function associations ∶ B → ℘(U) returns the set of associations in a model,
associations(a) = {e ∈ E ∣ Y (v) = A}.

Table 3.11. Basic operations on BPMN nets.

Symbol Function Description Ref

vertices ∶ B → ℘(U) The underlying graph vertices. inline

edges ∶ B → ℘(U) Edges of the underlying graph. inline

tasks ∶ B → ℘(U) Vertices that are atomic or com-
posite tasks.

inline

events ∶ B → ℘(U) Vertices that are start events. inline

gateways ∶ B → ℘(U) Vertices that are exclusive gate-
ways.

inline

data-objects ∶ B → ℘(U) Vertices that are data objects. inline

seq-flows ∶ B → ℘(U) Edges that are sequence flows. inline

associations ∶ B → ℘(U) Edges that are associations. inline

vertex-type ∶ B×U → Btypes Vertex type. Eq. 3.74

edge-type ∶ B×U → {AT,CT} Edge type. Eq. 3.75

task-data ∶ B×U → ℘(U) Data objects of a task. Eq. 3.76

Function vertex-type ∶ B×U → Btypes associates to each vertex in a model its
type, its behaviour is reported in Eq. 3.74.

vertex-type ∶ B×U → Btypes (3.74)

∀a ∈ B u ∈ U a = (V,E,Y,X,A,L,D)

vertex-type(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

Y (u) if u ∈ vertices(a)

↑ otherwise

Function edge-type ∶ B×U → {AT, CT} associates to each edge in a model its type,
its behaviour is reported in Eq. 3.75.

edge-type ∶ B×U → {AT, CT} (3.75)

∀a ∈ B u ∈ U a = (V,E,Y,X,A,L,D)

edge-type(a, u) =
⎧⎪⎪
⎨
⎪⎪⎩

X(u) = x if u ∈ edges(a)

↑ otherwise

Finally, function task-data ∶ B×U → ℘(U) associates to each task in a model its
data objects, its behaviour is reported in Eq. 3.76.

task-data ∶ B×U → ℘(U) (3.76)

∀a ∈ B ∀t ∈ tasks(a) ∀u ∈ U ∈ task-data(a, t) ▵⇐⇒

a = (V,E,Y,X,A,L,D) ∧ ∃(u, t) ∈ edges(a) u ∈ data-objects(a)

♢
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3.6 Summary and Concluding Remarks

This chapter provides a uniform overview about the design of graphical PMLs
and their theoretical foundation. It discusses four graphical modeling languages
from the most formal one. The chapter starts with a presentation and formal-
ization of the PTNs language that is substantially self-modifying place transition
nets from which other Petri nets variants can be obtained with simple syntactical
restrictions. PTNs is more expressive than ordinary Petri nets, e.g. it is Turing-
complete, anyway it is very limited in data representation and manipulation. The
chapter continues by introducing the CPNs language. CPNs enhances basic Petri
nets with a powerful inscription language that can be used to build complex ex-
pressions and data types. Finally, the chapter deals with less formal modeling
languages, like YAWL and BPMN. Each of these languages is described using a
similar approach: initially the graphical language elements are presented together
with their syntax, then an informal interpretation of each language constructs is
provided, followed by a mathematical formalization whenever possible depending
on the original specification.

The languages presented here will be used in the following chapters for exempli-
fying the discussed concepts or proving certain properties. In particular, Petri nets
will be applied in the next chapter for discussing the problems related to model
verification and correction, while YAWL and BPMN will be used in Chap. 5 for
exposing some issues about the promoted paradigm for process design.



4

Free Composition, Verification and Correction

A main step in any process design activity is the simulation and verification of the
modeled processes, with the goal to discover the presence of particular errors and
eventually rectify them. Workflow nets [75] are a variant of Petri nets that has been
extensively adopted for the analysis and verification of business processes. Work-
flow nets entails a notion of soundness that has been introduced for distinguishing
nets with a good run-time behaviour from those that will lead to an erroneous
state during their execution. In this chapter the original notion of soundness is
discussed and revised to ease the correction of errors found during the verification
phase. Accordingly a refined version of the soundness check technique is described.

Very few verification tools provide useful hints about how to fix the found er-
rors: end-users have to figure out themselves the solution by interpreting the often
cryptic output of such tools. Model correction is rarely a trivial task: apparently
independent problems can have a common cause and the correction of an error in
one place can introduce new errors in other parts of the model.

The aim of this chapter is twofold. Firstly, it refines the notion of soundness
and its related verification method for producing less redundant and more detailed
error messages. Secondly, it introduces a novel technique, called Petri Nets Simu-
lated Annealing (PNSA), used for streamlining process model correction. The idea
behind the PNSA technique is searching models that are both structurally and se-
mantically similar to the original one but containing few errors, taking advantage
of the output of the refined soundness check method. The syntactical differences
between a model produced by the PNSA technique and the original one can be
offered as hints to rectify the existing problems.

The remainder of this chapter is organized as follows: Sec. 4.1 summarizes
several research efforts about workflow nets, soundness, verification methods and
the automated program repair problem. Sec. 4.2 describes the typical phases of a
design activity to show where a correction tool can be used. Sec. 4.3 introduces
workflow nets, while Sec. 4.4 and Sec. 4.5 discuss the notion of soundness and the
related verification method, respectively. Sec. 4.6 introduces the automated model
repair problem taking workflow nets as the reference formal language. Sec. 4.7 pro-
poses the aforementioned PNSA technique. The technique is validated against a set
of real process models redefined as workflow nets. The results of such preliminary
validation are discussed in Sec. 4.8.
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4.1 Related Work

Petri nets theory offers a wide range of methods for modeling and analyzing pro-
cesses of various nature. Workflow nets is a formal language tailored for the mod-
eling and verification of processes in the workflow management domain, obtained
by adding some constraints to ordinary Petri nets. It appears for the first time in
the seminal work of van der Aalst [72, 75] together with a definition of soundness
and a set of transformation rules to evolve a net preserving its correctness.

Over the years several extensions of Workflow Nets, different notions of sound-
ness and related verification methods have been proposed. A survey of the most
relevant soundness criteria can be found in the work of Weske [7] and van der Aalst
et al. [76]. The former discusses classical soundness, weak soundness [77], relaxed
soundness [78] and lazy soundness [79] pointing out how they are related. The later
surveys additional soundness formalizations and their related decidability issues
for classical Workflow nets and other extensions.

Model checking, automated theorem proving and verification tools are consol-
idated research topics well documented in scientific literature. A less considered
topic regards how to help the end-user in formulating a solution for solving the
problems found in a model. In the context of PMLs, in [80] the authors describe a
technique for automatically fixing certain types of data anomalies that can occur
in process models, while in [81] an approach is presented to compute the edit op-
erations required to correct a faulty service in order to interact in a choreography
without deadlocks.

The problem addressed in this chapter shares many commonalities with the Au-
tomated Program Repair (APR) problem, namely how to automatically fix bugs
inside programs written in a general-purpose language. The APR problem can be
stated as follows: given a program, a set of positive tests and at least a failed one
proving the presence of a bug, produce a patch that fixes the error in question. Test
cases can be provided in advance or generated on demand from formal specifica-
tions or ad-hoc procedures. Arcuri [82], Forrest et al. [83] and Wilkerson et al. [84]
have recently tackled the APR problem with co-evolutionary genetic programming
(GP) techniques. Genetic and Evolutionary Computations (GECs) encompass a
wide range of methods for solving complex optimization and combinatorial prob-
lems by means of basic algorithmic operations that mimic natural phenomena. GP
in particular identifies a subclass of evolutionary computations focused on prob-
lems that require solutions with a certain structure, like trees and graphs, as it is
usually necessary in the synthesis of computer programs and circuits.

The main steps of the APR techniques proposed in [82–84] can be broadly
summarized as follows: (1) localize the faulty code using the failed tests, then
(2) evolve new code fragments with GP techniques in an attempt to obtain a
program similar to the original one, but able to pass all the given tests. If such
program is found, (3) simplify it and use the remaining differences to create a
patch. These techniques cannot guarantee neither that a solution is found, nor that
a solution introduces subtle bugs not contemplated by the available tests. Despite
these limitations, they are able to produce good fixes for preexisting programs
written in the C programming language [83, 84].
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Two reasonable assumptions heavily influence the effectiveness of an APR tech-
nique [82, 83]: (1) program defects are local and (2) optimal solutions are struc-
turally close to the original program. As a consequence, only small fragments of
the original program need to be altered, limiting the search space and the chance of
corrupting parts not covered by any test. With these assumptions, traditional GP
techniques may not be the best way to tackle the APR problem: for instance, in
GP applications the first generation of programs is randomly sampled to cover as
much as possible the entire search space, while in APR the first generation is com-
posed of nearly identical individuals where variety should be artificially enforced
to make GP works. High variety is preferable for avoiding premature convergence
to unsatisfactory solutions, but at the same time it reduces the probability to find
optimal solutions close to the original program, hence the need for a further sim-
plification phase when a solution is found. At the end, the confidence about the
correctness of a solution is inversely proportional to its distance from the original
program; consequently, strange solutions are more likely to be discarded by the
end-user even if they are correct.

The PNSA technique presented in this chapter can be seen as an APR tech-
nique tailored for executable process models. Nevertheless, in light of the above
considerations, PNSA attempts a different approach that aims to systematically
search near to the original model, before exploring the surrounding solutions, with-
out growing large populations. PNSA is mainly inspired by the work of Suman [85]
and Smith et al. [86] about dominance-based Multi-Objective Simulated Annealing
(MOSA). The key idea of these MOSA methods is to estimate the gap between
the current solution and the unknown optimal solutions of the Pareto-front, and
use it as a single fitness function to be minimized. Optimal solutions are approx-
imated by a finite set of mutually non-dominated candidate solutions found so
far during the search. The general goal of the method is to move towards the
Pareto-front encouraging the diversification of the candidate solutions. It worths
to be stressed that PNSA is inspired by, but not based on, these MOSA methods
because it remains a GP technique: as such, it does not fall in the category of
MOSA applications.

♢
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4.2 The Free Composition Paradigm

A process model is the final result of a design activity carried out by the end-user
by hand or more often using specific software editors [66,69,87]. Excluding trivial
cases, a design activity is a sequence of refining steps, iterated multiple times until
predefined requirements and quality criteria are met. At each step multiple design
alternatives can be evaluated and a new version of the model is crafted by applying
a sequence of changes to the existing one.

The primary goals of an editor are to ease model manipulation, track versions,
and enforce basic syntactical constraints; for instance, in Petri net construction an
editor can deny the connection of two nodes of the same type. Another important
feature for model comprehension and testing purposes is the simulation and the
actual execution of a process model. Formal verification methods are also widely
exploited for detecting potential design flaws or for guaranteeing the presence of
desired semantic properties [88].

The end-user can take advantage of the information collected with different
simulation and verification techniques to identify model problems. Generally it is
up to the user to understand the output produced by these tools and figure out
how to solve the problems respecting the imposed language constraints. Find the
right fix is not always a trivial task: apparently independent problems may have a
common cause and the correction of an error in one part may introduce new errors
in other parts of the model. As if this was not enough, the new introduced errors
can escape outside the range of errors that can be automatically detected.

A typical design session can be seen as a sequence of steps that trans-
form an existing model into a different but correlated model. A generic design
step can be ideally decomposed in five distinct phases exemplified in Fig. 4.1.

Existing 
Model

Desired 
Model

Actual
Model

1. Intention

2. Modification

Obtained 
Model

4. Correction

 3. Simulation
Verification

5. Evaluation

Fig. 4.1. A generic design step.

Initially, (1) the end-user conceptual-
izes a new model in an attempt to
include the missing features, then (2)
the existing model is modified follow-
ing the construction rules imposed by
the modeling language. The obtained
model does not necessarily match the
desired one, hence (3) the end-user ex-
ploits the available simulation and ver-
ification tools to check the new added
parts. If the model is not consistent,
(4) the end-user tries to fix it with the
collected information, usually reiterat-
ing the previous phases until all problems are solved. The resulting model is finally
(5) evaluated against the original intention and rejected or accepted. When it is
accepted, the model becomes a new starting point for the next design step.

The described decomposition does not exclude simpler interactions: the ob-
tained model can be exactly the desired one and the applied changes do not nec-
essarily introduce new errors. The aim of this chapter is to propose a method for
driving the user during the correction phase by automatically determining a set
of possible corrections.
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4.3 Workflow Nets

The Workflow Nets (WFNs) [75] language is a Petri nets variant tailored for
designing processes in the context of workflow management systems. A workflow
net is nothing more than an ordinary net with further syntactical restrictions and
a particular halting semantics: the net shall have a single start place with no
incoming arcs, a single end place with no outgoing arcs, and any other component
shall lay on a path between these two places. Unlike usual Petri nets, the execution
of a workflow net halts when at least one token reaches the end place. These new
rules are introduced for several reasons, one of them is to ease the hierarchical
composition of workflow nets starting from existing ones.

Definition 4.1 (Original Workflow Nets). In [75] a Petri net is defined as
a tuple (P,T,F ) made from a finite number of places and transitions contained
respectively in two sets P,T ⊆ U such that P ∩ T = ∅ and F ⊆ (P ×T ) ∪ (T ×P ).
The set of all Petri nets yet described is denoted by Norigin:

∀z ∈ U z ∈ Norigin
▵⇐⇒ ∃P,T,F ∈ U (P,T,F ) = z ∧ (4.1)

∃n ∈ N ∣P ∣ + ∣T ∣ < n ∧ P ∩ T = ∅ ∧ F ⊆ (P ×T ) ∪ (T ×P )

A workflow net [75] is then defined as a Petri net z ∈ Norigin having a initial place
ps without incoming arcs, a final place pe without outgoing arcs and the remaining
components in a path from ps to pe. The set of all workflow netsWorigin is formally
defined as follows:

∀z ∈ U z ∈ Worigin
▵⇐⇒ ∃P,T,F ∈ U (4.2)

z = (P,T,F ) ∈ Norigin ∧

∃ps ∈ P ∀t ∈ T (t, ps) ∉ F ∧

∃pe ∈ P ∀t ∈ T (pe, t) ∉ F ∧

∀u ∈ P ∪ T u ∈ C(ps)

where C(x) represents the set of all the net elements reachable from x that can be
recursively defined as ∀u ∈ U u ∈ C(x) ⇐⇒ u = x ∨ ∃v ∈ C(x) (v, u) ∈ F .

Following the usual convention, the fields of a workflow net will be denoted by
the functions pls ∶ Worigin → U , trs ∶ Worigin → U and flow-relation ∶ Worigin →
U ×U , such that for all a = (P,T,F ) ∈ Worigin, pls(a) = P , trs(a) = T and
flow-relation(a) = F . Both the initial place ps and final place pe of a workflow net
a ∈ Worigin are unique and they will be denoted by the functions start ∶ Worigin → U
and end ∶ Worigin → U , respectively. Without losing generality, the initial marking
of a workflow net a ∈ Worigin is assumed to be a single token in the start(a) place.

A workflow net a ∈ Worigin starts its execution when a token is put in the
initial place and it terminates when a token appears in the final place [75]. Clearly,
the halting condition of workflow nets differs from the one given for PTNs: the
execution terminates when no other transition is enabled or when at least one token
is stored in the end place. This behavior can be obtained in two ways: the first
one is modifying the PTNs interpreter in order to check the end place condition,
the second one is traducing each workflow nets to a compatible net before its
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execution. Here, the latter solution is adopted, hence the formal semantics of the
original workflow nets is given in PTNs through the translating function translate ∶
Worigin →N defined in Eq. 4.3.

translate ∶ Worigin →N (4.3)

∀a ∈ Worigin ∀b ∈ N b = translate(a) ▵⇐⇒

places(b) = {(p,ω) ∣ p ∈ pls(a)} ∧

transitions(b) = {(t, τ) ∣ t ∈ trs(a)} ∧

arcs(b) = {(x, y, 1, θ) ∣ (x, y) ∈ flow-relation(a)} ∪

∪ {(end(a), t, 2, end(a)) ∣ t ∈ trs(a)}

For every workflow net, the translating function returns a net identical to the
original one except for the final place that is connected to every existing transition
with an inhibitor arc: when a token is stored in such place, no other transition can
be enabled, hence the execution is complete.

Not surprisingly, Petri nets literature contains several extensions of the original
concept of workflow nets [76]. Here, it is natural to define Workflow Nets (WFNs)
as a restriction of the already discussed PTNs language in order to inherit its
features like actions or place capacities.

Definition 4.2 (Halt Place). A place p ∈ pls(a) of a net a ∈ N is said to be
an halt place if and only if it is connected to every transition t ∈ trs(a) with an
inhibitor arc. Function halt-place ∶ N ×U → B defined in Eq. 4.4 is used to capture
such notion.

halt-place ∶ N ×U → B is (4.4)

∀a ∈ N ∀p ∈ pls(a) halt-place(a, p) ▵⇐⇒

∀t ∈ trs(a) ∃w ∈ N (p, t,w, p) ∈ arcs(a) ∧w > 1

Fig. 4.2. Halt place notation and
its intuitive meaning.

For not cluttering the graphical represen-
tation of a net, an halt place will be denoted
with a double circled place, as happens for ph

in Fig. 4.2. In this manner the related inhibitor
arcs can be left implicit. The intuitive meaning
is exemplified in the same figure: replace the
halt place with a regular one and connect it to
every transition of the net through an outgoing
inhibitor arc.

Definition 4.3 (Workflow Nets). A net a ∈ N is a workflow net if and only if
(1) there exists a unique start place ps ∈ pls(a) without incoming arcs, (2) there
exists a unique end place pe ∈ pls(a) without outgoing arcs that is also an halt
place, and (3) every vertex of the net lays on a path from ps to pe. The set of all
workflow nets is denoted by W and formally defined as follows:

∀a ∈ N a ∈ W ▵⇐⇒ (4.5)

∃ps ∈ pls(a) pre-set(a, ps) = ∅ ∧

∃pe ∈ pls(a) post-set(a, pe) = ∅ ∧ halt-place(a, pe) ∧

∀v ∈ vertices(a) v ∈ components(a, ps)
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The initial place ps and the final place pe of a net a ∈ W are unique: for
contradiction, if there exists a ∈ W with two different start places ps1, ps2 ∈ pls(a),
such that ps1 ≠ ps2, pre-set(a, ps1) = ∅ and pre-set(a, ps2) = ∅, then by Def. 4.3 it
follows ps2 ∈ components(a, ps1) and vice versa. But ps2 ∈ components(a, ps1) only
if ps2 reachable with an incoming arc, hence pre-set(a, ps2) ≠ ∅, or ps2 = ps1. The
same holds for ps1 if ps1 ∈ components(a, ps2). Initial and final places are denoted
by the functions start ∶ W → U and end ∶ W → U , respectively.

A workflow net a ∈ W is a standard net, because every transition has a non-
empty pre-set, hence it cannot make progress without an initial marking. By de-
fault the initial marking of a workflow net a ∈ W is a single token in the start place,
i.e. initial-marking(a) ≜ {start(a) ↦ 1}. The set of marked workflow nets W● is de-
fined in the same way of N ● as a pair formed by a net and a valid marking, i.e.
W● ≜ { (a, q) ∣ a ∈ W ∧ q ∈ markings(a)}.

In similar way the final marking is defined as final-marking(a) ≜ {end(a) ↦ 1}
and any marking that covers the final one is called halt marking. Formally,

halt-marking ∶ W×Q ⇀ B is (4.6)

∀a ∈ W ∀q ∈ Q

halt-marking(a, q) ▵⇐⇒ q ∈ markings(a) ∧ q ≥ final-marking(a)

The PTNs model in Fig. 4.3.a is an example of workflow net; its canonical
interpretation is shown in Fig. 4.3.b where the halt place has been replaced by a
set of inhibitor arcs that enforce the halting semantics stated for workflow nets.
Clearly, the use of such inhibitor arcs does not exclude the existence of nets that
terminate correctly without them but this is not the norm, e.g. no token is left
behind in the net of Fig. 4.3.b when one is stored in p5, while this is not the case for
the net in Fig. 4.3.c where t3 can fire indefinitely unless inhibitor arcs are added.

Fig. 4.3. (a) A workflow net with a special notation for the halt place. (b) The same
net where the halt place has been translated to a regular place with inhibitor arcs. (c) A
slightly different net that needs an halt place to comply with WFNs semantics.

The choice of adopting a single start place and a default marking in WFNs is
reasonable since it does not reduce the language expressiveness, as shown by the
following proposition.
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Proposition 4.4 (Single Start Place). For every marked net a ∈ N ●, there
exists a behaviorally equivalent marked net b ∈ N ● belonging to the same Petri nets
class, that has a place with an empty pre-set and a single token in it. In particular,
the behavior of b is identical to the original one after a finite yet unavoidable
sequence of silent initial transitions.

∀a ∈ N ● ∃b ∈ N ∃x ∈ pls(b) ∃qs ∈ markings(b) (4.7)

pre-set(b, x) = ∅ ∧

qs(x) = 1 ∧ ∀y ∈ pls(b) y ≠ x⇒ q(y) = 0 ∧

∃r ∈ ρ(b, qs) (b, r) ≃g a

Workflow Nets Classification

Several classes of workflow nets can be defined by considering the presence of
special arcs inside them. In particular, in order to make such classification the
following function ptn ∶ W → N is initially used, which transforms a workflow net
a ∈ W into an equivalent PTNs net b ∈ N in which the inhibitor arcs between
any transition and the end place have been removed, and then the presence of
remaining special arcs is evaluated.

ptn ∶ W → N is (4.8)

∀a ∈ W b = ptn(a) ▵⇐⇒

b same as a except

arcs(b) = arcs(a) ∖ { (end(a), t,w, end(a)) ∣ t ∈ trs(a) ∧w ∈ N ∖ {1}}

Given such transformation function, the following classes of workflow nets can
be defined on the basis of the presence the special arcs presented in Sec. 3.2.4. In
particular, Wext is the class of workflow nets containing reset and inhibitor arcs,
Wreset is the class of workflow nets containing only reset arcs, and Wbasic is the
class of workflow nets containing only basic arcs.

Wext = {a ∈ W ∣ ptn(a) ∈ Nreset ∪Ninhibitor} (4.9)

Wreset = {a ∈ W ∣ ptn(a) ∈ Nreset} (4.10)

Wbasic = {a ∈ W ∣ ptn(a) ∈ Nbasic} (4.11)

The following function allows one to transform a workflow net a ∈ W into
an equivalent PTNs net b ∈ N , but differently from function translate ∶ W → N
defined in Eq. 4.8, in this case no inhibitor arcs are used:

basic-translate ∶ W → N is (4.12)

∀a ∈ W ∀b ∈ N b = basic-translate(a) ▵⇐⇒

b same as a except

pls(b) = pls(a) ∪ {(ph, ω)} ∧

arcs(b) = arcs(ptn(a)) ∪

∪ { (ph, t, 1, θ) ∣ t ∈ trs(a) ∧ t ∉ post-set(a, start(a)) } ∪

∪ { (t, ph,1, θ) ∣ t ∈ trs(a) ∧ t ∉ pre-set(a, end(a)) } ∖
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where ph is a new place identifier not in pls(a) and unspecified attributes like
actions and capacities remain the same.

The idea behind this translating function is the following: every transition
directly connected with the initial place but not with the final one stores a single
token in the added place ph, every transition directly connected with the final
place but not with the initial one removes the token in ph and every transition
neither in the post-set of the initial place, nor in the pre-set of the final place is
disabled if ph is empty and left the token in it if it fires.

Fig. 4.4. The result of the pre-
serving translation applied to
the workflow net in Fig. 4.3.c

This translating function does not alter the
Petri nets class of the given workflow net. The re-
sulting net is not necessary a workflow net but this
is true when the net is non-trivial, i.e. there exists
at least one transition in the post-set of the initial
place not in the pre-set of the final place and vice
versa.

Definition 4.5. A workflow net a ∈ W is non-
trivial if it contains at least a transition which is
contained in the post-set of the initial place, but
not in the pre-set of the the final place, and vice
versa. This condition is formally specified as fol-
lows:

∀a ∈ W non-trivial(a) ▵⇐⇒ (4.13)

∃x, y ∈ trs(a)

x ∉ post-set(a, start(a)) ∧ y ∉ pre-set(a, end(a))

Proposition 4.6 (Non-Trivial Workflow Nets). Given a workflow net a ∈ W ,
if a is non-trivial, then the net b = basic-translate(a) is also a workflow net.

∀a ∈ W non-trivial(a) ⇒ basic-translate(a) ∈ W (4.14)

To make a workflow net non-trivial it is sufficient to add a new initial place
followed by a silent transition connected to the original initial place.

Extended Workflow Nets presented in [76] can be translated in workflow nets
given here: nets with inhibitor arcs connected to a place in the preset are excluded,
nets with reset arcs connected to a place in the preset need to be transformed.

♢
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4.4 The Notion of Soundness

This section introduces the notion of classical soundness [75] for WFNs models.
Roughly speaking a workflow net is sound when it exposes a good run-time be-
havior. For classical soundness this is translated in three properties: a workflow
net is sound if (1) there is always an opportunity to complete the execution, (2)
every terminating execution completes properly with one token in the final place,
and (3) every transition has at least one chance to fire.

Surprisingly, in Petri nets literature there is no consensus about the formal def-
inition of classical soundness [75], hence this section introduces one of the existing
variants and shows what not works with the others.

Definition 4.7 (Option to Complete). A workflow net a ∈ W has an option to
complete if and only if for every marking reachable from the initial one, at least
one token can reach the final place. The set of workflow nets with an option to
complete is denoted by Wopt ⊆ W and formally defined as follows:

∀a ∈ W a ∈ Wopt
▵⇐⇒ (4.15)

∀q ∈ ρ(a, qs(a)) ∃r ∈ ρ(a, q) r ≥ qe(a)

Definition 4.8 (Proper Completion). A workflow net a ∈ W completes properly
if and only if every reachable halting state is the final state with a single token
in the final place. The set of workflow nets with proper completion is denoted by
Wpro ⊆ W and formally defined as follows:

∀a ∈ W a ∈ Wpro
▵⇐⇒ (4.16)

∀q ∈ ρ(a, qs(a)) q ≥ qe(a) ⇒ q = qe(a)

Definition 4.9 (No Dead Transitions). A workflow net a ∈ W has no dead
transitions if and only if every transition can fire at least in one run. The set
of workflow nets with no dead transitions is denoted by Wnod ⊆ W and formally
defined as follows:

∀a ∈ W a ∈ Wnod
▵⇐⇒ (4.17)

∀t ∈ trs(a) ∃q ∈ ρ(a, qs(a)) t ∈ enabled-set(a, q)

Definition 4.10 (Classical Soundness). A workflow net is sound if and only
if it has at the same time an option to complete, proper completion and no dead
transitions. The set of sound workflow nets is denoted by Wsound ⊆ W and formally
defined as follows:

Wsound = Wopt ∩Wpro ∩Wnod (4.18)
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To provide evidence that soundness properties are well defined it can be useful
to prove the following assumptions:

1. Neither Wsound nor its complement Wc
sound are empty.

2. No one of the defined properties Wopt, Wpro and Wnod are empty.
3. For all X,Y ∈ {Wopt,Wpro,Wnod}, it holds that X ∩Y ≠ ∅, i.e. no intersection

of properties is empty.
4. The defined properties Wopt, Wpro and Wnod are orthogonal or equivalently

not redundant: a set of properties {Xi}
n
i=1 is redundant if and only if there

exists a property that can be derived from another one or a combination of
two or more of the remaining ones.

{Xi}
n
i=1 redundant ▵⇐⇒ ∃j ∈ [1, n] ∀u ∈ U ( u ∈ ⋂n

i≠j Xi ⇒ u ∈Xj )

Note that if for some non-empty set of indices I ⊆ [1, n], it can be proven that
for every u ∈ U holds u ∈ ⋂i∈I Xi ⇒ u ∈ Xj , then, relaxing the preconditions,
for all u ∈ U follows u ∈ ⋂i≠j Xi ⇒ u ∈Xj .

The rationale behind such requirements is rooted on the role of workflow nets
and soundness in real design activities: WFNs is not intended to be an end-user
modeling language for real-world processes [76] because it lacks many essential
features, like constructs to define and manage data. As a consequence, to apply
any soundness check, a real model needs to be mapped on WFNs, abstracting away
some details considered irrelevant for the analysis. Due to the abstraction process,
a successful soundness check cannot exclude the presence of other kinds of errors.
On the contrary, when the soundness check fails, it reveals one or more errors that
can be directly related to the original model. For this reason it is better to have
different orthogonal properties, so that each of them can spot a particular kind of
error offering a better feedback to the end-user that wants to know what is wrong
in order to correct it.

To prove that the soundness properties and their combinations are not empty it
is sufficient to exhibit a set of eight workflow nets Z = {zi}

8
i=1 each one representing

a particular intersection of properties. Some of these nets can also be used as a
counter example to prove that the properties are not redundant: for each property
X ∈ {Wopt,Wpro,Wnod} it is sufficient to exhibit a net z ∈ Z that has all the
soundness properties except X.

Proposition 4.11 (Well Defined Soundness). There exists a representative
workflow net for each combination of zero or more soundness requirements Wopt,
Wpro and Wnod formally stated in Eq. 4.15, Eq. 4.16 and Eq. 4.17, respectively.
The given requirements are also orthogonal or equivalently not redundant.

Proof. The set of workflow nets Z = {zi}
8
i=1 used in this proof is depicted in Fig. 4.5.

All the given nets are necessary to prove that the properties and their intersections
are not empty, while the nets z2, z3 and z4 are sufficient to prove orthogonality.
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Fig. 4.5. All the nets in this figure are ordinary workflow nets, namely {zi}
8
i=1 ⊆ Wbasic.

(a) The net z1 is sound, z1 ∈ Wsound. (b) The net z8 has no option to complete, improper
completion and dead transitions, z8 ∉ Wopt ∪Wpro ∪Wnod. (c) The net z2 has no option
to complete, z2 ∈ Wpro ∩Wnod but z2 ∉ Wopt. (d) The net z3 has improper completion,
z3 ∈ Wopt ∩ Wnod but z3 ∉ Wpro. (e) The net z4 has dead transitions, z4 ∈ Wopt ∩ Wpro

but z4 ∉ Wnod. (f) The net z5 has no option to complete and improper completion,
z5 ∉ Wopt ∪ Wpro but z5 ∈ Wnod. (g) The net z6 has no option to complete and dead
transitions, z6 ∉ Wopt ∪Wnod but z6 ∈ Wpro. (h) The net z7 has improper completion and
dead transitions, z7 ∉ Wpro ∪Wnod but z7 ∈ Wopt.

z1 The workflow net z1 ∈ Wbasic in Fig. 4.5.a has only two states qs = qs(z1) and
qe = qe(z1) and the final one qe is reachable from qs firing t1. These two states are
the only reachable states from qs; hence, there is always an option to complete.
A proper completion is always guaranteed since the only halting state is the final
one qe. Clearly, t1 cannot be a dead transition, as a consequence z1 ∈ Wsound.

z2 The workflow net z2 ∈ Wbasic in Fig. 4.5.c can run following at most two paths

⟨p1⟩
t1→ ⟨p2 + p4⟩

t2→ ⟨p3 + p5⟩
t4→ ⟨p6⟩ and from ⟨p2 + p4⟩ it can reach ⟨p2 + p5⟩ firing

t3. (1) The state ⟨p2 + p5⟩ is an halting state and does not cover the final one
⟨p6⟩; hence, there is a no option to complete, z2 ∉ Wopt. (2) The net has proper
completion because the only halting state that covers ⟨p6⟩ is ⟨p6⟩ itself, z2 ∈ Wpro.
(3) The net has no dead transitions because all the transitions appear in at least
one of the two possible runs, z2 ∈ Wnod.
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z3 The workflow net z3 ∈ Wbasic in Fig. 4.5.d can directly reach, from the initial
state qs(z3) = ⟨p1⟩, only ⟨p2 + p3⟩ by firing t1, then it can reach ⟨p3 + p4⟩ and
⟨p2 + p4⟩ by firing t2 or t3, respectively. (1) Clearly, from the initial state every
reachable state can reach ⟨p3 + p4⟩ or ⟨p2 + p4⟩ that both cover the final state
qe(z3) = ⟨p4⟩, hence there is always an option to complete, z3 ∈ Wopt. (2) The run

⟨p1⟩
t1→ ⟨p2 + p3⟩

t2→ ⟨p3 + p4⟩ terminates in an halting state that covers the final
one ⟨p4⟩ but it is not exactly ⟨p4⟩, hence there is at least an improper completion,
z3 ∉ Wpro. (3) The net has no dead transitions because all the transitions appear
in at least one of the two possible runs, z3 ∈ Wnod.

z4 The workflow net z4 ∈ Wbasic in Fig. 4.5.e has only one possible run ⟨p1⟩
t1→

⟨p2⟩
t2→ ⟨p3⟩, hence (1) for every state reachable from the initial one qs(z4) = ⟨p1⟩

there is always an option to complete, z4 ∈ Wopt and (2) the unique halting state
is exactly the final marking qe(z4) = ⟨p3⟩, so z4 ∈ Wpro. (3) The transition t3 is
dead because it never occurs in a run, hence z4 ∉ Wnod.

z5 The workflow net z5 ∈ Wbasic in Fig. 4.5.f can evolve in two different ways from
the initial state qs(z5) = ⟨p1⟩: if it fires t2 then it gets stuck in ⟨p4⟩, or if it fires t1,

it can cover the final state qe(z5) = ⟨p6⟩ running ⟨p1⟩
t1→ ⟨p2 + p3⟩

t3→ ⟨2p3 + p5⟩
t4→

⟨p3 + p6⟩. (1) In the first case, the workflow net has no option to complete, so
z5 ∉ Wopt. (2) In the second one, it has an improper completion because when a
token reaches p6 there is a token left in the net in p3, it follows z5 ∉ Wpro. (3) All
transitions occur in at least in one run, then z5 ∈ Wnod.

z6 The workflow net z6 ∈ Wbasic in Fig. 4.5.g can reach, from the initial state
qs(z6) = ⟨p1⟩, state ⟨p2⟩ by firing t1 or state ⟨p3⟩ firing t2. (1) In both cases there is
no option to complete, so z6 ∉ Wopt. (2) No reachable halting state covers the final
one qe(z6) = ⟨p4⟩, hence there cannot be an improper completion and z6 ∈ Wpro.
(3) The transition t3 is dead because it does not appear in any run; it follows
z6 ∉ Wnod.

z7 The workflow net z7 ∈ Wbasic in Fig. 4.5.h, has only one possible run from the

initial state qs(z7) = ⟨p1⟩, namely ⟨p1⟩
t1→ ⟨p2 + p3⟩

t2→ ⟨p3 + p4⟩. (1) Every reachable
state from the initial one can reach ⟨p3 + p4⟩ that covers qe(z7) = ⟨p4⟩, it follows
z7 ∈ Wopt. (2) There is an halting state ⟨p3 + p4⟩ that is not exactly qe(z7), hence
it is an improper completion, z7 ∉ Wpro. (3) The transition t3 is dead because it
does not occur in the only possible run, hence z7 ∉ Wnod.

z8 The workflow net z8 ∈ Wbasic in Fig. 4.5.b, from the initial state qs(z8) = ⟨p1⟩,

has two possible evolutions, ⟨p1⟩
t1→ ⟨p2⟩ and ⟨p1⟩

t2→ ⟨p3 + p4⟩
t3→ ⟨p3 + p5⟩. (1) If t1

is selected then there is no option to complete, z8 ∉ Wopt. (2) When t2 is chosen
instead of t1, there is an improper completion, so z8 ∉ Wpro. (3) Clearly, t4 is a dead
transition because it never occurs in one of two possible runs, hence z8 ∉ Wnod.

The position of each workflow net is summarized in Fig. 4.6. Finally, it is
easy to see that the given soundness requirements are orthogonal, i.e. there is no
combination of two of them that can imply the missing one. Formally, assuming
⟨Wi⟩

3
i=1 = ⟨Wopt,Wpro,Wnod⟩, one can prove for all i ∈ [1,3] that ∀a ∈ Wbasic a ∈

Wj ∧ a ∈ Wk ⇒ a ∈ Wi does not hold, where j = ((i + 1) mod 3) and k = ((i + 2)
mod 3). This can be done by finding for any 1 ≤ i ≤ 3 a workflow net ai ∈ Wbasic
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Net
Properties

Figure
Wopt Wpro Wnod

z1 ✓ ✓ ✓ Fig. 4.5.a

z2 ✗ ✓ ✓ Fig. 4.5.c

z3 ✓ ✗ ✓ Fig. 4.5.d

z4 ✓ ✓ ✗ Fig. 4.5.e

z5 ✗ ✗ ✓ Fig. 4.5.f

z6 ✗ ✓ ✗ Fig. 4.5.g

z7 ✓ ✗ ✗ Fig. 4.5.h

z8 ✗ ✗ ✗ Fig. 4.5.b

Fig. 4.6. A summary of the discussed workflow nets. Any soundness requirement or
combination of requirements contains at least one of them.

such that ai ∈ Wj ∩ Wk but ai ∉ Wi. The set Z = {zl}
8
l=1 previously presented

contains the required nets, namely ∀i ∈ [1,3] ai = zi+1. 2

Proposition 4.12 (Original Soundness is Redundant). The requirements
stated in the original notion of soundness [75] are not orthogonal. The original
notion of soundness differs from the one given in Def. 4.10 by the “option to
complete” requirement that was originally defined as follows:

∀a ∈ W a ∈ W ′opt ▵⇐⇒ (4.19)

∀q ∈ ρ(a, qs(a)) ∃r ∈ ρ(a, q) qe(a) ∈ ρ(a, r)

Assuming this original requirement, it can be proven that option to complete
implies proper completion [76], formally

∀a ∈ W a ∈ W ′opt ⇒ a ∈ Wpro (4.20)

Proof. For contradiction, ∃a ∈ W such that a ∈ W ′opt ∧ a ∉ Wpro.

a ∈ W ′opt ⇒ ∀q ∈ ρ(a, qs(a)) ∃r ∈ ρ(a, q) qe(a) ∈ ρ(a, r)

a ∉ Wpro ⇒ ∃s ∈ ρ(a, qs(a)) s ≥ qe(a) ∧ s ≠ qe(a)

if s ≥ qe(a) then s is an halt state, it follows ρ(a, s) = {s}. Applying the first
requirement, ∃r ∈ ρ(a, s) such that qe(a) ∈ ρ(a, r). But r ∈ ρ(a, s) ⇒ r = s, hence
qe(a) ∈ ρ(a, s) that implies s = qe(a), that is a contradiction because s ≠ qe(a). 2

There is also another caveat regarding the last soundness requirement about
dead transitions: in the original definition, a transition is not dead if it can fire

∀a ∈ W a ∈ W ′nod
▵⇐⇒ (4.21)

∀t ∈ trs(a) ∃q, r ∈ ρ(a, qs(a)) q
t
→ r
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Fig. 4.7. A model that
matches the workflow nets
definition given in [76].

