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We propose a copula-based approach to solve the option pricing problem in the risk-neutral setting and with respect to a structured
derivative written on several underlying assets. Our analysis generalizes similar results already present in the literature but limited
to the trivariate case. The main difficulty of such a generalization consists in selecting the appropriate vine structure which turns
to be of D-vine type, contrary to what happens in the trivariate setting where the canonical vine is sufficient. We first define the
general procedure for multivariate options and then we will give a concrete example for the case of an option written on four
indexes of stocks, namely, the S&P 500 Index, the Nasdaq 100 Index, the Nasdaq Composite Index, and the Nyse Composite Index.
Moreover, we calibrate the proposed model, also providing a comparison analysis between real prices and simulated data to show
the goodness of obtained estimates.We underline that our pair-copula decompositionmethod produces excellent numerical results,
without restrictive assumptions on the assets dynamics or on their dependence structure, so that our copula-based approach can
be used to model heterogeneous dependence structure existing between market assets of interest in a rigorous and effective way.

1. Introduction

In what follows we will consider a European option written
on 4 assets. We will assume that the risk-neutral setting holds
true, according to the framework defined in [1]; that is, the
price of each of the four considered underlying assets only
depends on its history; moreover, it is independent form the
others past behaviour. Previous condition allows us to write
the price of the above mentioned option as the following
discounted value:

𝑝
𝑡
= 𝑒
−𝑟𝑓(𝑇−𝑡)EQ [𝐺 (𝑆

1
(𝑇) , . . . , 𝑆

4
(𝑇)) | F

𝑡
] , (1)

where 𝑇 > 0 is the maturity time of the option, 𝑟
𝑓
is a

real positive parameter usually representing the interest rate
given by a bank for our cash deposit and it is assumed to be
constant over the whole option’s life, 𝐺(𝑆

1
(𝑇), . . . , 𝑆

4
(𝑇)) is

the payoff of the option written on the four assets 𝑆
1
, . . . , 𝑆

4
,

whose prices, at any time 𝑡 ∈ [0, 𝑇], are 𝑆
𝑖
(𝑡) for 𝑖 = 1, . . . , 4.

We would like to underline that (1) is given directly under
the risk-neutral (martingale) measure Q and it represents

the (fair or no-arbitrage) price of the option with payoff 𝐺

determined by the so-called martingale approach, see, for
example, [2, Section 5.4].

Under suitable assumptions, the price determined in (1)
can be rewritten according to the expected value definition
as follows:

𝑝
𝑡
= 𝑒
−𝑟𝑓(𝑇−𝑡)∬

+∞

0

𝐺 (𝑠
1
, . . . , 𝑠

4
) 𝑓Q (𝑠

1
, . . . , 𝑠

4
) 𝑑𝑠
1
⋅ ⋅ ⋅ 𝑑𝑠
4
,

(2)

where 𝑓Q(⋅) is the joint density probability function of the
underlying assets with respect to the risk-neutral probability
measureQ.

Our aim is to apply a pair-copula decomposition
approach to reproduce the joint density of the 4 underlying
assets as correlated randomvariables. Latter goal requires first
to find a method able to (statistically) describe the behaviour
of each underlying asset. In particular, we assume that the
underlying assets returns evolve as generalized autoregres-
sive conditional heteroskedastic processes with parameters
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𝑝 = 1 and 𝑞 = 1, namely, a GARCH(𝑝, 𝑞) process. Latter
choice is motivated by the fact that the GARCH processes
properly describe the evolution of variables that do not have
constant volatility over time; see, for example, [3]. Therefore,
GARCH processes turn out to be very effective models for
heteroskedastic processes, as in the case of financial time
series which exhibit structured interrelations.

In particular, inwhat followswe consider 4 assets, namely,
𝑆
1
, . . . , 𝑆

4
and a discrete set of timeswhose elements represent

a day between day 0, beginning of transactions, and day 𝑇

which can be taken as the end of our daily observations of
the asset’s prices. The quantity 𝑆

𝑖
(𝑡), for 𝑡 ∈ {0, . . . , 𝑇} and

𝑖 ∈ {1, . . . , 4}, stands for the closing price of the underlying 𝑖

at the trading day 𝑡. The one-day log-return of the 𝑖th asset is
defined as

𝑟
𝑖,𝑡+1

:= log(
𝑆
𝑖
(𝑡 + 1)

𝑆
𝑖
(𝑡)

) ,

(𝑖, 𝑡) ∈ {1, . . . , 4} × {0, . . . , 𝑇 − 1} .

(3)

Note that the objective 4-variate distribution of the log-
returns is specified conditional to all return information
available at time 𝑡, that is conditional to the sigma algebra
F
𝑡
:= 𝜎((𝑟

1,𝑠
, . . . , 𝑟

4,𝑠
) : 𝑠 ≤ 𝑡).

