
 

UNIVERSITA’ DEGLI STUDI DI VERONA 

DIPARTIMENTO DISANITÁ PUBBLICA E MEDICINA DI COMUNITÁ 

SEZIONE DI PSICHIATRIA E PSICOLOGIA CLINICA 

 

SCUOLA DI DOTTORATO DI 

SCIENZE MEDICINA E INGEGNERIA 

 

DOTTORATO DI RICERCA IN 

SCIENZE PSICOLOGICHE E PSICHIATRICHE 

XXIV CICLO - 2009 

 

TESI DI DOTTORATO 

A structural magnetic resonance imaging study 

of Orbitofrontal Cortex in Psychosis 

 

S.S.D. MED/25 PSICHIATRIA 

 

Coordinatore: Prof.ssa MIRELLA RUGGERI 

  Firma __________________________ 

 

Tutor:   dr. PAOLO BRAMBILLA 

  Firma __________________________ 

  

Dottorando: Dott.ssa STEFANIA CERRUTI 

               Firma ________________________ 

 



 2

ABSTRACT 

 

BACKGROUND: The orbitofrontal cortex (OFC) is the most inferior and ventral region of 

the prefrontal cortex that lies above the orbits. Through its connections with the amygdala, 

hyppocampus, thalamus, dorsolateral prefrontal cortex and superior temporal lobe, it is 

involved in several cognitive processes, such as sensory integration, reward mechanism, 

decision-making, mood regulation and impulse control. OFC dysfunction is implicated in 

cognitive, affective and social impairments similar to those present in schizophrenia. Although 

with some inconsistencies, there is evidence that OFC volumes are reduced in schizophrenia, 

and that they may be associated with psychopathology and altered cognition. However, it is 

still not clear whether OFC deficits are present before the onset of the disease or whether they 

occur with the progression of the illness.  

OBJECTIVES: The aims of the study were to measure the volumes of the OFC and its 

subregions, as traced on MRI scans, in a group of schizophrenia patients (SCZ), in a group of 

First Episode Psychosis patients (FEP), recruited in the context of the Psychosis Incident 

Cohort Outcome Study (PICOS), and a in group of healthy controls (HC) and to investigate 

the changes in OFC volumes over time in this cohort.  

METHODS: socio-demographical and clinical data were initially acquired from 26 SCZ 

patients, 16 FE patients and 21 HC subjects. The MRI sessions were conducted using a 1.5 T 

scanner and the images were analyzed using the BRAINS2 software. Subjects were scanned  

the second time after a mean follow up period of 3 years. The OFC and its medial and lateral 

subregions  were traced and  they were segmented for grey and white matter. 

RESULTS: In the cross sectional comparison, both the white and grey matter of the left 

lateral OFC was found to be increased in SCZ patients in respect to FEP patients and HC. In 

the longitudinal comparison the OFC grey matter volume of FEP patients had a greater 

decrease across time than those of chronic SCZ patients and HC.  

DISCUSSION: The left lateral OFC seems to be a brain region particularly affected by 

volume alteration  in schizophrenia. The OFC grey matter reduction in FEP patients across 

time might confirm the assumption that brain volume is more affected by loss in the very first 

time of the  illness. 
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1. BACKGROUND OF THE STUDY 

 

1.1 Psychosis and brain imaging 

 

Since the demonstration of the ventricles enlargement in the 1970s with a CT study on 

schizophrenia patients (Johnstone et al., 1976; Weinberger et al., 1978), the rapid development of 

modern imaging technology, going from computed tomography and positron and single photon 

emission tomography to magnetic and functional magnetic resonance imaging has allowed a wide 

spread of studies on the neurobiology of psychosis. 

In particular, the magnetic resonance imaging (MRI) which permits a fine distinction of brain soft-

tissue (grey matter, white matter and cerebrospinal fluid)  has the ability to highlight real-time 

functional changes, has been widely used in psychiatric research to investigate the anatomical 

substrate of mental illness.  

Two main methods are applied to study MRI structural images: the Region of Interest (ROI) 

approach and the Voxel Based Morphometry (VBM) (Kubicki et al., 2002; Giuliani et al., 2005).  

The ROI approach is a manual method, in which a region of interest is first detected as of interest 

and is then manually traced with specific tracing software. The Voxel Based Morphometry is an 

automated technique, in which no previous hypothesis on a specific area is needed and  a software 

analyzes the whole brain, voxel by voxel. The ROI method has the strength of having a high 

anatomical validity, but of being time consuming, not allowing the comparison between many brain 

areas or large subjects groups. Indeed, the VBM method, provides non-biases (by prior hypotesis or 

observer-dependent biases) measures of the whole brain, but it requires a spatial normalization of 

the brain scans on a template and it is therefore less sensitive to shape differences and more 

susceptible to errors caused by misregistrations, especially for small areas (Malla et al., 2011).  

 

Over the past 3 decades a wide range of structural studies, using both ROI or VBM methods, 

focused on brain volumetric changes in psychiatric disorders. The most common findings in 

schizophrenia, and to a certain extent in psychosis in general (Dazzan et al., 2011) beside the 
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confirmation of ventricular enlargement, were general grey/white matter reductions and regional 

volume reduction (frontal, temporal and limbic regions) providing a common accepted evidence of 

subtle abnormalities of cerebral structure in patients with schizophrenia (DeLisi 2008; Fornito et al., 

2009; Ellison Wright and Bullmore 2010). 

In affective psychosis, the most common findings were also volume reductions in frontal and limbic 

regions, though the results consistence is less than for schizophrenia (Gur et al., 2007; Ellison 

Wright and Bullmore, 2010). Even if with some inconsistencies and differences such as the volume 

of the hyppocampus, reduced in schizophrenia but not in bipolar patients, and the volume of the 

amygdala, enlarged only in bipolar patients (Dazzan et al., 2011), it seems that both disorders show 

an overlap in brain abnormalities, most of all in the frontal lobes (Nakamura et al., 2007; Yu et al., 

2010), suggesting that these disorders may be in a continuum of psychosis (Pantelis et al., 2003; 

Keshavan et al., 2011; Crespo-Facorro et al., 2009). Furthermore, these same patterns of MRI 

morphometric abnormalities where found also in first episode psychosis patients before they are 

diagnosed as schizophrenic or bipolar patients (Pantelis et al., 2003; Nakamura et al., 2007; De 

Castro-Manglano et al., 2011; Dazzan et al., 2011). 

 

1.2 Schizophrenia: Developmental versus degenerative hypotheses   

 

Schizophrenia is a severe, chronic and disabling mental disorder characterized by thought 

disorganization, delusions and hallucinations, flattened affect and social withdrawal. It arises in late 

adolescence or early adulthood and affects 1% of the world population. Because of its large range 

of symptoms, that affects cognition, emotion and behavior, it is an illness with an heterogeneous 

course and a high degree of disability (Van Haren et al., 2008). 

Although the aetiology of schizophrenia remains still unclear, it is considered to be multifactorial as 

there are many factors that seems to have a role in its pathogenesis (Lewis et al., 2002): the 

interaction of genetic risk, pre and peri-natal complications, environmental and social stressors, 

early in the development, leads to alterations in the brain, making a person more susceptible to 

developing schizophrenia (Nuechterlein and Dawson 1984; Cannon et al., 2000; Mathalon et al., 

2003; Hanson et al., 2005). Neither the genetic nor the environmental factors are considered fully 

determinant and risk factors later in life may be different for each person: while someone may 

develop schizophrenia due largely to family environment, another may develop it due to the 

prevalence of gene factors, and a third may not develop it. Although the exact processes that causes 
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schizophrenia remains still unclear, there is common agreement about the presence of vulnerability 

to the illness, as confirmed by studies on high risk subjects (Lawrie et al., 1999¸ Brewer et al., 

2006); therefore, the identification of a set of trait and biological markers of this vulnerability could 

be of fundamental importance for early clinical interventions.   