The formal definition given in Eq. 4.17 is equivalent
to this one because no transition can be enabled when
there is at least one token in the final place, due to the
halting semantics of WFNs. The no dead transitions
requirement in [76] is formulated in the same way of
Eq. 4.21, but the underlying workflow nets semantics
is not clear about termination, making the soundness
definition tricky. For instance, the Petri net in Fig. 4.7
is a workflow net w.r.t. the definition given in [76]. If the
net does not terminate when a token reaches the final
place p3, then it has an unlimited number of improper
completions; hence, the net completes and runs at the same time. If the halting
semantics of the original workflow nets [75] is assumed, then the net terminates
after firing t1 with an improper completion. In such case t2 never fires, but for
the soundness definition given in [76], it is also not dead because the final state
enables it.

♢
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4.5 Soundness Check

Many Petri nets verification methods are based on the construction of the so called
reachability graph that can be considered a data structure representing the run-
time behavior of a net.

In Lis. 4.1 is reported a basic procedure to construct the reachability graph
of a PTNs model a ∈ N starting from a valid initial state qs ∈ markings(a). The
procedure explores all the states reachable from qs unless the number of such states
is greater than the given max -states limit. When it terminates, the procedure
returns a pair (V,E) representing a directed edge-labeled multi-graph such that
V ⊆ markings(a) is its set of vertices and E ⊆ V ×T ×V is its set of edges, where
for brevity T = trs(a). The returned reachability graph is complete only if ∣V ∣ <
max -states , otherwise it shall be considered partial.

Listing 4.1 Basic procedure to build the reachability graph of a PTNs model.

input: A net a ∈ N expressed in PTNs.
input: A valid initial state qs ∈ markings(a).
input: The maximum number of visitable states max -states .
output: The complete or partial reachability graph (V,E) of a, represented as a directed

edge-labeled multi-graph such that V ⊆ markings(a) and E ⊆ V ×trs(a)×V .

(V,E) ← Build-Reachability-Graph(a, qs,max -states)

1 states ← {qs}
2 unvisited ← {qs}
3 edges ← ∅
4 while unvisited ≠ ∅ ∧ ∣states ∣ < max -states do

// This sub-procedure determines the order in which states are explored.
5 q ← Select-Unvisited-State(unvisited)
6 unvisited ← unvisited∖{q}
7 for each t ∈ enabled-set(a, q) do
8 r ← fire(a, q, t)
9 edges ← edges ∪ {(q, t, r)}

// If the current state has not been visited before.
10 if r ∉ states then
11 states ← states ∪ {r}
12 unvisited ← unvisited ∪ {r}
13 return (states, edges)

The procedure Select-Unvisited-State in line 5 of Lis. 4.1 is left unspec-
ified. Such procedure determines the order in which the state space is explored:
for instance, a queue data structure can be used for a breath-first search, while a
stack can be adopted to obtain a depth-first search. In general, any visiting order
that takes care of all unvisited states does not alter the algorithm correctness.

A limit on the maximum number of analyzable states becomes necessary be-
cause unboundedness makes the reachability graph not finite. Moreover, even when
it is finite, it may be too large to fit in the available memory: a well-known prob-
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lem called state-space explosion. For a certain class of Petri nets, the Karp-Miller
acceleration [89] can be used to detect unbounded places and to build a so called
coverability graph that is a finite representation of a potentially unlimited reach-
ability graph. Unfortunately, Karp-Miller acceleration cannot be applied in the
analysis of general nets containing special arcs because they are not monotone.

4.5.1 Error Detection

To be useful, a verification method does not need to be complete, i.e. able to detect
all errors for which it is thought in any possible model. If a method can detect
one or more errors in reasonable time with the available resources, then it can
help the end-user during the design activity. Moreover, if the adopted modeling
language has some constructs to decompose large models in smaller ones, it is
unlikely that the verified models are extremely complex. From this point of view,
unboundedness and state-space explosion can become a secondary concern.

Other issues can be related to the abstraction process performed before the
verification: excluding the case in which models are designed with the same lan-
guage used for verification, a mapping becomes necessary. Such mapping usually
abstracts from details not considered relevant; hence, the analysis is performed
on a simplified model. For example, a mapping can be defined between YAWL
and WFNs in order to apply the notion of soundness previously defined. This
mapping will abstract from data aspects and concentrate only on control-flow re-
lations. This mapping in turn affects how the detected errors are interpreted in
the original model, e.g. an error in the abstract model should become a warning
for the original one because its presence cannot be guaranteed. Considering the
mapping from YAWL to WFNs, some identified erroneous traces cannot occur in
the original model due to the presence of some conditions specified on variables.

From the notion of soundness given in Def. 4.10 four kind of errors can be
extracted, each of these is related to one of the three soundness requirements
given in Def. 4.7, Def. 4.8 and Def. 4.9. An error of a workflow net a ∈ W is defined
as a pair (e, σ) ∈ E×TR such that e ∈ E is an error type, where E = {NO, IC, DT, QE}
contains an element for each kind of error, and σ ∈ TR is a finite trace of transitions
proving the erroneous run. The following definitions are used to characterize each
error in a formal way.

Definition 4.13 (No Option to Complete). Let a ∈ W● a marked workflow net
with initial marking qs(a), a no option to complete error is a pair (NO, σ) ∈ E×TR
where σ ∈ TR(a) is finite sequence of transitions that from qs(a) leads to a terminal
marking not covering the final one qe(a). Notice that if exists q ∈ Q such that
qs(a)

σ
→ q, q /≥ qe(a) and enabled-set(a, q) = ∅ then ρ(a, q) = {q} and q ∈ ρ(a, qs(a)),

hence ∃q ∈ ρ(a, qs(a)) ∀r ∈ ρ(a, q) r /≥ qe(a) that implies a ∉ Wopt. To detect this
kind of error it is sufficient to search terminal markings that do not contain tokens
in the end place. 2

Definition 4.14 (Improper Completion). Let a ∈ W● a marked workflow net
with initial marking qs(a), an improper completion error is a pair (IC, σ) ∈ E×TR
where σ ∈ TR(a) is a finite sequence of transitions that from qs(a) leads to an
halting state different from the final one qe(a). Notice that if exists q ∈ Q such
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that qs(a)
σ
→ q and q > qe(a) then ∃q ∈ ρ(a, qs(a)) q ≥ qe(a)∧q ≠ qe(a) that means

a ∉ Wpro. This kind of error can be detected by searching terminal markings that
are strictly greater than the final one qe(a). 2

Definition 4.15 (Dead Transition). Let a ∈ W● a marked workflow net with
initial marking qs(a), a dead transition error is a pair (DT, σ) ∈ E×TR where σ = ⟨t⟩
represents a single transition t ∈ trs(a) that never occur in any possible sequence
of firings, namely t ∈ trs(a) is a dead transition if for all reachable states q ∈
ρ(a, qs(a)) it holds that t ∉ enabled-set(a, q). To detect this kind of error the entire
reachability graph shall be explored. 2

Unfortunately, the construction of the entire reachability graph is not always
feasible and a partial one cannot prove that a transition is definitely dead. In face
of such limit, it can be useful to define a further error capturing potential dead
transitions, namely transitions that are never fully enabled during the check. This
is reasonable as long as the reachability graph of a workflow net is built using a
strategy that aims to enable all transitions, e.g. whenever it can choose between
firing an already encountered transition or a new one, the latter is selected.

Definition 4.16 (Ready Places). Given a workflow net a ∈ W in a certain state
q ∈ markings(a), the ready places of a transition t ∈ trs(a) are all those places
p ∈ pre-set(a, t) belonging to its pre-set that meet the firing condition related
to the arc (p, t) ∈ edges(a). The set of ready places is denoted by the function
ready ∶ W×Q×U ⇀ U defined as follows:

ready ∶ W×Q×U ⇀ U is (4.22)

∀a ∈ W ∀q ∈ markings(a) ∀t ∈ trs(a)

ready(a, q, t) = {p ∈ pre-set(a, t) ∣ q(p) ≥ weight(a, p, t, q) }

It is clear from the definition that ready(a, q, t) ⊆ pre-set(a, t) for every workflow
net, valid state and transition. The set of unready places is simply given by the
pre-set places minus the ready ones, namely pre-set(a, t) ∖ ready(a, q, t). 2

Definition 4.17 (d-Quasi-Enabled Transitions). Let a ∈ W be a workflow net
in a certain state q ∈ markings(a) and let d ∈ N be the maximum number of
admissible unready places. The set of d-quasi-enabled transitions in q is denoted
by qeset ∶ W×Q×N⇀ U and defined in Eq. 4.23, where n = ∣pre-set(a, t)∣ is the size
of the pre-set and r = ∣ready(a, q, t)∣ the number of ready places.

qeset ∶ W×Q×N⇀ U is (4.23)

∀a ∈ W ∀q ∈ markings(a) ∀d ∈ N ∀t ∈ trs(a)

t ∈ qeset(a, q, d) ▵⇐⇒

(max{1, n − d} ≤ r ≤ n − 1) ∧ (1 ≤ n − r ≤min {d, r − 1})

For every a ∈ W , q ∈ markings(a) and d ∈ N it holds that qeset(a, q, d) ⊆
qeset(a, q, d+1), and qeset(a, q, d)∩enabled-set(a, q) = ∅. The number of admissible
unready places d becomes global a parameter usually set to 1. 2
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Definition 4.18 (Quasi-Enabled Transition). Let a ∈ W● a marked workflow
net that starts its execution from qs(a), a d-quasi-enabled transition error is a
pair (QE, σ) ∈ E×TR such that σ = η ○ t, η ∈ traces(a) and t ∈ qeset(net(a), q, d)
where t ∉ enabled-set(a, r) for every state r ∈ Q of the reachability graph and

q ∈ markings(a) is the state reachable from qs(a) firing η, namely qs(a)
η
→ q. 2

A quasi-enabled transition error is represented by a trace that is near to fulfil
the firing condition of a transition t ∈ trs(a), but without completely satisfying it
due to some unready places, provided that the reachability graph constructed so
far does not contain t.

Example 4.19 (Workflow Net Errors). Let us consider again the nets in Prop.
4.11 and reported in Fig. 4.8 for convenience. The set of errors characterizing
each net are reported below, where the quasi-enabled transitions parameter is
set to 1. The net z1 does not contain errors; z2 contains (NO, t1t3); z3 contains
(IC, t1t2) and (IC, t1t3); z4 contains (DT, t3) and (QE, t1t3); z5 contains (NO, t2)
and (IC, t1t3t4); z6 contains (NO, t1), (NO, t2), (DT, t3), (QE, t1t3) and (QE, t1t2); z7

contains (IC, t1t2), (DT, t3) and (QE, t3); z8 contains (IC, t1t2t3), (NO, t1), (DT, t4),
(QE, t1t4) and (QE, t1t2). 2

Fig. 4.8. Ordinary workflow nets with different kind of errors.
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4.5.2 Soundness Check Algorithm

The soundness check algorithm receives in input a workflow net a ∈ W , a valid
state qs ∈ markings(a), a maximum number max-states of analyzable states, a
number d ∈ N of admissible unready places for quasi-enabled transitions, and
produces in output the complete or partial reachability graph (V,E) for the net
a, together with a finite set R of detected errors. Lis. 4.2 reports the main steps
of the algorithm that can be summarized as follows:

1-4 Initialization of the principal variables used by the algorithm. The data
structures states and edges store the vertices and edges of the reachability
graph under construction. Each found state that needs to be visited, to-
gether with the last transitions for obtaining it, are temporarily stored in
the unvisited data structure. Such data structure is managed as a queue
with priorities. Finally, errors is the data structure containing the errors
found so far, as pairs composed of a type and a representing trace.

5 freq is a mapping freq ∶ trs(a) → N∪{0} that tracks the number of times a
transition is fired. Initially, the frequency of all transitions is zero, but each
frequency increases during the algorithm execution. Given two transitions
ti, tj ∈ trs(a), if freq(ti) < freq(tj) then ti is said to be an higher priority
than tj .

6-31 The main loop of the procedure. The loop terminates when all reachable
states have been visited or eventually when the max -states threshold has
been reached.

8-9 Select an unvisited state found during the construction of the reachability
graph. The selection takes into account the number of times a transition is
fired through the firing frequencies.

10-11 Check if in the current state q ∈ markings(a) there is no option to complete,
namely if q ≠ qe(a) and no other transition can fire.

11-13 Check if in the current state q ∈ markings(a) there is an improper comple-
tion, namely if q > qe(a).

15-30 Process each transition t ∈ trs(a) in order to add all states reachable from
the current one to the reachability graph, and to update the set of errors
related to quasi-enabled transitions. In particular, for each t ∈ trs(a) if t is
enabled in the current state q, then it is fired producing a new state r. The
reachability graph is accordingly updated, the pair (t, r) is added to the un-
visited queue if necessary, and the frequency of t is incremented. Moreover,
on the basis that frequency some errors of quasi-enabled transition for t can
be removed. Conversely, for each transition t that is only quasi-enabled in
q, the corresponding error is added to errors.

32-36 If the analyzable states are exhausted, the reachability graph is complete
and any transition that has been never fired is certainly dead.

37 Return to the caller the partial or complete reachability graph and the set
containing the found errors.
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Listing 4.2 The soundness check procedure.

input: A workflow net a ∈ W expressed in WFNs.
input: A valid initial state qs ∈ markings(a).
input: The maximum number of analyzable states, max -states .
input: The number d ∈ N of admissible unready places in a quasi-enabled transition.
output: The complete or partial reachability graph (V,E) of a, represented as a directed

edge-labeled multi-graph such that V ⊆ markings(a) and E ⊆ V ×trs(a)×V .
output: A finite set R of errors detected in a.

(V,E,R) ← Refined-Soundness-Check(a, qs,max -states , d)

1 states ← {qs}
2 edges ← ∅
3 unvisited ← {(∅, qs)}
4 errors ← ∅
5 ∀t ∈ trs(a) freq(t) ← 0
6 while unvisited ≠ ∅ ∧ ∣states ∣ ≤ max -states do
7 (t, q) ← Select-Unvisited-State(states , edges ,unvisited , freq)
8 σ ← Firing-Sequence(states , edges , q)
9 unvisited ← unvisited ∖ {(t, q)}

10 if q /≥ qe(a) ∧ enabled-set(a, q) = ∅ then
11 errors ← errors ∪ {(NO, σ)}
12 else if q > qe(a) then
13 errors ← errors ∪ {(IC, σ)}
14 end if
15 for each h ∈ trs(a) do
16 if h ∈ enabled-set(a, q) then
17 r ← fire(a, q, h)
18 if r ∉ states then
19 states ← states ∪ {r}
20 unvisited ← unvisited ∪ {(h, r)}
21 end if
22 edges ← edges ∪ {(q, h, r)}
23 freq(h) ← freq(h) + 1
24 if freq(h) = 1 then
25 errors ← errors ∖ {(QE, η) ∣ ∀γ ∈ traces(a) η = γ ○ h}
26 end if
27 else if freq(h) = 0 ∧ h ∈ qeset(a, q, d) then
28 errors ← errors ∪ {(QE, σ ○ h)}
29 end if
30 end for
31 end while
32 if unvisited = ∅ then
33 for each t ∈ trs(a) freq(t) = 0 do
34 errors ← errors ∪ {(DT, t)}
35 end for
36 end if
37 return (states , edges , errors)
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The procedure related to the selection of an unvisited state is reported in
Lis. 4.3. It receives in input a partial reachability graph, a set of unvisited states,
and a mapping computing the priority of each transition. It returns in output a
pair (t, q) where q is one of the given unvisited states with maximum priority and t
is the last transition performed to produce t. The priority of a state is determined
by the frequency of this transition.

1-2 Initialization of the main variables used by the algorithm. The array list will
contain for each unvisited state (t, q), the tuple (freq(t), i, q) where freq(t)
is the frequency of the transition t, i is a sequential number, and q is the
state. Variable i tracks the order in which unvisited states are processed.

4-6 The main loop of the procedure. For each unvisited state (t, q) given in in-
put, the frequency of the transition t is evaluated and the tuple (freq(t), i, q)
is added to the array list.

7-8 The array list is sorted with respect to the frequency of each transition
in increasing order. In presence of two states with associated the same
frequency, the corresponding sequential value i is considered. At the end
list[1] contains the unvisited state with highest priority, which is returned
to the caller.

Listing 4.3 Selection of an unvisited state.

input: A partial reachability graph (V,E).
input: U ⊆ V the set of unvisited states.
input: freq ∶ T → N∪{0} transition priorities, 0 means max priority.
output: An unvisited state q ∈ U of the reachability graph.

q ← Select-Unvisited-State(V,E,U, freq)

1 list[ ] array of size ∣U ∣
2 i← 1
3 for each (t, q) ∈ U do
4 list[i] ← (freq(t), i, q)
5 i← i + 1
6 end for

// Sort the tuples in list by the frequency of each transition in increasing order.
// On equal frequency, sort the tuples by the position in U queue.

7 list ← Sort(list)
8 return (t, q) of list[1]

♢



4.6 Automated Model Repair

When they are available, simulation and verification tools are routinely used during
the design activity to gain confidence about correctness and characteristics of the
models at hand. Very often, it is up to the end-user to understand the output
produced by these tools and figure out how to fix the detected errors respecting
the imposed language constraints. The proposed fix can be seen as an hypothesis
that need to be proven by re-running the tools on the rectified instance.

A way to streamline this process is providing some hints or suggestions to the
end-user about how to fix certain errors. As one can imagine, error correction can
be a very challenging problem because there are both theoretical and technological
limits to consider and there is no way to accurately guess the real design goals: at
the end, the evaluation of the proposed hints remains an end-user responsibility.

The problem of finding helpful hints to fix a model is called here Automated
Model Repair (AMR) problem and can be informally stated as follows: given a
model and the data collected during the verification phase, search a small set of
models, called here solutions, that are similar to the original one but contain fewer
errors, such that no solution can be considered worse than any other. More than
one solution is necessary because the end-user’s intentions are not known a priori
and there are usually many ways in which an error can be corrected. The restriction
that no solution should be worse than any other is imposed to reduce redundancy
in the proposed fixes. The structural differences between these solutions and the
original model can then be presented as hints to fix the related errors.

In the remaining part of this section the AMR problem is restated in more for-
mal terms for models expressed in the WFNs language introduced in Sec. 4.3. The
choice of WFNs is driven by these two considerations: firstly, the AMR problem
has no established solutions out of the box, hence it is reasonable to initially study
it on simpler languages; secondly, as regularly happens for existing verification
techniques, an AMR solution for WFNs can be applied to real PMLs by mapping
each model under analysis to a workflow net abstracting away undesired details.
The problem of mapping real PMLs to Petri nets is not considered any further
because several solutions already exist, see for instance the work in [90].

Loosely speaking, a Petri net that does not exhibit the formal requirements
stated in Def. 4.3 can be still considered a workflow net containing one or more
syntactical errors. This definition becomes useful in describing a design activity,
because not all operations performed by the end-user produce syntactically correct
nets, especially if the adopted editor does not enforce them. In the following, a
workflow net that complies with its formal definition is remarked to be valid.

Checking and enforcing syntactical constraints is not a big challenge, hence
they will not be explicitly considered as errors to be repaired, provided that any
AMR solution produces valid models. AMR explicitly focuses on semantical re-
quirements, i.e. restrictions on how a process model shall behave at run-time. In
the context of WFNs the considered errors are those derived by the notion of
soundness extensively discussed in Sec. 4.5: no option to complete, improper com-
pletion, dead transitions and quasi-enabled ones. The following Ex. 4.20 shows
what can happen when a workflow net is edited for adding a new final transition.
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Example 4.20. In Fig. 4.9.a is depicted a workflow net a1 ∈ Wbasic with seven
places pls(a1) = {pi}

7
i=1, six transitions trs(a1) = {tj}

6
j=1 and a simple loop

{p4, t4, p5, t5, p6, t6}. The model has a single initial place start(a1) = p1, a sin-
gle end place end(a1) = p7 and any transition lies in a path from p1 to p7, hence
it is also a valid workflow net. The model in Fig. 4.9.b is another valid workflow
net a2 ∈ Wbasic obtained from a1 by adding two places p8 and p9, a new transi-
tion t7 and the missing edges. The added transition t7 cannot fire before at least
one execution of t3 and t5. The net a1 in Fig. 4.9.a is sound with respect to the
definition given Sec. 4.4: any state reachable from the initial one can reach the
final state, when a token is placed in p7 no other token is left in the net and also
no transition can fire. The net a2 in Fig. 4.9.b is obtained from a1 with a small
change but is no longer sound: a no option to complete is reached when t3 fires
immediately after the first fire of t4, because the terminal state p7 /≥ p9 is reached,
and an improper completion is reached whenever the loop {p4, t4, p5, t5, p6, t6} is
run more than one time, because the state p7 + n ⋅ p8 is reached where n + 1 is the
number of performed loops. 2

Fig. 4.9. (a) A workflow net with a simple loop {p4, t4, p5, t5, p6, t6}. (b) A new version
of the net obtained by adding a final transition t7 that fires after t3 and t5.

The similarity requirement stated for the AMR problem deserves a brief dis-
cussion: a model can be considered a useful solution only if it is similar to the
original one. Obviously, a solution that improves an unsound workflow net shall
preserve as much as possible the observable behavior of the original one: other-
wise, the AMR problem becomes trivial. If behavioral similarity is not required,
a workflow net having the same set of transitions of the original one arranged in
sequence is an optimal solution. For instance, consider the workflow net b1 ∈ W
in Fig. 4.10.a: it has a dead transition t4 but it can be made sound removing the
arc (p2, t4). The workflow net b2 ∈ W in Fig. 4.10.b is sound, it contains the same
transitions of b1 but can be hardly considered a good solution because it does not
resemble at all the original net behavior.

Structural similarity is also essential for both characterizing a useful solution
and making an AMR method feasible. From one hand, a good solution with an
observable behavior close to the original one but with a very different structure
is worthless for the end-user: if the information conveyed by the structure is dis-
carded, it can be hardly recognized as a useful hint. For instance, the workflow
net b3 ∈ W in Fig. 4.10.c is sound and has exactly the same behavior of b1 after
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removing the arc (p2, t4), hence it could be considered a good solution but it has
a really different structure.

From the other hand, as recognized by the basic genetic programming prin-
ciples, structural similarity reduces the probability of introducing new errors in
other parts of the model not contemplated in the analysis. This principle is of
utmost importance, especially when it cannot be guaranteed that a solution is
completely free from errors, either because the problem is generally undecidable
or because it is not feasible for real problem instances.

Fig. 4.10. (a) An workflow net b1 with a dead transition t4. (b) A sound workflow
net b2 with the same transitions of b1 but not exposing the same behavior. (c) A sound
workflow net b3 behaviorally similar to b1 but with a very different structure.

Definition 4.21 (AMR Problem). Given an unsound workflow net a ∈ W with
a finite non-empty set of errors errors(a) ≠ ∅ and given a finite quantity of com-
putational resources that limits the set of analyzable nets C ⊆ W , find whenever
possible a small set of at most n ∈ N solutions S = {si}

k
i=1 ⊆ C with 0 ≤ k ≤ n such

that for all i ∈ [1, k] the following six requirements hold:

1. The solution si is structurally similar to the original model a;
2. The solution si is behaviorally similar to the original model a;
3. The solution si contains less errors than a, i.e. ∣errors(si)∣ < ∣errors(a)∣;
4. The solution si is not strictly better than the remaining ones S ∖ {si};
5. The solution si is not worse than any other considered model in C ∖ S;
6. Optionally, the solution si does not contain new errors with respect to the

original model a, i.e. errors(si) ⊆ errors(a).

The notion of error mostly depends on the adopted verification methods, while
the notions of structural and behavioral similarity are specific of the proposed
solution and will be formalized later. The set S of selected solutions may be not
unique: there can be more than n equally better solutions in C with respect to the
original net a. The parameter n is used to limit the number of solutions proposed
to the end-user, while C represents some limits on the available resources, and can
be equal to W if no explicit constraints are imposed, i.e. the AMR procedure runs
until the end-user decides to stop it, either because the hints offered so far are
good enough or the procedure takes too much time in producing another result.
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Example 4.22. For convenience Fig. 4.11.a reports the unsound workflow net a2

presented in Ex. 4.20. Such net can be fixed in several different ways: three possible
solutions are depicted from Fig. 4.11.b to Fig. 4.11.d. The model a3 in Fig. 4.11.b
is obtained removing the arc (p5, t3). The model a4 in Fig. 4.11.c is the result of a
place merge between p6 and p8 and an according moving of the arc (t5, p6). From
a different perspective, this operation is equivalent to remove p6 and its related
arcs and subsequently connect p8 to t6. The last model a5 in Fig. 4.11.d presents
the same place simplification, but with an additional arc from t3 to p5.

The differences between a found solution and the original model can be pro-
posed to the end-user as a hint for fixing a particular error. For instance, con-
sidering the solution a4 in Fig. 4.11.c, a hint for fixing the original model a2 in
Fig. 4.11.a can be to delete p6 and add (p8, t6). 2

Fig. 4.11. (a) The unsound workflow net a2 of Fig. 4.9.b in Ex. 4.20. (b-d) three similar
workflow nets derived from a2 to fix the detected errors.

♢
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4.7 Petri Nets Simulated Annealing

An exact solution for the AMR problem can be found by restating it as an opti-
mization problem: let errors(x) the set of errors detected in x ∈ W by the soundness
check, and let stdist ∶ W×W → R and bhdist ∶ W×W → R two functions measuring
the structural and behavioral distance between two workflow nets, respectively.
Then, a solution y ∈ W can be found by minimizing stdist(x, y), bhdist(x, y) and
∣errors(y)∣ subject to the optional constraint that errors(y) ⊆ errors(x), whenever
introducing new errors is not acceptable. In particular, considering a workflow net
as a graph enriched with some attributes, the stdist ∶ W×W → R function can be
defined in terms of graph edit distance [91]. In similar way, bhdist ∶ W×W → R can
be defined in terms of transition adjacency relation (TAR) as done in [92]. The
optional constraint about error inclusion can be enforced at least for basic work-
flow nets running multiple times the soundness check procedure. Unfortunately,
these functions have high computational complexities and they need to be evalu-
ated several times for pruning the search space. In particular both the TAR metric
adopted as behavioral distance and the soundness check require the exploration of
the entire state-space that can take exponential time in the worst case.

This section introduces a novel GP technique called Petri Nets Simulated
Annealing (PNSA) that aims to solve the AMR optimization problem in a
clever way using approximated objective functions. The PNSA technique is es-
sentially a heuristic optimization algorithm with at the core a procedure similar
to dominance-based Multi-Objective Simulated Annealing (MOSA) [85, 86]: such
procedure searches for solutions that minimize structural distance, behavioral dis-
tance and the number of detected errors. Due to approximations, there is a chance
of considering as good a wrong solution; hence, at the same time the procedure
maximizes the confidence about the selected models. The obtained solutions can
be offered as they are to the end-user or further refined with an extensive check to
guarantee their optimality. The remainder of this section introduces the key ideas
behind each objective function and the relevant steps of the PNSA technique.

4.7.1 Structural Similarity

Let GA be the set of all attributed graphs (V,E,Σ,μ, η) such that (V,E) is a
directed graph augmented with two functions μ ∶ V → Σ∗ and η ∶ E → Σ∗ that
assign to each of its components zero or more attributes chosen from a predefined
attribute set Σ. The structural distance between two workflow nets x, y ∈ W is
defined in terms of the graph edit distance [91] between two attributed graphs
obtained from the initial nets through the conversion function γ ∶ W → GA defined
as follows.

Definition 4.23 (Conversion Function). Given a workflow net a ∈ W , the con-
version function γ ∶ W → GA transforms a into an equivalent attributed graph
γ(a) = (V,E,Σ,μ, η) ∈ GA such that



102 4 Free Composition, Verification and Correction

γ ∶ W → GA is (4.24)

∀a ∈ W ∀g ∈ GA γ(a) = g ▵⇐⇒

g = (vertices(a), edges(a),Σ,μ, η) ∧

Σ = {PL, TR} ∪ actions(a) ∪ {τ} ∪ {�} ∧

∀v ∈ vertices(a) μ(v) =
⎧⎪⎪
⎨
⎪⎪⎩

(TR, λ(a, v)) if v ∈ trs(a)

(PL,�) if v ∈ pls(a)
∧

∀e ∈ edges(a) η(e) = ∅

where λ(a, v) is defined in Sec. 3.2.3 and assigns to transition v in a its action.

Definition 4.24 (Structural Distance). The structural distance between two
workflow nets x, y ∈ W is the graph edit distance ged ∶ GA×GA → R between the
corresponding attributed graphs. The notion of structural distance is captured by
the function stdist ∶ W×W → R defined as follows:

∀x, y ∈ W stdist(x, y) = ged(γ(x), γ(y)) = min
⟨ei⟩ki=1∈Υ (x,y)

k

∑
i=1

c(ei)

where Υ (x, y) is the set of all edit scripts ⟨ei⟩
k
i=1 between the graphs γ(x) and

γ(y), and c ∶ U → R is a function that assigns a cost to each edit operation ei.

The permitted edit operations on graphs generally includes insertion, deletion
and substitution of nodes and edges. In PNSA, the cost of a node or an edge
substitution is set to be greater than the cost of a deletion followed by an insert
operation, hence a substitution is never part of a minimum edit path.

Moreover, while it is safe to add or remove places and arcs, transitions need
a special treatment. Since the end-user intentions are not known, it is safer to
assume that a visible action has been introduced for a specific purpose, hence its
related transition should not be removed from the model. On the other hand, a
silent action is mostly used for routing purposes, hence it can be safely removed
or inserted without the risk of losing relevant information.

The cost of each type of edit operation can be controlled by the end-user.
For example, one may rate removal operations as more expensive than insertion
operations, assuming less likely that something erroneous has been introduced
than something essential has been forgotten. Similarly, one may rate operations
on transitions as more expensive than operations on places, and the latter as more
expensive than operations on arcs.

Example 4.25. Coming back to the workflow nets of Ex. 4.22, reported for conve-
nience below in Fig. 4.12. The workflow nets from a3 to a5 are all solutions of a2

which can be obtained via one or more edit sequences. In particular, a3 can be
obtained directly from a2 with an edit sequence consisting of a single edit opera-
tion that removes the arc (p5, t3). The solution a4 can be obtained with four edit
operations, the deletion of p6 and its surrounding arcs followed by the insertion of
a new arc (p8, t6). The edit sequence of a5 is the same of a4 plus a new arc (t3, p5).

Following the consideration given above for the cost of each edit operation, we
can assign a unitary cost to each arc addition or removal, and a cost equal to one
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Fig. 4.12. The workflow nets introduced in Ex. 4.22 reported here for convenience.

plus the edit cost for the connected arcs to each place addition or removal. In this
case, stdist(a2, a3) = 1, stdist(a2, a4) = 4, and stdist(a2, a5) = 5. 2

The graph edit distance between two graphs can be computed using one of the
many available algorithms, such as the one proposed in [91]. Computing the graph
edit distance can be expensive: fortunately, the presented technique produces a
candidate solution y ∈ W by performing a sequence of perturbations on the original
workflow net x ∈ W , and these perturbations are essentially a sequence of edit
operations. The structural distance between x and y can be therefore computed
by minimizing the perturbation sequence.

4.7.2 Behavioral Similarity

The notion of behavioral similarity is more complex than structural similarity
because it needs to be approximated in some way. Here, the behavioral distance
between two workflow nets x, y ∈ W is defined as the difference between their
capability to simulate a finite set of traces R ⊆ TR, where both the simulation
capability and the set R are parameters of the distance. To draw an analogy, the
behavioral distance between two individuals can be estimated by using a good
set of tests representing the expected behavior, under the assumption that both
individuals want to participate doing their best for the evaluation.

Simulating a trace of transitions in a workflow net is not a big problem because
each transition uniquely identifies the path to take. On the contrary, simulating
a trace of visible actions is in general undecidable due to the presence of internal
silent actions: in an attempt to enable the wanted visible action, any silent action
encountered during the simulation can open a new search path. For this reason, the
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focus of simulating a visible trace is not about deciding if that trace is completely
recognized by the workflow net, but on how many actions can be performed before
halting subject to certain resource limits, e.g. a limit on the number of silent
transitions that can be fired during the simulation. For convenience, the notion of
behavioral distance is made independent from these details through the concept
of trace simulation.

Definition 4.26 (Trace Simulation). A trace simulation is a function h ∶ W×
TR → TR that given a workflow net x ∈ W and a trace of transitions σ ∈ TR returns
the prefix of σ that x is able to simulate preserving visible actions. The set of all
trace simulations is denoted by H and defined as follows:

∀h ∈ U h ∈ H ▵⇐⇒ h ∶ W×TR → TR ∧ (4.25)

∀x ∈ W ∀σ ∈ TR
σ ∈ TR(x) ⇒ h(x,σ) = σ ∧

obs(x,h(x,σ)) ∈ prefixes (obs(x,σ))

where the function obs ∶ N ×TR → TA is defined in Def. 3.15, it returns the corre-
sponding sequence of visible actions of the specified trace of transitions, while the
notion of prefixes is explained in Chap. 2.

Example 4.27. Let us reconsider the workflow nets of Ex. 4.22, reported in Fig. 4.13
for convenience, and the trace σ = t1t2t4t5t6t4t3t7. Clearly, σ ∈ traces(a2) and
obs(a2, σ) = ⟨A,B,C,D,C,E,F ⟩. A trace simulation that fires at least a silent
transition can fully simulate the visible trace on a3 in Fig. 4.13.b. On the contrary,
no trace simulation can completely replay the visible trace on a4 in Fig. 4.13.c be-
cause t7 is a dead transition. Finally, the visible trace can be completely simulated
on a5 in Fig. 4.13.d assuming that the adopted trace simulation is able to fire at
least two silent actions. 2

Definition 4.28 (Behavioral Distance). The behavioral distance between two
workflow nets x, y ∈ W with respect to a trace simulation h ∈ H and a representative
set of traces R ⊆ TR, is given by the difference between the length of their best
possible simulation of each σ ∈ R. The behavioral distance is captured by the
following function bhdist ∶ W×W×H×℘(TR) → R define as

bhdist ∶ W×W×H×℘(TR) → R is (4.26)

∀x, y ∈ W ∀h ∈ H ∀R ⊆ TR

bhdist(x, y, h,R) = ∑
σ∈R

∣ ∣obs(x,h(x,σ))∣ − ∣obs(y, h(y, σ))∣ ∣
max{1, ∣σ∣}

The effectiveness of the behavioral distance bhdist ∶ W ×W×H×℘(TR) → R
in distinguishing two workflow nets depends on the quality of both the chosen
parameters h ∈ H and R ⊆ TR. In particular, not all trace simulations are equal: to
be effective, behavioural distance shall use a trace simulation that always performs
its best by returning the longest possible simulation.

Proposition 4.29. Let h ∈ H be a trace simulation and R ⊆ TR a predefined set
of traces, the defined behavioral distance is a pseudo-metric: ∀x, y, z ∈ W it holds



4.7 Petri Nets Simulated Annealing 105

Fig. 4.13. The workflow nets introduced in Ex. 4.22 reported here for convenience.

that (1) bhdist(x, y, h,R) ≥ 0, (2) bhdist(x,x, h,R) = 0, (3) bhdist(x, y, h,R) =
bhdist(y, x, h,R), and (4) bhdist(x, y, h,R) + bhdist(y, z, h,R) ≥ bhdist(x, z, h,R).

Proof. Property (1) is trivial since function bhdist is a sum of non negative values:
for each fraction in the sum, the term above is an absolute value and the term
below is a trace length which cannot be negative. Relatively to property (2) we
can notice that if the two nets are the same, for each trace σ ∈ R its correspond-
ing observable trace has the same length, hence each summation element is zero.
Similarly, property (3) is true because for each summation element the numerator
is wrapped by an absolute value and the net order can be safely inverted. Fi-
nally, as regards to property (4) we can observe that for each summation elements
max{1, ∣σ∣} is the same for any trace σ in R, hence we can discard the denominator
and try to prove the relation:

∣ ∣obs(x,h(x,σ))∣ − ∣obs(y, h(y, σ))∣ ∣ + ∣ ∣obs(y, h(y, σ))∣ − ∣obs(z, h(z, σ))∣ ∣ ≥

∣ ∣obs(x,h(x,σ))∣ − ∣obs(z, h(z, σ))∣ ∣ (4.27)

Let ∣obs(x,h(x,σ))∣ = a, ∣obs(y, h(y, σ))∣ = b, and ∣obs(z, h(z, σ))∣ = c, Eq. 4.27
becomes: ∣a − b∣ + ∣b − c∣ ≥ ∣a − c∣.