In order to derive the joint risk-neutral return process
from the objective one, we assume that the objectivemarginal
distributions of the assets returns evolve as a GARCH(1, 1)

process with Gaussian innovations; see, for example, [4];
namely,

𝑟
𝑖,𝑡+1

= 𝜇
𝑖
+ 𝜂
𝑖,𝑡+1

,

𝜎
2

𝑖,𝑡+1
= 𝛾
𝑖
+ 𝛼
𝑖
𝜂
2

𝑖,𝑡+1
+ 𝛽
𝑖
𝜎
2

𝑖,𝑡
,

𝜂
𝑖,𝑡+1

| F
𝑡
∼
𝑃
𝑁(0, 𝜎

2

𝑖,𝑡
) ,

(4)

where, for every 𝑖 = 1, . . . , 4, 𝜇
𝑖
is the expected daily log-

return of the asset 𝑆
𝑖
, while 𝜂

𝑖,𝑡+1
is the Gaussian innovation

under the objective, or real world, probability P linked to the
return 𝑟

𝑖,𝑡+1
. In particular, 𝜂

𝑖,𝑡+1
, conditioned to all returns

information available at time 𝑡, that is conditioned toF
𝑡
, has

mean zero and variance 𝜎2
𝑖,𝑡
which evolves as a GARCH(1, 1)

processes with parameters 𝛾
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
> 0 such that 𝛼

𝑖
+ 𝛽
𝑖
< 1.

Since the marginal distributions, at a given time 𝑡, are
specified conditional to a common set of information, that
is, with respect to the 𝜎-algebra F

𝑡
, then we are allowed

to exploit copula theory techniques to derive the joint
conditional distribution. In what follows, inspired by [5, 6],
see also [1, 7], we assume that the objective and the risk-
neutral copulas are the same.

The main idea behind our option pricing model is that
we can use a convenient map to transform each marginal
objective distribution to its risk-neutral counterpart, as in
[4]. Then we define a proper 4-dimensional copula func-
tion, obtained by the pair-copula construction method (see,
for example, [8]) instead of deriving the joint risk-neutral
distribution directly. Finally, we determine the fair price of
the option by taking the discounted expected value of the
option’s payoff under the risk-neutral measure.

In particular, assuming that the risk-neutral probability
Q satisfies a local risk-neutral valuation relationship (LRNVR)
(see [4, Def.2.1, Th.2.2]), then the law of the returns under Q
is given by

𝑟
𝑖,𝑡+1

= 𝑟
𝑓
−

1

2
𝜎
2

𝑖,𝑡
+ 𝜂
∗

𝑖,𝑡+1
,

𝜎
2

𝑖,𝑡+1
= 𝛾
𝑖
+ 𝛼
𝑖
(𝑟
𝑖,𝑡+1

− 𝜇
𝑖
)
2

+ 𝛽
𝑖
𝜎
2

𝑖,𝑡
,

𝜂
∗

𝑖,𝑡+1
| F
𝑡
∼Q𝑁(0, 𝜎

2

𝑖,𝑡
) ,

(5)

where 𝜂∗
𝑖,𝑡+1

are the Gaussian innovations underQ. Exploiting
the transform defined in (5) it is possible to model the
marginal behaviour of the marginal log-returns under the
measureQ.

1.1. Pair-Copula Decomposition. In this section, we show
how to model the interdependence of the underlying assets
𝑆
1
, . . . , 𝑆

4
, under the risk-neutral measure Q, by a copula-

based approach. We would like to underline that in the
𝑑 dimensional case for 𝑑 > 2 and differently from the
bivariate one, the main difficulty is that of finding the
right 𝑑-dimensional copula which properly reproduces the
dependence structure existing between the single pairs of
components. We solve such a problem by a multivariate
copula constructionmethod, namely, the pair-copula decom-
position approach; see, for example, [8].

Let us start introducing some basic concepts for the pair-
copula representation in view of the analysis of the three-
dimensional case; see [9].

Definition 1 (tree). A tree 𝑇 = {𝑁, 𝐸} is an acyclic graph,
where𝑁 is its set of nodes and 𝐸 is its set of edges (unordered
pairs of nodes).

Definition 2 (regular vine). A regular vine tree on 𝑑 variables
is a structure of connected trees 𝑇

1
, . . . , 𝑇

𝑑−1
, with nodes

𝑁
𝑖
and edges 𝐸

𝑖
, 𝑖 = 1, . . . , 𝑑 − 1, such that the following

conditions are satisfied:

(1) 𝑇
1
is a tree with a set of nodes 𝑁

1
= {1, . . . , 𝑑} and a

set of edges denoted by 𝐸
1
;

(2) for 𝑖 = 2, . . . , 𝑑 − 1 the tree 𝑇
𝑖
has node set 𝑁

𝑖
= 𝐸
𝑖−1

and a set of edges denoted by 𝐸
𝑖
;

(3) two edges in tree𝑇
𝑖
are joined in tree𝑇

𝑖+1
if they share

a common node in tree 𝑇
𝑖
.

Here we focus on two special cases of regular vines,
namely, the D-vine and the canonical vine; see, for example,
[8] for details.

Before going into details, we would like to underline that
while from the pair-copula decomposition point of view the
three-dimensional case can be easily treated (for example,
the D-vine and the canonical vine specification coincide),
difficulties arise when the number of correlated dimensions
increases.