Structural brain abnormalities in schizophrenia are now widely accepted, but, although these 

abnormalities are evident, the timing of their occurrence remains unclear.  

There are two main hypotheses on the nature of the illness: the neurodevelopmental model 

(Weinberger et al., 1987; Marenco and Weinberger, 2000) and the neurodegenerative model 

(Lieberman et al., 1999; Van Haren et al., 2008). 

The first postulates that early developmental insults in childhood may induce neural pathological 

process that leads to schizophrenia symptoms in adolescence or early adulthood. To support this 

hypothesis, authors (Cannon et al., 2000; Marenco and Weinberger, 2000) refer to the fact that the 

brain pathological process, caused by both genetic and environmental factors, begins before the 

brain has reached its anatomical adult state: follow back and cohort studies have demonstrated that 

pre-schizophrenic children have developmental social and cognitive delays, behavioral and 

intellectual abnormalities (Brewer et al., 2006) and individuals who later developed schizophrenia 

had higher probability to have experienced pre and peri-natal insults and stressful events (Cannon et 

al., 2000).  

The neurodegenerative hypothesis postulates that a degenerative process of the brain tissue goes on 

after the first psychotic symptoms: it arises from the results of neuroimaging studies reporting 

progressive brain changes after illness onset and it rises back to the hypothesis of Kraepelin and 

Bleuler (Bleuler 1950; Kraepelin 1971) that a destruction of brain tissues is associated with 

psychosis (Lieberman et al., 1999). Supports for this hypothesis came from longitudinal structural 

studies that showed a progression in time of brain abnormalities detected in cross sectional studies , 

with worsening associated with length of illness (Cahn et al., 2009b; Pantelis et al., 2005).  

To date, there is some agreement in considering these two models as not mutually exclusive: instead 

of a dichotomy, they should be considered as two stages of a continuous process (Woods 1998; 

Keshavan 1999). There can be an initial neurodevelopmental impairment that causes vulnerability 

to the illness and that could be the substrate for a later degenerative process, that goes on with 

illness chronicity (Pantelis et al 2005; Hulshoff Poll 2008). 
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1.3 Frontal lobes and schizophrenia 

 

Patients with schizophrenia have symptoms, especially negative symptoms (i.e. flattened affect, 

lack of speech fluency) and cognitive impairments (i.e., executive, problem solving and decision 

making  impairments, poor insight), that are similar to those observed in patients with damage of 

the frontal lobes, following injury, tumors or strokes (Bechara 2004; Rolls 2004).  

The frontal lobe is the area of the brain located in front of each hemisphere, anterior to the parietal 

and occipital lobe and superior to the temporal lobe. It is involved in several higher cognitive 

function like problem solving, planning, reasoning and decision making. 

 

 

                                                     Fig 1: frontal lobe subdivisions. 

 

Each frontal lobe is divided into three parts, the first collocated anteriorly is called prefrontal cortex, 

the posterior part is composed by the premotor and motor area.    

The prefrontal cortex is one of the most complex and evolved part of the human cerebral cortex and 

it has numerous connections with all other areas of the brain cortex, as well as with limbic and 

subcortical structures, thus, it has an important modulatory role in human behavior (Shenton et al., 

2001) and in complex environmental information processing: it is the main elaboration and 

executive centre of the brain. Schizophrenia patients have difficulties with the regulation of 

perception and behavior: both this fact and the observation that cognitive impairments like those 

present in schizophrenia patients are associated with measures of  frontal lobes damages (Andreasen 
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et al., 1992; Weinberger et al., 1992), lead to the hypothesis that frontal lobes might have a key role 

in schizophrenia (Weinberger et al 1988; Weinberger et al., 1994; Mc Carley et al., 1999; Shenton 

et al., 2001) and caused a considerable arising interest in the researchers , making the frontal lobes a 

focus of structural studies.  

 

The MRI study of the frontal lobes firstly focused on patients with established chronic 

schizophrenia, while they brought some results, they are susceptible of chronicity biases errors, so 

researchers began to study also first episode psychosis patients and high risk subjects (Pantelis et 

al., 2009) in order to better characterize the aetiology of the illness. 

 

Furthermore, since there is evidence of morphological and neurophysiological alterations of the 

frontal cortex also in affective and in non schizophrenic psychosis (Dazzan et al., 2011) the frontal 

lobes are thought to have a key role in psychosis.  

 
 
1.3.1 Cross sectional studies on the frontal lobes 

 
 
 
Systematic reviews on ROI studies (Wright et al., 2000; Shenton et al., 2001; Pantelis et al., 2005; 

Crespo-Facorro et al., 2007) reported evidence for volume alterations, mainly reductions, in the 

temporal and frontal regions.  

On the VBM studies, 6 recent meta-analyses (summarized in tab 1) were conducted on 

schizophrenia patients at different stages of the illness. Honea (Honea et al., 2005), Glahn (Glahn et 

al., 2008) and Fornito (Fornito et al., 2009) have analyzed respectively 15, 31 and 37 papers on 

chronic patients. Ellison-Wright (Ellison-Wright et al., 2008) and Cahn (Cahn et al., 2009) analyzed 

both first episode (respectively 9 and 14 papers) and chronic patients (respectively 29 and 19 

papers). Jockschat et al.  (2011) included 38 studies in a meta-analysis but only in 26 the duration of 

illness was reported.  

 

 Studies Subjects Illness stage Volume Main 

findings 

Honea et al., (2005) 15 
390 PT 

364 HC 
Ch and Fe 

Reductions  

temporal and frontal 

lobes 

Ellison Wright et 

al., (2008) 
27 

224 Fe 

1332 Ch 
Ch and Fe 

Reductions Frontal 

lobes in FE, frontal 
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1541 HC and temporal in Ch 

Glahn et al., (2008) 31 
1195 PT 

1292 HC 
Only Ch 

Volumes reduction 

in frontal lobes 

Cahn et al., (2009) 41 

446 Fe 

601 Hr 

808 Ch 

Hr, Fe and Ch 

Fronto temporal 

reductions in Fe, 

temporal reductions 

in Ch, frontal 

reductions  in Hr 

Fornito et al., 

(2009) 
37 

1646 PT 

1690 HC 
Only Ch 

Volume reductions 

in temporal and 

frontal lobes  

Jockschat et al., 

(2011) 
83 

1736 PT 

1915 HC 
Not reported 

Volume reductions 

in temporal frontal 

and thalamic 

regions 

Tab 1. Meta-analyses of VBM studies on schizophrenia. PT: patients, Hr: high risk, Ch: 
chronic, Fe: first episode, HC: healthy controls. 

  

 

The most consistent findings across these meta-analysis are clusters of grey matter reductions in the 

frontal, temporal, limbic, striatal and thalamic regions of schizophrenia patients: these alterations 

become more extensive with the chroncity of the illness. 

Smieskova et al.  (2011) analysed 21 studies on high risk subjects with subsequent transition to 

psychosis and found clusters of volume reductions in prefrontal and medial temporal regions. 