1. Suppose (a − b) ≥ 0 ∧ (b − c) ≥ 0⇒ a ≥ b ≥ c⇒ (a − c) ≥ 0:

∣a − b∣ + ∣b − c∣ ≥ ∣a − c∣

a − b + b − c ≥ a − c

a − c ≥ a − c

which is trivially true.
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2. Suppose (a − b) ≥ 0 ∧ (b − c) < 0⇒ a ≥ b ∧ b < c:

• (a − c) ≥ 0⇒ a ≥ c

∣a − b∣ + ∣b − c∣ ≥ ∣a − c∣

a − b − b + c ≥ a − c

−2b + c ≥ −c

2b < 2c

which is true for hypothesis (b − c) < 0.
• (a − c) < 0⇒ a < c

∣a − b∣ + ∣b − c∣ ≥ ∣a − c∣

a − b − b + c ≥ c − a

a − 2b ≥ −a

2b < 2a

which is true for hypothesis (a − b) ≥ 0.
3. Suppose (a − b) < 0 ∧ (b − c) ≥ 0⇒ a < b ∧ b ≥ c: the proof is similar to case 2.
4. Suppose (a − b) < 0 ∧ (b − c) < 0⇒ a < b < c⇒ (a − c) < 0: the proof is similar

to case 1. 2

Example 4.30. With reference to the workflow nets of Ex. 4.22, reported in
Fig. 4.13, let us consider the set of traces R = {t1t2t4t5t6t4t3t7, t1t2t4t5t6t4t5t6t4t3t7,
t1t2t4t3} where the first two traces are extracted from traces(a2) and h ∈ H a trace
simulator. The behavioral distance between a2 the nets a3, a4, and a5 can be com-
puted as follows:

bhdist(a2, a3, h,R) =
∣7 − 7∣

8
+
∣9 − 9∣

11
+
∣4 − 4∣

4
= 0

bhdist(a2, a4, h,R) =
∣7 − 6∣

8
+
∣9 − 8∣

11
+
∣4 − 4∣

4
= 0.22

τ = 2 bhdist(a2, a5, h,R) =
∣7 − 7∣

8
+
∣9 − 9∣

11
+
∣4 − 4∣

4
= 0

τ = 1 bhdist(a2, a5, h,R) =
∣7 − 6∣

8
+
∣9 − 8∣

11
+
∣4 − 4∣

4
= 0.22

Notice that for net a5 different results can be obtained by allowing a total number
of silent transitions equal to 2 or to 1. 2

♢
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4.7.3 Badness

Broadly speaking, a workflow net is better than another one if it contains less
errors, but not all errors are equal and errors of the same type may have a differ-
ent severity. Furthermore, depending on the applied verification methods, certain
errors should be interpreted only as warnings because there is a chance of false
positives. For instance, the soundness check presented in Sec. 4.5 can ensure that
a transition t ∈ trs(a) of a net a ∈ W is definitely dead only if the entire state-space
of a has been explored. For this reasons, it becomes useful to score each error on
the basis of its severity, rather than rely only on the number of detected errors.
The scoring is captured by the notion of badness discussed in this section, that in
turn depends on two parameters like the behavioral distance, a trace simulation
h ∈ H and a representative set of traces R ⊆ TR.

Definition 4.31 (Badness). Let x ∈ W a workflow net with initial marking qs(x),
the badness of x with respect to a set of traces R ⊆ TR and a simulation function
h ∈ H is captured by the function badness ∶ W×H×℘(TR) → R defined below:

badness ∶ W×H×℘(TR) → R is (4.28)

∀x ∈ W ∀h ∈ H ∀R ⊆ TR

badness(x,h,R) = ∑
σ∈R
(

3

∑
i=1

ci ⋅ βi(x,h(x,σ)))

Each scoring function {βi}
3
i=1 ⊆ W×TR → R is used to score a particular error

and the coefficients {ci}
3
i=1 ⊆ R reflect the relative importance of such errors. The

functions {βi}
3
i=1 are defined as follows:

β1(x,σ) =
dvts(σ)
∣trs(x)∣

⋅
1 − halt(x, q)
1 + nocs(σ)

⋅ terminal(x, q) (4.29)

β2(x,σ) =
dvts(σ)
∣trs(x)∣

⋅
∣q ⊖ q(end(x))∣

dvps(σ)
⋅ halt(x, q) (4.30)

β3(x,σ) =
1

dvts(σ)
⋅
n − r

n
⋅ ∣qeset(x, q, d) ∩ {end(σ)}∣ (4.31)

where q = fire-trace(x, qs(x), σ) is the final state reachable running the trace σ,
n = ∣pre-set(x, end(σ))∣ is the size of the pre-set of the last transition of σ, and
r = ∣ready(x, q, end(σ))∣ the number of ready places of end(σ) in q.

The auxiliary functions dvts ∶ TR → N∪{0} and dvps ∶ TR → N∪{0} denote
respectively the number of distinct transitions and places visited during the ex-
ecution of σ, and nocs ∶ TR → N∪{0} is the number of choices contained in the
trace σ. The function terminal ∶ W×Q → {0,1} is defined such that for all x ∈ W
and q ∈ markings(x), terminal(x, q) = 1 if enabled-set(x, q) = ∅, 0 otherwise. The
function halt ∶ W×Q → {0,1} is defined in a similar way such that halt(x, q) = 1 if
q ≥ qe(x), 0 otherwise, for every x ∈ W and q ∈ markings(x). 2

Function β1(x,σ) in Eq. 4.29 returns a value different from zero if and only if
the trace σ leads to a state q representing a no option to complete error. Indeed,
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a no option to complete is characterized by a terminal state that is not a non halt
state, if one of these conditions is not satisfied the function returns zero. Conversely,
function β2(x,σ) in Eq. 4.30 captures the notion of improper completion, because
it returns a value different from zero if and only if the trace σ leads to an halt
state which covers the end state (∣q ⊖ q(end(x))∣ ≠ 0). Finally, function β3(x,σ) in
Eq. 4.31 rates errors related to (potentially) dead transitions. Indeed, it returns a
value different from zero if and only if the last transition in σ cannot be performed
and the number of places in its preset n is less than the number of ready places r.

The coefficients {ci}
3
i=1 determine the relative weight of each scoring function

and they should be intended as global parameters; hence, they do not appear as
parameters of the badness function. These coefficients can be used to tune the
badness computation, e.g. a no option to complete can be considered more serious
than an improper completion, because it potentially prevents the execution of
parts of the workflow net that are not reachable in other alternative ways.

Example 4.32. Let us reconsider the workflow nets of Ex. 4.22, reported in Fig. 4.14
for convenience, and the set of traces R = {t1t2t4t5t6t4t3t7, t1t2t4t5t6t4t5t6t4t3t7,
t1t2t4t3}. Tab. 4.32 reports for each net the final state reachable running each trace
and the type of error eventually generated. Notice that trace σ3 leads for nets a3

and a5 to a state p5 + p7 which does not represent any error, since the execution
can continue.

Fig. 4.14. The workflow nets introduced in Ex. 4.22 reported here for convenience.

For each net the badness can be computed as follows:

a2 Trace σ1 is a correct trace, it leads to state q = p9 and badness(σ1) = 0:
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Trace a2 a3 a4 a5

σ1 = t1t2t4t5t6t4t3t7 p9 p5 + p9 IC p7 QE [t7] p9

σ2 = t1t2t4t5t6t4t5t6t4t3t7 p8 + p9 IC p5 + p8 + p9 NO p7 NO p9

σ3 = t1t2t4t3 p7 NO p5 + p7 p7 NO p5 + p7

1 − halt(a2, q) = 0⇒ β1(a2, σ1) = 0

∣q ⊖ q(end(a2))∣ = 0⇒ β2(a2, σ1) = 0

n − r = 0⇒ β3(a2, σ1) = 0

Trace σ2 leads to the state q = p8 + p9 producing an improper completion and
badness(a2, h, σ1) = 0.11:

halt(a2, q) = 0⇒ β1(a2, σ2) = 0

β2(a2, σ2) = 1 ⋅
1
9
⋅ 1 = 0.11

n − r = 0⇒ β3(a2, σ2) = 0

Trace σ3 leads to the state q = p7 producing a no option to complete and
badness(a2, h, σ2) = 0.33:

β1(a2, σ3) = 1 ⋅
1
3
⋅ 1 = 0.33

1 − halt(a2, q) = 0⇒ β2(a2, σ3) = 0

n − r = 0⇒ β3(a2, σ3) = 0

a3 Trace σ1 leads to state q = p5 + p9 producing an improper completion, and
badness(a3, h, σ1) = 0.11:

1 − halt(a3, q) = 0⇒ β1(a3, σ1) = 0

β2(a3, σ1) = 1 ⋅
1
9
⋅ 1 = 0.11

n − r = 0⇒ β3(a3, σ1) = 0

Trace σ2 leads to the state q = p5 + p8 + p9 producing an improper completion and
badness(a3, h, σ2) = 0.22:

1 − halt(a3, q) = 0⇒ β1(a3, σ2) = 0

β2(a3, σ1) = 1 ⋅
2
9
⋅ 1 = 0.22

n − r = 0⇒ β3(a3, σ2) = 0

Trace σ3 leads to an intermediate state q = p5 + p7 and badness(a3, h, σ3) = 0:

halt(a3, q) = 0⇒ β1(a3, σ3) = 0

terminal(a3, q) = 0⇒ β2(a3, σ3) = 0

n − r = 0⇒ β3(a3, σ3) = 0
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a4 Trace σ1 leads to state q = p7 which quasi-enables its last transition t7 producing
a quasi-enabled transition error, it is also a terminal state which produces also a
no option to complete error. The overall badness is badness(a4, h, σ1) = 0.51:

β1(a4, σ1) =
6
7
⋅
1
2
⋅ 0.43

halt(a4, q) = 0⇒ β2(a4, σ1) = 0

β3(a4, σ1) =
1
6
⋅
1
2
⋅ 1 = 0.08

Similarly to the previous trace, trace σ2 leads to the state q = p7 producing a quasi-
enabled transition error and a no option to complete error. The overall badness is
badness(a4, h, σ2) = 0.37:

β1(a4, σ2) =
6
7
⋅
1
3
⋅ 1 = 0.29

halt(a4, q) = 0⇒ β2(a4, σ2) = 0

β3(a4, σ2) =
1
6
⋅
1
2
⋅ 1 = 0.08

Trace σ3 leads also to the state p7 but in this case only a no option to complete error
is generated, since all transitions are performed. The badness is badness(a3, h, σ3) =
0.25:

β1(a4, σ3) = 1 ⋅
1
4
⋅ 1 = 0.25

halt(a4, q) = 0⇒ β2(a4, σ3) = 0

n − r = 0⇒ β3(a4, σ3) = 0

a5 For computing the badness of a5 we consider the possibility of performing
an additional silent transition during each trace simulation. Trace σ1 and σ2 are
correct traces, they both lead to state q = p9 and badness(σ1) = 0:

1 − halt(a5, q) = 0⇒ β1(a5, σ1) = 0

∣q ⊖ q(end(a5))∣ = 0⇒ β2(a5, σ1) = 0

n − r = 0⇒ β3(a5, σ1) = 0

Trace σ3 leads to an intermediate state q = p5 + p7 and badness(a5, h, σ3) = 0:

halt(a5, q) = 0⇒ β1(a5, σ3) = 0

terminal(a5, q) = 0⇒ β2(a5, σ3) = 0

n − r = 0⇒ β3(a5, σ3) = 0

2

♢
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4.7.4 Simulated Annealing

Given an unsound workflow net a ∈ W , the main goal of the PNSA technique
is to produce a good set of solutions S = {si}

k
i=1 ⊆ W such that each model

si ∈ S is similar to a but contains fewer or no errors. S can be considered
good if its elements are correct with high confidence and they are not redun-
dant, namely no one element can be considered better than any other one. This
latter concept is captured by the notion of dominance and Pareto-set. Fixed
the model under analysis a ∈ W and the trace simulation h ∈ H, the following
objective functions fi ∶ W ×℘(TR) → R can be defined: f1(x,R) = stdist(a, x),
f2(x,R) = bhdist(a, x, h,R) and f3(x,R) = badness(x,h,R). The objective func-
tions can be grouped into a unique function f̄ ∶ W×℘(TR) → R3 such that ∀x ∈ W
identifies the triple (stdist(z, x), bhdist(z, x, h,R), badness(x,h,R)).

Definition 4.33 (Dominance). A solution x ∈ W dominates a different solution
y ∈ W if it is better in at least one objective and equivalent in the remaining ones.
The relation can be formally stated as

D(R) = {(x, y) ∣ ∃x, y ∈ W ∀i ∈ [1,3]

fi(x,R) ≤ fi(y,R) ∧ ∃j ∈ [1,3] fj(x,R) ≠ fj(y,R)}

A pair (x, y) ∈ D(R) is denoted as x ≺R y or x ≺ y when R is clear from the
context, similarly a pair (x, y) ∉ D(R) is denoted by x /≺R y or x /≺ y.

Definition 4.34 (Pareto-set). Two not comparable solutions x, y ∈ W such as
x /≺ y and y /≺ x are said to be mutually non-dominating. A Pareto-set is a set
of mutually non-dominating solutions, formally P = {xi}

n
i=1 is a Pareto-set with

respect to R if and only if ∀i, j ∈ [1, n] xi /≺R xj .

Definition 4.35 (Pareto-front). The Pareto-front F(R) ⊆ R3 is the set of all
points in the objective space that correspond to Pareto-optimal solutions. The
Pareto-front with respect to R is defined as F(R) = {f̄(x,R) ∣ ∃x ∈ W ∀y ∈
W y /≺R x}.

In MOSA applications the objective functions are composed in some way to
obtain a unique fitness function to be minimized. In dominance-based MOSA the
fitness is defined in terms of the gap between the objective values of a solution
and a set of optimal values of the Pareto-front. Since the true Pareto-front F is
generally unknown, the fitness function is based on a finite approximation of it
F ⊆ R3, called estimated Pareto-front.

Definition 4.36 (Fitness measure). Let F ⊆ R3 a finite estimation of the
Pareto-front F , x ∈ W a solution and R ⊆ TR(a) a set of traces of a. The fit-
ness function fit ∶ R3×W×TR → R is defined as the number of points in F that are
better than f̄(x,R). Formally

∀F ⊆ R3 ∀x ∈ W ∀R ∈ TR fit(F, a,R) = ∣{v ∈ F ∣ v < f̄(x,R)}∣
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The estimated Pareto-front F can be initialized in different ways and updated
during the computation for increasing its quality. In this application F is a func-
tion of the Pareto-set P under construction: it is initially empty and incrementally
populated with new values as long as new solutions are added to P . More specifi-
cally, when a new solution is added to P its corresponding point in the objective
space is added to F together with some other artificial points in its neighborhood.

In the annealing procedure, a new solution y ∈ W is accepted in place of the
current one x ∈ W on the basis of the fitness difference Δfit(y, x,R) defined as

Δfit(y, x,R) =
1 + fit(F̃ , y,R) − fit(F̃ , x,R)

1 + ∣F ∣
F̃ = F ∪ {f̄(x,R), f̄(y,R)}

More specifically, a new solution y ∈ W is accepted in place of the current one
x ∈ W with a probability equal to min {1, exp (−Δfit(y, x,R)/T (i))}, where T (i) is
a monotonically decreasing function indicating the temperature for the iteration i
of the annealing procedure. This ensures that if the new candidate solutions y is
better than the current one x (it moves towards the estimated Pareto-front), it is
always accepted in place of x; otherwise, it is still accepted with a probability that
decreases with the temperature. The temperature allows one to compensate the
concept of confidence: at the beginning the confidence of a solution is relatively
small, hence in this phase a solution can be discarded in place of a new one which
is not strictly better, because the set of traces chosen so far can be not particularly
significative; conversely, when the confidence about a solution increases it is less
likely discarded in place of a worsen one, because the temperature is decreased
as well. Let us notice that if the candidate solution y has the same fitness of the
current solution x, we maintain the current solution since this has also been tested
against some other trace sets. This is captured by the notion of confidence of a
solution, which indicates how many annealing iterations a solution has survived
through. The more iterations a solution survives through, the more the confidence
increases that this is a good solution.

Example 4.37. Let us assume an estimated Pareto-front of {p1 = (0,0,0.41), p2 =
(5,0.52,0.43), p3 = (9,0,0), p4 = (11,0,0.71)} for our working example in Fig. 4.11.
The structural similarity, the behavioural similarity and the badness of nets a3, a4,
and a5 have been computed in Ex. 4.25, Ex. 4.30, and Ex. 4.32, respectively. The
corresponding points in the objective space are o3 = (1,0,0.33), o4 = (4,0.34,1.13),
and o5 = (5,0,0). Therefore, net a3 dominates points p2 and p4, while net a4

dominates only point p2, and net a5 dominates points p2, p3, and p4. It results
that a5 has higher probability of being accepted in place of the other two. 2

The annealing procedure is reported in Lis. 4.4. It requires in input (1) the
original model a ∈ W , (2) the Pareto-set P of the solutions found so far, (3) a
parameter c ∈ N representing the desired confidence of the result, (4) the maximum
number of iterations m ∈ N, (5) the number of sample traces considered at each
iteration k ∈ N, (7) a monotonically decreasing function T ∶ N → R representing
a cooling schedule such that T (i) is the temperature used at the iteration i ∈
[1,m]. The algorithm produces in output a list of at most n solutions of decreasing
confidence where the first element has confidence at least c when the algorithm
converges before reaching the maximum number of iterations m.
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The main steps of the algorithm can be summarized as follows:

1-5 Initialization of the main variables used in the algorithm. The estimated
Pareto-front F is initialized by the procedure Estimate-Pareto-Front
by using the given Pareto-set P . As mentioned above, in order to increase
the size of F , some points in the neighborhood of the computed ones are
artificially added. The solution list L is originally empty, its elements are
always ordered by their decreasing confidence and when the list becomes
full, elements with lower confidence are discarded. Net x is initial current
solution obtained by combining one or more elements chosen from P ∪{a},
while cx is its confidence. Finally i is the number of iterations of the main
cycle performed so far.

6-22 The main loop of the procedure. The loop terminates when the maximum
number of iterations m has been reached or the confidence of the current
solution is greater than the desired one c.

7 Generation of a perturbation y ∈ W of x. The perturbation is obtained by
a small sequence of edit operations that are chosen at random or selected
exploiting the solutions stored in L.

8 Procedure Select-Traces chooses at random or with a better strategy
a finite representative set of k traces R ⊆ TR(a), considering also the set
of errors errors(a) of the original model. For instance if errors(a) is small,
ensure errors(a) ⊆ R.

9-12 Computation of the objective functions of x and y with respect to R and of
the sets of errors and fixes found in the solutions under analysis for later use.
A solution x with new errors errors(x) ∩ errors(a) ≠ ∅ is not discarded at
priori because it may contain a partial fix to the target error set errors(a).

13-15 Computation of the difference Δfit(y, x,R) between the fitness of y and x
using the available estimated Pareto-front F , and of the acceptance prob-
ability. The perturbed solution y is accepted in place of the current one x
with a probability less than min {1, exp (−Δfit(y, x,R)/T (i))}, where T (i)
is the temperature for the current iteration i.

16-21 Choice between the two solutions. If the computed value p is less than a
random value between 0 and 1, then the perturbed solution y is accepted
in place of the current solution x. If y is accepted, x is stored in L on the
basis of its confidence cx and y becomes the current solution. Otherwise, y
is discarded and the confidence about x is increased.

23-24 At the end the current solution x is stored in L and list L is returned.

The PNSA technique consists of several runs of the annealing procedure in
order to incrementally construct a Pareto-set formed by optimal non-dominated
solutions with high confidence. At each run of the annealing procedure, the first
element of L is added to the current Pareto-set, depending on the resulting confi-
dence and the presence of new errors, which is used by the next run. The procedure
can be stopped as soon as the Pareto-set satisfies the end user. The details of the
overall algorithm are reported in Lis. 4.5.

1-2 Initialization of the main variables used in the algorithm. The Pareto-set
of solutions S under construction is initialized as an empty set, while the
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Listing 4.4 The annealing procedure

input: The original model a ∈ W expressed in WFNs.
input: The Pareto-set P of solutions found so far.
input: The desired confidence c ∈ N of the result.
input: The maximum number of iterations m ∈ N.
input: The number of sample traces k ∈ N to consider at each iteration.
input: A monotonic decreasing function T ∶ N → R representing the cooling schedule,

such that ∀i ∈ N T (i) is the temperature at iteration i.
output: A list L of at most n solutions with decreasing confidence.

L← Annealing(a,P, c,m, k, T )

1 F ← Estimate-Pareto-Front(P)
2 L← ∅
3 x←Generate-Initial-Solution(P ∪ a)
4 cx = 0
5 i = 0
6 while cx < c ∧ i ≤m do
7 y ← Perturbate(x)
8 R ← Select-Traces(TR(a), errors(a), k)
9 (ox, ex) ← Compute-Objective-Function(x)

10 errors(x) ← errors(x) ∪ ex

11 (oy, ey) ← Compute-Objective-Function(y)
12 errors(y) ← errors(y) ∪ ey

13 Δfit ← Compute-Delta-Fit(oy, ox, F )

14 p←min{1, exp(−
Δfit

T (i)
)}

15 r ←Generate-Random(0, 1)
16 if p > r then
17 L← Store(L, (x, errors(x)), cx)
18 x← y
19 else
20 cx ← cx ∪ ∣R∣
21 end if
22 end while
23 L← Store(L, (x, errors), cx)
24 return L

cooling schedule T is initialized considering a maximum and a minimum
temperature and the number of step performed by each annealing run.

3-6 The main loop of the algorithm. Until the desired number of solutions n is
not generated, a new run of the annealing procedure is performed and the
head of the returned list is added to the current Pareto-set of solutions.
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Listing 4.5 The PNSA procedure

input: The original model a ∈ W expressed in WFNs.
input: The desired confidence c ∈ N of the result.
input: The maximum number of iterations m ∈ N for each annealing.
input: The number of sample traces k ∈ N to consider at each annealing iteration.
input: The maximum size of the solution list n ∈ N.
input: The initial temperature ti ∈ R.
input: The freezing temperature tf ∈ R.
output: A set of n solutions S ∈ W .

S ← Pnsa(a, c,m, k, n, ti, tf)

1 S ← ∅
2 T ←Generate-Cooling-Schedule(ti, tf , k)
3 while ∣S∣ < n do
4 L← Annealing(a,S, c,m, k, T )
5 S ← S ∪Head(L)
6 end while
7 return S

4.8 Experimental Results

We implemented the PNSA algorithm in a prototype Java tool. This tool imports
an unsound workflow net in LoLA format [93], and executes on it the soundness
check in Lis. 4.2. The result of the soundness check and the user parameters trigger
the PNSA algorithm. At each iteration i of the annealing procedure, the tool
performs at most k prioritized random walks on the state-space to extract the
sample traces of set Ri. More precisely, for each trace, the state-space is traversed
backwards starting from a final state and by prioritizing those transitions that
have been visited the least, until the initial state is reached. Correct traces are
extracted starting from qe; erroneous traces are extracted starting from a final
state that led to an error (available from the soundness check). The output of
the tool is a set of solutions in LoLA format, which is limited by the maximum
response time or by the maximum number of solutions set by the user.

We used the tool to fix a sample of 152 unsound nets drawn from the BIT pro-
cess library [94]. This library contains 1,386 BPMN models in five collections (A,
B1, B2, B3, C), out of which 744 are unsound. We converted these 744 models into
workflow nets and filtered out those models that did not result in valid workflow
nets (e.g. those models that had multiple output places). In particular, we only
kept models with up to two output places, and when we found two output places
we merged them in a single output place. Since this operation may introduce a
lack of synchronization, we discarded models with more than two output places to
minimize the impact of such artificial errors. As a result, we obtained 152 models,
none of them from collection C. Tab. 4.1 reports some information about the ob-
tained input models, such as their average and maximum dimension in terms of
node numbers and the average and maximum found errors.
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Collection No. models Avg/Max nodes Avg/Max errors

BIT A 48 46.54 / 129 2.21 / 5
BIT B1 22 29.55 / 87 2.55 / 6
BIT B2 35 22.86 / 117 2.54 / 9
BIT B3 47 20.38 / 73 2.77 / 9

Table 4.1. Experimental results.

We set the maximum number of final solutions to 6, the desired confidence
to 100, the maximum number of iterations for each annealing run to 1,000, the
initial temperature to 144, the maximum size of each set of sample traces to
50, and all the parameters for behavioral distance and badness to 1. After the
experiment each solution was checked for soundness. The tests were conducted on
a PC with a 3GHz Intel Dual-Core x64, 3GB memory, running Microsoft Windows
7 and JVM v1.5. Each test was run 10 times by using the same random seed (to
obtain deterministic results) and the execution times were averaged. The results
are reported in Tab. 4.2.

Collection Avg/Max Avg/Max Avg Error Sound Avg/Max str. Avg/Max
nodes errors reduction models distance [cost] time[s]

BIT A 45.85 / 129 0.74 / 20 73.6% 85.7% 4.25 / 39 16.52 / 171.43
BIT B1 27.18 / 87 1.07 / 29 75.6% 82.9% 5.02 / 91 8.75 / 100.45
BIT B2 21.79 / 118 0.69 / 9 84.9% 87.3% 3.47 / 47 12.08 / 217.91
BIT B3 21.42 / 118 1.26 / 24 72.4% 79.6% 4.62 / 61 10.85 / 156.93

Table 4.2. Experimental results.

The error-reduction rate of a solution is the difference between the number
of errors in the initial model and the number of errors in the solution, over the
number of errors in the initial model. Tab. 4.2 shows the average error-reduction
rate for all solutions of each collection, which leads to an average error-reduction
of 76.6% over all four collections. This indicates that the algorithm is able to fix
the majority of errors in the input models. Moreover, the structural distance of
the solutions is very low (4.34 on average using a cost of 1 for each edit operation).
Thus, the solutions are very similar to the original model. These solutions are
obtained with an average response time of 11s. Despite the large response time in
some outlier cases (218s), most solutions are behaviorally better than their input
models (83.9% are sound) and at least one sound solution was found for each input
model. Very few cases are worse than the input model (e.g. 29 errors instead of 6
errors in the input model). This is due to the fact that we did not fine-tune the
annealing parameters based on the characteristics of each input model (e.g. if the
number of annealing iterations is too low w.r.t. the number of errors in the input
model, a solution could contain more errors than the input model).
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4.9 Summary and Concluding Remarks

This chapter deals with the verification and the automatic correction of process
models. For this purpose, it initially introduces the WFNs language, a Petri nets
variant tailored for modeling and analyzing processes in the context of workflow
management systems. On such language the notion of soundness has been defined
which tries to capture the models that will provide a good run-time behaviour.
The original notion of soundness proposed in literature is formally stated and some
problems about it are exposed. This results in the definition of a revised soundness
formulation whose properties are orthogonal. On the basis of such notion, a refined
soundness check procedure is illustrated which verifies the presence of the desired
properties on a given model. The proposed procedure is slightly different from
the traditional one, because its primary aim is to capture a set of additional
information about the found errors, in order to exploit them during a subsequent
repair phase. The automated model repair problem is then introduced using the
WFNs as the reference formal language for encoding the models to fix.

Finally, a novel optimization technique, called PNSA, is proposed which given a
model containing some errors and the information collected during the verification
phase, tries to find a set of solutions which are structurally and semantically similar
to the original model but with fewer errors. A set of experimental results are also
reported which illustrates the application of the proposed techniques to a set of
real process models encoded as workflow nets.

This chapter focuses on the current modeling practice characterized by the
use of unstructured PMLs supporting the free-design paradigm. Conversely, the
following chapter proposes an alternative modeling approach based on the adoption
of a structured PML able to impose some constraints during design and to produce
models with a block-structured control-flow. This approach allows one to exclude
the presence of certain errors by construction, that are otherwise both difficult to
spot and fix without rethinking the whole model.





5

Towards Structured Process Modeling Languages

PMLs are usually classified as unstructured due to their graph-oriented syntax
and token-based semantics inspired by Petri nets. They allow a free composition
of constructs without worrying much about the type or position of the connected
elements. Using an unstructured PML, a more or less structured model can be
built: a sub-graph of a model is considered structured when its constructs are
properly nested and correctly matched to produce a block with one entry and one
exit point, as discussed for instance in [17,95]. Research concerning the quality of
process models confirms that structured forms should be preferred to unstructured
ones, because they improve model comprehensibility and reduce the probability
to accidentally introduce errors inside models [96, 97]. These effects should not
surprise: firstly, the presence of a structured form is an easy-to-verify syntactical
property that can guarantee the presence of desirable semantic properties which
can be otherwise hard to prove; secondly, structured forms enhance modularity: a
key property in any complex design activity performed by humans.

PMLs can also be classified by considering the set of provided constructs into
two main categories: data-flow oriented (DFO) and control-flow oriented (CFO).
A DFO language describes a process by explicitly representing data dependen-
cies among its constituent components. The declared data relations can be used
for transparently exploiting parallelism without requiring explicit synchronization.
On the contrary, a CFO language focuses on the execution order of components,
leaving data dependencies almost implicit. Even if the DFO paradigm provides
higher modularity, the CFO one has been historically adopted for designing PMLs
because the explicit representation of all data dependencies among components
and the massive parallelism when abused can become a drawback in process de-
sign. Nevertheless, CFO languages are apparently simpler than DFO ones, at least
because data aspects can be ignored at early design stages. This over simplification
is paid at later design stages and during implementation, when data-flow relations
shall be finally integrated in order to obtain an executable system. Integrating
DFO abstractions in CFO languages is therefore unavoidable and at the same
time challenging due to the commonly adopted CFO constructs.

The aim of this chapter is to promote the development of a new generation of
PMLs that adopt a structured design approach enhanced with DFO abstractions.
For this purpose, the chapter starts by justifying the adoption of a structured
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control-flow by exposing the problems that a lack of structure may determine,
then it introduces a novel PML called NestFlow, which provides block-structured
control-flow constructs combined with asynchronous message passing abstractions.

The process models treated in this chapter are expressed using different PMLs
widely discussed in the previous chapters, such as BPMN, YAWL, and WFNs. The
priority is given to BPMN because it seems to have the more intuitive notation,
while YAWL and WFNs are used when a more formal semantics is required. Any-
way, except for some processes including message exchange, the discussed BPMN
models can be easily mapped to YAWL or even to WFNs, since no advanced
constructs are used.

The execution of a process instance is represented as a sequence of steps denoted
using the following notation: each step is represented by the symbol →, while the
overall state of threads is denoted using construct and component identifiers. In
particular, a component will compare at least two times in a sequence: when the
it starts and when it terminates. If a component A reads a variable x in its scope
when starts, then it is annotated as x∣A. Similarly, if A writes a variable y when
terminates, then it is denoted as A∣y. In case multiple variables are read or written
at the same time, they are enclosed in curly braces, e.g. {x, y}∣A means A starts
by reading x and y. Multiple threads of control can be created and destroyed
during a run: in such case concurrent executions are denoted within parenthesis
and separated by commas. For instance, the sequence A → A∣x → (x∣B,C) →
(B,C ∣y) → B∣z stands for: the component A starts its execution, then it ends by
writing the variable x, subsequently B starts in parallel with C by reading the
value of x, then C terminates by writing the variable y, while B is still running,
and finally B concludes by writing the variable z. The step symbol → can also be
annotated with a condition and a possible result of its evaluation for stating that
its execution is determined by a system choice.

The notion of soundness and its related errors have been widely discussed
in the previous chapters: here the concepts of no option to complete, improper
completion, and dead transitions are informally applied also to models that are
not workflow nets, but are expressed for instance in BPMN or YAWL. This is
reasonable, because the stated properties can be proven by mapping the models
to WFNs abstracting away undesired details about data.

The remainder of this chapter is organized as follows: Sec. 5.1 summarizes
some research efforts which support the adoption of a structured paradigm in
process design. Sec. 5.2 discusses the most severe errors that can be introduced in
a process model when an unstructured approach is adopted. Sec. 5.3 exposes the
weakness of some arguments against structured modeling approaches that have
the negative effect to prevent any further investigation in this direction. Sec. 5.4
discusses the key rule of structure in process modeling, while Sec. 5.5 highlights
some modularity issues of unstructured PMLs. Sec. 5.6 introduces NestFlow
by discussing its main features. The NestFlow language constructs are deeply
analyzed in Sec. 5.7 and Sec. 5.8. Finally the formal semantics of NestFlow is
presented in Sec. 5.9.

♢
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5.1 Related Work

In [17] Kiepuszewski et al. investigate the expressiveness of unstructured workflow
languages with some syntactical restrictions. They show that some well-behaved
unstructured models cannot be transformed into structured ones. Based on this
study, Liu and Kumar in [95] analyze unstructured workflows introducing a taxon-
omy of unstructured forms and determining which ones have an equivalent struc-
tured form. In both contributions the authors consider structured languages less
expressive than unstructured ones; however, their studies concern only control-
flow forms abstracted from other language aspects; hence, they do not exclude the
existence of fully-fledged structured PMLs. In [96,98] Mendling and Laue investi-
gate the importance of structuredness for obtaining correct models: they introduce
two different metrics that capture the degree of unstructuredness and relate these
metrics to the probability of finding an error. They conclude that structuredness is
an important property for increasing the quality of models. Moreover, Reijers and
Mendling in [97] analyze modularity and conclude that such property has positive
effects on the comprehensibility of large-scale business process models.

These effects are also confirmed by Vanhatalo et al. in [99, 100] where they
present a parsing technique, called Refined Process Structure Tree (RPST), use-
ful for detecting structured subgraphs inside generic models. RPST has several
applications, e.g. it can be used as a first step for translating a graphical process
model into a low-level executable specification, which can be directly interpreted
by a PAIS engine. A first analysis about modularity and concurrency of PMLs in
the context of business process modeling can be found in [19,20], where Combi et
al. investigate some critical design problems that emerge when a graphical model-
ing language is obtained by coupling unstructured routing constructs with shared
variables and message passing primitives in order to provide all the abstractions
needed to produce an executable process model.

NestFlow embodies many principles of the actor model [101]: the behaviour
of a component is history sensitive, a component is made of other component in-
stances statically declared or created at run-time, and components interact through
buffered asynchronous communications. A component encapsulate both data and
logic providing a mechanism to protect the implementation against improper oper-
ations. Therefore, information is local to each component and it has to be explicitly
transferred in order to be known by any other agent. Even if some other similari-
ties can be found, NestFlow is not a strict implementation of the actor model.
Indeed, while in the latter there is no assumption about the concurrent execu-
tion of agents, that are intended free to run in parallel, NestFlow offers specific
control-flow constructs for limiting parallel executions whenever necessary.

An interesting general-purpose programming language for structured parallel
programming is proposed by Bläser in [102]. Such language also offers a minimal
graphical notation for components. The aim of the proposed component language
is to support hierarchical decomposition of components without explicit pointers,
unrestricted symmetric polymorphism, and communication-based interactions. A
component can expose multiple independent interfaces that declare what connec-
tions are offered and required. A component can contain any statically or dy-
namically created component instances. The component logic and the connections
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among components are fully encapsulated and exclusively managed by the sur-
rounding component. Component can run in parallel respecting the communica-
tion protocols specified by the interfaces.

In [103] the authors propose the use of DFO languages as coordination lan-
guages [9], in which fine-grained operations on data are implemented with an un-
derlying general-purpose programming language. At the same time they emphasize
the need for CFO constructs during design, in order to prune away fine-grained
parallelism, toward a more coarse-grained execution. In [104] the authors address
the problem of modeling typical control-flow constructions in scientific workflows,
such as loop and switch-case statements, using only data-flow relations. This op-
eration can quickly lead to complex workflows, hence they propose a solution
based on the encapsulation of these generic constructions in workflow templates.
In [105] the authors put DFO languages one step forward introducing the notion
of data-flow process networks, an evolution of the Kahn process networks [106] in
which components are not single instructions or simple functions, but more or less
sophisticated processes that communicate through message passing. This model
represents the theoretical foundation of some scientific workflow systems, like Ke-
pler [37]. Conversely, the introduction of DFO abstractions in CFO languages has
received less attention in literature.

♢
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5.2 Common Pitfalls in Unstructured PMLs

Many kind of errors may be accidentally introduced in a process model during the
design activity, but the most subtle ones concern unwanted interaction patterns
that may occur among two or more concurrent entities. These errors are considered
subtle because they are difficult to spot, and usually they cannot be corrected in
any obvious way. This section aims to expose the root causes that lead to this kind
of errors and explain how structured compositions help in avoiding them from the
beginning. Unfortunately, unstructured forms cannot be entirely avoided due to
a lack of expressiveness of the available control-flow oriented PMLs and they are
commonly accepted as a necessary evil.

The BPMN process model in Fig. 5.1 will be used through the entire section to
ease the discussion. It does not include real tasks or data, because the focus is on
the expressed logic; nevertheless, it contains sufficient information to be executed
on a real system or translated into a different language, like YAWL. Task A updates
the variable x that is read by B and F ; task F also takes the value produced by
E that is temporarily stored in y. For simplicity, it is supposed that F uses x
and y to compute the expression z ← y/x. B acts as a monitoring activity that,
given the value in x, decides when to leave the loop {u1,A, s,B, v1} by placing a
truth value in b. Tasks D or E followed by F are performed in parallel with B
at least once before the process can complete. When B decides to exit from the
loop, it is assumed that C loads the current value in z to permanently store it into
a database. Such value can be produced by D or F depending on the choice v2.
The described unstructured model cannot be considered well-behaved, because it
contains several issues. Each of them is used to introduce the general problems
that arise with an unstructured control-flow design.

Fig. 5.1. An unstructured process model containing some subtle errors. The model is
expressed in BPMN enhanced with variable names x, y, z, b, construct identifiers p, q,
u1, vi, v2, s, j, and explicit conditions that usually are not part of the graphical notation.
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(P1) Control-Flow Entanglement

In many unstructured PMLs implicit fine-grained data-flow dependencies require
explicit fine-grained synchronization points; these points shall be connected together
with control-flow arcs that often break existing structured forms. For example, in
the model of Fig. 5.1 there is no guarantee that C reads exactly the last value
produced by D or F . Eventually, the following events occur:

p→ u1 → A→ A∣x→ s→ (x∣B,v2)
x ≤ 0ÐÐ→ (B,D) → (B∣b,D) →

→ (v1,D)
b = falseÐÐÐ→ (z∣C,D) → (C,D) → (j,D) → (j,D∣z) →

→ (j, u2) → (j,G) → (j, j) →H → q

Moving C after u2 or j is not a viable alternative, hence certain control-flow
connections have to be added for synchronizing D and F with C. Such connections
inevitably break the structured block {v2,D,E,F, u2}.

(P2) Undesired Tokens

With an unstructured control-flow design, it can be difficult to track and deal
with tokens left in different places of a model during its execution. For exam-
ple, the model in Fig. 5.1 suffers of an improper completion because the loop
{u1,A, s,B, v1} potentially produces more than one token that flows through the
bottom branch of the And-Split s, finishing their run in j. Nevertheless, only one
token in the subgraph {v2,D,E,F, u2} is correctly synchronized in j before exiting.
In YAWL the remaining tokens can be withdrawn by surrounding the subgraph
{v2,D,E,F, u2, j} with a cancellation region enabled by H. BPMN can simulate a
cancellation region by enclosing the subgraph into a sub-process with a boundary
exception. However, these solutions are far from being easy to apply, especially
if the subgraph has many entry and exit points due to the already mentioned
synchronization points.