Journal of Probability 3

In three dimensions the construction method proceeds
as follows: let 𝑓 denote the joint density probability function
of three random variables 𝑋

1
, 𝑋
2
, 𝑋
3
, and then 𝑓 can be

decomposed as follows:

𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
)

= 𝑓
1
(𝑥
1
) 𝑓
2
(𝑥
2
) 𝑓
3
(𝑥
3
) 𝑐
12

(𝐹
1
(𝑥
1
) , 𝐹
2
(𝑥
2
))

× 𝑐
23

(𝐹
2
(𝑥
2
) , 𝐹
3
(𝑥
3
)) 𝑐
13|2

× (𝐹
1|2

(𝑥
1
| 𝑥
2
) , 𝐹
3|2

(𝑥
3
| 𝑥
2
)) ,

(6)

where, for every 𝑖, 𝑗 = 1, . . . , 3, 𝐹
𝑖
stands for the marginal

probability distribution function of 𝑋
𝑖
, 𝑓
𝑖
is the correspond-

ing marginal density function, and 𝑐
𝑖𝑗
is the associated bivari-

ate copula density, while 𝑐
13|2

represents the bivariate copula
density of𝑋

1
, 𝑋
3
conditional to the second component.

In order to reproduce a density function through a pair-
copula decomposition in dimension 𝑑 > 3, we have first to
select an appropriate decomposition structure. In particular,
from a financial point of view, previous statement means that
we first have to analyze the economic relationship between
the variables of interest in order to find the variable that
governs the interactions in the data set. If such a variable
exists, then a canonical vine specification should be the best
choice; otherwise, we will use the D-vine decomposition
structure; see, for example, [8].

Once the vine structure has been chosen, we are left with
the selection of the order of the variables, the families of pair-
copulas, and the specification of their parameters.

The order of the variables is set according to the following
rule: first we compute the dependence measure Kendall’s tau
for each pair of variables andwe order the variables in the first
tree on the basis of their dependence structure; this means
that the two variables with the strongest dependence are put
in the first two nodes of the first tree and so on.The next trees
are determined as a consequence; see [10].Then we select the
best-fitting pair-copula family; namely, we have to select the
pair-copula specification that guarantees the best fitting with
observed data. Such a problem can lead to different solutions
depending on different setting. In our specific case, we are
justified to consider only the Gaussian, the 𝑡-Student, the
Clayton and the Gumbel copulas since they are themost used
types in financial applications; see, for example, [1, 5–7]. The
particular copula is selected exploiting standard information
criteria such as Akaike information criterion (AIC) and
the Bayesian information criterion (BIC) respectively; see,
for example, [11–13] and references therein, for each edge
in each tree. In particular, the choice is made in order
to minimize the AIC and the BIC coefficient, respectively.
Finally, the selected copula’s parameters are estimated using
the maximum likelihood criterion for each pair.

Once we have obtained the results for the first tree, we
need to construct a sample for the conditional bivariate
distribution, in order to find the pair-copula associated with
the copula density 𝑐

13|2
in (6). Let us consider the following

definition of bivariate conditional distribution function in
terms of copula:

ℎ (𝑢, V, Θ) := 𝐹 (𝑢 | V) =
𝜕𝐶
𝑢,V (𝑢, V, Θ)

𝜕V
, (7)

where 𝑢 and V are uniform random variables and Θ is
the set of parameters characterizing the copula of the joint
distribution of 𝑢 and V.

We would like to underline that the function ℎ plays a
key role in the pair-copula decomposition approach in a 𝑑-
dimensional setting when 𝑑 > 3, since it allows to reproduce
the conditional behaviour of a random vector in terms of a
bivariate function. Indeed, by an iterative algorithm, we can
rewrite the conditional distribution using a proper choice of
ℎ and of the copula written on its marginals.

Once the pair-copula method has been theoretically
implemented, thus obtaining the joint distribution of interest,
we are left with the need to calibrate the model in order to
obtain satisfactory numerical results. The calibration proce-
dure will be the main goal of the next section.

1.2. Calibration of the Model. The pair-copula decomposition
and the ℎ-function described in Section 1.1 can be calibrated
starting from the definition of the Gaussian innovations 𝜂

𝑖,𝑡

of the model, namely, a GARCH(1, 1), we have chosen for the
marginal distributions of the underlying assets.

In particular, if we are in a 𝑑-dimensional setting, 𝑑 ≥ 2,
we define the standardized innovations as follows:

(𝑍
1,𝑠
, 𝑍
2,𝑠
, . . . , 𝑍

𝑑,𝑠
)
𝑠
:= (

𝜂
1,𝑠

𝜎
1,𝑠

,
𝜂
2,𝑠

𝜎
2,𝑠

, . . . ,
𝜂
𝑑,𝑠

𝜎
𝑑,𝑠

) ,

∀ (𝑖, 𝑠) ∈ {1, . . . , 𝑑} × [0, 𝑇] ,

(8)

where 𝜎
𝑖,𝑠

is the standard deviation of the underlying 𝑖 at
time 𝑠. By the well-known results for the GARCHmodel (see,
for example, [14, Part V, Sec.16]) the 𝑍

𝑖,𝑠
are 𝑖.𝑖.𝑑, standard

Gaussian random variables, even if the stochastic processes
𝑍
1
, . . . , 𝑍

𝑑
are not independent. By the Sklar’s Theorem we

have that the joint distribution 𝐹 (under the objective mea-
sureP) of the underlying innovations can be written in terms
of its marginals; see, for example, [15, Sec.1]. In particular,
since 𝑍

1
, . . . , 𝑍

𝑑
are continuous stochastic processes, there

exists an unique copula 𝐶 such that

𝐹 (𝑧
1
, . . . , 𝑧

𝑑
) = 𝐶 (𝐹

1
(𝑧
1
) , . . . , 𝐹

𝑑
(𝑧
𝑑
)) , (9)

for all 𝑧
𝑖

∈ R, 𝑖 = 1, . . . , 𝑑. Moreover, we assume that
the copula 𝐶 in (9) is a parametric copula of parameter 𝜃P.
Latter assumption is justified since the dependence structure
existing between the variables 𝑧

𝑖
is usually given by a copula

function that depends on a particular parameter. Given the
standardized innovations, we want to infer their dependence
structure under P using the pair-copula decomposition
method.Then, we will use the dependence structure, namely,
the copula function that better reproduces the joint behaviour
of the underlyings, to price an option written on four indexes
which will be considered as underlyings.