Finally, two meta-analysis have compared VBM data on schizophrenia patients with data on bipolar 

disorder patients (Ellison-Wright and Bullmore, 2010; Yu et al., 2010): both studies found volume 

reductions in frontal and temporal regions in schizophrenia patients. Interestingly, the regions found 

to be reduced in bipolar patients overlapped with those of schizophrenia patients, even if bipolar 

patients have less marked reductions and showed specific decrease in paralimbic regions that are 

involved in emotional processing. 

 

Meta-analyses had some limitations: individual studies incorporated use different sample size, 

sample characteristics, brain measurement and statistical methods; furthermore, the standardized 

and most often used ALE method does not accommodate covariates in the analysis, so confounding 

factors can influence the results.   
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1.3.2 Longitudinal studies on the frontal lobes 

 
 
 
A longitudinal study is defined as a research study that consists in repeated observations or 

measurements of the same variables over stabilized periods of time: usually it consists in making a 

first valuation at a first time point (T1) and in repeating this measurement after a certain period of 

follow up (T2). 

In order to clarify the issue about the timing of the structural abnormalities and to investigate if they 

are permanent and static or progressive during the course of the illness, several longitudinal studies 

have been conducted at different stages of the illness so far. 

Longitudinal studies on subjects with a high risk to develop schizophrenia and on first-episode (FE) 

patients have demonstrated that the brain abnormalities described in cross-sectional studies may be 

progressive over time, starting from the earliest prodromal phases of the illness till the chronic 

phase (Cahn et al., 2009b; Pantelis et al., 2005). The majority of the longitudinal studies on 

schizophrenia focused the investigation on the first 5 years of illness and the few studies (Pantelis et 

al 2005; Hulshoff Poll 2008) conducted on chronic patients reported some evidence that the brain 

changes occurring during the early stages of schizophrenia are progressing also in the chronic 

patients, suggesting that the brain changes may be progressive also beyond the first psychotic 

episode. 

Furthermore, these progressive brain changes in chronic patients where found to correlate with a 

worse clinical outcome, but not with specific clinical variables, i.e number of hospitalizations or 

psychotic relapses during the two scans interval and they cannot be explained by antipsychotic 

medication intake: possibly, atypical antipsychotic assumption may even counteract brain volume 

loss (Hulshoff Pol & Kahn 2008). Progressive brain changes in chronic patients have been 

demonstrated in the whole brain and are more pronounced in frontal and temporal cortical areas 

(Ellison-Wright et al., 2008; Fornito et al., 2009; Olabi et al., 2011).  

 

1.4 Orbito-Frontal Cortex  

 

Within the frontal lobes, three main prefrontal cortex regions are involved in the regulation of 

cognition and emotions in humans, i.e. the anterior cingulate, the dorsolateral prefrontal cortex 

(DLPFC) and the orbitofrontal cortex (OFC) (Teasdale et al., 1999, Gray et al., 2002). 
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Fig 2: Broadman Areas of the human brain 

In particular, the orbitofrontal cortex (OFC) lies above the orbits in the ventral part of the frontal 

lobe, extending from the anterior perforated substance to the frontal pole (Broadman Areas 10, 11, 

12, 13, 14 and 47). It has been subdivided in a medial part, involved in the processing of negative 

emotions, and in a lateral part, associated with the integration between positive emotions and 

cognition (Lacerda et al., 2003). The OFC has extensive connections with several brain areas like 

the amygdala, hippocampus, thalamus, dorsolateral prefrontal cortex and superior temporal lobe 

(Lacerda et al., 2007; Ongur & Price, 2000), and is involved in several cognitive processes, such as 

sensory integration, reward mechanism, decision-making, mood regulation and impulse control 

(Bechara, 2004; Happaney et al., 2004; Rolls, 2004). Since it’s connections with the limbic system, 

it is thought to have an important role in modulating human behavior through stimulus-reinforcer 

association learning processes, reward and punishments processing and  integration between 

affective and non affective informations: therefore it has a key role in goal-directed behavior and 

emotional processing (Kringelbach 2005). Indeed, several functional imaging studies reported OFC 

activation during reward-guided learning and decision making tasks (Kringelbach and Rolls 2004; 

Walton et al., 2004; Kringelbach 2005) and in tasks involving emotions. 

Damages of the OFC cause cognitive, affective and social impairments, which are similar to the 

symptoms expressed by patients suffering from schizophrenia (Bechara et al 2004; Lacerda et al., 

2007). In this regard, the OFC may play a crucial role for the pathophysiology of the disease. 
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1.4.1 Cross sectional studies on the OFC 

 

Several (Goldstein et al., 1999; Gur et al., 2000; Wilke et al., 2001; Shapleske et al., 2002; 

Kawasaki et al., 2004; Riffkin et al., 2005; Tregellas et al., 2007; Schobel et al., 2009; Witthaus et 

al., 2009; Schultz et al., 2010; Takayanagi et al., 2010; Brown et al., 2011), but not all 

neuroimaging studies (Baaré et al., 1999; Szeszko et al., 1999; Yamasue et al., 2004; Rupp et al., 

2005 Lacerda et al., 2007) have reported volume reductions of the OFC in schizophrenia, using 

both manual or automated techniques (tab. 2). Interestingly, OFC volumes have also been found to 

positively correlate with severity of negative symptoms (Lacerda et al., 2007), low levels of insight 

(Shad et al., 2006; Sapara et al., 2007; Bellani & Brambilla, 2008), high levels of aggression and 

impulsivity (Hoptman et al., 2005; Gansler et al., 2008; Kumari et al., 2009), with poor verbal 

memory (Matsui et al., 2008) and decision making performances (Nakamura et al., 2008; Bellani et 

al., 2009). Furthermore, reduced OFC volumes, particularly the middle orbital gyrus, associated 

with greater formal thought disorder and with a longer duration of the illness (Nakamura et al., 

2008). 

Therefore, although with some inconsistencies, there is evidence that OFC volumes are reduced in 

schizophrenia, at least in chronic patients, and that they may be associated with psychopathology 

and impaired cognition. However, it is still not clear whether OFC deficits are present before the 

onset of the disease or whether they occur with the progression of the illness.  

The description above has been published in: Bellani M, Cerruti S, Brambilla P. Orbitofrontal cortex abnormalities 

in schizophrenia.  Epidemiologia e Psichiatria Sociale, 2010, 19:23-5. 
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Study Subjects Age (years) 

 

Duration of 

illness 

(mean) 

 

Tesla,  

Slice Thickness, 

Tracing method 

OFC volumes in 

schizophrenia 

Baaré  
et al.,  
(1999) 

14 patients 
14 controls 

28.5 ± 5.7 
26.9 ± 5.9 

80.3  
months 

0.5 T, 1.2 mm 
VOI  

Preserved 

Goldstein  
et al.,  
(1999) 

29 patients 
26 controls 

44.8 ± 10.5 
39.8 ± 11.5 

22 ± 9.9 
 years 

1.5 T, 3.1 mm  
Parcellation method 

↓ Right OFC GM  

Szeszko  
et al.,  
(1999) 

10 patients 
16 controls 

23.6 ± 3.7 
28.6 ± 6.9 

First episode 1 T, 1.17 mm  
ROI  

Preserved 

Gur  
et al.,  
(2000) 

70 patients 
81 controls 

28.7 ± 6.9 
26.4 ± 6.7 

6 ± 6.4  
years 
 

1.5 T, 1.0 mm  
Parcellation method 

↓ OFC GM  
in female patients 

Wilke  
et al., 
(2001) 