(P3) Unreliable Invariants

With an unstructured design approach one cannot exclude that multiple tokens flow
in the same sequential branch making invariants hard to state and preserve. As a
result, the value of a variable cannot be assumed to remain the same between
the execution of two sequential steps. Reasoning about the correctness of an un-
structured model with free to flow tokens becomes soon a non-trivial activity. For
example, F in Fig. 5.1 belongs to a branch guarded by x > 0, but one cannot
exclude that F computes z ← y/x with x = 0. Indeed, the following trace can
occur:

p→ u1 → A→ A∣x→ s→ (x∣B,v2)
x > 0ÐÐ→ (B,E) → (B∣b,E) →

→ (v1,E)
b = trueÐÐÐ→ (u1,E) → (A,E) → (A∣x,E) x = 0ÐÐ→ (s,E) →

→ (s,E∣y) → (s, {x, y}∣F )

In such case F is executed with an erroneous input x = 0, despite it is placed on a
branch guarded by the condition x > 0.
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5.3 Myths Surrounding PMLs

This section discusses some common misconceptions about PMLs that seem to be
so widespread to prevent any further investigation towards structured modeling
approaches. The main concepts of the section are exemplified through the model in
Fig. 5.2. This model is extracted and adapted from [17], it is formed by a starting
place p, an end place q, two loops {u1,A,B, v1, s1,C, j1} and {u2,H,G, v2, j2, F,
s2} that run in parallel, two intermediate tasks D and E and two trailing tasks
I and L. The main loops mutually synchronize each other at every iteration by
means of the branches {s2,D, j1} and {s1,E, j2}. The loops are also guarded by
the same condition ϕ(x̄) stated over a set of variables x̄ represented as a tuple. The
condition has been left unspecified because it is not relevant for the discussion,
it may be for example x < y and in such case x̄ = ⟨x, y⟩. The model seems better
than the previous one in Fig. 5.1: indeed, it can be easily mapped to a workflow
net and proved to be sound.

Fig. 5.2. A well-behaved unstructured process model expressed in BPMN.

(M1) The Myth of Expressiveness

Executable unstructured BPMLs are more expressive than structured ones in terms
of definable models. This myth is rooted on the elusive notion of structured PML
that lacks of an accepted definition or even a reference implementation. This point
of view is also supported by mathematical proofs [17]. Actually, these proofs are
very weak because they define what is a structured PML starting from an existing
unstructured one by adding further syntactical restrictions. Moreover, the consid-
ered languages are often so simplified that can be hardly considered executable;
they lack of any construct to declare and manipulate data. These proofs usually
show that there exist well-behaved unstructured models, as the one in Fig. 5.2,
that cannot be expressed with a structured control-flow. The used argument is
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fairly trivial since any language with additional constraints is likely to become less
expressive, at least if the added constraints are real constrains that affect the lan-
guage in some way. These kinds of proofs are hard to state on real-world languages,
because the structured language at hand may be sufficiently expressive to define
an interpreter able to simulate the behavior of the original model step-by-step by
encoding unstructured forms as internal data structures.

(M2) The Myth of Soundness

Well-behaved models can be easily distinguished from erroneous ones using the
available validation methods. This myth is fostered by the increasing advances in
verification methods [88] that can be used to assist the design activity. However,
excluding some special cases, validation methods are feasible only if they are ap-
plied to an abstraction of the actual executable model, namely an approximation
obtained discarding details considered irrelevant for the analysis. Whenever the
validation method finds an error, it provides a proof of the problem, e.g. a trace
that can reproduce the fault in the original model. On the contrary, a success-
ful validation can increase the confidence about model correctness, but it cannot
exclude the presence of errors. For example, the model in Fig. 5.2 is sound with
respect to the usual notion of soundness adopted for workflow nets [15], but it can
easily reach a deadlock condition during its execution: at least one variable xi ∈ x̄
changes its state, otherwise ϕ(x̄) is always false or always true and the loops never
execute or never terminate. If the set of variables x̄ changes, there exists at least
one component t that update it; in particular, a deadlock can be reached for any
t ∈ {A,B,C,D,E,G,H}. For instance, let t = A, the following trace ends with a
deadlock:

p→ w → (u1, u2) → (A,u2) → (A,H) → (A,G) → (A,v2)
ϕ(x̄) = trueÐÐÐÐ→ (A, j2) →

→ (A∣xi, j2) → (B, j2) → (v1, j2)
ϕ(x̄) = falseÐÐÐÐ→ (I, j2) → (r, j2)

In this case the passed soundness check may generate false expectations about
model correctness.

(M3) The Myth of Refactoring

Any unstructured process model can be refactored in a better one, not necessar-
ily structured. As a consequence no structured PMLs are necessary. This myth
is rooted on the questionable assumption that an unstructured PML offers more
design freedom because it imposes less construction rules. Actually, unstructured
PMLs lack of modularity: hence, certain transformations are far from being easy to
perform and sometimes they are even impossible. Let us consider a decomposition
similar to the one proposed in [19] for the model in Fig. 5.2: the main process is
substituted with a new process P with tasks {Q,R, I,L}, where the sub-processes
Q = {u1,A,B, v1, s1,C, j1,E} and R = {u2,H,G, v2, j2, F, s2,D} encapsulate the
two main loops. This is an interesting decomposition, because during design any
model is likely to grow in size as more details are added, and the creation of sub-
processes, without altering the original behavior of the model, becomes a common
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operation. After the Q/R decomposition the two internal loops need to be synchro-
nized in some way for preserving the original semantics. Message passing seems
the most suitable abstraction to solve the problem but it is only partially or not
supported at all in unstructured PMLs, probably because it cannot be easily in-
tegrated with the adopted language constructs. For instance, BPMN explicitly
denies the use of message passing inside the same process: a message flow can only
be used to connect two separate pools, i.e. for representing interactions among
processes that belong to different participants (organizations). Anyway, in [7] the
author suggests to not follow the standard during design, and use message pass-
ing inside a process whenever needed, even if such practice is not well defined.
Another approach to model the communication between R and Q is improperly
placing them into two different pools, obtaining the model in Fig. 5.3.

Fig. 5.3. Possible decomposition for the process in Fig. 5.2.

However, such approach does not solve the problem in the general case because
the resulting main process depicted in Fig. 5.4 still need message passing, but its
components cannot be placed in different pools.

Fig. 5.4. The new main process obtained by combining the two sub-processes Q and R
that communicate through message passing.

In other languages like YAWL asynchronous message passing is not supported
at all: hence, the decomposition can only be obtained by escaping the language
limits, e.g. by writing and reading a database content, making synchronization
tricky and verification methods even less effective.
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5.4 The Key Rule of Structure

Graphical PMLs can be extremely effective in describing the interaction among
concurrent entities that can be naturally expressed in parallel branches. Moreover,
they can boost up process logic comprehensibility by exploiting the innate ability
of humans in recognizing recurring patterns. Surprisingly, many graphical PMLs
do not take into account such aspect sacrificing it in name of free composition.
With such paradigm, end-users are free to place language constructs anywhere they
want and connect them using arcs, resembling what they can do with a pencil on
paper: it seems that the ease of drawing on paper is more important than the ease
of reading, despite that models are commonly built using editors which include
also verification tools and refactoring operations.

Graphical PMLs that adopt a free-composition approach do not prevent one
to make recurring patterns nearly unrecognizable by humans. Let us consider for
example the workflow net z1 in Fig. 5.5a. The net implements a very simple logic:
there are three transitions labeled A, B, and C, if A runs first, then B is mandatory;
conversely, if B is chosen, then one can choose between A and C. Both nets z2

and z3 in Fig. 5.5.b and Fig. 5.5.c, respectively, performs the same logics of z1. In
particular, z2 is exactly the same net but displayed using a different layout, while
z3 is isomorphic to z1, i.e. identical up to a renaming of places and transitions. In
particular, the renaming that has to be applied to places in z3 is rp ≜ {p1 ↦ p1, p2 ↦
p3, p3 ↦ p2, p4 ↦ p4}, while the transition renaming is rt ≜ {t1 ↦ t1, t2 ↦ t3, t3 ↦
t2, t4 ↦ t4}, finally the required action renaming is ra ≜ {A↦ B,B ↦ C,D ↦ A}.

Fig. 5.5. Three equivalent workflow nets with respect their structure: net z2 is identical
to z1 except for the layout, while net z3 is isomorphic to z1 up to a transition and place
renaming.

Even if the majority of the available tools allow a free placement of language
elements, many unstated conventions are adopted in process design. For instance,
models can be expected to be arranged from left to right or from top to bottom, and
two sequential transitions are expected to be put one after the other following such
orientation, unless they are part of a loop. Moreover, transitions after a choice, like
t4 and t5 in z1, are expected to be arranged orthogonally to the model orientation,
e.g. from top to bottom if the model is oriented from left to right.
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Structure is a key concept for the comprehensibility of graphical models: when-
ever possible the same logic shall be always represented in the same way, otherwise
many advantages of graphical representation would be lost.

Notice that imposing structured rules cannot avoid the creation of bad models
or the possibility to obfuscate their meaning: it simply makes such things more
difficult. The aim of enforcing a predefined structure is to relief end-users from
reasoning about it, so that they can focus only on the process model meaning.
The additional overhead induced by following certain structures and conventions
is payed-off soon, because a model is primarily built to be read multiple times by
different people.

♢
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5.5 Modularity

A PML is essentially a tool for tackling the inherent complexity of an existing or
desired system; hence, modularity should play a major role in the design of its
constructs. Modularity is the property of a system to be decomposed into smaller
interrelated parts which can be recombined in different configurations [3]. This
notion can be applied to a PML that is said to be modular if its models can
be decomposed into smaller reusable components which in turn can be recom-
bined for exploring different design alternatives. Let us stress that the presence
of abstractions to decompose a model into smaller parts is necessary to guarantee
modularity, but it is not sufficient if such parts cannot be recombined in some way.

A complete formalization of modularity is far from being simple: the efforts
needed to make a particular change should be correlated to its global effects; in
turn, such efforts depends on language constructs, the run-time support, which
steps can be automated and so on. For instance, let us consider the difficulty to
change a global variable name with respect to change its type in a large program:
changing the name is a time consuming task if performed by hand, but it can be
easily automated; conversely, changing the type is trivial because it can be done
in only one place, but its consequences should be carefully weighted for not ac-
cidently introducing subtle errors. Nevertheless, in characterizing modularity, it
can be claimed that any relevant semantic-preserving change should be ideally ef-
fortless: this kind of changes is useful for enhancing model comprehensibility and
modularity, without compromising the original process behavior. In the following
the notion of semantic-preserving decomposition is formalized to prove that an un-
structured PML needs AMP (Asynchronous Message Passing) constructs in order
to support a minimum level of modularity. In particular, a PML is hierarchically
decomposable if any process model can be reduced in size by replacing a selected
group of components with a single one containing them and their related state. A
generic formalization of decomposability is given by the following definition.

Definition 5.1 (Decomposability). A PML L is decomposable if and only if for
any process model P ∈ L and for any selected set of components S of P there exists
a decomposition Q,R ∈ L such that (1) an instance r of type R is a component
of Q, (2) R is implemented with the S components, (3) Q does not contain such
components, (4) the state shared by the components in S is isolated in the new
component R, and (5) Q is equivalent to P :

L decomposable ▵⇐⇒ (5.1)

∀P ∈ L ∀S ⊆ κ(P ) ∃Q,R ∈ L

κ(R) = S ∧ κ(Q) = (κ(P ) ∖ S) ∪ {⟨r,R⟩} ∧

σ(P,S) ∩ σ(Q) = ∅ ∧ σ(P,S) ⊆ σ(R) ∧ Q ∼ P

where the function κ ∶ L → K returns the components of a model, while the function
σ ∶ L×K → Q captures the storage used by a set of components, e.g. the locations
assigned to the involved variables. For convenience, ∀X ∈ L σ(X) ≜ σ(X,κ(X)),
while K and Q denote components and memory locations related to the language
L, respectively. The relation ∼ ⊆ L×L represents a notion of equivalence between
models. 2
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Def. 5.1 is generic and needs to be adapted to a particular language by specify-
ing the missing relations: one has to formalize the notion of components κ(X) of a
model X and what is a component instance x ∈ κ(X). The last one is represented
as a pair x = ⟨i, T ⟩ containing an instance identifier i followed by its type T . The
equivalence relation ∼ ⊆ L×L between process models Q and P can be a functional
equivalence, a trace equivalence or a bisimulation. Moreover, a strict equivalence
is often a too strong condition to satisfy and one may only require that Q is able
to simulate the behavior of P but not vice versa.

Notice that decomposability is not intended to capture the multifaceted concept
of modularity but only a restricted aspect of it. After all, hierarchical decomposi-
tion is a necessary but not sufficient condition for enhancing modularity: a large
model decomposed into smaller parts can be more comprehensible but potentially
more difficult to change. Nevertheless, a PML that does not support decompos-
ability can be hardly considered modular, and its practical use is questionable. To
make a concrete example, the following proposition discusses the decomposability
of WFNs: the simple modeling language adopted in Chap. 4.

Proposition 5.2 (WFNs Decomposability). The WFNs language is not de-
composable: there exist trivial workflow nets that cannot be decomposed into
smaller parts without changing their semantics. Since WFNs does not offer a way
to store data, i.e. ∀P ∈ W ∀S ⊆ κ(P ) σ(P,S) = ∅, the inverse of Def. 5.1 can be
rewritten in the following way:

∃P ∈ W ∃S ⊆ κ(P ) ∀Q,R ∈ W (5.2)

κ(R) = S ∧ κ(Q) = (κ(P ) ∖ S) ∪ {⟨r,R⟩} ⇒ ¬(Q ∼ P )

Silent transitions are considered internal constructs, hence workflow nets com-
ponents become ∀P ∈ W κ(P ) = {⟨t, a⟩ ∣ ⟨t, a⟩ ∈ transitions(P ) ∧ a ≠ τ}. For sake
of simplicity, the equivalence relation ∼ ⊆ W×W is defined on trace equivalence
because only basic workflow nets with simple observable traces have to be con-
sidered: ∀x, y ∈ W x ∼ y ▵⇐⇒ π (A ∖ {R},obs(x)) = π (A ∖ {R},obs(y)) where
A ∖ {R} is the generic set of all visible actions excluding the action adopted as
a placeholder for the new component. It is also clear that ∀Ω ⊆ A ∖ {R} and
∀x, y ∈ W , x ∼ y⇒ π (Ω,obs(x)) = π (Ω,obs(y)).

Proof. A sound workflow net P that cannot be decomposed for the selected compo-
nents S = {⟨t4, D⟩, ⟨t5, E⟩} is shown in Fig. 5.6. Any workflow net R ∈ W made of the
selected components S has at least the actions Σ = {D, E}. Depending on how it is

Fig. 5.6. A workflow net that cannot be decomposed.
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built, the observable traces of R contain zero or more occurrences of the Σ actions.
Since WFNs do not support conditional executions, any observable trace of a work-
flow net R ∈ W has the chance to be executed at least one time. As a consequence,
π (Σ,obs(R)) = π (Σ,obs(P )) = {DE}, otherwise π (Σ,obs(Q)) ≠ π (Σ,obs(P ))
that makes trivial the conclusion ¬(Q ∼ P ).

The component ⟨r,R⟩ ∈ κ(Q) has to be placed in a path of Q that it is executed
at least one time, otherwise π (Σ,obs(Q)) = ∅ and ¬(Q ∼ P ) is again a trivial
conclusion. Moreover, ⟨r,R⟩ has to be placed in a way that the projected observable
traces π (Σ ∪ {B},obs(P )) = {BDE, DBE} can be replicated. The component ⟨r,R⟩
can be invoked only one time before, after or in parallel with ⟨t2, B⟩, otherwise there
are projected traces containing the Σ actions multiple times. If ∃σ ∈ traces(Q) such
that r

σ
→ t2, then DEB ∈ π (Σ ∪ {B},obs(Q)) but DEB ∉ π (Σ ∪ {B},obs(P )) which

implies ¬(Q ∼ P ). If ∃σ ∈ traces(Q) such that t2
σ
→ r then DBE ∉ π (Σ ∪ {B},obs(Q))

but DBE ∈ π (Σ ∪ {B},obs(P )) which implies ¬(Q ∼ P ). The last chance to simulate
P using R is placing ⟨r,R⟩ in parallel with ⟨t2, B⟩ to obtain both BDE and DBE but
in such case DEB is also possible in Q. Therefore, there is no Q having R as a
component able to simulate the observable traces of P . 2

The same proposition can be also stated for YAWL, even if in this case the
presence of variables and conditional executions make the proof more complex.

Proposition 5.3 (YAWL Decomposability). The YAWL language is not de-
composable: there exist trivial YAWL models that cannot be decomposed into
smaller parts without changing their semantics.

Proof. A YAWL model that cannot be decomposed without changing its semantics
is depicted in Fig. 5.7. Except for the use of variables, this model can be easily
mapped to the workflow net of Fig. 5.6 following this simple procedure: variables
are removed, tasks become transitions, the start place becomes a marked place
with one token, the end place becomes an halt place, every arc except for the
first and the last one is exploded into two arcs connected by a place. With such
mapping in mind, the notions of components κ ∶ W → K and equivalence relation
∼ ⊆ W×W given for WFNs can be reused for YAWL models.

Fig. 5.7. Example of a YAWL process model that cannot be decomposed.
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For every YAWL model Y ∈ Y and for every component c ∈ κ(Y ), vars(c) de-
notes the set of variables read and written by c, e.g. referring to Fig. 5.7 vars(B) =
{x, y}. For every YAWL model Y ∈ Y and a group of components S ⊆ κ(Y ),
σ(Y,S) = vars(S) ∖ vars(κ(Y ) ∖ S). Let us notice that σ(Y ) = σ(Y,κ(Y )) =
vars(κ(Y )) ∖ vars(∅). Considering the set of components S = {⟨d,D⟩, ⟨e,E⟩} se-
lected in the previous proposition, σ(P,S) = vars(S)∖vars(κ(P )∖S) = {w,x, y, z}∖
{v,w, x, y} = {z}.

Variable z is only used by D and E for communication purpose, hence it can
be considered local to them and needs to be isolated into the new component R.
Since R is stateless, E must run after D in the same invocation, otherwise the
value of the local variable z will be lost: for isolating z, the components D and
E have to be executed in the same context. Furthermore, R cannot run before B
because it needs y. As a result, no process Q based on R can have an observable
trace containing DBE like P : it follows ¬(Q ∼ P ). 2

The isolation of variables used for local communication among components is
crucial for the notion of decomposability. If it is removed, it is not difficult to find
a decomposition for P , as shown in Fig. 5.8 and Fig. 5.9.

Fig. 5.8. R can run one of the contained components depending on the passed arguments.
The conditional execution is based on the variable z.

Fig. 5.9. A decomposition Q/R or the process P in Fig. 5.7 that does not respect the
state isolation principle.
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5.6 Process Design in NestFlow

NestFlow is a novel structured graphical PML conceived to explore a particular
language design solution, in which structured control-flow constructs are tightly-
coupled with asynchronous message passing for enhancing modularity.

The language is claimed to be structured for three main reasons: firstly, control-
flow structures can only be expressed by recursively nesting blocks with a single
entry and a single exit point and every block has its own distinct representation
and meaning, i.e. the same block cannot be used for different purposes. In this way
the free-design paradigm is banned: there is no way to freely connect elements with
arcs representing control-flow relations; conversely, the design process proceeds by
nesting and moving blocks. Secondly, the structure of a model is strictly related
to the expressed logics: despite the layout can be adjusted within certain limits,
spatial relations among graphical elements are preserved. For example, the compo-
nents under a choice are always placed after the corresponding graphical element
w.r.t the control-flow orientation. Put in a different perspective, the only way to
heavily distort the layout of a model without changing its behavior is finding a very
different way to express the same logic. Humans are good in recognizing already
seen patterns: hence, preserving relations among recurring structures improves
model readability. Thirdly, threads of control are confined to specific structures to
guarantee that at most one thread is running in a given branch. As a consequence,
any concurrent execution is graphically represented by a parallel branch that in
turn can be statically declared at design-time or added and removed at run-time
using specific commands. The correlation between threads and parallel branches
becomes very useful in reasoning about the interaction of concurrent entities.

Complying with predefined structures during the design activity may seem re-
strictive but the lack of modularity and of layout rules are more serious problems
that undermines PMLs usability. The use of structured forms also improves the
overall language modularity making a block and its contained parts a good candi-
date for a decomposition. Furthermore, a structured control-flow eases the integra-
tion of AMP constructs that are essential for both modeling non-trivial processes
and creating modular reusable components. In NestFlow data-flow constructs
are promoted to first-class citizens; conversely, main-stream PMLs do not support
AMP at all or even they explicitly forbid it in expressing the logics of a single
process, as it happens for instance in YAWL [69] and BPMN [16], respectively.
The following example clarifies this different point of view about AMP.

Example 5.4. AMP is essential for enhancing modularity and unraveling complex
control-flow relations. For this purpose, message exchanges can be seen as weak
control-flow dependencies managed by specific blocks and commands that form
the main control-flow logics of a process. In the hypothetical models of Fig. 5.10,
components B and D are executed in parallel with C, while E has to wait for its
completion before starting. The decision to execute either D or E is taken only
after the completion of B. The BPMN model in Fig. 5.10.a runs into a deadlock
when the condition x ≥ 0 evaluates to true, because the thread suspended in
j2 cannot be resumed. In YAWL this situation can be corrected by defining a
cancellation region for F that includes the arc between C and E, as in Fig. 5.10.b.
In the NestFlow model of Fig. 5.10.c the constructs s and j delimits a parallel
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Fig. 5.10. The different roles of messages and threads in control-flow modeling.

block whose left branch contains a choice block between v and u. The dependency
between C and E is represented through a data-flow dependency that connects the
two parallel branches. It is a reasonable solution because a data-flow dependency
between these tasks means that E needs something produced by C for continuing.
Whenever x ≥ 0, the object sent after C is not consumed, but this condition is
perfectly acceptable and does not cause any critical fault: data can be retained for
the next execution or discarded if they become useless. 2

Let us notice that NestFlow has to be considered a proof-of-concept lan-
guage rather than a fully-fledged system ready to use: its main aim is to show
that a structured PML with the discussed features can be effectively built. In its
minimality, it cannot be compared to a multifaceted standard like BPMN or a
complete working system like YAWL, e.g. there is no direct support for compen-
sation or resource management. Nevertheless, NestFlow offers a wide range of
basic constructs and is fairly open for extensions; hence, it is unlikely that its core
constructs need to be redesigned to integrate missing features. For example, com-
pensation can be supported with a new notation and eventually implemented over
the existing exception handling mechanism. In comparison, the core constructs of
CPNs cannot be easily extended without breaking its fundamental principles that
make it an ideal language for system verification. This may explain why several
PMLs are born after CPNs, despite its unquestionable qualities.
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5.7 NestFlow Language Constructs

This section introduces both the bare and core constructs of the NestFlow mod-
eling language as well as how these constructs can be put together to form a com-
plete process model. The section begins with an overview about the constructs and
their principal compositional rules, then each one is treated in details in a separate
subsection. Core constructs are discussed in a subsequent section that shows how
they can be defined as a combination of the existing ones. This approach helps in
obtaining a concise introduction, but it is very likely that an actual implementa-
tion takes such core constructs as primitive ones. The description of a construct is
in general organized in four sections, each one discussing a particular aspect. The
representation section explains how the construct is graphically represented and
encoded in textual form. Notice that the focus remains on graphical representa-
tion, while the textual representation is given here only for sake of completeness
to show how a process can be encoded facilitating its interpretation or translation.
The syntax section discusses the grammar rules and the syntactical constraints
that state how a construct can be composed with other ones. The semantics sec-
tion describes the construct behavior, namely how it effects the model execution.
Finally, when it is present, the examples section shows some valid and invalid
models that make use of the described construct.

The concrete syntax of a textual programming language can be formally spec-
ified through a context-free grammar encoded in one of the many extensions of
the Backus-Naur-Form (BNF) meta-language [107]. In similar way, the concrete
syntax of the NestFlow bare language is summarized by the graphical BNF-like
grammar in Fig. 5.11. In such figure, the dashed rounded boxes enclosing an upper-
case letter between angled brackets denote non-terminal symbols. A non-terminal
symbol ⟨X⟩ can be replaced with any other language element shown in Fig. 5.11
provided that such element is annotated with the same symbol ⟨X⟩ and no ad-
ditional syntactical constraint forbids its nesting. In particular, a BNF grammar
rule of the form ⟨X⟩ ∶∶= X1∣ . . . ∣Xn, containing the choice operator ∣, means that
⟨X⟩ can be replaced by one block chosen among the available alternatives {Xi}

n
i=1.

With reference to Fig. 5.11, the letters P , A, B, C, D, N , T , ϕ, ψ, ξ, and v
enclosed between angled brackets denote non-terminal symbols. The initial symbol
of the grammar ⟨P ⟩ can be replaced with a new process block in which ⟨T ⟩ is its
name, ⟨A⟩ its body and ⟨D⟩ some auxiliary declarations. The logic of a process
model is stated by expanding its body with the remaining elements of Fig. 5.11
identified by the non-terminal symbols ⟨A⟩ and ⟨B⟩. An element produced from
⟨A⟩, or equivalently from ⟨B⟩, can be a terminal or a non-terminal block. The non-
terminal blocks sequence, choice, loop, parallel, concur, try or threshold may have
one or more blocks as children, while the terminal blocks skip, run, spawn, throw,
send, receive or empty cannot be further expanded. A terminal block produced
from ⟨C⟩ is called command and when it is clear from the context a non-terminal
block is simply referred as a block.

A block may have several mandatory or optional inscriptions that are identi-
fiers or conditions. An identifier is a name that uniquely identifies an object in
a given scope. Identifiers are classified in instance, type and exception identifiers
that replace the non-terminal symbols ⟨N⟩, ⟨T ⟩ and ⟨ξ⟩, respectively. The presence
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of several identifiers should not scare the reader, because many of them are used
for documentation purposes and they can usually be safely omitted. A condition
is a boolean expression free from side-effects. Every non-terminal symbols ⟨ϕ⟩ and
⟨ψ⟩ in a block is replaced by a condition that shall be at least a truth value. The
condition ⟨ψ⟩ placed at the end of a parallel block is called join condition, it is
distinguished from ⟨ϕ⟩ because it is not mandatory and is interpreted in a slightly
different way. In particular, when it is not specified, it is assumed to be false.
Finally, the non-terminal symbol ⟨v⟩ is the identifier of a positive integer variable.

Fig. 5.11. The NestFlow core constructs and its basic syntax.

Fig. 5.12. The NestFlow
link construct.

A model can be oriented left to right or top to
bottom. The preferred orientation depends only on
the available space and the end-user preferences. An
actual implementation should support both orienta-
tions making easy to change from one to the other.

The last NestFlow construct is the link exem-
plified in Fig. 5.12. It is represented as a dashed straight or curved line with an
open arrow at one end. The form of a link may vary in length, position and number
of straight segments. A link may also orthogonally cross several control-flow lines.
A link can connect run, send, or receive commands, and its ends are annotated with
an identifier, as it will be explained in the following sections.
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5.7.1 Basic Elements

The NestFlow definition preserves many aspects of the underlying implementa-
tion language, that in this case is Java [108] due to the authors’ preference. For
example, NestFlow does not introduce a specific notion of exception, it simply
grabs the usual class hierarchy of Java exceptions as a starting point. This choice is
largely justified by the nature of NestFlow which does not aim to be a standard
or fully-fledged system, but try to explore a different PML design solution. After
all, it is a common practice in PML design to support certain aspects with one
or more existing languages, e.g. the CPNs language takes Standard ML [65] as in-
scription language, while YAWL adopts XML [109] and XQuery [110] for defining
and manipulating data. The drawback of this approach, at least for readers, is the
need to known an additional language that at first glance can be seen arbitrar-
ily chosen by the authors. Anyway, this allows one to produce a more compact
specification that is also more easier to read.

Java is a widely used general-purpose programming language that falls under
the C/C++ [111] language family, at least for its syntax. It can be classified as
an imperative, object oriented, memory-managed, strongly-typed language. Java
semantics can be learnt from its standard specification [108] and other related
documents. Moreover, several research projects in literature deal with the formal-
ization of its semantics, an interested reader can take the work in [112–114] as
reference point.

Keywords

The following strings are reserved keywords in NestFlow: hence, they cannot be
used as identifiers. Most of them are introduced for encoding graphical elements
in textual form. Certain keywords are directly taken from Java, and for avoiding
confusion all Java keywords are also reserved.

this in out throws var true false
unbound extends process branch do sequence choice
when otherwise loop until continue try catch
parallel join when threshold of concurrent otherwise
spawn as in throw send to and
receive from or after empty run end

Identifiers

An identifier is a non-reserved keyword that starts with a letter or an underscore
“ ” followed by an optional finite sequence of letters, digits and underscores. An ac-
tual implementation can use the same identifiers of the underlying implementation
language.

Types

A type is a label associated to a language entity in order to uniquely identify its
features, e.g. its interface, structure or behavior. A type shall be a valid identifier:
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by convention it begins with a capital letter in order to be easily recognized, as
happens in Java. An element x of type T is denoted as x ∶ T , where x and T are
both valid identifiers. Introducing a specific type system is out the scope of this
specification: when necessary the Java type system is taken as reference model.

Variables

In NestFlow a variable is a name given to a storage location. Every variable has
a fixed type. A variable x of type T is declared using the following syntax:

var x:T ; const x:T ;

where x is a valid identifier and T an existing type. A variable that never changes
its value is said to be constant and is declared using the keyword const. Constant
initialization can be deferred, as happens in Java with “final”, by supporting a
single assignment semantics.

When a variable stores an object, it is said to be bound, otherwise it is unbound.
A variable can be initialized using a value c of the right type through the syntax
var x:T ← c. The specification does not restrict the type of available objects but
it often refers to Java immutable objects [108] which include primitive types in
wrapped form, such as Integer and String.

The scope of a variable can be statically determined from its declaration. In
first analysis, it coincides with a process specification: a variable has to be unique
in a process specification and its visibility does not extend outside this boundary.
This rule requires to declare all variables at the beginning of a process, but it can
be relaxed by allowing variables to be declared inside a block: in this case the
variable scope is restricted to the block itself.

Streams

A stream is a special element representing an unlimited queue of objects of a
predefined type that is used for modeling the flow of objects needed and produced
by a process. A stream can be an input stream or an output stream : objects can
be received from an input stream and sent to an output stream. Any stream is
uniquely identified in its scope. A stream is declared like a variable but with the
keywords in and out that also determine its orientation.

in s:T ; out s:T ;

By convention, input stream and output stream identifiers end with the suffixes
In and Out, respectively. Greek letters with or without subscripts are used as
generic identifiers for streams, e.g. αin can be used as shorthand for alphaIn.

Expressions

In NestFlow a process may be a manual activity directly performed by a human
agent, or it may be implemented using a native pre-existing language. As a result,
any computable function can be ideally implemented through a native process,
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hence fine-grained operations on data can be initially excluded from the bare
language specification. In particular, any recursive function f ∶ A → B can be
implemented as a native process F having at least an input stream αin for receiving
the arguments and an output stream βout for producing results. In case of simple
expressions the process name is replaced by the expression itself that should be read
as there exists a native process implementing the specified computation, provided
that such computation is feasible.

Conditions

A condition is a boolean expression over a set of declared variables. During the
execution of a process, a condition is evaluated considering the current value as-
sociated to each involved variable. The evaluation result can be true or false. The
specification does not limit the kind of conditions that can be expressed but it is
supposed that such expressions are free from side-effects; i.e., conditions do not
update variables. Java boolean expressions free from side-effects can be taken as
representatives of valid conditions. For example, (s.length() > 1 && 2*z < 23) is a
valid condition assuming that both s and z are bounded variables of type String
and Integer, respectively. For convenience, mathematical notation is also adopted
to express conditions in a more compact way, hence the previous expression be-
come (∣s∣ > 1∧2 ⋅z < 23). A generic condition is denoted as ϕ(x̄) where x̄ is the set
of involved variables expressed as a comma separated list of elements; for instance,
(∣s∣ > 1∧2 ⋅z < 23) can be replaced by the generic condition ϕ(s, z) where x̄ = {s, z}
emphasized the involved variables.

Exception

An exception in NestFlow is simply an object of a predefined type that inherits
from a basic exception type. By convention, exception types end with the suffix
Exception in order to distinguish them from common types. The usual Java class
hierarchy of exceptions can be used in NestFlow.

5.7.2 Process Model

In NestFlow a process model, or simply a process when it is clear from the
context, is an executable specification defined combining existing processes with
the introduced language constructs. A process model has a unique identifier that
is also used as a type to declare new process instances. A process instance is a
run-time entity that complies with a particular process model. In analogy with
object-oriented programming languages, a process is similar to the notion of class
and a process instance is the equivalent of an object.

A process model implements at least a process interface. A process instance
uses its interface to interact with other instances or with external components
through the run-time support. The interface of a process T is given by a set of
streams and a set of exceptions that may be raised during its execution. The set
of streams is referred to as the stream interface of T and it is partitioned in input
streams and output streams. When a process instance t ∶T needs for an object a ∶A
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to proceed, it declares in its interface an input stream αin of type A. In similar
way, if a task t may produce an object b ∶ B relevant for other components, it
declares an output stream βout of type B.

Representation – A process model is depicted as in Fig. 5.13.a: the start and end
points are marked with a ellipse containing a triangle and a square symbol, respec-
tively. Two straight solid lines ending with an arrow connect these two symbols
with the process body ⟨A⟩. A process model is surrounded by two main inscrip-
tions ⟨T ⟩ and ⟨D⟩: the former is the process identifier followed by colon, the latter
is the process interface declaration containing names and types of input streams,
output streams and raised exceptions as shown in Fig. 5.13.b. 2

process ⟨T ⟩:
⟨D⟩
⟨A⟩

end process ⟨T ⟩;

⟨D⟩ ∶∶=
in ⟨N⟩:⟨T ⟩; ⟨D⟩
∣ out ⟨N⟩:⟨T ⟩; ⟨D⟩
∣ throws ⟨T ⟩; ⟨D⟩
∣ ε

(a) (b)

Fig. 5.13. (a) A process model declaration, where ⟨T ⟩ is the process identifier, ⟨A⟩ the
body of the process and ⟨D⟩ is the interface and variable declaration. (b) The textual
encoding of a process model declaration.

Syntax – Any combination of blocks and commands can be used to implement the
body of a process. An instance of T can refer to one of its own interface stream
α through the dot notation this.α, where this is a language keyword. Similarly,
a stream α of an invoked process instance u ∶ U is referred to as u.α, where u
is the instance identifier and α one of its stream. The dot-notation ensures that
all streams in a process specification are uniquely identified and this can be left
implicit. Any exception not catched by the process logic shall be declared in the
process interface hence it can be managed by the caller. 2

Semantics – A process can be native or composite depending on how it is im-
plemented. A native process is an extension point implemented with a general-
purpose programming language. A native process directly interacts with external
agents who can be users or other systems; for instance, it can offer a user-interface
to support external activities performed by the end-user or it can implement an
adapter to drive external programs. A composite process is graphically built with
the language constructs described in these sections, invoking instances of previ-
ously defined processes that in turn can be native or composite. When a process
is instantiated there is no difference between native and composite specifications
because the interaction occurs through the declared process interfaces. Put in a
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different perspective, a process instance can always be considered an atomic entity
decoupled from its actual implementation.

The complete state of a process instance t ∶T is mainly given by the state of
its streams, its variables and the process instances contained in it. In NestFlow
a process instance is stateful because it retains its state over multiple executions.
Any new instance starts from an initial state, which may be modified by sequential
executions of the process logic. A stateful component can simulate a stateless
component by resetting itself to the initial state at every invocation. 2

5.7.3 Control-Flow Blocks and Commands

This section introduces all NestFlow bare constructs used to specify the control-
flow logic of a process. The interpretation of a control-flow construct includes the
evaluation of zero or more conditions: hence, the emerging behavior is affected by
the current state of the process instance. On the contrary, these constructs cannot
update variables, because conditions are supposed to be boolean expressions free
from side-effects.

Excluding the simpler sequence block, almost all non-terminal blocks share
a common graphical style made of two diamond shapes, enclosing a predefined
symbol, connected by one or more branches as exemplified in Fig. 5.14.a. The
two diamonds I and F represent the initial entry and the final exit point of the
control-flow, respectively, while each branch represents a different internal control-
flow ramification containing further blocks and commands. Symbols I and F are
replaced in each specific block by a particular icon. Branches can have different
directions depending on the specific block. The direction is denoted by small solid
arrows; when a branch has no particular direction, because it is only used for
delimiting the block, it ends with a small bullet. This last kind of branch becomes
useful for correctly matching the start and end diamonds of nested blocks. A block
can also have an optional identifier ⟨N⟩: this may become useful for documentation
purposes. A block identifier shall be placed near to the first diamond, but the exact
position is not relevant.

block ⟨N⟩:
branch b1 do
⟨A⟩

branch b2 do
⟨B⟩

end block ⟨N⟩;

(a)
(b)

Fig. 5.14. (a) The prototype of a multi-branch non-terminal block. (b) How it can be
encoded in textual form.
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As happen for the graphical representation, blocks have a similar textual en-
coding that is exemplified in Fig. 5.14.b. The encoding starts with the block name
followed by a block identifier ⟨N⟩ and a colon, then the content of each branch is
reported, and finally the encoding ends with the keyword end followed by the block
name, its identifier ⟨N⟩, and a semicolon. Different keywords are used to delimit
branches depending on the block type. Both identifiers ⟨N⟩ placed at the begin-
ning and at the end of each block definition can be omitted, but when they are
present, they have to be exactly the same. The block name after the end keyword
is also optional but useful for documentation purposes.