In order to use the pair-copula decomposition, and
in particular the ℎ-function defined in (7), we compute
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the corresponding estimated standardized innovations in the
interval (0, 1), applying the cumulative distribution function
Φ of the standard normal distribution 𝑁(0, 1). Thus, the
corresponding uniform variables 𝑈

𝑖
, for 𝑖 = 1, . . . , 4 are

defined as follows:

(𝑈
1,𝑠
, . . . , 𝑈

4,𝑠
) := (Φ(

𝜂
1,𝑠

�̂�
1,𝑠

) , . . . , Φ(
𝜂
4,𝑠

�̂�
4,𝑠

)) . (10)

Hereafter, we will work using the random vector (𝑈
1,𝑠
, . . . ,

𝑈
4,𝑠
), with 𝑠 ∈ [0, 𝑇], where 𝑇 > 0 is the maturity date of

our investment.
The next step is that of finding the copula on the joint

distribution of the random vector 𝑈
1
, . . . , 𝑈

4
. In particular,

we have to choose the bivariate copulas that best fit our data.
Such a copula structure will be then exploited to reproduce
the 4-variate copula density and thus the joint distribution
density, for the random vector𝑈

1
, . . . , 𝑈

4
under the objective

measure P.

1.3. Option Pricing. In this section, we will consider (2) to
solve the associated option pricing problem exploiting results
obtained through previous sections. To reproduce the joint
density function 𝑓Q we use, as for the density under the
objective probability P, a multivariate copula constructed
through the pair-copula approach. In particular, we assume
that the copula under Q belongs to the same family as the
one determined under P, possibly being characterized by
different parameters.

The option pricing problem will be solved in two steps.
First we simulate the underlying assets 𝑆

1
, . . . , 𝑆

4
under the

risk-neutral measure Q; then, we simulate the option price
and we calibrate the model to determine the set ΘQ of the
copulas’ parameters under Q. The set ΘQ is composed of all
the parameters of the pair-copulas used to create the proper
vine specification. For example, in the 3-dimensional case,
we have ΘQ = (𝜃

Q
12
, 𝜃

Q
13
, 𝜃

Q
23|1

), for such a particular vine
structure.

In order to simulate the assets 𝑆
1
, . . . , 𝑆

4
underQwe con-

sider the risk-neutral transformation of the returns defined in
(5); see [4] for details.This turns out to be a recursive method
to estimate both the returns and the volatility terms under
the risk-neutral measure. Moreover, in order to maintain
the dependence structure obtained from the market data,
we simulate, using the vine specification previously defined,
the variables 𝑈

𝑖
, 𝑖 = 1, . . . , 4, according to the algorithm

described in [10].
Concerning the option price estimation, let us recall that

at time 𝑡 the option price is given by the following equation:

𝑝
𝑡
= 𝑒
−𝑟𝑓(𝑇−𝑡)EQ [𝐺 (𝑆

1
(𝑇) , . . . , 𝑆

4
(𝑇)) | F

𝑡
] . (11)

We first estimate the price, defined as 𝑝𝑀
𝑡
, inserting the

prices 𝑆
𝑖
(𝑡), observed in the market at time 𝑡, for 𝑖 = 1, . . . , 4,

into the option payoff equation. Then we use a Monte Carlo
approach to estimate the price, defined as 𝑝

mc
𝑡

(ΘQ), by (1)
and using the observation simulated from the vine structure.

Finally, we calculate the set ΘQ minimizing the sum of the
quadratic error; namely,

min
ΘQ

𝑛

∑

𝑖=1

(𝑝
mc
𝑡𝑖

− 𝑝
𝑀

𝑡𝑖
)
2

, (12)

where {𝑡
𝑖
}
𝑖
are the past observations of the option prices.

The question about the choice of the parameter set ΘQ

corresponds to the calibration of the pricing model.