48 patients 
48 controls 

33 ± 9.1 
33 ± 9.8 

8.5 ± 8.4  
years 

1.5 T, 0.9-1.4 mm  
VBM 

↓ OFC GM  

Shapleske  
et al.,  
(2002) 

72 patients 
32 controls 

34.1 ± 8.5 
33.3 ± 8.7 

138.1 ± 94 
months 

1.5 T, 3 mm  
VBM 

↓ OFC GM  

Kawasaki  
et al.,  
(2004) 

25 patients 
50 controls 

25.8 ± 4.5 
24 ± 5.7 

3.1 ± 3.1  
years 

1.5 T, 1.0 mm  
VBM 

↓ OFC GM  

Yamasue  
et al.,  
(2004) 

27 patients 
27 controls 

30.4 ± 7.9 
30 ± 5.6 

9.8 ± 7.2  
years 

1.5 T, 3 mm  
Parcellation method 

Preserved 

Riffkin  
et al.,  
(2005) 

18 patients 
18 controls 

35.9 ± 12 
34.5 ± 11.8 

< 2  
years 

1.5 T, 1.5 mm  
VBM, ROI 

↓ OFC GM  

Rupp  
et al.,  
(2005) 

33 patients 
40 controls 

25.4 ± 4.7 
26.2 ± 4.7 

4 years 1.5 T, 1 – 1.2 mm  
Parcellation method 

Preserved 

Shad  
et al., 
 (2006) 

14 patients 
21 controls 

26.2 ± 7.5 
24.3 ± 5.7 

104 ± 126  
weeks 

1.5 T, 1.5 mm 
ROI 

Preserved 
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Tab.2 Mm= Millimeters; OFC= Orbitofrontal Cortex; ROI= Region of Interest; T= Tesla; VBM= Voxel Based 
Morphometry; VOI= Volume of Interest, GM= Gray Matter.  

 

 

 

 

Lacerda  
et al., 
(2007) 

43 patients 
53 controls 

 24.5 ± 6 
 25.3 ± 7.3 

First episode 1.5 T, 1.5 mm  
ROI 

↑ left OFC GM  

Sapara  
et al.,  
(2007) 

28 patients 
20 controls 

39 ± 10.6 
35.9 ± 13.7 

13.7 ± 10 
 years 

1.5 T, 5 mm  
ROI  

Preserved 

Tregellas  
et al.,  
(2007) 

32 patients 
32 controls 

39.6 ± 8.8 
35.3 ± 9.3 

Not reported 1.5 T, 1.5 mm  
VBM 

↓ OFC GM   

Schobel  
et al., 
 (2009) 

  38 patients 
29 controls 

32.3 ± 10.6 
31.3 ± 9.2 

10.8 ± 9.2  
years 

1.5 T, 1.5 mm  
ROI  

↓ Left OFC  

Witthaus et al.,  
(2009) 

23 patients 
29 controls 

26.4  ± 6.1 
25.7  ± 5.2 

First Episode 1.5 T 1 mm 
VBM 

↓ Left OFC 

Schultz et al., 
(2010) 

54 patients 
54 controls 

26.4 ± 7.7 
26.6 ± 6.3 

First Episode 1.5 T 1 mm 
Parcellation method 

↓ OFC GM   

Takayanagi et 
al.,  
(2010) 

42 patients 
35 controls 

29.15 ± 5.8 
29.55 ± 5 

12.7 ± 12.5 
months 

1.5 T, 1 mm  
ROI 

↓ OFC  

Brown et al., 
(2011) 

17 patients 
21 controls 

44.8 ± 6.8 
45 ± 10.2 

19.1 ± 6.2 
years 

1.5 T 1 mm 
VBM 

 ↓ OFC GM   
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1.4.2 Longitudinal studies on the OFC 

 

There is a lack of longitudinal volumetric studies on OFC and the fews confirmed the hypothesis 

that structural brain changes in schizophrenia may be progressive. In two studies (Pantelis at al., 

2003; Borgwardt et al., 2008) high risk individuals underwent a first scan at baseline and a second 

one after 3 years, in the second scan a reduction of the OFC volume was found, but only in those 

subjects who developed psychosis during the follow up period. The authors argued their results with 

the hypothesis that even if some brain abnormalities are associated with vulnerability to psychosis, 

some other may emerge as psychosis develops and worsen in time. 

In another study on young relatives at risk for schizophrenia, OFC was found to be reduced in 

respect to healthy controls at baseline and to further decline after 1 year (Bohjraj et al., 2011).  

Three studies (Kasparek et al., 2009; Asami et al., 2011; Castro-Manglano et al., 2011) found 

smaller OFC volumes in first-episode schizophrenia patients after a follow-up period of 1, 1.5, and 

3 years respectively, and Mané (2009) reported wider gray matter reduction in the right 

orbitofrontal gyrus in first-episode patients in respect of healthy controls, after a follow-up period of 

four years. Finally, Van Haren (2011) found OFC reduction after 5 years in chronic patients. 

The few existent studies on the OFC seem to confirm the hypothesis that structural brain 

changes in this region in schizophrenia may be progressive, but further longitudinal studies are 

expected to investigate OFC volumes in subjects with an at-risk mental state for psychosis or in 

first-episode patients.  
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2. AIM OF THE STUDY 

 

Based on the considerations of the previous paragraph, in this study we aimed to compare possible 

longitudinal volume changes of the OFC in first episode and chronic schizophrenia patients. Also, 

we analyzed OFC sub-regions separately, based on the functional and anatomical characteristics of 

the OFC in humans, and we segmented each subregion in white and grey matter,  to analyze them 

separately and to explore whether they associate with particular psychopathological dimensions 

(negative versus positive symptoms) or outcome measures. 

 

Aims of this study were : 

-  to measure the volumes of the OFC and its subregions, as traced on MRI scans, in a group of First 

Episode Psychosis patients (FEP), a group of chronic schizophrenia patients (SCZ) and a in group 

of healthy controls (HC); 

-  to investigate the volume differences in these 3 groups at baseline; 

-  to investigate the changes in OFC volumes over time in this dataset; 

- to correlate OFC volume changes over time with psychopathology, outcome, insight. 

We expected FEP and Schizophrenia patients to have different OFC volumes in comparison to HC. 

Moreover, we expected that these differences would be more evident over time. 
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3. METHODS 

 

3.1 Sample recruitment 

 

This study was conducted on 3 groups of subjects: chronic schizophrenia patients, first episode 

psychosis (FEP) patients and healthy controls. All participants provided signed informed consent, 

after having understood the nature and purpose of the study. 

 

Chronic schizophrenia group: 71 patients with a DSM-IV diagnosis of schizophrenia aged 

between 18 and 65 years, were recruited from the geographically defined catchment area of South-

Verona (Italy) through the South Verona Psychiatric Case Register (Amaddeo et al., 2009; 

Amaddeo & Tansella, 2009) and underwent a Magnetic Resonance Scan at baseline and another 

one at follow up. Exclusion criteria were the presence of comorbidity of axis I disorders, mental 

retardation, organic mental disorder (epilepsy, dementia, cerebro-vascular or infective illness, head 

injury or brain tumors), organic medical illness and alcohol and substance abuse. 

This study is part of a wider research project (FIRST, “Following imaging resilience features in 

schizophrenia and affective disorder”) that was approved by the Ethics Committee of the Azienda 

Ospedaliera Universitaria Integrata of Verona.  