Sequence Block

Representation – A sequence block is represented without delimiting diamonds by
a solid arrow between two arbitrary blocks, as shown in Fig. 5.15.a; the connecting
line has a minimum length but it can be stretched whenever necessary to touch
the internal components. This may happen when the construct is used in different
branches of the same block. The encoding of a sequence block starts with the
keyword sequence followed by an optional identifier ⟨N⟩ and a mandatory colon,
and terminates with the keyword end followed by the optional identifier ⟨N⟩ and
a mandatory semicolon. 2

sequence ⟨N⟩:
⟨A⟩
⟨B⟩

end sequence ⟨N⟩;

(a)
(b)

Fig. 5.15. (a) A sequence is represented by solid line between two blocks ending with
an arrow. (b) The encoding of a sequence block.

Syntax – A sequence block can be used in any part of the model to chain two blocks
or commands. A chain of blocks of arbitrary length can be obtained by nesting
two or more sequence blocks. For sake of simplicity, a sequence block cannot be
the first component of another sequence block, hence a chain of sequence blocks
can only be obtained expanding the ⟨B⟩ non-terminal symbol. 2

Semantics – A sequence block executes the specified components one after the
other. In particular no construct can be executed in the second part if the first
one is not completed. 2

Choice Block

Representation – The choice block is marked with two diamonds enclosing a ques-
tion mark, as shown in Fig. 5.16.a. The first branch is annotated with a condition
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⟨ϕ⟩, while the second branch is the default one and is marked with an oblique seg-
ment. The desired branch order is left to right in a vertical arrangement, and top
to bottom in an horizontal one. The order can be reversed if needed considering
that the default branch is always marked.

The encoding of a choice block starts with the keyword choice followed by an
optional identifier ⟨N⟩ and a mandatory colon, and terminates with the keyword
end followed by an optional choice keyword, an identifier ⟨N⟩ and a mandatory
semicolon. Inside this encoding, the declaration of the first branch starts with the
keyword when followed by the condition and the do keyword, while the declaration
of the second branch starts with the keyword otherwise. 2

choice ⟨N⟩:
when ⟨ϕ⟩ do
⟨A⟩

otherwise
⟨B⟩

end choice ⟨N⟩;

(a)
(b)

Fig. 5.16. (a) A choice block with two branches: the default one is marked with an
oblique segment. (b) The encoding of a choice block.

Syntax – A choice block can be used in any part of the model, and each branch
can contain any type of block or command. The condition in the first branch is
mandatory, as well as the marking of the default branch. 2

Semantics – A choice evaluates the condition ⟨ϕ⟩ associated to the first branch,
if it is satisfied the corresponding branch is executed, otherwise the default one is
chosen. Its semantics resembles the usual if-then-else construct of a general-purpose
programming language. The name choice has been used instead of if because it is
more consistent with its generalized version supporting multiple branches. 2

Loop Block

Representation – The loop block is marked with two diamonds enclosing a semi-
circle with an arrow at one end, as depicted in Fig. 5.17.a. The block contains a
forward branch ⟨A⟩, and a backward branch ⟨B⟩, the latter annotated with a loop
condition ⟨ϕ⟩. The forward branch is aligned with the diamond symbols, while the
backward branch is preferably putted on the right, but this is not mandatory.

The encoding of a loop block starts with the keyword loop followed by an op-
tional identifier ⟨N⟩ and a mandatory colon; while it terminates with the keyword
end followed by the an optional loop keyword, an identifier ⟨N⟩ and a mandatory
semicolon. Inside this encoding the specification of the two branches is separated
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loop ⟨N⟩:
⟨A⟩
until ⟨ϕ⟩ continue
⟨B⟩

end loop ⟨N⟩;

(a)
(b)

Fig. 5.17. (a) A loop block contains two branches, the second one is executed after the
first one only if the condition ⟨ϕ⟩ evaluates to true. (b) The encoding of a loop block.

by the condition declaration, which is enclosed between keywords until and con-
tinue. 2

Syntax – A loop block can be used in any part of the model, and each branch can
contain any type of block or command. The specification of the loop condition on
the backward branch is mandatory. 2

Semantics – A loop block executes the content of ⟨A⟩ at least one time, then it
executes ⟨B⟩ followed by ⟨A⟩ zero or more times depending on the evaluation of
the condition ⟨ϕ⟩. 2

Example – A repeat-until loop can be obtained by replacing ⟨B⟩ with a skip com-
mand, as in Fig. 5.18.b, where the skip arrow is fused with the loop backward
arrow to form a unique arrow connecting the exit point with the entry one. Simi-
larly, a while-do loop can be obtained by substituting ⟨A⟩ with a skip command,
as depicted in Fig. 5.18.b. 2

Fig. 5.18. A while-do loop in NestFlow.
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Try-Catch Block

Representation – The try block is enclosed between two diamonds containing a
thunderbolt symbol, as shown in Fig. 5.19.a. This block has two branches, the
default one is aligned with the diamonds and annotated with a solid oblique seg-
ment, while the other one is preferably placed on the right and annotated with an
exception identifier ⟨ξ⟩. The exception branch can be positioned on the left if this
increases the overall model readability.

The encoding of a try block starts with the keyword try followed by an optional
identifier ⟨N⟩ and a mandatory colon, and it ends with the keyword end followed
by an optional try keyword, an identifier ⟨N⟩ and a mandatory semicolon. Inside
this encoding the specification of the two branches is separated by the exception
declaration, which is contained between the keywords catch and do. 2

try ⟨N⟩:
⟨A⟩
catch ⟨ξ⟩ do
⟨B⟩

end try ⟨N⟩;

(a)
(b)

Fig. 5.19. (a) A try block with two branches: the first one is marked with an oblique
segment and represents the default execution, while the second one is annotated with an
exception identifier ⟨ξ⟩. (b) The encoding of a try block.

Syntax – A try block can be used in any part of the model, and each branch can
contain any type of block or command. The exception identifier on the second
branch is mandatory. 2

Semantics – A try block executes the first branch ⟨A⟩ and if an exception of type
⟨ξ⟩ is raised inside it, the execution is interrupted and resumed from the other
branch ⟨B⟩. Exceptions may be raised by blocks, process instances, or an explicit
throw command inside the branch ⟨A⟩. When an exception of the specified type
is raised, all blocks containing it are recursively reverted until a proper try block
is reached. If no try block can manage the given exception, the entire process is
reverted and the exception propagated to the caller, similarly to what happens in
modern programming languages like Java [108]. 2

Parallel Block

Representation – A parallel block is graphically enclosed within two diamonds
containing two parallel segments, as shown in Fig. 5.20.a. These two diamonds
identify the entry and the exit point of the block. The exit point can be annotated
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with an optional join condition ⟨ψ⟩. The block has two branches that can be
marked with a unique identifier ⟨N⟩. These identifiers can be useful in advanced
exception handling.

The encoding of a parallel block starts with the keyword parallel followed by an
optional identifier ⟨N⟩ and a mandatory colon, and it finishes with the keyword
end followed by the optional parallel keyword, an identifier ⟨N⟩ and a mandatory
semicolon. Inside this encoding the declaration of each branch is preceded by the
keyword branch enriched with the optional branch identifier ⟨N⟩ and followed by
a do. When necessary, the join condition ⟨ψ⟩ is specified using the keyword join
when followed by a semicolon. 2

parallel ⟨N⟩:
branch ⟨N⟩ do
⟨A⟩

branch ⟨N⟩ do
⟨B⟩

join when ⟨ψ⟩;
end parallel ⟨N⟩;

(a)
(b)

Fig. 5.20. (a) A parallel block with two branches and an optional join condition ⟨ψ⟩ at
the end. (b) The encoding of a parallel block.

Syntax – A parallel block can be used in any part of the model, and each branch can
contain any kind of block or command. The partial join condition is optional. Par-
allel branches cannot share variables, they can communicate only through message
passing. 2

Semantics – A parallel block executes the two specified branches in parallel each
one with its own thread of control. The condition ⟨ψ⟩ at the end of the parallel
block can be used to define a generalized partial join. This condition is evaluated
whenever possible on the available variables every time a parallel branch termi-
nates. A variable x used in ⟨ψ⟩ is available if it is not involved in a running parallel
branch, otherwise it is considered unknown and so the part of ⟨ψ⟩ concerning x.
When ⟨ψ⟩ is true, the remaining running branches are cancelled by raising an in-
terrupting exception. In any case, a parallel block is left if and only if all threads
have been completed or reverted. Parallel branches cannot share variables, but
they can communicate through message passing. This constraint can be relaxed
for read-only variables: if a variable is used only as a right value in assignments,
it can be safely accessed in a shared way. 2
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Threshold Block

Representation – A threshold block is graphically depicted within two diamonds
marked with a double T symbol, resembling the initials letters of the words thread
threshold, and a variable v representing the maximum number of threads that can
execute concurrently inside the block, as depicted in Fig. 5.21.a. This block has
only one body ⟨A⟩ and the two diamonds are connected with a line terminating
with a solid bullet. This line is used to mark the block scope and is particularly
useful for determining the correct nesting of several threshold blocks when they
are used in sequence or one inside the other .

The encoding of a threshold block starts with the keyword threshold followed
by an optional identifier, the keyword of, the number of available threads ⟨v⟩ and
a colon, and it ends with the keyword end, followed by the optional block name,
an identifier ⟨N⟩, and a mandatory semicolon. 2

threshold ⟨N⟩ of ⟨v⟩:
⟨A⟩

end threshold ⟨N⟩;

(a)
(b)

Fig. 5.21. (a) A threshold block denoting the maximum number of threads tha can
concurrently run inside its body. (b) The encoding of a threshold block.

Syntax – A threshold block can be placed in any part of the model and its body
can contain any kind of block or command. The identifier ⟨v⟩ has to refer to a
variable containing a positive integer. 2

Semantics – A threshold block limits to v the number of threads that can execute
concurrently inside its body. The number of existing threads remains the same
and corresponds to the number of declared parallel branches, but if the number n
of existing threads is greater than v, n − v threads will be suspended until one of
the first v threads has completed its execution or it enters into a waiting state. 2

Concurrent Block

Representation – A concur block is graphically enclosed within two diamond sym-
bols containing a triangle aligned with a vertical bar, as depicted in Fig. 5.22.a.
The block has one solid branch ⟨A⟩ representing the default execution, and one or
more dashed branches representing dynamic parallel branches, that may be cre-
ated at run-time with a spawn command inside its body. A dashed branch will be
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concurrent ⟨N⟩:
⟨A⟩

end concurrent ⟨N⟩;

(a)
(b)

Fig. 5.22. (a) A concur block with a main branch ⟨A⟩ and a dashed branch representing
where to place a dynamically created branch. (b) The encoding of a concur block.

dynamically created for each spawned process instance and removed when such
instance terminates.

The encoding of a concur block starts with the keyword concurrent followed by
an optional identifier and a mandatory colon, and it ends with the keyword end
followed by the optional block name, an identifier, and a mandatory semicolon. 2

Syntax – A concur block can be used in any part of the model and its solid branch
can contain any kind of block or command. Its body has to contain at least a
spawn command referring to it, that can potentially create a new process instance
at run-time when executed. 2

Semantics – A concur block is the scope of a spawn command and its behavior
does not differ substantially from a parallel block. It initially executes ⟨A⟩ but one
or more parallel branches can be added at run-time using a spawn command; all
threads join before exiting the block. A spawn/concur pair provides a graphical
representation of dynamically created instances based on run-time model varia-
tion. PMLs usually do not offer any representation of this dynamic behavior and
concurrent instances are often left implicit. 2

Skip

Fig. 5.23. A
skip command.

Representation – A skip command is graphically represented as
a simple solid arrow of variable length. When the skip arrow
connects two control-flow lines, they can be merged into a unique
line with a single arrow. The encoding of a skip command is
simply the keyword skip followed by a semicolon. When it is
clear that a branch is empty, it can be omitted. 2

Syntax – A skip can be used in any part of the model without
limitation. 2

Semantics – A skip command does not produce any effect. It is is
useful for obtaining specific control-flow structures from generic ones; for instance,
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the usual repeat-until and while-do loops can be obtained replacing the first or
the second branch of a loop block with a skip, respectively. 2

Run

Representation – A run command has no special symbol, it is graphically denoted
as in Fig. 5.24.a with a rounded box containing the process name and its type
in the usual notation ⟨N⟩ ∶ ⟨T ⟩. The instance identifier ⟨N⟩ can be omitted and
used only when strictly necessary or for documentation purposes. The encoding
of a run command starts with the keyword run followed by the type identifier ⟨T ⟩,
the optional keyword as, the instance identifier ⟨N⟩ and a mandatory colon. It
terminates with the keyword end, followed by the optional keyword run, the in-
stance identifier and a mandatory semicolon. Inside this encoding the mappings
between the input streams of the current process instance and the output streams
of another process instance are given using the keyword require, while the map-
pings for the output streams begin with the keyword offer. Each input mapping
is composed of the stream identifier, the keyword from and the output stream of
another process specified using the dot notation. The output stream mappings are
given in a similar way using the keyword to in place of the from one. 2

run ⟨T ⟩ as ⟨N⟩
require ⟨N⟩ from ⟨N⟩.⟨N⟩

(, ⟨N⟩ from ⟨N⟩.⟨N⟩)*
offer ⟨N⟩ to ⟨N⟩.⟨N⟩

(, ⟨N⟩ from ⟨N⟩.⟨N⟩)*
end run ⟨N⟩;

(a)
(b)

Fig. 5.24. (a) A run command regarding a process instance with identifier ⟨N⟩ and
type ⟨T ⟩. (b) The encoding of a run command.

Syntax – There is no limit in the use of a run command, but the invocation of a
particular process instance can occur only in one place of a process specification.
This restriction can be relaxed but has positive effects in process visualization. 2

Semantics – A run command executes a process instance, synchronously suspend-
ing the current thread of control until the instance is completed or reverted by an
internal exception. Exceptions can be caused by internal or external signals. 2

Spawn

Representation – A spawn command is graphically represented with a rounded box
containing the same symbol of the concur block and the type ⟨T ⟩ of the process
to be instantiated.

The encoding of spawn command starts with the keyword spawn followed by
the process type ⟨T ⟩, the keyword as together with the expression ⟨e⟩ indicating



5.7 NestFlow Language Constructs 151

where to store the new process instance identifier, the optional keyword in followed
by a concur block identifier ⟨N⟩ and a mandatory semicolon. When the keyword
in is omitted, the new process instance is added to the innermost concur block. 2

spawn ⟨T ⟩ as ⟨e⟩ in ⟨N⟩;

(a)
(b)

Fig. 5.25. (a) The spawn command creates a new process instance of type T returning a
new identifier that can be stored into a variable. (b) The encoding of a spawn command.

Syntax – A spawn command can be executed only inside concur block. It the block
identifier ⟨N⟩ is present, the spawn command should be enclosed in a concur block
having such identifier. For sake of simplicity, the expression ⟨e⟩ can be only a
variable name or an array location. 2

Semantics – A spawn command creates a new process instance of the specified
type. Such instance is immediately executed into a new parallel branch dynamically
added to the inner concur block containing the command, or to the concur block
annotated with the specified identifier ⟨N⟩, provided that the spawn command
is contained in its body. A spawn command returns a unique process instance
identifier that can be used for communication purposes.

The idea behind the concur/spawn pair is to give an explicit representation of
dynamically created instances; in process visualization, the explicit representation
is obtained by expanding and shrinking concur blocks at run-time. In unstructured
modeling languages with token-based semantics, the creation of new task instances
is usually implicit and it is hard to find a satisfactory run-time representation. 2

Throw

Representation – A throw command is graphically depicted as in Fig. 5.26.a with a
rounded box containing a thunderbolt symbol followed by an exception identifier
⟨ξ⟩. A throw command inside a parallel block raising an InterruptException can
also be annotated with a list of branch identifiers {⟨N⟩ . . . ⟨N⟩} specifying which
threads will be interrupted, as in Fig. 5.26.b. Alternatively, the form ¬{⟨N⟩} can
be used to specify that the exception will be raised for all branches of the parallel
block except for the one with the given identifiers.

The command encoding starts with the keyword throw followed by the excep-
tion identifier ⟨ξ⟩, the optional specification of parallel branches preceded by the
keyword in, and a mandatory semicolon.
Syntax – A throw command can be used only inside a proper try block or inside a
process that declares to raise the corresponding exception in its interface. 2

Semantics – A throw command raises an exception of the specified type, recursively
reverting all blocks that contain it until a proper try block is reached. If no try
block is able to handle the exception, it is re-thrown outside the process instance
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throw ⟨ξ⟩ in {⟨N⟩ . . . ⟨N⟩};

(a) (b)
(c)

Fig. 5.26. (a) A throw command which raises an exception of type ⟨ξ⟩. (b) The extended
version of the throw command where X is a set of parallel branch identifiers. (c) The
encoding of a throw command.

which enters into a failure state. An unhandled exception exits from all nested
process instances and it is handled by the run-time support, causing an abnormal
termination. A throw command inside a parallel block annotated with one or more
branch identifiers and raising an InterruptException will affect only the specified
branches, while the other ones normally continue their execution if possible. 2

Send

Representation – A send command is graphically represented with a rounded box
containing an instance identifer and the S symbol separated by a colon. The in-
stance identifier is optional and when it is not specified, also the colon is omitted.
This notation mostly resembles the one used for a run command, because a send
can be actually considered a special atomic process instance of type S.

The encoding of a send command starts with the keyword send followed by
an optional instance identifier and a mandatory colon, and it terminates with the
keyword end followed by the optional send keyword, an identifier and a mandatory
semicolon. Inside this block a mapping between variables and stream identifiers is
provided. In particular, the mapping starts with the variable identifier followed by
the keyword to and a stream identifier. The stream identifier has the form ⟨N⟩.⟨S⟩
where ⟨N⟩ is a process instance identifier and ⟨S⟩ is the identifier of a stream
belonging to the specified process instance. 2

send ⟨N⟩:
⟨N⟩ to ⟨N⟩.⟨S⟩
(and ⟨N⟩ to ⟨N⟩.⟨S⟩)*

end send ⟨N⟩;

(a)
(b)

Fig. 5.27. (a) A send command is graphically represented as a rounded box containing
the S symbol. (b) The encoding of a send command.

Syntax – A send can be used in any part of the model without limitation. The
involved streams have to be connected with a link annotated with the given vari-
able. A send command can only store the value of a variable into an output stream
w.r.t. the current process instance, which in turn can be an interface output or
input stream of an invoked process instance. 2
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Semantics – A send command inserts the value of one or more variables into one
or more corresponding streams. The sending is asynchronous and the execution
continues with the next block without waiting. 2

Receive

Representation – A receive command is graphically represented as in Fig. 5.28.a
with a rounded box containing an instance identifier and an R symbol separated
by a colon. The instance identifier ⟨N⟩ is optional and when it is omitted, the colon
is also omitted. Similarly to the send, the graphical representation of a receive is a
rounded box containing the R symbol.

The encoding of a receive command starts with the keyword receive followed
by the optional instance identifier and a mandatory colon. It terminates with
the keyword end followed by the optional receive keyword, an instance identifier
and a mandatory semicolon. Inside this block one or more mappings between
a variable and a stream identifier are provided separated by the or keyword. In
particular, the mapping reports the variable identifier ⟨N⟩, followed by the keyword
from and the stream identifier ⟨S⟩ related to the corresponding process identifier
⟨N⟩ through the dot notation. If more than one mapping is specified, they are
connected with the keyword or. The timeout associated to a receive command is
encoded by specifying the keyword after followed by the timeout duration ⟨θ⟩ and
the keyword do, then the encoding of the corresponding throw command with
a TimeoutException is reported, followed by the keyword end and a mandatory
semicolon. 2

receive ⟨N⟩:
⟨N⟩ from ⟨N⟩.⟨S⟩
(or ⟨N⟩ from ⟨N⟩.⟨S⟩)*
after ⟨θ⟩ do

throw ⟨ξ⟩
end;

end receive ⟨N⟩;

(a)
(b)

Fig. 5.28. (a) A receive command is graphically represented as a rounded box containing
the R symbol. (b) The encoding of a receive command.

Syntax – A receive command can be used in any part of the model without restric-
tions. The involved streams have to be connected with a link annotated with the
given variable. A receive command can only put into a variable the value contained
in an input stream w.r.t. the current process instance, which in turn can be an
interface input or output stream of an invoked process instance. 2

Semantics – A receive stores into one variable an object extracted from one of
the available input streams. The receive temporally suspends the current thread of
control until an object arrives or a timeout θ raises an exception. A multiple receive
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stores the first arrived object from a stream αi
in into the corresponding variable

xi, resets the others to unbound and continues the execution: this behavior will
be called or-receive. 2

Empty

Representation – An empty command is represented with a rounded box containing
the E symbol followed by a stream identifier ⟨N⟩, as in Fig. 5.29.a. The stream
identifier can be specified starting from a process instance identifier using the dot
notation. The encoding of a empty command is simply composed of the keyword
empty followed by the stream identifier and a semicolon. 2

empty ⟨N⟩.⟨S⟩;

(a)
(b)

Fig. 5.29. (a) A empty command related to a stream ⟨N⟩. (b) The encoding of a empty
command emphasizing the dot notation for streams.

Syntax – An empty command can be used in any part of the model. It is only
required that the specified stream identifier exists and refers to an input stream
for the current process. 2

Semantics – The empty command removes all the objects stored in a stream. If
the stream is already empty, it does not wait. 2

Links

The flow of objects among tasks is represented through links graphically denoted
with dashed arrows, as in Fig. 5.30. Links can be distinguished in external and
internal links depicted in Fig. 5.30.a and Fig. 5.30.b, respectively. Links are anno-
tated with stream and variable identifies depending on the source and destination
component. In particular, links on send and receive commands are annotated with
variable identifiers, while links on process instances are annotated with stream
identifiers. The different combinations are given in Fig. 5.30.

Fig. 5.30. Different combinations of link notations. (a) Connections between internal
instances in the same process specification. (b) Notation used for external streams.
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5.8 NestFlow Core Constructs

Fig. 5.31. Generic sequence block
of n components.

In this section the NestFlow bare language is
enriched with a new set of constructs that are
not essential for improving language expressive-
ness but very useful for obtaining more com-
pact specifications. These new constructs can
be easily encoded as a combination of the ex-
isting ones reducing formalization efforts. How-
ever, the resulting core language is a better
starting point for an actual implementation,
because bare constructs are over simplified for
such purpose.

The NestFlow core constructs with their
mapping semantics are summarized from
Fig. 5.31 to Fig. 5.39, where n ∈ N∖{1} and for
every i ∈ [1, n], ⟨Ai⟩ and ⟨Bi⟩ are non-terminal
symbols and ⟨Bi⟩ = ⟨Ai⟩ when i = n. Many core language constructs are a general-
ization of the existing ones obtained by nesting multiple times the same structure.
By convention, the nesting is always performed on the last branch or component
of a block, unless otherwise specified, and ⟨Ni⟩ = ⟨N⟩ if i = 1, or ε otherwise.

Fig. 5.32. Generic choice block with n guarded branches.

Fig. 5.33. While-loop structure with a con-
dition on the forward branch.

A generic sequence block of n com-
ponents can be obtained by nesting
n−1 basic sequence blocks, as shown in
Fig. 5.31. A generic choice block with n
guarded branches is obtained in similar
way by nesting n−1 basic choice blocks,
as depicted in Fig. 5.32. This construc-
tion makes clear in which order the
conditions are evaluated. A while-loop
structure can be obtained using a loop
block and a skip command, as depicted
in Fig. 5.33.b; for not placing both the
condition and the body in the back-
ward branch, this construction is re-
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laxed as shown in Fig. 5.33.a, where the right branch has no direction because
it is used for exiting the loop when the condition is false and for performing an-
other iteration. A generic try block with n branches able to manage n − 1 not
necessarily distinct exceptions can be obtained by nesting n − 1 basic try blocks,
as illustrated in Fig. 5.34. The folding is performed on the default branch, hence

Fig. 5.34. Generic try block capturing n distinct exceptions.

exceptions are evaluated from the nearest to the farthest, namely from left to right
or top to bottom depending on the model orientation. Let us notice that excep-
tions raised in a catch branch can be in turn catched by the remaining branches.
A generic parallel block of n parallel branches follows the same construction logic
repeating the basic parallel block n − 1 times, as in Fig. 5.35.

Fig. 5.35. Generic parallel block with n branches.

Fig. 5.36. Alternative representation of a
concur block with a dashed branch for each
spawned process type.

The concur block can be made
more compact by stacking process in-
stances having the same type, as done
in Fig. 5.36, in such way there is at
most a parallel branch for each pro-
cess type spawned inside its scope. A
small counter xi near each stack can
be added to visualize the actual num-
ber of active instances in the branch. A
block implementing a structured syn-
chronized merge [29] of n branches can
be obtained adding a basic choice block
to each branch of a generic parallel
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block, where the condition ⟨ϕn⟩ of the
last choice becomes ⟨ϕn⟩ = ⋀

n−1
i=1 ¬⟨ϕi⟩ for implementing the default branch.

Fig. 5.37 shows how to obtain a structured synchronizing merge block starting
from basic constructs.

Fig. 5.37. A new block implementing a structured synchronized merge depicted with a
different symbol.

Fig. 5.38. An and-receive command.

A sequence of receive commands
can be grouped into a unique receive
called and-receive which waits for an
object from each connected stream
before proceeding. An and-receive is
depicted as in Fig. 5.38 by adding
a small circled ∧ symbol to the de-
fault receive representation. AMP is
the only abstraction available in Nest-
Flow bare language to exchange data
with the environment and the internal
process instances. This mechanism has
been adopted for its simplicity and ex-
pressiveness: it can be used to model
the communication between concur-
rent entities and it can easily simulate
parameter passing in a sequential context. Parameter passing in the NestFlow
core language is denoted as in the process instance t ∶T on the left of Fig. 5.39.a,
where input variables x̄ = ⟨x⟩ni=1 are annotated on the side touched by the incoming
arc while output variables ȳ = ⟨y⟩ni=1 are annotated on the opposite one. Assuming
that input and output streams are ordered in some way, e.g. taking the declara-
tion order, each input argument and each return value can be mapped to a stream
having a compatible type.

The translation in terms of basic send and receive commands is exemplified in
Fig. 5.39.b, where the superscripts of input streams ⟨αi

in⟩
n
i=1 and output streams

⟨βj
in⟩

m
j=1 are used to emphasize the order among streams.
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Fig. 5.39. Implementation of parameter passing mechanism using AMP.

Data-flow constructs can be decorated with icons in order to adapt the language
to a particular application domain; e.g., they can be depicted as in Fig. 5.40.

Fig. 5.40. Decoration of data-flow constructs with icons resembling messages.

♢
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5.9 NestFlow Formal Semantics

This section formalizes the NestFlow bare language: initially the mathematical
structures needed to represent a process model are introduced; then the most im-
portant well-formedness properties are discussed, showing how they can be stat-
ically checked. These properties determine what is a valid model. Finally, the
section specifies how valid models are interpreted.

NestFlow core constructs are defined in terms of basic ones; hence, they do
not need a wide treatment. Core constructs can be described by introducing new
mathematical structures and a translation function towards the bare language.
Alternatively, the formal semantics of the core constructs can be directly given
making the verification of well-formedness properties and the definition of the
interpreter a slightly more complex. In both cases, core construct formalization
does not add very new information.

5.9.1 NestFlow Formal Syntax

This section defines the mathematical structures needed to formally represent a
process model starting from some basic definitions. In the following, valid identi-
fiers are considered grouped into three disjoint sets I,T ,X ⊆ U , such that I are
variable and instance identifiers, T contains the identifiers used for types, while X
contains the types used for exceptions. It is assumed that the symbol ς does not
belong to I ∪ T ∪ X because it is used to compactly denote the current process
instance. No other information or constraint about their definition is given here,
since they are considered implementation details. By convention the symbol t ∈ I
is commonly used for denoting a generic instance identifier, T ∈ T a generic type,
ξ ∈ X a generic exception, while S, R ∈ T are special symbols used for specifying
the type of a send and a receive command, respectively.

A variable carries a type with it, hence it should be generally understood as
a pair ⟨t, T ⟩ made of an identifier t ∈ I and a type T ∈ T . The set of all variables
is denoted as V ⊆ I×T , while functions id ∶ V → I and type ∶ V → T are used to
recover the two components. When it is clear from the context, the symbol used
to denote a variable v ∈ V is also used in place of the identifier id(v), and when
the type T of a variable v is relevant for the discussion, the notation v ∶T is used
to declare its type. Similarly to what done for variables, the set of all streams
with their type are denoted as S ⊆ I ×T , while the set of all components with
their type are denoted as K ⊆ I×T . Streams and components can be understood
as special variables since they are placed in the store, but for convenience it is
assumed S ∩ V = ∅ and K ∩ V = ∅.

Expressions and conditions are considered implementation-dependent. The set
of all expressions is denoted by E , while the set of all conditions is denoted by
B ⊆ E . Variables that occur in a given expression can be collected using the function
vars ∶ E → ℘(V). In the following, an expression is usually denoted through the
symbol e, while ϕ and ψ are used to denote conditions.

A sequence of elements ⟨xi⟩
n
i=1 will be often denoted by a symbol resembling

the content with a bar on the top, e.g. v̄ ≜ ⟨vi⟩
n
i=1 for a sequence of variables, or

ϕ̄ ≜ ⟨ϕi⟩
n
i=1 for denoting a sequence of conditions.
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As a result of the imposed syntactical rules, any process model expressed in
NestFlow can be seen as a tree of control-flow elements in which internal nodes
are non-terminal blocks and leafs are commands. Therefore, no one should be
surprised that the most natural data structure for checking and interpreting a
process model is an Abstract Syntax Tree (AST) [107]: an AST captures the
essential data of the model elements and the relations among them, discarding
all those aspects that are not relevant from the semantic perspective. Every AST
node has a specific type and structure: node types are summarized in Tab. 5.1
together with a brief description. For convenience, symbol Tn is used to denote
the set containing all node types summarized in Tab. 5.1. The node structure is
nothing more than a tuple ⟨xi⟩ni=1 whose attributes are determined by the first one
that corresponds to a note type, i.e. x1 ∈ T .

Definition 5.5 (Process Fragment). An AST node is a tuple containing at
least a node type in the first position, followed by zero or more attributes. The
type and position of each attribute depends on the initial node type. The set of
all process fragments obtained assembling these AST nodes is denoted by N and
recursively defined as follows:

∀x ∈ U x ∈ N ▵⇐⇒ ∃a, b ∈ N (5.3)

( ∃T ∈ T ∃ᾱ, β̄ ∈ S∗ ∃ξ̄ ∈ X ∗ ∃ι ∶ T → N x = ⟨PROC, T , ι, ᾱ, β̄, ξ̄, a⟩ ) ∨

( ∃v̄ ∈ V∗ ∃ē ∈ E∗ x = ⟨LET, v̄, ē, a⟩ ∧ ∣v̄∣ = ∣ē∣ ) ∨

( ∃t ∈ I x = ⟨SEQ, t, a, b⟩ ) ∨

( ∃t ∈ I ∃ϕ ∈ B x = ⟨CHOICE, t, ϕ, a, b⟩ ) ∨

( ∃t ∈ I ∃ϕ ∈ B x = ⟨LOOP, t, ϕ, a, b⟩ ) ∨

( ∃t ∈ I ∃ξ ∈ X x = ⟨TRY, t, ξ, a, b⟩ ) ∨

( ∃t ∈ I ∃ψ ∈ B x = ⟨PAR, t, u,w,ψ, a, b⟩ ) ∨

( ∃t ∈ I ∃v ∈ V x = ⟨THRES, t, v, a⟩ ) ∨

( ∃t ∈ I x = ⟨CONCUR, t, a⟩ ) ∨

( x = ⟨SKIP⟩ ) ∨

( ∃t ∈ I T ∈ T ∃r̄, ō ⊆ K×S×K×S x = ⟨RUN, t, T , r̄, ō⟩ ) ∨

( ∃e ∈ E ∃T ∈ T ∃s ∈ I x = ⟨SPAWN, e, T , s⟩ ) ∨

( ∃ξ ∈ X ∃t̄ ∈ I∗ x = ⟨THROW, ξ, t̄⟩ ) ∨

( ∃t ∈ I ∃v̄, β̄ ∈ S∗ x = ⟨SEND, t, v̄, β̄⟩ ∧ ∣v̄∣ = ∣β̄∣ ) ∨

( ∃t ∈ I ∃v̄, ᾱ ∈ S∗ ∃θ ∈ V x = ⟨RECEIVE, t, v̄, ᾱ, θ⟩ ∧ ∣v̄∣ = ∣ᾱ∣ ) ∨

( ∃α ∈ S x = ⟨EMPTY, α⟩ )

where the name of the contained nodes a, b ∈ N are consistent with the non-
terminal symbols ⟨A⟩ and ⟨B⟩ found in the grammar of Fig. 5.11 in Sec. 5.7, in
particular a is the first encountered non-terminal symbol in the control-flow. 2

In the PROC node definition symbols ᾱ, β̄, and ξ̄ denote the set of input streams,
output streams and raised exceptions, respectively. Such sets are represented as
sequences of elements to preserve their relative order. Conversely, the function
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Table 5.1. AST node types and their meaning.

Type Meaning Type Meaning Type Meaning

PROC process SEQ sequence block SKIP skip command

CHOICE choice block RUN run command

LET variables LOOP loop block SPAWN spawn command

declaration TRY try-catch block THROW throw command

PAR parallel block SEND send command

THRES threshold block RECEIVE receive command

CONCUR concurrent block EMPTY empty command

ι ∶ T → N identifies the declared import associated to a given type. Similarly, in the
definition of the LET node, sequence v̄ represents the set of process variables, while
sequence ē is the set of initialization expressions, one for each variable. For sake
of simplicity, it is assumed that an initialization expression in e ∈ ē is a constant
or null value; hence, it cannot contain other variables. In the remaining node
definitions, symbol t denotes the unique identifier associated to a non-terminal
block or a command. Notice that an identifier is associated also to the SEQ node
even if it is not graphically represented in the grammar. The join condition ψ of
a PAR node is optional and can be represented by the empty sequence ε. The RUN

node definition contains the tuples ō ⊆ K×S ×K×S and r̄ ⊆ K×S ×K×S which
identify the input and output stream mappings, respectively. Each input mapping
contains the process instance identifier, the identifer of its involved input stream,
the identifier of another process instance, and the identifier of an output stream
of this last one. Each output mapping is defined in a similar way. In the definition
of the SPAWN node, the expression e is a simple expression used to denote a storing
location for the identifier of the dynamically generated instance. The symbol T
denotes the type of the spawned process, while the last identifier s is used to
specify the target concur scope when necessary. The definition of the THROW node
contains a sequence of identifiers t̄ that can be optionally used for specifying a
set of parallel branches on which the exception is thrown. In the SEND and RECEIVE

nodes sequence v̄ denotes a set of variables, while β̄ and ᾱ are streams. Clearly, the
number of specified variables and streams has to be the same. Finally, the value
of variable θ in the RECEIVE node denotes a timeout after which the command is
interrupted. The EMPTY node has a single parameter representing the name of an
existing stream whose content has to be discarded.

Some useful functions can be defined on process fragments. In particular, the
type of the root node is captured by the function type ∶ N → Tn, which returns
the first element of the tuple, namely for each x = ⟨ai⟩

n
i=1 ∈ N , type(x) = a1. The

function children ∶ N → N ∗ defined in Eq. 5.4 returns the list of child nodes if the
argument is non-terminal block, the empty sequence otherwise.
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children ∶ N → N ∗ is (5.4)

∀x ∈ N children(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨y, z⟩ if ∃y, z ∈ N

x = ⟨SEQ, , y, z⟩ ∨

x = ⟨CHOICE, , , y, z⟩ ∨

x = ⟨LOOP, , , y, z⟩ ∨

x = ⟨TRY, , , y, z⟩ ∨

x = ⟨PAR, , , y, z⟩

⟨y⟩ if ∃y ∈ N

x = ⟨PROC, , , , , y⟩ ∨

x = ⟨LET, , , y⟩ ∨

x = ⟨THRES, , , y⟩ ∨

x = ⟨CONCUR, , y, ⟩

ε otherwise

Recalling from the background, the elision symbol “ ”, used to match the node
structure, means that there exists an element u ∈ U in the given position that does
not need to be mentioned, e.g. x = ⟨SEQ, , y, z⟩ means ∃u ∈ U x = ⟨SEQ, u, y, z⟩
where u does not appear in the enclosing expression.

For those elements with only one child, the partial function body ∶ N ⇀ N can
be used to obtain it, i.e. ∀x, y ∈ N body(x) = y ▵⇐⇒ children(x) = ⟨y⟩. Function
nodes ∶ N → ℘(N) returns the set of all nodes that belong to the specified root. It
can be recursively defined as follows:

nodes ∶ N → ℘(N) is (5.5)

∀x, y ∈ N y ∈ nodes(x) ▵⇐⇒ y = x ∨ ∃z ∈ nodes(x) y ∈ children(z)

Sometimes the children of a non-terminal block are referred through the partial
functions first ∶ N ⇀ N and last ∶ N ⇀ N . More specifically, for each x ∈ N
such that children(x) = ⟨yi⟩

k
i=1, the function first(x) = y1 and last(x) = yk if k ≥ 1,

undefined otherwise. Whenever the node x ∈ N has a single body, first(x) = last(x).
The function id ∶ N ⇀ I defined in Eq. 5.6 returns the identifier assigned to

a non-terminal block or command. When such identifier exists, it is placed just
after the node type, hence the access function can be given as in Eq. 5.6, where
L = {SEQ, CHOICE, LOOP, TRY, PAR, THRES, CONCUR, RUN, SEND, RECEIVE} is simply the set
containing all node types having an identifier.

id ∶ N ⇀ I is (5.6)

∀x ∈ N id(x) =
⎧⎪⎪
⎨
⎪⎪⎩

a2 if ∃⟨ai⟩
n
i=1 ∈ U x = ⟨ai⟩

n
i=1 ∧ n > 1 ∧ a1 ∈ L

↑ otherwise

The static components of a process are all those process instances invoked
with a run, receive, or send command. The function components ∶ N → ℘(K), also
denoted as κ ∶ N → ℘(K), returns the set of identifiers representing the static
components of a process fragment.
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components ∶ N → ℘(K) is (5.7)

∀x ∈ N ∀t ∈ I ∀T ∈ T ⟨t, T ⟩ ∈ κ(x) ▵⇐⇒

∃y ∈ nodes(x) y = ⟨RUN, t, T , r̄, ō⟩ ∨

(y = ⟨SEND, t, v̄, β̄⟩ ∧ T = S) ∨

(y = ⟨RECEIVE, t, v̄, ᾱ, θ⟩ ∧ T = R)

Using this definition the set of process components π ∶ N → ℘(K) can be
derived as follows: ∀x ∈ N π(x) = {y ∈ κ(x) ∣ type(y) ∉ {S, R}}.