2. Numerical Implementation

In our implementation, we work with a dataset that comes
from the U.S market. In particular, we consider the following
indexes: the Standard andPoor’s (S&P) 500 index, theNasdaq
100 index, the Nasdaq Composite index, and the New York
Stock Exchange (Nyse) Composite index; see, for example,
the related Wikipedia occurrences for detailed definitions
of these market indexes. We have considered such indexes
between January 1, 2012 and December 28, 2012, for a total
of 249 days resulting in the same amount of closing levels for
each index. On these indexes we write two option contracts,
𝑋
1
and 𝑋

2
, respectively, which are defined by the following

payoffs at maturity 𝑇 > 0:

𝑋
1
(𝑇) := max (max {𝑆

𝑖
(𝑇)} − 𝐾, 0) , (13)

𝑋
2
(𝑇) = max {𝑆

𝑖
(𝑇)} −min {𝑆

𝑖
(𝑇)} , (14)

respectively, where 𝐾 > 0 is the strike price of the option
𝑋
1
and 𝑖 = 1, . . . , 4. Note that 𝐾 = 1000 in our numerical

implementation. In Figure 1 we plot the four data sets.
Notice that the plots of the closing prices of the four

indexes are not comparable, since they do not fluctuate
around a commonmean value.Hereafter, wewill consider the
log-return of each index instead of time series of the prices,
as in (3). By an analysis of the time series of the returns, in
Figure 2, we can infer an heteroskedasticity characteristic for
the considered setting; hence, a GARCH model turns out to
be considered as a natural choice.

The GARCH parameters estimation is the first step of
our implementation. In particular, once the time series of the
underlying assets prices are given, we compute the returns
estimation. Before analyzing the results obtaining using the
GARCH model, let us underline some statistics for each
return series together with the response given by the Jarque-
Bera normality test; see, for example, [16], for each series.
From Table 1 we see that the Jarque-Bera statistics are quite
high, especially for the S&P 500 series; thus we can infer that
the returns are not normally distributed.

Moreover, both the kurtosis coefficients (greater than
3 which is the characteristic kurtosis value for a Gaussian
distribution) and the quantile-quantile plot of the returns, as
in Figure 3, strengthen previous deduction.

We would also like to underline the presence of fat tail
for the S&P 500 time series of returns, in agreement with the
(non-Gaussianity) results given by the Jarque-Bera statistics.
We point out that using the GARCH(1, 1) model we obtain
a highly satisfactory description of our market behaviour;
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Figure 1: Plot of the data sets.

Table 1: Descriptive statistics.

NYSE Nasdaq 100 Nasdaq Com S&P 500

Mean 0.350 0.466 0.448 0.377
Standard deviation 0.0085 0.0096 0.0093 0.0079
Kurtosis 3.549 3.685 3.629 3.915
JB statistics 3.18 5.07 4.09 8.68

indeed all the processes have a log-likelihood value rather
high, between 800 and 850. Moreover, it results that the most
significant variable in the model is the one corresponding to
the variance past value, with the latter being in agreement
with the use of a heteroskedastic model. In Table 2 we present
the estimated coefficients and the corresponding estimation
errors of the coefficients of ourGARCH(1, 1) process for each
index.

In order to construct a proper pair-copula structure for
themultivariate density function, we first have to find the vine
structure that best fits our data, and then we will properly
order the variables in the chosen vine. We first investigate
the dependence structure between pairs out of {Nyse, Nasdaq
100, Nasdaq Com, S&P 500}, and the result, obtained using
the sample Kendall’s tau, is given in Table 3.

Table 2: Estimated coefficients and corresponding standard errors.

NYSE Nasdaq 100 Nasdaq Com S&P 500

𝜇
5.03𝑒 − 04 9.38𝑒 − 04 7.47𝑒 − 04 5.29𝑒 − 04

(5.43𝑒 − 04) (6.03𝑒 − 04) (5.98𝑒 − 04) (5.13𝑒 − 04)

𝛾
3.64𝑒 − 06 2.93𝑒 − 06 3.19𝑒 − 06 3.02𝑒 − 06

(4.53𝑒 − 06) (3.57𝑒 − 06) (4.24𝑒 − 06) (3.60𝑒 − 06)

�̂�
0.0471 0.0488 0.0419 0.0415

(0.0372) (0.0315) (0.0324) (0.0318)

𝛽
0.9035 0.9220 0.9229 0.9127

(0.0899) (0.0592) (0.0710) (0.0796)

Table 3: Sample Kendall’s tau.

NYSE Nasdaq 100 Nasdaq Com S&P 500

NYSE 1
Nasdaq 100 0.5224 1
Nasdaq Com 0.6018 0.8985 1
S&P 500 0.7286 0.7320 0.7548 1

Using the data collected in Table 3, we can infer that
there is not a variable that governs the interactions. Thus
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Figure 2: Plot of the indexes returns.

we will consider a D-vine structure for the pair-copula
decomposition. Moreover, we can see that the strongest
dependence appears to be, as expected, between the Nasdaq
100 Index and the Nasdaq Composite Index, followed by the
one between the S&P 500 Index and the Nasdaq Composite
Index. The D-vine structure for our data set is given in
Figure 4.

Each edge of the D-vines tree corresponds to a pair-
copula density; therefore, in our implementation, the pair-
copula decomposition of the joint density reads as follows:

𝑓 (𝑥
𝑁
, 𝑥
𝑁𝑐

, 𝑥
𝑆
, 𝑥
𝑁𝑦

)

= 𝑓
𝑁
(𝑥
𝑁
) ⋅ 𝑓
𝑁𝑐

(𝑥
𝑁𝑐

) ⋅ 𝑓
𝑆
(𝑥
𝑆
) ⋅ 𝑓
𝑁𝑦

(𝑥
𝑁𝑦

)