 

First episode psychosis group: 83 First Episode patients were recruited for MRI, in the context of 

the Psychosis Incident Cohort Outcome Study (PICOS). The PICOS study is a large multisite 

research(coordinated by Prof. Mirella Ruggeri)   taking place in the Veneto Region of Italy, with the 

aim to evaluate the role of clinical, social, genetic and cerebral morphological factors in predicting 

the outcome of the psychotic episodes. Overall, 25 routine public community-based mental health 

services took part in the PICOS: they were asked to refer all potential cases of psychotic patients at 

first service contact to the study’s research staff, during the index period.  

The research project was composed by three research modules:  

Module 1 - Clinical and epidemiological evaluations (Head, Dott. Antonio Lasalvia) 

This module takes into account the evaluation of clinical and social variables of patients affected by 

a  psychotic disease with the aim of characterizing the onset of the illness and following the medial 
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and long term outcome. Study variables are: life events, premorbid adjustment, premorbid IQ, 

parental bonding, psychopathology (positive/negative and depressive/manic symptoms), global 

functioning, social disability, insight level, “neurological soft signs”, quality of life, mental health 

services satisfaction, collateral drug effects and needs for care. 

Module 2 – Genetics (Head Dott.ssa Sarah Tosato) 

It is based on the analysis of the familiarity of psychotic disorders and of the genetic predisposition 

to psychosis. It includes the reconstruction of probands’ Family Tree for psychosis and techniques 

of molecular genetics. Blood samples from patients and their first degree relatives were collected 

for DNA analyses, which will be focused on putative susceptibility genes for psychoses: Neuregolin 

1, PRODH2, Brain-derived Neurotrophic Factor (BDNF), Disrupted in Schizophrenia 1 (DISC 1). 

Module 3 - Brain imaging (Head Dott. Paolo Brambilla) 

It includes the study of brain anatomy through  the evaluation of structural/ functional brain 

abnormalities by MRI scans; a series of neuropsychological tests has been also performed, by the 

Brain Imaging Unit of the University of Verona, in order to find possible correlations between brain 

abnormalities and specific brain functions. MRI scans are performed at baseline and at 1 year. MRI 

and test procedure are described in detail in the next paragraphs. 

 

Patients with a first episode of psychosis were recruited at their first contact with the psychiatric 

services of the Veneto region during a period of 24 months: within 30 days by their first contact, 

patients were administered the “WHO Screening Schedule for Psychosis” (Jablensky et al, 1992), a 

screening test for the identification of possible cases to be included.  

Inclusions criteria were: 

1. Age 18-54 

2. Presentation of at least one severe positive symptom or two severe negative symptoms 

3. First absolute contact with the psychiatric service for the symptoms of the previous point 

4. If treated for the symptoms on point 2, treatment duration must be less than 3 months 

5. Absence of organic mental disorder (epilepsy, mental retardation, dementia, cerebro-

vascular or infective illness, head injury or brain tumors) 
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6. With respect to the research exclusion criteria adopted by Module 1, further criterion was 

applied in Module 3: alcohol or substance abuse in the six months preceding MRI. 

For both schizophrenia patients and FEP psychosis patients the diagnosis was confirmed by the 

IGC-SCAN (Item Group Checklist of the Schedule for Clinical Assessment in Neuropsychiatry, 

World Health Organization, 1992). 

Healthy Controls Group:  Ninety-two healthy controls without DSM-IV axis I disorders and with 

an age comprised between 18 and 65 years were also recruited. SCID-IV non patient version, GAF 

were assessed. Exclusion criteria were the presence of mental retardation, organic mental or 

psychiatric disorder (epilepsy, dementia, cerebro-vascular or infective illness, head injury or brain 

tumors), organic medical illness and alcohol and substance abuse. 

 

As regards the SCZ and FEP patients group, a clinical assessment was administered by a trained 

research clinical psychologist. It is composed by rating scales measuring three main dimensions:  

1) global functioning and quality of life [Global Assessment of Functioning (GAF), Strauss and 

Carpenter Outcome Scale, World Health Organization-Disability Assessment Schedule 

(WHO-DAS), Manchester Short Assessment of Quality of Life (MANSA), Short Form 

Health Survey 36 (SF-36), EuroQol (EQ-5D)];  

2) drug attitude [Moriskey Scale; Drug Attitude Inventory (DAI)]  

3) insight/psychopathology [Schedule for the Assessment of Insight (SAI-E), Brief Psychiatric 

Rating Scale (BPRS, 24-item version), Hamilton Depression Rating Scale (HDRS), Bech–

Rafaelsen Mania Rating Scale (BRMRS)].  

Other socio-demographic data such as age of onset (operationally defined as the time patient had his 

first contact with psychiatric services), duration of illness, number of hospitalizations, handedness 

and psychopharmacological lifetime treatment were collected from patients’ interviews and medical 

records.  

Moreover, both patients and healthy subjects were assessed with a full neuropsychological 

assessment exploring the domains of language, executive functions, general cognitive functioning, 

inter-hemispheric communication. Hand dominance was measured using the Edinburgh 

Handedness Inventory, a questionnaire asking subjects to indicate the hand used in performing 10 

activities (writing, drawing, throwing, using scissors, using a toothbrush, using a knife without a 
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fork, using a spoon, the upper hand when using a broom, striking a match, and opening the lid of a 

box). The strength of this preference was also investigated.  

In the present study, the following instrument have been utilized in the analyses, and thus described 

in details in the following paragraphs:  

The Global Assessment of Functioning (GAF) is a numeric scale (from 0 to 100), part of the 

DSM-IV-R, Axis V, which considers psychological, social, and occupational functioning of the 

subject on a hypothetical continuum of mental health-illness. It does not include impairment in 

functioning due to physical (or environmental) limitations. The GAF has 10 anchor points, which 

can be further divided into 10 points by providing a continuum from "complete mental health" 

(100) to "risk of death" (1): 81 to 100 = absence of psychopathology, 71 to 80 = marginal 

psychopathology, psychopathology = 1 to 70 of different severity. The GAF is useful in studies 

requiring the assessment of well-being or for measuring the degree of improvement.  

 

 Post processing analyses were conducted only on the scans of subject who had both baseline and 

follow up scans: 27 schizophrenia patients, 22 healthy controls and 39 first episode patients. 

The OFC was traced on MRI images of 27 schizophrenia patients, 22 healthy controls and 21 FEP 

patients: one schizophrenia patient, one healthy control and 5 FEP were excluded for technical 

problems. 

The final sample consisted of 16 FEP patients, 26 schizophrenia and 21 healthy controls. 

 

3.2 MRI acquisition and image processing 

 

The MRI sessions were conducted at the Section of Radiology (prof. Pozzi Mucelli and Dr Cerini) 

of the Verona Hospital (Policlinico G.B. Rossi) and MRI scans were acquired with a 1.5T Siemens 

Magnetom Symphony Maestro Class scanner (Syngo MR, 2002B). A standard head coil were used 

for RF transmission and reception of the MR signal; restraining foam pads were used to minimize 

head motion. T1-weighted images were first obtained to verify each subject’s head position and the 

image quality (TR=450 ms, TE=14 ms, flip angle=90o, FOV=230x230 mm, 18 slices, slice 

thickness=5 mm, matrix size=384x512, NEX=2). PD/T2–weighted images were then acquired 

(TR=2500 ms, TE=24/121 ms, flip angle=180o, FOV=230x230 mm, 20 slices, slice thickness=5 
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mm, matrix size=410x512, NEX=2), according to an axial plane parallel to the anterior-posterior 

commissures (AC-PC), to exclude focal lesions. Subsequently, a coronal 3D MP-RAGE sequence 

were acquired (TR=2060 ms, TE=3.9 ms, flip angle=15°, FOV=176x235 mm, slice thickness=1.25 

mm, matrix size=270x512, TI=1100) to obtain 144 images covering the entire brain. All imaging 

data were transferred to a PC workstation and analyzed using the BRAINS2 software developed at 

the University of Iowa (http://www.psychiatry.uiowa.edu/ mhcrc/ IPLpages/ BRAINS .htm). 