Definition 5.6 (Referred Variables). The set of variables used inside a process
fragment can be computed by the recursive function vars ∶ N → ℘(V) defined as:

vars ∶ N → ℘(V) is ∀x ∈ N (5.8)

vars(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vars(body(x)) if type(x) ∈ {PROC, LET, CONCUR}

vars(y) ∪ vars(z) if type(x) ∈ {SEQ, TRY} ∧

∧ ∃y, z ∈ N ⟨y, z⟩ = children(x)

vars(ϕ) ∪ if ∃y, z ∈ N ∃ϕ ∈ B

vars(y) ∪ vars(z) ( x = ⟨CHOICE, , ϕ, y, z⟩ ∨

x = ⟨LOOP, , ϕ, y, z⟩ ∨

x = ⟨PAR, , ϕ, y, z⟩ )

{v} ∪ vars(y) if ∃y ∈ N ∃v ∈ V n = ⟨THRES, , v, y⟩

vars(e) if ∃e ∈ E x = ⟨SPAWN, e, , ⟩

set(v̄) if ∃v̄ ∈ V∗ x = ⟨SEND, , v̄, ⟩

set(v̄) ∪ {θ} if ∃v̄ ∈ V∗ ∃v ∈ V x = ⟨RECEIVE, , v̄, , θ⟩

∅ otherwise

2

Referenced variables should not be confused with the declared ones. The func-
tion declared-vars ∶ N → ℘(V) returns the variables declared in a process fragment:

declared-vars ∶ N → ℘(V) is (5.9)

∀x ∈ N ∀V ⊆ V declared-vars(x) = V ▵⇐⇒

∃v̄ ∈ V∗ ∃ē ∈ E∗ ∃y ∈ N x = ⟨LET, v̄, ē, y⟩ ∧ V = set(v̄)

A process model can be defined as a tree having a root of type PROC. However,
for sake of simplicity, it is also required that all variables are declared at the
beginning of a process. This is not a big limitation because any model can be
transformed into an equivalent one with all variables declared at the beginning by
renaming those variables contained in a different scope having the same name.

Definition 5.7 (Process Model). The set of process models Nest ⊆ N is given
by all process fragments having a unique PROC root followed by a unique LET node.

∀x ∈ N x ∈ Nest ▵⇐⇒ (5.10)

type(x) = PROC ∧

∃y ∈ N y = body(x) ∧ type(y) = LET ∧

∀z ∈ nodes(body(y)) type(z) ∉ {PROC, LET}
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2

The interface of a process x ∈ Nest can be characterized by three similar func-
tions pin ∶ Nest → S∗, pout ∶ Nest → S∗, and pex ∶ Nest → X ∗ returning the declared
list of input streams, output streams, and exceptions, respectively. For example,
pin ∶ Nest → S∗ can be defined as ∀x ∈ Nest ∀ᾱ ∈ S∗ pin(x) = ᾱ ▵⇐⇒ x =
⟨PROC, , , ᾱ, , , ⟩.

The model of a process instance depends on the set of imported definitions. The
function model ∶ Nest×T → Nest returns the model of the specified type imported
in the given one. It is formally defined as follows:

model ∶ Nest×T → Nest is (5.11)

∀x, y ∈ Nest ∀T ∈ T model(x,T ) = y ▵⇐⇒

x = ⟨PROC, , ι, , , , ⟩ ∧ ι(T ) = y.

Example 5.8. The process model P depicted in Fig. 5.41 is a structured NestFlow
representation of the model in Fig. 5.2. The two cycles synchronize each other at
every iteration through message passing, and the two loop conditions are evaluated
on distinct variable sets, avoiding race conditions.

Fig. 5.41. A structured NestFlow process model.

Fig. 5.42 illustrates the AST of the given model: for each node, the left branch
always contains the unfolding of the a children, and symmetrically the right branch
contains the unfolding of the b children.

In the PROC node, the input streams, output streams and raised exceptions are
denoted by the empty string ε because no one of them is declared by the process,
while the ι function is represented by an empty set. The variables written by E
and F are captured by a subsequent RECEIVE node not explicitly represented in the
model of Fig. 5.41. Finally, the ω symbol in each RECEIVE node denotes that no
timeout is defined for them. 2



5.9 NestFlow Formal Semantics 165

⟨PROC,P,∅, ε, ε, ε, a⟩

⟨LET, ⟨v1 ∶ Int, v2 ∶ Int,w1 ∶ Int,w2 ∶ Int⟩, ⟨0,0,0,0⟩, a⟩

⟨PAR, j1, ε, a, b⟩

⟨SEQ, t1, a, b⟩

⟨LOOP, j2, ϕ(v1, v2), a, b⟩

⟨SEQ, t2, a, b⟩

⟨RUN, a,A, ε, ε⟩

⟨RUN,b,B, ε, ε⟩

⟨PAR, j4, ε, a, b⟩

⟨RUN, c,C, ε, ε⟩ ⟨SEQ, t3, a, b⟩

⟨SEQ, t4, a, b⟩

⟨RUN, e,E, ε, ε⟩

⟨RECEIVE, r3, ⟨v1⟩, ⟨e.αout⟩, ω⟩

⟨SEND, s1, ⟨v1⟩, ⟨r2.w1⟩⟩

⟨SEQ, t5, a, b⟩

⟨RECEIVE, r1, ⟨v2⟩, ⟨s2.w2⟩, ω⟩

⟨RUN,d,D, ε, ε⟩

⟨RUN, i, I, ε, ε⟩

⟨SEQ, t6, a, b⟩

⟨LOOP, j3, ϕ(w1,w2), a, b⟩

⟨SEQ, t7, a, b⟩

⟨RUN,h,H, ε, ε⟩⟨RUN,g,G, ε, ε⟩

⟨SEQ, t8, a, b⟩

⟨SEQ, t9, a, b⟩

⟨RECEIVE, r2, ⟨w1⟩, ⟨s1.v1⟩, ω⟩

⟨RUN, f,F, ε, ε⟩

⟨RECEIVE, r4, ⟨w2⟩, ⟨f.αout⟩, ω⟩

⟨SEQ, t10, a, b⟩

⟨SEND, s2, ⟨w2⟩, ⟨r1.v2⟩⟩

⟨SKIP⟩

⟨RUN, l,L, ε, ε⟩

Fig. 5.42. The AST of the model in Fig. 5.41.

5.9.2 Well-Formedness Properties

Well-formedness properties are additional properties stated for discerning valid
process models from those that are clearly erroneous from a syntactical point of
view. These properties concern the behavior of a process model, but they can
be statically checked without executing it. Therefore, they guarantee the absence
of certain run-time errors that may be hard to prove otherwise. For example, a
well-formedness property can state that a model is valid only if all used variables
are declared in advance and visible in the scope in which they are referenced:
vars(x) ⊆ declared-vars(x) for all valid x ∈ Nest .
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A type system is the primary example of well-formedness: if types in a model
are coherent, then many faulty states cannot be reached when it is executed. This
section introduces some important well-formedness properties of NestFlow that
can be considered unusual with respect to other languages. In particular, two main
properties have to be enforced in a NestFlow model: every process instance can
be invoked in only one place in the model and no variable can be shared among
parallel branches. These properties are formalized by the following definitions that
also show how they can be computed.

Definition 5.9 (One Place per Process Instance). A process x ∈ Nest is valid
only if every task instance t ∶T in x has a unique identifier t ∈ I and is executed
in only one place. Such property can be captured by the uniqueness ∶ Nest → B
predicate defined as follows:

uniqueness(x) ▵⇐⇒ ∀c ∈ occurrences(x) μ(c) = 1 (5.12)

where the function occurrences ∶ N → M, also denoted as δ ∶ N → M, computes
the set of static occurrences that appear in a process x ∈ Nest . The set of static
occurrences is a multiset containing the pairs ⟨t, i⟩, made of an instance identifier
t ∈ I and a number i ∈ N counting how many times t appears in the model.

occurrences ∶ N →M is (5.13)

∀x ∈ N

δ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(body(x)) if type(x) ∈ {PROC, LET, THRES, CONCUR}

δ(y) ∪ δ(z) if type(x) ∈ {SEQ, CHOICE, LOOP, TRY, PAR} ∧

∧ ∃y, z ∈ N ⟨y, z⟩ = children(x)

multiset(id(x)) if type(x) ∈ {RUN, SEND, RECEIVE}

∅ otherwise

2

When uniqueness(x) holds for a process model x ∈ Nest , there is a unique
correspondence between occurrences and process instances. This property guaran-
tees that there are no concurrent executions of the same component which may
leave the process in an inconsistent state. It can be relaxed allowing sequential
invocations of the same process instance, but taken as is, it also ensures a unique
graphical representation of senders and receivers, i.e. it is always clear where are
source and target of a link.

Definition 5.10 (No Shared Variables). A process model x ∈ Nest is valid only
if its parallel branches do not share variables. Such property is captured by the
predicate isolation ∶ N → B, also denoted by η ∶ N → B, that is true when no
variable is used in two different places inside distinct parallel branches.
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isolation ∶ N → B is (5.14)

∀x ∈ N

η(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(body(x)) if type(x) ∈ {PROC, LET, THRES, CONCUR}

η(y) ∧ η(z) if type(x) ∈ {SEQ, CHOICE, LOOP, TRY} ∧

∧ ∃y, z ∈ N ⟨y, z⟩ = children(x)

(vars(y) ∩ vars(z) = ∅) ∧ if type(x) = PAR ∧

∧ η(y) ∧ η(z) ∧ ∃y, z ∈ N ⟨y, z⟩ = children(x)

T otherwise

2

This property prunes away race conditions or non-deterministic behaviors
caused by the exact timing of events that are not completely under the designer’s
control. This rule can be relaxed for those variables that are not concurrently up-
dated, i.e. they do not appear as left-values in assignments performed by parallel
branches. In the bare language this can be realized by checking where objects are
stored in a receive command, since this is the only place in which variables are
updated.

5.9.3 Data-flow Subsumption

AMP is the only abstraction offered by the bare language to exchange data among
processes. As previously discussed, this is reasonable in a minimal language be-
cause AMP can simulate other mechanisms, like parameter passing. This section
discusses how the links in a model can be substantially reduced to improve read-
ability. The focus is only on static relations among tasks, namely relations that
can be explicitly represented through the grammar constructs. Dynamic relations
are also important, but they are not treated here because in the bare language
they lack of a graphical representation.

Definition 5.11 (Control-flow Relation). The function static control-flow re-
lation cf ∶ N → ℘(K×K) returns for each process fragment x ∈ N the pairs of its
internal task instances ⟨i, j⟩ ∈ κ(x)×κ(x) between which a control-flow relation ex-
ists. It is defined as follows using two auxiliary functions ρ(x) = {⟨a, a⟩ ∣ a ∈ κ(x)}
and γ(y, z) = {⟨a, b⟩ ∣ a ∈ κ(y)∧ b ∈ κ(z)} as follows:

cf ∶ N → ℘(K×K) is (5.15)

∀x ∈ N

cf(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cf(body(x)) if type(x) ∈ {PROC, LET, THRES, CONCUR}
cf(y) ∪ cf(z) if type(x) ∈ {CHOICE, TRY, PAR} ∧

∧ ∃y, z ∈ N ⟨y, z⟩ = children(x)
cf(y) ∪ cf(z) ∪ τ(y, z) if type(x) = SEQ ∧

∧ ∃y, z ∈ N ⟨y, z⟩ = children(x)
cf(y) ∪ cf(z) ∪ ρ(y) ∪ ρ(z) ∪ if type(x) = LOOP ∧
∪ γ(y, z) ∪ γ(z, y) ∧ ∃y, z ∈ N ⟨y, z⟩ = children(x)

∅ otherwise
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2

When x ∈ Nest is clear from the context, the notation y → z can be used in
place of ⟨y, z⟩ ∈ cf(x), which stands for y executes before z. Let us notice that t→ t
is not a contradiction, it simply means that an execution of an instance t can be
followed by another execution of the same instance.

Definition 5.12 (Internal Streams and Links). The set of internal static input
streams available in a process model x ∈ Nest is given by the union of its interface
input streams with the output streams of its static components. The set of internal
static output streams is defined in similar way. They can be respectively denoted
using the following functions lin ∶ Nest → ℘(I×S) and lout ∶ Nest → ℘(I×S):

lin ∶ Nest → ℘(I×S) is (5.16)

∀x ∈ Nest

lin(x) = {⟨ς, α⟩ ∣ α ∈ pin(x)} ⋃
⟨t,T ⟩∈κ(x)

{⟨t, β⟩ ∣ β ∈ pout(model(x,T ))}

lout ∶ Nest → ℘(I×S) is (5.17)

∀x ∈ Nest

lout(x) = {⟨ς, α⟩ ∣ α ∈ pout(x)} ⋃
⟨t,T ⟩∈κ(x)

{⟨t, β⟩ ∣ β ∈ pin(model(x,T ))}

2

The dot notation t.α is used to denote a pair ⟨t, α⟩ that belongs to the internal
streams lin(x) or lout(x) of a process x ∈ Nest , where the special symbol ς stands
for the optional keyword this.

A static data-flow relation df(x) ⊆ lin(x)×lout(x) on a process model x ∈ Nest
can be used for representing links between internal streams: an implementation
may use this static relation and its dynamic counterpart for routing objects among
streams. Two streams α ∶A and β ∶B can be connected by a link ⟨α,β⟩ ∈ df(x)
only if A and B are two compatible types. For sake of simplicity, in the following
it is assumed that the two streams have the same type T = A = B. Whenever the

model x ∈ Nest is clear from the context, the notation α
T⇢ β can be used in place

of ⟨α,β⟩ ∈ df(x), where T is the common type of α and β, or simply α ⇢ β if the
type is not relevant for the discussion.

The use of AMP for representing all data-flow dependencies in a model can
soon become verbose. However, NestFlow allows one to hide links and their
related commands anywhere they can be subsumed by the control-flow. When
stream identifiers are not relevant, links with the same source and target can be
grouped into a unique dashed arrow, called collapsed link. During the design of a
task, loopback external links and outgoing external links can be safely ignored, but
in general incoming external links are important, because they denote an external
resource needed to continue the execution. In order to determine the relevance of
the internal links of a model x ∈ Nest , the static control-flow relation cf(x) can be
compared with the coarse-grained data-flow relation gf(x) defined below.
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Definition 5.13 (Coarse-grained data-flow relation). The coarse-grained da-
ta-flow relation gf ∶ Nest → K×K is a function that returns the pairs of components
⟨y, z⟩ ⊆ κ(x)×κ(x) among which a collapsed link exists.

gf ∶ Nest → K×K is (5.18)

∀x ∈ Nest

gf(x) = {⟨y, z⟩ ∣ y, z ∈ κ(x) ∧ ∃β ∈ pout(y)

∃α ∈ pin(z) ⟨y.β, z.α⟩ ∈ df(x)}

2

Given a model x ∈ Nest , any pair ⟨y, z⟩ ∈ gf(x) can also be denoted as y ⇢ z
using the same dashed arrow adopted for streams, but now applied to components.

Given a model x ∈ Nest , the relation gf(x) contains only collapsed links and
excludes all external links because ς ∉ κ(x). The relation y ⇢ z means that y may
send one or more objects to z through some underlying streams. The relation gf(x)
is a good approximation of df(x), because collapsed links share the same source
and destination of the subsumed links.

For determining the relevance of a data-flow relation ⟨y, z⟩ ∈ gf(x), it is com-
pared with the existing control-flow relations between y and z. In particular, four
cases can be distinguished:

1. y → z ∧¬(z → y): the relation y ⇢ z matches the control-flow path and can be
subsumed without loosing critical information.

2. y → z∧z → y: the situation is the same as the previous point but inside a loop,
hence the relation y ⇢ z can be safely subsumed.

3. ¬(y → z) ∧ z → y: there is a potential error because z may have no chance
to use the object received from y. The model may be correct if z is a state-
ful component that does not require the object sent by y during one of its
executions.

4. ¬(y → z) ∧ ¬(z → y): relation y ⇢ z is essential for describing task dependen-
cies among parallel branches and has to be explicitly specified in the model.
Actually, this last case can also occur with links between branches of other
constructs like choice or try blocks, but these branches are executed in mutual
exclusion and they can communicate through shared variables; in such case
explicit links can be omitted.

Following these considerations, data-flow relations explicitly represented in a model
can be substantially reduced to those that are relevant for control-flow design, while
the other ones can be hidden for increasing readability. The remaining links mostly
describe interactions among concurrent entities. Moreover, data-flow relations that
are in contrast with the control-flow structure can be used for highlighting possible
errors but a further analysis is required in presence of composite tasks.

This gives an idea on how links can be minimized for not cluttering the diagram.
An actual implementation can introduce further abstractions for exchange data
among components, like parameter passing. Nevertheless, AMP remains the right
abstraction for describing the interaction of concurrent entities.
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5.9.4 NestFlow Interpreter

The procedure given from Lis. 5.1 to Lis. 5.8 contains the main steps of an in-
terpreter for the NestFlow bare language. The overall interpreter architecture
is not complex, considering the features offered by the language: it is made of a
scheduler that selects which thread to activate, and a decoder that matches and
executes each single instruction producing the desired effects.

The interpreter uses two simple data structures: stack and queue, which are
defined as usual. The set of all stacks is denoted as Stack, while the set of all queues
is denoted as Queue. The operations on those data structures have the usual name,
e.g. top ∶ Stack → U returns the first element of a stack, pop ∶ Stack → Stack removes
the first stack element, and push ∶ Stack×U → Stack adds an element on the top of
the current stack. Similarly, head ∶ Queue → U returns the head of a queue, while
tail ∶ Queue → Queue returns its tail, and enqueue ∶ Queue × U → Queue enqueues
an object to the current queue.

Each thread of control has its own stack handled as a continuation containing
the instructions to be executed. Variables and streams are managed through a
data structure, called store, that relates such entities with their current state.
A snapshot of the store can be represented through function σ ∶ V ∪ S ⇀ U that
associates to each variable or stream its pointed object. Certain instructions update
the store content and its representation has to change accordingly. The set of all
store functions σ ∶ V ∪S ⇀ U is denoted by Σ. How the store is managed and what
it contains are considered implementation details and so not treated here.

In the following it is assumed the existence of the function eval ∶ Σ×E → U
which evaluates a given expression using the current store content. Furthermore,
the function update-store ∶ Σ×V×E → Σ is used to emphasize the store update and
is defined as follows, where σ(x) ↓ stands for ∃y σ(x) = y:

update-store ∶ Σ×V×E → Σ is (5.19)

∀σ, δ ∈ Σ ∀v ∈ V ∀e ∈ E update-store(σ, v, e) = δ ▵⇐⇒

∀x ∈ U δ(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

σ(x) if x ≠ v ∧ σ(x) ↓

eval(σ, e) if x = v

↑ otherwise

A process context is a tuple ⟨id, p, σ, s̄, ⟨g, l⟩⟩ such that id ∈ I is a unique iden-
tifier for the context, p ∈ Nest is a process model, σ ∈ Σ is the current state of the
store, s̄ ∈ Queue is a queue of labelled stacks, i.e. pairs ⟨i, s⟩ ∈ I ×Stack where i
is a stack identifier and s is a stack, and the pair ⟨g, l⟩ ∈ I×N is used to manage
the effects of a threshold block. More specifically, a complete management of the
threshold block requires to consider the concept of work-list, such that any time
the end-user selects one of the tasks subject to the threshold, the other ones can
be suspended until its completion. The following interpreter contains only the in-
structions for creating the group of contexts associated to the same threshold. The
set of all pairs ⟨g, l⟩ ∈ I ×N used for defining threshold groups is denoted by H,
while the set of all process contexts is denoted by Cxt ≜ I×Nest×Σ×Queue×H. The
context of a process is created by the function context ∶ I×Nest×H → Cxt such that
∀id ∈ I ∀x ∈ Nest ∀⟨g, l⟩ ∈ H context(id, x, g, l) = ⟨id, x,∅, ε, ⟨g, l⟩⟩.
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Listing 5.1 NestFlow interpreter (1/8): initialization and main process nodes.

input: A process model p ∈ Nest to be interpreted.

NestFlow-Interpreter(p)

1 q ← enqueue(ε, context(ε, p, ε, ω));
2 while ¬ halt(find(q, ε)) do
3 q ← update-streams(q);
4 ⟨cn, p, σ, s̄, ⟨g, l⟩⟩ ← head(q);
5 q ← tail(q);
6 if limited(g, l) then
7 q ← enqueue(q, ⟨cn, p, σ, s̄, ⟨g, l⟩⟩);
8 continue
9 end if

10 z̄ ← ε;
11 while ¬ is-empty(s̄) do
12 ⟨d, h⟩ ← head(s̄);
13 s̄← tail(s̄);
14 inst ← top(h);
15 h← pop(h);
16 match inst with
17 item ⟨PROC, T , ι, ᾱ, β̄, ξ̄, a⟩ do
18 for each γ ∈ ᾱ ∪ β̄ do
19 σ ← update-store(σ, γ, ε);
20 end for
21 h← push(h, ⟨HALT, ε⟩);
22 h← push(h, a);
23 z̄ ← enqueue(z̄, ⟨d, h⟩);
24 item ⟨HALT, t⟩ do
25 h← push(h, inst);
26 z̄ ← enqueue(z̄, ⟨d, h⟩);
27 item ⟨LET, v̄, ē, a⟩ do
28 let v̄ = {vi}

n
i=1 , ē = {ej}

m
j=1 ;

29 for i← 1 to n do
30 σ ← update-store(σ, vi, eval(σ, ei));
31 end for
32 h← push(h, a);
33 z̄ ← enqueue(z̄, ⟨d, h⟩);

...continue...

The initial part of the interpreter receives in input a NestFlow process model
p to be interpreted, then it creates a new process context for p using an empty
store and an empty queue of stacks. This context is added to the queue q of process
contexts. The procedure iterates through the created process contexts offering the
chance to execute an instruction to each contained thread. The procedure continues
by considering a process model p ∈ Nest , a store σ ∈ Σ, a list of threads of control
s̄ ∈ Stack∗, and a queue q ∈ Cxt∗ with the remaining process contexts. The tuple
⟨cn, p, σ, s̄, ⟨g, l⟩⟩ represents the current process context. The procedure iterates



172 5 Towards Structured Process Modeling Languages

through the list of stacks s̄ in order to execute their content an instruction at a
time. The main steps of the procedure can be summarized as follows:

1 Initialization of the main context related to the process p. The identifier of
the main context is ε, while the threshold group is represented by the pair
⟨ε,ω⟩, where ω stands for an unlimited number of concurrent executions.

2-228 Main loop of the procedure: the procedure iterates for each context con-
tained in the queue q, until the main context has something to do. The
function find ∶ Queue×I → Cxt returns the context with the specified identi-
fier in the given queue, while the function halt ∶ Cxt → B returns true if the
context has only one stack and this one contains only an HALT instruction.

3-10 At each iteration of the main loop, the connected streams in the various
contexts are synchronized each other through the function update-streams ∶
Cxt∗ → Cxt∗, then the first context in q is retrieved and removed from the
queue. If this context cannot be processed due to a thread threshold limit l
associated to its group g, it is enqueued again and the interpreter considers
the next available context. The function limited ∶ I ×N → B returns true
if the specified group of contexts has reached the given thread threshold,
false otherwise. If the context is not limited, it can be processed and a new
queue z̄ is initialized for storing its updated stacks.

11-226 The inner loop considers all the stacks associated to the given context and
execute the first instruction contained in each of them.

12-15 The first available stack h together with its identifier d are extracted and
removed from the queue s̄, then its first instruction inst is retrieved from h.

16-225 The extracted instruction inst is matched with the available ones in order
to determine what operations have to be done.

17-23 If the current instruction inst is a ⟨PROC, T , ι, ᾱ, β̄, ξ̄, a⟩ node some data
structures have to be initialized. In particular, the declared input and out-
put streams are created in the store σ as empty lists ε, then an HALT in-
struction is pushed on the current stack h, followed by the node body a.
Each HALT instruction contains a reference to the parent stack, which in this
case is ε. Finally, the stack h is added to the queue z̄.

24-26 When an HALT instruction is reached, the stack can be considered empty.
The interpreter simply pushes again the same HALT instruction on the cur-
rent stack h, and adds h to the updated stack queue z̄.

27-33 If inst is a ⟨LET, v̄, ē, a⟩ node, the specified variables v̄ are stored in σ and
initialized with the value of the corresponding expression in ē. Finally, the
body a is pushed on the current stack h and this one is added to the updated
stack queue z̄.

34-37 In case the current instruction inst is a ⟨SEQ, t, a, b⟩ node, its two children
a and b are pushed in the current stack h using an order such that a is
extracted before b, then the current stack is added to the queue z̄.

38-44 When inst is a ⟨CHOICE, t, ϕ, a, b⟩ node, the condition ϕ is firstly evaluated,
then if its value is true child a is pushed on the current stack h, otherwise
child b is pushed on h. Finally, h is enqueued to z̄.

45-48 If the current instruction inst is a ⟨LOOP, t, ϕ, a, b⟩ child a has to be executed,
followed by the evaluation of the condition ϕ, and eventually the execution
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of the other children b together with another loop iteration. More specifi-
cally, first of all a new CHOICE node is pushed on the current stack h with the
same condition ϕ, the first child is a sequence composed of the other child
b and the loop itself, while the second child is a ⟨SKIP⟩ node. Subsequently,
child a is also pushed on h, and finally this stack is added to the queue z̄.

Listing 5.2 NestFlow interpreter (2/8): classical sequential instructions.

...continue...
34 item ⟨SEQ, t, a, b⟩ do
35 h← push(h, b);
36 h← push(h, a);
37 z̄ ← enqueue(z̄, ⟨d, h⟩);
38 item ⟨CHOICE, t, ϕ, a, b⟩ do
39 if eval(σ,ϕ) then
40 h← push(h, a);
41 else
42 h← push(h, b);
43 end if
44 z̄ ← enqueue(z̄, ⟨d, h⟩);
45 item ⟨LOOP, t, ϕ, a, b⟩ do
46 h← push(h, ⟨CHOICE, ε, ϕ, ⟨SEQ, ε, b, inst⟩, ⟨SKIP⟩⟩);
47 h← push(h, a);
48 z̄ ← enqueue(z̄, ⟨d, h⟩);
49 ...continue...

50-53 When a ⟨TRY, t, ξ, a, b⟩ node is encountered, a placeholder represented by the
instruction ⟨CATCH, ξ, b⟩ is pushed on the current stack h. This placeholder
delimits the scope of the TRY block and determines the ability of catching
an exception of type ξ in case it is thrown inside a. Then, the child a is also
pushed on h which is finally added to the queue z̄.

54-55 The extraction of a ⟨CATCH, ξ, b⟩ node during the normal process execution
does not produce any effect: it is simply removed from the stack.

56-89 In case a ⟨THROW, ξ, t̄⟩ node is extracted, the list t̄ of parallel branches
is initially checked. If t̄ is not empty, then the interpreter simply pushes
a THROW command into the corresponding stacks. More specifically, the
function push-throw ∶ Queue×Queue×X ×I pushes the specified exception
on the stack with the given identifer by retrieving it from one of the two
queues. Conversely, a ⟨THROW, ξ, t̄⟩ command on the current stack, requires
to iteratively unroll it until a ⟨CATCH, ξ, b⟩ instruction annotated with the
same exception type ξ is found. If such CATCH node is found in the current
stack, child b is executed. Otherwise, if the context is the main one, i.e.
its identifier is ε, the exception is propagated to the run-time system. In
the other case, the sibling of the current stack is searched: the sibling stack
is a stack generated by the same parallel block, while a parent stack is
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Listing 5.3 NestFlow interpreter (3/8): exception handling.

...continue...
50 item ⟨TRY, t, ξ, a, b⟩ do
51 h← push(h, ⟨CATCH, ξ, b⟩);
52 h← push(h, a);
53 z̄ ← enqueue(z̄, ⟨d, h⟩);
54 item ⟨CATCH, ξ, b⟩ do
55 z̄ ← enqueue(z̄, ⟨d, h⟩);
56 item ⟨THROW, ξ, t̄⟩ do
57 if t̄ ≠ ε then
58 for each t ∈ t̄ do
59 ⟨z̄, s̄⟩ ← push-throw(z̄, s̄, ξ, t);
60 end for
61 else
62 b← ε;
63 x← ε;
64 while type(top(h)) = HALT ∧ x ≠ ξ do
65 if type(top(h)) = CATCH then
66 let ⟨CATCH, x, b⟩ = top(h);
67 else if type(top(h)) = LIMIT then
68 let ⟨LIMIT, t, v⟩ = top(h);
69 ⟨g, l⟩ ← ⟨t, v⟩;
70 end if
71 h← pop(h);
72 end while
73 if x = ξ do
74 h← push(h, b);
75 z̄ ← enqueue(z̄, ⟨d, h⟩);
76 else
77 let ⟨HALT, t⟩ = top(h);
78 if cn = ε then
79 throw new UnmanagedException(ξ);
80 else if ¬ has-sibling(z̄, s̄, d, t) then
81 ⟨z̄, s̄⟩ ← push-throw(z̄, s̄, ξ, t);
82 else if type(top(sibling(z̄, s̄, d, t))) = HALT then
83 ⟨z̄, s̄⟩ ← push-throw(z̄, s̄,ParallelEx, t);
84 else
85 k ← sibling(z̄, s̄, d, t);
86 ⟨z̄, s̄⟩ ← push-throw(z̄, s̄, InterruptEx, k);
87 end if
88 end if
89 end if

...continue...

the stack containing the parallel block generating the stack. The function
has-sibling ∶ Queue×Queue×I×I → B returns true if the stack with the given
identifier and the given parent identifier has a sibling in one of the given
queues, false otherwise. The parent identifier is retrieved through the HALT
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node. If the current stack has no sibling, the exception is propagated to its
parent. Conversely, if the current stack has a sibling and it is completed,
a ParallelEx is propagated to the parent stack, while if the sibling is not
completed, it is reverted by pushing on it a InterruptEx. The function sibling ∶
Queue×Queue×I×I → Stack searches the sibling of the stack with the given
identifier and parent identifer considering the two queues.

Listing 5.4 NestFlow interpreter (4/8): static parallel execution.

...continue...
90 item ⟨PAR, t, u,w,ψ, a, b⟩ do
91 f ← push(ε, ⟨HALT, t⟩);
92 z̄ ← enqueue(z̄, ⟨u,push(f, a)⟩);
93 z̄ ← enqueue(z̄, ⟨w,push(f, b)⟩);
94 z̄ ← enqueue(z̄, ⟨d,push(h, ⟨PAR-JOIN, ψ, u,w⟩)⟩);
95 item ⟨PAR-JOIN, ψ, u,w⟩ do
96 ⟨z̄, f⟩ ← extract(z̄, u);
97 ⟨z̄, g⟩ ← extract(z̄, w);
98 if type(top(f)) = HALT ∧ type(top(g)) = HALT then
99 continue

100 else if type(top(f)) = HALT ∧ partial-eval(σ,ψ) then
101 z̄ ← enqueue(z̄, ⟨u, f⟩);
102 z̄ ← enqueue(z̄, ⟨w,push(g, ⟨THROW, InterruptEx, ε⟩)⟩);
103 else if type(top(g)) = HALT ∧ partial-eval(σ,ψ) then
104 z̄ ← enqueue(z̄, ⟨w, g⟩);
105 z̄ ← enqueue(z̄, ⟨u,push(f, ⟨THROW, InterruptEx, ε⟩)⟩);
106 else
107 z̄ ← enqueue(z̄, ⟨u, f⟩);
108 z̄ ← enqueue(z̄, ⟨w, g⟩);
109 h← push(h, inst);
110 end if
111 z̄ ← enqueue(z̄, ⟨d, h⟩);

...continue...

90-94 In case the current instruction inst is a ⟨PAR, t, u,w,ψ, a, b⟩ node, two new
stacks with identifier u and w are created which contain beside to the
HALT instruction, the child node a and b, respectively. Moreover, a PAR-JOIN

instruction is pushed on the current stack in order to wait for the completion
of the two parallel branches before continuing the execution. All the three
stacks are added to the queue z̄.

95-111 When a node ⟨PAR-JOIN, ψ, u,w⟩ is encountered, the interpreter has to de-
termine if the execution of a related parallel branches is concluded. There-
fore, it firstly retrieves the two corresponding stacks by using the function
extract ∶ Queue×I → Stack which removes from the given queue the stack
with the specified indentifier, and returns such stack together with the up-
dated queue. If both stacks are empty, namely they contain only the HALT
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instruction, then the execution can continue. Otherwise, if at least one of the
two branches has completed and the join condition evaluates to true using
the undefined semantics, an InterruptEx is pushed on the other branch and
the two stacks are added to the queue z̄. Function partial-eval ∶ Σ × E → B
evaluates the given expression using the current store content and consid-
ering the three values logic of Kleene [115, 116], where the third value is
used to manage such variables that are used in the expression but are not
available because still in use inside a parallel branch. If none of the previous
cases if reached, the PAR-JOIN instruction is added again to the current stack,
and the two child stacks are added to the queue z̄. The current stack h is
added to z̄ in any case.

Listing 5.5 NestFlow interpreter (5/8): dynamic process creation.

...continue...
112 item ⟨CONCUR, t, a⟩ do
113 h← push(h, ⟨CONCUR-JOIN, t⟩);
114 h← push(h, a);
115 z̄ ← enqueue(z̄, ⟨d, h⟩);
116 item ⟨SPAWN, e, T , t⟩ do
117 x← gen-id(cn);
118 q ← enqueue(q, context(cn.t.x,model(p, T ), ⟨g, l⟩));
119 σ ← update-store(σ, eval(σ, e), x);
120 z̄ ← enqueue(z̄, ⟨d, h⟩);
121 item ⟨CONCUR-JOIN, t⟩ do
122 C ← find-all(q, cn.t);
123 j ← 0
124 for each c ∈ C do
125 if halt(c) then
126 q ← remove(q, c);
127 j ← j + 1;
128 end if
129 end for
130 if j < ∣C ∣ then
131 h← push(h, inst);
132 end if
133 z̄ ← enqueue(z̄, ⟨d, h⟩);

...continue...

112-115 The execution of a ⟨CONCUR, t, a⟩ node initially pushes on the current stack a
placeholder instruction ⟨CONCUR-JOIN, t⟩ that delimits the block scope, then
the body a is pushed on h, and finally h is added to the queue z̄.

116-120 The instruction ⟨SPAWN, e, T , t⟩ creates a new process instance of type T and
stores it inside the location identified by the expression e. In particular, a
new identifier is generated by function gen-id ∶ Cxt → I; then, a context is
created for the new process instance which is stored in the queue q. Finally,
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the store is updated by assigning the identifier of the new process instance
to the location given by the expression e, while the stack h is added to z̄.

121-133 The instruction ⟨CONCUR-JOIN, t⟩ waits for the completion of all stacks dy-
namically generated inside a concur block with identifier t. In particular, the
function find-all ∶ Queue×I → ℘(I) retrieves all the contexts in the queue q
with an identifier containing the given prefix. The way identifiers are built
ensures that all contexts created inside the same threshold block share the
same prefix. If one of these contexts has completed, it is removed from q.
The funciton remove ∶ Queue×I → Queue removes a given the context with
the given identifier from the specified queue, independently from its posi-
tion. If not all contexts have been removed, the CONCUR-JOIN instruction is
pushed again on the current stack h which is finally added to the queue z̄.

Listing 5.6 NestFlow interpreter (6/8): static process instances and threads.

...continue...
134 item ⟨THRES, t, v, a⟩ do
135 h← push(h, ⟨LIMIT, g, l⟩);
136 h← push(h, a));
137 h← push(h, ⟨LIMIT, t, σ(v)⟩);
138 z̄ ← enqueue(z̄, ⟨d, h⟩);
139 item ⟨LIMIT, t, v⟩ do
140 ⟨g, l⟩ ← ⟨t, v⟩;
141 item ⟨RUN, t, T , r̄, ō⟩ do
142 if find(q, cn.t) = ε then
143 if ¬ is-native(T ) then
144 q ← enqueue(q, context(cn.t,model(p, T ), ⟨g, l⟩));
145 else
146 // Create native process instance.
147 end if
148 h← push(h, ⟨WAIT, cn.t⟩);
149 z̄ ← enqueue(z̄, ⟨d, h⟩);
150 item ⟨WAIT, id⟩ do
151 if ¬ halt(find(q, id)) then
152 h← push(h, inst);
153 end if
154 z̄ ← enqueue(z̄, ⟨d, h⟩);
155 item ⟨SKIP⟩ do
156 z̄ ← enqueue(z̄, ⟨d, h⟩);

...continue...

134-138 The execution of a ⟨THRES, t, v, a⟩ node has to create a new context group
with an updated threshold limit. In particular, a LIMIT instruction is firstly
pushed on the current stack in order to identify the end of the threshold
block scope, then the body a is added, and finally a new LIMIT instruction
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is pushed which creates a new group with identifier t and a limit obtained
by evaluating the variable v. Finally, the stack h is added to z̄.

139-140 The ⟨LIMIT, v⟩ instruction simply updates the group and thread limit for the
current context.

141-149 The execution of a ⟨RUN, t, T , r̄, ō⟩ instruction initially determines if a con-
text already exists for the process with identifier t, otherwise a new context
is created for it. If the process is native, i.e. defined with the underlying
implementation language, it is managed by the run-time support. The ex-
ecution of native processes is further discusses here, it is only assumed the
existence of a function is-native ∶ T → B that returns true if the model is
a native one, false otherwise. Subsequently, a WAIT instruction is pushed
on the stack h in order to wait for the completion of such context before
proceeding. Finally, the stack h is added to the queue z̄.

Listing 5.7 NestFlow interpreter (7/8): send command.