⋅ 𝑐
𝑁,𝑁𝑐

(𝐹
𝑁
(𝑥
𝑁
) , 𝐹
𝑁𝑐

(𝑥
𝑁𝑐

)) ⋅ 𝑐
𝑁𝑐,𝑆

(𝐹
𝑁𝑐

(𝑥
𝑁𝑐

) , 𝐹
𝑆
(𝑥
𝑆
))

⋅ 𝑐
𝑆,𝑁𝑦

(𝐹
𝑆
(𝑥
𝑆
) , 𝐹
𝑁𝑦

(𝑥
𝑁𝑦

))

⋅ 𝑐
𝑁,𝑆|𝑁𝑐

(𝐹
𝑁|𝑁𝑐

(𝑥
𝑁

| 𝑥
𝑁𝑐

) , 𝐹
𝑆|𝑁𝑐

(𝑥
𝑆
| 𝑥
𝑁𝑐

))

⋅ 𝑐
𝑁𝑐,𝑁𝑦|𝑆

(𝐹
𝑁𝑐|𝑆

(𝑥
𝑁𝑐

| 𝑥
𝑆
) , 𝐹
𝑁𝑦|𝑆

(𝑥
𝑁𝑦

| 𝑥
𝑆
))

⋅ 𝑐
𝑁,𝑁𝑦|𝑁𝑐,𝑆

(𝐹
𝑁|𝑁𝑐,𝑆

(𝑥
𝑁

| 𝑥
𝑁𝑐

, 𝑥
𝑆
) ,

𝐹
𝑁𝑦|𝑁𝑐,𝑆

(𝑥
𝑁𝑦

| 𝑥
𝑁𝑐

, 𝑥
𝑆
)) .

(15)

Given the pair-copula decomposition, we further inves-
tigate the dependence structure constructing the bivariate
scatter plots of the copula data 𝑈

𝑖
, for 𝑖 = 1, . . . , 4, where 𝑈

𝑖

is the uniform vector in (10). Graphs in Figures 5 and 6 show
the existence of tail dependence between almost all the pairs.
In particular, we can easily notice that there is significant
dependence between different time series concerning their
tails. The latter fact is rather obvious since all the used
financial indexes belong to the USA market, and hence, even
if their behaviour is also influenced by non-USA assets, a
quite strong link between them is exactly what we have
to take into account. We would also like to underline that
we may expect similar results, namely, the existence of
tail dependence between almost all the pairs, even in the
case of pairs constituted by indexes belonging to different
economies, for example, DAX andNYSE, at least when rather
global financial events occur, as in the case of the worldwide
economic crisis of 2007/2008. It is worth to mention that, in
oder to study such type of dependencies, one canmake use of
the so-called upper/lower dependence indexes, which can be
considered as indicators of the dependence values in the tails
of the bivariate distributions.

Previous consideration is the first step in the copula
choosing process. The next step, actually the most important
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Figure 3: Quantile-quantile plot of the indexes returns.
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Figure 4: D-vine structure with four variables.

one, is that of comparing the AIC values for the four possible
copula alternatives, that is, the Gaussian, the 𝑇-Student, the
Clayton, and the Gumbel copula. Let us first analyze the
bivariate copulas of the first tree, and then we will estimate

the corresponding copula functions’ parameters. From
Figure 4 we infer that we have to compute the following
copulas:𝐶

𝑁,𝑁𝑐
,𝐶
𝑁𝑐,𝑆

,𝐶
𝑆,𝑁𝑦

,𝐶
𝑁,𝑆|𝑁𝑐

,𝐶
𝑁𝑐,𝑁𝑦|𝑆

, and𝐶
𝑁,𝑁𝑦|𝑁𝑐,𝑆

.
The first three copulas are estimated using the copula

data of the vector 𝑈 and comparing the AIC values for each
possible choice of the copula function. The results are as
follows:

(i) 𝐶
𝑁,𝑁𝑐

is a Clayton copula;
(ii) 𝐶
𝑁𝑐,𝑆

is a Clayton copula too;
(iii) 𝐶

𝑆,𝑁𝑦
is a Gumbel copula.

Once the copula functions have been estimated, we can
compute the corresponding parameters, which are reported
in Table 4.

From the second tree of Figure 4 it turns out that we have
to compute 𝐶

𝑁,𝑆|𝑁𝑐
and 𝐶

𝑁𝑐,𝑁𝑦|𝑆
. Since they are conditional

pair copula we have to infer first the proper ℎ-function.
Then, we can estimate the conditional copula using the
sample created by the ℎ-functions. In a four-variable D-
vine structure we have to compute three ℎ-functions, since
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Table 4: Copula parameters estimation.

𝜃

𝐶
𝑁,𝑁𝑐

9.2084
𝐶
𝑁𝑐,𝑆

3.5953
𝐶
𝑆,𝑁𝑦

7.2419
𝐶
𝑁,𝑆|𝑁𝑐

1.3708
𝐶
𝑁𝑐,𝑁𝑦|𝑆

1.00
𝐶
𝑁,𝑁𝑦|𝑁𝑐,𝑆

1.00

we need to estimate the following conditional distribution
functions: 𝐹(𝑥

𝑁𝑐
| 𝑥
𝑆
), 𝐹(𝑥

𝑁𝑦
| 𝑥
𝑆
) and 𝐹(𝑥

𝑁
| 𝑥
𝑁𝑐

).
Hence we simulate 𝐹(𝑥

𝑁𝑐
| 𝑥
𝑆
) using the Clayton ℎ-function

ℎ𝐶(𝑥
𝑁𝑐

, 𝑥
𝑆
), while for 𝐹(𝑥

𝑁𝑦
| 𝑥
𝑆
) we use the Gumbel

ℎ-function ℎ𝐺𝑢(𝑥
𝑁𝑦

, 𝑥
𝑆
), and finally the corresponding ℎ-

function for 𝐹(𝑥
𝑁

| 𝑥
𝑁𝑐

) is again the Clayton one. Once
the conditional distributions have been simulated, we can
estimate the best-fitting copula functions for the pairs (𝐹(𝑥