 

ROI tracing 

 

The OFC was manually traced in the coronal plane, using a standardized geometrical method 

developed by Lacerda and colleagues (Lacerda et al., 2003; Lacerda et al., 2004). The first slice was 

the one at the rostrum of the Corpus Callosum and the last slice to be traced was the most anterior 

slice where the brain tissue could be identified. 

In all slices, the lateral boundaries where represented by a point placed on the intersection between 

the tangents to the lateral and the inferior limits of the frontal lobes. The superior limit, in the 

subgenual region, was the inferior border of the Anterior Cingulate and a point placed 5 slice higher 

to this inferior border, in the region in front of the genu of the Corpus Callosum. In each slice, lines 

were drawn to connect the superior boundary point with the intersections points of the inferior and 

lateral tangents of the frontal lobes. The lateral borders of the triangle so obtained were the lateral 

boundaries of the tracings. The inferior border was then edit and re-traced following the inferior 

surface of the frontal lobes (Fig 3). 

This total trace (OFC) was then divided in a right and a left part (R_OFC and L_OFC), following 

the interhemisferic sulcus (Fig 4), and each right and left part was further on divided into a medial 

and a lateral part (R_Lat_OFC, L_Lat_OFC, R_med_OFC and L_med_OFC) following the 

olfactory sulcus (Fig. 5). 

The software BRAINS2 automatically calculates the volumes and creates a 3D reconstruction of the 

traced area (Fig 6). 

The inter-rater reliability, defined by ten randomly selected scans traced by two blind raters, was 

r=0.91 for the entire OFC, r=0.92 for the right-left division, 0.92 for the right lateral-medial division 

and 0.91 for the left lateral-medial division.  
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Fig 3: OFC tracing 

 

 

 

Fig 4: Right/Left subdivision of the OFC 
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Fig 5: Lateral and medial subdivisions of the OFC 

 

         

Fig 6: OFC volume 
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Fig 7: 3D reconstruction of the OFC 
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4. STATISTICAL ANALYSIS 

 

 

4.1 Socio demographical characteristics 

 

We performed ANOVA (or Chi-squares test) to analyze socio-demographic, clinical and ICV 

volumes differences between groups. 

 

4.2 Cross sectional analyses baseline and follow up 

 

 
ANCOVA with age, gender and ICV as covariates and Bonferroni post hoc correction were 

performed to compare the volumes of OFC and its sub-regions, both at baseline and follow-up 

(group as between-subject factor).  

We also calculated Pearson’s correlations between OFC volumes and clinical variables at both 

baseline and follow up (p value set at 0.005).  

 
4.3 Longitudinal analyses  

 

 

To compare the longitudinal OFC volume changes in the three groups, we firstly performed a GLM 

for repeated measures (age, gender and ICV as covariates) with time (baseline-follow up), 

hemisphere (left-right) and region (total-white matter-grey matter) as within-subjects factors and 

group (FEP-SCZ-HC) as between-subjects factor.  

Secondly, we adopted another approach to longitudinal data by calculating the percent difference 

(DP) of volume changes between baseline and follow up scans [(volume at second scan – volume at 

first scan)/volume at first scan*100] and then we performed an ANCOVA analysis on these data, 

using age, gender and ICV as covariates.   

Furthermore, in order to take into account the difficult to understand the phenomenon of changes of 

volumes by means of DP calculation (changes are positive and negative, so the mean values are 

nearly zero) longitudinal changes were calculated as percentages of subjects, within each group, 

who showed an increase in the volumes between baseline and follow-up (DP<-0.99) or a decrease 

(DP>+0.99) or a stability (-0.99<DP<+0.99). The choice of a value of 0.99 was established on the 

basis of the review of Hedman (Hedman et al., 2011) in which the authors found a decrease of brain 

volume in healthy subjects of 0.2% pro year. Therefore we considered as normal a volume loss of 

1% in three years (our mean inter-scan interval). The pattern of increase/decrease/stability (CH: 

changes) in the three types of subjects (HC, FEP, SCZ) was evaluated by Chi-square test.   
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All analyses were conducted using SPSS 17.0 for Windows (SPSS Inc., Chicago). All tests were 

two-tailed and the statistical significance level was set at p<0.05. 
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5. RESULTS 

 

 

5.1 Sample characteristics 

There were no differences in age, gender, education and ICV between groups. Socio-demographic 

and clinical variables of the sample, are summarized in tab.3 (baseline) and in tab.4  (follow up). 

 

 

        Tab 3 Socio-demographic and clinical characteristics of the sample at baseline.  
 

 

 
HC (N=21) FEP (N=16) SCZ (N=26) Statistics 

 Gender (F/M) 10/11 9/7 7/20 Χ = 4.46  p = 0.11 

 Age 39.29±11.91 35.50±11.48 39.11±11.96 F = 0.58  p = 0.56 

 Education (low/high) 28.6/71.4% 18.8/81.3% 63/37% Χ  = 10.02  p = 0.07 

 Age at onset - 34.77±10.44 25.07±9.81 F = 9.52  p = 0.004 

 Illness duration 

(months) 
- 2.38±1.5 168.78±151.64 t = 19.32  p = 0.000 

 Number of  

hospitalizations 
- 0.67±0.62 5.46±8.9 F = 4.32  p = 0.044 

 GAF score 79.35±4.31 58.08±18.2 50.96±15.05 F = 25.6  p = 0.00 

 Anxiety/depression 

(BPRS) 
- 10.93±5.32 11.58±5.25 t = 0.14  p = 0.73 

 Negative symptoms 

(BPRS) 
- 8.33±1.91 11.37±3.82 t = 8.17  p = 0.007 

 Positive symptoms 

(BPRS) 
- 6.87±2.47 10.77±5.74 t = 4.98  p = 0.03 

 Mania (BPRS) - 9.87±1.46 12.87±5.15 t = 4.82  p = 0.03 

 BPRS total score - 32.8±7.67 41.21±15.29 t = 4.88  p = 0.03 

ICV 1476±143 1431±141 1464±149 F = 0.50     p = 0.60 
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Tab 4 Socio-demographic and clinical characteristics of the sample at follow up,  
 
 

 

 

 

 

 

 

 

 

 

 

 
HC (N=21) FEP (N=16) SCZ (N=26) Statistics 

 

Gender (F/M) 

10/11 9/7 7/20 Χ = 4.46  p= 0.11 

age 42.38±12.36 37.19±11.39 42.27±12.3 F = 1.07  p= 0.34 

Illness duration 

(months) 
- 23.50±7.64 204.5±160 t = 20.23  p= 0.00 

Number of 

hospitalizations 
- 0.8±0.78 6±8.9 t = 5.04  p= 0.03 

GAF score 82.57±6.05 59.5±16.03 48.12±13.64 F = 44.89 p= 0.00 

Anxiety/depression 

(BPRS) 
- 8.27±1.83 10±3.69 t = 2.84  p= 0.10 

Negative symptoms 

(BPRS) 
- 8±1.19 9.64±2.78 t = 4.66  p= 0.04 

Positive symptoms 

(BPRS) 
- 6.53±2.19 8.04±3.34 t = 2.4  p= 0.13 

Mania (BPRS) - 10±2.07 11.72±2.98 t = 3.86  p= 0.06 

BPRS total score - 29.6±5.38 35.54±8.75 t = 5.56  p= 0.02 

ICV 1474±135 1412±136 1471±151 F = 1.07  p = 0.35 

Interscan Interval 

(months) 
36.71±8.03 21.13±7.5 32.92±17.50 t = 7.16  p= 0.02 
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5.2 Cross sectional analyses  

 

 

5.2.1 ANCOVA - volumes at baseline 

 

 

At baseline, ANCOVA showed a difference between groups in the OFC grey matter volumes, both 

in right and left side (see tab. 5). 