...continue...
157 item ⟨SEND, t, v̄, β̄⟩ do
158 let v̄ = ⟨vi⟩

n
i=1, β̄ = ⟨βj⟩

m
j=1;

159 i← 1;
160 while i ≤ n ∧ σ(vi) ≠ unbound do
161 i← i + 1;
162 end while
163 if i = n do
164 for j ← 1 to n do
165 ⟨x,T ⟩ ← process-instance(βj);
166 if ¬ contains(q, cn.x) then
167 q ← enqueue(q, context(cn.x,model(p, T ), ⟨g, l⟩));
168 end if
169 if x = ς then
170 σ ← update-store(σ, βj , enqueue(σ(βj), σ(vj)));
171 else
172 ⟨ , , δ, , ⟩ ← find(q, cn.x);
173 δ ← update-store(δ, βj , enqueue(δ(βj), σ(vj)));
174 q ← replace-store(q, cn.x, δ);
175 end if
176 end for
177 else
178 h← push(h, ⟨THROW,UnboundEx, ε⟩);
179 end if
180 z̄ ← enqueue(z̄, ⟨d, h⟩);

...continue...

150-154 The ⟨WAIT, id⟩ instruction waits for the completion of the context with the
given identifier. In particular, it retrieves from q the context with identi-
fier id and determines through the function halt if the context execution
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Listing 5.8 NestFlow interpreter (8/8): receive and empty commands.

...continue...
181 item ⟨RECEIVE, t, v̄, ᾱ, θ⟩ do
182 if time() − σ(t) > θ then
183 h← push(h, ⟨THROW,TimeoutEx, ε⟩);
184 σ ← update-store(σ, t, ω);
185 else
186 let v̄ = ⟨vi⟩

n
i=1, ᾱ = ⟨αj⟩

m
j=1;

187 k ← ω;
188 j ← 0;
189 for i← 1 to n do
190 if ¬ is-empty(σ(αi)) ∧ ts(head(αi)) < k then
191 j ← i;
192 k ← ts(head(αi));
193 end if
194 end for
195 if j > 0 then
196 for i← 1 to n do
197 σ ← update-store(σ, vi,unbound));
198 end for
199 ⟨x,T ⟩ ← process-instance(αj);
200 if x = ς then
201 σ ← update-store(σ, vj ,head(σ(αj)));
202 σ ← update-store(σ,σ(αj), tail(σ(αj)));
203 else if contains(q, cn.x) then
204 ⟨ , , δ, , ⟩ ← find(q, cn.x);
205 σ ← update-store(σ, vj ,head(δ(αj)));
206 δ ← update-store(ρ, δ(αj), tail(δ(αj)));
207 q ← replace-store(q, cn.x, δ);
208 end if
209 else
210 h← push(h, inst);
211 σ ← update-store(σ, t, time());
212 end if
213 end if
214 z̄ ← enqueue(z̄, ⟨d, h⟩);
215 item ⟨EMPTY, α⟩ do
216 ⟨x,T ⟩ ← process-instance(αj);
217 if x = ς then
218 σ ← update-store(σ,α, ε);
219 else if contains(q, cn.x) then
220 ⟨ , , δ, , ⟩ ← find(q, cn.x);
221 δ ← update-store(δ,α, ε);
222 q ← replace-store(q, cn.x, δ);
223 end if
224 z̄ ← enqueue(z̄, ⟨d, h⟩);
225 end match
226 end while
227 q ← enqueue(q, ⟨cn, p, σ, z̄, l⟩);
228 end while
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has been completed, otherwise the WAIT instruction is pushed again on the
current stack h which is finally added to z̄.

155-156 A SKIP instruction does not perform anything, it simply adds the current
stack h to the queue z̄.

157-180 The execution of a ⟨SEND, t, v̄, β̄⟩ instruction firstly verifies that all the spec-
ified variables are bound, otherwise a UnboundEx is thrown on the cur-
rent stack. Subsequently, the identifier and the type of the process in-
stance associated to each stream βi is determined through the function
process-instance ∶ I → I×T . It is assumed that the name of each stream is
fully qualified, allowing one to retrieve its corresponding process instance. If
the process instance associated to the stream is equal to this, then the cur-
rent store is updated by adding the variable value to the stream. Otherwise,
the context of the involved process instance is retrieved through function
find ∶ Queue×I → Cxt and the corresponding store is then updated. Function
replace-store ∶ Queue×I×Σ →Queue updates the provided queue of contexts
by substituting the store associated to the context identifier with the new
one. Finally, stack h is added to z̄.

181-214 The execution of a ⟨RECEIVE, t, v̄, ᾱ, θ⟩ firstly determines if the specified time-
out θ is elapsed: in this case a TimeoutEx is thrown and the store is updated
by resetting the timestamp associated to the receive. Procedure time() re-
turns the current time. Otherwise, a not empty stream is selected using a
fair strategy; in particular, function ts ∶ U → R returns the timestamp asso-
ciated to the given object and is used to choose the first arrived object. If at
least a not empty stream is found all variables are reset to unbound, while
the one corresponding to the chosen stream will contain the extracted ob-
ject. If the chosen stream belongs to the current process instance, the store
σ is updated, otherwise the context of the corresponding process instance
is retrieve and its store δ is updated. The queue associated to the corre-
sponding stream is also updated. Finally, stack h is added to z̄.

215-224 The empty command simply empties the queue associated to the given
stream. In particular, if the stream does not belong to the current process
instance, its corresponding context is firstly retrieved. At the end stack h
is added to z̄.

227 The final operation performed by the cycle is added the updated context
to queue q.

♢
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5.10 Summary and Concluding Remarks

This chapter promotes the adoption of a structured approach to process model-
ing, in place of an unstructured one, in order to reduce the presence of control-flow
errors inside a model and at the same time to increase its modularity and com-
prehensibility. The chapter starts by analysing several reasons that justify the
adoption of a structured approach. In particular, the use of a free-composition
paradigm does not prevent the introduction of subtle errors that are difficult to
detect and recover even using sophisticated verification methods. Moreover, many
available PMLs can make recurring patterns hard to recognize, since exactly the
same logic can be displayed in very different ways with no additional efforts. Con-
versely, using a structured approach, the only way to change the representation
of a model is expressing the same logic in a very different way. Additionally, the
modularity of an unstructured PML can be very low, hindering its applicability in
the design of complex real processes. Finally, many arguments used to neglect a
structured modeling approach are proven to be ill-founded and not applicable in
the general case. This justify the introduction of a novel PML, called NestFlow,
at least for exposing a different design solution that takes structure and modularity
in serious consideration. NestFlow combines structured control-flow constructs
with AMP abstractions exploiting the following ideas: stateful instead of stateless
components, nested control-flow structures, unique correspondence between com-
ponent instances and graphical occurrences, no shared variables among parallel
entities and data-flow subsumption. Its principal aim is to discuss how a struc-
tured PML can be effectively built, not to provide a fully-fledged system ready to
use, even if its core version can be the ideal starting point. The remainder of the
chapter introduces the NestFlow constructs and its formal semantics, while its
expressiveness and some of its applications are discussed in the following chapter.
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NestFlow Expressiveness and Applications

The previous chapter has introduced NestFlow, a novel structured PML for
modular process design. NestFlow has been conceived as a proof-of-concept lan-
guage, rather than a fully-fledged system: its aim is to prove that a PML with
a structured control-flow can be realized providing both comprehensibility and
modularity thanks to component encapsulation and AMP interfaces. This chapter
starts by discussing its expressiveness and suitability in the PAIS domain using the
well-known workflow control-flow patterns. This method has been widely adopted
in literature for evaluating several different offerings [32–35] and it provides a
good starting point for PML comparison. Anyway, the used evaluation method is
sometimes criticized [36] because it is only based on the analysis of the available
constructs; therefore, a more objective approach is proposed here which consider
the effort needed to replicate the behaviour described by each pattern. The per-
formed evaluation will demonstrate that the behaviour prescribed by the various
patterns can be obtained in NestFlow using a small set of constructs compared
with the reference CPNs implementation given in [12].

Besides to the business process management domain, NestFlow may be suc-
cessfully applied in other contexts. In particular, it has been used in the geographi-
cal domain for modeling long-running interactive computations on huge amount of
data. As discussed in [22] this domain can benefit from the adoption of a data-flow
modeling language enhanced with coarse-grained control-flow constructs to com-
pactly express the emerging process logics. Another explored application regards
the modeling of clinical processes in which several temporal constraints have to
be expressed for guaranteeing a successful process execution. For this purpose, a
variant of NestFlow, called Tnest, has been introduced in [23] which provides
the ability to specify temporal constraints on single tasks and among tasks, and
to perform some controllability checks on the modeled processes.

The remainder of this chapter is organized as follows: Sec. 6.1 evaluates the
expressiveness and suitability of NestFlow for business process design using
the workflow control-flow patterns methodology. Sec. 6.2 discusses the application
of NestFlow for the design of geographical processes, while Sec. 6.3 presents
the Tnest extension which allows the specification of temporal constraints of
particular interest in the health-care domain.
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6.1 Workflow Management

In the business process management community, the workflow pattern initia-
tive [12] provides a framework to evaluate the suitability of WfMSs for business
process design based on a set of recurring features, called patterns. In literature
many offerings have been evaluated against workflow patterns [32–35], providing
a good starting point for system comparison. Inspired by these contributions, this
section evaluates the suitability and expressiveness of NestFlow for business pro-
cess design in terms of supported Workflow Control-Flow Patterns (WCPs) [12,15].
The aim is to give an idea on how a structured PML can represent the behavior
of most WCPs with a small set of control-flow and data-flow constructs.

WCPs share many commonalities and a pattern-based evaluation that does
not consider these relations will be less usable and mostly redundant. For this
reason, a compact classification of WCPs is introduced which groups patterns by
similarity in four generic Workflow Control-Flow Parametric Patterns (WCPPs):
Wcpp-Seq, Wcpp-Cancel, Wcpp-Fork and Wcpp-Synch. Repetition (G2),
Trigger (G4) and Termination (G5) Patterns are excluded from this classification,
because for them differences and commonalities are trivial. Each WCPP will be
presented inside the section of the corresponding pattern group through a table,
which explains how a particular WCP can be obtained fixing the parameters. For
each parameter the table reports when it is known, at design-time (DT), at run-
time before activation (RT), or at run-time after activation (FT), and its value
separated by a slash.

6.1.1 Sequence Patterns (G1)

Group G1 captures patterns involved the specification of the task execution order,
such as: Sequence Wcp-01, Interleaved P.O. Routing Wcp-17, Interleaved Routing
Wcp-40, Critical Section Wcp-39, and Milestone Wcp-18. They can be obtained
from the parametric pattern Wcpp-Seq(S,R) as shown in Tab. 6.1, except for
the last two: Critical Session Wcp-39 and Milestone Wcp-18.

Table 6.1. Sequence Patterns (G1) captured by Wcpp-Seq(S,R). S is the set of involved
tasks and R ⊆ S×S is a partial order on S represented as a direct acyclic graph.

Pattern ∣S∣ S ∣R∣ R

Wcp-01 DT/∣S∣ = k DT DT/∣R∣ = k − 1 DT/R = SEQ(a)

Wcp-17 DT/∣S∣ = k DT DT/∣R∣ ∈ {1, ..., k − 1} DT/R = PO(b)

Wcp-40 DT/∣S∣ = k DT DT/∣R∣ = 0 DT/R = ∅
(a){(xi, xi+1) ∣ 1 ≤ i < n} (b)Partial order on S given as a directed acyclic graph.

Wcp-01 Sequence pattern requires to define a total execution order among
the involved tasks, while Wcp-17 Interleaved P.O. Routing prescribes that only
one task at time can be executed but following a partial ordering among them,
finally Wcp-40 Interleaved Routing is similar to the previous one but no ordering
is required among the selected tasks. In Tab. 6.1 the symbol T denotes the set
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of all tasks contained in the model, S ⊆ T is the subset of tasks involved in the
pattern and R ⊆ S×S is an ordering relation on S. The set S is known at design
time, as well as the required total, partial, or empty ordering relation.

Wcp-01 Sequence

Description – A task in a process is enabled after the completion of a preceding
activity in the same process [12].

Realization – Sequence (Wcp-01) can be obtained in NestFlow through one or
more sequence block, as depicted in Fig. 6.1. 2

Fig. 6.1. Wcp-01 Sequence implementation in NestFlow: task B is enabled after the
completion of task A, while task C is enabled after the completion of B.

Wcp-17 Interleaved P.O. Routing

Description – A set of tasks has a partial ordering defining the order in which they
must be executed. Each task in the set must be executed once and they can by
completed in any order according with the partial order. However, as an additional
requirement, no two tasks can be executed at the same time (i.e. no two tasks can
be active for the same process instance at the same time) [12].

Realization – Any finite partial order with mutual exclusion R ⊆ S×S defined on
the set of tasks S and represented as a direct acyclic graph, can be obtained in
NestFlow using a parallel block, sequence blocks and link constructs, surrounded
by a threshold block with k = 1. The surrounded threshold block ensures that at
any time all enabled tasks are offered, but when k of these is chosen the other ones
are suspended.

A naive construction can be obtained with a single parallel block containing
exactly one parallel branch for each task instance t ∈ S, then for each relation
(u, v) ∈ R, a send s is added at the end of the branch containing u, a receive r is
added at the beginning of the branch containing v and a link is added between s
and r, as for A and B in Fig. 6.2.a. The threshold block with k = 1 ensures that only
one thread of control at time can execute inside the parallel block; hence, only one
task at time is running, while the other ones are suspended. NestFlow supports
even more general situations, because k can be greater than one and, in a more
sophisticated implementation, may vary at run-time. This generic construction
is used to prove the support of Interleaved P.O. Routing (Wcp-17), but simpler
constructions are possible, as exemplified by Fig. 6.2.b which is equivalent to the
fragment in Fig. 6.2.a. 2
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Fig. 6.2. (a) and (b) present two possible realizations of Interleaved P.O. Parallel Routing
(Wcp-17) for a set of four tasks with the same dependency relationships represented by
the partial order R = {(A,B), (B,D), (C,D)}.

Wcp-40 Interleaved Routing

Description – Each member of a set of tasks must be executed once. They can be
executed in any order but no two tasks can be executed at the same time (i.e. no
two tasks can be active for the same process instance at the same time). Once all
of the tasks have completed, the next task in the process can be initiated [12].

Realization – Interleaved Routing (Wcp-40) is a specialization of Interleaved P.O.
Routing (Wcp-17) where the partial order R = ∅. Therefore, it can be implemented

Fig. 6.3. Wcp-40 Interleaved Routing implementation in NestFlow.

by distributing set of tasks S = {A1, . . . ,An} into a parallel block wrapped by a
threshold block with k = 1, as depicted in Fig. 6.3. This block ensures that only
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one thread of control at time can execute inside the parallel block, hence, only one
task at time is running, while the other ones are suspended. As mentioned for the
previous pattern, NestFlow supports even more general situations, because k
can be greater than one and, in a more sophisticated implementation, may vary
at run-time. 2

Wcp-18 Milestone

Description – A task is only enabled when the process instance (of which it is
part) is in a specific state (typically a parallel branch). The state is assumed to be
a specific execution point (also known as a milestone) in the process model. When
this execution point is reached, the nominated task can be enabled. If the process
instance has progressed beyond this state, then the task cannot be enabled now
or at any future time (i.e. the deadline has expired). Note that the execution does
not influence the state itself, i.e. unlike normal control-flow dependencies it is a
test rather than a trigger [12].

Realization – In Milestone (Wcp-18) a task B can execute only when the process
instance is in a specific state, for example another task A is just concluded. This
pattern can be represented as in Fig. 6.4: after the completion of A, an object is
sent to the branch containing B, if the thread of control in this branch is blocked in
the receive command, namely it is waiting that a specific state is reached, then the
object wakes up the thread suspended on the receive and B is executed; otherwise,
if the receive is performed some time later the completion of A, the empty command
deletes all objects previously received in the stream r.yin associated to the variable
y and B is not executed. 2

Fig. 6.4. Wcp-18 Milestone implementation in NestFlow.

Wcp-39 Critical Section

Description – Two or more connected subgraphs of a process model are identified
as “critical sections”. At runtime for a given process instance, only tasks in one
of these “critical sections” can be active at any given time. Once execution of the
tasks in one “critical section” commences, it must complete before another “critical
section” can commence [12]. Realization – Critical Section (Wcp-39) assumes the

presence of a shared resource that has to be accessed in a mutually exclusive way.
This resource can be managed by a single task instance and the other tasks can
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gain access to the underlying resource only sending objects to it. For example, the
resource can be a log file, while the sent objects can be the entries to be appended
to this shared file. Stream serialization ensures the exclusive access to the resource.
This solution is depicted in Fig. 6.5.a, where task A manages the shared resource:
it receives the requests of the other tasks and sends back to them some information
if necessary.

Fig. 6.5. Wcp-39 Critical Section implementation in NestFlow. (a) The simplest imple-
mentation with a single task instance. (b) Representation with a unique object exchanged
through streams.

A shared resource can also be represented with a unique object exchanged by
tasks using links, as in Fig. 6.5.b. Tasks a1 ∶A and a2 ∶A need the shared resource
to execute: before starting they send a request for the resource and wait to receive
it. Only one request at time is satisfied, hence only one task between a1 ∶A and
a2 ∶A can execute at a certain time. Notice that in the example of Fig. 6.5.b the
discrimination between the two tasks is made on the basis of the value received
in x, alternatively one can use a distinct variable for each involved task and check
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which variable is not unbound. After termination, the task that currently holds
the resource, send a message to notify its completion and unlock the resource.

Anyway, the pattern Wcp-39 has been conceived for those languages that allow
the presence of a shared state, this is not the case of NestFlow; hence, the given
implementation is intended for managing external shared states. 2

6.1.2 Repetition Patterns (G2)

Repetition patterns describe various ways in which repetitive tasks or sub-processes
can be specified in a process [15]. This group includes: Arbitrary Cycles Wcp-10,
Structured Loop Wcp-21, and Recursion Wcp-22.

Wcp-10 Arbitrary Cycles

Description – The ability to represent cycles in a process model that have more
than one entry or exit point. It must be possible for individual entry and exit
points to be associated with distinct branches [12].

Realization – Arbitrary cycles (Wcp-10) are avoided in NestFlow, because they
drastically reduce modularity: this is not a severe limitation since any sequential
composition of nested arbitrary cycles has an equivalent structured form [117]. 2

Wcp-21 Structured Loop

Description – The ability to execute a task or sub-process repeatedly. The loop has
either a pre-test or post-test condition associated with it that is either evaluated
at the beginning or end of the loop to determine whether it should continue. The
looping structure has a single entry and exit point [12].

Realization – Structured Loop (Wcp-21) is directly supported in NestFlow
through the loop block, as depicted in Fig. 6.6.a. This can also represent while-do
and repeat-until blocks by placing a skip in the left or right branch, as in Fig. 6.6.b
and Fig. 6.6.c, respectively. 2

Fig. 6.6. Wcp-21 Structured Loop implementation in NestFlow. (a) Generic structured
loop, (b) while-do loop and (c) repeat-until loop.
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Wcp-22 Recursion

Description – The ability of a task to invoke itself during its execution or an ances-
tor in terms of the overall decomposition structure with which it is associated [12].

Realization – Recursive declarations of tasks (Wcp-22) are supported in Nest-
Flow through lazy evaluation. The model in Fig. 6.7 shows an example of recursive
declaration of a task that computes the x-th Fibonacci number. In this example a
compact notation is used for specifying the variables read and written by the inner
task fib. In particular, the variables above the task name are the read variables,
while the variables below the task name are the written ones. Notice that this
example allows parallel branches to read the value of the same variable x; anyway,
it is always forbidden that a variable appears as a left-value in assignments of
different parallel branches. Alternatively,the assignments can be moved u ← x − 1
and v ← x − 2 just before the parallel block. 2

Fig. 6.7. Example of recursive declaration (Wcp-22) of a task that computes the x-th
Fibonacci number.
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6.1.3 Cancellation Patterns (G3)

Cancellation Patterns represents different ways through which one or more tasks
can be withdrawn. This group includes: Cancel Activity Wcp-19, Cancel Case
Wcp-20, and Cancel Region Wcp-25. These patterns are captured by the para-
metric pattern Wcpp-Cancel(S) described in Tab. 6.2, by fixing the set S of
tasks to be cancelled. The symbol T denotes the sets of all tasks in the model. In
particular Wcp-19 Cancel Activity requires to cancel a single task x, while Wcp-
25 Cancel Region regards the cancellation of a group of tasks S ⊆ T , and Wcp-20
Cancel Case requires to cancel all tasks of an entire case.

Table 6.2. Cancellation Patterns (G3) captured by Wcpp-Cancel(S). S ⊆ T is the set
of task to be cancelled and the element x is any single task in T .

Pattern ∣S∣ S

Wcp-19 DT/∣S∣ = 1 DT/S = {x}

Wcp-25 DT/∣S∣ < ∣T ∣ DT/S ⊆ T

Wcp-20 DT/∣S∣ = ∣T ∣ DT/S = T

Wcp-19 Cancel Activity

Description – An enabled activity is withdrawn prior to its commencing execution.
If the activity has started, it is disabled and, where possible, the currently running
instance is halted and removed [12].

Realization – Pattern Wcp-19 requires only the cancellation of an enabled or
scheduled task that is not yet executed. For compound tasks this description is
not sufficient, because a task may be partially executed. This section extends the
behavior prescribed by the pattern including also the cancellation of activities that
are still executing or are partially executed.

Fig. 6.8. Wcp-19 Cancel Activity implementation in NestFlow.

NestFlow supports cancellation through the hierarchical exception handling
constructs try and throw. Exception handling provides not only a mechanism to
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manage task cancellation, but also the ability to specify clean-up actions to perform
during the cancellation phase. The cancellation of a task from a different thread
of control can be simply obtained by sending a cancellation message to it, as in
Fig. 6.8.a. If a cancellation signal is sent to a task before it is enabled, the task
may decide to consider or not the cancellation request.

In order to ensure encapsulation, each task has to be built cancellable, namely
able to manage cancellation signals, because only the task knows exactly how to
exit. Anyway, when a cancellation facility is not available, the exception handling
mechanism can be used. A task A that does not offer a cancellation interface can
be wrapped in the structure of Fig. 6.8.b: if a cancellation signal is sent to R
during the execution of A, an interruption exception ξ is thrown on branch t1 and
the activities in this branch are cancelled; otherwise, A sends after its completion
a message to R for terminating branch t2 without raising an exception. 2

Wcp-20 Cancel Case

Description – A complete process instance is removed. This includes currently
executing activities, those which may execute at some future time and all sub-
processes. The process instance is recorded as having completed unsuccessfully [12].

Realization – Cancel Case (Wcp-20) can be obtained through hierarchical ex-
ception handling constructs try and throw, as in Fig. 6.9. In particular, A is a
compound task representing the entire case, if an exception of type ξ is thrown
during the execution of A, the entire case is reverted and task B is executed to
properly clean-up the execution, for instance to execute compensation. 2

Fig. 6.9. Wcp-20 Cancel Case implementation in NestFlow.

Wcp-25 Cancel Region

Description – The ability to disable a set of activities in a process instance. If any
of the activities are already executing, then they are withdrawn. The activities do
not need to be a connected subset of the overall process model [12].

Realization – As stated for Cancel Activity (Wcp-19), each activity in NestFlow
can be withdrawn by sending a cancellation message to it. Therefore, to cancel a
set of activities, it is sufficient to send to each of them a cancellation signal, as
depicted in Fig. 6.10.a where F sends a cancellation message to A, C and D. 2
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Fig. 6.10. Wcp-25 Cancel Region implementation in NestFlow.

6.1.4 Trigger Patterns (G4)

The trigger patterns provide a means for the execution of a process to be synchro-
nized with its broader operational environment [15]. In particular, two kinds of
trigger are recognized: Transient Trigger Wcp-23 and Persistent Trigger Wcp-24.

Wcp-23 Transient Trigger

Description – The ability for a task instance to be triggered by a signal from
another part of the process or from the external environment. These triggers are
transient in nature and are lost if not acted on immediately by the receiving task.
A trigger can only be utilized if there is a task instance waiting for it at the time
it is received [12].

Realization – The activation of a task A through an external signal is naturally
supported in NestFlow by a link connected to A. In NestFlow streams are
persistent, namely they retain sent objects until the receiver is able to receive them.
A Transient Trigger (Wcp-23) can be simulated by placing an empty command
before the receive, hence all objects sent before A starts will be deleted, as depicted
in Fig. 6.11 where the empty command deletes all objects contained in the stream
r.yin associated to the variable y. 2

Fig. 6.11. Wcp-23 Transient Trigger implementation in NestFlow.

Wcp-24 Persistent Trigger

Description – The ability for a task to be triggered by a signal from another part
of the process or from the external environment. These triggers are persistent in
form and are retained by the process until they can be acted on by the receiving
task [12].
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Realization – The activation of a task A through an external signal is naturally
supported in NestFlow by a link connected to A, as depicted in Fig. 6.12. In
NestFlow streams are persistent, namely they retain sent objects until the re-
ceiver is able to receive them. 2

Fig. 6.12. Wcp-24 Persistent Trigger implementation in NestFlow.

6.1.5 Termination Patterns (G5)

The termination patterns identify two distinct schemes for determining when a
process instance is complete [15]. This group includes: Implicit Termination Wcp-
11 and Explicit Termination Wcp-43.

Wcp-11 Implicit Termination

Description – A given process (or sub-process) instance should terminate when
there are no remaining work items that are able to be done either now or at any
time in the future and the process instance is not in deadlock [12].

Realization – In NestFlow Implicit Termination (Wcp-11) coincides with the
Explicit Termination (Wcp-43), because it offers only structured control-flow con-
structs. Therefore, only one thread of control can enter a block and when a thread
leaves a block, no other threads remain inside it. As a result, only one thread of
control reaches the stop place and the stop place is reached only when the last
task instance completes. 2

Wcp-43 Explicit Termination

Description – A given process (or sub-process) instance should terminate when
it reaches a nominated state. Typically this is denoted by a specific end node.
When this end node is reached, any remaining work in the process instance is
cancelled and the overall process instance is recorded as having completed suc-
cessfully, regardless of whether there are any tasks in progress or remaining to be
executed [12].

Realization – Explicit Termination (Wcp-43) is problematic in concurrent context,
because it may leave the case into an inconsistent state. In NestFlow consistency
can be guaranteed by raising interruption exceptions in concurrent branches. In-
deed, an explicit termination does not differ from exceptions thrown in concurrent
executions to force completion.
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Besides the stop place, in NestFlow an explicit termination can be obtained
in any place of the model by raising an abort exception properly managed in con-
current branches, as in Fig. 6.13.a. It is straightforward to add a specific construct
to implement such behavior, as in Fig. 6.13.b. However, even in presence of such
construct, it is not simple to deal with explicit termination:for this reason such
construction has been excluded from the core language. 2

Fig. 6.13. (a) Explicit termination (Wcp-43) implemented using an interruption excep-
tion. (b) Explicit termination (Wcp-43) implemented using a specific construct.

6.1.6 Branching Patterns (G6)

Branching patterns describe the divergence of thread of controls from a single point
in the model. This group includes: Parallel Split Wcp-02, Exclusive Choice Wcp-
04, Multi Choice Wcp-06, Deferred Choice Wcp-16, and Thread Split Wcp-42.
They can be captured by Wcpp-Fork (Q,P ) in Table 6.3, where Q denotes the

Table 6.3. Branching Patterns (G6) captured by Wcpp-Fork(Q,P ). Q denotes the set
of involved branches and is always known at DT, P ⊆ Q is the set of branches that are
activated by the pattern and the element x is any branch in Q.

Pattern ∣P ∣ P

Wcp-04 DT/∣P ∣ = 1 RT/P = {x}

Wcp-06 RT/∣P ∣ < ∣Q∣ RT/P ⊆ Q

Wcp-02 DT/∣P ∣ = ∣Q∣ DT/P = Q

Wcp-16 DT/∣P ∣ = 1 FT/P = {x}
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set of all involved branches and P ⊆ Q is the subset of branches that are activated
by the pattern.

Wcp-02 Parallel Split

Description – The divergence of a branch into two or more parallel branches each
of which execute concurrently [12].

Realization – Parallel Split (Wcp-02) is obtained in NestFlow with a single
parallel block, as illustrated in Fig. 6.14. 2

Fig. 6.14. Wcp-02 Parallel Split implementation in NestFlow. (a) The simplest case
with only two tasks. (b) The general case with n tasks.

Wcp-04 Exclusive Choice

Description – The divergence of a branch into two or more branches such that
when the incoming branch is enabled, the thread of control is immediately passed
to precisely one of the outgoing branches based on the outcome of a logic expression
associated with the branch [12].

Realization – The Exclusive Choice (Wcp-04) behavior can be obtained in Nest-
Flow with a single choice block, as depicted in Fig. 6.15. 2

Wcp-06 Multi Choice

Description – The divergence of a branch into two or more branches. When the
incoming branch is enabled, the thread of control is immediately passed to one or
more of the outgoing branches based on the outcome of distinct logic expressions
associated to each branch [12].
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Fig. 6.15. Wcp-04 Exclusive Choice implementation in NestFlow. (a) The simplest
case with only two tasks. (b) The general case with n tasks.

Realization – There is no specific constructs for the Multi Choice (Wcp-06) in
NestFlow core language, because its behavior can be obtained combining a par-
allel block with one choice block for each branch. A branch has to be chosen to
be the default one. For this branch the guard is the negation of the disjunction
of the conditions contained in the other branches: ϕn(z̄) = ¬⋁

n−1
i=1 ϕi(x̄i), where

z̄ = ⋃n−1
i=1 x̄i. This condition ensures that the default branch is enabled only when

the conditions associated to the other branches are all false.

Fig. 6.16. Wcp-06 Multi Choice implementation in NestFlow. (a) A simple case with
only three tasks. (b) The general case with n tasks.
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Adding a specific language construct for Wcp-06 is only an implementation
issue. Fig. 6.17 depicts the pattern implementation with a specific construct. 2

Fig. 6.17. Wcp-06 Multi Choice implementation in NestFlow with a specific construct.

Wcp-16 Deferred Choice

Description – A point in a process where one of several branches is chosen based
on interaction with the operating environment. Prior to the decision, all branches
represent possible future courses of execution. The decision is made by initiating
the first task in one of the branches, i.e. there is no explicit choice but rather a
race between different branches. After the decision is made, execution alternatives
in branches other than the one selected are withdrawn [12].

Realization – Deferred Choice (Wcp-16) is the most contrived WCP because any
system has its own implementation. In BPMN with WS-BPEL executable seman-
tics it is supported by a <pick/> construct that allows the thread of control to be
suspended, waiting for one external event chosen from a set of declared ones, for
instance a received message or an expired timeout.

In YAWL the deferred choice places two or more tasks in the work-list; when
one of these is chosen, the other ones are instantaneously withdrawn.

In NestFlow the first behavior can be obtained by a single receive command
that waits for the first incoming object from multiple streams or for a timeout
event, as in Fig. 6.18.a. The second behavior can also be obtained in NestFlow,
but here a slightly different solution is preferred that is more user-friendly and is
based on the suspension semantics of the threshold block. This solution is exem-
plified in Fig. 6.18.b, where ¬ti in the throw commands means raise an exception
to interrupt all parallel branches except ti. The threshold block ensures that only
one branch is executed at a time, while the other ones are suspended. Suspended
tasks are not removed from the work-list, but they cannot be chosen by users. If
the chosen task completes successfully, it throws an exception of ξ on the other
branches containing the suspended tasks for definitively remove them, otherwise
they become available again as alternative of the failed one. In Fig. 6.18.b the task
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B can also throw an exception of type c during its execution, in this case task
D is executed and A becomes available again after D completion; otherwise, if B
completes successfully, a ξ exception is thrown on t1 and A is removed. 2

Fig. 6.18. Wcp-16 Deferred Choice implementation in NestFlow. (a) The simplest
representation of deferred choice. (b) A more sophisticated deferred choice with task
suspension semantics, in case of only two alternatives. (c) An example of deferred choice
with task suspension semantics and resume in case of failure.

Wcp-42 Thread Split

Description – At a given point in a process, a nominated number of execution
threads can be initiated in a single branch of the same process instance [12].

Realization – Thread Split (Wcp-42) is not supported as a matter of principle,
because it deals with explicit thread manipulation. 2

6.1.7 Synchronization Patterns (G7)

Synchronization patterns capture various ways through which different thread of
controls can be merged in a given point in the model. This group includes the pat-
terns: Synchronization Wcp-03, Structured Synchronizing Merge Wcp-07, Struc-
tured Discriminator Wcp-09, Blocking Discriminator Wcp-28, Structured Partial
Join Wcp-30, Blocking Partial Join Wcp-31, Canceling Partial Join Wcp-32,
Generalized And-Join Wcp-33, Acyclic Synchronizing Merge Wcp-37, General-
ized Synchronizing Merge Wcp-38, Simple Merge Wcp-05, Multi Merge Wcp-08,
and Thread Merge Wcp-41.

All synchronization patterns can be captured by the parametric pattern Wcpp-
Synch (Q,P, δ, λ) in Table 6.4, where Q denotes the set of all involved branches,
P ⊆ Q is the subset of branches that are synchronized by the pattern, δ is the
action to be performed on the remaining Q ∖ P branches and λ is the number of
divergency points from which the branches in Q come from. In particular, Wcp-
09 Structured Discriminator requires to waits for the completion of one of the
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branches in Q before continuing with the following tasks, all branches in Q have
to originate from the same divergency point. Wcp-28 differs from Wcp-09 for the
fact that the branches in Q can originate from different divergency points, while
Wcp-29 differs from Wcp-28 for the management of the remaining branches, which
are withdrawn instead of blocked at completion. Wcp-30 Structured Partial Join,
Wcp-31 Blocking Partial Join, and Wcp-32 Canceling Partial Join are equivalent
to Wcp-09 Structured Discriminator, Wcp-28 Blocking Discriminator, and Wcp-
29 Canceling Discriminator, respectively, but they require the completion of 1 <
m < ∣Q∣ branches in Q. When the number m of branches to be waited for is equal to
∣Q∣, the needed pattern is Wcp-03 Synchronization or Wcp-33 Generalized And-
Join depending on whether the branches come from the same divergency point or
not, respectively. If the branches to be synchronized are all the active ones, the
interested pattern is Wcp-07 Structured Synchronizing Merge, Wcp-37 Acyclic
Synchronizing Merge, or Wcp-38 Generalized Synchronizing Merge, depending
on the presence of a structured form or the absence of cycles. Finally, when the
number of branches to be waited for is one, but any other subsequent completion
generates a new execution of the following tasks, the required pattern can Wcp-05
Simple Merge or Wcp-08 Multi Merge, where the second one allows concurrent
executions of the following tasks.

Table 6.4. Synchronization Patterns (G7) captured by Wcpp-Synch(Q,P, δ, λ). The
possible values for δ are: blocking (bl), if the completion of the activities on the remaining
branches has no effects, canceling (cl), if the activities on the remaining branches are
cancelled, or passing (ps), if after the completion of the remaining activities the thread
of control continues with the subsequent common branch. The number of divergency
points λ can be 1, if all branches are originated from the same construct, or m, if the
branches can be generated from one or many constructs. In column ∣P ∣ 1 < k < ∣Q∣ is the
number of branches to be synchronized, while the set Q and its cardinality are always
known at design-time.

Pattern ∣P ∣ P δ λ Pattern ∣P ∣ P δ λ

Wcp-09 DT/1 RT/P = {q} bl 1 Wcp-07 RT/k RT/P ⊆ Q – 1

Wcp-28 DT/1 RT/P = {q} bl m Wcp-37 RT/k RT/P ⊆ Q – m

Wcp-X1 (a) DT/1 RT/P = {q} cn 1 Wcp-38 RT/k RT/P ⊆ Q – m

Wcp-29 DT/1 RT/P = {q} cn m Wcp-03 DT/∣Q∣ RT/P = Q – 1

Wcp-30 DT/k RT/P ⊆ Q bl 1 Wcp-33 DT/∣Q∣ RT/P = Q – m

Wcp-31 DT/k RT/P ⊆ Q bl m Wcp-05 DT/1 RT/P = {q} – 1

Wcp-X2 (a) DT/k RT/P ⊆ Q cn 1 Wcp-08 DT/1 RT/P = {q} ps m

Wcp-32 DT/k RT/P ⊆ Q cn m (a)X-Patterns identify missing combinations

Wcp-03 Synchronization

Description – The convergence of two or more branches into a single subsequent
branch such that the thread of control is passed to the subsequent branch when
all input branches have been enabled [12].
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2Realization –
Synchronization (Wcp-03) can be obtained in NestFlow using a parallel block.
Notice that NestFlow is a block-structured language: it does not have distinct
constructs for starting and closing a parallel block; hence, the implementation of
this pattern is the same of Parallel Split (Wcp-02). 2

Wcp-07 Structured Synchronizing Merge

Description – The convergence of two or more branches (which diverged earlier
in the process at a uniquely identifiable point) into a single subsequent branch.
The thread of control is passed to the subsequent branch when each active in-
coming branch has been enabled. The Structured Synchronizing Merge occurs in a
structured context, i.e. there must be a single Multi-Choice construct earlier in the
process model with which the Structured Synchronizing Merge is associated and it
must merge all of the branches emanating from the Multi-Choice. These branches
must either flow from the Structured Synchronizing Merge without any splits or
joins or they must be structured in form (i.e. balanced splits and joins) [12].

Realization – Structured Synchronizing Merge (Wcp-07) can be obtained in Nest-
Flow combining a parallel block with a choice block for each branch. As stated
for the previous pattern, since NestFlow is a block-structured language the im-
plementation of this pattern is the same of Multi Choice (Wcp-06). 2

Wcp-09 Structured Discriminator

Description – The convergence of two or more branches into a single subsequent
branch following a corresponding divergence earlier in the process model such that
the thread of control is passed to the subsequent branch when the first incoming
branch has been enabled. Subsequent enablements of incoming branches do not
result in the thread of control being passed on. The Structured Discriminator
construct resets when all incoming branches have been enabled. The Structured
Discriminator occurs in a structured context, i.e. there must be a single Parallel
Split construct earlier in the process model with which the Structured Discrim-
inator is associated and it must merge all of the branches emanating from the
Structured Discriminator. These branches must either flow from the Parallel Split
to the Structured Discriminator without any splits or joins or they must be struc-
tured in form (i.e. balanced splits and joins) [12].