𝑁
|

𝑥
𝑁𝑐

), 𝐹(𝑥
𝑆

| 𝑥
𝑁𝑐

)) and (𝐹(𝑥
𝑁𝑐

| 𝑥
𝑆
), 𝐹(𝑥

𝑁𝑦
| 𝑥
𝑆
)), and

we have that the selected copula is for both of the pairs
the Gumbel copula, with parameters as in Table 4. Finally,
the copula 𝐶

𝑁,𝑁𝑦|𝑁𝑐,𝑆
has to be computed. Again we have to

use the ℎ-function to simulate a sample for the conditional
distribution functions 𝐹(𝑥

𝑁
| 𝑥
𝑁𝑐

, 𝑥
𝑆
) and 𝐹(𝑥

𝑁𝑦
| 𝑥
𝑁𝑐

, 𝑥
𝑆
).

The last pair copula is a Gumbel copula function too. Note
that for both 𝐶

𝑁𝑐,𝑁𝑦|𝑆
and 𝐶

𝑁,𝑁𝑦|𝑁𝑐,𝑆
we have 𝜃 = 1, which

implies that the variables in the distribution function are
conditionally independent so that, for the copula𝐶

𝑁𝑐,𝑁𝑦|𝑆
and

given the S&P Index, the Nasdaq Composite and the Nasdaq
100 are independent. Similarly, given the Nasdaq Composite
and the S&P, the Nasdaq 100 and the NYSE are conditionally
independent. Moreover, we have that the density copula
function 𝑐

𝑁,𝑁𝑦|𝑁𝑐,𝑆
is equal to 1; see [10]; therefore, such

copula components do not play a role in our pair-copula
decomposition structure.

Exploiting previous considerations about the estimated
parameters, we obtain that the joint density function can be
decomposed as follows:

𝑓 (𝑥
𝑁
, 𝑥
𝑁𝑐

, 𝑥
𝑆
, 𝑥
𝑁𝑦

)

= 𝑓
𝑁
(𝑥
𝑁
) ⋅ 𝑓
𝑁𝑐

(𝑥
𝑁𝑐

) ⋅ 𝑓
𝑆
(𝑥
𝑆
) ⋅ 𝑓
𝑁𝑦

(𝑥
𝑁𝑦

)

⋅ 𝑐
Clayton
𝑁,𝑁𝑐

(𝐹
𝑁
(𝑥
𝑁
) , 𝐹
𝑁𝑐

(𝑥
𝑁𝑐

))

⋅ 𝑐
Clayton
𝑁𝑐,𝑆

(𝐹
𝑁𝑐

(𝑥
𝑁𝑐

) , 𝐹
𝑆
(𝑥
𝑆
))

⋅ 𝑐
Gumbel
𝑆,𝑁𝑦

(𝐹
𝑆
(𝑥
𝑆
) , 𝐹
𝑁𝑦

(𝑥
𝑁𝑦

))

⋅ 𝑐
Gumbel
𝑁,𝑆|𝑁𝑐

(𝐹
𝑁|𝑁𝑐

(𝑥
𝑁

| 𝑥
𝑁𝑐

) , 𝐹
𝑆|𝑁𝑐

(𝑥
𝑆
| 𝑥
𝑁𝑐

)) .

(16)
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Figure 6: Scatter plots of the copula data sets.

2.1. Option Pricing with Four Underlying Assets. In this
section we analyze how the option pricing problem can be
solved using our pair-copula decomposition.

Wefirst consider the option pricing problem for an option
written on four underlyings whit payoff given as in (13).Then
we consider the same problem, but for an option with payoff
as in (14). Following what we have developed in the previous
sections from the theoretical model, we first compute the
option price using the market prices at the final time and
then we compare it with the prices under the risk-neutral
probabilityQ using the same pair-copula decomposition, but
with proper parameters. To find the optimal parameters set
we use a sort of confidence interval for the possible values 𝜃Q

𝑖
.