Post hoc test revealed that SCZ had bigger volumes than FEP and HC in the above mentioned 

regions (OFC grey matter: p=0.026; right OFC grey matter: p=0.013; left lateral OFC grey matter: 

p=0.045). 

 

 

 

  HC 

(N=21) 

FEP 

(N=16) 

SCZ 

(N=26) 
Statistics 

OFC grey matter 9.53±1.64 9.83±1.80 10.75±2.11 F=3.71 p=0.030 

Right OFC grey 

matter 
4.90±0.82 4.95±0.96 5.53±0.99 F= 4.48 p= 0.015 

Left lateral OFC 

grey matter 
1.75±0.44 1.76±0.32 2.09±0.56 F= 3.36 p= 0.042 

 

Tab. 5 ANCOVA baseline. Only significant results are reported. 
 
 
 

 

 

 

 

 

5.2.2. ANCOVA - volumes at follow up 

 

 
At follow up, the left lateral OFC volume (total and both white and grey matter) differed between 

groups (see tab 6). 

Post hoc test showed that SCZ had bigger volumes than FEP and HC in these regions (left lateral 

OFC: p=0.007; gray matter lateral OFC: p= 0.019; white matter lateral OFC: p=0.003). 
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Tab. 6 ANCOVA follow up. Only significant results are reported. 
 

 

 

5.2.3. Pearson’s Correlations 

 

We found positive correlations, in the FEP group, between the OFC volume and negative symptoms 

on the BPRS at baseline (table 7a), and between the OFC volume and positive symptoms on the 

BPRS at follow up (table 7b). In the SCZ and in the HC groups, no significant correlations were 

found. 

 

 

 Ofc Ofc wm Ofc gm R ofc L ofc L ofc wm L ofc gm 

negative 

symptoms 

r=0.74 
p=0.001 

r=0.70 
p=0.004 

r=0.73 
p=0.002 

r=0.69 
p=0.004 

r=0.77 
p=0.001 

r=0.74 
p=0.001 

r=0.75 
p=0.001 

R lat R lat wm R lat gm R med gm L med L med wm L med gm 

r=0.73 
p=0.002 

r=0.69 
p=0.004 

r=0.74 
p=0.002 

r=0.71 
p=0.003 

r=0.79 
p=0.000 

r=0.71 
p=0.003 

r=0.85 
p=0.000 

 

Tab 7a. ofc, orbitofrontal cortex; r, right; l, left; wm, white matter; gm, grey matter; med, medial; 
lat, lateral. 
 

 

  HC 

(N=21) 

FEP 

(N=16) 

SCZ 

(N=26) 
Statistics 

 Left lateral OFC 4.87±1.11 5.05±1.28 6.16±1.78 F= 5.24 p= 0.008 

Left lateral white 

matter OFC 
2.39±0.52 2.48±0.63 2.93±0.90 F= 6.08 p= 0.004  

 Left lateral grey 

matter OFC 
1.68±0.40 1.69±0.45 2.06±0.58 F= 4.28 p= 0.018  
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Tab 7b. ofc, orbitofrontal cortex; r, right; l, left; wm, white matter; gm, grey matter; med, medial; 
lat, lateral. 
 

 

 

 

5.3 Longitudinal analyses 

 

 
 

5.3.1 First approach: GLM for repeated measures 

 

No significant main effects and time x group x region (and/or hemisphere) interactions were shown 

in OFC, medial OFC and lateral OFC volumes (test of within-subjects effects) (p>0.05). Also, no 

group differences were revealed by test of between subjects effect (p>0.05). 

Since cross sectional analyses suggested left lateral OFC to be a region of critical interest, we 

repeated GLM for this region only. No time effect was found (test of within-subjects effects), but 

difference between groups (unrelated to time) was confirmed by test of between subjects effect 

(F=4.67; p=0.013). 

 

5.3.2 Second approach: ANCOVA on the DP volume 
 

ANCOVA (with age, gender and ICV as covariates) on the volume DP (that is the % of volume 

difference between baseline and follow up) found a significant difference between groups in the 

OFC grey matter (see tab 8). Post hoc correction showed that this difference is between FEP and 

HC (p=0.029), with FEP showing a bigger difference in the volume of the OFC grey matter than 

healthy controls. 

 
 
 
 
 

Positive 

symptoms 

L ofc 

wm 

L ofc 

gm 
L lat L lat wm L lat gm 

r=0.71 
p=0.003 

r=0.68 
p=0.005 

r=0.78 
p=0.001 

r=0.83 
p=0.000 

r=0.84 
p=0.000 

R med 
R med 

wm 

R med 

gm 

L med 

wm 

L med 

gm 

r=0.73 
p=0.002 

r=0.78 
p=0.000 

r=0.77 
p=0.001 

r=0.75 
p=0.001 

r=0.71 
p=0.003 
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  HC 

(N=21) 

FEP 

(N=16) 

SCZ 

(N=26) 
Statistics 

Percent difference 

OFC grey matter 
-1.90±9.25 4.75±8.13 0.30±7.20 F= 3.60 p= 0.034   

        

Tab. 8 ANCOVA on the percentage differences of volume between baseline and follow up 
 
 

 

5.3.3 Pattern of volume changes (CH)  

 
We found a significant difference in the pattern of changes over time (increase, decrease and 

stability) in the three groups in the OFC grey matter (OFC GM) (χ2 = 9.53; p = 0.049).  

Specifically, within the FEP group, 12.5% showed increased OFC GM volume, 6.3% a stable 

volume and 81.3% a decreased volume over time (see tab. 8). Looking at the adjusted residuals, 

FEP showed a significantly bigger decrease than HC in the volume of OFC GM over time (in bold 

in tab. 9). 

 
 

    HC FEP SCZ Total 

increase N 11 2 11 24 

% within group 52,4% 12,5% 42,3% 38,1% 

stability N 3 1 1 5 

% within group 14,3% 6,3% 3,8% 7,9% 

decrease N 7 13 14 34 

% within group 33,3% 81,3% 53,8% 54,0% 

Total N 21 16 26 63 

% within group 100,0% 100,0% 100,0% 100,0% 

 

Tab. 9 Chi Square test on the percentage differences of volume between baseline 
and follow up in the three groups (OFC grey matter). 
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6. DISCUSSION 

 

We expected first episode psychosis patients FEP and Schizophrenia to have different (greater) 

OFC volumes in comparison to HC. Moreover, we expected that these differences would be more 

evident over time. The finding of larger volumes of  the left lateral OFC grey matter in SCZ patients 

compared to FEP and HC was confirmed at the follow up.  