Realization – Structured Discriminator (Wcp-09) can be realized in NestFlow
using a single receive r that waits for a message from several send s1, . . . , sn. After
completion each task A1, . . . ,An involved in the synchronization sends a message to
r which stores the first arrived object in the corresponding variable and continues
the execution. Due to the structured context required by the pattern, all involved
tasks belong to the same parallel block. For instance, in Fig. 6.19.b tasks A and
B belongs to the same parallel block, when at least one of them has completed
the process execution can continue with task T , the subsequent termination of the
other branch has no effect. The pattern can be executed multiple times preceding
it with a reset phase if necessary. 2
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Fig. 6.19. Wcp-09 Structured Discriminator implementation in NestFlow. (a) Simplest
case with only two tasks. (b) General case with n tasks.

Wcp-28 Blocking Discriminator

Description – The convergence of two or more branches into a single subsequent
branch following one or more corresponding divergences earlier in the process
model. The thread of control is passed to the subsequent branch when the first
active incoming branch has been enabled. The Blocking Discriminator construct
resets when all active incoming branches have been enabled once for the same
process instance. Subsequent enablements of incoming branches are blocked until
the Blocking Discriminator has reset [12].

Realization – Similarly to Structured Discriminator (Wcp-09), Blocking Discrim-
inator (Wcp-28) can be realized using a single receive r that waits a message from
several send s1, . . . sn. Each task A1, . . . ,An involved in the synchronization sends
after its completion a message to r which stores the first arrived object in the
corresponding variable and continues the execution. The only difference with the
previous pattern is that the involved tasks can belong to different execution path.
For instance, in Fig. 6.20 tasks A and B comes to the same divergency point,
while C belongs to another parallel block; when any of this task completes, the
execution can continue with T , and the completion of any other of these tasks has
no effects. The pattern can be executed multiple times preceding it with a reset
phase if necessary. 2

Wcp-29 Canceling Discriminator

Description – The convergence of two or more branches into a single subsequent
branch following one or more corresponding divergences earlier in the process
model. The thread of control is passed to the subsequent branch when the first
active incoming branch has been enabled. Triggering the Cancelling Discriminator
also cancels the execution of all of the other incoming branches and resets the
construct [12].

Realization – Canceling Discriminator (Wcp-29) can be realized in NestFlow us-
ing a single receive r that waits for a message from several send comments s1, . . . , sn

following the involved tasks and a subsequent send s that cancels the remaining
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Fig. 6.20. Wcp-28 Blocking Discriminator implementation in NestFlow.

activities. Each task involved in the synchronization sends after its completion a
message to r which stores the first arrived object in the corresponding variable
and continues the execution. A cancellation message is sent to all involved task
instances and it does not affect the completed instances. For instance, in Fig. 6.21
when any between A and B completes, the send s sends a cancellation message
to the involved tasks before continuing the execution with T . The pattern can be
executed multiple times preceding it with a reset phase.

Fig. 6.21. Wcp-29 Canceling Discriminator implementation in NestFlow.

NestFlow offers a more simple yet powerful mechanism for expressing struc-
tured canceling discriminator (Wcp-X1): the generalized partial join at end of the
parallel block allows one to define more sophisticated join conditions on declared
variables, not only simple thresholds on the number of joined threads. This feature
is not considered here, because Wcp-X1 is not part of the original WCPs [12]. 2

Wcp-30 Structured Partial Join

Description – The convergence of two or more (say m) branches into a single sub-
sequent branch following a corresponding divergence earlier in the process model
such that the thread of control is passed to the subsequent branch when k of the
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incoming branches have been enabled, where k is less than m. Subsequent enable-
ments of incoming branches do not result in the thread of control being passed on.
The join construct resets when all active incoming branches have been enabled.
The join occurs in a structured context, i.e. there must be a single Parallel Split
construct earlier in the process model with which the join is associated and it must
merge all of the branches emanating from the Parallel Split. These branches must
either flow from the Parallel Split to the join without any splits or joins or be
structured in form (i.e. balanced splits and joins). [12].

Realization – Structured Partial Join (Wcp-30) can be realized similarly to the
Structured Discriminator (Wcp-09), simply placing the receive r into a loop. Each
task involved in the synchronization sends after its completion a message to r
which stores the first arrived object in the corresponding variable and increments
the counter i. The receive is performed k times for waiting the completion of exactly
k tasks. Due to the structured context required by the pattern, all involved tasks
belong to the same parallel block. For instance, in Fig. 6.22 three tasks A, B and C
belongs to the same parallel block, after the completion of each of them a message
is sent to r which is performed two times in order to wait the completion of exactly
two tasks before continuing the execution with T . The subsequent completion of
the remaining task has no effect. The pattern can be executed multiple times
preceding it with a reset phase if necessary. 2

Fig. 6.22. Wcp-30 Structured Partial Join implementation in NestFlow.

Wcp-31 Blocking Partial Join

Description – The convergence of two or more branches (say n) into a single
subsequent branch following one or more corresponding divergences earlier in the
process model. The thread of control is passed to the subsequent branch when k
of the incoming branches has been enabled (where 2 ≤ k <m). The join construct
resets when all active incoming branches have been enabled once for the same
process instance. Subsequent enablements of incoming branches are blocked until
the join has reset. [12].
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Realization – Blocking Partial Join (Wcp-31) can be realized similarly to the
Blocking Discriminator (Wcp-28), simply placing the receive r into a loop. After
its completion each task involved in the synchronization sends a message to r
which stores the first arrived object in the corresponding variable and increments
the counter i. The receive is performed k times for waiting the completion of
exactly k tasks. As for the Blocking Discriminator, the involved tasks can belong
to different execution paths. The example in Fig. 6.23 is very similar to the one in
Fig. 6.22 except for the fact that C does not belong to the same parallel block of A
and B. When at least two of these three tasks completes, independently from its
belonging block, the execution continues with T while the subsequent completion
of the remaining task has no effects. The pattern can be executed multiple times
preceding it with a reset phase if necessary. 2

Fig. 6.23. Wcp-31 Blocking Partial Join implementation in NestFlow.

Wcp-32 Canceling Partial Join

Description – The convergence of two or more branches (say n) into a single
subsequent branch following one or more corresponding divergences earlier in the
process model. The thread of control is passed to the subsequent branch when k
of the incoming branches have been enabled where k is less than n. Triggering the
join also cancels the execution of all of the other incoming branches and resets the
construct. [12].

Realization – Canceling Partial Join (Wcp-32) can be realized similarly to the
Canceling Discriminator (Wcp-29), simply placing the receive r into a loop. Each
task involved in the synchronization sends after its completion a message to r
which stores the first arrived object in the corresponding variable and continues
the execution. A cancellation message is sent to all involved task instances and
it does not affect the completed instances. In the example of in Fig. 6.24, the
three tasks A, B, and C do not come from a unique divergency point, any time
two of them complete and send a message to r, a the send s sends a cancellation
message to all branches before continuing the execution with T . The pattern can
be executed multiple times preceding it with a reset phase if necessary.
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Fig. 6.24. Wcp-32 Canceling Partial Join implementation in NestFlow.

NestFlow offers a more simple yet powerful mechanism for expressing struc-
tured canceling partial join (Wcp-X2): the generalized partial join at end of the
parallel block allows to define more sophisticated join conditions, not only simple
thresholds on the number of joined threads. This feature is not considered here,
because Wcp-X2 is not part of the original WCPs [12]. 2

Wcp-33 Generalized And-Join

Description – The convergence of two or more branches into a single subsequent
branch such that the thread of control is passed to the subsequent branch when
all input branches have been enabled. Additional triggers received on one or more
branches between firings of the join persist and are retained for future firings [12].

Realization – Generalized And-Join (Wcp-33) can be obtained in NestFlow
using an and-receive r (or a sequence of receive commands) which waits for a
message from all the involved tasks. Each task sends after its completion a message
to r, r waits for an object from each connected stream before proceeding with the
following task T . For instance, in Fig. 6.25 the receive r waits for the completion
of A, B and C before executing T independently for the fact that these tasks do
not belong to the same parallel block. 2

Wcp-37 Acyclic Synchronizing Merge

Description – The convergence of two or more branches which diverged earlier
in the process into a single subsequent branch such that the thread of control
is passed to the subsequent branch when each active incoming branch has been
enabled. Determination of how many branches require synchronization is made
on the basis on information locally available to the merge construct. This may
be communicated directly to the merge by the preceding diverging construct or
alternatively it can be determined on the basis of local data such as the threads
of control arriving at the merge [12].
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Fig. 6.25. Wcp-33 Generalized And-Join implementation in NestFlow.

Realization – Acyclic Synchronizing Merge (Wcp-37) can be realized by using
an and-receive, as for Generalized And-Join (Wcp-33), and wrapping each task
A1, . . . ,An into a choice block followed by a send. If the choice block condition
ϕj(x̄j) evaluates to true, then Aj executes, otherwise a skip is performed; in any
case a message is sent to notify the and-receive. In the example of Fig. 6.26, tasks
A, B and C does not belong to the same parallel block, anyway task T is performed
only after the completion of each of these tasks that are active. 2

Fig. 6.26. Wcp-37 Acyclic Synchronizing Merge implementation in NestFlow.

Wcp-38 Generalized Synchronizing Merge

Description – The convergence of two or more branches which diverged earlier
in the process into a single subsequent branch such that the thread of control is
passed to the subsequent branch when either (1) each active incoming branch has
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been enabled or (2) it is not possible that any branch that has not yet been enabled
will be enabled at any future time [12].

Realization – Generalized Synchronizing Merge (Wcp-38) can be realized in Nest-
Flow in the same way of the Acyclic Synchronizing Merge (Wcp-37), because the
presence of cycles does not cause any problems. 2

Wcp-05 Simple Merge

Description – The convergence of two or more branches into a single subsequent
branch such that each enablement of an incoming branch results in the thread of
control being passed to the subsequent branch [12].

Realization – Simple Merge (Wcp-05) can be obtained using a receive r command
that waits for an object from one of the connected streams and then execute
the following task. Each involved task sends after its completion a message to r
which stores the first arrived object in the corresponding variable and immediately
executes T . This operation is performed n times, where n is the number of the tasks
to be synchronized. The use of a loop block ensures that T is executed multiple
times respecting the completion order of the involved task instances but without
overlapping executions. Considering the model in Fig. 6.27, when any among A,
B or C completes, an execution of T is performed. The task T is performed at
most three times in sequence. 2

Fig. 6.27. Wcp-05 Simple Merge implementation in NestFlow.

Wcp-08 Multi Merge

Description – The convergence of two or more branches into a single subsequent
branch such that each enablement of an incoming branch results in the thread of
control being passed to the subsequent branch [12].
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Realization – Multi Merge (Wcp-08) can be obtained similarly to Simple Merge
(Wcp-05) by substituting the task T with a spawn command and wrapping the
entire loop block into a concur block, as depicted in Fig. 6.28. Any time one of the
involved task instances completes, a message is sent to r and the following spawn
command creates a new instance of T , which is immediately executed inside the
concur block. This implementation of Multi Merge (Wcp-08) is safe: namely, it
does not produce overlapping executions of the same instance. 2

Fig. 6.28. Wcp-08 Multi Merge implementation in NestFlow.

Wcp-41 Thread Merge

Description – At a given point in a process, a nominated number of execution
threads in a single branch of the same process instance should be merged together
into a single thread of execution [12].

Realization – Thread Merge (Wcp-41) is not supported as a matter of principle,
because it deals with explicit thread manipulation. 2
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6.1.8 Evaluation Method

WCPs are a collection of behavioral patterns recurrently found in BP models.
They are described in natural language and formalized as Colored Petri Nets
(CPNs): a proper extension of Petri Nets enhanced with data, types and functional
expressions. A particular WCP can be encoded as a CPN in several different ways;
however, if the use of Petri nets constructs is preferred against the use of functional
expressions, then the pattern complexity can be roughly quantified by the number
of graphical constructs used for representing it. In particular, the WCPs encoding
in [12] can be taken as a unit of comparison because it uses basic constructs and
it is reasonable to assume that this encoding is nearly optimal, namely no simpler
encoding can be given without exploiting advanced features.

WCPs have been used to analyze and classify a great number of BPMLs in
order to expose their peculiarities and ease system comparison. In such analysis
the commonly accepted scoring assigned to each WCP implementation is fully
supported (+), if there is a language construct that directly implements the pattern,
partially supported (±), if there is a construct that produces only a similar behavior
to the one prescribed by the pattern, or unsupported (−), if none of the provided
constructs reproduces the required behavior.

This approach is questionable because it focuses only on language constructs
at the expense of the actual behavior that can emerge when such constructs are
put together. This leads to paradoxical conclusions: for instance, one should accept
that CPNs, the language chosen to formalize all WCPs, supports only few of them;
hence, it is not suitable for BP design. The same conclusion holds even more for
classical Petri nets that are strictly less expressive than CPNs, despite they are a
widely accepted formal language for BP modeling and analysis.

In this paper the NestFlow evaluation is based on how many constructs are
needed to reproduce a particular WCP with respect to the CPNs constructs used
in [12]. CPNs seem a good reference for comparison because it is hard to conceive a
graphical formal language with simpler constructs and equal expressiveness. Any
language tailored for BP modeling should generally perform better in encoding
WCPs than CPNs, otherwise something goes wrong with the language design.

At first glance, it seems easy to reach the maximum score in a WCPs analysis
by conceiving a BPML that provides one construct for each pattern. Although this
is ideally possible, one should explain what happens when two or more of these
constructs are put together to design a BP model and how they can be used to
express emerging patterns not considered in the current WCPs collection.

6.1.9 Evaluation of NestFlow WCPs Support

This section exposes the results of the NestFlow evaluation, giving a first ev-
idence about its expressiveness and suitability for BP design. Multiple-instance
patterns are not considered because they can be seen as a specialization of those
presented here, where the involved task instances are always of the same type.

The result of this analysis is summarized in Table 6.5: the NestFlow support
of each WCP is ranked excellent (888), good (889), fair (899) and none
(999) using the following parameters: (1) the ratio ρ between the number of



6.1 Workflow Management 211

Table 6.5. A summary of NestFlow WCPs support. WCPs are grouped as in [15] and
ordered on the basis of their similarities. Code is a unique pattern identifier defined in [12]
and Name is its common name. Given the number of involved tasks n, NF is the number
of NestFlow constructs used to represent the WCP in the worst case scenario, while
CPN is the number of CPN constructs used in [12]; ρ is the ratio between the values in
NF and CPN columns for large n, and γ is the ratio between the number of used links
and the total number of NestFlow constructs. Eval is the overall evaluation.

Code [12] Name NF CPN ρ γ Eval

G1

Wcp-01 Sequence n + 2 4n + 2 0.25 0.00 888
Wcp-17 Interleaved P.O. Routing 4n + 1(a) 14n + 6(a) 0.29 0.25 889
Wcp-40 Interleaved Routing n + 4 10n + 10 0.10 0.00 888
Wcp-39 Critical Section 8n + 9 14n + 8 0.57 0.37 899
Wcp-18 Milestone 10 18 0.56 0.10 888

G2

Wcp-10 Arbitrary Cycles — 29 — — 999
Wcp-21 Structured Loop 4 15 0.27 0.00 888
Wcp-22 Recursion 11 17 0.65 0.18 888

G3

Wcp-19 Cancel Activity 14 30 0.47 0.14 888
Wcp-25 Cancel Region 14n — — 0.14 888
Wcp-20 Cancel Case 14 — — 0.14 888

G4
Wcp-23 Transient Trigger 6 16 0.37 0.17 888
Wcp-24 Persistent Trigger 5 9 0.55 0.20 888

G5
Wcp-11 Implicit Termination 0 — — — 888
Wcp-43 Explicit Termination 1 — — 0.00 888

G6

Wcp-04 Exclusive Choice n + 2 6n + 4 0.17 0.00 888
Wcp-16 Deferred Choice 5n + 4 4n + 6(b) 1.25 0.00 888
Wcp-06 Multi Choice 4n + 1 7n + 3 0.57 0.00 888
Wcp-02 Parallel Split 2n + 1 7n + 3 0.29 0.00 888
Wcp-42 Thread Split — n + 5 — — 999

G7

Wcp-09 Structured Discriminator 5n + 2 5n + 14 1.00 0.20 889
Wcp-28 Blocking Discriminator 5n + 2 9n + 17 0.56 0.20 889
Wcp-29 Canceling Discriminator 6n + 4 10n + 15 0.60 0.33 899
Wcp-30 Structured Partial Join 5n + 6 5n + 14 1.00 0.20 889
Wcp-31 Blocking Partial Join 5n + 6 9n + 17 0.56 0.20 889
Wcp-32 Canceling Partial Join 6n + 7 10n + 15 0.60 0.33 899
Wcp-05 Simple Merge 5n + 8 5n + 5 1.00 0.20 889
Wcp-08 Multi Merge 7n + 9 5n + 5 1.40 0.20 899
Wcp-07 Structured Synch. Merge 4n + 1 9n + 6 0.44 0.00 888
Wcp-37 Acyclic Synch. Merge 7n + 2 11n + 6 0.64 0.14 889
Wcp-38 Generalized Synch. Merge 7n + 2 — — 0.14 889
Wcp-03 Synchronization 2n + 1 7n + 3 0.14 0.00 888
Wcp-33 Generalized And-Join 5n + 2 7n + 3 0.701 0.20 889
Wcp-41 Thread Merge — n + 5 — — 999

G1 Sequence Patterns G4 Trigger Patterns G7 Synchronization Patterns

G2 Repetition Patterns G5 Termination Patterns (a) Assuming P.O. graph size n − 1

G3 Cancellation Patterns G6 Branching Patterns (b) Considering the richer representation
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NestFlow constructs used to encode the pattern in the worst case scenario and
the number of CPNs constructs used in [12] for representing the same behavior, (2)
the ratio γ between the number of links and the number of control-flow constructs
used in the NestFlow interpretation and finally (3) the variety of involved Nest-
Flow constructs. The NF column contains the total number of used NestFlow
constructs, including the number of links and the maximum number of running
threads. Similarly, the CPN column contains the number of CPNs constructs used
in [12], including the number of transitions, places, arcs and the maximum num-
ber of involved tokens. For both languages the count does not include additional
notations used to specify conditions and expressions. For estimating pattern com-
plexity, a link can be considered a weak control-flow relation manipulated by more
reliable control-flow structures; with this interpretation, γ gives a first clue about
the level of unstructuredness of the pattern because links may cross the main
control-flow structure; in practice, structured forms are always preferred during
design, and the number of links will be substantially below γ, which represents a
worst case estimation.

Pattern support with worst case ρ ≤ 0.50 and γ ≤ 0.20 and an optimal use of
constructs is ranked excellent (888). We also accept in this category pattern
implementations with ρ > 0.50 or a value of γ near to 0.20 when these ratios
do not depend on the number of tasks n. Deferred Choice (Wcp-16) and Multi
Choice (Wcp-06) are also ranked excellent even if ρ > 0.50, because Wcp-16 has
an optimal implementation given by the receive construct and Wcp-06 can be
captured by a single specialized construct illustrated in Fig. 5.37 of the previous
chapter. Patterns with worst case ρ ≤ 1.00 and γ ≤ 0.20 and an adequate use of
constructs are ranked good (889). Interleaved P.O. Routing (Wcp-17) is also
ranked good, because the worst case coefficients ρ = 0.29 and γ = 0.25 are related to
an ideal worst case partial order. Patterns with ρ > 1.00 or γ > 0.20 are ranked fair
(899), while the unsupported patterns are ranked none (999). Such criteria
allows a more fine-grained and measurable evaluation of WCP support. Neverthe-
less, a pattern-based analysis remains a qualitative evaluation of expressiveness: a
WCP specifies a system behavior that can be obtained in different ways, combin-
ing more or less sophisticated constructs. For instance, in modeling a process by
CPNs we can obtain a particular behavior mainly using Petri nets constructs or
alternatively using few graphical constructs, encoding most of the logic in func-
tional arc expressions and transition guards. The considered language constructs
are also important but a pattern-based evaluation that puts too much emphasis
on constructs, instead of on the overall behavior, leads to paradoxical conclusions
as explained in the previous section. The NestFlow evaluation is mainly based
on the effort needed to replicate WCPs behavior: for each pattern such effort has
been quantified by comparing the NestFlow implementation in the worst case
scenario with the CPNs reference implementation [12]. The count of CPNs con-
structs is omitted for those patterns whose CPNs model is an ad-hoc construction
that cannot be easily quantified, for instance because the number of constructs
depends on the reachable states.

Any high-level BPML that wants to support WCPs will likely provide a more
compact representation of these patterns, with more specific constructs than
CPNs. Except for few patterns, the NestFlow ratio ρ is always less than one;
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more specifically, it usually needs half of the CPNs constructs for expressing the
same behavior. In some cases the ratio ρ is greater than one or the pattern is
not supported at all, as for Multi Merge (Wcp-08), Arbitrary Cycles (Wcp-10),
Thread Merge (Wcp-41) and Thread Split (Wcp-42). The lack of support for
these patterns is acceptable because consistent with the initial design intentions:
NestFlow is built to be modular and these patterns hinder modularity.

♢
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6.2 Geo-Processing Application

The term geo-processing denotes long-running interactive computations that rely
on self-contained, specialized and interoperable services.

In [22] the authors evaluate the applicability of existing WfMSs for supporting
such kind of processes. In particular, they consider two kinds of systems classified
as business WfMSs and scientific WfMSs, taking YAWL and Kepler as representa-
tive. They state that processes in the geographical field can benefit from both the
adoption of business and scientific WfMSs, but none of them is completely satisfac-
tory. The found limitations regard three different aspects: modeling, visualization,
and processing of spatial data. The latter is the most serious one, because it cannot
be solved by simply adding features to existing WfMSs.

In this kind of process, two forms of parallelism are distinguished: functional
and data decomposition. Functional decomposition techniques deal with the dis-
tribution of operations among the available resources. It can be achieved by de-
composing complex computation activities into smaller parts (tasks), defining the
execution order of these operations and the dependencies between them, so that
some operations can be performed in parallel while others in sequence. On the other
hand, data decomposition techniques subdivide data into independent chunks: in
this way, multiple instances of the same activity can be executed in parallel on
different inputs. The partial results produced by each activity instance are finally
combined to form the overall output. PAISs are more suitable for representing the
functional decomposition of processes and the interactions among different agents.
At any step the workflow engine can monitor the overall state of the process,
which activities have been performed and which are in execution. On the other
hand, this kind of systems provides a poor support for the data decomposition,
which is essential for intensive computations. Optimizations at such level have to
be addressed in an ad-hoc manner by the underlying software layer. Conversely,
scientific WfMSs have been developed for supporting intensive computations and
can easily exploit the use of Grid technologies in a transparent way for the user.
Scientific WfNSs have been studied to simplify the composition of computational
blocks and, hence, they offer a better chance to provide a library for geo-processing.
However, some problematic aspects remain, for instance how to provide to the user
a complete overview of the process execution, or how to seamlessly integrate cross-
cutting concerns like resource management.

In other words, the interactive nature of long-running geo-processing activities,
the importance of domain expert knowledge in driving the computation and the
need to coordinate the effort of different agents, are better addressed by business
WfMSs. On the contrary, scientific WfMSs can provide a support for intensive
long-running computations required by geo-processes.

The author concludes that an ideal WfMS for geo-processing has to combine
the characteristics of both approaches in a coherent system. In particular, the
data-flow computation model adopted by scientific WfMSs enhanced with coarse-
grained control-flow constructs, in order to express the control-flow logics that
emerges from fine-grained data-flow relations. This can be useful for mitigating
the main drawback of using a data driven approach with respect to the control-
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Fig. 6.29. Example of geographical process.
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flow one offered by PAISs, namely the loss of easy to grasp information about the
overall process execution.

For all these reasons in [118] the suitability of NestFlow for geo-processing
has been evaluated by considering the modeling of a representative process. In this
work NestFlow data types have been extended to represent basic geometric prim-
itives and a specialized library of functionalities have been implemented. Fig. 6.29
depicts an example of geographical process presented in [118], which performs the
integration between two distinct datasets. The stream and variable declarations
on the left exemplify the use of some specific geographical types, such as features
and topological relations, while composite tasks are highlighted in yellow.

The process starts when two messages are received, containing the reference
to the two datasets to be integrated: for this reason the first receive is decorated
with a logic and (∧) symbol. The subsequent try block is used to manage the
case in which an improper input has been provided: in this case an exception is
thrown and the corresponding try branch is executed, which notifies the external
environment through a send.

Subsequently, a parallel block is used to specify activities that can be performed
in parallel: anyway, such activities have to synchronize at some point, because one
branch needs data produced by the other one. This synchronization is represented
by a message exchange, making explicit the nature and reason of the interaction,
using another PML, such as YAWL or BPMN, such interaction can be represented
only using an unstructured construction.

Another important aspect is related to the decomposition of task LogicRelInt
which has an input and an output stream connected to it, while its internal struc-
ture is reported inside the gray box. Notice that the data provided through the
input stream are not required at the beginning and in certain cases the process can
complete without requiring it. Similarly, data delivered through the output stream
are produced during the computation, not at completion, and in some cases the
computation can terminate without producing any message. This decomposition
cannot be easily obtained using a classical PML, such as YAWL, because it requires
that input data are provided at the beginning, and output data are produced only
at completion.

♢
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6.3 Health-Care Application and Controllability

WfMSs have been increasingly applied for designing and executing medical pro-
cesses [119]. This kind of processes presents some distinctive characteristics which
regards the need to model data dependencies among tasks and the need to rep-
resent temporal constraints on task executions. For instance, relatively to data
aspects, a surgery intervention could need the results of the concurrent bioptic
analysis to be properly concluded, and this data synchronization needs to be ex-
plicitly represented. Similarly, as regards to temporal aspects, temporal constraints
are always present and their management is mandatory to successfully complete
a medical process. For example, to successfully apply the fibrinolytic therapy to
patients with ST-segment Elevation Myocardial Infarction (STEMI), a maximum
delay must be respected from the admission to the emergency department. Finally,
since the description dimension of medical processes is often huge, it is important
to prevent the possibility of having deadlocks and/or lacks of synchronization;
hence, the use of structured PMLs is recommended in place of unstructured ones.

For all these reasons, in [23] the authors study an extension of NestFlow,
called Tnest, that allows one to represent both data aspects and temporal con-
straints using a structured PML, whose expressiveness is not reduced w.r.t. the
widely used unstructured languages. In particular, two main kinds of temporal
constraints can be defined in Tnest: activity duration and relative constraint.

In order to define both kinds of temporal constraints the concept of edge,
connector, and task are introduced. An edge represents a control-flow relation
between two (terminal or non-terminal) blocks. A connector denotes either the
entry or the exit construct of a non-terminal block. A task is essentially a more
or less complex pre-existing process specification invoked using run command or
created at run-time with a spawn command.

Fig. 6.30. NestFlow constructs with temporal constraints. (a) Duration constraint
associated to a task, or a receive command, respectively. (b) Duration constraint asso-
ciated to a connector, notice that the connector is empty to be general. (c) Delay defined
on a control-flow relation. (d) Delay defined on a link. (e) Relative constraint between
two tasks.

An activity duration represents the allowed temporal spans for the execution
of either a command, a connector, an edge, or a link as depicted in Fig. 6.30.a,
Fig. 6.30.b, Fig. 6.30.c, and Fig. 6.30.d respectively. Except for spawn, send, and
throw, each command is assumed to have a duration specified by the designer
using a notation like [MinD,MaxD] Granularity, where 0 ≤ MinD ≤ MaxD ≤ ∞
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and Granularity stands for the used time unit. If the designer does not spec-
ify an activity duration, it is assumed to be [1,∞] MinGranularity, where
MinGranularity is the minimum available time granularity. Conversely, spawn,
send, and throw are non-blocking activities and are used as milestones to start
other blocks or messages; hence, they are assumed to have fixed duration that
cannot be modified by the designer. Moreover, the model allows also the setting of
a duration for edges and links. The duration associated to an edge can be viewed
as a delay, because it represents the allowed delay to enact the execution of the
second block after the end of the execution of the first one. Similarly, the duration
associated to a link represents the allowed delivery time of a message once it is
generated. It is assumed that the duration constraint associated to a task is not
modifiable, since tasks are executed by external agents usually requiring a non
negotiable time to be completed, while the duration associated to a connector,
edge and link can be modified in order to satisfy all the given requirements.

The other kind of temporal constraints are the relative constraints. They al-
low the expression of several temporal constraints among activities. Differently
from the duration constraints, relative constraints are not mandatory. A relative
constraint limits the time distance between the starting/ending instants of two
non-consecutive blocks. It is graphically represented as a dash-dot-dash edge be-
tween two blocks, as reported in Fig. 6.30.e. The label on the edge specifies the
constraints according to the following pattern: ⟨IF ⟩[MinD,MaxD]⟨IS⟩ Granularity,
where ⟨IF ⟩ marks the instant of the first activity to use, and it can be equal to
S or E corresponding to the start or the end execution instant of the activity, re-
spectively; ⟨IS⟩ marks the instant related to the second activity in the same way,
and [MinD,MaxD] Granularity represents the allowed range for the time distance
between the two instants ⟨IF ⟩ and ⟨IS⟩. It is assumed that −∞ ≤ MinD ≤ MaxD ≤ ∞;
in particular, a finite positive MaxD value models a deadline, since it corresponds
to the maximum global allowable execution time for the activities that are present
on possible flows between the first node and the second one. On the other hand, a
finite positive MinD represents the minimum execution time that has to be spent
before proceeding after ⟨IS⟩: if the global time spent to execute all activities be-
tween ⟨IF ⟩ and ⟨IS⟩ is less than MinD, then the WfMS has to dynamically manage
a suitable action (e.g. to sleep) that depends from the specific applications. A fi-
nite negative MaxD value expresses the fact that that the ⟨IS⟩ has to occur at least
∣MaxD∣ instants before ⟨IF ⟩. In general, if a designer does not specify the granularity
of a range, it is assumed that the granularity is MinGranularity.

Since the relative constraint concept is quite general and some blocks have a
complex behavior, some unfitting settings are possible. Hence, the following five
general construction rules have been defined:

1. Relative constraints cannot be set among activities belonging to mutually ex-
clusive flows.

2. An implicit E[0,∞]S relative constraint between a spawn command and the
dotted task generated by it is always set as shown in Fig. 6.31.a. Further
constraints between other tasks and the spawned one may be arbitrarily set.

3. Inside a loop, it is possible to set a relative constraint only between tasks
but on different cycles of the loop using a specific notation and with some
limitations. For example, in Fig. 6.31.a the relative constraint between B and
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D has label ▸S[x, y]S meaning that any instance of D has to start in [x, y]
time units after the start of any block B spawned before it.

4. Between two connected send-receive commands there is always an implicit
S[u,∞]E constraint where u could be 0 or the lower bound of the duration
constraint of the link, in case it is specified. Such constraint has a different
meaning w.r.t. the duration constraint of the link: even if the two constraints
are graphically similar, while the duration represents the allowed delivery time,
the relative constraint dictates the time range limits in which the message has
to be produced and consumed, i.e., the validity time of a message. A designer
can always customize the validity constraint observing that the validity lower
bound has to be always not less than the lower bound of the corresponding
delivery time.

5. Inside a try block, an implicit E[0,∞]S relative constraint between the throw
command and the first task on the associated exception branch it is always
set as shown in Fig. 6.31.c. Relative constraints between tasks on an exception
branch and tasks outside the try block are not allowed, because it is assumed
that the exceptions should hardly occur and allowing relative constraints be-
tween tasks on an exception branch and outside tasks makes the temporal
checks harder for most of the model executions uselessly.

Fig. 6.31. (a) Specification of temporal constraints in presence of spawn command. (b)
Specification of temporal constraints between a send and a receive. (c) Specification of
temporal constraints in presence of a catch block.

An algorithm has also be defined for checking the controllability of a Tnest
process. More specifically, controllability is the capability of executing a workflow
for all possible durations of all tasks and satisfying all temporal constraints. A
future work regards the exploiting of NestFlow modularity in the specification
of temporal constraints, in order to reduce the algorithm complexity.
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Fig. 6.32. Main process for the diagnosis and treatment of STEMI. ‘SM’ stands for “Sec-
ondary Management”, ‘ER’ stands for “Exam Request”, ‘DR’ stands for “Drug Therapy”.
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The schema in Fig. 6.32 is an example of application of Tnest for the modeling
of heath-care processes involving temporal constraints. In particular, it summa-
rizes the main steps for the diagnosis and treatment of a myocardial infarction
(STEMI) described in [120]. Some temporal constraints are defined on the prelim-
inary activities: the EMS (Emergency Medical Services) has to be sent within 2
minutes from the initial 911 call, while pre-hospital treatments have to starts 8
minutes from the EMS arrival. After an initial evaluation of the patient conditions
and the available exam results, a first diagnosis is formulated and some operative
choices are taken by clinicians. These operative choices may regard the request for
other analysis, the execution of some treatments and the administration of suitable
drugs. Several instances of such activities can be activated in parallel through the
spawn commands contained in the inner loop block. Task Monitoring deals with
all activities performed in a stable way for continuously checking the patient con-
ditions during her hospital stay. This task periodically sends information about
the patient vital signs to the operative activities that are executing. Temporal
constraints are defined on messages and they specify the patient vital signs have
to be communicated within 10 minutes and they have a validity of 1 day. In case
a complication happens, an exception is thrown and all the running activities are
interrupted, in order to immediately start a new complete patient evaluation and
define a new diagnosis. The main process terminates when a “secondary manage-
ment” operative choice is taken.

♢
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6.4 Summary and Concluding Remarks

Well established business process modeling practices and empirical research ex-
periments suggested that structured control-flow forms are always desirable to
enhance comprehensibility and modularity, and to reduce the probability of in-
troducing subtle errors in process models that are hard to spot and fix without
refactoring the entire model. Unfortunately, existing PMLs are not able to support
a fully structured control-flow design without losing expressiveness.

WCPs are a well accepted framework for evaluating the expressiveness and suit-
ability of PMLs in the PAIS domain; therefore, they are used at the beginning this
chapter for evaluating the suitability and expressiveness of NestFlow. Anyway,
the scoring method adopted in a WCP-based analysis is biased towards language
constructs, limiting its applicability; hence, in this chapter a more objective evalu-
ation method is introduced: WCP support is evaluated on the basis of the number
of used constructs with respect to the CPNs reference implementation proposed
in [12], the number of links with respect to the total number of used constructs and
the constructs variety. The analysis is performed, whenever possible, for a large
number of involved tasks in the worst case scenario. The CPNs language has been
chosen for the comparison because it is the language used to formally specify the
WCP behaviour. In general, NestFlow supports the majority of WCPs with less
constructs than CPNs; it provides a poor support only for those patterns regarding
the explicit manipulation of threads, but this is intentionally because NestFlow
avoids the explicit thread manipulation as a matter of principle.

The last part of the chapter introduces two other application domains for
NestFlow: the geographical and the health-care one. Regarding the design of
geographical processes, the main exploited characteristic of NestFlow is the
ability to mix a data-flow oriented approach with a control-flow one. Conversely,
in the health-care domain, an extension called Tnest is introduced, which allows
one to represent various temporal aspects and verify the temporal controllability
of an entire process.
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Conclusion

This thesis begins by giving in Chap. 3 an overview about the state of the art of
graphical PMLs. In particular, it firstly consider the Petri nets formalism which is
the simplest modeling language able to represent many interesting aspects about
processes, and constitutes the theoretical foundation of many PMLs. Petri nets
are examined starting from its most generic variant, called here PTNs, from which
the other Petri nets languages used through the entire thesis can be obtained as
a syntactical restriction. Other three important languages are then analyzed by
discussing their essential features: CPNs, YAWL and BPMN. A future work in this
direction regards a similar formalization of scientific WfMSs, recalling the results
contained in the report [35].

The thesis then focuses in Chap. 4 on verification and correction of process
models. The chapter initially discusses some issues that affect the currently avail-
able verification techniques and proposes some enhancements to the original notion
of soundness in order to easy the correction activity. The focus of the chapter is
to propose a novel technique able to support the end-user during the following
correction phase. In particular, given a WFNs model with some errors and the
information collected during the soundness check, the proposed technique, called
PNSA, tries to find a set of useful hints to rectified the original model. Some pre-
liminary experimental results have been presented about the application of such
technique to a set of real processes, as a future work the technique will be sub-
mitted to an end-user validation in order to verify that the proposed solutions
not only contain less errors of the original one, but are considered relevant for
the designer. The technique is fairly general and can be easily extended to other
modeling languages, such as YAWL or BPMN, eventually by mapping them to
WFNs, or to other kinds of soundness definition.

The thesis takes then a different path in Chap. 5 by proposing an alternative
modeling approach which is based on the adoption of a structured PML which
can guarantee the presence of interesting control-flow properties by construction,
instead of using sophisticated verification methods a posteriori. In particular, the
NestFlow modeling language is introduced as a proof-of-concept with the aim
to prove that structured a PML can be effectively built taking modularity and
comprehensibility as primary concerns. Such language is based on a set of new
constructs that combine block-structured control-flow constructs with AMP ab-
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stractions. Several missing aspects can be added to the language for obtaining a
fully-fledged system; for instance, the possibility of sending process instances as
objects in streams to support mobility. Other aspects that can be considered in the
future regards the flexibility of process models [4], i.e. the possibility of changing
processes already in execution, the management of compensation activities.

The thesis concluded by discussing in Chap. 6 the expressiveness and appli-
cability of NestFlow both in the PAIS and other domains. Relatively to the
PAIS domain, its expressiveness is evaluated in terms of Worfklow Control-Flow
patterns (WCPs) since they have been widely adopted in literature for evaluating
and comparing workflow systems. Other patterns have been proposed in literature
for evaluating a workflow system, they can be considered in the future for per-
forming additional evaluations, especially when the cited missing features will be
added to the language.

The NestFlow application to the geographical domain seems to be promising.
A future work in this direction consists in providing some constructs for manip-
ulating the specific domain data in a more effective way, for instance by using
spatial query predicates in conditions.

The Tnest extension allows one to specify several interesting temporal con-
straints on the model execution and check their controllability. A future work in
this direction consist in exploiting NestFlow modularity for reducing the com-
plexity of the verification algorithm by providing approximated results.
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