In particular, starting from the corresponding 𝜃
P
𝑖
computed

under the objective probability measure P, we look for the
values that belong to a predetermined interval such that they
minimize the difference between the market price and the
estimated one, as in (12). Hereafter, we will face the problem
of finding the copula parameters which allow obtaining an
option price, computed under the risk-neutral measure Q ∼

P, as close as possible to the market option price computed
exploiting the observed data. We consider first an option
with payoff given by (13) and we compute its market price
at the end of our investment period, say 𝑝

𝑀
(𝑇). Then we

compute the option price under the risk-neutral probability

measure Q, and related numerical results (prices) are shown
in Table 6. Before computing the option price under the
risk-neutral measure Q, we have to derive the assets prices
under the probabilityQ. Let us note that, by assumption, the
dependence structure under Q is the same as the one under
the objective probability P. The first step in the method used
to construct the proper prices processes is that of simulating
a 4-dimensional, uniformly distributed vector in [0, 1]

4, say
𝑈

Q
= [𝑈

Q
1
, 𝑈

Q
2
, 𝑈

Q
3
, 𝑈

Q
4
]. Such a simulation is iterated up to

248 times, in order to create a sample of data as long as the
data set of observations.Then we construct the returns series
according to the specification given in (5). To do this we use
the coefficients computed with the GARCH(1, 1) model in
Table 2, we set an initial volatility level equal to 𝛾

𝑖
/(1−𝛼

𝑖
−𝛽
𝑖
),

and we exploit the standardized innovations 𝑍Q
𝑖
given by the

following identity:

𝑍
Q
𝑖,𝑡

= Φ
−1

(𝑈
Q
𝑖,𝑡
) . (17)

The next step consists in recursively computing the returns
series under Q. This procedure allows us to obtain the fact
(see [4]) that the final asset price under the risk-neutral
probability is defined as follows:

𝑆
𝑖,𝑇

= 𝑆
𝑖,𝑡
exp[(𝑇 − 𝑡) 𝑟

𝑓
−

1

2

𝑇

∑

𝑠=𝑡+1

𝜎
2

𝑖,𝑠
+

𝑇

∑

𝑠=𝑡+1

𝜂
𝑖,𝑠
] , (18)
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Table 5: Copula parameters underQ.

𝜃
1

𝜃
2

𝐶
𝑁,𝑁𝑐

10.2084 10.2084
𝐶
𝑁𝑐,𝑆

3.5953 2.5953
𝐶
𝑆,𝑁𝑦

7.2419 6.2419
𝐶
𝑁,𝑆|𝑁𝑐

1.3708 0.8708
𝐶
𝑁𝑐,𝑁𝑦|𝑆

1.00 1.00
𝐶
𝑁,𝑁𝑦|𝑁𝑐,𝑆

1.00 1.00

Table 6: Market price and Monte Carlo price.

Option 1 Option 2

Market price 𝑝𝑀 (𝑇) 7.32𝑒 + 003 6.91𝑒 + 003

Monte Carlo estimate 𝑝MC (𝑇) 7.27𝑒 + 003 6.67𝑒 + 003

where 𝑇 is the final observation time, 𝑟
𝑓
is the constant risk-

free rate, and 𝜎
2

𝑖,𝑡
is the volatility of the asset 𝑖 at time 𝑡,

computed using the second line of (5).
The final step consists in an option price estimation

made using both Monte Carlo method, with 10000 simulated
trajectories for each underlying asset, and the sample data
series previously constructed.The estimate procedure is then
completed finding the copula parameters that minimize the
differences between the market option price at time 𝑇, that
is, 𝑝𝑀(𝑇), and the Monte Carlo simulated price, say 𝑝

MC
(𝑇).

In Table 5, we present the estimated copula parameters that
minimize the difference between 𝑝

𝑀 and 𝑝
MC both for an

option with payoff as in (13), say 𝜃
1
, and for an option with

payoff as in (14), say 𝜃
2
.

Table 6 reports the prices computed for an option with
payoff as in (13), sayOption 1, respectively, for a second option
with payoff as in (14), say Option 2.

Using data collected in Table 6, we can infer that the
price computed using the Monte Carlo simulation is rather
similar to the market price.This means that the copula-based
option pricing is a good estimationmethod to find the option
price. The difference between the two prices can be seen as
the witnessing of the lack of arbitrage free hypotheses. An
alternative explanation relies on the fact that even ifQ ∼ Pwe
do not have that the copula decomposition structure remains
the same under these two probability measures.

We would also like to underline that, from a purely
computational point of view, the simulation of a sample from
theD-vine dependence structure in four dimensions is rather
more complicated than in three dimensions because of the
increased algorithm complexity. Previous results show that
also for the four-dimensional option pricing problem the
copula approach gives satisfactory results. Latter approach is
quite general and it can be adapted to a larger set of assets
distribution. In fact we can use different specification of the
copula functions and we can exploit the flexibility given by
the pair-copula decomposition.

3. Conclusions

In this paper we have faced a multivariate option pricing
problem considering options written on 4 underlying assets

by copula decomposition techniques. In particular, inspired
by the method proposed in [9, 10], we have strictly gener-
alized similar results already present in literature, see, for
example, [1, 5, 6], which are limited to the trivariate case.

The main difficulty to overcome passing from the three-
dimensional to the four-dimensional setting is that in the
latter case we have to select the appropriate vine structure
which turns to be of D-vine type, contrary to what happens
in the trivariate setting where the canonical vine is sufficient.

The latter means that a deeper analysis of the relationship
between the 4 underlying assets has to be done in order to
give correct vine specification.

We have also shown, by accurate simulations, that the
particular pair-copula decomposition method which we pro-
posed to solve option pricing problem produces excellent
numerical results, without any particular restrictive assump-
tion on the assets behaviour or on the dependence structure
existing between them.

Moreover, a copula-based approach has the necessary
flexibility needed to face the most different scenarios char-
acterizing present financial markets, and indeed such a tech-
nique allows us to model almost every dependence structure
existing between the market assets in a precise and effective
way.
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