We expected a reduction of the OFC volume  in SCZ patients, but we found an increased volume in 

SCZ patients compared to FEP and HC in the left part of the OFC, both in white and grey matter. 

Only two studies reported similar increase results: Tanskanen (Tanskanen et al., 2008) found an 

excess of grey matter density in the medial OFC of SCZ patients and Lacerda (Lacerda et al., 2007) 

found an increase in the volume of the left part of the OFC grey matter but in FEP patients, not in 

chronic SCZ patients. 

Interestingly, other studies had found alterations, rather  reduction than increase , in the volume of 

the left part of the OFC: indeed Pantelis (Pantelis et al., 2003) found a reduction of the left OFC in 

high risk subjects who subsequently developed psychosis; Crespo-Facorro (Crespo-Facorro et al., 

2000) found a deficit in the cortical surface size of the left OFC, Venkatasubramanian 

(Venkatasubramanian et al., 2008) reported a bilateral, lateral orbitofrontal cortices deficit in 

antipsychotic naïve schizophrenia patients; Kaspareck found a bilateral grey matter reduction of the 

lateral OFC in first episode schizophrenia patients (Kaspareck et al., 2009) and Takayanagi found a 

bilateral grey matter reduction of the orbital gyrus (Takayanagi et al., 2010).  

Therefore, the left part of the OFC seems to be a brain region particularly affected by volume 

abnormalities in psychosis. 

As regards the findings of an increase of white matter in the left part of the OFC of the SCZ 

patients, to our knowledge, there are only two studies that  found the OFC white matter to be 

implicated in schizophrenia patients: Riffkin (Riffkin et al., 2005) found a reduction of the volume 

of the OFC white matter, but only in the right part, and Hoptmann (Hoptmann et al., 2002) found 

this region to correlate with impulsivity and aggression. If we take into consideration the entire 

frontal lobe, Paillère-Martinot (Paillère-Martinot  et al., 2001) found a bilateral white matter 

reduction in the frontal lobes of early onset schizophrenia patients. 

Although alterations (but reductions) of the OFC grey matter in chronic SCZ is a result often 

confirmed in literature (Bellani et al., 2010), volume alterations in the white matter of this region 
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were less mentioned in literature.  This lack of findings on white matter of the OFC, and of the 

brain in general, is possibly due to the fact that firstly, often volume alterations are mentioned 

without a specific distinction of white and grey matter, (many ROI volumetric studies have not 

specified if the volume they measured was segmented into white and grey matter) and secondarily, 

the majority of volumetric studies have been focused only on grey matter (Ellison Wright and 

Bullmore 2011), the  interest for the white matter volume and integrity of frontal regions in 

schizophrenia is newer than those for grey matter (Walterfang et al., 2011). Instead, for connectivity 

studies which apply the DTI method, a common evidence is a reduced connectivity (lower FA) in 

the infero-frontal occipital fasciculus (White et al., 2008), which is included in our trace of the 

OFC.  

We expected an association between the volume of the OFC and psychopathology: we found an 

enlargement of the OFC at baseline to be positively correlate with severity of negative symptoms, 

and the OFC at follow up with positive symptoms. To our knowledge this is a result present in only 

two studies: Lacerda (Lacerda et al., 2007) reported a OFC volume increase related to severity of 

negative symptoms in first episode schizophrenia patients and Nesvag (Nesvag et al., 2009) found 

the same correlation in chronic schizophrenia patients. Instead, two studies found  negative 

symptoms to be related to reductions of the OFC in schizophrenia patients: Gur (Gur et al., 2000) 

and Baarè (Baarè et al., 1999). Finally Nakamura (Nakamura et ., 2008) reported an association 

between the volume of the OFC and worse positive formal thought disorder. To our knowledge, no 

study to date has established clear association of OFC volume with positive symptoms. 

As regards the longitudinal analysis, the OFC grey matter volume of FEP patients had decreased 

across time more than those of chronic SCZ patients and HC. Although this result is in line with 

some previous findings reporting longitudinal OFC grey matter volume decrease in FEP patients 

(Kasparek et al., 2009; Asami et al., 2011; De Castro-Manglano et al., 2011), and in High Risk 

subjects (Pantelis et al., 2005) they do not have compared the FEP patients with chronic patients but 

only with HC. A volume decrease particularly sited in the right part of the frontal lobe was found in 

the study of Turetsky (Turetsky et al., 1995), but in chronic schizophrenia patients and not in FEP, 

and in a study of Mathalon (Mathalon et al., 2001) but in schizophrenic men and in a study of Job 

(Job et al., 2005) but in High Risk subjects. 

This result on FEP patients might confirm the assumption that brain volume is more affected by 

loss in the very first time of the  illness (Pantelis et al., 2005; Crespo-Facorro et al., 2010).   
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In conclusion, our results are of difficult interpretation because they are not in line with previous 

findings: as described previously, there are common evidence of OFC alteration in schizophrenia 

and in psychosis in general, but this alterations are volume reductions in the majority of the cases, 

secondly, also structural volume alterations of the white matter are seldom mentioned in brain 

imaging studies. Nevertheless, our finding seems to confirm the implication of the OFC in 

schizophrenia and in psychosis in general, and the hypothesis that alterations of this region may 

arise from an interaction between brain maturation and mechanisms related to disease chronicity. 

Our study has two big limits. First of all the sample of the FEP patients is relatively small in 

comparison to that of the chronic schizophrenia, and therefore, in the longitudinal comparison, it 

was not possible to separate FEP patients that developed schizophrenia from those who developed 

an affective psychosis. Our FEP patient group includes 3 subjects who developed an affective 

psychosis, 2 subjects who developed schizophrenia, and 11 subjects who developed an unspecific 

psychotic syndrome. Therefore, we can not make any consideration about the course of the illness 

of the FEP patients, even though these could be a minor limit, since evidence in literature of a 

substantial overlap of volume abnormalities sites in schizophrenia and affective psychoses.  

The second limit is the lack of information about the antipsychotic drug assumption of our sample.  

Three studies found the OFC to be affected by antipsychotic intake: Stip (Stip et al., 2009) found 

greater OFC grey matter density in SCZ patients after 5 months of quetiapine intake, Molina 

(Molina et al., 2004) found a significant direct association between the degree of OFC atrophy and 

the improvement of positive symptoms with olanzapine and Malla (Malla et al., 2011) found a 

bilateral reduction of the OFC in psychotic patients with a longer duration of untreated psychosis 

(DUP), as compared to those with a short DUP. Therefore, it is highly probable that our results may 

be influenced by medication intake: SCZ patients should have a minor decrease of the OFC grey 

matter due to antipsychotic assumption, indeed (Dazzan et al., 2005) atypical antipsychotics seems 

to have a protective role on brain volume. 

Strength of this study is  that it is one of the few studies, conducted with a ROI approach, that has 

considered the subdivision of the OFC in its lateral and medial part, and that each of this parts have 

been segmented into grey and white matter. As mentioned previously, the ROI method has the 

strength of being particularly indicated for very small brain areas, as our OFC subdivisions.  

Further, it would be of interest to enlarge the sample, divide and stratificate the FEP group for 

diagnosis (schizophrenia or affective spectrum) after one year,  and to correlate the volumes also 

with performance on neuropsychological test. 
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